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n =  N/(1 + Ne2)             

where: 

N = population size of 2099 

e = 95% confidence level (Adam, 2020). 

 

This equated to 37 HUC8s for six of the climate regions and 38 HUC8s for an additional three. 

All 2099 HUC8s names were aggregated by climate region into individual Excel spreadsheets in 

categories by season. The list of HUC8s in each were "shuffled" using Excel's RAND() function. 

The lists were then pasted into R individually, by region and season, and a built-in GNU General 

Public License R algorithm for random sampling was used in R to acquire the random 37 or 38 

HUC8s used for each CR (Figure A4). 

Following that, an R script was written to create files which showed the mean seasonal historic 

data alongside each GCM, for each of the 336 "sample" HUC8s (Script C3, Figure A5). For 

each season, for each sample HUC8, the yearly mean runoff in millimeters (RO_MM) was 

aggregated into a new list according to GCM.  

Next, Visual Basic (VBA) code was written to split each HUC8's truncated yearly data file 

together with its corresponding historic data file, into the same Excel file for each of the 26,880 

files in the representative sample (336 * 4 * 20) of the RCP 4.5 scenario. All data were then 

exported into folders as individual CSV files (Script C4). 

These datasets were then graphed for comparison between GCM projected data and historic 

data for each HUC8 (Script C5). A linear regression was run in Excel on each set of data for all 

files (Figure A6), and the files were saved as individual Excel spreadsheet (XLSX) files in order 

to preserve the graphs. 

At that point a Root Mean Square Error (RMSE) analysis (Padiyedath Gopalan et al., 2018) was 

run on every Excel file, comparing the column of projected RO_MM for each GCM, in each 

HUC8, against the historical data using R (Script C6). The RMSE calculates the accumulated 
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ap for the year 2100. 
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This research shows that every Climate Region (CR) will experience significant seasonal 

changes in surface runoff volume under the intermediate scenario during at least one season in 

the coming decades (Table 1).  
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(“Climate Change in Australia,” 2019) 

 

  Season  
   and  
   RCP    Climate Region 

Percent of 
Whole with 

SIGNIFICANT 
TREND 

Percent of 
whole  

Positive 

Percent of  
whole  

  Negative 

 Percent of    Percent of  
SIGNIFICANT  SIGNIFICANT  
 TREND              TREND 
 Positive             Negative 

Fall 4.5 Northwest 1.98%  1.49% 0.50% 75.00% 25.00% 
 Rockies and Plains 2.24% – 2.24% –   100% 
 Upper Midwest 4.59% 0.51% 4.08% 11.11% 88.89% 
 Ohio Valley 5.75% – 5.75% – 100% 
 Northeast 1.24% 1.24% – 100% – 
 Southeast 9.87% 9.87% – 100% – 
 South 8.05% 8.05% – 100% – 
 Southwest 16.81%        16.81% – 100% – 
 West 0% – – – – 
Spr 4.5 Northwest 26.24% 1.98% 24.26% 7.55% 92.45% 
 Rockies and Plains 10.07% 7.09% 2.99% 70.37% 29.63% 
 Upper Midwest 15.31% – 15.31% – 100% 
 Ohio Valley 0% – – – – 
 Northeast 2.48% – 2.48% – 100% 
 Southeast 4.93% 4.93% – 100% – 
 South 2.93% 2.68% 0.24% 91.67% 8.33% 
 Southwest 10.50% 10.50% – 100% – 
 West 4.00% – 4.00% – 100% 
Sum 4.5 Northwest 30.69% – 30.69% – 100% 
 Rockies and Plains 2.99% – 2.99% – 100% 
 Upper Midwest 0% – – – – 
 Ohio Valley 0% – – – – 
 Northeast 3.73% – 3.73% – 100% 
 Southeast 0% – – – – 
 South 13.17% 13.17% – 100% – 
 Southwest 31.51% 31.51% – 100% – 
 West 16.00% – 16.00% – 100% 

 Win 4.5 Northwest 47.52% 47.52% – 100% – 
 Rockies and Plains 10.45% 100% – 100% – 
 Upper Midwest 30.61% 30.61% – 100% – 
 Ohio Valley 0% – – – – 
 Northeast 23.60% 23.60% – 100% – 
 Southeast 1.79% 1.79% – 100% – 
 South 6.83% 6.83% – 100% – 
 Southwest 42.02% 42.02% – 100% – 
 West 30.86% 30.86% – 100% – 
 

 

Table 1. A record of projected significant trends in HUCs across the CONUS under the 
Intermediate (RCP 4.5) climate scenario. (“Climate Change in Australia,” 2019) 
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Most CRs will experience significant seasonal changes during two or more seasons, often 

consecutively. Some CRs will experience significant seasonal changes during every season.  

The fall season shows water deficit across lower Wisconsin in a cluster of ten HUC8s. In the 

same season northeast Missouri also shows a cluster- eight HUC8s in Missouri, and two shared 

with Illinois in deficit. Illinois has three additional HUC8s in deficit as well as those portions of its 

northern border shared with Wisconsin. Also in the fall season, Florida shows nearly a third of 

the state seeing significantly increased runoff. Georgia also shows ten watersheds, two shared 

with Florida, with a surfeit all along its coast. These clusters in FL and GA could reflect a 

possible increase in hurricanes in that area. The winter season in the IS scenario shows vast 

increases in runoff in the northern southwest and west CRs, as well as the northwest. More than 

20 HUC8s in California's NW, almost half of Nevada's HUC8s show a significant increase in 

runoff. Two-thirds of both Utah and Colorado's HUC8s, almost half of Oregon's and nearly all of 

Idaho's HUC8s also show a surfeit. Further surfeits are widespread in northern Wisconsin, 

Michigan, New York, Vermont, New Hampshire and Maine. In the spring season the 

predominant stress appears as deficit in the HUC8s in the western third of Washington state. 

Oregon also faces deficit in more than 15 watersheds in its west-central region, and a portion of 

the east central area. Michigan, shows 26 watersheds in deficit across its upper boundaries, 

about a third of the state. Summer shows a continuation of deficit for western Washington and 

Oregon and this situation extends into NW California. There is deficit across a wide part of 

northern Maine. Nearly all of Arizona is projected to experience a surfeit of runoff, as is west 

Texas and a significant portion of New Mexico. Under the HS scenario the number of HUCs 

within each CR projected to experience significant seasonal changes in surface runoff volume is 

notably higher (Table 2). The fall season shows a scattered belt of HUC8s in deficit from 

southwest TX through southwest MT. AZ, NH and GA have widespread surfeit. In the winter 

season under the HS scenario, three of the nine climate regions (the Northwest, Upper Midwest, 

and Ohio Valley) show a projected positive trend for more than 60% of their watersheds.   
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  Season  
   and  
   RCP    Climate Region 

Percent of 
Whole with 

SIGNIFICANT 
TREND 

Percent of 
whole  

Positive 

Percent of  
whole  

  Negative 

  Percent of    Percent of  
SIGNIFICANT  SIGNIFICANT  
 TREND              TREND 
 Positive             Negative 

Fall 8.5 Northwest 15.84% 14.85% 0.50% 96.9% 3.1% 
 Rockies and Plains 5.97% 1.12% 4.85% 18.75% 81.25% 
 Upper Midwest 0% – – –      – 
 Ohio Valley 0% – – –      – 
 Northeast 9.94% 9.94% – 100%      – 
 Southeast 5.83% 5.83% – 100%      – 
 South 3.17% – 3.17% 100%      – 
 Southwest 12.61% 4.20% 8.40% 33% 67% 
 West 1.71% 1.14% 0.57% 67% 33% 
Spr 8.5 Northwest 12.38% 2.97% 9.41% 24% 76% 
 Rockies and Plains 5.22% 5.22% –  100%  
 Upper Midwest 32.14% 2.04% 30.10% 6.34% 93.65% 
 Ohio Valley 0.44% 0.44% –  100%  
 Northeast 19.25% –  19.25% – 100% 
 Southeast 3.14% 2.24% 0.90% 71.43% 28.57% 
 South 0.73% 0.24% 0.49% 33% 67% 
 Southwest 8.82% 3.78% 5.04% 42.86% 57.14% 
 West 15.43% 0.57% 14.86% 3.70% 96.30% 
Sum 8.5 Northwest 66.34% – 66.34% – 100% 
 Rockies and Plains 17.16% – 17.16% – 100% 
 Upper Midwest 7.65% – 7.65% – 100% 
 Ohio Valley 7.52% 4.42% 0.44% 94.12% 5.88% 
 Northeast 42.24% – 42.24% – 100% 
 Southeast 10.31% 8.97% 1.35% 86.96% 13.04% 
 South 1.22% 1.22% – 100%  
 Southwest 34.87% 13.87% 21.01% 39.76% 60.24% 
 West 43.43% 9.14% 34.29% 21.05% 78.95% 
Win 8.5 Northwest 64.85% 64.85% – 100%      – 
 Rockies and Plains 17.54% 17.54% – 100%      – 
 Upper Midwest 77.55% 77.55% – 100%      – 
 Ohio Valley 70.80% 70.80% – 100%      – 
 Northeast 98.76% 98.76% – 100%      – 
 Southeast 35.43% 34.08% 1.35% 96.20%  3.80% 
 South 15.12% – 15.12% –  100% 
 Southwest 35.71% 0.84% 34.87% 2.35% 97.65% 
 West 35.43% 35.43% – 100%      – 
 

 

Table 2. A record of projected significant trends in HUCs across the CONUS under the High 
Stress (RCP 8.5) climate scenario. (“Climate Change in Australia,” 2019) 
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In the Northeast 99% of the climate region is projected to see increased runoff. A small section 

of coastal Delaware did not show increased runoff but this may have to do with the GCM's 

projected sea level rise. Much of the west central CONUS also shows a surfeit over significant 

sections of four climate regions. A deficit appears through much of eastern Texas, 

encompassing Houston, Austin, Dallas and Ft. Worth. Spring, under the HS scenario shows a 

deficit of runoff for nearly all of Michigan, much of Wisconsin and Maine, portions of northern NY 

and extensive areas of northern CA and southwest OR. Summer continues that trend for nearly 

all of ME, NH, and the eastern half of NY. Almost all of Vermont shows summer deficit. OR, WA, 

much of the north part of CA, and most of Idaho are also showing deficit. For summer, portions 

of PA, FL, UT, ND, and NM show deficit. And Wyoming, Colorado and Michigan have 

substantial regions of projected deficit. 

 

 

Many factors influence volume of runoff. Precipitation patterns are effected temperature rise 

(Dore, 2005). There is still much debate over exactly how high global temperatures may get in 

coming decades (Raftery et al., 2017). The Working Group II contribution to the Sixth 

Assessment Report of the IPCC, released this past February, states that, "there is at least a 

greater than 50% likelihood that global warming will reach or exceed 1.5°C in the near‐term, 

even for the very low greenhouse gas emissions scenario" (IPCC, 2022). These factors may 

also influence human migration. Current projections for the CONUS show southern and 

southwestern regions in particular as being the focal point of in-migration during this century 

(Hauer, 2019; McKee et al., 2015; US EPA, 2017b). However these same sources also project 

appreciable increases in population along the northeastern corridor from Washington DC to 

Boston. Seven of the ten largest cities in the US today are in the south, southwest and west: 

Houston, TX, Dallas, TX, San Antonio, TX, Austin, TX, Phoenix, AZ, San Diego, CA, and Los 

Angeles, CA. Notably, Ft. Worth, TX, San Jose, CA, and San Francisco, CA are also within the 
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top 20 largest cities, and expected to see growth (Hauer, 2019; McKee et al., 2015; US EPA, 

2017b). Additionally, El Paso, TX, coming in at number twenty two (World Population Review, 

2022), exists in a region of expected growth . 

This research created a seasonal breakdown of significant areas of runoff change. Highlighting 

the ten largest US cities (Figures 7-14), it appears that many of them will escape the direct of 

surface water shift. However, watersheds rarely exist in isolation (Duan et al., 2019, 2018). 

Regional connectivity of watersheds means that distant upstream seasonal shifts may impact 

downstream water availability. Of the ten largest cities in the US, parts of the southwest around 

the Phoenix area are projected to receive increased runoff in the summer and fall months, under 

the RCP 4.5 scenario (Figures 7, 10, 15, 18). In a typically dry region such as the southwest US, 

this could be the result of intensification of the North American Monsoon (NAM) season which 

can cause damaging flash floods (Pascale et al., 2019; Smith et al., 2019). Runoff would almost 

certainly be exacerbated by the increase in impervious surfaces that accompanies population 

growth. For this same area under the RCP 8.5 scenario, significant change in runoff for the 

summer months increases dramatically in number of watersheds (Figures 14/22). Fewer 

watersheds in AZ show significant surfeit in fall RCP 8.5 (Figures 11/19), but following on the 

tremendous number of surfeit areas of summer could compound the potential damages.  

Apart from Phoenix, only Chicago, of the top ten cities, also shows watersheds with significant 

changes under the RCP 4.5 scenario. At least ten HUC8s north and west of the Chicago area 

may experience decreased runoff in the fall season (Figures 7/15). This may be due to 

anthropogenic activity (W. S. Han et al., 2018)and would be exacerbated by projected increased 

population in the area. Lake Michigan is the source of the Chicago area's drinking water. 

Decreased runoff could also have an impact on the water level of Lake Michigan with 

subsequent consequences for the drinking water of the city of Chicago and surrounding areas 

(W. S. Han et al., 2018). Under the RCP 8.5 scenario, Lake Michigan is surrounded by water-

scarce watersheds for more than three quarters of its perimeter in the spring season (Figures 
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9/21). This could have profound implications for the availability and quality of drinking water for 

Chicago and its suburbs as the city expands. Lake Michigan is the source of Chicago's drinking 

water and already been called the most polluted of the Great Lakes (Hoffman and Hittinger, 

2017).  

The Seattle area is not among the top ten largest cities, but, at number eighteen and expected 

to also be a center of growth, it warrants attention because all of eastern Washington is 

projected to see surface water deficit under the RCP 4.5, intermediate GHG emissions scenario. 

Nearly the entire state of Washington, is expected to encounter deficits of runoff under the RCP 

8.5 scenario. These projections are likely influenced by the waning glaciers and loss of 

snowmelt in this area (IPCC, 2022). Even the relatively modest projections of the RCP 4.5 

scenario could create problems with surface water availability for recreation, industry, human 

consumption and ecosystem services as the population increases. Wildfires have become 

catastrophic in many of the western CRs, including the northwest. Extreme loss of vegetation 

due to wildfires often increases runoff (Ice et al., 2004; Wine et al., 2018). Wildfires can also 

have severe impacts on levels of pollution within the watersheds it burns (Burke et al., 2010; 

Hallema et al., 2018). 

Although seasonal flooding is not uncommon in the northeastern US (Collins, 2019), our 

research demonstrates that for the winter season under the RCP 8.5 scenario, nearly all of the 

Upper Midwest CR, most of the Ohio Valley CR, almost half of the Southeast CR and all of the 

Northeast CR will experience significantly higher runoff levels (Figures 12/20). This would have 

various impacts depending on factors such as land use, slope, antecedent soil moisture, 

precipitation intensity, but would almost certainly create problems for bridges, roads and other 

infrastructure. Furthermore, the repeated increase in runoff on agricultural fields could intensify 

erosion as well as eutrophication of water bodies throughout those regions. Likewise, the runoff 

and flooding of chemicals from roads and other impervious surfaces, industrial sites, as well as 

wastewater and sewage plants in urban areas will be magnified as urban areas grow. This could 
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lead to chronic accumulation of heavy metals, organic and inorganic compounds in surface 

water across the those climate regions. New York City, within this CR, is already a megacity. It 

relies on watersheds in the Adirondacks. An increased level of pollution in rivers, lakes and 

streams, coupled with increased population all along the Boston to Washington DC corridor as 

well as significant changes in surrounding watersheds could mean that there may be less 

surface water available for human and ecosystem needs. 

For these reasons the following cities appear to be at most risk from the confluence of increase 

population and significant changes in surrounding watersheds: those cities within the Boston to 

Washington DC corridor– Boston, New York City, Philadelphia, Washington DC, as well as 

Phoenix, and Seattle. Under the RCP 4.5 scenario cities in Texas do not appear to face 

significant changes in levels of runoff. However, increased population alone in the five largest 

cities in the state, which are each among the top twelve in the country, suggests that there will 

be a negative impact on surface water availability in the region.  
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The purpose of this work was threefold: to determine whether or not global climate models 

projected a significant seasonal change in runoff across the conterminous US in the coming 

decades of the 21st century; to determine which USGS scale 8 hydrologic unit codes faced a 

risk of significant seasonal changes during which seasons and provide visualizations of those 

HUC8s for the benefit of decision makers in diverse spheres with wide-ranging backgrounds, 

and finally to which cities might be most vulnerable to surface water stress. 

To this end, we analyzed the potential for seasonal shift in quantity of runoff for each HUC8 

scale watershed in the conterminous US. The investigation began with an assessment of 

projections of water stress from twenty global climate models through the WaSSI model, under 

two RCP scenarios. All models showed evidence of projected seasonal runoff shift. One model 

closest to the historic values was chosen as representative, and maps were produced to provide 

visual indication of the location of the HUC8s across the CONUS for each season. With that 

information we then researched projections of population increase in the coming century and 

analyzed potential areas of heightened intensification of water stress due to the confluence of 

water stress and population increase. 

The goal of this work was to answer three questions regarding runoff under a changing climate 

across the conterminous US in the coming decades of the 21st century. Those questions were: 

1. Does it appear that there will be a shift in seasonal water availability in the 

CONUS in the latter half of the 21st century in comparison with historic levels? 

2. Where are there regional vulnerabilities which are associated with surface water 

availability, either surfeit or deficit? 

3. What impact might a projected increase in US population, in conjunction with a 

warming climate, have on surface water availability across the CONUS, and 

where? 
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Our results indicate that the answer to the first question is affirmative for both the intermediate 

RCP 4.5, and for the high stress RCP 8.5 climate scenarios. The HUC8 watersheds were 

assessed through the overarching structure of nine discrete climate regions, delineated by the 

NCEI. Using the WaSSI model, it was determined that significant water stress seasonal shift, 

either surfeit or deficit, would occur in every climate region for nearly every season even under 

lower projected GHG emissions. While it is important to remember that these data show shift in 

projected seasonal runoff, and not quantity of seasonal runoff, a seasonal shift such as depicted 

in most CRs will have pronounced implications for available surface water. Furthermore, in 

considering an increase in population for much of the conterminous US over the next eight 

decades, even a decelerated increase, it was evident that population would have an amplifying 

effect on water stress.  

 

 

In a body of work as encompassing as this project, there are many sources of ambiguity.  

 

In the words of George E.P. Box, "All models are wrong, but some are useful" (Box, 1979). 

Climate models are mathematical models with discrete sets of underlying assumptions. Today's 

models are very good, but no model can account for every constituent of the biological, 

meteorological, geospatial world. All climate models make implied as well as acknowledged 

biases when extrapolating climate data into the future (Kerkhoff et al., 2014). There is inherent 

uncertainty in any model, and climate models are no different (Palmer et al., 2005). Most of the 

nineteen additional models analyzed here would likely have given similar, but not identical, 

results. 
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HUC8 data records only go back to 1961 with any consistency. As with any data, longer records 

at each of the collection points would yield more precise information. There is also a limited 

number of streamgages across the CONUS. As of 2020 there were about 8500 of the 11,300 

USGS streamgages working continuously to monitor streamflow (USGS, 2020). While these 

gages provide satisfactory accuracy, more comprehensive accuracy would be derived from 

increased numbers of gages. Moreover, in conjunction with current field data, researchers are 

working on more accurate and faster methods of analyzing runoff data (Niu et al., 2018). 

 

Population projections are based on past population growth, forecasts of migration and current 

trends. They are useful as a basis for hypotheses, but are highly speculative (Colby and 

Ortman, 2014; Hauer, 2019). They obviously cannot account for unforeseen global pandemics, 

wars, famine or other catastrophic population or migration-changing events. 

 

It isn't always possible to determine the soil/water composition of remote areas (Copeland et al., 

2010). Nor can meteorological events be pinned to exact geospatial locations. Meteorology is 

based on models. Hydrology is also often based on simulations, and simulations contain 

assumptions (Huang, 2020). All of these factors influence runoff assessment. 

 

Representative concentration pathways were adopted by the IPCC Fifth Assessment Report in 

2014. They describe possible future emissions based on potential global government reaction to 

the threat of climate change. Each of them has a plausible degree of possibility. Which RCP the 

planet's governments and industry leaders will tolerate remains to be seen. In addition, different 

climate models are not equivalent in their projections for the same RCP (IPCC, 2014; Kerkhoff 

et al., 2014). 



148 

 

The historical knowledge of indigenous peoples, in the US and globally, has been essentially left 

out of the body of knowledge that constitutes the state of the planet before European-based 

scientific methods were adopted (Ho et al., 2017; Maldonado et al., 2016). Seeking the 

knowledge of the unvoiced could augment our current understanding of the world as well as 

potentially provide as yet undiscovered paths forward in mitigation. 

 

Future studies will benefit from a longer record of streamgage data. Improvements to increase 

the granularity of satellite data will provide opportunities for better regional land and surface 

water analysis, as well as meteorological understanding. More complex and precise global and 

regional climate models will enable reassessments of current work in greater detail. The 

literature will benefit from much more research into contaminants everywhere in the water cycle, 

as well as the synergistic and compounded impact of multiple contaminants. The inclusion of 

previously silenced people's perspective into the knowledge base may be a way to address 

gaps in the literature, as well as providing alternative ways of engaging with the planet for future 

generations. 

 

 

A better picture of the actions of governments towards the threat of climate catastrophe will 

emerge as the decades of the 21st century proceed. At this point in time, we appear not to have 

begun to address the issues with any real resolve (Stoddard et al., 2021), but that may change. 

We strongly suggest that resource managers and other surface water decision makers, in both 

urban and rural areas, consider more vehemently the impact of the pollutants associated with 

human endeavor and population growth on water stress across the CONUS.  

Seasonal shift of runoff has the potential to be detrimental by itself, as noted, but is also 

indicative of changes in the climate, the natural environment and the built environment. The 
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impacts of seasonal shift of runoff will be noticed sooner than the impacts of chronic subcritical 

accumulation of individual pollutants. It is our hope that this research will assist in building 

awareness of seasonal shift and it is our strong recommendation that the impacts of seasonal 

shift be considered when assessing water stress for all regions.  
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