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ABSTRACT 

 The junction temperature of a power module is measured non-intrusively and 

uninterrupted in its application by analyzing the dependency of gate resistance to temperature. 

The circuit configuration proposed consists of altering the gate loop path and adding a basic peak 

detection circuit with an added low-pass filter to accurately measure the small differences seen 

during a temperature change on the internal gate resistance. The testing on this Silicon Carbide 

power module shows that the internal gate resistance has a positive temperature coefficient. This 

causes the current and the voltage drop on the gate loop sensing resistance to reduce as the 

temperature rises. The voltage drops on the sensing resistance forms a steady downward linear 

slope that is used to establish an accurate estimation of the junction temperature. This 

implementation has future implications on a smart gate-driver board that can actively measure 

the junction temperature of the Silicon Carbide power module and shut off the module when 

approaching a critical failing temperature. 
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CHAPTER 1 

INTRODUCTION 

1.1 Importance of Modern-Day Power Modules 

Power semiconductor devices such as metal oxide field effect transistors (MOSFETs) and 

insulated-gate bipolar transistors (IGBTs) are essential power components used in a variety of 

electrical applications such as motor drives, power supplies, and inverters [1]. By packaging 

multiple of these respective devices together, certain circuits can be formed, otherwise known as 

a topology, to obtain a switching characteristic for a specific application. These topologies can 

provide constant uninterrupted power, protection, improved power density, increased efficiency, 

and are more reliable. The power modules also have other built-in components to provide 

protection, to limit voltage overshoots, and thermistors to measure internal temperatures [2].  

The history behind power modules is a rather short one as they were first introduced into 

the market by Semikron in 1975. Innovations and upgrades have been added to these devices to 

improve their power density, cost, reliability, and protection. Along with changes in topology, 

these devices have come a long way, however even that first module is still used today showing 

the reliability of these packages [3]. As power demands have increased over the last 50 years 

these devices have been improved to adapt to these new requirements and applications but the 

significant jumps in the technology have only been introduced in the last 20 years. These jumps 

come at the base level of these modules, which is the design of the MOSFET/IGBT. The latest 

materials such as Silicon Carbide (SiC) and Gallium Nitride (GaN) have improved power density 

and switching speeds over the traditional substrate Silicon (Si). There are several benefits to 

using SiC over Si. For example, SiC has a lower on-state resistance which decreases the losses 

during operation. Additionally, SiC can operate at much higher voltages, reduced leakage 
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current, and improved thermal conductivity in removing heat from the device, which this issue 

can lead to failure in any device if not properly regulated [4].  

1.2 Silicon-Carbide Power Modules 

Silicon Carbide power modules are slowly replacing their silicon counterparts as they are 

vastly superior options for high voltage and high current applications. With all the benefits of 

SiC over Si, there are drawbacks that pertain to SiC that must be addressed when these devices 

are used. With the significant advantage of being able to switch at much higher frequencies than 

Si, SiC devices tend to generate more heat and the improved thermal conductivity is not enough 

to counter this significant increase in heat generation [4]. This requires sensitive and more 

improved methods of junction temperature (TJ) monitoring in order to prevent failure and 

damage to the power module made of SiC semiconductor devices. Some modules have NTC 

thermistors already installed which can estimate TJ of a power module, but these components are 

typically non-linear, unstable when introduced to higher temperatures, and only have a narrow 

range of temperatures that can accurately be estimated [5]. Other methods have been introduced 

to measure TJ of a SiC power module, such as infrared cameras, a direct contact to the inside of 

the power module, and temperature sensitive electrical parameters (TSEP). All these methods are 

viable in determining what TJ is and when the device may fail, however these methods all have 

their drawbacks. The infrared camera is very expensive and might not be as accurate as a direct 

contact relation. A direct contact relation will give an accurate estimation of TJ but could easily 

affect the operation of the power module and requires exposing the module which could have 

adverse effects to the power module overall [6]. The last method of using a TSEP might not 

necessarily be as accurate as some of these other methods, but it can be very cost-effective, 

relatively accurate, and does not affect the normal operation of the device which makes it an 



 

3 
 

ideal candidate in being used as the method to measure TJ and monitor when failure may occur 

on the device. There are other problems that SiC devices have such as increased electro-magnetic 

interference (EMI) which can affect other measured values by adding noise to the signal. The 

scope of this project does not cover reducing EMI for the device, however improved shielding 

and adopting other techniques to reduce EMI would provide improved waveforms and more 

accurate temperature estimation. 

1.3 Temperature Sensitive Electrical Parameters 

The use of temperature sensitive electrical parameters as a means of measuring TJ of the 

power module have become more applicable as technology has evolved to obtain more sensitive 

fluctuations. These parameters typically only fluctuate in a miniscule amount, in the hundredths 

or thousandths range, thus requiring sensitive equipment with good resolution to obtain an 

accurate measurement and estimation of TJ. Many of these parameters have accurate linear 

relationships with TJ and hold their value much better than other methods. The TSEP methods 

can be more cost-effective than that of other methods depending on the parameter that is used to 

estimate the temperature and the sensitive equipment required for the measurement. These 

TSEPs can be classified into two different categories, static and dynamic. Dynamic TSEPs are 

parameters that are taken during the on/off transition of the module while static measurements 

are taken during the on/off state. In Table 1 below, a list of common TSEPs can be seen and are 

classified in their respective categories of static or dynamic [7].  
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Table 1: Static vs Dynamic TSEPs [7] 

TSEPs 

Static Dynamic 

Short Circuit Current 

Isc 

Miller Plateau Voltage 

Vgp 

Saturation Current 

Isat 

Threshold Voltage 

Vth 

Leakage Current 

Ilk 

Maximum Voltage Rate 

dV/dtmax 

Saturation Voltage 

Vsat 

Maximum Current Rate 

dI/dtmax 

Voltage at High Current 

Vce(on) 

Internal Gate Resistance 

RgInt 

 

Knowing when these electrical parameters occur are important in determining when the 

measurement should take place. However, there are still many parameters to be considered at this 

point, thus it helps to narrow down the list even further. A TSEP with a dependency only on TJ 

would be the ideal choice for estimation. If a TSEP had another dependency, then every time that 

other specific variable would change the TSEP relationship with TJ could change in unforeseen 

ways. This does not mean that these TSEPs do not work, but that if any of the other 

dependencies changed then the relationship established would change and a new relationship 

would have to be researched and established to accurately measure TJ. Based on the dependency 

table below in Table 2, there are two TSEPs that fit our definition of an ideal parameter in the 

estimation of TJ, threshold voltage and the internal gate resistance. 
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Table 2: Dependencies of Various TSEPs [8] 

TSEP Dependencies 

Short Circuit Current TJ, V 

Saturation Voltage TJ, I 

Threshold Voltage TJ 

Turn-on Delay TJ, V, Rg 

Turn-off Delay TJ, V, I, Rg 

Internal Gate Resistance TJ 

Rise-Time/Fall-Time TJ, V, I, Rg 

Saturation Current TJ, V 

Maximum Voltage/Current Rate TJ, V, I, Rg 

 

Along with this dependency table, it is also pertinent to look at what the typical 

relationship with these TSEPs and TJ are. In Table 3, threshold voltage has good linearity, 

sensitivity, and online measurement is feasible. The peak gate current, which changes based on 

the internal gate resistance fluctuating because of TJ shifting, is dependent upon the design of the 

gate and the module being used. Other TSEPs are listed as a comparison, but when the sensitivity 

is only good at slow switching, it defeats the purpose of having a SiC power module which is 

why those TSEPs were not considered. 
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Table 3: TSEP Linearity and Sensitivity [9] 

TSEP Linearity Sensitivity Online Measurement 

Threshold Voltage Good Good Feasible 

Internal Gate 

Resistance 
Good Good Feasible 

Turn-on di/dt Intermediate 
Good at Slow 

Switching 
Feasible 

Turn On Delay Good 
Good at Slow 

Switching 
Feasible 

Turn Off Delay Good 
Good at Slow 

Switching 
Feasible 

 

In the subsequent sections below, the threshold voltage and the internal gate resistance 

will be considered in determining the optimal choice of accurately determining the junction 

temperature of a SiC power module non-intrusively and without changing the operation of the 

module. 

1.3.1 Threshold Voltage 

The threshold voltage is the required voltage on the gate needed to form a channel 

between the drain and source to conduct current. This method is classified as a dynamic 

parameter and must be acquired during a turn-on state which can present acquisition challenges. 

This parameter must be measured at a precise time with a precise measurement otherwise it 

could completely skew the relationship of TJ. Certain measurement concepts have been 

researched, introduced, and proven to work. Methods researched used the voltage drop over the 

parasitic inductance between Kelvin and the power source as the trigger for the data acquisition 

unit (DAQ). Along with that triggering system other electrical equipment was added to prevent 
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false triggering since the circuit would be switching on and off at a very high frequency and 

could be susceptible to electro-magnetic interference (EMI) causing a false trigger. A D-flip flop 

can reduce the chances of a false trigger significantly and can be adjusted to change the voltage 

trigger of the measurement. This method also has high sensitivity as compared to other TSEP 

methods with a negative coefficient of 2-15 mV per degree of Celsius depending on the module. 

An example of this method can be viewed below where a differential probe is waiting for a 

voltage drop over the Kelvin to Power Source inductance to trigger and to pass through a D-flip 

flop that closes the circuit. The signal is then passed on to the microcontroller to take the 

measurement at that exact moment when the channel is formed [10]. 

 

Figure 1: Example of Threshold Voltage TSEP [10] 

Another representation of when the threshold measurement would be taken can be seen 

below. This figure is taken directly from a switching test on the power module being used in this 

test. The threshold voltage would be taken during the specific time as indicated on the figure. 
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This is when the voltage applied forms the channel for current to pass from the gate to the source 

of the MOSFET.  

 

Figure 2: Threshold Voltage Measurement Acquisition 

1.3.2 Internal Gate Resistance 

The internal gate resistance (RgINT) of a power module changes with respect to TJ. This 

TSEP method is also classified as dynamic meaning that the acquisition of this circuit will 

happen during on/off transitions during operation of the power module. However, a significant 

advantage is the acquisition of the measurement of this method over the threshold voltage TSEP. 

This method requires the peak value of the voltage drop or gate current over the external gate 

resistance (RgEXT) which significantly reduces the effort put forth on timing a measurement. In 

the circuit below, when the semiconductor device is conducting, the resistor RgINT forms a series 
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circuit with RgEXT, the capacitance between the gate and source (Cge in the figure below), and the 

gate driver [11].  

 

Figure 3: Internal Gate Resistance TSEP Gate Loop Path [11] 

Three out of the four of these components are stable with respect to temperature and 

therefore as the temperature within the module changes it will alter RgINT. When RgINT is 

adjusted, the total closed loop resistance changes. This makes it possible for the relationship of 

TJ to RgINT to be related to RgEXT or the gate current (Ig) instead. The parameter RgEXT will have a 

small change in the voltage drop over it as the total resistance of the circuit changes with respect 

to TJ. This change will also affect the peak current being supplied at the gate during turn-on of 

the MOSFET, thus relationships between TJ and the voltage drop on RgEXT (VRgEXT) or the peak 

gate current (Ig-peak) can be established. These parameters are much easier to accurately measure 

during the operation of the power module and the peak value is required for comparison instead 

of a specific value at a specific time as seen in the acquisition of the threshold voltage. The TJ 

can be related to RgINT also but would require using Ohm’s Law to determine the resistance. This 
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would be adding more steps to estimate the temperature and establish a relationship, but whether 

the variable is a voltage, current, or resistance, all of them provide the same relationship. This 

method provides a resolution of 2-5 mV change per degree Celsius for VRgEXT, a 1-3 mΩ change 

per degree Celsius for RgINT, or a 0.5-1 mA change per degree Celsius for Ig-peak [11]. 
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CHAPTER 2 

Temperature Sensitive Electrical Parameter Measurement Viability 

2.1 Simulated Viability of TSEP 

Although other papers reported on the viability of internal gate resistance as a TSEP, a 

simulated and experimental study to determine this was still required in order to confirm their 

results. It was also important to make sure the module being used behaves the same as other 

power modules since TSEP testing has not been attempted on this power module. A simulation 

was implemented using a SiC discrete switch by Wolfspeed that included temperature dependent 

parameters. The power module being experimentally tested on is a HT-3234 SiC 1.7kV 

MOSFET made by Wolfspeed, so a model similar to that and made by the same company was 

used because Wolfspeed did not have a model readily available to simulate the exact module 

being used in the experiment. This simulated setup can be analyzed below in Figure 5, showing 

an increasing temperature jump of 25 ˚C from 0 ˚C to 150 ˚C as VRgEXT is analyzed.  

 

Figure 4: Gate Resistance TSEP Simulation Using LTspice 

Using LTspice as the circuit simulation software, the voltage drops over RgEXT were 

simulated as the device was turned on and off and produced results that can be seen below in 

Table 3. Along with the voltage drop, the peak gate current at that time was extrapolated by 

dividing the peak voltage drop by the resistor value of 5 Ω.  
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Table 4: Simulated Gate Resistance TSEP Results 

Junction Temperature 

(°C) 

Peak Voltage Drop on Rgext 

(V) 

Peak Gate Current 

(A) 

0 1.9719 0.39438 

25 1.8771 0.37542 

50 1.7846 0.35692 

75 1.6979 0.33958 

100 1.6168 0.32336 

125 1.5365 0.3073 

150 1.4630 0.2926 

Relationship -3.393 mV/°C -0.679 mA/°C 

 

The relationship established by the simulated results follow the experimental results 

reported previously in section 1.3.2 of a 2-5 mV/˚C or a 0.5 – 1 mA/˚C [1]. This relationship also 

showed an accurate and steady linear relationship with an R2 value of 0.99 shown below in 

Figure 5.  

 

Figure 5: Simulated VRgEXT and TJ Relationship 
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This means the estimated value obtained in relation to TJ would be a very accurate and 

linear estimation in the simulation. The peak gate current would also have the same approximate 

relationship since that value can easily be extrapolated from the peak voltage drop and is only 5 

times smaller. In terms of measurement in experimental terms it would be easier to obtain the 

peak voltage drop over the peak current. The peak voltage drop will also have better resolution 

than the peak current because it is five times larger. The threshold voltage was not simulated but 

was considered in the initial viability of TSEP experimentally.  

2.2 Test Setup and Assembly  

The measurements obtained in this initial experiment were performed using a Double 

Pulse Test (DPT) and recorded with a Tektronix 6-Channel Oscilloscope. The DPT was setup 

through MATLAB Simulink and sent to a Digital Signal Processor (DSP) where the commands 

were then sent to the ITGD2-3011 gate driver made by Wolfspeed. A DPT is the preferred 

method for measuring the switching parameters of a MOSFET or IGBT. It consists of two pulses 

sent to the gate of the MOSFET. This type of testing is very controlled and can test the operating 

conditions of the module and the efficiency [2]. This method was also chosen because of its short 

testing time thus reducing the amount of heat generated solely by operation, giving a much more 

reliable temperature estimate. The DPT is ideal considering the parameter being measured 

happens only during the switching transition. It can be understood that this testing method is best 

for obtaining a relationship of this TSEP because it does not generate heat and reliably obtains 

the switching parameters of the module. However, the end result will be operated continuously 

and the DPT is used for characterization with temperatures for accurate estimation. A hot plate 

was used to set the case temperature and the module sat on the plate for roughly five to ten 

minutes before each test was ran. The amount of time the module stays on the hot plate before a 
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test allows the case temperature and junction temperature to be approximated to the same 

temperature. The power module used for this experiment was the HT-3234 SiC 1.7kV MOSFET 

from Wolfspeed. The hot plate used in this experiment is a Cole-Parmer Stable Temp Ceramic 

Hot Plate. Safety requirements were also thoroughly followed as this test was ran at 1.2 kV and 

250 A of current. The test-setup can be viewed in Figure 6 below and points out all equipment 

relevant to the test.  

 

Figure 6: Experimental Test Setup for Viability of TSEP 

During the test, probes were connected to measure Vgs, VRgEXT, Vds, and ILoad, which 

respectively are known as the gate-to-source voltage, the voltage drop over external gate 

resistance, the drain-to-source voltage, and the load current. With these parameters the internal 

gate resistance and threshold voltage were both tested as viable TSEPs and related to the junction 

temperature. The measurements took place in intervals of 15 ˚C starting at 25 ˚C and ending at 

100 ˚C. Three separate DPT tests were performed at each temperature and a moving average was 

established on the results through MATLAB to obtain smooth and clear results with no 
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significant and abrupt voltage spikes that could skew the results. These voltage spikes that were 

smoothed out were most likely a result of EMI due to the high frequency switching of the power 

module.  

2.3 Results of Viability 

While analyzing the results there was a clear linear pattern established by the results for 

the peak of VRgEXT. As the temperature was rising the voltage was falling at a rate of -3.973 

mV/˚C. These results align closely with the simulation that was performed which fell at a rate of 

-3.393 mV/˚C. The experiment performed better with higher resolution which could be the 

difference between the discrete switch and the power module used. These results can be analyzed 

below in Figure 7 and Table 5 which display the peak averaged voltage drop values. Figure 8 

show the peak VRgEXT versus TJ and a clear linear trendline is established with an R2 value of 

0.99 as also seen in the simulated results.  

 

Figure 7: Experimental Results of Peak VRgEXT vs Time with Varying Temperature 
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Table 5:Experimental Results of VRgEXT and Ig Across Temperature 

Junction Temperature 

(°C) Peak Voltage Drop on Rgext (V) Peak Gate Current (A) 

25 15.2219 3.0444 

40 15.1689 3.0338 

55 15.1258 3.0252 

70 15.0644 3.0129 

85 14.9939 2.9988 

100 14.9220 2.9844 

Relationship -3.973 mV/°C -0.795 mA/°C 

 

 

Figure 8: Viability Experiment of VRgEXT vs TJ Relationship 

From these same results the viability of the threshold voltage was also considered. The 

graphs had to be visually inspected, and values adjusted to determine the threshold voltage at 

each temperature because it would form the channel at different times due to the change in the 

junction temperature. 
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Figure 9: Viability of Threshold Voltage 25˚C 

 

Figure 10: Viability of Threshold Voltage 40˚C 
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Figure 11: Viability of Threshold Voltage 55˚C 

 

Figure 12: Viability of Threshold Voltage 70˚C 
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Figure 13: Viability of Threshold Voltage 85˚C 

 

Table 6: Threshold Voltage vs Temperature 

Junction Temperature (°C) Threshold Voltage (V) 

25 3.39815 

40 3.29801 

55 3.25994 

70 3.23817 

85 3.12628 

Relationship -4.02387 mV/°C 
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Figure 14: Viability Experiment of VTH vs TJ Relationship 

From the experimental results, values had to be estimated and determined for the 

threshold voltage as seen in Figures 9-13. These values, that are reported in Figure 14, show that 

the threshold voltage linearity was not as accurate as the internal gate resistance, and it could 

have human error incorporated in the results as all data points were general estimation from the 

graphs. These data points were not triggered from the voltage drop of the kelvin to power source 

inductance, as seen in Figure 1, which would have given more consistency and less guess work 

of the value. Although the measurement for both TSEPs happen at specific times, it is much 

easier to tell when a value is at its maximum versus in the middle of a rising voltage waveform 

when the MOSFET starts conducting. The R2 values for the gate resistance TSEP was 0.99 while 

the R2 value for threshold voltage TSEP was only 0.94. Both R2 values are very close to 1, but 

the gate resistance TSEP shows a more consistent linearity which is essential for a more accurate 

junction temperature estimation. Using the internal gate resistance as the TSEP has easier 
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acquisition, better linearity, and is more accurate. The only advantage threshold voltage had over 

the internal gate resistance in experimentation is the resolution was slightly higher at -4.02387 

mV/˚C, which follows the 2-15 mV/˚C discovered in research, but human estimation and error 

play a significant part in that value [3]. In the end, the internal gate resistance was chosen over 

threshold voltage as the TSEP to be pursued in this experiment because of its easier acquisition, 

greater linearity, and greater accuracy. 
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CHAPTER 3 

Initial Daughterboard Circuitry and Design 

3.1 Peak Detection Circuitry 

The end goal of this experiment is to find a reliable addition to the gate driver that can 

accurately and non-intrusively measure TJ. With this process in mind certain design implications 

are considered before even starting on how to measure VRgEXT. Since the possibility of 

integration with the gate driver board in the future must be considered, the board must be 

powered by the same voltage as the gate driver board. This means the power voltage applied to 

any integrated circuits (ICs) on the board would be a max of 12 V, the same as what powers the 

gate driver. The signal being measured is specifically the voltage drop over a resistor so that 

voltage value must be isolated before the peak value is measured. When it was measured by the 

oscilloscope for viability, a differential probe was used to isolate the signal. Instead of a 

differential probe a differential operational amplifier (OP amp) was used in its place to isolate 

the voltage drop signal for the board. The voltage drop recorded during the viability test of the 

TSEP showed that the voltage maximum was higher than 14 volts. With the design implication 

of a 12 V power supply on the ICs, the voltage drop must be reduced so it can properly be 

processed through the ICs on the board. In this case the voltage drop signal must be reduced 

before the output of the differential amplifier, so a resistor network is applied so that the 

differential OP amp cuts the signal in half [1]. The downside to cutting this signal in half is that it 

also reduces the resolution in half. In determination of the differential OP amp that must be used 

to isolate the signal, other factors must be included before selection of the component. One 

important factor is the speed of the signal. Since the module in question is a SiC power module, 

the switching frequency can get very high and thus an OP amp with a very high slew rate must 
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be used to keep up with the higher frequency switching which results in a faster than normal 

spike in voltage than traditional OP amps can handle. In the initial circuitry design of this board, 

the peak detection circuit was considered and then modified to achieve the goals of this 

experiment. First, the operation of a simple peak detection circuit is considered. The original 

peak detection circuit consists of a diode and a capacitor as pictured below in Figure 15. 

 

Figure 15: Basic Peak Voltage Detector Circuit 

When the diode is conducting, the peak value of the signal is being held on the capacitor. 

When the voltage signal goes lower than the peak value already on the capacitor, the cathode is 

then higher than the anode on the diode and it stops conducting. The diode then only conducts 

when the anode has a higher voltage value than the cathode. However, this method will not hold 

the exact peak as there is a voltage drop over the diode, so the peak value held by the capacitor is 

the input voltage minus the voltage drop over the diode [2]. The diode selected is a Schottky 

diode as to assure a fast response time from the component since it is an integral part in the peak 

detection process, and it typically has a low voltage drop of around 0.3V. At the output of the 

diode is a capacitor that holds the peak value. When that capacitance is paired with a resistance 

as seen in Figure 16, the time it takes for the voltage to discharge off the capacitance can be 

calculated with the RC time constant, τ, which the equation can be found below the previously 

mentioned figure [3]. 
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Figure 16: Peak Voltage Detection Circuit with Discharging Resistor 

𝜏 = 𝑅𝐶 =  
1

2𝜋𝑓𝑐
                                                                   (1) 

The time in seconds it takes the capacitor to charge or discharge up to 63.2% of a DC 

voltage applied is equivalent to the equation above. For the capacitor to be considered fully 

charged or to fully discharge takes approximately five times the time constant that was calculated 

and the capacitor then holds 99.3% of the DC voltage applied which is approximately 100%. 

When choosing the time constant needed for this application, you take the time it takes for the 

peak drop to happen on the resistor and divide that time value by five to acquire the time 

constant needed [3]. This voltage held on the capacitance needs to bleed off because of the 

relationship between TJ and the peak voltage. A lower temperature will show a higher peak 

voltage drop so the circuit cannot hold the peak voltage indefinitely otherwise it would never be 

able to detect a lower peak voltage drop indicating a higher temperature. The capacitor and the 

resistor had to be carefully chosen to provide a time constant that was short enough to charge up 

to the desired peak in time but also to discharge so a new peak value could be obtained on the 

next switching cycle. A voltage follower was applied after the capacitor so the output would 

have a constant resistance as to not alter the RC time constant depending on what the output of 

the peak detector circuit was connected to. The OP amp used for the voltage follower had a 

constant input resistance in parallel with a load resistance that was used to set the time constant. 

It must be considered that since this prototype board is used for characterization of the 
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relationship of TJ to VRgEXT, that the time constant needs to be small so the peak detector can 

reach steady state with as few pulses as possible and hold the peak voltage long enough for 

characterization. The time constant on the prototype board is around 1μs and with the high 

frequency switching that is seen by this module, this time constant should be ideal for holding a 

continuous peak voltage on the output with variations coming from the change in temperature. 

An OP amp was added as a voltage follower before the diode to create a “super-diode”, which in 

theory results in no drop on the diode, so the modified peak detector circuit shown below in 

Figure 17 should truly hold the peak value with no drop from the diode [4]. 

 

Figure 17: Modified Peak Voltage Detector 

All components used in this circuit had to have a fast-operating speed to ensure the peak 

voltage was being detected. The high frequency applications for these modules require high slew 

rate OP amps, fast response Schottky diodes, and a small RC time constant in order to process 

the necessary information and can adjust and change if the peak value lowers.  

3.2 Design of Printed Circuit Board  

The first version of the prototype board included the circuits mentioned previously with a 

high-slew rate differential OP amp to isolate the drop on the gate resistor. The second version of 

the prototype board incorporated a different but very similar peak detection circuit that was 

mentioned before. The major differences between the versions were the OP amp located before 
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the diode to create the “super-diode” in version one was removed in version two, no RC filter 

was on the output of version one, and there was no isolation on the output of version one also, so 

a differential probe had to be used to measure the results. In Figure 19 below, the high-side 

circuitry of the first iteration of the board is shown which includes the super-diode concept, a 

power source with resistor to help the OP amp sync current for the diode faster, lack of a RC 

filter, and lack of an isolation module. 

 

Figure 18: Version One of PCB Circuitry 

These changes were made for various reasons. The “super-diode” concept was removed 

because the op amp was having major ripple issues on the output causing peak values that 

skewed the data. OP amps not receiving a constant voltage but would see significant switching 

waveforms tend to have more problems associated with them, so it was decided that a constant 

small voltage drop would be acceptable losses since that diode drop would be consistent across 

all measurements. Another notable issue with the “super-diode” concept is the OP amp involved 

would go into negative saturation and needed time to recover, which it never got, and that 

resulted in the multitude of issues seen with that OP amp. The RC filter was added on the second 

version of the prototype board because there was so much ripple on the output of the first 

prototype that the results were useless. A filter was added to the output of the peak detection 
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circuit to counter any extraneous noise that could cause the signal to be unreadable. These 

extraneous signals that could disrupt the peak output could be from the OP amp noise or ringing, 

noise generated from the module, and any additional noise or spikes not foreseen. Both the filter 

and the RC time constant introduce a delay issue which will take several pulses for the peak 

value to be reached, therefore a DPT is not plausible in the actual application but rather a multi-

pulse test so the additional circuitry can reach steady state. The delay cannot be helped cause the 

peak value needs to be held to be able to determine the temperature and the filter is required to 

make the results readable. Lastly, an isolation module was added to the output of the peak 

detection and before the BNC connector to ensure that the BNC cable could be used to measure 

the peak value on the oscilloscope. This provides proper protection to the oscilloscope and the 

measurement becomes more accurate with improved resolution as a differential probe rated for 

1.5 kV would not be used anymore to measure an output that only reaches a maximum of 10V. 

Other small considerations were introduced from version one to version two such as different 

connectors to improve ease of assembling and disassembling the test setup, bypassing certain 

sections of the peak detection circuitry to ensure ease of troubleshooting, and reducing the 

circuitry down to one peak detector instead of two as to not waste time since it is currently a 

testing prototype board. The circuit was also designed to be able to test two separate OP amps 

used in the isolation of the VRgEXT because they were also experiencing ripple and distortion 

issues in the previous version. This gave more options for troubleshooting the board before 

having to redesign. The concept of this board would be integrated into the gate driver and would 

incorporate two separate isolated peak detection circuits to measure the high and low side of the 

power module.  
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Figure 19: Version Two of PCB Circuitry 

During the design of the board, testing was in consideration when looking at the 

dimensions of the board and how it would be incorporated as a separate entity to the gate driver 

board. The circuit would be directly implemented on the gate driver in the future as previously 

stated but since this is the prototyping and design phase, the board was made the same size as the 

gate driver board with identical holes in each corner so the board could be mechanically fixed 

above the gate driver board. This along with Kapton tape would keep the boards from touching 

and possibly shorting. Throughout PCB versions, the holes ended up being omitted as they were 

not used because of frequent moving of the board for testing and changing of components and 

the Kapton tape proved sufficient to prevent shorting. In the next two figures, the first version of 

the PCB is shown and then the second version of the PCB with the changes as mentioned above. 
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Figure 20: PCB Routed Board Version One 
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Figure 21: PCB Routed Board Version Two 
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CHAPTER 4 

Analysis of Experimental Performance 

4.1 Test Assembly 

The test assembly consisted of everything seen from the first test-setup with the added 

component of the PCB board created to hold the peak output value. From Chapter 2, 

Temperature Sensitive Electrical Parameter Measurement Viability, the test-setup used there 

ended up proving that using the peak value from the voltage drop on the external gate resistor 

provided enough resolution and results to accurately estimate the junction temperature. With that 

in mind, most of the equipment was kept the same and the board’s sole purpose is to make 

acquisition of the peak voltage easier to obtain. All the components on the board were rated well 

over the needed requirements that were seen from initial testing. The traces on the PCB were 

sufficiently large enough to pass the current required for the board to function properly.  

4.2 Analysis of Initial Results 

Channel 2 (light blue) is the actual voltage drop on RgEXT before it goes through a voltage 

divider and the differential amplifier. Channel 3 (purple) is the output of the differential 

amplifier that isolates the voltage drop on RgEXT after it is respectively cut in half by the voltage 

divider. Channel 4 (green) is the peak detector holding the output of VRgEXT. 
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Figure 22: Initial Experiment 25˚C Results 

 

Figure 23: Initial Experiment 125˚C Results 
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4.3 Discussion of Performance 

In the results presented in the previous section, the channel 3 signal should have followed 

the channel 2 signal almost perfectly, but instead introduced distortion and ringing that lasted 

way longer than the original voltage drop waveform. The second wave peak on the output of the 

differential OP amp was also higher than the initial peak, which did not follow the actual voltage 

drop on RgEXT where every successive peak after the initial had a lower value. The results across 

temperature still followed the relationship established, however the ringing and distortion could 

not be overlooked. The problem was traced to the active components that were used to isolate the 

differential signal. The peak detection circuit (the capacitor, diode, and resistor used for holding 

the voltage peak) held the peak value of a sinusoid without distortion up to 25 MHz as can be 

seen in Figure 24. The y-axis is the voltage while the x-axis is time. 

 

Figure 24: Peak Detection Circuit at 25MHz 

This was proven by testing the PCB in separate sections. However, when the OP amp 

was used to isolate or pass the sinusoid, distortion and inaccurate peak measurements were 
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noticed as early as 3 MHz. The OP amps were rated to operate up to 400 MHz, but the OP amp 

could barely pass a 1 MHz sine signal without distorting some. Some of these distortions as seen 

went over the peak value of the sine wave being passed in. 

 

Figure 25: OP Amp Troubleshooting 1 MHz 
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Figure 26: OP Amp Troubleshooting 6 MHz 

 

Figure 27: OP Amp Troubleshooting 10 MHz 

Multiple approaches were attempted before moving away from the OP amp. Feedback 

resistors and capacitors were added to try and smooth the output and make it more stable, which 
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had limited success. This was tried because of a small note in the datasheet of the LT1818 OP 

amp that said, “In a unity gain configuration, LT1818 OP amp can drive a 20pF load and more 

with higher gain.” Another note also said, “When driving a larger capacitive load, a resistor of 

10Ω to 50Ω must be connected between the output and the capacitive load to avoid ringing or 

oscillation [1].” The peak detector was changed slightly with a different capacitive load and an 

adjusted resistance for the RC time constant, but the diode also had a capacitance that put the 

circuit right at a 20pF capacitive load. These additions and changes to the circuit extended the 

range of the frequency bandwidth by 1 or 2 MHz before distortion happened, but it was still 

unable to pass a distortion free waveform at our estimated frequency of about 10 MHz. The peak 

value obtained from the distortion waveforms could not be trusted in determining the junction 

temperature. With proper biasing and calibration, OP amps could work, but that could take 

various extra components, way more time, and more than likely would be specialized based on 

frequency. With the inconsistency in what this circuit needs to measure, the active components 

seemed to cause more problems than solve, thus it was time to move away from this approach. A 

more general approach should be obtained in the pursuit of an accurate peak detection circuit that 

can operate at any range of frequency and with random sinusoidal signals. 
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CHAPTER 5 

Redesign and Final Results of Prototype Testing 

5.1 Redesign of Circuitry 

As seen in the previous section, the active components of the PCB were causing 

distortions that could not be resolved without a complete redesign of the board. With that in 

mind, a new approach was considered that would eliminate the need of the active components 

but still measure the same TSEP talked about. The need for the OP amp to isolate that drop on 

the resistor was because the voltage drop was floating, both sides had an active voltage, and the 

difference was what was being measured previously. If a resistor could be inserted in the gate 

loop path with one of the terminals going to ground, then it would eliminate the need for an 

active component, like the differential OP amp to isolate that floating voltage. It could now be 

measured only by the passive components of the board, otherwise known as the peak detection 

circuit. The OP amp located after the peak detection circuit was also removed to eliminate any 

distortion and ringing the active components may have on the results. Since this OP amp was 

removed, the combination of the capacitance and resistance between the peak detection circuit 

and the low pass filter had to be carefully calculated to keep a suitable RC time constant along 

with a decent low pass filter that would help eliminate any extra noise created from the switching 

or extraneous events that could affect the results. A small sensing resistor was inserted in the 

gate loop at the kelvin source terminal of the power module. This formed the gate loop path with 

the internal and external gate resistors that cycled back over to the ground of the gate driver 

switching signal [1]. With the loop in place and the grounds connected, the peak detection circuit 

only had to be connected to the voltage side of the resistor. By controlling the Rsens resistance, 

as seen in Figure 28 below, the resolution of the TSEP can be controlled, and based on the 
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sensitivity of the passive voltage probes being used, general estimation of the junction 

temperature can be achieved. 

 

 

Figure 28: Modified Gate Loop Path [1] 

 

Figure 29: Final Circuitry for Gate Resistance TSEP 

5.2 Test Setup 

This test has a slight change from previous tests where all the same equipment is used, 

and the only difference is where the daughterboard is connected to. By adding the sensing 
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resistor directly in series at the gate loop in the connector pins, the daughterboard now connects 

via the two wires on either side of the sensing resistor, with one being the input to the peak 

detection portion of the circuit and the ground side of the sensing resistor being connected to 

ground of the board. The version 2 daughterboard was repurposed, and a wire was used to bypass 

where the differential OP amp pad was, and another wire was connected at the end of the low 

pass filter to be the wire the oscilloscope connected to for the peak voltage. 

 

Figure 30: Final Test Setup 

 

Figure 31: TSEP Board and Gate Driver Connection 
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5.3 Analysis of Final Results 

 

Figure 32: 40˚C vs 140˚C Peak Detection Average 
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Figure 33: Peak Detection Average Voltage Across Temperature 
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Figure 34: Average Peak Detection Voltage Max's Across Temperature 

5.4 References 

[1] R. Wang, J. Sabate, K. Mainali, T. Sadilek, P. Losee and Y. Singh, "SiC Device Junction 

Temperature Online Monitoring," 2018 IEEE Energy Conversion Congress and Exposition 

(ECCE), Portland, OR, 2018, pp. 387-392, doi: 10.1109/ECCE.2018.8558298. 

  



 

45 
 

CHAPTER 6 

Conclusion and Future Work 

6.1 Conclusion 

Based on the graphs above in Chapter 5, Analysis of Final Results, a clear trend could be 

established from the results showing a higher voltage for lower temperatures. Keep in mind that 

the ideal equipment to be measuring these changes were not used but rather probes that are used 

for measuring high voltage. The passive probes were rated up to 300V whereas a passive probe 

for lower voltage would have been more suitable and accurate. The relative accuracy and trends 

established from these graphs could be much improved with the correct equipment, but even 

with the incorrect equipment, the results prove the concept is there to accurately measure the 

junction temperature of a SiC power module through use of the internal gate resistance as the 

TSEP. It was previously mentioned that typical sensitivity for internal gate resistance was 2-5 

mV/ ˚C, however in this case that was not quite reached but rather a 1 mV/ ˚C was noticed [1]. 

This resolution can be altered and was a direct result of the 1.5 Ω resistance used for Rsens. If a 

higher value was chosen for this resistance value, then an improved resolution could have been 

obtained, but increased resistance in the gate path can also cause slower switching. A clear trend 

could still be established over large temperature swings with the wrong equipment. Other 

considerations can be taken from the results also such as improved shielding from the switching 

occurring in the module to help separate it from the peak output detector or tweaking the filter 

and peak detection circuit to hold the peak value longer and eliminate any extraneous signals. 

Other solutions that could improve the results would be adding a switch that could discharge the 

capacitance much faster between switching cycles. As the power module keeps switching, the 

switching speed is much faster than the time it takes for the capacitor to charge fully, thus the 
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spikes, along with some potential EMI, are seen on the graph. Even the spikes however show the 

temperature difference as they go up to their respective peaks before falling back down. Many of 

the extraneous signals were filtered out when a moving average was applied to the data to 

smooth out these results. When the peaks of the various spikes were plotted in Figure 34, the 

trend could easily be seen there as well. These spikes also got lower over time because as the 

module switches it still generates more heat that was added to their starting temperatures and that 

was tracked over the 1µs period for each temperature case. Overall, the results of the peak 

voltage drop on Rsens show a clear downward trend due to the junction temperature of the power 

module changing the internal gate resistance. This method provides an accurate estimation of TJ 

in real time which can be used to prevent the power module from failing due to a critical 

temperature. 

6.2 Future Work 

The purpose of the work explained in this paper is to eventually be incorporated directly 

onto a smart gate driver board for active monitoring. This concept is easily incorporated into the 

gate driver board with minimal components being added. A sensing resistor would be added into 

the gate loop path along with the peak detection circuit to monitor the sensing resistor. The low 

pass filter or voltage integrator could then be added afterwards. The peak voltage output would 

then be supplied to a microprocessor, which could perform any remaining post-processing 

functions, to actively monitor the peak voltage reported and shut the module down if 

approaching a critical temperature. This method is relatively simple to implement on the gate 

driver board and a microprocessor could easily perform the necessary post-processing functions 

to determine the junction temperature in real-time. This would also save money on countless 

external monitoring systems that might not be nearly as accurate at tracking TJ as this TSEP is. 



 

47 
 

This method is an accurate junction temperature measuring system with controlled resolution, 

based on the resistance value of the Rsens, and will be an excellent addition to the smart gate 

driver board. 
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