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ABSTRACT 

With the rising complexity and size of hardware designs, saving development time and 

cost by employing third-party intellectual property (IP) into various first-party designs has become 

a necessity. However, using third-party IPs introduces the risk of adding malicious behavior to the 

design, including hardware Trojans. Different from software Trojan detection, the detection of 

hardware Trojans in an efficient and cost-effective manner is an ongoing area of study and has 

significant complexities depending on the development stage where Trojan detection is leveraged. 

Therefore, this thesis research proposes improvements to various components of the soft IP 

analysis methodology utilized by the Structural Checking Tool. The Structural Checking Tool 

analyzes the register-transfer level (RTL) code of IPs to determine their functionalities and to 

detect and identify hardware Trojans inserted. The Structural Checking process entails parsing a 

design to yield a structural representation and assigning assets that encompass 12 different 

characteristics to the primary ports and internal signals. With coarse-grained asset reassignment 

based on external and internal signal connections, matching can be performed against trusted IPs 

to classify the functionality of an unknown soft IP. Further analysis is done using a Golden 

Reference Library (GRL) containing information about known Trojan-free and Trojan-infested 

designs and serves as a vital component for unknown soft IP comparison. Following functional 

identification, the unknown soft IP is run through a fine-grained reassignment strategy to ensure 

usage of up-to-date GRL assets, and then the matching process is used to determine whether said 

IP is Trojan-infested or Trojan-free. This necessitates a large GRL while maintaining a balance of 

computational resources and high accuracy to ensure effective matching.  
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1 INTRODUCTION 

As use of integrated circuits (ICs) becomes more pervasive in all areas of industry and 

government, it is critical to develop hardware in a timely, cost-effective manner. Stemming from 

this, third-party hardware intellectual property (IP) is needed to reduce development cost and time 

due to it being impractical to design every component of an IC in house. These third-party IPs may 

not always be trustworthy and may comprise hardware Trojans. A hardware Trojan is defined as 

malicious, intentional modifications to a circuit to perform behavior such as leaking sensitive data, 

performing a denial-of-service attack, or causing other undesired behaviors. If even a single IP 

component of an IC is compromised, the integrity of the entire IC is compromised as well. 

 Currently, there are many approaches proposed for detecting hardware Trojans. These can 

typically be distinguished by when they are used for Trojan detection. Techniques may target 

hardware Trojans after production of an IP, after synthesis of an IP, or before synthesis of an IP. 

For post-production IPs, detection methods focus on side-channel analysis and may use a separate 

chip to detect hardware Trojans from the resultant IP. One application of side-channel analysis is 

to examine the power metrics of an IP to detect whether it is Trojan-infested. This particular 

approach is accomplished using a model containing Trojan-free IP power metrics for comparison 

[1]. Using this technique, the authors are able to differentiate between Trojan-free and Trojan-

infested ICs with 100% accuracy. However, this does have drawbacks incurred by requiring a 

reference library with a large amount of data to cover a variety of ICs. Another method of hardware 

Trojan detection using side-channel analysis is presented in [2]. In this variant of side-channel 

analysis, no golden models are needed, and a support vector machine (SVM) is used to determine 

the presence of a hardware Trojan. This approach sacrifices accuracy but retains a Trojan detection 

rate of up to 93% and a classification accuracy of 91.85%. Side channel analysis can also be 
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performed using current draw. The authors of [2] define a current-related metric called 

“consistency,” and experiments show the consistency measurement is markedly different in a 

Trojan-infested IC, allowing their detection algorithm to effectively identify ICs infested with 

Trojans. With the aforementioned techniques requiring a post-production IP, significant cost is 

incurred in performing Trojan detection, leading to tradeoffs between accuracy, monetary costs, 

and the time taken to get through analysis. 

 Another option for Trojan detection is to perform analysis post-synthesis. After the 

synthesis of an IP, various structures such as netlists and other descriptors can be leveraged for 

hardware Trojan detection. The authors in [4] conducted post-synthesis examination using netlists. 

An SVM is used to analyze a netlist to detect three types of hardware Trojans. However, the 

proposed method was not tested on Trojans without trigger circuits. Additionally, the paper 

demonstrated a true negative rate of 70%. A true negative refers to successfully ignoring 

acceptable behavior. Another example of netlist usage is described in [5], where the authors used 

netlists in conjunction with a neural network to detect hardware Trojans within a gate-level netlist. 

Results show an average true positive rate of 72.9% with an average true negative rate of 90%. 

The true positive rate refers to when hardware Trojans are correctly categorized by the method. 

The authors of [6] posed several techniques and tools utilizing post-synthesis methods based on 

Boolean function analysis as well as graph neighborhood analysis to perform gate-level Trojan 

detection. These two methods are combined into their ANGEL (Analyzing the Neighborhood of 

Graphs to Expose Leakers) analysis technique to yield a false positive rate of between 30 to 40 

percent. The authors note the challenge of finding a proper threshold value to use with the ANGEL 

analysis technique without an automated way to determine such a value. Regarding these post-

synthesis detection processes, a lesser penalty of speed is taken for some penalty to accuracy. 
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Evaluated against the other two sets of methods, this method acts as a middle ground between 

maximizing either speed or accuracy. 

 There are pre-synthesis methods to analyze register-transfer-level (RTL) code for hardware 

Trojans and to convert RTL code into other representations to aid in hardware Trojan detection. 

An approach described in [7] used RTL code to generate and analyze electromagnetic signatures 

to detect hardware Trojan types with an accuracy nearing 83%. However, this method may face 

issues with clock variance due to the hardware Trojan detection method operating within the 

frequency domain of electromagnetic side-channel radiation. The authors in [8] detailed a 

technique utilizing machine learning to detect hardware Trojans in RTL code. According to the 

authors, all Trojan benchmarks were completed without false positive detection on a non-Trojan 

benchmark. These Trojan benchmarks consisted of nine different Trojans contained across nine 

variants of RS232 RTL code as well as a normal RS232 with no Trojans. While their results were 

promising, the method employed relies on other processes to aid it at different abstraction levels. 

 Similar to the procedures used on soft IPs above, Golden Reference Matching methods 

described in [9] and [10] focus entirely on RTL code analysis rather than netlists, intermediate 

representations, or post-production IPs. The techniques in [10] build upon those described in [9] 

to form the overall matching system. Golden Reference Matching operates by analyzing RTL code 

to extract any component and its primary ports as well as internal signals. These ports and signals 

are then labeled with assets to describe their functionality in the IP and compared against a Golden 

Reference Library (GRL). The GRL is a collection of both Trojan-free and Trojan-infested entries 

with pre-assigned functionalities. The unknown IP being matched against the GRL is compared 

with each GRL entry to evaluate the entries it most closely resembles. If the unknown IP’s best 
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match is a Trojan-free entry, then it is likely to be Trojan-free. Similarly, if the IP best matches a 

Trojan-infested entry, then the IP has a higher likelihood of containing a Trojan. 

 Building upon the methods described in [9], the first step of the matching process in [10] 

is to utilize a new concept called the Champion GRL. The Champion GRL consists of manually 

selected designs that are considered to be the most representative of their associated functionality. 

This means there is a single design associated with each functionality. These champion entries are 

used to make an initial match to assign a functionality to the unknown soft IP. Included in the 

Champion GRL are 10 assets used to increase functional matching percentage for the unknown IP. 

Then, the unknown IP must be compared against the Functionality GRL entries to determine the 

functionality it best matches. This vastly decreases computational time as the overall GRL size 

increases since only a single functionality match is required using this two-step process. 

 This thesis describes accomplished work and changes added to the preceding version of 

the matching algorithm along with changes to the parsing stage and GRL format. Section 2 

explains background information concerning the tool such as internal and external assets, structural 

checking, and the Golden Reference Matching process and accompanying GRL. Section 3 

proposes additions to the existing tool and subsequent implementation. This includes updates to 

Hardware Description Language (HDL) RTL parsing, HDL RTL internal representation, GRL file 

format, and optimizations made to the Golden Reference Matching process. Section 4 validates 

the efficacy of these changes and demonstrates results and improvements, including increased 

matching effectiveness. Finally, Section 5 details future work and potential changes with the new 

Structural Checking Tool configuration.  
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2 BACKGROUND 

2.1 ASSETS 

To help describe functionality and label primary ports and internal signals, assets are 

assigned to signals. These labels are crucial to the Golden Reference Matching process, explained 

in Section 2.2, and describe the purpose and functionality of the signal in the unknown IP. Multiple 

assets may be assigned to a signal depending on whether more than one asset is needed to capture 

a signal’s functionality. Within the Structural Checking tool, internal and external assets are the 

fundamental asset categories. Internal assets can further be defined as automatically assigned or 

manually assigned. 

2.1.1 Internal Assets 

The authors in [11] and [12] describe the original work detailing initial definition and use 

of internal assets. Internal assets primarily describe the workings of internal signals but may also 

be applied to primary ports signals. Internal assets can be further distinguished as manually 

assignable and automatically assigned assets. Automatically assigned internal assets are used to 

describe different HDL code structures and the signals within them. These HDL structures include 

process statements, conditional expressions, concurrent expressions, sequential expressions, 

procedure statements, functions, generate statements, and constant values. Each of these types of 

internal assets are called automatically assigned since they are not manually assigned by a user 

and are instead assigned during the parsing step of the Structural Checking Tool. Currently, the 

manually assignable internal assets remain unchanged from the aforementioned original works. 
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2.1.2 External Assets 

The original work in [11] and [12] also details the basic external asset system and initial 

external asset definitions. These external assets are divided into Data, Timing, System Control, 

Specific System Control, and Miscellaneous. These categories as well as several example assets 

are show in Table 1. External assets are assigned to primary ports and internal signals to describe 

the use of signals in an unknown IP. 

Table 1. External Asset Categories and Example Assets 

External Asset Category Example Assets 

Data DATA_COMPUTATIONAL, DATA_MEMORY, 

DATA_PERIPHERAL 

Timing STATUS, SYSTEM_TIMING, COUNT 

System Control RESET, ENABLE, INSTRUCTION 

Specific System Control MEMORY_OP, REGISTER_FILE_CONTROL, 

BUS_CONTROL 

Miscellaneous CRITICAL, KEY, DUTY_CYCLE 

Each category has varying numbers of assets relating to different kinds of signal usages. 

The Data category contains assets relating to the transfer of data such as computational data or 

memory data. Assets in the Timing category pertain to signals used for anything related to timing 

including assets for counters and delays. For System Control, all assets within are related to more 

broad control of systems. In contrast to these assets, Specific System Control contains those assets 

that are for specific control of systems and typically apply to only one type of system. The final 

category, Miscellaneous, is used to hold several assets that do not properly fit into other categories 

in addition to a few assets used as default values for various internal usages. Some internal usage 

assets from this category include UNUSED and UNKNOWN while other assets like KEY and 

REGISTER may be assigned to signals. 
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2.1.3 Asset Filtering 

Asset filtering is detailed in [9] and pertains to propagating assets assigned to a signal, all 

connected signals, and any ancestors or descendants. With propagation, the tool obtains a better 

understanding of the correlation between signals and can detect conflicting asset assignments or 

evaluate if a suspicious asset has been propagated through to areas where it should not be used. 

External assets assigned to primary circuit inputs propagate through the entire circuit and onto 

their descendant primary circuit outputs. Additionally, the reverse is also true, so external assets 

assigned to primary circuit outputs propagate backwards to primary inputs. 

2.2 GOLDEN REFERENCE MATCHING 

The authors of [9] define Golden Reference Matching as the process of matching an 

unknown IP by comparing it against a GRL containing a mix of Trojan-free and Trojan-infested 

IPs. By conducting this matching process, it is determined whether the unknown IP contains 

Trojans. For each entry contained in the GRL, a percentage match is calculated between the entry 

and the unknown IP based on measures of asset similarity. Using the highest percentage match, 

Golden Reference Matching yields a probabilistic result based on the general functionality of the 

unknown IP as well as indicating presence or absence of Trojans. 

2.2.1 Basic Matching 

Basic matching stems from calculating a percentage match of the asset characteristics 

between the asset sets of an unknown soft IP and GRL entries. By comparing individual assets 

within an asset set, a percentage match for the given characteristic can be calculated. Averaging 

the percentage match of all characteristics allows a determination of the overall percent match for 

a particular characteristic. After comparing all characteristics, the six percentage matches are 
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averaged to surmise an overall match for the unknown soft IP. As an exception, there are cases 

where an unknown IP or a GRL entry may not have assets in each characteristic. In this instance, 

the empty characteristics are not included in the overall percentage match calculation. 

2.2.2 Partial Matching 

Originally introduced to the Structural Checking Tool by the authors of [9], partial 

matching is utilized when assets are not perfectly identical but share a similar purpose within a 

soft IP. Furthermore, basic matching provides a partial match if an asset contained in the unknown 

IP or a GRL entry is a generic asset while the other is specific. When this applies, a 50% match is 

assigned to the two assets. One possible example of a 50% match between related assets could be 

a match between DATA_SENSITIVE and DATA_MEMORY. This happens as a result of 

DATA_MEMORY being a less specific form of DATA_SENSITIVE. 

2.2.3 Asset Reassignment 

Introduced in [14], asset reassignment is the process by which a specific asset is changed 

into a more general asset. The idea of asset reassignment originates from the previous subsection 

when a more specific asset may be matched to a generic counterpart. If two signals are theoretically 

the same but differ due to changes in assets introduced over time, a generic asset can be given to 

the signals instead.  Given that these two assets are in the same category when comparing a specific 

and general asset, the specific asset is reassigned to the general asset to increase the matching 

percentage. Examples of this include the DATA_COMPUTATIONAL and DATA_SENSITIVE 

assets. Both of these assets are data category assets. In this case, DATA_COMPUTATIONAL can 

be reassigned to DATA_SENSITIVE to increase the matching percentage from 50% to 100%. 
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2.2.4 Statistical Matching 

Also presented by the authors of [14], statistical matching adds various statistical formula 

to aid the matching process. Frequently used assets included within a single characteristic of many 

GRL entries should be treated as having a lower weight compared to assets found in a small subset 

of GRL entries because the less common assets contribute more to the identifiability of a GRL 

entry. Using this technique, an average asset weight can be evaluated based on the sum of all 

matched asset weights divided by the total number of matched assets of a particular characteristic. 

𝑊𝑒𝑖𝑔ℎ𝑡𝑐ℎ𝑎𝑟 =
𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑐ℎ𝑎𝑟 ∗ 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝐴𝑠𝑠𝑒𝑡𝑊𝑒𝑖𝑔ℎ𝑡

∑ 𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑖 ∗ 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝐴𝑠𝑠𝑒𝑡𝑊𝑒𝑖𝑔ℎ𝑡𝐹
𝑖=𝐴

∗ 100 

Equation 1. Characteristic Weight Calculation [10] 

Equation 1 shows the average asset weight calculation of a particular characteristic. After 

determining the average asset weight for a single characteristic, it is divided by the sum of all 

characteristics’ average asset weights and converted into a percentage based upon the sum of all 

six characteristics’ average asset weight in the GRL. 

2.2.5 Golden Reference Library 

The GRL is a collection of soft IPs retrieved from both Trust-Hub [15, 16] and OpenCores 

[17]. A general functionality is associated with each design file to label the overall function of the 

soft IP, and the tool also generates an asset pattern for the known IP. Entries are manually labeled 

with a functionality describing whether they are Trojan-free or Trojan-infested. These designs are 

well-documented, so there is confidence concerning the design functionality. 

2.2.6 Champion Golden Reference Library 

Introduced by the authors of [10] to reduce the computational complexity of establishing 

the functionality of an unknown IP, each GRL entry is manually inspected to copy specific entries 
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into a separate GRL. Both the Champion Golden Reference Library and the Functionality Golden 

Reference Library discussed further in Section 2.2.7 supersede the Golden Reference Library 

discussed in Section 2.2.5. Any entry containing too few asset sets or insufficient asset set variety 

will introduce bias during the asset reassignment process. To remedy this, the manual inspection 

process is employed, so one GRL entry is chosen as the most representative of a specific 

functionality based on the analysis of its asset sets, asset variety, and asset makeup. 

2.2.6.1 Coarse-Grained Asset Reassignment 

Due to entry limitations and decreased entry count of the Champion GRL, a coarse-grained 

asset reassignment approach is necessary. Since a fine-grained comparison of the unknown IP and 

the Champion GRL entries is implemented, the top Champion GRL matches will have a lower 

overall matching percentage with the unknown IP when they are compared against a design with 

identical functionality. To address this, matching with the Champion GRL is aided by usage of 

coarse-grained matching similar to asset reassignment but only applied to external characteristics. 

2.2.7 Functionality Golden Reference Library 

To supplement the Champion GRL, a Functionality GRL is introduced by the authors of 

[10]. The introduction of the Champion GRL obsoleted the original GRL and its concepts. 

Therefore, the Functionality GRL is partitioned according to functionality, so the resource cost of 

matching is reduced by only matching to a specific category established by the Champion GRL 

Matching process. Consequently, the GRL process breaks down into a two-step process where an 

unknown IP will first have its functionality determined by its Champion GRL match and is then 

further compared against the Functionality GRL entries pertaining to the chosen functionality. 
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2.2.7.1 Fine-Grained Asset Reassignment 

For GRL entry matching, fine-grained asset reassignment was added to increase the 

matching percentage between an unknown soft IP and the Functionality GRL entries. In this type 

of asset reassignment, only Functionality GRL designs are assigned. Any unknown IP used will 

have its most recently assigned assets while the Functionality GRL entries may not be as up-to-

date, negatively affecting matching results. During asset reassignment using a specific 

characteristic from the Functionality GRL, the same characteristic of the unknown IP is also used. 

Initially, all asset sets from a single characteristic are considered alongside external characteristics 

since most internal assets are automatically assigned. Next, each Functionality GRL entry receives 

the asset sets from the same characteristic as the unknown IP, and assets from the Functionality 

GRL are compared against those of the unknown IP. Since the most recent and accurate assets are 

assigned to the unknown IP, this reassignment only happens for assets within the Functionality 

GRL. If two particular assets from the unknown IP and Functionality GRL entry are the same, then 

asset reassignment is unnecessary.  
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3 METHODOLOGY AND IMPLEMENTATION 

While the matching process described in Section 2 is a starting point, there are further 

issues to be addressed. These include optimizing the content of asset sets, defining new assets to 

help describe functionalities, and improving computational efficiency of the matching and related 

processes. In rebuilding several sections of the Structural Checking Tool, the parser was modified 

to use the hdlConvertor Python library. This allows for conversion of RTL code into an abstract 

syntax tree (AST). Additionally, the internal representation of parsed RTL code from a soft IP has 

been reworked, so each design can be represented as a directed graph where the direction of node 

edges is based on driving and driven signals within the RTL code. As a byproduct of directed 

graph representation, other processes, like asset propagation, are made simpler by being tied to 

ancestor and descendant nodes. These processes can also utilize the directed nature of the graph to 

further convey the logic flow of the IP from the primary inputs to the primary outputs. 

Complementing these changes, the formatting and information contained within GRL entry files 

were upgraded to effectively detail GRL entries. 

3.1 HDL RTL PARSING 

To begin the process of converting RTL code into a directed graph representation, 

hdlConvertor is employed to translate the RTL code into a descriptive AST. In addition to the AST 

representation, hdlConvertor also supports a larger group of syntax of HDL languages, allowing 

improved code coverage. To manipulate the AST provided by hdlConvertor, several builder 

classes are utilized to traverse the tree and extract the desired information for directed graph 

construction. 
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3.1.1 Composed Graph Builder 

The construction of the directed graph begins and ends in this phase of the building process. 

The Composed Graph Builder is first given the file path of the top-level HDL file of a soft IP. 

Afterwards, the directory of the file is set as the top-level directory (TLD), so all HDL files located 

within are considered a design. In this instance, the top-level HDL file contains the top-level 

component for a given design. Once the top-level file and TLD are located, the top-level HDL 

code is parsed to find the top-level component. After this component is found, regular expressions 

are used to reduce computational time in finding declared components within each HDL file in the 

TLD. While the Composed Graph Builder iterates over these HDL files, a cache of known 

components is built to include component locations. Additionally, a signal graph is created and 

cached along with a cache of user-defined packages to contain important definitions used 

throughout the design. After the construction of both caches, it is possible to establish all 

subcomponents based on the body of the top-level HDL file. To maintain a hierarchy for internal 

representation of the IP, a tree structure links components as parent-child relationships using the 

Component Tree Builder. Finally, after all caches are built and the component hierarchy is founded 

with the Component Tree Builder, the signal graphs built for each component are combined to 

form the final representation of the soft IP as a directed graph. The component cache contains a 

signal graph for each component to prevent the computationally expensive process of using 

hdlConvertor on any given component more than once. 

3.1.2 Component Tree Builder 

The Component Tree Builder is used to understand the hierarchy and composition of the 

overall design based on parent-child relationships between components and subcomponents. This 

builder traverses the relevant component HDL files while maintaining a cache of parsed 
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hdlContext objects given by hdlConvertor to avoid redundant parsing. Furthermore, this builder 

recursively calls itself for each subcomponent. These calls then branch to all descendant 

components until the entire design hierarchy is established. After determining this hierarchy, each 

node in the constructed component tree is given an instance designator to allow tracking of 

component instantiations. Using this information, functionally-identical components can be 

differentiated from one another. 

3.1.3 Signal Graph Builder 

This builder class is the chief component in constructing the directed graph from the RTL 

code. It is used in conjunction with the builders detailed in Sections 3.1.1 and 3.1.2 to achieve 

maximal accuracy in a hierarchical manner. The Signal Graph Builder traverses all relevant objects 

in the AST and constructs a graph such that each signal is a node, and edges are drawn based on 

the driving-driven relationship contained in the HDL code. In addition to serving this purpose, the 

Signal Graph Builder automatically assigns relevant internal assets to ensure accurate description 

of various HDL statements and signal usage. In every signal graph, statement hierarchies are 

defined to ensure conditional driving statements or statements with driving signal lists have their 

driving-driven relationships propagated throughout any nested code blocks. For example, an if 

statement wrapping a for loop would lead to the interior for loop being driven by the exterior if 

statement. This statement hierarchy ensures all connections are formed to show the proper flow of 

logic throughout various HDL statement types. In addition to statement representations, HDL 

functions and procedures are also parsed. Internally, these functions and procedures are 

represented as independent signal graphs and later composed into the signal graphs of their parent 

components. When composing a function graph into a component’s signal graph, a unique 
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designator is assigned to function signals to ensure they are uniquely identifiable based on the 

number of function calls within the component. 

3.2 GRAPH REPRESENTATION 

RTL designs are parsed and converted into a directed graph. This graph is used to convey 

all connections between signals while highlighting the flow of logic throughout a design. 

Understanding the logic flow assists with asset propagation to ancestor and descendant nodes, so 

every path through a design can be more accurately described. For the purposes of graph  

Figure 1: Example Graph for a 2-Bit Adder 

representation, a path through the design entails a connection from a primary input port to a 

primary output port that may pass through intermediary internal signals. In addition to helping 

with path description, these elaborated logic paths also improve functionality assignment and 

matching since every path through the design is properly represented from the expression of all 

signal graphs in the top-level component and all subcomponents. Figure 1 shows an example graph 

for a 2-bit adder. In this graph, nibble1 and nibble2 are input signals, sum and carry_out are output 

signals, and temp is an internal signal. For this adder, temp is driven by both nibble1 and nibble2 

while temp drives both sum and carry_out. In addition to the previous points, graph representation 
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may be leveraged in the future to easily identify certain types of Trojans. For example, it could be 

used to identify disconnected nodes which point to unwanted or unused logic. It could also allow 

tracking of each signal assigned as a clock asset to identify undesirable actors and prevent them 

from affecting clock behavior. 

3.3 GOLDEN REFERENCE LIBRARY FILE FORMAT 

The Golden Reference Library (GRL) was also reformatted while making improvements 

to other algorithms related to the matching process. To structure GRL file entries, new GRL files 

are formatted to JavaScript Object Notation (JSON) specifications. Figure 2 details a generalized 

layout of the new GRL format. The overall design has a primary and secondary functionality 

assigned to it as well as a name, creation time, and format version. Additionally, each component 

is assigned a name, primary functionality, and secondary functionality. Components contain parent 

component and child component data to determine their positions in the design hierarchy. To save 

computation time when a GRL entry is read, components also store a copy of their asset frequency 

data to detail the asset types appearing within it and its child components. The final asset data 

stored is internal and external asset data for input, output, inout, buffer, linkage, and internal signals. 

This accounts for all signal types and increases the total number of characteristics to twelve. To 

supplement the aforementioned information, all components and subcomponents are fully 

expressed in the GRL file instead of featuring only one instance of each component. Using this 

method, different functionalities and asset layouts for components are considered instead of 

registering only a single functionality. Since GRL files can be large and will need to be stored 

long-term, the new GRL format applies standard compression. The compression for GRL files 

uses the built-in Python pickle library to create a binary object dump of the entry_data portion of 

the GRL file. Next, the binary dump is compressed using the LZMA algorithm and encoded to the 
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A85 format to realize size benefits when encoding binary data. Lastly, the data is decoded to UTF-

8 to maintain file readability and avoid writing binary blobs directly in line with JSON text. 

{ 

    "format_version": ..., 

    "design_info": { 

        "name": ..., 

        "primary_functionality": ...,  

        "secondary_functionality": ..., "creation_time": ... 

    }, 

    "entry_data": { 

        "components": [ 

            { 

                "name": ..., 

                "primary_functionality": ..., "secondary_functionality": ..., 

                "parent_component": ..., "child_components": [...], 

                "asset_frequency_data": {...}, 

                "input_signal_asset_data": {...}, "output_signal_asset_data": {...}, 

                "buffer_signal_asset_data": {...}, "linkage_signal_asset_data": {...}, 

                "inout_signal_asset_data": {...}, "internal_signal_asset_data": {...} 

            }, 

            ... 

        ] 

    } 

}  

Figure 2. Example Golden Reference Library entry 

Because only the entry_data portion of the GRL JSON is compressed, it is possible to view 

the overall design summary without decompressing the file. In the case of the GRL file for the 

f32c processor, the GRL file size was decreased from approximately 1.28 megabytes to 15 

kilobytes for a total decrease in size of approximately 98%. This will allow for more GRL entries 

without taking up significantly more disk space. Overall, these changes produce GRL files that 

contain more information while improving accuracy and readability. 
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3.4 REORGANIZING FUNCTIONALITIES 

To begin matching improvements, the list of functionalities was elaborated upon and 

expanded into a set that is more representative of the functionalities that designs may implement. 

The prior functionality system organized functionalities into a whitelist and blacklist. Whitelist 

functionalities are those without Trojan behavior while blacklist functionalities do exhibit Trojan 

behavior. This functional organization is provided below in Table 2. 

Table 2. Whitelist and Blacklist Functionalities [10] 

Whitelist Functionality Blacklist Functionality 

SHIFT_REGISTER TROJAN_ENCRYPTION_UNIT 

INTERRUPT_UNIT TROJAN_TRIGGER 

COMMUNICATION TROJAN_COMMUNICATION 

ENCRYPTION_UNIT TROJAN_SHIFT_REGISTER 

COMPUTATIONAL  

TIMING  

CONTROL_GENERATION  

REGISTER_FILE  

PERIPHERAL  

DECODER_ENCODER  

DEBUG_INTERFACE  

To revise these functionalities, it is necessary to ensure each functionality describes a 

category of IP at a similar level of granularity, so no functionality is more heavily weighted than 

others. Additionally, chosen functionalities must accurately describe any IP. The new system of 

functionalities is below in Table 3. 
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Table 3. Updated Functionalities 

Functionality Has Trojan Equivalent 

unassigned No 

cannot_determine Yes 

processor Yes 

hardware_accelerator Yes 

memory Yes 

datapath Yes 

power_management Yes 

clock_generation Yes 

timing Yes 

pwm Yes 

cryptography Yes 

computational Yes 

control_unit Yes 

debugging Yes 

port Yes 

communication Yes 

decoder_encoder Yes 

library Yes 

peripheral Yes 

While the updated functionalities no longer categorize blacklist and whitelist functionalities, 

each functionality now has a Trojan equivalent of itself to precisely express what kind of 

functionality the design shows and whether it exhibits malicious behavior. Furthermore, the larger 

number of functionalities helps prevent categories from being too broad in scope, and they more 

accurately identify and distinguish designs. The unassigned functionality is the default 

functionality used when no other functionality has been assigned. The cannot_determine 

functionality’s Trojan and clean variants are used when a currently defined functionality does not 

fit, but it is known whether or not the design contains a Trojan. Any processor functionality 

components perform operations on an external data source, usually facilitated by an instruction set. 

Components designated as hardware_accelerator aid or optimize some other computation. The 

memory functionality describes components that store information for immediate or later use. Any 
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components that perform data processing operations or control data flow throughout a design are 

described by the datapath functionality. Components labeled as power_management affect power 

distribution. In the clock_generation functionality are components that create or drive the clock 

signal for distribution throughout a design while the timing functionality applies to components 

that configure or process the clock signal generated by a clock_generation component and perform 

other timing-related actions. Components that modulate an electrical signal to reduce its average 

power belong to the pwm functionality. The cryptography functionality encompasses 

cryptographic functions or cryptographic operations performed by components, and the 

computational functionality details components that implement arithmetic functions or perform 

arithmetic operations. Components that manage the operation of other components or devices fall 

into the control_unit functionality. The debugging functionality describes components that output 

debugging information and perform exception handling and detection. Functionalities that fall into 

port are components that act as a physical interface to another device. The functionalities related 

to communication are components that facilitate the transfer of data over wired or wireless 

connections either internally or externally. Any component that decodes or encodes information 

can be described by the decoder_encoder functionality. The library functionality applies to 

packages or libraries from which components or signals are loaded and cannot be expressed as a 

physical part of an IP despite its presence in RTL code. 

3.5 GOLDEN REFERENCE MATCHING 

While some stages of matching remain unchanged, others have been removed due to 

deprecation. Those remaining stages have been overhauled and optimized in various ways. The 

stages remaining from the initial Golden Reference Matching process are the Statistical Matching 

Step, the Champion Golden Reference Library Matching Step, and the Functionality Golden 
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Reference Library Matching Step. The overall matching process has been reorganized to remove 

extraneous prior work and streamline added matching optimizations. 

3.5.1 Champion Golden Reference Library Matching 

The Champion Golden Reference Library portion of the matching process, introduced in 

[10], determines the initial assigned functionality of an unknown soft IP. In addition to the 

declaration of an unknown soft IP’s functionality, this GRL only contains one design per 

functionality, allowing it to use less resources. The Champion GRL entries are a subset of the 

Functionality GRL entries and are manually selected so each entry in the Champion GRL is the 

best representative of the related functionality. The efficacy of the Champion GRL is further 

increased due to the various functionality changes implemented to more effectively describe and 

categorize designs. If a Champion GRL entry contains too few asset sets or too few unique assets, 

then bias is introduced due to the reassignment of general assets to specific assets. Designs 

containing many asset sets with many uniquely identifying assets may also exhibit bias when the 

soft IP contains fewer unique assets than a given Champion GRL entry. Addressed previously in 

this section, the process of selecting a Champion GRL entry to represent a functionality must 

consider asset sets and all uniquely identifying assets within the entry before being evaluated and 

added to the Champion GRL. This process is critical to avoid the biases highlighted above and to 

ensure the initial functionality match is as accurate as possible. 

3.5.1.1 Coarse-Grained Asset Reassignment 

The coarse-grained asset reassignment approach, retaining its original usage described in 

[10], is utilized due to the entry limitations of the Champion GRL. The comparisons between an 

unknown soft IP and the Champion GRL are fine-grained. This leads to top Champion GRL 
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matches having a lower overall matching percentage against the unknown soft IP when compared 

to matches of the soft IP against designs of similar or the same functionality. Because of this, the 

Champion GRL matching process is performed in conjunction with coarse-grained asset 

reassignment utilized exclusively on external characteristics. 

3.5.1.2 Asset Set One 

Asset Set One has increased from ten generalized external asset categories to eleven. All 

external assets are encompassed by these categories. Table 4 shows all categories in Asset Set One 

and the assets which map to Asset Set One categories. 

Table 4. Reworked Asset Set One 

Category Assets 

Data._any 
Data: computational, sensitive, critical, test_in, 

test_out 

Data.communication Data.peripheral 

Data.encryption 
Data: decryption, _hash, encoding, decoding, 

key 

Data.address Data.memory 

Timing.system_timing 
Timing: clock, subsystem_clock, 

subsystem_timing, test_clock 

Timing.status 

Timing: ready, done, busy, hold, count, wait, 

standby 

SpecificSystemControl.communication_status 

InstructionSet.instruction 

SystemControl: enable, _set, reset, execute, 

read, write, select, load, shift, interrupt, mode, 

acknowledge, handshaking, dataflow, flag, 

request, test_mode_select, test_reset 
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Table 4. Reworked Asset Set One (Cont.) 

Category Assets 

SpecificSystemControl.peripheral_control 

Timing: clock_control, 

subsystem_clock_control 

SpecificSystemControl: interrupt_control, 

memory_control, communication_control, 

communication_protocol, bus_control, 

duty_cycle, phase 

InstructionSet: operand, operation_type, source, 

destination, program_counter, branch, offset, 

program_counter_op, data_op, memory_op, 

interrupt_op, priority, availability, 

pipeline_clear, pipeline_lock 

SpecificSystemControl.exception_handling SpecificSystemControl.error_handling 

Parameter.configuration 
Parameter: initialization, frequency, timing, 

phase, data_width, generate_control, enable 

MiscellaneousAsset.unused MiscellaneousAsset: component, unknown 

Many of these assets either map to new asset categories or are newly created external assets 

entirely. These changes help improve the descriptive capabilities for each reassigned category, 

thereby improving the efficiency of Asset Set One. This stage of reassignment is employed on both 

the unknown soft IP and the Champion GRL entries, so the assets and functionality yield the 

highest possible percent match. 

3.5.1.3 Asset Set Two 

Asset Set Two has also increased from ten general categories to eleven. Typical of GRL 

entries, broader assets become much more common across designs than other assets with higher 

specificity. Because data assets are particularly common due to most IP processing data in some 

way, the primary focus of Asset Set Two is to classify data assets into a new category. Table 5 

describes the asset categories and assets of Asset Set Two. In contrast to Asset Set One, some 

categories in Asset Set Two may not have any assets mapped to them. This is due to Asset Set Two 

primarily handling data assets, important distinguishing factors in many designs. As such, some 
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assets remain without necessitating reassignment since they are uncommon enough to aptly 

express design characteristics. 

Table 5. Reworked Asset Set Two 

Category Assets 

Data._any Data.computational 

Data.memory  

Data.communication  

Data.peripheral  

Data.encryption Data: decryption, _hash, encoding, decoding, key 

Data.address  

Data.sensitive Data.critical 

Timing.system_timing 

Timing: clock, subsystem_clock, subsystem_timing, status, 

ready, done, busy, hold, count, wait, standby, test_clock 

SpecificSystemControl.communication_status 

InstructionSet.instruction 

Timing: clock_control, subsystem_clock_control 

SystemControl: enable, _set, reset, execute, read, write, select, 

load, shift, interrupt, mode, acknowledge, handshaking, 

dataflow, flag, request, test_mode_select, test_reset 

SpecificSystemControl: interrupt_control, peripheral_control, 

memory_control, communication_control, 

communication_protocol, bus_control, duty_cycle, phase, 

exception_handling, error_handling 

InstructionSet: operand, operation_type, source, destination, 

program_counter, branch, offset, program_counter_op, 

data_op, memory_op, interrupt_op, priority, availability, 

pipeline_clear, pipeline_lock 

Parameter.configuration 
Parameter: initialization, frequency, timing, phase, data_width, 

generate_control, enable 

MiscellaneousAsset.unused 
Data: test_in, test_out 

MiscellaneousAsset: component, unknown 

Top matching percentages determine when to employ Asset Set Two. If a certain threshold 

is met, then functionality matching can continue with only the usage of Asset Set One. After some 

unknown soft IP has completed the asset reassignment process and these reassigned assets have 

been propagated through the IP, the matching process will perform the reassignments detailed in 

Asset Set One. Once the matching process completes and the soft IP matches to the Champion 
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GRL entries, the top two matches yielded are compared with a configurable matching threshold. 

The default configuration value of the matching threshold is 40% and was determined from initial 

testing in [10]; however, this value may be altered to achieve better results in certain scenarios. 

Any designs with less than a 40% match are low confidence functionality assignments. If the first 

match exceeds 40%, then it is necessary to compare with the second highest matching functionality. 

Table 6. Functionality Threshold Example 

Functionality Match Percentage 

computational 90% 

datapath 85% 

If an unknown soft IP has matching percentages below this threshold, the confidence in 

any match is not high enough to justify a functionality assignment. In addition to this first threshold, 

a second configurable threshold is used. The significance of the second threshold is to signify 

functionality differences due to design variability within each functionality category, and the 

default value for this threshold is 15%.  If the top two matches have a difference exceeding 15%, 

then the unknown soft IP is considered part of the top matches’ functionalities and moves forward 

to match against the Functionality Golden Reference Library. In Table 6, the matches for 

computational and datapath do not have a difference of greater than 15% and are determined to 

not be sufficient in deciding the component’s functionality. 

3.5.2 Functionality Golden Reference Library Matching 

Also originating in [10], the Functionality Golden Reference Library Matching (FGRLM) 

process complements the Champion GRL matching process. As outlined in the original GRL 

matching process, a design would be matched against all entries within the GRL, which scales 

poorly as the number of GRL entries increases. To reduce this computational overhead, FGRLM 

is employed after the Champion GRL matching process is completed. After an unknown IP has its 
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initial functionality decided, it is then matched against the FGRLM associated with that 

functionality. By doing this, any unknown soft IP will only be matched against Champion GRL 

and GRL entries pertaining to the FGRLM-determined functionality rather than being matched 

against all GRL entries. This approach has the additional benefit of increasing matching 

percentages because an unknown soft IP is only compared against designs similar in functionality. 

3.5.2.1 Fine-Grained Asset Reassignment 

To supplement the coarse-grain reassignment sets iterated previously, a fine-grained 

reassignment strategy, originally reported in [10], is also utilized. Fine-grained reassignment 

increases the matching percentage between an unknown soft IP and the Functionality GRL entries. 

In the case of asset reassignment, only the assets of Functionality GRL entries undergo 

reassignment. Table 7 shows all categories in Asset Set Three and their respective assets. Unknown 

soft IPs will generally have the most recently available assets assigned to them while entries within 

the Functionality GRL may not contain up-to-date asset assignments, causing biases that could 

negatively impact matching results. This negative effect is addressed by this reassignment strategy. 

Because this reassignment strategy is fine-grained, many assets are not reassigned to a particular 

category and remain as they are. 

Table 7. Reworked Asset Set Three 

Category Assets 

Data._any Data.computational 

Data.memory  

Data.communication  

Data.peripheral  

Data.encryption Data: decryption, _hash, key 

Data.encoding Data.decoding 

Data.address  

Data.sensitive  
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Table 7. Reworked Asset Set Three (Cont.) 

Category Assets 

Data.critical  

Timing.clock Timing.subsystem_clock 

Timing.clock_control Timing.subsystem_clock_control 

Timing.system_timing Timing.subsystem_timing 

Timing.status Timing: ready, done, hold 

Timing.busy Timing: wait, standby 

Timing.count  

SystemControl._set  

SystemControl.reset  

SystemControl.execute  

SystemControl.read SystemControl: write, load 

SystemControl.select SystemControl.enable 

SystemControl.shift  

SystemControl.interrupt  

SystemControl.mode  

SystemControl.acknowledge  

SystemControl.handshaking  

SystemControl.dataflow  

SystemControl.flag  

SystemControl.request  

SystemControl.test_mode_select 

Data: test_in, test_out 

Timing.test_clock, 

SystemControl.test_reset 

SpecificSystemControl.peripheral_control  

SpecificSystemControl.communication_control 

SpecificSystemControl: 

communication_protocol, 

communication_status 

SpecificSystemControl.bus_control  

SpecificSystemControl.duty_cycle SpecificSystemControl.phase 

SpecificSystemControl.exception_handling SpecificSystemControl.error_handling 

InstructionSet.instruction  

InstructionSet.operand  

InstructionSet.operation_type InstructionSet.data_op 

InstructionSet.source InstructionSet: destination, branch, offset 

InstructionSet.program_counter InstructionSet.program_counter_op 

InstructionSet.memory_op SpecificSystemControl.memory_control 
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Table 7. Reworked Asset Set Three (Cont.) 

Category Assets 

InstructionSet.interrupt_op SpecificSystemControl.interrupt_control 

InstructionSet.priority  

InstructionSet.availability  

InstructionSet.pipeline_clear InstructionSet.pipeline_lock 

Parameter.configuration Parameter.initialization 

Parameter.frequency Parameter.phase 

Parameter.timing  

Parameter.data_width  

Parameter.generate_control  

Parameter.enable  

MiscellaneousAsset.component  

MiscellaneousAsset.unknown  

MiscellaneousAsset.unused  

It is necessary to establish a metric for assets needing reassignment. The process of using 

asset reassignment strategies can be seen in Figure 3. For this metric, the same characteristic from 

both the Functionality GRL and unknown IP is used. First, only asset sets belonging to one 

characteristic are considered, and those characteristics must have external assets. Internal assets 

are disregarded because a significant portion of them are automatically assigned 

Figure 3: Reassignment Process Overview 
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during the parsing phase of the process. Next, all Functionality GRL entries are iterated over, 

receiving asset sets from the same characteristic as the unknown soft IP. These assets from the 

Functionality GRL are compared against the unknown IP’s assets, and only the Functionality GRL 

entry’s assets are reassigned because the unknown IP features up-to-date asset assignments. 

Therefore, only asset sets within the same characteristic are reassigned. In the event both designs 

have a similar and more applicable asset, frequency analysis is employed to determine whether the 

original or similar assets are the better fit. 

3.5.3 Statistical Matching 

Statistical matching techniques from [10] are employed to calculate the matching 

percentages used in Sections 3.5.1 and 3.5.2. However, these techniques have been modified, and 

their usages are different. In general, within the overall percentage match calculation, a new 

approach of dynamic weighting is employed. 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 % 𝑀𝑎𝑡𝑐ℎ =
∑ % 𝑀𝑎𝑡𝑐ℎ𝑖

𝑁
𝑖=𝐴

𝑁
 

Equation 2: Percent Match Equation with Dynamic Weighting 

To implement this dynamic weighting, Equation 2 is used. In this equation, the 

characteristics used are denoted from 𝐴 to 𝑁. For the dynamic weighting approach, a characteristic 

is ignored to increase matching percentage if neither design has the characteristic. This ensures the 

yielded matching percentage is always on a 100% scale rather than being artificially lowered if 

characteristics are not present. Determining weight for each characteristic leverages the same 

calculation used in [10] and is seen in Equation 3. 
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𝑃(𝐴𝑠𝑠𝑒𝑡) =
∑ 𝐴𝑠𝑠𝑒𝑡 ∈ 𝐸𝑛𝑡𝑟𝑦𝑖

𝑛
𝑖=1

𝑛
 

Equation 3: Asset Probability Calculation from [10] 

Equation 3 is used to determine the weight of any characteristics relevant to dynamic 

weighting. In this case, 𝑛 is the number of GRL entries, and the summation is incremented by 1 

for each GRL entry that contains the asset. This sum is then divided by the number of GRL entries 

to yield the probability of a GRL entry contains the asset. After calculating the probability of each 

asset, the weights of relevant assets are calculated. 

𝑊𝐴𝑠𝑠𝑒𝑡 = 1 − 𝑃(𝐴𝑠𝑠𝑒𝑡) 

Equation 4: Asset Weight Calculation from [10] 

 The weight of an asset is determined by the probability that it will not be contained in a 

GRL entry and its calculation can be seen in Equation 4. An uncommon asset will have a high 

weight because it is more uniquely identifying while a common asset will have a low weight since 

many GRL entries have it, making the common asset a less unique identifier. After the calculation 

of asset weights and probabilities, it is possible to leverage the results of these calculations to 

determine average asset weight. 

𝐴𝑣𝑔 𝑊𝐴𝑠𝑠𝑒𝑡 =
∑ 𝑊𝑀𝑎𝑡𝑐ℎ𝑒𝑑𝐴𝑠𝑠𝑒𝑡𝑖

𝑛
𝑖=1

𝑁
 

Equation 5: Average Asset Weight Calculation from [10] 

 In Equation 5, the average weight of a particular asset is equal to the sum of all asset 

weights in a matched characteristic, and this sum is divided by 𝑁, the total number of matched 

assets. If an asset has a higher weight than other assets, it is less common in the GRL and more 
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identifying than other assets, making high-weight assets more important for matching purposes. 

These results are used to calculate the final characteristic weight in Equation 6. 

𝑊𝐶ℎ𝑎𝑟 =
𝐶ℎ𝑎𝑟𝐴𝑣𝑔𝑊𝐴𝑠𝑠𝑒𝑡

∑ 𝑖𝐴𝑣𝑔𝑊𝐴𝑠𝑠𝑒𝑡
𝑁
𝑖=𝐴

∗ 100 

Equation 6: Characteristic Weight Calculation from [10] 

 For this equation, the weight of a characteristic is equal to the average asset weight of 

characteristic 𝐶ℎ𝑎𝑟 divided by the summation of the average asset weight of all characteristics. In 

this case, 𝑖 iterates through the dynamically-weighted characteristics relevant to the entries from 

𝐴 to 𝑁. Additionally, this quotient is multiplied by 100 to convert it into a percent contribution of 

each 𝐶ℎ𝑎𝑟 to the total average asset weight from all dynamically weighted characteristics. To 

optimize the efficiency of Equations 3, 4, 5, and 6, asset frequency data is precalculated and stored 

with each GRL entry. This can be seen in the asset_frequency_data key in the GRL format 

example in Figure 2. By doing the calculation in advance, it is no longer necessary to determine 

asset probabilities and weights for all GRL entries in an iterative manner. 

3.5.4 Revised Matching Process 

The combination of Champion GRL Matching, FGRLM, and Statistical Matching as the 

overall matching process has been revised to allow for improved matching. After selecting a GRL 

entry to match against, the first step in calculating a design match is to find all unkonwn asset sets 
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with a 100% match to GRL asset sets within a given characteristic and add them to the final match 

data. Match data is represented as a dictionary where the first-level mapping is each asset 

Figure 4. Asset Set Matching Overview 

characteristic. Within each characteristic, another level of the dictionary relates a signal’s name to 

its best GRL match along with the number of sets from that match. Here, the number of sets refers 

to the bit-width of the signal such that there is one instance of a given asset set for each bit of a 

signal. All bit-level calculations are done at the parsing stage. After removing all 100% match data, 

a check is performed to see if all asset sets have been matched between the two designs. If match 

data remains, then best-fit matching is performed on the remaining asset sets. This is done by 

iterating through all unmatched GRL asset sets within the same characteristic. Each GRL asset set 

is matched against all unknown asset sets within the same characteristic, with its best match being 

initialized to the highest-matching unknown characteristic. After setting this match, all other GRL 

asset sets are checked to ensure the unknown asset set does not match more highly than the current 

best match. In the event that another GRL asset set matches better to the unknown asset set in 

question, then the current GRL asset set has its best match changed to the next highest match and 

the verification process starts again. If a GRL asset set has the same percentage match as the current 

best match, the number of asset sets is checked and the match that is closer to this number is chosen 

instead. In the event that all unknown asset sets have a higher match with other GRL asset sets, 
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the GRL asset set is temporarily skipped. Finally, once a best match is found, it is added to the 

best match data and removed from the matched assets sets. Then, the remaining unmatched data 

is updated, and this process is continued for the next GRL asset set. This process of removing 

matches from unmatched data is detailed in Figure 4. Any characteristic containing asset sets in 

one design but not in the other is given a 0% match and added to the final match data. 

Throughought the entire process, characteristic matching data is cached to avoid unnecessary 

recalculations and to maintain match data after each asset set match is performed.  
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4 RESULTS AND ANALYSIS 

When comparing the original and new matching processes, it is important to highlight the 

differences in matching functionalities as well as GRL differences addressed in Section 3.3. 

Notably, the updated GRL is significantly larger and includes bias towards clean designs. Both 

Functionality GRLs do not contain an even distribution of entries across all functionalities and 

may lead to discrepancies with functionalities such as clock_generation having no entries at the 

time of testing. These issues and others are explained in the following subsections. All 

functionalities provided in the following tables regarding the new matching process are clean, 

Trojan-free functionalities unless otherwise specified. The matching percentage data shown for 

each matching process is calculated from different metrics and is not directly comparable. 

4.1 BUS INTERFACE 

The bus interface design is composed of a microcontroller containing ROM, SPRAM, LED 

outputs, and a UART communication module. This is a significantly large design and includes 

several hundred component instances. External assets are assigned to the primary port signals of 

each component as well as the top Bus_Interface_Top module. In the original matching process, it 

was not possible for asset filtering to fully define signals to subcomponents because each unique 

subcomponent was expressed as a single instance instead of multiple. For instance, if there were 

100 instantiations of an SPRAM module, it only considered one of them. The asset filtering step 

has been improved in the new matching process because the filtering is fully expressed throughout 

all subcomponents and their instances, thereby offering improved results. The percentages in Table 

8 below differ from the baseline results in [10] because a newer bus interface design was utilized. 
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Table 8. Bus Interface Matching Results 

 Original Matching Process New Matching Process 

Component Functionality Match Functionality Match 

Bus_Interface_Top COMMUNICATION 15.0% control_unit 8.4% 

osch COMPUTATIONAL 28.0% computational 11.3% 

PLL_Clk COMPUTATIONAL 12.0% datapath 8.3% 

vlo COMPUTATIONAL 54.0% computational 12.5% 

ehxpllj COMPUTATIONAL 24.0% control_unit 19.4% 

Bus_Master COMMUNICATION 44.0% memory 16.7% 

SPRAM COMMUNICATION 39.0% memory 19.9% 

inv COMMUNICATION 13.0% memory 19.9% 

rom16x1a COMMUNICATION 13.0% memory 40.6% 

vhi COMMUNICATION 9.0% memory 4.0% 

fd1p3dx COMMUNICATION 27.0% memory 30.3% 

mux321 COMMUNICATION 20.0% datapath 19.1% 

spr16x4c COMMUNICATION 32.0% memory 18.6% 

RS232_Usr_Int COMMUNICATION 44.0% communication 12.2% 

STD_FIFO COMMUNICATION 41.0% memory 27.9% 

Bus_Int COMMUNICATION 41.0% datapath 24.2% 

Std_Counter COMMUNICATION 29.0% datapath 23.3% 

LED_Ctrl COMMUNICATION 35.0% datapath 10.9% 

PWM_16b COMMUNICATION 33.0% debugging 14.7% 

Regarding the original matching process results, almost all components are categorized as 

COMMUNICATION. This can be attributed to asset filtering adding many assets to each signal in 

large designs, making classification more difficult with the increased volume of information. 

However, the new matching process fully expresses all subcomponents. In the case of Bus_Master, 

there are several hundred memory-related components which leads to most functionalities being 

expressed as memory despite not necessarily being memory. The full expression of all 

subcomponents has caused memory asset saturation due to the number of memory modules utilized 

in the bus interface design. This will need to be addressed in the future but shows improvements 

in the representation of designs in the new matching process. Additionally, a larger number of 
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functionalities are shown during matching instead of having an abnormally high number of 

COMMUNICATION functionalities assigned. 

4.2 PS/2 KEYBOARD CONTROLLER 

The PS/2 Keyboard Controller is IP consisting of a top-level Ps2_keyboard component and 

two lower-level debounce components, and it facilitates communication between a computer and 

a user’s keyboard. The results of the old and new matching processes on the unknown PS/2 

Keyboard Controller IP are presented in Table 9. This data is slightly different than the baseline 

data in [10] because previous data does not contain matching percentages for the debounce 

subcomponent. 

Table 9. PS/2 Keyboard Controller Matching Results 

 Original Matching Process New Matching Process 

Component Functionality Match Functionality Match 

Ps2_keyboard PERIPHERAL 100.0% control_unit 21.7% 

debounce COMMUNICATION 63.0% communication 9.5% 

Above, Ps2_keyboard was labeled PERPHERAL functionality by the original matching 

process and control_unit functionality by the new matching process. Of these two, control_unit is 

more indicative of the true functionality of the PS/2 Keyboard Controller. Both matching processes 

assign communication functionality to the debounce component; however, it would be more 

properly identified by the peripheral functionality. This discrepancy is caused by a lack of 

peripheral functionality components in both the former and updated GRLs. 

4.3 LCD16×2 DISPLAY CONTROLLER 

The LCD16×2 Display Controller is a single component consisting of a large vector input 

for each line of the two-line LCD displays used on some Xilinx evaluation boards. It features two 

128-bit vector inputs where data inputs correspond to one of the two lines of the LCD display. The 
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matching results for an unknown LCD16×2 Display Controller are shown in Table 10. For this 

example, the resulting functionality match for the new and original matching processes are similar. 

Table 10. LCD16×2 Display Controller Matching Results 

 Original Matching Process New Matching Process 

Component Functionality Match Functionality Match 

lcd16x2 PERIPHERAL 75.0% peripheral 20.2% 

The original matching process assigns a PERIPHERAL functionality with a 75% match 

while the new matching process also assigns a peripheral functionality but with a smaller 20.2% 

match. Since both matching processes arrive at the proper functionality, both are correct for this 

design. However, the new matching process yields a smaller percent match due to the total match 

being distributed across several subcomponents. 

4.4 BASIC RSA-T200 

The Basic RSA-T200 design is a smaller design consisting of a denial-of-service Trojan in 

the RSACypher component. This Trojan disables encoding at the transmitter and decoding at the 

receiver. In Table 11 below, the results from identifying the functionalities of the unknown Basic 

RSA-T200 IP are exhibited for the new matching process alongside data from [10] for comparison. 

Table 11. Basic RSA-T200 

 Data From [10] New Matching Process 

Component Functionality Match Functionality Match 

RSACypher TROJAN_ENCRYPTION_UNIT 83.2% communication 17.0% 

Modmult COMPUTATIONAL 100.0% computational 18.6% 

 The original matching process assigned TROJAN_ENCRYPTION_UNIT to RSACypher 

and COMPUTATIONAL to Modmult. The new matching process assigns communication to 

RSACypher and computational to Modmult. An explanation for the discrepancy in RSACypher 

identification is the limited number of Trojan designs in the Functionality GRL which leads to a 
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lack of similar designs for matching. For Modmult, both matching processes arrive at equivalent 

functionalities, but the new matching process has a reduced match percentage due to 

subcomponent matching.  
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5 CONCLUSION AND FUTURE WORK 

Rebuilding the codebase of the Structural Checking Tool and standardizing several aspects 

of the matching and parsing processes have resulted in a more organized tool which allows for 

streamlined development and increased matching accuracy. The matching and parsing processes 

are more lightweight and optimized, focusing on current statistical analysis and Champion and 

Functionality GRL Matching. Additionally, the user experience of the Structural Checking Tool 

has been improved, and the time required to prepare HDL code for parsing within the tool has been 

significantly reduced. Issues pertaining to parseable VHDL syntax have also been addressed, 

allowing more designs to be usable out-of-the-box without necessitating changes. These 

improvements should allow the Functionality GRL to grow at a faster rate which will improve 

matching as a result. 

While the new structure of the tool is more modular and easier to expand, there are still 

many opportunities for improvement. The size of the Functionality GRL will always need to 

increase, and there is an ongoing effort to find the most representative designs for each 

functionality to use in the Champion GRL. However, the matching processes will need further 

optimization to improve execution performance as GRL size increases. Additionally, there is room 

to expand the parsing functionality to encompass other HDL languages and to more accurately 

express the structure of designs with improved syntax coverage.  
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