
University of Arkansas, Fayetteville University of Arkansas, Fayetteville

ScholarWorks@UARK ScholarWorks@UARK

Graduate Theses and Dissertations

5-2022

Structural Checking Tool Restructure and Matching Improvements Structural Checking Tool Restructure and Matching Improvements

Derek Taylor
University of Arkansas, Fayetteville

Follow this and additional works at: https://scholarworks.uark.edu/etd

 Part of the Computer and Systems Architecture Commons, Hardware Systems Commons, and the

Systems and Communications Commons

Citation Citation
Taylor, D. (2022). Structural Checking Tool Restructure and Matching Improvements. Graduate Theses
and Dissertations Retrieved from https://scholarworks.uark.edu/etd/4494

This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion
in Graduate Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more
information, please contact scholar@uark.edu, uarepos@uark.edu.

https://scholarworks.uark.edu/
https://scholarworks.uark.edu/etd
https://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F4494&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/259?utm_source=scholarworks.uark.edu%2Fetd%2F4494&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/263?utm_source=scholarworks.uark.edu%2Fetd%2F4494&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/276?utm_source=scholarworks.uark.edu%2Fetd%2F4494&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/etd/4494?utm_source=scholarworks.uark.edu%2Fetd%2F4494&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu,%20uarepos@uark.edu

Structural Checking Tool Restructure and Matching Improvements

A thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science in Computer Science

by

Derek Taylor

University of Arkansas

Bachelor of Science in Computer Science, 2020

May 2022

University of Arkansas

This thesis is approved for recommendation to the Graduate Council.

Jia Di, Ph.D.

Thesis Director

Alexander Nelson, Ph.D. Miaoqing Huang, Ph.D.

Committee Member Committee Member

ABSTRACT

With the rising complexity and size of hardware designs, saving development time and

cost by employing third-party intellectual property (IP) into various first-party designs has become

a necessity. However, using third-party IPs introduces the risk of adding malicious behavior to the

design, including hardware Trojans. Different from software Trojan detection, the detection of

hardware Trojans in an efficient and cost-effective manner is an ongoing area of study and has

significant complexities depending on the development stage where Trojan detection is leveraged.

Therefore, this thesis research proposes improvements to various components of the soft IP

analysis methodology utilized by the Structural Checking Tool. The Structural Checking Tool

analyzes the register-transfer level (RTL) code of IPs to determine their functionalities and to

detect and identify hardware Trojans inserted. The Structural Checking process entails parsing a

design to yield a structural representation and assigning assets that encompass 12 different

characteristics to the primary ports and internal signals. With coarse-grained asset reassignment

based on external and internal signal connections, matching can be performed against trusted IPs

to classify the functionality of an unknown soft IP. Further analysis is done using a Golden

Reference Library (GRL) containing information about known Trojan-free and Trojan-infested

designs and serves as a vital component for unknown soft IP comparison. Following functional

identification, the unknown soft IP is run through a fine-grained reassignment strategy to ensure

usage of up-to-date GRL assets, and then the matching process is used to determine whether said

IP is Trojan-infested or Trojan-free. This necessitates a large GRL while maintaining a balance of

computational resources and high accuracy to ensure effective matching.

CONTENTS

1 Introduction ... 1

2 Background .. 5

2.1 Assets ... 5

2.1.1 Internal Assets ... 5

2.1.2 External Assets.. 6

2.1.3 Asset Filtering ... 7

2.2 Golden Reference Matching... 7

2.2.1 Basic Matching ... 7

2.2.2 Partial Matching .. 8

2.2.3 Asset Reassignment .. 8

2.2.4 Statistical Matching .. 9

2.2.5 Golden Reference Library... 9

2.2.6 Champion Golden Reference Library ... 9

2.2.7 Functionality Golden Reference Library .. 10

3 Methodology and Implementation... 12

3.1 HDL RTL Parsing .. 12

3.1.1 Composed Graph Builder ... 12

3.1.2 Component Tree Builder... 13

3.1.3 Signal Graph Builder .. 13

3.2 Graph Representation ... 14

3.3 Golden Reference Library File Format .. 15

3.4 Reorganizing Functionalities.. 16

3.5 Golden Reference Matching... 18

3.5.1 Champion Golden Reference Library Matching ... 20

3.5.2 Functionality Golden Reference Library Matching .. 23

3.5.3 Statistical Matching .. 26

3.5.4 Revised Matching Process .. 29

4 Results and Analysis .. 34

4.1 Bus Interface .. 34

4.2 PS/2 Keyboard Controller .. 36

4.3 LCD16×2 Display Controller ... 36

4.4 Basic RSA-T200 .. 37

5 Conclusion and Future Work ... 39

6 References ... 40

1

1 INTRODUCTION

As use of integrated circuits (ICs) becomes more pervasive in all areas of industry and

government, it is critical to develop hardware in a timely, cost-effective manner. Stemming from

this, third-party hardware intellectual property (IP) is needed to reduce development cost and time

due to it being impractical to design every component of an IC in house. These third-party IPs may

not always be trustworthy and may comprise hardware Trojans. A hardware Trojan is defined as

malicious, intentional modifications to a circuit to perform behavior such as leaking sensitive data,

performing a denial-of-service attack, or causing other undesired behaviors. If even a single IP

component of an IC is compromised, the integrity of the entire IC is compromised as well.

 Currently, there are many approaches proposed for detecting hardware Trojans. These can

typically be distinguished by when they are used for Trojan detection. Techniques may target

hardware Trojans after production of an IP, after synthesis of an IP, or before synthesis of an IP.

For post-production IPs, detection methods focus on side-channel analysis and may use a separate

chip to detect hardware Trojans from the resultant IP. One application of side-channel analysis is

to examine the power metrics of an IP to detect whether it is Trojan-infested. This particular

approach is accomplished using a model containing Trojan-free IP power metrics for comparison

[1]. Using this technique, the authors are able to differentiate between Trojan-free and Trojan-

infested ICs with 100% accuracy. However, this does have drawbacks incurred by requiring a

reference library with a large amount of data to cover a variety of ICs. Another method of hardware

Trojan detection using side-channel analysis is presented in [2]. In this variant of side-channel

analysis, no golden models are needed, and a support vector machine (SVM) is used to determine

the presence of a hardware Trojan. This approach sacrifices accuracy but retains a Trojan detection

rate of up to 93% and a classification accuracy of 91.85%. Side channel analysis can also be

2

performed using current draw. The authors of [2] define a current-related metric called

“consistency,” and experiments show the consistency measurement is markedly different in a

Trojan-infested IC, allowing their detection algorithm to effectively identify ICs infested with

Trojans. With the aforementioned techniques requiring a post-production IP, significant cost is

incurred in performing Trojan detection, leading to tradeoffs between accuracy, monetary costs,

and the time taken to get through analysis.

 Another option for Trojan detection is to perform analysis post-synthesis. After the

synthesis of an IP, various structures such as netlists and other descriptors can be leveraged for

hardware Trojan detection. The authors in [4] conducted post-synthesis examination using netlists.

An SVM is used to analyze a netlist to detect three types of hardware Trojans. However, the

proposed method was not tested on Trojans without trigger circuits. Additionally, the paper

demonstrated a true negative rate of 70%. A true negative refers to successfully ignoring

acceptable behavior. Another example of netlist usage is described in [5], where the authors used

netlists in conjunction with a neural network to detect hardware Trojans within a gate-level netlist.

Results show an average true positive rate of 72.9% with an average true negative rate of 90%.

The true positive rate refers to when hardware Trojans are correctly categorized by the method.

The authors of [6] posed several techniques and tools utilizing post-synthesis methods based on

Boolean function analysis as well as graph neighborhood analysis to perform gate-level Trojan

detection. These two methods are combined into their ANGEL (Analyzing the Neighborhood of

Graphs to Expose Leakers) analysis technique to yield a false positive rate of between 30 to 40

percent. The authors note the challenge of finding a proper threshold value to use with the ANGEL

analysis technique without an automated way to determine such a value. Regarding these post-

synthesis detection processes, a lesser penalty of speed is taken for some penalty to accuracy.

3

Evaluated against the other two sets of methods, this method acts as a middle ground between

maximizing either speed or accuracy.

 There are pre-synthesis methods to analyze register-transfer-level (RTL) code for hardware

Trojans and to convert RTL code into other representations to aid in hardware Trojan detection.

An approach described in [7] used RTL code to generate and analyze electromagnetic signatures

to detect hardware Trojan types with an accuracy nearing 83%. However, this method may face

issues with clock variance due to the hardware Trojan detection method operating within the

frequency domain of electromagnetic side-channel radiation. The authors in [8] detailed a

technique utilizing machine learning to detect hardware Trojans in RTL code. According to the

authors, all Trojan benchmarks were completed without false positive detection on a non-Trojan

benchmark. These Trojan benchmarks consisted of nine different Trojans contained across nine

variants of RS232 RTL code as well as a normal RS232 with no Trojans. While their results were

promising, the method employed relies on other processes to aid it at different abstraction levels.

 Similar to the procedures used on soft IPs above, Golden Reference Matching methods

described in [9] and [10] focus entirely on RTL code analysis rather than netlists, intermediate

representations, or post-production IPs. The techniques in [10] build upon those described in [9]

to form the overall matching system. Golden Reference Matching operates by analyzing RTL code

to extract any component and its primary ports as well as internal signals. These ports and signals

are then labeled with assets to describe their functionality in the IP and compared against a Golden

Reference Library (GRL). The GRL is a collection of both Trojan-free and Trojan-infested entries

with pre-assigned functionalities. The unknown IP being matched against the GRL is compared

with each GRL entry to evaluate the entries it most closely resembles. If the unknown IP’s best

4

match is a Trojan-free entry, then it is likely to be Trojan-free. Similarly, if the IP best matches a

Trojan-infested entry, then the IP has a higher likelihood of containing a Trojan.

 Building upon the methods described in [9], the first step of the matching process in [10]

is to utilize a new concept called the Champion GRL. The Champion GRL consists of manually

selected designs that are considered to be the most representative of their associated functionality.

This means there is a single design associated with each functionality. These champion entries are

used to make an initial match to assign a functionality to the unknown soft IP. Included in the

Champion GRL are 10 assets used to increase functional matching percentage for the unknown IP.

Then, the unknown IP must be compared against the Functionality GRL entries to determine the

functionality it best matches. This vastly decreases computational time as the overall GRL size

increases since only a single functionality match is required using this two-step process.

 This thesis describes accomplished work and changes added to the preceding version of

the matching algorithm along with changes to the parsing stage and GRL format. Section 2

explains background information concerning the tool such as internal and external assets, structural

checking, and the Golden Reference Matching process and accompanying GRL. Section 3

proposes additions to the existing tool and subsequent implementation. This includes updates to

Hardware Description Language (HDL) RTL parsing, HDL RTL internal representation, GRL file

format, and optimizations made to the Golden Reference Matching process. Section 4 validates

the efficacy of these changes and demonstrates results and improvements, including increased

matching effectiveness. Finally, Section 5 details future work and potential changes with the new

Structural Checking Tool configuration.

5

2 BACKGROUND

2.1 ASSETS

To help describe functionality and label primary ports and internal signals, assets are

assigned to signals. These labels are crucial to the Golden Reference Matching process, explained

in Section 2.2, and describe the purpose and functionality of the signal in the unknown IP. Multiple

assets may be assigned to a signal depending on whether more than one asset is needed to capture

a signal’s functionality. Within the Structural Checking tool, internal and external assets are the

fundamental asset categories. Internal assets can further be defined as automatically assigned or

manually assigned.

2.1.1 Internal Assets

The authors in [11] and [12] describe the original work detailing initial definition and use

of internal assets. Internal assets primarily describe the workings of internal signals but may also

be applied to primary ports signals. Internal assets can be further distinguished as manually

assignable and automatically assigned assets. Automatically assigned internal assets are used to

describe different HDL code structures and the signals within them. These HDL structures include

process statements, conditional expressions, concurrent expressions, sequential expressions,

procedure statements, functions, generate statements, and constant values. Each of these types of

internal assets are called automatically assigned since they are not manually assigned by a user

and are instead assigned during the parsing step of the Structural Checking Tool. Currently, the

manually assignable internal assets remain unchanged from the aforementioned original works.

6

2.1.2 External Assets

The original work in [11] and [12] also details the basic external asset system and initial

external asset definitions. These external assets are divided into Data, Timing, System Control,

Specific System Control, and Miscellaneous. These categories as well as several example assets

are show in Table 1. External assets are assigned to primary ports and internal signals to describe

the use of signals in an unknown IP.

Table 1. External Asset Categories and Example Assets

External Asset Category Example Assets

Data DATA_COMPUTATIONAL, DATA_MEMORY,

DATA_PERIPHERAL

Timing STATUS, SYSTEM_TIMING, COUNT

System Control RESET, ENABLE, INSTRUCTION

Specific System Control MEMORY_OP, REGISTER_FILE_CONTROL,

BUS_CONTROL

Miscellaneous CRITICAL, KEY, DUTY_CYCLE

Each category has varying numbers of assets relating to different kinds of signal usages.

The Data category contains assets relating to the transfer of data such as computational data or

memory data. Assets in the Timing category pertain to signals used for anything related to timing

including assets for counters and delays. For System Control, all assets within are related to more

broad control of systems. In contrast to these assets, Specific System Control contains those assets

that are for specific control of systems and typically apply to only one type of system. The final

category, Miscellaneous, is used to hold several assets that do not properly fit into other categories

in addition to a few assets used as default values for various internal usages. Some internal usage

assets from this category include UNUSED and UNKNOWN while other assets like KEY and

REGISTER may be assigned to signals.

7

2.1.3 Asset Filtering

Asset filtering is detailed in [9] and pertains to propagating assets assigned to a signal, all

connected signals, and any ancestors or descendants. With propagation, the tool obtains a better

understanding of the correlation between signals and can detect conflicting asset assignments or

evaluate if a suspicious asset has been propagated through to areas where it should not be used.

External assets assigned to primary circuit inputs propagate through the entire circuit and onto

their descendant primary circuit outputs. Additionally, the reverse is also true, so external assets

assigned to primary circuit outputs propagate backwards to primary inputs.

2.2 GOLDEN REFERENCE MATCHING

The authors of [9] define Golden Reference Matching as the process of matching an

unknown IP by comparing it against a GRL containing a mix of Trojan-free and Trojan-infested

IPs. By conducting this matching process, it is determined whether the unknown IP contains

Trojans. For each entry contained in the GRL, a percentage match is calculated between the entry

and the unknown IP based on measures of asset similarity. Using the highest percentage match,

Golden Reference Matching yields a probabilistic result based on the general functionality of the

unknown IP as well as indicating presence or absence of Trojans.

2.2.1 Basic Matching

Basic matching stems from calculating a percentage match of the asset characteristics

between the asset sets of an unknown soft IP and GRL entries. By comparing individual assets

within an asset set, a percentage match for the given characteristic can be calculated. Averaging

the percentage match of all characteristics allows a determination of the overall percent match for

a particular characteristic. After comparing all characteristics, the six percentage matches are

8

averaged to surmise an overall match for the unknown soft IP. As an exception, there are cases

where an unknown IP or a GRL entry may not have assets in each characteristic. In this instance,

the empty characteristics are not included in the overall percentage match calculation.

2.2.2 Partial Matching

Originally introduced to the Structural Checking Tool by the authors of [9], partial

matching is utilized when assets are not perfectly identical but share a similar purpose within a

soft IP. Furthermore, basic matching provides a partial match if an asset contained in the unknown

IP or a GRL entry is a generic asset while the other is specific. When this applies, a 50% match is

assigned to the two assets. One possible example of a 50% match between related assets could be

a match between DATA_SENSITIVE and DATA_MEMORY. This happens as a result of

DATA_MEMORY being a less specific form of DATA_SENSITIVE.

2.2.3 Asset Reassignment

Introduced in [14], asset reassignment is the process by which a specific asset is changed

into a more general asset. The idea of asset reassignment originates from the previous subsection

when a more specific asset may be matched to a generic counterpart. If two signals are theoretically

the same but differ due to changes in assets introduced over time, a generic asset can be given to

the signals instead. Given that these two assets are in the same category when comparing a specific

and general asset, the specific asset is reassigned to the general asset to increase the matching

percentage. Examples of this include the DATA_COMPUTATIONAL and DATA_SENSITIVE

assets. Both of these assets are data category assets. In this case, DATA_COMPUTATIONAL can

be reassigned to DATA_SENSITIVE to increase the matching percentage from 50% to 100%.

9

2.2.4 Statistical Matching

Also presented by the authors of [14], statistical matching adds various statistical formula

to aid the matching process. Frequently used assets included within a single characteristic of many

GRL entries should be treated as having a lower weight compared to assets found in a small subset

of GRL entries because the less common assets contribute more to the identifiability of a GRL

entry. Using this technique, an average asset weight can be evaluated based on the sum of all

matched asset weights divided by the total number of matched assets of a particular characteristic.

𝑊𝑒𝑖𝑔ℎ𝑡𝑐ℎ𝑎𝑟 =
𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑐ℎ𝑎𝑟 ∗ 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝐴𝑠𝑠𝑒𝑡𝑊𝑒𝑖𝑔ℎ𝑡

∑ 𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑖 ∗ 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝐴𝑠𝑠𝑒𝑡𝑊𝑒𝑖𝑔ℎ𝑡𝐹
𝑖=𝐴

∗ 100

Equation 1. Characteristic Weight Calculation [10]

Equation 1 shows the average asset weight calculation of a particular characteristic. After

determining the average asset weight for a single characteristic, it is divided by the sum of all

characteristics’ average asset weights and converted into a percentage based upon the sum of all

six characteristics’ average asset weight in the GRL.

2.2.5 Golden Reference Library

The GRL is a collection of soft IPs retrieved from both Trust-Hub [15, 16] and OpenCores

[17]. A general functionality is associated with each design file to label the overall function of the

soft IP, and the tool also generates an asset pattern for the known IP. Entries are manually labeled

with a functionality describing whether they are Trojan-free or Trojan-infested. These designs are

well-documented, so there is confidence concerning the design functionality.

2.2.6 Champion Golden Reference Library

Introduced by the authors of [10] to reduce the computational complexity of establishing

the functionality of an unknown IP, each GRL entry is manually inspected to copy specific entries

10

into a separate GRL. Both the Champion Golden Reference Library and the Functionality Golden

Reference Library discussed further in Section 2.2.7 supersede the Golden Reference Library

discussed in Section 2.2.5. Any entry containing too few asset sets or insufficient asset set variety

will introduce bias during the asset reassignment process. To remedy this, the manual inspection

process is employed, so one GRL entry is chosen as the most representative of a specific

functionality based on the analysis of its asset sets, asset variety, and asset makeup.

2.2.6.1 Coarse-Grained Asset Reassignment

Due to entry limitations and decreased entry count of the Champion GRL, a coarse-grained

asset reassignment approach is necessary. Since a fine-grained comparison of the unknown IP and

the Champion GRL entries is implemented, the top Champion GRL matches will have a lower

overall matching percentage with the unknown IP when they are compared against a design with

identical functionality. To address this, matching with the Champion GRL is aided by usage of

coarse-grained matching similar to asset reassignment but only applied to external characteristics.

2.2.7 Functionality Golden Reference Library

To supplement the Champion GRL, a Functionality GRL is introduced by the authors of

[10]. The introduction of the Champion GRL obsoleted the original GRL and its concepts.

Therefore, the Functionality GRL is partitioned according to functionality, so the resource cost of

matching is reduced by only matching to a specific category established by the Champion GRL

Matching process. Consequently, the GRL process breaks down into a two-step process where an

unknown IP will first have its functionality determined by its Champion GRL match and is then

further compared against the Functionality GRL entries pertaining to the chosen functionality.

11

2.2.7.1 Fine-Grained Asset Reassignment

For GRL entry matching, fine-grained asset reassignment was added to increase the

matching percentage between an unknown soft IP and the Functionality GRL entries. In this type

of asset reassignment, only Functionality GRL designs are assigned. Any unknown IP used will

have its most recently assigned assets while the Functionality GRL entries may not be as up-to-

date, negatively affecting matching results. During asset reassignment using a specific

characteristic from the Functionality GRL, the same characteristic of the unknown IP is also used.

Initially, all asset sets from a single characteristic are considered alongside external characteristics

since most internal assets are automatically assigned. Next, each Functionality GRL entry receives

the asset sets from the same characteristic as the unknown IP, and assets from the Functionality

GRL are compared against those of the unknown IP. Since the most recent and accurate assets are

assigned to the unknown IP, this reassignment only happens for assets within the Functionality

GRL. If two particular assets from the unknown IP and Functionality GRL entry are the same, then

asset reassignment is unnecessary.

12

3 METHODOLOGY AND IMPLEMENTATION

While the matching process described in Section 2 is a starting point, there are further

issues to be addressed. These include optimizing the content of asset sets, defining new assets to

help describe functionalities, and improving computational efficiency of the matching and related

processes. In rebuilding several sections of the Structural Checking Tool, the parser was modified

to use the hdlConvertor Python library. This allows for conversion of RTL code into an abstract

syntax tree (AST). Additionally, the internal representation of parsed RTL code from a soft IP has

been reworked, so each design can be represented as a directed graph where the direction of node

edges is based on driving and driven signals within the RTL code. As a byproduct of directed

graph representation, other processes, like asset propagation, are made simpler by being tied to

ancestor and descendant nodes. These processes can also utilize the directed nature of the graph to

further convey the logic flow of the IP from the primary inputs to the primary outputs.

Complementing these changes, the formatting and information contained within GRL entry files

were upgraded to effectively detail GRL entries.

3.1 HDL RTL PARSING

To begin the process of converting RTL code into a directed graph representation,

hdlConvertor is employed to translate the RTL code into a descriptive AST. In addition to the AST

representation, hdlConvertor also supports a larger group of syntax of HDL languages, allowing

improved code coverage. To manipulate the AST provided by hdlConvertor, several builder

classes are utilized to traverse the tree and extract the desired information for directed graph

construction.

13

3.1.1 Composed Graph Builder

The construction of the directed graph begins and ends in this phase of the building process.

The Composed Graph Builder is first given the file path of the top-level HDL file of a soft IP.

Afterwards, the directory of the file is set as the top-level directory (TLD), so all HDL files located

within are considered a design. In this instance, the top-level HDL file contains the top-level

component for a given design. Once the top-level file and TLD are located, the top-level HDL

code is parsed to find the top-level component. After this component is found, regular expressions

are used to reduce computational time in finding declared components within each HDL file in the

TLD. While the Composed Graph Builder iterates over these HDL files, a cache of known

components is built to include component locations. Additionally, a signal graph is created and

cached along with a cache of user-defined packages to contain important definitions used

throughout the design. After the construction of both caches, it is possible to establish all

subcomponents based on the body of the top-level HDL file. To maintain a hierarchy for internal

representation of the IP, a tree structure links components as parent-child relationships using the

Component Tree Builder. Finally, after all caches are built and the component hierarchy is founded

with the Component Tree Builder, the signal graphs built for each component are combined to

form the final representation of the soft IP as a directed graph. The component cache contains a

signal graph for each component to prevent the computationally expensive process of using

hdlConvertor on any given component more than once.

3.1.2 Component Tree Builder

The Component Tree Builder is used to understand the hierarchy and composition of the

overall design based on parent-child relationships between components and subcomponents. This

builder traverses the relevant component HDL files while maintaining a cache of parsed

14

hdlContext objects given by hdlConvertor to avoid redundant parsing. Furthermore, this builder

recursively calls itself for each subcomponent. These calls then branch to all descendant

components until the entire design hierarchy is established. After determining this hierarchy, each

node in the constructed component tree is given an instance designator to allow tracking of

component instantiations. Using this information, functionally-identical components can be

differentiated from one another.

3.1.3 Signal Graph Builder

This builder class is the chief component in constructing the directed graph from the RTL

code. It is used in conjunction with the builders detailed in Sections 3.1.1 and 3.1.2 to achieve

maximal accuracy in a hierarchical manner. The Signal Graph Builder traverses all relevant objects

in the AST and constructs a graph such that each signal is a node, and edges are drawn based on

the driving-driven relationship contained in the HDL code. In addition to serving this purpose, the

Signal Graph Builder automatically assigns relevant internal assets to ensure accurate description

of various HDL statements and signal usage. In every signal graph, statement hierarchies are

defined to ensure conditional driving statements or statements with driving signal lists have their

driving-driven relationships propagated throughout any nested code blocks. For example, an if

statement wrapping a for loop would lead to the interior for loop being driven by the exterior if

statement. This statement hierarchy ensures all connections are formed to show the proper flow of

logic throughout various HDL statement types. In addition to statement representations, HDL

functions and procedures are also parsed. Internally, these functions and procedures are

represented as independent signal graphs and later composed into the signal graphs of their parent

components. When composing a function graph into a component’s signal graph, a unique

15

designator is assigned to function signals to ensure they are uniquely identifiable based on the

number of function calls within the component.

3.2 GRAPH REPRESENTATION

RTL designs are parsed and converted into a directed graph. This graph is used to convey

all connections between signals while highlighting the flow of logic throughout a design.

Understanding the logic flow assists with asset propagation to ancestor and descendant nodes, so

every path through a design can be more accurately described. For the purposes of graph

Figure 1: Example Graph for a 2-Bit Adder

representation, a path through the design entails a connection from a primary input port to a

primary output port that may pass through intermediary internal signals. In addition to helping

with path description, these elaborated logic paths also improve functionality assignment and

matching since every path through the design is properly represented from the expression of all

signal graphs in the top-level component and all subcomponents. Figure 1 shows an example graph

for a 2-bit adder. In this graph, nibble1 and nibble2 are input signals, sum and carry_out are output

signals, and temp is an internal signal. For this adder, temp is driven by both nibble1 and nibble2

while temp drives both sum and carry_out. In addition to the previous points, graph representation

16

may be leveraged in the future to easily identify certain types of Trojans. For example, it could be

used to identify disconnected nodes which point to unwanted or unused logic. It could also allow

tracking of each signal assigned as a clock asset to identify undesirable actors and prevent them

from affecting clock behavior.

3.3 GOLDEN REFERENCE LIBRARY FILE FORMAT

The Golden Reference Library (GRL) was also reformatted while making improvements

to other algorithms related to the matching process. To structure GRL file entries, new GRL files

are formatted to JavaScript Object Notation (JSON) specifications. Figure 2 details a generalized

layout of the new GRL format. The overall design has a primary and secondary functionality

assigned to it as well as a name, creation time, and format version. Additionally, each component

is assigned a name, primary functionality, and secondary functionality. Components contain parent

component and child component data to determine their positions in the design hierarchy. To save

computation time when a GRL entry is read, components also store a copy of their asset frequency

data to detail the asset types appearing within it and its child components. The final asset data

stored is internal and external asset data for input, output, inout, buffer, linkage, and internal signals.

This accounts for all signal types and increases the total number of characteristics to twelve. To

supplement the aforementioned information, all components and subcomponents are fully

expressed in the GRL file instead of featuring only one instance of each component. Using this

method, different functionalities and asset layouts for components are considered instead of

registering only a single functionality. Since GRL files can be large and will need to be stored

long-term, the new GRL format applies standard compression. The compression for GRL files

uses the built-in Python pickle library to create a binary object dump of the entry_data portion of

the GRL file. Next, the binary dump is compressed using the LZMA algorithm and encoded to the

17

A85 format to realize size benefits when encoding binary data. Lastly, the data is decoded to UTF-

8 to maintain file readability and avoid writing binary blobs directly in line with JSON text.

{

 "format_version": ...,

 "design_info": {

 "name": ...,

 "primary_functionality": ...,

 "secondary_functionality": ..., "creation_time": ...

 },

 "entry_data": {

 "components": [

 {

 "name": ...,

 "primary_functionality": ..., "secondary_functionality": ...,

 "parent_component": ..., "child_components": [...],

 "asset_frequency_data": {...},

 "input_signal_asset_data": {...}, "output_signal_asset_data": {...},

 "buffer_signal_asset_data": {...}, "linkage_signal_asset_data": {...},

 "inout_signal_asset_data": {...}, "internal_signal_asset_data": {...}

 },

 ...

]

 }

}

Figure 2. Example Golden Reference Library entry

Because only the entry_data portion of the GRL JSON is compressed, it is possible to view

the overall design summary without decompressing the file. In the case of the GRL file for the

f32c processor, the GRL file size was decreased from approximately 1.28 megabytes to 15

kilobytes for a total decrease in size of approximately 98%. This will allow for more GRL entries

without taking up significantly more disk space. Overall, these changes produce GRL files that

contain more information while improving accuracy and readability.

18

3.4 REORGANIZING FUNCTIONALITIES

To begin matching improvements, the list of functionalities was elaborated upon and

expanded into a set that is more representative of the functionalities that designs may implement.

The prior functionality system organized functionalities into a whitelist and blacklist. Whitelist

functionalities are those without Trojan behavior while blacklist functionalities do exhibit Trojan

behavior. This functional organization is provided below in Table 2.

Table 2. Whitelist and Blacklist Functionalities [10]

Whitelist Functionality Blacklist Functionality

SHIFT_REGISTER TROJAN_ENCRYPTION_UNIT

INTERRUPT_UNIT TROJAN_TRIGGER

COMMUNICATION TROJAN_COMMUNICATION

ENCRYPTION_UNIT TROJAN_SHIFT_REGISTER

COMPUTATIONAL

TIMING

CONTROL_GENERATION

REGISTER_FILE

PERIPHERAL

DECODER_ENCODER

DEBUG_INTERFACE

To revise these functionalities, it is necessary to ensure each functionality describes a

category of IP at a similar level of granularity, so no functionality is more heavily weighted than

others. Additionally, chosen functionalities must accurately describe any IP. The new system of

functionalities is below in Table 3.

19

Table 3. Updated Functionalities

Functionality Has Trojan Equivalent

unassigned No

cannot_determine Yes

processor Yes

hardware_accelerator Yes

memory Yes

datapath Yes

power_management Yes

clock_generation Yes

timing Yes

pwm Yes

cryptography Yes

computational Yes

control_unit Yes

debugging Yes

port Yes

communication Yes

decoder_encoder Yes

library Yes

peripheral Yes

While the updated functionalities no longer categorize blacklist and whitelist functionalities,

each functionality now has a Trojan equivalent of itself to precisely express what kind of

functionality the design shows and whether it exhibits malicious behavior. Furthermore, the larger

number of functionalities helps prevent categories from being too broad in scope, and they more

accurately identify and distinguish designs. The unassigned functionality is the default

functionality used when no other functionality has been assigned. The cannot_determine

functionality’s Trojan and clean variants are used when a currently defined functionality does not

fit, but it is known whether or not the design contains a Trojan. Any processor functionality

components perform operations on an external data source, usually facilitated by an instruction set.

Components designated as hardware_accelerator aid or optimize some other computation. The

memory functionality describes components that store information for immediate or later use. Any

20

components that perform data processing operations or control data flow throughout a design are

described by the datapath functionality. Components labeled as power_management affect power

distribution. In the clock_generation functionality are components that create or drive the clock

signal for distribution throughout a design while the timing functionality applies to components

that configure or process the clock signal generated by a clock_generation component and perform

other timing-related actions. Components that modulate an electrical signal to reduce its average

power belong to the pwm functionality. The cryptography functionality encompasses

cryptographic functions or cryptographic operations performed by components, and the

computational functionality details components that implement arithmetic functions or perform

arithmetic operations. Components that manage the operation of other components or devices fall

into the control_unit functionality. The debugging functionality describes components that output

debugging information and perform exception handling and detection. Functionalities that fall into

port are components that act as a physical interface to another device. The functionalities related

to communication are components that facilitate the transfer of data over wired or wireless

connections either internally or externally. Any component that decodes or encodes information

can be described by the decoder_encoder functionality. The library functionality applies to

packages or libraries from which components or signals are loaded and cannot be expressed as a

physical part of an IP despite its presence in RTL code.

3.5 GOLDEN REFERENCE MATCHING

While some stages of matching remain unchanged, others have been removed due to

deprecation. Those remaining stages have been overhauled and optimized in various ways. The

stages remaining from the initial Golden Reference Matching process are the Statistical Matching

Step, the Champion Golden Reference Library Matching Step, and the Functionality Golden

21

Reference Library Matching Step. The overall matching process has been reorganized to remove

extraneous prior work and streamline added matching optimizations.

3.5.1 Champion Golden Reference Library Matching

The Champion Golden Reference Library portion of the matching process, introduced in

[10], determines the initial assigned functionality of an unknown soft IP. In addition to the

declaration of an unknown soft IP’s functionality, this GRL only contains one design per

functionality, allowing it to use less resources. The Champion GRL entries are a subset of the

Functionality GRL entries and are manually selected so each entry in the Champion GRL is the

best representative of the related functionality. The efficacy of the Champion GRL is further

increased due to the various functionality changes implemented to more effectively describe and

categorize designs. If a Champion GRL entry contains too few asset sets or too few unique assets,

then bias is introduced due to the reassignment of general assets to specific assets. Designs

containing many asset sets with many uniquely identifying assets may also exhibit bias when the

soft IP contains fewer unique assets than a given Champion GRL entry. Addressed previously in

this section, the process of selecting a Champion GRL entry to represent a functionality must

consider asset sets and all uniquely identifying assets within the entry before being evaluated and

added to the Champion GRL. This process is critical to avoid the biases highlighted above and to

ensure the initial functionality match is as accurate as possible.

3.5.1.1 Coarse-Grained Asset Reassignment

The coarse-grained asset reassignment approach, retaining its original usage described in

[10], is utilized due to the entry limitations of the Champion GRL. The comparisons between an

unknown soft IP and the Champion GRL are fine-grained. This leads to top Champion GRL

22

matches having a lower overall matching percentage against the unknown soft IP when compared

to matches of the soft IP against designs of similar or the same functionality. Because of this, the

Champion GRL matching process is performed in conjunction with coarse-grained asset

reassignment utilized exclusively on external characteristics.

3.5.1.2 Asset Set One

Asset Set One has increased from ten generalized external asset categories to eleven. All

external assets are encompassed by these categories. Table 4 shows all categories in Asset Set One

and the assets which map to Asset Set One categories.

Table 4. Reworked Asset Set One

Category Assets

Data._any
Data: computational, sensitive, critical, test_in,

test_out

Data.communication Data.peripheral

Data.encryption
Data: decryption, _hash, encoding, decoding,

key

Data.address Data.memory

Timing.system_timing
Timing: clock, subsystem_clock,

subsystem_timing, test_clock

Timing.status

Timing: ready, done, busy, hold, count, wait,

standby

SpecificSystemControl.communication_status

InstructionSet.instruction

SystemControl: enable, _set, reset, execute,

read, write, select, load, shift, interrupt, mode,

acknowledge, handshaking, dataflow, flag,

request, test_mode_select, test_reset

23

Table 4. Reworked Asset Set One (Cont.)

Category Assets

SpecificSystemControl.peripheral_control

Timing: clock_control,

subsystem_clock_control

SpecificSystemControl: interrupt_control,

memory_control, communication_control,

communication_protocol, bus_control,

duty_cycle, phase

InstructionSet: operand, operation_type, source,

destination, program_counter, branch, offset,

program_counter_op, data_op, memory_op,

interrupt_op, priority, availability,

pipeline_clear, pipeline_lock

SpecificSystemControl.exception_handling SpecificSystemControl.error_handling

Parameter.configuration
Parameter: initialization, frequency, timing,

phase, data_width, generate_control, enable

MiscellaneousAsset.unused MiscellaneousAsset: component, unknown

Many of these assets either map to new asset categories or are newly created external assets

entirely. These changes help improve the descriptive capabilities for each reassigned category,

thereby improving the efficiency of Asset Set One. This stage of reassignment is employed on both

the unknown soft IP and the Champion GRL entries, so the assets and functionality yield the

highest possible percent match.

3.5.1.3 Asset Set Two

Asset Set Two has also increased from ten general categories to eleven. Typical of GRL

entries, broader assets become much more common across designs than other assets with higher

specificity. Because data assets are particularly common due to most IP processing data in some

way, the primary focus of Asset Set Two is to classify data assets into a new category. Table 5

describes the asset categories and assets of Asset Set Two. In contrast to Asset Set One, some

categories in Asset Set Two may not have any assets mapped to them. This is due to Asset Set Two

primarily handling data assets, important distinguishing factors in many designs. As such, some

24

assets remain without necessitating reassignment since they are uncommon enough to aptly

express design characteristics.

Table 5. Reworked Asset Set Two

Category Assets

Data._any Data.computational

Data.memory

Data.communication

Data.peripheral

Data.encryption Data: decryption, _hash, encoding, decoding, key

Data.address

Data.sensitive Data.critical

Timing.system_timing

Timing: clock, subsystem_clock, subsystem_timing, status,

ready, done, busy, hold, count, wait, standby, test_clock

SpecificSystemControl.communication_status

InstructionSet.instruction

Timing: clock_control, subsystem_clock_control

SystemControl: enable, _set, reset, execute, read, write, select,

load, shift, interrupt, mode, acknowledge, handshaking,

dataflow, flag, request, test_mode_select, test_reset

SpecificSystemControl: interrupt_control, peripheral_control,

memory_control, communication_control,

communication_protocol, bus_control, duty_cycle, phase,

exception_handling, error_handling

InstructionSet: operand, operation_type, source, destination,

program_counter, branch, offset, program_counter_op,

data_op, memory_op, interrupt_op, priority, availability,

pipeline_clear, pipeline_lock

Parameter.configuration
Parameter: initialization, frequency, timing, phase, data_width,

generate_control, enable

MiscellaneousAsset.unused
Data: test_in, test_out

MiscellaneousAsset: component, unknown

Top matching percentages determine when to employ Asset Set Two. If a certain threshold

is met, then functionality matching can continue with only the usage of Asset Set One. After some

unknown soft IP has completed the asset reassignment process and these reassigned assets have

been propagated through the IP, the matching process will perform the reassignments detailed in

Asset Set One. Once the matching process completes and the soft IP matches to the Champion

25

GRL entries, the top two matches yielded are compared with a configurable matching threshold.

The default configuration value of the matching threshold is 40% and was determined from initial

testing in [10]; however, this value may be altered to achieve better results in certain scenarios.

Any designs with less than a 40% match are low confidence functionality assignments. If the first

match exceeds 40%, then it is necessary to compare with the second highest matching functionality.

Table 6. Functionality Threshold Example

Functionality Match Percentage

computational 90%

datapath 85%

If an unknown soft IP has matching percentages below this threshold, the confidence in

any match is not high enough to justify a functionality assignment. In addition to this first threshold,

a second configurable threshold is used. The significance of the second threshold is to signify

functionality differences due to design variability within each functionality category, and the

default value for this threshold is 15%. If the top two matches have a difference exceeding 15%,

then the unknown soft IP is considered part of the top matches’ functionalities and moves forward

to match against the Functionality Golden Reference Library. In Table 6, the matches for

computational and datapath do not have a difference of greater than 15% and are determined to

not be sufficient in deciding the component’s functionality.

3.5.2 Functionality Golden Reference Library Matching

Also originating in [10], the Functionality Golden Reference Library Matching (FGRLM)

process complements the Champion GRL matching process. As outlined in the original GRL

matching process, a design would be matched against all entries within the GRL, which scales

poorly as the number of GRL entries increases. To reduce this computational overhead, FGRLM

is employed after the Champion GRL matching process is completed. After an unknown IP has its

26

initial functionality decided, it is then matched against the FGRLM associated with that

functionality. By doing this, any unknown soft IP will only be matched against Champion GRL

and GRL entries pertaining to the FGRLM-determined functionality rather than being matched

against all GRL entries. This approach has the additional benefit of increasing matching

percentages because an unknown soft IP is only compared against designs similar in functionality.

3.5.2.1 Fine-Grained Asset Reassignment

To supplement the coarse-grain reassignment sets iterated previously, a fine-grained

reassignment strategy, originally reported in [10], is also utilized. Fine-grained reassignment

increases the matching percentage between an unknown soft IP and the Functionality GRL entries.

In the case of asset reassignment, only the assets of Functionality GRL entries undergo

reassignment. Table 7 shows all categories in Asset Set Three and their respective assets. Unknown

soft IPs will generally have the most recently available assets assigned to them while entries within

the Functionality GRL may not contain up-to-date asset assignments, causing biases that could

negatively impact matching results. This negative effect is addressed by this reassignment strategy.

Because this reassignment strategy is fine-grained, many assets are not reassigned to a particular

category and remain as they are.

Table 7. Reworked Asset Set Three

Category Assets

Data._any Data.computational

Data.memory

Data.communication

Data.peripheral

Data.encryption Data: decryption, _hash, key

Data.encoding Data.decoding

Data.address

Data.sensitive

27

Table 7. Reworked Asset Set Three (Cont.)

Category Assets

Data.critical

Timing.clock Timing.subsystem_clock

Timing.clock_control Timing.subsystem_clock_control

Timing.system_timing Timing.subsystem_timing

Timing.status Timing: ready, done, hold

Timing.busy Timing: wait, standby

Timing.count

SystemControl._set

SystemControl.reset

SystemControl.execute

SystemControl.read SystemControl: write, load

SystemControl.select SystemControl.enable

SystemControl.shift

SystemControl.interrupt

SystemControl.mode

SystemControl.acknowledge

SystemControl.handshaking

SystemControl.dataflow

SystemControl.flag

SystemControl.request

SystemControl.test_mode_select

Data: test_in, test_out

Timing.test_clock,

SystemControl.test_reset

SpecificSystemControl.peripheral_control

SpecificSystemControl.communication_control

SpecificSystemControl:

communication_protocol,

communication_status

SpecificSystemControl.bus_control

SpecificSystemControl.duty_cycle SpecificSystemControl.phase

SpecificSystemControl.exception_handling SpecificSystemControl.error_handling

InstructionSet.instruction

InstructionSet.operand

InstructionSet.operation_type InstructionSet.data_op

InstructionSet.source InstructionSet: destination, branch, offset

InstructionSet.program_counter InstructionSet.program_counter_op

InstructionSet.memory_op SpecificSystemControl.memory_control

28

Table 7. Reworked Asset Set Three (Cont.)

Category Assets

InstructionSet.interrupt_op SpecificSystemControl.interrupt_control

InstructionSet.priority

InstructionSet.availability

InstructionSet.pipeline_clear InstructionSet.pipeline_lock

Parameter.configuration Parameter.initialization

Parameter.frequency Parameter.phase

Parameter.timing

Parameter.data_width

Parameter.generate_control

Parameter.enable

MiscellaneousAsset.component

MiscellaneousAsset.unknown

MiscellaneousAsset.unused

It is necessary to establish a metric for assets needing reassignment. The process of using

asset reassignment strategies can be seen in Figure 3. For this metric, the same characteristic from

both the Functionality GRL and unknown IP is used. First, only asset sets belonging to one

characteristic are considered, and those characteristics must have external assets. Internal assets

are disregarded because a significant portion of them are automatically assigned

Figure 3: Reassignment Process Overview

29

during the parsing phase of the process. Next, all Functionality GRL entries are iterated over,

receiving asset sets from the same characteristic as the unknown soft IP. These assets from the

Functionality GRL are compared against the unknown IP’s assets, and only the Functionality GRL

entry’s assets are reassigned because the unknown IP features up-to-date asset assignments.

Therefore, only asset sets within the same characteristic are reassigned. In the event both designs

have a similar and more applicable asset, frequency analysis is employed to determine whether the

original or similar assets are the better fit.

3.5.3 Statistical Matching

Statistical matching techniques from [10] are employed to calculate the matching

percentages used in Sections 3.5.1 and 3.5.2. However, these techniques have been modified, and

their usages are different. In general, within the overall percentage match calculation, a new

approach of dynamic weighting is employed.

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 % 𝑀𝑎𝑡𝑐ℎ =
∑ % 𝑀𝑎𝑡𝑐ℎ𝑖

𝑁
𝑖=𝐴

𝑁

Equation 2: Percent Match Equation with Dynamic Weighting

To implement this dynamic weighting, Equation 2 is used. In this equation, the

characteristics used are denoted from 𝐴 to 𝑁. For the dynamic weighting approach, a characteristic

is ignored to increase matching percentage if neither design has the characteristic. This ensures the

yielded matching percentage is always on a 100% scale rather than being artificially lowered if

characteristics are not present. Determining weight for each characteristic leverages the same

calculation used in [10] and is seen in Equation 3.

30

𝑃(𝐴𝑠𝑠𝑒𝑡) =
∑ 𝐴𝑠𝑠𝑒𝑡 ∈ 𝐸𝑛𝑡𝑟𝑦𝑖

𝑛
𝑖=1

𝑛

Equation 3: Asset Probability Calculation from [10]

Equation 3 is used to determine the weight of any characteristics relevant to dynamic

weighting. In this case, 𝑛 is the number of GRL entries, and the summation is incremented by 1

for each GRL entry that contains the asset. This sum is then divided by the number of GRL entries

to yield the probability of a GRL entry contains the asset. After calculating the probability of each

asset, the weights of relevant assets are calculated.

𝑊𝐴𝑠𝑠𝑒𝑡 = 1 − 𝑃(𝐴𝑠𝑠𝑒𝑡)

Equation 4: Asset Weight Calculation from [10]

 The weight of an asset is determined by the probability that it will not be contained in a

GRL entry and its calculation can be seen in Equation 4. An uncommon asset will have a high

weight because it is more uniquely identifying while a common asset will have a low weight since

many GRL entries have it, making the common asset a less unique identifier. After the calculation

of asset weights and probabilities, it is possible to leverage the results of these calculations to

determine average asset weight.

𝐴𝑣𝑔 𝑊𝐴𝑠𝑠𝑒𝑡 =
∑ 𝑊𝑀𝑎𝑡𝑐ℎ𝑒𝑑𝐴𝑠𝑠𝑒𝑡𝑖

𝑛
𝑖=1

𝑁

Equation 5: Average Asset Weight Calculation from [10]

 In Equation 5, the average weight of a particular asset is equal to the sum of all asset

weights in a matched characteristic, and this sum is divided by 𝑁, the total number of matched

assets. If an asset has a higher weight than other assets, it is less common in the GRL and more

31

identifying than other assets, making high-weight assets more important for matching purposes.

These results are used to calculate the final characteristic weight in Equation 6.

𝑊𝐶ℎ𝑎𝑟 =
𝐶ℎ𝑎𝑟𝐴𝑣𝑔𝑊𝐴𝑠𝑠𝑒𝑡

∑ 𝑖𝐴𝑣𝑔𝑊𝐴𝑠𝑠𝑒𝑡
𝑁
𝑖=𝐴

∗ 100

Equation 6: Characteristic Weight Calculation from [10]

 For this equation, the weight of a characteristic is equal to the average asset weight of

characteristic 𝐶ℎ𝑎𝑟 divided by the summation of the average asset weight of all characteristics. In

this case, 𝑖 iterates through the dynamically-weighted characteristics relevant to the entries from

𝐴 to 𝑁. Additionally, this quotient is multiplied by 100 to convert it into a percent contribution of

each 𝐶ℎ𝑎𝑟 to the total average asset weight from all dynamically weighted characteristics. To

optimize the efficiency of Equations 3, 4, 5, and 6, asset frequency data is precalculated and stored

with each GRL entry. This can be seen in the asset_frequency_data key in the GRL format

example in Figure 2. By doing the calculation in advance, it is no longer necessary to determine

asset probabilities and weights for all GRL entries in an iterative manner.

3.5.4 Revised Matching Process

The combination of Champion GRL Matching, FGRLM, and Statistical Matching as the

overall matching process has been revised to allow for improved matching. After selecting a GRL

entry to match against, the first step in calculating a design match is to find all unkonwn asset sets

32

with a 100% match to GRL asset sets within a given characteristic and add them to the final match

data. Match data is represented as a dictionary where the first-level mapping is each asset

Figure 4. Asset Set Matching Overview

characteristic. Within each characteristic, another level of the dictionary relates a signal’s name to

its best GRL match along with the number of sets from that match. Here, the number of sets refers

to the bit-width of the signal such that there is one instance of a given asset set for each bit of a

signal. All bit-level calculations are done at the parsing stage. After removing all 100% match data,

a check is performed to see if all asset sets have been matched between the two designs. If match

data remains, then best-fit matching is performed on the remaining asset sets. This is done by

iterating through all unmatched GRL asset sets within the same characteristic. Each GRL asset set

is matched against all unknown asset sets within the same characteristic, with its best match being

initialized to the highest-matching unknown characteristic. After setting this match, all other GRL

asset sets are checked to ensure the unknown asset set does not match more highly than the current

best match. In the event that another GRL asset set matches better to the unknown asset set in

question, then the current GRL asset set has its best match changed to the next highest match and

the verification process starts again. If a GRL asset set has the same percentage match as the current

best match, the number of asset sets is checked and the match that is closer to this number is chosen

instead. In the event that all unknown asset sets have a higher match with other GRL asset sets,

33

the GRL asset set is temporarily skipped. Finally, once a best match is found, it is added to the

best match data and removed from the matched assets sets. Then, the remaining unmatched data

is updated, and this process is continued for the next GRL asset set. This process of removing

matches from unmatched data is detailed in Figure 4. Any characteristic containing asset sets in

one design but not in the other is given a 0% match and added to the final match data.

Throughought the entire process, characteristic matching data is cached to avoid unnecessary

recalculations and to maintain match data after each asset set match is performed.

34

4 RESULTS AND ANALYSIS

When comparing the original and new matching processes, it is important to highlight the

differences in matching functionalities as well as GRL differences addressed in Section 3.3.

Notably, the updated GRL is significantly larger and includes bias towards clean designs. Both

Functionality GRLs do not contain an even distribution of entries across all functionalities and

may lead to discrepancies with functionalities such as clock_generation having no entries at the

time of testing. These issues and others are explained in the following subsections. All

functionalities provided in the following tables regarding the new matching process are clean,

Trojan-free functionalities unless otherwise specified. The matching percentage data shown for

each matching process is calculated from different metrics and is not directly comparable.

4.1 BUS INTERFACE

The bus interface design is composed of a microcontroller containing ROM, SPRAM, LED

outputs, and a UART communication module. This is a significantly large design and includes

several hundred component instances. External assets are assigned to the primary port signals of

each component as well as the top Bus_Interface_Top module. In the original matching process, it

was not possible for asset filtering to fully define signals to subcomponents because each unique

subcomponent was expressed as a single instance instead of multiple. For instance, if there were

100 instantiations of an SPRAM module, it only considered one of them. The asset filtering step

has been improved in the new matching process because the filtering is fully expressed throughout

all subcomponents and their instances, thereby offering improved results. The percentages in Table

8 below differ from the baseline results in [10] because a newer bus interface design was utilized.

35

Table 8. Bus Interface Matching Results

 Original Matching Process New Matching Process

Component Functionality Match Functionality Match

Bus_Interface_Top COMMUNICATION 15.0% control_unit 8.4%

osch COMPUTATIONAL 28.0% computational 11.3%

PLL_Clk COMPUTATIONAL 12.0% datapath 8.3%

vlo COMPUTATIONAL 54.0% computational 12.5%

ehxpllj COMPUTATIONAL 24.0% control_unit 19.4%

Bus_Master COMMUNICATION 44.0% memory 16.7%

SPRAM COMMUNICATION 39.0% memory 19.9%

inv COMMUNICATION 13.0% memory 19.9%

rom16x1a COMMUNICATION 13.0% memory 40.6%

vhi COMMUNICATION 9.0% memory 4.0%

fd1p3dx COMMUNICATION 27.0% memory 30.3%

mux321 COMMUNICATION 20.0% datapath 19.1%

spr16x4c COMMUNICATION 32.0% memory 18.6%

RS232_Usr_Int COMMUNICATION 44.0% communication 12.2%

STD_FIFO COMMUNICATION 41.0% memory 27.9%

Bus_Int COMMUNICATION 41.0% datapath 24.2%

Std_Counter COMMUNICATION 29.0% datapath 23.3%

LED_Ctrl COMMUNICATION 35.0% datapath 10.9%

PWM_16b COMMUNICATION 33.0% debugging 14.7%

Regarding the original matching process results, almost all components are categorized as

COMMUNICATION. This can be attributed to asset filtering adding many assets to each signal in

large designs, making classification more difficult with the increased volume of information.

However, the new matching process fully expresses all subcomponents. In the case of Bus_Master,

there are several hundred memory-related components which leads to most functionalities being

expressed as memory despite not necessarily being memory. The full expression of all

subcomponents has caused memory asset saturation due to the number of memory modules utilized

in the bus interface design. This will need to be addressed in the future but shows improvements

in the representation of designs in the new matching process. Additionally, a larger number of

36

functionalities are shown during matching instead of having an abnormally high number of

COMMUNICATION functionalities assigned.

4.2 PS/2 KEYBOARD CONTROLLER

The PS/2 Keyboard Controller is IP consisting of a top-level Ps2_keyboard component and

two lower-level debounce components, and it facilitates communication between a computer and

a user’s keyboard. The results of the old and new matching processes on the unknown PS/2

Keyboard Controller IP are presented in Table 9. This data is slightly different than the baseline

data in [10] because previous data does not contain matching percentages for the debounce

subcomponent.

Table 9. PS/2 Keyboard Controller Matching Results

 Original Matching Process New Matching Process

Component Functionality Match Functionality Match

Ps2_keyboard PERIPHERAL 100.0% control_unit 21.7%

debounce COMMUNICATION 63.0% communication 9.5%

Above, Ps2_keyboard was labeled PERPHERAL functionality by the original matching

process and control_unit functionality by the new matching process. Of these two, control_unit is

more indicative of the true functionality of the PS/2 Keyboard Controller. Both matching processes

assign communication functionality to the debounce component; however, it would be more

properly identified by the peripheral functionality. This discrepancy is caused by a lack of

peripheral functionality components in both the former and updated GRLs.

4.3 LCD16×2 DISPLAY CONTROLLER

The LCD16×2 Display Controller is a single component consisting of a large vector input

for each line of the two-line LCD displays used on some Xilinx evaluation boards. It features two

128-bit vector inputs where data inputs correspond to one of the two lines of the LCD display. The

37

matching results for an unknown LCD16×2 Display Controller are shown in Table 10. For this

example, the resulting functionality match for the new and original matching processes are similar.

Table 10. LCD16×2 Display Controller Matching Results

 Original Matching Process New Matching Process

Component Functionality Match Functionality Match

lcd16x2 PERIPHERAL 75.0% peripheral 20.2%

The original matching process assigns a PERIPHERAL functionality with a 75% match

while the new matching process also assigns a peripheral functionality but with a smaller 20.2%

match. Since both matching processes arrive at the proper functionality, both are correct for this

design. However, the new matching process yields a smaller percent match due to the total match

being distributed across several subcomponents.

4.4 BASIC RSA-T200

The Basic RSA-T200 design is a smaller design consisting of a denial-of-service Trojan in

the RSACypher component. This Trojan disables encoding at the transmitter and decoding at the

receiver. In Table 11 below, the results from identifying the functionalities of the unknown Basic

RSA-T200 IP are exhibited for the new matching process alongside data from [10] for comparison.

Table 11. Basic RSA-T200

 Data From [10] New Matching Process

Component Functionality Match Functionality Match

RSACypher TROJAN_ENCRYPTION_UNIT 83.2% communication 17.0%

Modmult COMPUTATIONAL 100.0% computational 18.6%

 The original matching process assigned TROJAN_ENCRYPTION_UNIT to RSACypher

and COMPUTATIONAL to Modmult. The new matching process assigns communication to

RSACypher and computational to Modmult. An explanation for the discrepancy in RSACypher

identification is the limited number of Trojan designs in the Functionality GRL which leads to a

38

lack of similar designs for matching. For Modmult, both matching processes arrive at equivalent

functionalities, but the new matching process has a reduced match percentage due to

subcomponent matching.

39

5 CONCLUSION AND FUTURE WORK

Rebuilding the codebase of the Structural Checking Tool and standardizing several aspects

of the matching and parsing processes have resulted in a more organized tool which allows for

streamlined development and increased matching accuracy. The matching and parsing processes

are more lightweight and optimized, focusing on current statistical analysis and Champion and

Functionality GRL Matching. Additionally, the user experience of the Structural Checking Tool

has been improved, and the time required to prepare HDL code for parsing within the tool has been

significantly reduced. Issues pertaining to parseable VHDL syntax have also been addressed,

allowing more designs to be usable out-of-the-box without necessitating changes. These

improvements should allow the Functionality GRL to grow at a faster rate which will improve

matching as a result.

While the new structure of the tool is more modular and easier to expand, there are still

many opportunities for improvement. The size of the Functionality GRL will always need to

increase, and there is an ongoing effort to find the most representative designs for each

functionality to use in the Champion GRL. However, the matching processes will need further

optimization to improve execution performance as GRL size increases. Additionally, there is room

to expand the parsing functionality to encompass other HDL languages and to more accurately

express the structure of designs with improved syntax coverage.

40

6 REFERENCES

[1] R. Shende and D. D. Ambawade, "A side channel based power analysis technique for

hardware trojan detection using statistical learning approach," 2016 Thirteenth

International Conference on Wireless and Optical Communications Networks (WOCN),

2016, pp. 1-4, doi: 10.1109/WOCN.2016.7759894.

[2] T. Hu, L. Wu, X. Zhang, Y. Yin and Y. Yang, "Hardware Trojan Detection Combine

with Machine Learning: an SVM-based Detection Approach," 2019 IEEE 13th

International Conference on Anti-counterfeiting, Security, and Identification (ASID),

2019, pp. 202-206, doi: 10.1109/ICASID.2019.8924992.

[3] Yousra Alkabani and Farinaz Koushanfar. 2009. Consistency-based characterization for

IC Trojan detection. In Proceedings of the 2009 International Conference on Computer-

Aided Design (ICCAD '09). Association for Computing Machinery, New York, NY,

USA, 123–127. DOI:https://doi.org/10.1145/1687399.1687426

[4] T. Inoue, K. Hasegawa, M. Yanagisawa and N. Togawa, "Designing hardware trojans

and their detection based on a SVM-based approach," 2017 IEEE 12th International

Conference on ASIC (ASICON), 2017, pp. 811-814, doi:

10.1109/ASICON.2017.8252600.

[5] T. Inoue, K. Hasegawa, Y. Kobayashi, M. Yanagisawa and N. Togawa, "Designing

Subspecies of Hardware Trojans and Their Detection Using Neural Network Approach,"

2018 IEEE 8th International Conference on Consumer Electronics - Berlin (ICCE-

Berlin), 2018, pp. 1-4, doi: 10.1109/ICCE-Berlin.2018.8576247.

[6] M. Fyrbiak et al., "HAL—The Missing Piece of the Puzzle for Hardware Reverse

Engineering, Trojan Detection and Insertion," in IEEE Transactions on Dependable and

Secure Computing, vol. 16, no. 3, pp. 498-510, 1 May-June 2019, doi:

10.1109/TDSC.2018.2812183.

[7] Jiaji He, Haocheng Ma, Yanjiang Liu, and Yiqiang Zhao. 2020. Golden Chip-Free Trojan

Detection Leveraging Trojan Trigger’s Side-Channel Fingerprinting. ACM Trans.

Embed. Comput. Syst. 20, 1, Article 6 (January 2021), 18 pages.

DOI:https://doi.org/10.1145/3419105

[8] H. S. Choo et al., "Machine-Learning-Based Multiple Abstraction-Level Detection of

Hardware Trojan Inserted at Register-Transfer Level," 2019 IEEE 28th Asian Test

Symposium (ATS), 2019, pp. 98-980, doi: 10.1109/ATS47505.2019.00018.

[9] L. Weaver, T. Le and J. Di, "Golden Reference Library Matching of Structural Checking

for securing soft IPs," SoutheastCon 2016, 2016, pp. 1-7, doi:

10.1109/SECON.2016.7506737.

41

[10] N. Waller, H. Nauman, D. Taylor, R. Del Carmen and J. Di, "Character Reassignment for

Hardware Trojan Detection," 2021 IEEE International Midwest Symposium on Circuits

and Systems (MWSCAS), 2021, pp. 861-864, doi:

10.1109/MWSCAS47672.2021.9531813.

[11] M. Hinds, J. Brady, and J. Di, "Signal Assets - a Useful Concept for Abstracting Circuit

Functionality," presented at the Government Microcircuit Applications & Critical

Technology Conference (GOMACTech), 2013.

[12] T. Le, J. Di, M. Tehranipoor, and L. Wang, "Tracking data flow at gate-level through

structural," in 2016 International Great Lakes Symposium on VLSI (GLSVLSI), 2016, pp.

185-189.

[13] J. Yust, M. Hinds, and J. Di, "Structural Checking: Detecting Malicious Logic without a

Golden Reference," Journal of Computational Intelligence and Electronic Systems, vol.

1, no. 2, p. 8, 2012.

[14] B. McGeehan, F. Smith, T. Le, H. Nauman and J. Di, "Hardware IP Classification

through Weighted Characteristics," 2019 IEEE High Performance Extreme Computing

Conference (HPEC), Waltham, MA, USA, 2019, pp. 1-6, doi:

10.1109/HPEC.2019.8916225

[15] H. Salmani, M. Tehranipoor, and R. Karri, "On Design vulnerability analysis and trust

benchmark development", IEEE Int. Conference on Computer Design (ICCD), 2013.

[16] B. Shakya, T. He, H. Salmani, D. Forte, S. Bhunia, M. Tehranipoor, “Benchmarking of

Hardware Trojans and Maliciously Affected Circuits”, Journal of Hardware and Systems

Security (HaSS), April 2017.

[17] OpenCores. Available: http://opencores.org/

	Structural Checking Tool Restructure and Matching Improvements
	Citation

	tmp.1658930043.pdf.LZaLN

