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Abstract

Experiments in economics have been a valuable tool to understand the behavioral implica-

tions of incentives on the decision-making process. Particularly, aspects of decision making 

that cannot be observed in empirical data can be better isolated in an experimental setting 

such as bias and identity impacts. This dissertation uses three distinct experiments to fur-

ther the understanding of individual biases, perceptions, and identity and how they impact 

the way people defer to these internal traits under incentives. This dissertation looks at 

how well individuals can make inferences about polling data that was collected from indi-

viduals susceptible to socially desirable responding. It also explores the identity importance 

of gender in both a public goods game setting as well as a setting where individuals must 

make predictions about the risk and time preferences of others.
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Introduction

Economics has made major advances in the last 20 years in the understandings of how

identity impacts decision making, informs biases, and motivates certain types of behaviors.

Additionally, as a society, we have become more aware of the social and natural identity

groups that we identify with in order to find places of belonging and reaffirm our beliefs and

perspectives about the world. The three papers in this dissertation come together to look

at how behavioral preferences, identity, and biases impact the decision making processes

of individuals under incentivized conditions. More specifically, I look into the real impacts

of behavioral perceptions on earnings in a laboratory experimental setting to gain a better

economic understanding of how people perceive and interact with each other.

This line of research was inspired by trying to understand the story of why people make

decisions that align with group ideals over individual goals. Two of the most easily relatable

examples of this are how people make sacrifices in their educational or career pursuits in the

interest of staying in a particular community or staying near family. This basic concept led

to the consideration of the second paper in this work, where I use an experimental design

that puts individuals in a situation where they have to choose between their own personal

financial gain and the overall financial gain of the group. This topic may seem to be quite

different from the first and third works that look at the ability of individuals to predict

preferences and biases but the behavioral mechanism is very similar. It comes down to the

idea that people have a constant incentive to belong to a certain group and that pursuit for

a sense of belonging also creates environments where individuals create stereotypes and have

biases about those that not only do not belong to their group but also are a part of their

own group.

This first paper in this work looks at how individuals lie to themselves and to re-

searchers/surveyors in order to make them seem more socially desirable, referred to as

socially desirable responding, and then how well other people can detect this socially de-

3



sirable responding and properly weight those responses to predict the truth in the adjusted

statements. Once again, the motivating factor is this sense of belonging. Though that ex-

periment does not incite a particular identity dimension, it does use the desire to be seen as

generally sociable in general. The third paper looks at how well people can make predictions

about the time and risk preferences of people that belong to their group versus the general

public to see if there is any advantage to being in the same group but not actually having

any other information when it comes to knowing each other.
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Chapter 1: Inference from Biased Polls1

Andy Brownback2 Nathaniel Burke3 Tristan Gagnon-Bartsch4

Abstract

Poll respondents often attempt to present a positive image by overstating virtuous behav-

iors. We examine whether people account for this “socially desirable responding” (SDR)

when drawing inferences from poll data. In an experiment, we incentivize “predictors” to

guess others’ choice behaviors across eight actions with varying social desirability. Predic-

tors observe random subsamples of either (i) incentivized choices or (ii) hypothetical claims

from polls. The hypothetical claims exhibit predictable SDR and predictors are reasonably

skeptical of them. However, their skepticism is not tailored to the direction or magnitude

of SDR. This under-correction occurs even though subjects’ explicit responses can predict

SDR.

JEL classification: D91, D84, D72.

Keywords: Polling, Social Desirability, Inference, Signaling, Selection Bias.

1For helpful comments, we thank Chiara Aina, Benjamin Bushong, Jonathan de Quidt, Uri Gneezy, David
Huffman, Alex Imas, Michael Kuhn, Sherry Li, Peter McGee, Matthew Rabin, Joshua Schwartzstein, Marta
Serra-Garcia, and seminar audiences at the SEA Annual Meeting, AEA Mentoring Pipeline Conference,
and West Virginia University. AEA RCT registry number: AEARCTR-0005186 (available at https://

doi.org/10.1257/rct.5186-1.0). We gratefully acknowledge support from the AEA Mentoring Program
(NSF Award #1730651).

2University of Arkansas:ABrownback@walton.uark.edu
3West Virginia University: nathaniel.burke@mail.wvu.edu
4Harvard University: gagnonbartsch@fas.harvard.edu
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1 Introduction

Presenting a positive image is a widespread human desire, and many are willing to incur

significant costs to do so (Bagwell and Bernheim, 1996; Bursztyn, Ferman, Fiorin, Kanz and

Rao, 2018; Veblen, 1899). Thus, we expect people to take advantage of opportunities to

costlessly inflate their own image. Indeed, people often do so by misrepresenting their views,

traits, or behaviors in response to unincentivized elicitations such as opinion surveys, self-

reports, or political polls. This is known as socially desirable responding (SDR) (Edwards,

1957; Maccoby and Maccoby, 1954; Paulhus, 1984).

Unincentivized elicitations are often the best available source of information even when

they are plagued by SDR. For instance, doctors rely on self-reports to design treatments

around alcohol use even though these reports exhibit well-documented biases (Del Boca and

Noll, 2000; Latkin, Edwards, Davey-Rothwell and Tobin, 2017). And businesses use political

polls to predict and prepare for changes in government policies despite the potential bias in

such polls (Finkel, Guterbock and Borg, 1991). While unincentivized elicitations come in

many forms, we refer to them simply as polls and the elicited responses as poll data.

We experimentally study whether people account for SDR in poll data when using it

to draw inference about subsequent choice behavior. SDR suggests a general tendency to

misrepresent preferences, but many people still respond to polls truthfully.5 Thus, even

though poll data may be biased by SDR, a careful observer of this data may be able to

extract an unbiased signal from it. That is, even biased poll data can still bear useful

information. However, extracting accurate signals from this data requires an appreciation

that responses cannot always be taken at face value and an understanding of how they might

be distorted. One must anticipate SDR and discount claims of virtuous behavior while also

recognizing that people are unlikely to be lying when they admit to stigmatized behaviors.

5People may respond truthfully both because of a preference for being honest and a preference to appear
honest, as documented by a large experimental literature on an aversion to lying; see, e.g., Abeler, Nosenzo
and Raymond (2019) for a meta-study of 90 studies using designs similar to Fischbacher and Föllmi-Heusi
(2013).
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We refer to this ability to interpret poll data in a way that corrects for misreporting due to

SDR as social sophistication.

How to draw accurate inference from biased signals is a longstanding question in eco-

nomics. For instance, Crawford and Sobel (1982) explore this concept through “cheap-talk”

equilibria in which receivers extract information from signals sent by senders with misaligned

incentives. Similarly, Kartik (2009) demonstrates the informativeness of communication in

such settings when senders bear some cost to misreporting their private information. Exper-

imental studies confirm the benefits of communication even when incentives are not aligned

(see Farrell and Rabin, 1996 and Crawford, 1998 for reviews). The real-world value of us-

ing social sophistication to identify and correct for misreported information is clear. For

example, doctors can provide better care when they anticipate that patients are reluctant

to reveal mental health issues (Bharadwaj, Pai and Suziedelyte, 2017) and accordingly dis-

count claims of perfect mental health. And job-seekers can better target their search efforts

when they appreciate that other workers often relay overly-optimistic information about job

prospects (Arnold, Feldman and Purbhoo, 1985).

In our study, we elicit both poll responses and actual choice behaviors, allowing us to

clearly measure the SDR in our poll data. We then examine the degree of social sophistication

present when people are given this poll data and asked to predict others’ actual choice

behaviors. Since we directly observe the effect of SDR on the poll data, we can similarly

observe how people correct for it in their predictions. We find ample evidence of social

sophistication along fundamental dimensions: people do anticipate the potential for biased

poll data and discount the hypothetical claims of others. However, we find no evidence of

more complex dimensions of sophistication: people do not properly tailor their discounting

to the direction or magnitude of SDR.

Moreover, our experiment develops a novel methodology of information-provision to iden-

tify how beliefs respond to poll data.6 We reveal random subsamples from an assigned infor-

6A large literature demonstrates that information provision influences beliefs and attitudes across numerous
policy-relevant domains; see Haaland, Roth and Wohlfart (2020) for a review.
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mation source (either poll data or actual choice behaviors), inducing mechanically random

sampling variation in signals. Controlling for differences in the distribution of signals isolates

signal variation from sampling noise—revealing experimentally-random changes in signals

and their causal impact on inferences. Our random assignment of information sources also

provides causal evidence on the heterogeneous interpretation of information from different

sources.

Our first step in studing how people account for SDR in poll data is to construct a setting

where we can observe how SDR affects responses to eight separate actions. The initial stage

of our experiment measures actual choices and hypothetical claims using parallel elicitations

with two distinct groups of subjects. Participants in each group answer whether they would

take each of the actions, which vary in their social desirability (e.g., donating to St. Jude

Children’s Hospital or stealing from an experimental subject in another session).7 In the

incentive-compatible (IC) group, we use an incentivized revealed-preference elicitation to

measure actual choices. In the hypothetical (H) group, we use an unincentivized stated-

preference elicitation to measure hypothetical claims about behavior for the same eight

actions. SDR prompts the H group to overstate (understate) their demand relative to the

IC group for actions they believe to be virtuous (stigmatized).

Our design begins with no ex-ante perspective on which actions are virtuous or stig-

matized. Instead, we recruit a separate sentiment group to rate the social desirability of

each action. We use this independent evaluation to establish that SDR is identifiable and

predictable in our controlled setting. A one standard-deviation (SD) increase in how the

sentiment group scores an action’s social desirability is associated with a 3.1 percentage-

point increase in the H group’s overstatement of demand for that action (p < 0.001). For

example, our sentiment group evaluated donating to St. Jude Children’s Hospital as the most

7In total, we consider eight different actions. Six involve deciding whether to donate $1 to an organization:
St. Jude Children’s Hospital, a local NPR affiliate, the Democratic National Committee, the Republican
National Committee, Joe Biden’s campaign, and Donald Trump’s campaign. We also consider stealing $1
from another participant in the study and taking $1 for yourself from a planned donation to the Make-A-
Wish Foundation.
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virtuous action (2.24 SD above the mean). This is associated with a 13 percentage-point

overstatement of claimed desire to donate: 75% claim they would donate, but only 62% do.

We then evaluate the degree to which people anticipate and correct for the SDR manifest

in the H group’s claims. To do so, we incentivize predictors to guess the aggregate choice

behavior of the IC group for each action.8 Predictors make initial guesses about choice

behavior. They are then randomly assigned to observe “signals,” which are subsamples of

either (i) choices from the IC group itself or (ii) claims from the H group. Predictors then

make updated guesses about the behavior of the IC group. By observing predictors’ updating

behavior, we can deduce the differential weighting of information from the two sources and,

thus, their social sophistication. Specifically, we assess whether predictors account for SDR

by appropriately discounting the claims of the H group.

We follow our pre-registration and examine several hypotheses regarding the differential

treatment of signals from the two information sources.

Our first main hypothesis examines whether predictors anticipate SDR and accordingly

down-weight the (potentially biased) claims from the H group. We find that they do. 31%

of predictors’ updating from IC-group signals is “extra updating” attributable to the added

weight given to the IC-group’s choices relative to the H-group’s claims (p < 0.01).9

We are motivated by polling contexts in which people regularly participate in both the

choice and prediction groups—e.g. the average voter likely has experience with participating

in political polls and has made predictions based on data from such polls. For this reason, we

examine how prior experiences may influence social sophistication. To do so, we recruited

a mix of predictors: some were newly recruited while others had previously participated

in either the IC or H group. We directly compare responses across the two groups and

find suggestive but inconclusive evidence that predictors who previously participated in the

H group discount the claims of the H group more than predictors without this experience

8Predictors are a mix of newly recruited participants and returners from the IC and H groups. As we detail
later, this allows us to examine a key question about how experience with SDR affects predictor behavior.

9All estimates presented in the introduction are derived from our within-subjects specification. See Section 5
for details on our analysis.
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(p = 0.125). This is consistent with the idea that these subjects are more skeptical of

hypothetical claims because they are familiar with the impulse to lie when making such

claims.

While discounting the average signal from the H group is a fundamental part of sophis-

ticated inference, discounting all signals equally would not reflect full social sophistication.

Full sophistication calls for people to adjust their discounting depending on the direction

and magnitude of the bias. Predictors’ guesses offer little evidence of these more challenging

dimensions of social sophistication.

Our second main hypothesis explores more complex social sophistication by asking whether

predictors recognize the direction of SDR; that is, whether it is socially desirable to overstate

or understate demand for an action. Social sophistication rests on such knowledge as it en-

ables a predictor to determine whether the signal they receive reflects “perception-inflating”

boasting—which should be discounted—or reflects “perception-deflating” confessing—which

should be given additional weight. We define a signal to be perception inflating if it implies

greater social desirability than the predictor initially guessed. A signal is perception deflating

if it implies lesser social desirability than the predictor initially guessed.10 A perception-

deflating signal is particularly informative because it suggests that more respondents than

expected admit to socially undesirable behavior despite the opportunity to freely claim vir-

tuous behavior. We find that predictors fail to recognize this. While they correctly discount

perception-inflating signals from the H group by 18% relative to the IC group (p < 0.001),

they treat perception-deflating signals from the H group almost identically to those from the

IC group.

Our third main hypothesis asks if predictors recognize the relative magnitude of SDR

across the eight actions. To answer this question, we examine whether predictors discount

10Note that we define a perception-inflating (-deflating) signal entirely with respect to how it would change
a predictor’s perception of the IC group’s behavior assuming that the signal reflected truthful responses.
Thus, even a perception-deflating signal from the H group is consistent with SDR. SDR suggests that more
people hypothetically claim socially desirable behavior than actually choose it, while a perception-deflating
signal shows fewer people claiming socially desirable behavior relative to the predictor’s initial guess of
how many would actually choose it.
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signals for each action based on the degree of SDR for that specific action. When considering

actions that are notably biased, predictors should treat claims from the H group with in-

creased skepticism. However, we find no evidence of this dimension of social sophistication.

If anything, our point estimates suggest that predictors’ guesses place more weight on claims

from the H group as SDR becomes more extreme (p > 0.10).

The lack of social sophistication demonstrated by predictors’ guesses stands in striking

contrast with the responses of the sentiment group. When explicitly asked to evaluate

the social desirability of each action, the sentiment group produced reasonably accurate

assessments. Hence, the knowledge of which actions tend to incite greater social-image

concerns does exist in our population. However, it appears that predictors neglect this

knowledge when deciding how much to discount claims from the H group.11

We also find irregularities in the confidence predictors place in their guesses. After each

guess we elicited from predictors, we elicited their confidence in that guess. For initial guesses,

we find a negative correlation between the accuracy of a predictor’s guess and their confidence

(p < 0.01). This “Dunning-Kruger” effect (Kruger and Dunning, 1999) also emerges between

updated guesses and confidence among predictors who receive information from the H group

(p < 0.05). However, it is diminished and no longer significant for predictors receiving

the higher-quality information from the IC group. These results highlight the downstream

consequences of biased polling information: not only do predictors under-correct for biases

in the poll data, but this low-quality data may also allow false confidence to persist.

SDR is typically interpreted as a form of social-signaling in which people project a positive

image of themselves to others. Interestingly, this behavior persists in many online and

anonymous contexts such as ours. This could be signaling to the experimenter or pollster, but

it is not distinguishable from the form of self-signaling outlined in Bénabou and Tirole (2002).

11A similar pattern emerges in experiments on “cursed thinking” (Eyster and Rabin, 2005) in trading envi-
ronments with asymmetric information. Subjects often accept financial trades with better-informed parties
to their own detriment (e.g., Samuelson and Bazerman, 1985). However, when explicitly asked, a typical
subject in such settings correctly predicts that her better-informed partners will only agree to trades that
are detrimental for her to accept (Hales, 2009).

11



In most contexts, SDR is likely driven by a combination of both social- and self-signaling and

these two mechanisms are often observationally equivalent. While our anonymous, online

context likely mutes the impact of SDR, it has a few advantages. First, it provides a test of

our key hypotheses in a relevant context—real-world polls intentionally minimize confounds

like SDR and experimenter demand effects. Second, despite the muted SDR, the evaluations

of our sentiment group still predict the response biases. With this test satisfied by our

sentiment group, it is natural to extend a similar test of social sophistication to predictors.

In a recent study of “political correctness,” Braghieri (2021) finds that SDR has a mean-

ingful impact on the information content of public statements relative to those made in

private. Our study offers a complement to this conceptually related paper. While both pa-

pers explore biases that arise in statements made about sensitive topics, they examine two

different regimes that may limit such biases. Braghieri (2021) considers greater privacy—

focusing on the “wedge” between private and public statements—while our paper considers

greater incentives for truth-telling—focusing on the wedge between statements and conse-

quential choices. Both papers take the analysis one step further and explore the degree

to which others anticipate how responses will change as a result of the respective regime

(privacy or incentives). Subjects in Braghieri (2021) are able to predict average differences

between public and private statements, but similar to our findings, subjects exhibit limited

sophistication when predicting heterogeneity in the bias. Other experimental differences

may be informative about the mechanisms at play. Braghieri (2021) explicitly asks subjects

to predict differences between private and public statements, while we use a difference-

in-differences design to examine how predictors respond to information from the different

sources. Explicitly eliciting beliefs about the wedge may prompt subjects to consider the pos-

sibility of misreported statements and hence may explain why subjects in Braghieri (2021)

exhibit greater sophistication than subjects in our study.12

12Our analysis of sophistication is also related to Charness, Oprea and Yuksel (2021), as they similarly
examine how subjects gather information from biased sources. However, instead of asking whether people
can identify and correct biased data, as we do, they ask whether subjects can optimally select between data
sources that have known biases. Their subjects fail to maximize the information content they can extract

12



Our exploration of social sophistication advances the literature on social norms in general

and on SDR specifically. Krupka and Weber (2013) demonstrate that social norms are well-

anticipated by experimental subjects. We extend the exploration of the predictability of

norms by asking whether observers of poll data account for SDR when drawing inference.

Given the limited social sophistication that we find, the benefits of collecting and dis-

seminating more accurate data are clear. Researchers have developed several tools, such as

the randomized-response technique (Warner, 1965) and list experiments (Karlan and Zin-

man, 2012; Raghavarao and Federer, 1979), to identify underlying preferences when SDR is

prevalent and incentivized elicitations are not possible. These tools have identified SDR in

a broad set of stigmatized and virtuous domains.13 Moreover, Rosenfeld, Imai and Shapiro

(2016) find that these techniques can correct biased estimates and improve inference from

polls. In light of our results, we believe there is strong evidence in favor of using these tools

in regular audits to identify SDR and recalibrate polls. Independent sentiment surveys could

also be used to predict susceptibility to SDR.

While we focus primarily on polling, biases from SDR affect incentivized economic exper-

iments as well. “Experimenter demand”—where subjects respond in a manner they perceive

to be consistent with the experimenter’s intention—is one expression of SDR. de Quidt,

Haushofer and Roth (2018) find that the impact of this bias has clear bounds. Our results

suggest that, though the impact of experimenter demand may be limited, observers of biased

experimental data are unlikely to accurately predict the direction or degree of the bias.

Our paper begins with an explanation of our pre-registered experimental design in Sec-

tion 2. Section 3 follows with our hypotheses and a simple model that develops the intuition

from the data because they tend to over-select sources biased towards giving confirmatory evidence.
13Tourangeau, Rips and Rasinski (2000) and Tourangeau and Yan (2007) provide reviews. SDR has been
identified in political polls—often called a “Bradley Effect” or “Shy Tory Factor” (Brownback and Novotny,
2018; Hopkins, 2009; Reeves et al., 1997); polls for female and minority candidates (Brown-Iannuzzi, Najle
and Gervais, 2019; Heerwig and McCabe, 2009; Kane, Craig and Wald, 2004; Stephens-Davidowitz, 2014;
Streb, Burrell, Frederick and Genovese, 2008); sentiment surrounding race (Krysan, 1998), immigration
(Janus, 2010), and same-sex marriage (Coffman, Coffman and Ericson, 2017; Powell, 2013); revelation of
vote-buying behavior (Gonzalez-Ocantos, De Jonge, Meléndez, Osorio and Nickerson, 2012); voter turnout
(Holbrook and Krosnick, 2010); and religious attendance (Jones and Elliot, 2016).
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behind them. We then evaluate these hypotheses in Sections 4 and 5. Section 6 concludes.

2 Experimental Design

Our study consisted of three stages: the Sentiment Stage, the Choice Stage, and the Pre-

diction Stage. Each stage took place online with subjects recruited from the University of

Arkansas. Each stage featured the same eight actions framed as binary choices.

We recruited 39 subjects for the Sentiment Stage. For the Choice Stage, we recruited

187 subjects and split them into two groups. In the Prediction Stage, we recruited 95 new

subjects to combine with returners from the Choice Stage.

2.1 Actions

Subjects considered eight binary choices to take an action or not. The eight actions were:

St Jude Donation: Donate $1 to the St. Jude Children’s Hospital.

NPR Donation: Donate $1 to KUAF radio station, the local NPR affiliate.

Steal: Steal $1 from a participant in another stage of the study.

Take Donation: Take $1 for yourself from a planned $50 donation to the Make-A-
Wish Foundation.

Trump Donation: Contribute $1 to Donald Trump’s presidential campaign.

Biden Donation: Contribute $1 to Joe Biden’s presidential campaign.

RNC Donation: Contribute $1 to the Republican National Committee.

DNC Donation: Contribute $1 to the Democratic National Committee.

We made no attempt to label each action as “virtuous” and “stigmatized” based on our a

priori perceptions. We designed our experiment and all hypotheses to be agnostic about the

sentiment surrounding actions; instead, we classify actions based solely on the evaluations of

the sentiment group, who are drawn from the same population. In this way, all of our tests

could be based on perceptions that are observably present in the population.
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Though the emotional valence of a specific action was unimportant to our design, it was

important that the actions we selected possessed a wide range of emotional valence so that we

could test for sensitivity to differences in social desirability. It was also important that the

actions did not exist solely at the extremes of virtue and stigma so that we could identify

effects both between and within stigmatized and virtuous domains. Many actions were

chosen in pairs so that the sentiment surrounding them would be likely to covary negatively.

These steps were taken to increase the variance in choice behaviors and predictions so that

we would not spuriously attribute general behaviors to systematic differences in behavior

towards stigmatized and virtuous actions.14

The binary nature of decisions (either take an action or not) simplified the experiment and

allowed us to send easily-understood signals of behavior to our predictors. All choices were

made privately through online surveys. Subjects were assured that no individual responses

would ever be viewed by anyone except the researchers. This is a conservative approach that

likely mutes the impact of social desirability, since SDR is often dependent on the anticipated

reactions of observers. As previously discussed, this provides a more natural test of social

sophistication about SDR without experimenter demand effects. Actions were described

identically and in detail to all subjects in all stages of the study, including information about

the anonymity under which choices and statements were made. See Appendix Section C for

the full description given to subjects.

2.2 Sentiment Stage

We recruited 39 subjects to evaluate the sentiment associated with each of the eight actions

listed above. Subjects who participated in the Sentiment Stage did not participate in any

other portion of the experiment; they were paid a flat fee of $5.

For each of our eight actions, subjects answered the three questions below on a scale of

0-10, where 0 represented “Very Negative” and 10 represented “Very Positive” sentiment.

14Moreover, we selected several actions related to political views since this is a familiar domain in which
people observe poll data.
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1. How would you feel about taking this action yourself?

2. How would you feel about other people who take this action?

3. How do you think most other people would feel about people who take this action?

For each action A, let Qi,j,A denote subject i’s response to question j ∈ {1, 2, 3} above.

We then construct subject i’s “perceived virtue” of action A, denoted Vi,A, by taking the

within-subject mean of these responses: Vi,A ≡
∑3

j=1 Qi,j,A

3
. Letting NS denote the number of

subjects in the Sentiment Stage, we will use the following indices to measure the perceived

virtue of action A:

VA ≡
∑NS

i=1 Vi,A

NS

, (1)

V̂i,A ≡ Vi,A − V i

σi

, (2)

where V i and σi are subject i’s mean and standard deviation of Vi,A across all eight actions.

Our pre-registered measure of social desirability, VA, captures the perceived virtue of

action A averaged across individuals. This measure suffers from a lack of statistical power

since each action has only one observation. To leverage our full sample of sentiment data and

increase statistical power, we replicate our analyses using V̂i,A, which normalizes responses

within each individual.

2.3 Choice Stage

In the Choice Stage, subjects evaluated all eight actions after being assigned to one of two

groups. The first group, the “IC” group, revealed their preferences through choices in an

incentive-compatible elicitation. The second group, the “H” group stated their preferences

through claims in a hypothetical elicitation. The IC group had 91 subjects and the H group

had 96 subjects.15

15We restricted subjects to participate in one survey or the other, and to participate in that survey only
once. We dropped 15 submissions from the IC group and 7 from the H group for violating this restriction.
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The only difference between the IC and H groups was the incentive-compatibility of the

IC group’s choice elicitation. For instance, if a subject in the IC group chose to donate $1

to St. Jude, then that subject actually sacrificed $1 of their payment and St. Jude actually

received a $1 donation. If a subject in the H group made such a claim, they sacrificed nothing

and St. Jude received nothing. Unlike subjects in the IC group, those in the H group faced

no explicit incentives to make claims consistent with their true preferences.

For each action A, let ICA ∈ [0%, 100%] and HA ∈ [0%, 100%] denote the “selection

rate” for action A among the IC and H group, respectively. We then define socially desirable

responding (SDR) as the overstatement of demand for an action when subjects did not have

to pay the cost of taking the action:

SDRA ≡ HA − ICA. (3)

We consider action A to be socially desirable if SDRA > 0; that is, the H group inflated

their claimed desire to take that action relative to the choices of the IC group. Importantly,

SDRA can take on negative values, indicating a socially undesirable action. Figure 1 depicts

the flow of the Choice Stage for an example where the H group understates demand for an

action (i.e. SDRA < 0).

Figure 1. Experimental Design: Choice Stage

All subjects received a $5 participation payment in the Choice Stage. This amount was

subject to change for the IC group because one of their decisions was randomly selected to

be binding (e.g., if they chose to donate to St. Jude, and this decision was randomly selected
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to bind, their payment would decrease by $1 and St. Jude would gain $1). All subjects in

the Choice Stage were told that they must participate in an additional stage (the Prediction

Stage, described below) during which they could earn more money; subjects were not given

any description of this additional stage until the Prediction Stage began.

2.4 Prediction Stage

All of the subjects who participated in the Choice Stage were required to participate as

“predictors” in the Prediction Stage in order to receive their full payment. In addition, we

recruited 95 new predictors who had not participated in any previous stage. In total, the

Prediction Stage featured 271 subjects: 84 returners from the IC group, 92 returners from

the H group, and 95 new predictors. All subjects received a $5 participation payment for

completing this stage along with any earnings gained from accurate predictions.

In the Prediction Stage, predictors observed the exact same descriptions of the actions

as subjects in the Choice Stage and were tasked with guessing the choice behavior of the IC

group for each of the eight actions.16 To simplify the procedure, we asked subjects to guess

the share of subjects (between 0 and 100, inclusive) from the IC group choosing to take each

action. Predictions were incentivized using a Becker-DeGroot-Marschak mechanism (Becker,

DeGroot and Marschak, 1964).17

For each of the eight actions, predictors made two guesses about the IC group’s selection

rate, ICA, one before receiving information and one after. LetGuessi,1,A denote Predictor i’s

initial guess. Each predictor was then given a randomly drawn “signal” revealing selections

16As mentioned in Subsection 2.3 (Footnote 15), some subjects violated the restriction for duplicate par-
ticipation. These duplicates were discovered after the Prediction Stage completed, meaning that signals
about the IC group were drawn prior to dropping these duplicates. Accordingly, predictors were incen-
tivized based on responses from the full dataset. Differences in choice rates between the full dataset and
our restricted dataset never differ by more than 1.3 percentage points per action. We limit our analysis
to predictors who followed our procedures in order to honor our experimental protocols. However, we will
present results on how sentiment and accuracy relate to the full dataset, because that is the dataset from
which signals were drawn and guesses were incentivized.

17Predictors stood to gain an extra $5 payment based on the outcome of a lottery. The probability of winning
the lottery was either (a) a random draw from a uniform distribution from 0 to 1, or (b) equal to ICA.
Predictors were paid based on option (a) unless their prediction of ICA exceeded their random draw from
option (a); in this case, they were paid based on option (b).
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from either the IC or H group. Rather than observing the full selection rate, predictors

observed a random sub-sampling of behavior. Specifically, predictor i received a signal, si,A ∈

{0, 1, . . . , 10}, conveying the selections on action A of 10 randomly-sampled respondents from

their assigned group.18 Thus, for information from the IC group, si,A ∼ Bin(10, ICA); for

information from the H group, si,A ∼ Bin(10, HA). Note that these signals were drawn with

two independent sources of randomness that are critical to our novel identification strategy:

random assignment of the information source—the IC or H group—and random sampling of

the information conditional on its source.

Predictors were given detailed information about the choice procedures of their assigned

group so that they could appropriately tailor the weight given to these signals. Predictors

were required to correctly answer comprehension questions about these procedures before

advancing.19

After receiving signals, each predictor submitted updated guesses about the selection rate.

Let Guessi,2,A denote predictor i’s updated guess about the selection rate, ICA. Figure 2

depicts the flow of the Prediction Stage.

Figure 2. Experimental Design: Prediction Stage

Immediately after revealing their guesses, predictors stated their confidence in each of

18More specifically, si,A counts the number of 10 randomly-chosen respondents who elected to take action
A. A predictor received such a signal for each action, and thus received 8 signals in total. Furthermore, a
predictor’s signals were all drawn from the same group: a predictor either observed 8 signals from the IC
group or 8 from the H group. The 10 observed respondents who comprise any given signal were randomly
drawn with replacement for each si,A.

19See Appendix Section C for the exact instructions and comprehension questions.
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their guesses. This confidence was elicited on a scale from 0 (very uncertain) to 10 (very

confident). This elicitation was not incentivized.

2.5 Recruitment Summary

Table 1 breaks our sample down by assignment.20

Table 1. Subject participation by treatment

Sentiment Stage Choice Stage Prediction Stage

Sentiment Group 39 Subjects

IC Group 91 Subjects
84 Returners

7 Non-Returners

H Group 96 Subjects
92 Returners

4 Non-Returners

New Predictors 95 New Subjects

Totals 39 Subjects 187 Subjects 271 Subjects
Notes: “Non-Returners” failed to complete the Prediction Stage after successfully completing the

Choice Stage.

3 Primary Hypotheses

Our research questions focus on our notion of “social sophistication.” We define social

sophistication as actively anticipating SDR and appropriately weighting claims from the H

group based on their susceptibility to SDR. To assess the extent to which predictors account

for SDR, we measure the weight they assign to (potentially biased) signals from the H group

relative to the weight assigned to signals from the IC group. Social sophistication requires

that predictors both (i) anticipate the existence of SDR and (ii) adjust for the direction and

magnitude of the bias.

To develop intuition for social sophistication, we present a stylized model of SDR and

derive hypotheses regarding how a socially-sophisticated Bayesian would respond to informa-

tion that is subject to SDR. We address the relative weight that should be given to responses

20Participation in the Prediction Stage was just shy of our target to recruit 100 predictors from each of three
groups: (i) IC group participants, (ii) H group participants, and (iii) new participants.
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that may be biased by SDR and how this weighting depends on perceptions of the direction

and magnitude of SDR.

Recall that the H group faces no incentives based on their claims. Hence, it is costless

for these subjects to claim that they would take the socially desirable action if given the

opportunity. In contrast, the IC group must face the consequences of their choices. For

simplicity, we refer to choices made with consequences as revealing “true” preferences.

Suppose that, due to the lack of consequences, there exists a fraction θA ∈ [0, 1] of

subjects in the H group who claim a preference toward action A in the socially desirable way

regardless of their true preference.21 If action A is virtuous, then such a bias leads subjects

in the H group to inflate their claimed desire to take the action relative to the IC group. The

expected selection rate in the H group is then HA = (1− θA)ICA + θA: a fraction 1− θA of

subjects reveal their true preference, and the remaining fraction, θA, claim they would take

action A regardless of their true preference. Our measure of SDR for action A (Equation 3)

is therefore SDRA = HA − ICA = θA(1− ICA).

If action A is instead stigmatized, then H-group subjects will deflate their claimed desire

to take the action. Their expected selection rate is thus HA = (1−θA)ICA: a fraction 1−θA

of subjects again reveal their true preference, while the remaining subjects claim they would

refuse the action. Our measure of SDR in this case is SDRA = −θAICA.

Recall that for each action A, a predictor in our experiment observes the choices of

10 random subjects from either the IC or H group. If predictor i is assigned to receive

information from the IC group, then si,A ∼ Bin(10, ICA). If predictor i instead receives

information from the H group, then our stylized model implies that, if action A is virtuous,

then si,A ∼ Bin(10, (1 − θA)ICA + θA), and if it is stigmatized, then si,A ∼ Bin(10, (1 −

θA)ICA). Although the distribution of signals depends on θA, we do not assume perfect

knowledge of θA in developing our hypotheses about social sophistication. Our hypotheses

hold under uncertainty about the precise value for θA and focus on directional predictions

21Equivalently, a fraction 1− θA of subjects in the H group report honestly despite no explicit incentive to
do so. This could be driven, for instance, by a preference for truth telling (e.g., Abeler et al., 2019).
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about how knowledge of θA influences the relative weight given to signals from the IC and

H groups.22

We now present the hypotheses that we test in Sections 4 and 5.

3.1 Socially Desirable Responding

We begin our analysis with manipulation checks to demonstrate (i) SDR is present and

predictable—overstatement of claimed demand from the H group correlates with evaluation

of virtue from the sentiment group—and (ii) predictors place positive weight on signals—the

quality of predictors guesses correlates with the quality of their signals.

By confirming these manipulation checks, we can conclude that claims from the H group

do, in fact, possess information relevant for predicting the choices from the IC group. These

manipulation checks also rule out the possibility that all differences in the two information

sources can be wholly attributed to beliefs about noise or random choice errors. If this were

the case, then social sophistication would not provide any improvement toward a predictor’s

guesses.

Manipulation Check 1 (SDR): Socially desirable responding will cause the H group to

increasingly overstate claimed demand for an action as the perceived virtue of that action

grows.

All else equal, the more virtuous an action is perceived to be, the more beneficial it is

to portray oneself as a type who takes that action. Thus, an increase in perceived virtue

should increase the incentive to overstate claimed demand. In the model above, if an action

A′ is perceived to be more virtuous than action A, then θA′ > θA. That is, more subjects

are inclined to lie in the socially desirable way when incentives are removed. The measures

of SDR for both virtuous and stigmatized actions, derived above, are increasing in θA.
23

22Below, we will impose an additional key assumption: although signals may influence a predictor’s estimate
of θA, they must also influence their beliefs about ICA.

23This can be thought of as a local phenomenon, as it assumes that choice rates, ICA, are held constant
as perceived virtue changes. This is one limitation of such a stylized model, because a sufficiently large

22



Confirming the predictive validity of our measures of perceived virtue from the senti-

ment group establishes what we call “sentiment sophistication.” That is, the evaluations of

sentiment we collect represent useful social knowledge for predicting choice behavior.

Manipulation Check 2 (Accuracy): If predictors assign positive weight to their signals,

then they will be relatively more accurate with information from the IC group.

Our design cannot identify social sophistication if predictors never update their guesses in

response to signals. We present a simple test to demonstrate that predictors assign positive

weight to signals—we measure if updated guesses about the IC group are more accurate for

predictors who receive their signals from the IC group rather than the H group. That is, do

more accurate signals result in more accurate guesses?

3.2 Social Sophistication

Our analysis proceeds by evaluating hypotheses about social sophistication—the anticipation

and correction for SDR. For these hypotheses, we use our stylized framework to describe

how a sophisticated understanding of θA should influence the way that predictors respond

to signals.

In a comprehensive review, Benjamin (2019) describes how prevalent statistical biases—

independent of the concepts we study here—can generate both over- and under-updating

from new information. For this reason, all of our hypotheses about updating focus on

differences in updating across the two information sources—how updating differs in response

to IC-group and H-group signals—rather than comparisons to the Bayesian benchmark. In

this way, we can evaluate social sophistication in isolation instead of evaluating the joint test

of social sophistication and statistical sophistication.24

change in the virtue or stigma of an action would likely affect choice rates. However, this should have little
impact on our results, as our actions are all within a reasonable range of stigma or virtue. Following the
logic of our model provides useful intuition in this context.

24Our focus on differential updating across groups also mitigates concerns about anchoring. Since we elicit
each subject’s prior and updated guess, they may update insufficiently if their second guess is anchored
toward their first. However, our strategy of focusing on differences in updating across groups largely
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Hypothesis 1 (Anticipation of SDR): Predictors with social sophistication will give

greater weight to incentive-compatible information.

Social sophistication allows predictors to leverage signals from the H group to make un-

biased guesses about ICA. However, those guesses will be inherently noisier. Sophisticated

predictors will recognize that signals from the H group carry less information and will dis-

count them relative to the more informative signals from the IC group. Thus, with social

sophistication, updated guesses about the behavior of the IC group will react more strongly

to signals from the IC group.

Hypothesis 1 tests a fundamental aspect of social sophistication. In our stylized model,

testing Hypothesis 1 simply amounts to testing whether predictors treat θA as non-zero.

Hypothesis 2 (Direction): Predictors with social sophistication will discount “perception-

inflating” signals from the H group relative to similar signals from the IC group, but they

will give greater relative weight to “perception-deflating” signals from the H group.25

The effect of θA on predictions depends on whether action A is stigmatized or virtu-

ous. Thus, sophisticated inference requires a predictor to first assess whether an action is

virtuous (where θA correlates with overstatement of claimed demand by the H group) or

stigmatized (where θA correlates with understatement of claimed demand by the H group).

Predictors can then categorize the signal they observe as a perception-inflating boast or

a perception-deflating confession. We define perception-inflating and perception-deflating

signals relative to a predictor’s initial guesses. A predictor’s signal is perception-inflating

(-deflating) if it indicates greater (lesser) demand for socially-desirable actions than the pre-

dictor initially guessed. Full social sophistication requires a heterogeneous treatment of

perception-inflating and perception-deflating signals. Sophisticated predictors should dis-

count perception-inflating signals from the H group as they are likely over-optimistic about

sidesteps this issue so long as anchoring behavior is independent of group assignment.
25This hypothesis was not included in our pre-analysis plan. We include it here and provide results in
the following section because they meaningfully add to our understanding of social sophistication among
predictors. Our analysis faithfully replicates the analysis we used to evaluate every other hypothesis.
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socially-desirable choices. But, in the rare event that a predictor observes a perception-

deflating signal from the H group, this signal should be given more weight than an equivalent

signal from the IC group.26 This is because a sophisticated predictor realizes that they have

observed a perception-deflating signal despite the H group’s desire to overstate their claimed

demand for socially desirable behavior. Thus, choices of the IC group are probably even

lower than this signal suggests.

For example, donations to St. Jude are categorized as virtuous because SDRSt.Jude > 0.

Now, suppose a predictor initially guesses that 50% of the IC group would donate and then

receives a signal in which 60% of the sampled members of the H group claim they would

make the donation. This signal is perception-inflating. It should be discounted relative to

a signal in which 60% of the sampled members of the IC group actually choose to donate

because the claims from the H group are likely overstated. But, if the same predictor with

the same initial guess instead receives a signal from the H group in which only 40% claim

they would make the donation, then this signal is perception-deflating. It should be treated

as even more informative than a signal from the IC group in which 40% choose to donate:

if only 40% claim they would donate despite being able to freely lie, then surely the true

choice rate is even lower than that.27

To summarize this test in terms of our stylized model, we jointly test if predictors (i)

identify whether θA inflates or deflates hypothetical claims about a given action A and (ii)

understand that this makes perception-deflating signals from the H group less likely and,

therefore, more informative about ICA.

26SDR predicts that perception-inflating signals will be more likely from the H group than the IC group.
Indeed, perception-inflating signals are 16 percentage points more likely when signals arrive from the H
group (p < 0.001). For this reason, Hypothesis 1 suggested that the claims of the H group should be
discounted relative to the choices of the IC group, on average.

27This implication of social sophistication relies on the assumption that, for a given action, a predictor knows
whether subjects in the H group tend to understate or overstate their demand for it. This means that the
predictor does not use their signal to infer whether the action is stigmatized or virtuous. If this were the
case, then a sophisticated predictor may use the surprisingly low 40% signal from the H group to conclude
that donations to St. Jude are in fact stigmatized. We doubt that this alternative explanation drives
our findings regarding Hypothesis 2 since results from the Sentiment Stage reveal that our actions have
predictable stigma or virtue.
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Hypothesis 3 (Relative Magnitude): Predictors with social sophistication will increase

the relative weight given to incentive-compatible information as the perceived virtue or stigma

of an action becomes more extreme.

The information content of a signal from the H group is decreasing in the share of subjects

falsely claiming socially desirable behaviors, θA. Consider, for example, the boundary case

of θA = 1: signals from the H group then provide no information and should be ignored.

Social sophistication suggests that a predictor should account for the relative magnitude

of θA across actions (i.e. which actions have greater or lesser degrees of virtue or stigma).

Thus, as the perceived virtue or stigma of an action grows relatively more extreme, we expect

sophisticated predictors to increase their discounting of signals from the H group relative to

the IC group.

In terms of our stylized model, this amounts to evaluating whether predictors are better

than random at ordering θA across actions.

4 Data Description and Manipulation Checks

In this section, we provide summary statistics for behavior in each stage of the experiment for

each of the eight actions. We then provide results from our manipulation checks, demonstrat-

ing that (i) socially desirable responding is present and predictable and (ii) our predictors

give positive weight to the signals they receive.

Our manipulation checks serve to establish that the bias from SDR is systematic and

predictable. That is, differences between the IC and H groups are not exclusively attributable

to noise or random choice errors. Absent this confirmation, no degree of social sophistication

would allow a predictor to extract information from the statements of the H group that could

improve their guesses about the choices of the IC group because no such information would

exist. Thus, by confirming our manipulation checks, we confirm sufficient conditions that

allow us to test for the presence of social sophistication.

Table 2 presents descriptive results for each action. The Sentiment Stage and Choice
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Stage are captured in Columns 1 and Columns 2–3, respectively. Initial and updated guesses

from the Prediction Stage are in Columns 4–6. Columns 7–8 compare predictors’ average

accuracy across information sources, where accuracy is measured by the absolute difference

between a predictor’s updated guess and the true value.

Table 2. Summary statistics for each action

Action
Sentiment Choice Rate Initial Updated Guesses Updated ABS Error

(VA) IC Group H Group Guesses IC Signal H Signal IC Signal H Signal

St Jude Donation 9.15 61.5% 75.0% 60.8% 63.4% 68.8% 12.9 16.8
NPR Donation 6.14 26.4% 31.3% 26.5% 26.5% 26.8% 11.7 14.4
Steal 2.18 25.3% 19.8% 44.7% 30.9% 29.6% 13.5 15.1
Take Donation 4.07 12.1% 6.3% 24.1% 13.6% 11.1% 9.0 9.1
Trump Donation 3.80 11.0% 17.7% 30.1% 18.4% 21.9% 11.5 13.7
Biden Donation 3.74 3.3% 8.3% 24.2% 10.7% 11.0% 8.4 8.9
RNC Donation 4.72 7.7% 20.8% 33.1% 17.6% 24.5% 11.9 17.7
DNC Donation 4.53 12.1% 25.0% 33.6% 18.2% 26.3% 10.3 16.1
Notes: This table does not include data from subjects who were dropped from the analysis because of duplicate entries (see

Section 2). Sentiment (VA) is a within-subject average of three responses from 0 to 10 about the social desirability of the action.

4.1 Socially Desirable Responding

In order to conduct valid tests of social sophistication among predictors, we must first es-

tablish that SDR is present in the signals they receive. Recall that we defined SDR as the

difference in selection rates between the H and IC groups (SDRA ≡ HA − ICA). Thus,

we must first ensure that the H group overstates (understates) claimed demand for socially

desirable (undesirable) behaviors relative to the IC group. Additionally, the inflation of

claimed demand for an action must not be random, but rather systematically tied to the

action’s perceived virtue, which we measured independently during the Sentiment Stage.

Table 3 presents this analysis at two levels of specificity. Column 1 regresses SDRA for

each of the eight actions on VA, the mean perceived virtue of the action from the Sentiment

Stage (see Equation 1). Column 2 follows with an individual-level version of this test that

regresses SDRA on V̂i,A, the within-subject normalized index of the perceived virtue of each

action (see Equation 2).28

28See Appendix Section B for details on all of our estimation methods.
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Table 3. Socially desirable responding and perceived virtue

Socially Desirable Responding

Mean Sentiment 2.390∗

(1.12)

Standardized Sentiment 3.112∗∗∗

(0.48)

Constant -6.080 5.375∗∗∗

(5.814) (0.00)

Observations 8 312
Clusters N/A 39

Notes: “Mean Sentiment” is aggregated across 39 individual evaluations measured from 0 (Very

Negative) to 10 (Very Positive). “Standardized Sentiment” normalizes sentiment (Vi,A) within each

individual to have mean 0 and SD 1. Column 1 presents OLS results. Column 2 presents results of

a random-effects linear regression with subject-level random effects and standard errors clustered

at the subject level. * p < 0.10, ** p < 0.05, *** p < 0.01.

Our measure of SDR is clearly predicted by the evaluations of virtue and stigma from

the Sentiment Stage. Column 2 shows that the H group overstates their claimed demand for

socially desirable behaviors by an additional 3.1 percentage points for every one standard

deviation increase in perceived virtue.29

The fact that our subjects’ evaluations of sentiment are predictive of observed SDR

demonstrates their “sentiment sophistication:” they have a fairly accurate understanding

of the stigma or virtue surrounding an action. Using the knowledge of which actions are

more socially desirable—and therefore more likely to inspire dishonest responding from the

H group—subjects could tailor their discounting of the H group’s claims to control for SDR.

Our tests of Hypotheses 2 and 3 evaluate whether predictors are able to complete this

operation and translate knowledge of the relative social desirability of an action—obtained

through sentiment sophistication—into an awareness of the resulting bias—a measure of

social sophistication.

This sentiment sophistication is presented graphically in Figure 3, which orders each of

29Appendix Table A.1 breaks down this association by each of the three components of our sentiment index.
The relationships are similar across components, though others’ sentiment and second-order perceptions
of sentiment appear to be slightly stronger predictors of SDR than one’s own sentiment.
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the eight actions along the horizontal axis according to their observed SDR. For each action,

the associated sentiment evaluations are plotted on the vertical axis. There is a clear positive

association between the action’s perceived virtue and the SDR in the Choice Stage.

Figure 3. Sentiment associated with each action. Actions ordered by SDR value.
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4.2 Accuracy

All predictors were tasked with guessing the behavior of the IC group. Therefore, signals

drawn from the choices of the IC group will necessarily be (weakly) more predictive than

signals drawn from the claims of the H group. Thus, we can validate that predictors are

responsive to signals by testing if higher-quality information (i.e., from the IC group) results

in more accurate updated guesses.

Table 4 presents this manipulation check. Columns 1-2 measure accuracy based on the

absolute error of a predictor’s guess: |ICA −Guessi,t,A|, where t ∈ {1, 2} denotes the initial

and updated guess, respectively. Columns 3-4 repeat this analysis using the squared error of

a predictor’s guess: (ICA −Guessi,t,A)
2. Since predictors were randomly assigned to receive

signals from either the IC or H group after stating their initial guess, the baseline accuracy
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was balanced.30 Therefore, our outcome of interest is the extent to which predictors’ updated

guesses become more accurate depending on their information source.

Table 4. Improvements in accuracy depending on information source

Absolute Errors Squared Errors

Updated Error ∆Error Updated Error ∆Error

IC Info Source -2.76∗∗∗ -2.73∗∗∗ -115.33∗∗∗ -98.85
(0.59) (1.04) (30.07) (74.03)

Initial Error 0.24∗∗∗ 0.16∗∗∗

(0.02) (0.03)

Constant 5.02∗∗∗ -11.41∗∗∗ 113.80∗∗∗ -576.66∗∗∗

(0.68) (1.24) (33.45) (90.81)

Mean Initial Error: 21.58 792.99
Standard Deviation: (18.09) (1219.52)

Observations 2168 2168 2168 2168
Clusters 271 271 271 271

Notes: Random-effects linear regression with subject-level random effects. Standard errors clustered at the

individual level. Fixed effects are included for each action. * p < 0.10, ** p < 0.05, *** p < 0.01.

Here, “IC Info Source” is an indicator variable equal to one if the predictor is assigned to

receive signals from the IC group. Columns 1-3 show that receiving this higher-quality infor-

mation causes a large and statistically significant improvement in the accuracy of predictors’

guesses. That is to say, higher-quality signals lead to more accurate updated guesses.

It is important to note that the constant terms estimated in Columns 2 and 4 are negative

and significant. Thus, on average, the error in a subject’s guess decreases after receiving

information, regardless of the information source. Even the lower-quality signals from the H

group improve predictors’ guesses relative to their initial accuracy.

Despite the improvement in accuracy, predictors’ guesses in both groups fall short of a

simple benchmark: the accuracy of their signals. Both groups would improve their accuracy

by simply making guesses that match their signals exactly.31 On average, signals from the IC

30The p-values for a test of differences in the accuracy of initial guesses are p = 0.97 and p = 0.81 for
absolute- and squared-errors, respectively.

31Specifically, if one’s signal reveals that z out of 10 people took the action, then this strategy calls for a
guess that the IC choice rate is (10× z)%.

30



group have an absolute error of 8.6 percentage points, while the associated updated guesses

have an absolute error of 11.1 (test of differences: p < 0.001). Signals from the H group

have an absolute error of 12.2 percentage points, while the associated updated guesses have

an absolute error of 13.9 (test of differences: p < 0.001).

5 Main Results

Our manipulation checks confirmed that SDR is widespread and predictable and that pre-

dictors’ guesses are sensitive to their signals. With these prerequisites established, we now

proceed to test our hypotheses about social sophistication, exploring the extent to which

predictors anticipate and react to SDR. Our analysis closely follows our pre-registration

with few amendments. As we test each hypothesis, we will begin with our pre-registered

specification before presenting any alternative specifications. Appendix Section B details

our empirical estimation and the ways in which we supplement our pre-registered analysis.

5.1 Hypothesis 1: Anticipation of SDR

Hypothesis 1 states that social sophistication should cause predictors to give signals from

the IC group relatively more weight than those from the H group, on average. This amounts

to testing if predictors identify differences in information quality between the two sources

and discount hypothetical claims relative to actual choices.

Evaluating a predictor’s sensitivity to their idiosyncratic signals from either the IC or H

group poses a particular obstacle: participants in the two groups faced different incentives

in the Choice Stage, and thus the distribution of signals differs across groups. Therefore,

our random assignment of information source is confounded with the assignment of a dif-

ferent mean for the distribution of signals. To resolve this confound and isolate the random

sampling variation in signals, we control for the differences in the distributions from which

signals are drawn.32 We accomplish this by including either (i) controls for the mean of the

32See Kahan (2015) and Thaler (2019) for discussions on why responses to information alone are insufficient
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signal distribution or (ii) fixed effects for the distribution. We then causally identify the dif-

ferential impact of signals from the IC group because of our randomly-assigned information

source (IC vs. H).

Table 5 presents our test of Hypothesis 1—whether predictors anticipate SDR and ac-

cordingly give greater weight to information from the IC group when updating their guesses.

Column 1 follows our pre-registration exactly, estimating the updated guess while control-

ling for the initial guess with additional controls for the mean of the signal distribution.

Column 2 examines within-predictor changes in guesses, which increases statistical power.

Column 2 also employs a more conservative solution to address the differences in distribu-

tions by including fixed effects for each of the 16 combinations of actions and information

sources. Columns 3 and 4 replicate the analysis of Column 2 but restrict our sample to

newly recruited predictors and experienced predictors, respectively. This allows us explore

the role of experience in prompting skepticism toward claims from the H group.

Columns 1 and 2 of Table 5 reveal the skepticism with which predictors treat signals

from the H group. Predictors respond to each mechanically-random one-percentage-point

increase in a signal from the H group by updating their guesses by 0.55–0.59 percentage

points (p < 0.001 for both)—about halfway to the signal. The interaction term “IC Info

Source×Signal Value” shows that predictors give signals from the IC group significantly

greater weight, confirming Hypothesis 1. A one-percentage-point increase in an IC-group

signal results in a greater increase in a predictor’s updated guess than an identical increase

in an H-group signal. This difference is equal to 0.08–0.17 percentage points (p < 0.01 for

both). Equivalently, 14–31% of the updating from IC-group signals is attributable to “extra

updating” due to the added weight given to IC-group signals relative to H-group signals.

Concretely, an IC-group signal showing one additional person (out of the 10 sampled)

choosing action A will cause a predictor to increase their guess by 6.7–7.2 percentage points.

In contrast, had this signal arrived from the H group, predictors would only increase their

to identify differential updating.
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Table 5. Updated guesses in response to signals from different sources

Updated Guess ∆ Guess
Full Full New Experienced

Sample Sample Predictors Predictors

Signal Value 0.59*** 0.55*** 0.55*** 0.54***
(0.03) (0.05) (0.07) (0.06)

IC Info Source × Signal Value 0.08*** 0.17*** 0.11 0.22**
(0.03) (0.07) (0.10) (0.09)

Initial Guess 0.30***
(0.02)

IC Info Source -1.14
(1.07)

Observations 2168 2168 760 1408
Clusters 271 271 95 176
Control for Mean Signal: Yes N/A N/A N/A

Fixed-Effects: Action
Action Action Action

× × ×
Source Source Source

Notes: Random-effects linear regression with subject-level random effects. Standard errors clustered at the

individual level. * p < 0.10, ** p < 0.05, *** p < 0.01.

guess by 5.5–5.9 percentage points.

In Appendix Section A.2, we plot each initial and updated guess individually and perform

heterogeneity analysis to show that predictors discount signals from the H group at both

the intensive and extensive margins. We find suggestive (but not significant) evidence that

predictors with signals from the H group are both more likely to entirely ignore their signals,

and less likely to submit updated guesses that exactly match their signals.

Predictors who participated in the H group during the Choice Stage may have experi-

enced the temptation to distort their responses, making them more skeptical when receiving

signals from the H group. Thus, we use Columns 3 and 4 of Table 5 to test if experience

in the Choice Stage is a source of skepticism toward H-group signals. Predictors who pre-

viously participated in the Choice Stage give 0.22 percentage points extra weight to each

percentage-point increase in IC-group signals relative to H-group signals. On the other hand,

newly recruited predictors only give IC-group signals 0.11 percentage points extra weight for
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a corresponding increase in signals. The difference between these groups is not significant,

though when each prior role—IC group or H group—is analyzed separately, the differential

effect of participating in the H group during the Choice Stage approaches marginal signifi-

cance (p = 0.125). These results can be found in Appendix Section A.3.33

Our results from Table 5—along with our supplemental analysis in Appendix Section A.2—

consistently find that predictors demonstrate a fundamental feature of social sophistication:

they anticipate the potential for SDR and respond by discounting the claims of the H group.

Full social sophistication, however, involves more complex procedures that we examine next.

5.2 Hypothesis 2: Direction of SDR

Here, we test if predictors’ guesses appreciate the direction in which SDR will affect signals

from the H group. That is, we ask how accurately predictors recognize whether the H group

will tend to overstate or understate their claimed desire to take a given action.

Predictors with social sophistication should increase their discounting of signals from

the H group when they are “perception-inflating”—i.e., suggestive of more socially desirable

behavior than the predictor’s initial guess—because the H-group signals are drawn from

claims that tend to be optimistic exaggerations. Conversely, social sophistication guides

predictors to give more weight to signals from the H group when they are “perception-

deflating”—i.e., suggestive of less socially desirable behavior—because in the rare case that

a perception-deflating signal is drawn from the H group’s optimistic claims, it suggests

that the initial guess is particularly mistaken and the predictor should respond strongly to

the signal. For a concrete example and further details on this logic, see the discussion of

Hypothesis 2 in Section 3.

To evaluate this hypothesis, we must first designate which actions are socially desirable.

We do so empirically using SDRA. If SDRA > 0—that is, the H group overstates their

demand for action A—then A is considered virtuous. Otherwise, if SDRA < 0, then A is

33Table A.3 contains our pre-registered analysis of the role of experience on social sophistication. The results
are qualitatively similar to those in Columns 3 and 4 of Table 5.

34



considered stigmatized.34,35 With knowledge of an action’s social desirability, social sophis-

tication will enable predictors to determine if the signal they receive is perception-inflating

or perception-deflating. A perception-inflating signal is one that indicates a greater demand

for an action with SDRA > 0 (or a lesser demand for an action with SDRA < 0) than the

predictor initially guessed. A perception-deflating signal indicates a lesser demand for an

action with SDRA > 0 (or a greater demand for an action with SDRA < 0) than the pre-

dictor initially guessed. Note that there are no absolute thresholds for perception-inflating

(-deflating) signals; they are categorized based on whether they indicate greater (lesser)

social-desirability than the predictor’s initial guess.

Our test of Hypothesis 2 modifies the approach of Hypothesis 1 to test if the relative

weighting of H-group signals depends on whether they are perception-inflating or perception-

deflating. To aid the interpretation of coefficients, we will replicate the analysis of Hy-

pothesis 1 separately for predictors receiving perception-inflating and perception-deflating

signals.36

Table 6 displays our limited support for Hypothesis 2. Columns 1 and 2 replicate the

analysis of Columns 1 and 2 from Table 5 but restrict their focus to perception-inflating

signals. In this direction, signals from the H group should be discounted relative to those

from the IC group. We find a positive coefficient for “IC Info Source×Signal Value,” revealing

that H-group signals receive less weight than IC-group signals. For every one-percentage-

point increase in signals, Column 1 shows that predictors’ guesses increase by 0.11 percentage

points less when the signals arrive from the H group (p < 0.001). Column 2 estimates this

diminished weight to be 0.12 (p = 0.211). Thus, predictors do appear to recognize that

perception-inflating signals are less credible when they come from the H group instead of

34Note that all of our actions have SDRA > 0 except for stealing from another subject and taking money
from the Make-A-Wish Foundation.

35One could consider using our measure of perceived virtue from the Sentiment Stage to identify stigmatized
actions. However, this approach presents an issue with units because the Likert scale we used to measure
sentiment does not have an obvious cutoff for socially-desirable and socially-undesirable actions.

36We conduct similar analysis using a fully-interacted specification in Appendix Section A.4. The results are
qualitatively similar, but even more inconsistent with social sophistication.
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Table 6. Updated guesses in response to perception-inflating and -deflating signals from
different sources

Perception-Inflating Perception-Deflating
Updated Guess ∆ Guess Updated Guess ∆ Guess

Signal Value 0.61*** 0.26*** 0.71*** 0.33***
(0.05) (0.07) (0.03) (0.06)

IC Info Source×Signal Value 0.11*** 0.12 -0.01 0.08
(0.04) (0.09) (0.03) (0.09)

IC Info Source -2.06 0.67
(1.27) (1.28)

Initial Guess 0.29*** 0.23***
(0.04) (0.03)

Observations 925 1243
Clusters 267 270
Control for Mean Signal: Yes N/A Yes N/A
Fixed-Effects: Action Action×Source Action Action×Source

Notes: Random-effects linear regression with subject-level random effects. Standard errors clus-
tered at the individual level. “Perception-Inflating” (“Perception-Deflating”) are defined by
whether the signal is in the direction of more (less) social desirability relative to the initial guess.
* p < 0.10, ** p < 0.05, *** p < 0.01.

the IC group, though the statistical significance of this result depends on the specification.

Social sophistication also requires recognizing that perception-deflating signals should be

given relatively more weight when they come from the H group. Columns 3 and 4 reveal no

evidence for this more complex dimension of social sophistication. In Column 3, we find a

near zero and insignificant coefficient for “IC Info Source×Signal Value,” revealing no differ-

ence in the weight given to H-group signals. Note that this coefficient would be negative if

predictors put relatively more weight on H-group signals as predicted by social sophistication.

Additionally, in the specification of Column 4, this effect is positive, meaning that predictors

still discount signals from the H group even when they are perception-deflating, though this

effect is not significant. Thus, we conclude that predictors’ guesses demonstrate no recog-

nition that perception-deflating signals from the H group are even stronger indictments of

behavior than corresponding signals from the IC group.37

37In Appendix Section A.4, we present individual guesses in Figures A.3 and A.4 to visualize heteroge-
neous discounting with respect to the direction of SDR. These figures mirror the approach taken in Fig-
ures A.1 and A.2 (which visualize average discounting).
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5.3 Hypothesis 3: Relative Magnitude of SDR

We now test if predictors appreciate which claims from the H group are more susceptible to

SDR and, therefore, more worthy of discounting. Table 3 and Figure 3 show how Sentiment

Stage responses can predict which actions generate the strongest image concerns. Here,

we examine whether predictors apply such knowledge when interpreting claims from the H

group.

Our test of Hypothesis 3 adapts the approach of Hypothesis 1 to include interaction terms

for the observed level of SDRA. As SDRA grows in magnitude, the claims of the H group

are increasingly distorted by SDR and social sophistication prescribes greater discounting for

such claims. Since the discounting of H signals should increase with the magnitude of SDRA

regardless of its sign, we use its absolute value, |SDRA| = |HA − ICA|, as our interaction

term.

To demonstrate robustness to an alternative measure of SDR, and to directly connect

social sophistication with sentiment sophistication, we repeat the analysis above using re-

sponses from the Sentiment Stage as the interaction term. Table 3 and Figure 3 confirm that

SDR tends to increase in magnitude as the sentiment group’s evaluations of an action be-

come more extreme; thus, predictors should increasingly discount signals from the H group

for such actions. Our interaction term in this case is the absolute value of a normalized

measure of sentiment at the action-level: |V̂A| =
∣∣∣VA−V

σV

∣∣∣, where V and σV are the mean and

standard deviation of VA (Equation 1) across all eight actions.

Table 7 presents our test of Hypothesis 3. We find no evidence that predictors increase

their relative discounting of signals from the H group as either SDR or perceived virtue

become more pronounced. In Columns 1 and 2, the additional discounting of the H group is

captured by the coefficient for “IC Info Source×Signal Value×|SDR|.” We find no evidence

of increased discounting of H-group claims for actions with greater SDR. In fact, we find point

estimates in the wrong direction. In Column 3, the additional discounting of the H group is

captured by the coefficient for “IC Info Source×Signal Value×|V̂A|.” As in Columns 1 and 2,
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predictors fail to increase their discounting of claims from the H group as |V̂A| grows, with

point estimates again in the wrong direction. Thus, Table 7 rejects the notion that predictors

tailor their inferences to the relative magnitude of bias from SDR.

Table 7. Updated guesses in response to SDR magnitude by information source

Updated Guess ∆ Guess ∆ Guess

Signal Value 0.60*** 0.57*** 0.63***
(0.05) (0.12) (0.06)

IC Info Source×Signal Value 0.06 0.38** 0.24**
(0.07) (0.17) (0.09)

Signal Value×|SDR| -0.00 -0.00
(0.00) (0.01)

IC Info Source×Signal Value×|SDR| 0.00 -0.02
(0.01) (0.02)

IC Info Source×|SDR| -0.14 -0.46
(0.16) (0.47)

|SDR| 0.17 -0.40
(0.13) (0.90)

Initial Guess 0.32***
(0.02)

IC Info Source 0.19
(1.58)

Signal Value×|V̂A| -0.10**
(0.05)

IC Info Source×Signal Value×|V̂A| -0.04
(0.07)

IC Info Source×|V̂A| -4.66
(5.20)

|V̂A| 35.81
(57.97)

Observations 2168
Clusters 271
Control for Mean Signal: Yes N/A N/A
Fixed-Effects: Action Action×Source Action×Source

Notes: Random-effects linear regression with subject-level random effects. Standard errors clustered at the

individual level. * p < 0.10, ** p < 0.05, *** p < 0.01.

Figure 4 visually depicts this lack of social sophistication.38 Just as in Figure 3, actions

38Figure 4 presents coefficients and confidence intervals for “IC Info Source×Signal Value” separately for
each action. The specification is drawn from Column 2 of Table 5 and replicated for each individual
action. We include an indicator variable for “IC Info Source,” since we cannot include fixed effects for each
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are ordered by their SDR value, with extreme negative values on the left and extreme positive

values on the right. With social sophistication, the relative weight given to IC signals (and

hence the relative discounting of H signals) should grow at the extremes. We find no such

pattern. In fact, for the action with the most extreme SDR—donations to St. Jude Children’s

Hospital—predictors do not discount H signals relative to IC signals at all. Thus, in contrast

to Figure 3—which demonstrated clear sentiment sophistication—Figure 4 finds no evidence

of social sophistication.

Figure 4. Weight given to signals from the IC group. Actions ordered by SDR value.
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Recall from our discussion in Section 3 that Hypothesis 3 provides a rather weak test

of social sophistication—it amounts to testing whether predictors’ guesses account for the

relative SDR across actions in a way that is better than random. As is evident from Figure 4,

predictors fail this test. This failure is striking because the test is a natural extension of

the tests from Table 3 and Figure 3. In those, the sentiment group demonstrates a clear

understanding of which actions tend to be more virtuous or stigmatized. Thus, it appears

that predictors fail to translate the sentiment sophistication that is clearly present in the

population into the discounting behaviors prescribed by social sophistication.

combination of action and information source. All regressions cluster standard errors at the subject level.
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5.4 Confidence in Predictions

Immediately after making a guess, we asked predictors to state their confidence in that guess

on a scale from 0 to 10. Although these elicitations were not incentivized, they provide further

insight on the perceived differences between the two information sources. Table 8 examines

the association between confidence and the accuracy of a guess. We specifically focus on how

higher-quality information from the IC group influences this relationship. Since IC-group

signals are weakly more informative, socially-sophisticated predictors who appreciate this

fact should display greater increases in confidence when they receive information from the

IC group.39 With our random assignment of the information source, we can causally identify

the relationship between higher-quality information and confidence in predictions.

Our analysis uses absolute errors to measure accuracy, meaning that positive numbers

indicate diminished accuracy. Initial confidence and updated confidence are both normalized

across all individuals and actions to have a mean of 0 and standard deviation of 1.

Table 8. Confidence in predictions

Initial Confidence Updated Confidence

Initial Error (Absolute Value) 0.004*** -0.006***
(0.001) (0.001)

Updated Error (Absolute Value) 0.004**
(0.002)

Updated Error×IC Info Source -0.002
(0.003)

Initial Confidence 0.457***
(0.023)

IC Info Source -0.015
(0.077)

Constant -0.298*** 0.119*
(0.070) (0.062)

Observations 2168
Clusters 271
Fixed-Effects: Action Action

Notes: Random-effects linear regression with subject-level random effects. Standard errors clus-
tered at the individual level. Confidence is normalized to mean 0 and standard deviation of 1. *
p < 0.10, ** p < 0.05, *** p < 0.01.

39The analysis of predictor confidence is not included in our pre-analysis plan. However, our framework
of analysis mirrors that of the pre-registered hypotheses, and we believe it substantively adds to our
understanding of the impact of (perceived) information quality.
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Column 1 shows a false confidence by predictors. Similar to the classic result from Kruger

and Dunning (1999), there is a negative and significant relationship between the accuracy of a

predictor’s initial guess and their initial confidence (p < 0.01). Column 2 shows that this false

confidence effect persists for the updated guesses of predictors who receive information from

the H group (p < 0.05). However, the negative association between accuracy and confidence

is greatly diminished and statistically insignificant for predictors who receive higher-quality

information from the IC group (p > 0.40).40 Interestingly, receiving information from the

IC group has a near-zero and not significant level effect on confidence, despite the better

information. Taken together, these results suggest not only that predictors fail to account for

biased claims from the H group, but that this failure may drive second-order consequences

such as the persistence of unfounded confidence in erroneous predictions.

6 Discussion and Conclusion

In our experiment, we designed an environment to cleanly identify SDR across several dif-

ferent actions. We then asked subjects to predict choice behavior for the actions. We

presented subjects with random subsamples of data from either incentivized choices or unin-

centivized polls to assist them in their predictions. This novel subsampling approach offers

a cleaner causal identification of responses to information than the traditional paradigm

of information-revelation or belief-correction experiments. The traditional approach reveals

identical information to all subjects, meaning that the direction of updating is endogenous

to prior beliefs. We believe our approach can alleviate these endogeneity concerns.

When our subjects were presented with data from unincentivized polls, they showed

limited “social sophistication” in controlling for the SDR manifest in those poll data. Our

subjects correctly put less weight on what others claimed they would do relative to what oth-

ers actually did. However, they faltered in calibrating their discounting to the SDR of each

action. Despite other subjects from the same population showing a clear ability to identify

40Gneezy and Serra-Garcia (2019) find similar overconfidence in one’s ability to detect lies by others.
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the social desirability of actions, predictors failed to translate this knowledge into sophisti-

cated discounting. While our subjects correctly discounted perception-inflating signals, they

incorrectly responded to perception-deflating signals. This is a failure of sophistication: sub-

jects should appreciate that perception-deflating signals are especially informative because

few people will lie to make themselves look less socially desirable. Further, when considering

actions with more extreme social desirability—which inspired more dishonest hypothetical

claims—subjects did not increase their discounting.

Our setting was designed to maximize the control over outside variables in order to cleanly

identify biases from SDR. In such an abstract environment where subjects are carefully

observed, we might expect that biased reporting due to SDR would be relatively salient.

In light of this, the limited evidence we find for social sophistication among predictors is

even more striking. We should be skeptical of how well peoples’ inferences will control for

more subtle forms of SDR in natural settings if they do not account for the blatant SDR in

our contrived environment. However, further research is needed to determine the impact of

contextual factors on social sophistication.

Other notions of “sophistication” in behavioral economics typically require the recogni-

tion and anticipation of one’s own biases. Such sophistication is rare (Augenblick and Rabin,

2019; Ericson, 2011; Heidhues and Kőszegi, 2010). Although social sophistication in our set-

ting does not require any self-reflection—it only requires participants to recognize that others

may succumb to social desirability bias—we still find limited evidence of sophistication.41

A failure to correct for biases from SDR has significant economic costs. Election results,

public-health issues, job-market forecasts, and social-policy preferences are all frequently pre-

dicted using unincentivized poll data that are susceptible to SDR.42 Our study demonstrates

41A literature on “bias blind spots” finds that people possess a greater ability to recognize others’ biases than
their own (Pronin, Lin and Ross, 2002; West, Meserve and Stanovich, 2012). Fedyk (2018) demonstrates
this asymmetry in the domain of intertemporal choice.

42Polls are used to determine candidate viability and access to debate stages (Fox News, 2016), they influence
voter turnout (Agranov, Goeree, Romero and Yariv, 2018; Bursztyn, Cantoni, Funk and Yuchtman, 2021;
Großer and Schram, 2010) and reported preferences (Cantú and Márquez, 2021), affect campaign contri-
butions (Adkins and Dowdle, 2002), and may help entrench illiberal regimes (Carlson, 2018). Boukouras,
Jennings, Li and Maniadis (2020) find that, even in abstract environments, biased polls inhibit objective
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systematic failures in the interpretation of such poll data. Although our poll data should

not be interpreted at face value, we find that people do not exhibit the social sophistication

necessary to de-bias the data themselves. In this way, biased poll data may carry over into

biased inferences and sub-optimal actions.

evaluation of candidates and shift electoral outcomes. The influence of polls is so significant that a market
has arisen for “fake polls” that manipulate asset prices (Yeargain, 2020). In this way, polling biases have
economic costs even absent any biases in how individuals consume and interpret them.
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A Appendix A: Supplemental Analysis

A.1 Breakdown of Sentiment Measures

Table 3 captures the relationship between SDR and our sentiment index, which is constructed

by taking the mean of the three measures of sentiment listed below. In this section, we repli-

cate the analysis of Table 3 after breaking down our sentiment index into these component

parts. Below, Table A.1 explores the association between SDR and each of the following

sentiment measures:

1. How would you feel about taking this action yourself?

2. How would you feel about other people who take this action?

3. How do you think most other people would feel about people who take this action?

For each actionA, letQi,j,A denote subject i’s response to question j ∈ {1, 2, 3} above. For

each of these three measures, we regress SDRA on the sentiment rating averaged over individ-

uals, Q̄j,A ≡
∑NS

i=1 Qi,j,A

NS
. The results of these regressions are reported in Columns 1, 3, and 5

of Table A.1. We also regress SDRA on these same sentiment measures after standardiz-

ing them within an individual; that is, we regress SDRA on Q̂i,j,A ≡ Qi,j,A−Q̄i,j

σi,j
, where Q̄i,j

and σi,j are subject i’s mean and standard deviation of Qi,j,A for measure j across all eight

actions. The results of these regressions are reported in Columns 2, 4, and 5 of Table A.1.

Note that the column headers (e.g., “Measure 1”) in Table A.1 indicates which of the three

questions above are used to form the regressor.

From these results, we can see consistent relationships between different measures of

stigma and the observed socially desirable responding in the Choice Stage. While these

relationships are all positive and most are significant, there appears to be a stronger asso-

ciation between anticipation of others’ sentiment (Columns 5–6) rather than own-sentiment

(Columns 1–2) or sentiment towards others (Columns 3–4). This would suggest that people

may be more worried about the virtue or stigma they think others will attach to an action
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Table A.1. Socially desirable responding and perceived virtue

Socially Desirable Responding

Measure 1 Measure 2 Measure 3

Mean Sentiment 2.030 2.434∗∗ 2.504∗

(1.28) (0.98) (1.10)

Standardized Sentiment 2.156∗∗∗ 3.237∗∗∗ 3.489∗∗∗

(0.48) (0.47) (0.43)

Constant -3.448 5.375∗∗∗ -7.058 5.375∗∗∗ -6.944 5.375∗∗∗

(6.06) (0.00) (5.39) (0.00) (5.83) (0.00)

Observations 8 312 8 312 8 312
Clusters N/A 39 N/A 39 N/A 39

Notes: “Mean Sentiment” is aggregated across 39 individual evaluations measured from 0 (Very Negative) to 10 (Very Positive).

“Standardized Sentiment” normalizes sentiment (Vi,j,A) within each individual to have mean 0 and SD 1. For each of our three

sentiment measures, the first column presents OLS results. The second column presents results of a random-effects linear

regression with subject-level random effects and standard errors clustered at the subject level. * p < 0.10, ** p < 0.05, ***

p < 0.01.

rather than the virtue or stigma they attach to the item themselves, though this would need

more targeted research to confirm.

A.2 Heterogeneous Responses to Signals

The analysis in Table 5 is limited to aggregate updating and could obscure important hetero-

geneity in updating behavior. Figures A.1 and A.2 add detail to explore this heterogeneity.

Each figure shows all predictors’ guesses relative to the signal they received. The x-axis

(y-axis) measures the difference between a predictor’s initial (updated) guess and her signal.

Since a steeper slope indicates less weight given to the signal, our test of Hypothesis 1 from

Table 5 amounts to testing whether the slope is flatter in Figure A.1.43 These figures demon-

strate more subtle responses to signals as well. A predictor who entirely ignores the signal

will land on the 45-degree line, while a predictor who fully updates her prediction to match

her signal will land on the x-axis. Table A.2 tests whether these behaviors—in addition to

partial updating—differ across information sources.

43This holds for the region above the x-axis. Below the x-axis would indicate an overreaction to the signal.
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Figure A.1. Predictors receiving signals from the IC group
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Figure A.2. Predictors receiving signals from the H group
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Table A.2 shows that, when a signal comes from the IC group, predictors are 2.7 per-

centage points less likely to completely ignore it (p = 0.175) and 3.2 percentage points more

likely to match it exactly (p = 0.153). Column 3 shows that predictors who neither com-

pletely ignore their signal nor match their signal exactly continue to discount signals from
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Table A.2. Updated guesses in response to signals from different sources

Pr[Ignore Signal] Pr[Match Signal] ∆ Guess

(partial updating)

IC Info Source -0.03 0.03
(0.02) (0.02)

Signal Value 0.61***
(0.05)

IC Info Source×Signal Value 0.17**
(0.07)

Observations 2168 2168 1663
Clusters 271 271 268
Fixed Effects: None None Action×Source

Notes: Columns 1-3: Random-effects linear regression with subject-level random effects and standard errors

clustered at the individual level. Column 3 restricts the sample to predictors who neither ignore their signal

nor match their signal exactly. * p < 0.10, ** p < 0.05, *** p < 0.01.

the H group by 17 percentage points relative to the IC group (p = 0.023).
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A.3 Experience with SDR

To examine the mechanisms driving social sophistication, we explore whether predictors

who previously participated in the Choice Stage are better at accounting for SDR in poll

data than newly recruited predictors. A predictor with experience in the Choice Stage may

have felt the impulse to misrepresent their own preferences. This experience may then be

transformed into a higher degree of skepticism about signals from the H group. As a natural

extension, we also test if this experience makes predictors more accurate in their guesses.

We specifically examine if the discounting of H signals relative to IC signals differs be-

tween three types of predictors: (i) those who participated in the IC group in the Choice

Stage, (ii) those who participated in the H group in the Choice Stage, and (iii) newly re-

cruited predictors who did not participate in the Choice Stage. To test this, we adapt the

approach of Hypothesis 1 to include interaction terms for each of the three groups.

Our results find no significant heterogeneity in the discounting of H signals relative to

IC signals. Indeed, a fundamental level of social sophistication seems to be present in all

predictors, including those who are newly recruited. However, there is some suggestive

evidence that participants from the H group may give greater weight to IC signals. We find

a positive point estimate of 0.12 (p = 0.125) for the coefficient on “IC Info Source×Signal

Value×H Group Member”. These predictors, having participated in the H group, may be

more aware of the impulse to lie in the hypothetical Choice Stage since they themselves faced

this temptation. As a result, they may increase the relative weight they put on choices from

the IC group, but this is speculative.

We also find no significant differences in the accuracy of predictors’ guesses based on

their experiences. The average absolute errors in first guesses are 21.54, 21.66, and 21.54 for

predictors from the IC group, H group, and new recruits, respectively (joint test of equality

p = 0.99). The corresponding average absolute errors in second guesses are 12.22, 12.61, and

12.58 (joint test of equality p = 0.85).
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Table A.3. Updated guesses by information source across groups with different prior expe-
rience

Updated Guess ∆ Guess

Signal Value 0.59*** 0.56***
(0.05) (0.06)

Signal Value×IC Group Member 0.05 0.05
(0.05) (0.06)

Signal Value×H Group Member -0.04 -0.07
(0.05) (0.06)

IC Info Source×Signal Value 0.06 0.13*
(0.05) (0.08)

IC Info Source×Signal Value×IC Group Member -0.02 0.01
(0.07) (0.08)

IC Info Source×Signal Value×H Group Member 0.07 0.12
(0.07) (0.08)

Initial Guess 0.30***
(0.02)

IC Info Source 0.85
(1.98)

IC Info Source×IC Group Member -0.94 -0.33
(2.54) (4.16)

IC Info Source×H Group Member -4.97* -4.58
(2.69) (4.03)

Observations 2168
Clusters 271

Control for Mean Signal: Yes N/A
Control for IC/H/New Group: Yes Yes
Fixed-Effects: Action Action×Source

Notes: Random-effects linear regression with subject-level random effects. Standard errors clustered at the

individual level. * p < 0.10, ** p < 0.05, *** p < 0.01.

A.4 Direction of SDR

In Table A.4, we replicate the analysis of Section 5.2 using a fully-interacted model. This

approach produces qualitatively similar results as seen in the coefficients for “Perception-

Inflating×IC Info Source×Signal Value” and “Perception-Deflating×IC Info Source×Signal

Value.” We again find that predictors discount perception-inflating signals from the H group.

However, the incorrect discounting of perception-deflating signals from the H group are now

significant in the within-subjects specification. Thus, behavior is even less consistent with

social sophistication under this approach.
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Table A.4. Updated guesses in response to perception-inflating signals from different
sources

Updated Guess ∆ Guess

Perception-Inflating×Signal Value 0.55*** 0.55***
(0.03) (0.05)

Perception-Inflating×IC Info Source×Signal Value 0.16*** 0.29***
(0.04) (0.08)

Perception-Inflating×IC Info Source -3.14** -8.60**
(1.41) (3.46)

Perception-Inflating 1.01 1.71
(1.11) (2.09)

Perception-Deflating×Signal Value 0.68*** 0.41***
(0.03) (0.05)

Perception-Deflating×IC Info Source×Signal Value -0.01 0.15**
(0.03) (0.08)

Perception-Deflating×IC Info Source 0.85 -1.51
(1.15) (2.42)

Initial Guess 0.30***
(0.02)

Observations 2168
Clusters 271
Control for Mean Signal: Yes N/A
Fixed-Effects: Action Action×Source

Notes: Random-effects linear regression with subject-level random effects. Standard errors clustered at the individual level.

“Perception-Inflating” (“Perception-Deflating”) are indicator variables equal to one if the signal is in the direction of more (less)

social desirability relative to the initial guess. * p < 0.10, ** p < 0.05, *** p < 0.01.

Figures A.3 and A.4 replicate the visualizations from Figures A.1 and A.2 after replac-

ing predictions about the number of subjects taking an action with the number of subjects

engaging in the socially-desirable behavior. For example, this transformation replaces pre-

dictions about the number of subjects who steal from another subject with the number of

subjects who refuse to steal from another subject.

Figures A.3 and A.4 corroborate Table 6 by demonstrating a relatively similar response

to information from the IC and H groups when that information suggests less socially-

desirability (on the right side of the figures) and a significant discounting of information

from the H group when that information suggests greater social-desirability (on the left side

of the figures). This can be seen by the flatter slope on the left side of Figure A.3 than on

the left side of Figure A.4.

55



Figure A.3. Predictors receiving signals from the IC group
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Figure A.4. Predictors receiving signals from the H group
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B Appendix B: Details on Analysis

This appendix provides details about the specific regressions underlying our results in Sec-

tions 4–??. Our analysis carefully follows our pre-registration, which specifies an analysis

of covariance (ANCOVA) framework. The sections below mirror the order of our results in

Sections 4–??, and each indicates any changes to the analysis from the pre-registration along

with any supplemental analyses that we conduct.

B.1 Manipulation Check 1: SDR

In Column 1 of Table 3 we run the following pre-registered regression using each of the eight

actions as an observation:

SDRA = β0 + β1 × VA + ϵA, (4)

where VA (defined in Equation 1) is the average sentiment for action A across all participants

in the Sentiment Stage.

Alternative Specification: Individual-Level Sentiment

Our pre-registered analysis fails to take advantage of the full sample of subjects in the

sentiment analysis. Thus, in Column 2 of Table 3, we include a supplementary analysis

at the subject-level that increases statistical power without changing the underlying data.

Following the standardized index defined in Equation 2, we generate V̂i,A ≡ Vi,A−V i

σi
and

include it on the right-hand side of the random-effects linear regression:

SDRA = β0 + β1 × V̂i,A + νi + ϵi,A. (5)
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B.2 Manipulation Check 2: Accuracy

In Columns 1 and 3 of Table 4, we run pre-registered random-effects linear regressions to

test for the impact of the signal source on the accuracy of the guesses:

ABSi,2,A = β0 + β1ABSi,1,A + β2ICi + δA + νi + ϵi,A, (6)

SQi,2,A = β0 + β1SQi,1,A + β2ICi + δA + νi + ϵi,A, (7)

where ICi is an indicator variable equal to one if subject i received a signal from the IC

group, and νi are subject random-effects (meaning they will not be individually identified).

Standard errors are clustered at the individual level.

Alternative Specification: Individual Changes in Accuracy

Our pre-registered analysis takes the form of an analysis of covariance (ANCOVA). In

Columns 2 and 4 of Table 4, we look at individual-level changes in accuracy to gain statistical

power without changing the underlying data: ∆ABSi,A = ABSi,2,A−ABSi,1,A and∆SQi,A =

SQi,2,A−SQi,1,A. This is equivalent to restricting β1 = 1 in our original equation. We repeat

the random-effects linear regression with the new dependent variable:

∆ABSi,A = β0 + β1ICi + δA + νi + ϵi,A, (8)

∆SQi,A = β0 + β1ICi + δA + νi + ϵi,A. (9)

B.3 Hypothesis 1: Anticipation of SDR

In Column 1 of Table 5, we run the pre-registered random-effects linear regression:

Guessi,2,A = β0+β1Guessi,1,A+β2Si,A+β3Si,A×ICi+β4ICi+β5S̄T,A+δA+νi+ϵi,A, (10)
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where Si,A is the signal received by subject i for action A (i.e., the fraction of subjects from

i’s random sample of 10 who took action A), and S̄T,A is the mean of the distribution of

signals from group T (either IC or H) for action A. By controlling for S̄T,A, we are able to

use Si,A to identify the effect of a change in the signal that is derived only from sampling

variation—that is, the mechanically-random change in the signal. δA are fixed-effects for

each action. Again, νi are subject random-effects, and we cluster standard errors at the

individual level.

Alternative Specification: Individual Changes

Alongside our pre-registered analysis, in Column 2 of Table 5, we include a higher-powered

test of individual-level updating: ∆Guessi,A = Guessi,2,A −Guessi,1,A. We also modified

the specification to use fixed effects for all 16 combinations of actions and choice groups, δT,A,

rather than fixed-effects for actions and controls for signal means. Our alternate specification

is:

∆Guessi,A = β0 + β1Si,A + β3Si,A × ICi + β4ICi + δT,A + νi + ϵi,A. (11)

Alternative Specification: Extensive- and Intensive-Margin Responses

Table A.2 provides an entirely new analysis of responses to signals. Column 1 estimates

the probability of no response to the signal, Column 2 estimates the probability of exactly

matching (i.e. perfectly responding to) the signal, and Column 3 explores intermediate

responses where the predictor neither ignores nor matches the signal. The three estimating

equations are included in sequence below:

Pr (Matchi,A) = Φ (β0 + β1ICi + δA + νi + ϵi,A) , (12)

Pr (Ignorei,A) = Φ (β0 + β1ICi + δA + νi + ϵi,A) , (13)

∆Guessi,A = β0 + β1Si,A + β3Si,A × ICi + β4ICi + δT,A + νi + ϵi,A, (14)
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whereMatchi,A and Ignorei,A are indicators forGuess2,A = Si,A andGuess2,A = Guess1,A,

respectively. The third equation is estimated on a selected sample of guesses that excludes

any where Matchi,A = 1 or Ignorei,A = 1.

B.4 Hypothesis 2: Direction of SDR

Hypothesis 2 was not included in our pre-registration. All results can be found in Table 6.

To test this hypothesis, we must divide our sample based on whether or not the signal

is perception-inflating—that is, if it suggests that the observed behavior is more or less

socially desirable than the predictor’s initial guess. The direction of social desirability will

be determined based on the relative selection rates for the full sample. An action is socially

desirable if SDRA > 0; thus, a signal is perception-inflating if it suggests that there are

more people engaging in (or claiming to engage in) this action than the predictor initially

guessed. The opposite is true for actions that are socially undesirable (i.e. SDRA < 0).

Column 1 of Table 6 presents our first test of Hypothesis 2 using the same random-effects

linear-regression specification as in Equation 10, but including a full set of interactions with

terms that indicate whether the signal is perception-inflating or perception-deflating:

Guessi,2,A = β0 + β1Guessi,1,A + β2Si,A ×PIi,A

+ β3Si,A × ICi ×PIi,A + β4ICi ×PIi,A + β5PIi,A + β6Si,A ×PDi,A

+ β7Si,A × ICi ×PDi,A + β8ICi ×PDi,A + β9S̄T,A + δA + νi + ϵi,A. (15)

Here, we interact all of the relevant terms from Equation 10 with PIi,A (PDi,A), indicators

for whether the signal is perception-inflating (perception-deflating) relative to Guessi,1,A.

We test two aspects of updating: (1) if signals from the IC group are weighted more heavily

(relative to signals from the H group) as they indicate greater image inflation (i.e. if β3 > 0)

and (2) if signals from the H group are weighted more heavily (relative to signals from the

IC group) as they indicate image deflation (i.e. if β7 < 0).
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Alternative Specification: Individual Changes

Similar to Equation 11, we include our measure of individual-level updating, ∆Guessi,A,

and our fixed-effects for combinations of action and group, δT,A, in place of S̄T,A and δA.

This analysis is presented in Column 2 of Table 6.

B.5 Hypothesis 3: Relative Magnitude of SDR

Column 1 of Table 7 conducts our pre-registered test of Hypothesis 3 using the same random-

effects linear-regression specification as in Equation 10. However, we now include terms

interacted with the absolute value of our measure of SDR:

Guessi,2,A = β0 + β1Guessi,1,A + β2Si,A + β3Si,A × ICi + β4ICi + β5Si,A × |SDRA|

+ β6Si,A × ICi × |SDRA|+ β7ICi × |SDRA|+ β8|SDRA|+ β9S̄T,A + δA + νi + ϵi,A. (16)

Here, we interact all of the relevant terms from Equation 10 with the absolute value of our

measure of SDR for action A, |SDRA|. We test if signals from the IC group are weighted

more heavily (relative to signals from the H group) as SDR becomes more extreme (i.e. if

β6 > 0).

Alternative Specification: Individual Changes and Sensitivity to Sentiment

Similar to Equation 11, we include our measure of individual-level updating, ∆Guessi,A,

and our fixed-effects for combinations of action and group, δT,A, in place of S̄T,A and δA.

This analysis is presented in Column 2 of Table 7

We also measure how sensitive subjects are to changes in our proxy for social desirability,

sentiment. Specifically, we replace |SDRA| with a standardized measure of how extreme

sentiment is toward the action, |V̂A| = |VA−V |
σV

, where V and σV are the mean and standard
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deviation of VA across all eight actions. This analysis is presented in Column 3 of Table 7.

B.6 Confidence

Our exploratory analysis on confidence was not pre-registered but adds substantively to our

understanding of the implications of poor data-quality on behaviors surrounding inference (in

this case, confidence in guesses). Table 8 presents two tests of the impact of a predictor’s ac-

curacy on their confidence. Prior to running this analysis, we normalize confidence measures

across all predictors and all actions to generate ̂Confidencei,1,A and ̂Confidencei,2,A, both

of which have mean 0 and standard deviation 1. Column 1 presents the association between

normalized confidence and the accuracy of initial guesses using the following specification:

̂Confidencei,1,A = β0 + β1ABSi,1,A + δA + νi + ϵi,A, (17)

where ABSi,1,A is the absolute error in subject i’s initial guess, δA is a vector of action fixed

effects, and νi are subject random-effects. Standard errors are clustered at the individual

level.

Column 2 of Table 8 demonstrates how this confidence evolves after receiving information.

It uses the following specification:

̂Confidencei,2,A = β0 + β1ABSi,1,A + β2ABSi,2,A + β3ABSi,2,A × ICi

+ β4
̂Confidencei,1,A + β5ICi + δA + νi + ϵi,A, (18)

where ABSi,2,A is the absolute error in subject i’s updated guess. Standard errors are again

clustered at the individual level.

In both tests, we consider how confidence is associated with accuracy (β1 in Equation 17

and β2 in Equation 18). In Equation 18, we also care about how this depends on the

randomly-assigned information source (β3).
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B.7 Experience with SDR

Column 1 of Table A.3 presents the pre-registered test of our hypothesis about experience.

We use the same random-effects linear-regression specification as in Equation 10, but include

terms interacted with the role that Predictor i played in the Choice Stage:

Guessi,2,A = β0 + β1Guessi,1,A + β2Si,A + β3Si,A × ICi + β4ICi + β5Si,A ×Expi

+ β6Si,A × ICi ×Expi + β7ICi ×Expi + β8Expi + β9S̄T,A + δA + νi + ϵi,A, (19)

where Expi is an indicator variable equal to one if the predictor has previous experience

participating in the IC or H group. Again, we test for a significant interaction effect by

testing if β6 > 0.

We repeat this analysis looking at members of the H and IC groups separately, which

reveals heterogeneity in the learned experience of the two groups.

Alternative Specification: Individual Changes

As with Hypotheses 1–3, we replicate the pre-registered analysis with an alternative spec-

ification. As before, we include individual-level updating and fixed-effects for combinations

of action and group. This analysis is presented in Column 2 of Table A.3.
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C Appendix C: Experimental Instructions

C.1 Sentiment-Stage Instructions

Thank you for your participation today. Just for participating in this study, you will receive

$5 toward your Take-Home Pay. In order to receive your Take-Home Pay, you need to

complete the entire survey and then instructions for payment will be emailed to you once all

responses have been collected.

All of the choices will be made in private. This means that your responses will be observed

by the researchers after-the-fact and no one else.

This is a non-deceptive experiment. That means that, if we say an action has real

consequences, those consequences will actually happen. On the other hand, if a choice is

hypothetical, we will tell you in advance that it is hypothetical.

C.1.1 Sentiment-Stage Comprehension Question

We will be asking you to respond to questions about a series of potential scenarios. Your

responses will not have any real consequences, we are simply asking for your feelings on each

scenario.

To ensure that you understand, please answer the following question. Will your choices

have real consequences?

• Yes, all of them will counts.

• Yes, on will be chosen at randomly-chosen.

• No, you are just asking my opinion.
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Figure C.1. Sentiment-Stage Decision Screen
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C.2 Choice-Stage Instructions: Hypothetical Group

Thank you for your participation today. Just for participating in this part of the experiment,

you will receive $5 toward your Take-Home Pay. In order to receive your Take-Home Pay,

you must complete the second part of the experiment that we will email to you after you

complete this. The second part of the experiment will pay you between $5 and $10. So, you

will receive between $10 and $15 for completing both parts of the study.

All of the choices will be made in private. This means that your choice will be observed

by the researchers after-the-fact and no one else.

This is a non-deceptive experiment. That means that, if we say an action has real

consequences, those consequences will actually happen. On the other hand, if a choice is

hypothetical, we will tell you in advance that it is hypothetical.

C.2.1 Choice-Stage Comprehension Question: Hypothetical

We will be asking you to make a series of choices and answer a few questions. All of your

choices will be hypothetical. Meaning that none of your choices will have real consequences.

We simply want to know how you would respond if you were asked to make a choice in

these hypothetical situations.

To ensure that you understand, please answer the following question. Will your choices

have real consequences?

• Yes, one randomly selected choice will count

• Yes, all of them will count.

• No, they are hypothetical.

C.3 Choice-Stage Instructions: Incentive Compatible Group

Thank you for your participation today. Just for participating in this part of the experiment,

you will receive $5 toward your Take-Home Pay. In order to receive your Take-Home Pay,
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you must complete the second part of the experiment that we will email to you after you

complete this. The second part of the experiment will pay you between $5 and $10. So, you

will receive between $10 and $15 for completing both parts of the study.

All of the choices will be made in private. This means that your choice will be observed

by the researchers after-the-fact and no one else.

This is a non-deceptive experiment. That means that, if we say an action has real

consequences, those consequences will actually happen. On the other hand, if a choice is

hypothetical, we will tell you in advance that it is hypothetical.

C.3.1 Choice-Stage Comprehension Question: Incentive-Compatible

We will be asking you to make a series of choices and answer a few questions. Your choices

will have real consequences.

At the end of the study, we will randomly select one of your choices to be the Choice

That Counts. The Choice That Counts will determine your outcome today. Since any choice

can be selected as the Choice That Counts, you should treat every choice like it is the Choice

That Counts.

To reiterate, only one of your choices will be randomly chosen as the Choice That Counts.

So, treat each choice as a separate, meaningful choice.

To ensure that you understand, please answer the following question. Will your choices

have real consequences?

• Yes, on randomly selected choice will count

• Yes, all of them will count.

• No, they are hypothetical.
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C.4 Prediction-Stage Instructions

C.4.1 Prediction-Stage General Instructions

Just for participating, you will be guaranteed to receive $5. You may earn significantly more

money depending on how you perform your tasks in this study.

In this study, you are a ”Predictor.” Your task today will be to make predictions about

the behavior of other participants in the study. The more accurate your predictions are, the

more money you will earn.

We recruited students at the University of Arkansas to be ”Real-Deciders.” Real-Deciders

made a series of private choices and entered them confidentially into a computer.

The Real-Deciders knew that their choices would never be individually observed by any-

one but the researchers.

The choices that the Real-Deciders made had real consequences. One choice made by

each Real-Decider was randomly selected to be carried out by the experimenters.

Key Points: Real-Deciders made private decisions without anyone watching. Their deci-

sions had real consequences and really determined their payment.

Figure C.2. Hypothetical Decision
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Figure C.3. IC Decision

C.4.2 Prediction-Stage Comprehension Question

What is your role in this study?

• Make decisions

• Guess what decisions the Real-Deciders made

• Help the Real-Deciders make their decisions

Did the Real-Decides’ choices have consequences?

• Yes, their choices mattered

• No, their choices were hypothetical

C.4.3 Prediction-Stage Predictions Instructions

The Real-Deciders made decisions about several different actions. We described these actions

to the Real-Deciders before they made their choices. We will describe them to you in exactly

the same way.

For each action, there were only two options: Option 1: Take the action Option 2: Do

not take the action
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Your job is to predict P – the number of the Real-Deciders out of 100 who chose to take

the action (the first option). You will report your best guess about P.

There is a true percentage of Real-Deciders who chose to take each action. We’ll call this

value ”True-P”. The closer you get to guessing the True-P, the more money you can earn.

It is important that you think carefully about your prediction for P because we will offer

you a chance to win money based on your accuracy.

You will make 16 predictions in this study. We will randomly select one of these predic-

tions to be the Prediction That Counts. Your money will depend on how accurate you are

on the Prediction That Counts. Since each prediction could be the Prediction That Counts,

you should treat each prediction like it is the Prediction That Counts.

C.4.4 Payment Comprehension Question

How many of your 16 predictions will determine your payment?

• All of them collectively

• One selected at random: ”the Prediction That Counts”

• The first one

• The last one

C.4.5 Prediction-Stage Lottery Draw Instructions

You will have a chance to earn an extra $5 lottery bonus at the end of the study (in addition

to the $5 you are already guaranteed). You will earn lottery tickets if your guess about P

is close to the True-P. At the end of the session, we will randomly draw a lottery number

between 1 and 100; if that number matches one of your lottery tickets, you will win the

bonus payment. So it’s best to get as many lottery tickets as possible to maximize your

chance of a bonus.
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On the next page, we will describe how you can earn tickets based on your guess of P.

The precise method we use to calculate your lottery tickets may sound complicated, but you

will always earn the most if you simply answer truthfully.

C.4.6 Prediction-Stage Lottery Draw Comprehension Questions

What is the easiest way to earn the most lottery tickets?

• Guess the largest number as the True-P

• Guess the smallest number as the True-P

• Guess your honest beliefs about the True-P

C.4.7 Prediction-Stage Lottery Ticket Instructions

The number of lottery tickets you will receive will be one of the following: Option A: The

number of lottery tickets you will receive is equal to the True-P. Option B : The number of

lottery tickets you will receive is equal to your ”Random Draw,” which is a random number

between 0 and 100.

The option you receive depends on how your Random Draw compares to your guess

about P. If your Random Draw is below your guess, then you will get Option A (lottery

tickets equal to the True-P). If your Random Draw is above your guess, then you will get

Option B (lottery tickets equal to your Random Draw).

Here are two examples:

If your guess is that P=50, and your Random Draw is 25, then your Random Draw is

less than your guess about the True-P. So, you will get Option A (lottery tickets equal to

the True-P).

If your guess is that P=50, and your Random Draw is 75, then your Random Draw is

more than your guess about the True-P. So, you will get Option B (lottery tickets equal to

your Random Draw).
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C.4.8 Prediction-Stage Lottery Ticket Comprehension Questions

If your guess about P is that P=23 and your Random Draw is 17, how many lottery tickets

will you receive?

• 50

• Option A: you will receive a number of lottery tickets equal to the True-P

• Option B: you will receive a number of lottery tickets equal to your Random Draw, 17.

If your guess about P is that P=43 and your Random Draw is 73, how many lottery tickets

will you receive?

• 50

• Option A: you will receive a number of lottery tickets equal to the True-P

• Option B: you will receive a number of lottery tickets equal to your Random Draw, 73.

You might think you can “game the system” and earn more lottery tickets by reporting

a higher guess for P than you really believe. That won’t help you. It will only increase the

chance that you pass up your Random Draw when it is a high number.

On the other hand, you also can’t game the system by reporting a lower guess for P than

you really believe. If you do that, then you will increase the chance that you accept your

Random Draw when it is a low number.
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Figure C.4. First-Prediction Choice

Figure C.5. First-Prediction Choice Confidence

C.4.9 2nd Prediction Instructions (Hypothetical Information)

Your task is to predict the behavior of the 100 Real-Deciders that we recruited from the

University of Arkansas to participate in the study. Before you make these predictions for a

second time, we will show you the decisions of 10 ”Hypothetical-Deciders.”

We recruited 100 Hypothetical-Deciders at the same time that we recruited the 100 Real-

Deciders for the study. Both were recruited out of the same subject pool at the University

of Arkansas.

For every one of the decisions that the Real-Deciders made, the Hypothetical-Deciders

reported what they would have chosen if they had been asked to choose. But, the statements
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made by Hypothetical-Deciders did not have any real consequences.

If a Hypothetical-Decider reported that they would take an action, the Hypothetical-

Deciders never actually had to take the action. These responses were entirely hypothetical.

We have randomly selected 10 of the 100 Hypothetical-Deciders. We will show you their

responses on all 8 actions.

The Hypothetical-Deciders did not make the exact same choices as the Real-Deciders.

But this information may be useful in revising your predictions about the choices that the

100 Real-Deciders made.

While you are revising your predictions about the Real-Deciders, we will remind you of

the responses of the Hypothetical-Deciders. So, you do not need to memorize their choices

now.

C.4.10 2nd Prediction Comprehension Question (Hypothetical Information)

Did the Hypothetical-Deciders make choices with actual consequences?

• Yes, their choices mattered

• No, their choices were hypothetical

C.4.11 2nd Prediction Instructions (IC Information)

Your task is to predict the behavior of the 100 Real-Deciders that we recruited from the

University of Arkansas to participate in the study. Before you make these predictions for a

second time, we will show you the decisions of 10 of the Real-Deciders.

These 10 Real-Deciders were randomly selected from among the 100 Real-Deciders you

are making predictions about. They were all recruited from the same subject pool at the

University of Arkansas.

Recall that all choices made by the Real-Deciders had real consequences.

We have randomly selected 10 of the 100 Real-Deciders. We will show you their choices

on all 8 actions.
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The 10 randomly chosen Real-Deciders that we will show you did not make the exact

same choices as the other 90 Real-Deciders. But this information may be useful in revising

your predictions about the choices that all 100 Real-Deciders made.

While you are revising your predictions about the 100 Real-Deciders, we will remind you

of the responses of the 10 randomly chosen Real-Deciders. So, you do not need to memorize

their choices now.

C.4.12 2nd Prediction Comprehension Question (IC Information)

Did the 10 randomly selected Real-Deciders make choices with actual consequences?

• Yes, their choices mattered

• No, their choices were hypothetical

Figure C.6. Second Prediction Choice
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Figure C.7. Second Prediction Choice Confidence
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Chapter 2: Group Identity and Opportunity Cost

Nathaniel Burke1 Sherry Li2

Abstract

People place real value on the identities that they hold and membership in groups of people

that hold the same or similar identities. While not easily quantifiable, individuals consciously

and subconsciously take actions to signal membership and loyalty to specific identity groups

over others. At times, the required signals may come at a personal cost that prevents op-

portunities for improved individual outcomes such as deciding between staying in a small

community that you grew up in and moving away to attend a high ranked university or

for job opportunities. We examine group identity loyalty in an experimental setting using

parallel public goods games with two teams of homogeneous gender identities. We give par-

ticipants opportunities to switch teams, leaving their identity group, in order to increase

their earnings. There is some loyalty to identity groups in early stages of the game, par-

ticularly amongst women. We find that the biggest positive determinant of group-oriented

contribution behavior is communication and identity priming, respectively.

JEL classification: D91, C92, D71.

Keywords: Group Identity, Public Goods Game, Gender Bias, Opportunity Cost.

1West Virginia University: nathaniel.burke@mail.wvu.edu
2University of Arkansas: sli@walton.uark.edu
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1 Introduction and Background

Group identity has become more prominent in behavioral economics as a key determinant of

individual behavior and decision making (Akerlof and Kranton, 2000; Chen and Li, 2009). In

educational settings, group identity has been suggested to have impacts on individual utility

functions where the respective individuals consider how they signal membership to their

identity group and weigh those behaviors against individual long term utility maximizing

behavior, often resulting in personal sacrifices to appease their group identity (Akerlof and

Kranton, 2002; David and Fryer, 1995; Fryer and Torelli, 2010). This project will test the

opportunity cost threshold of preexisting group identities by using a team based public goods

game where participants have the ability to switch teams for higher payout with varying levels

of peer pressure and knowledge that their leaving their team will adversely affect their team.

The motivating setting behind this approach is drawn from the real life trade-offs observed

by high performing members of lower or limited opportunity communities. The limited

opportunity nature of one of these communities does not necessarily imply a lack of skill or

priority but could be a range of possibilities from a lack of opportunities due to changing

markets such as West Virginia’s coal communities in the modern age or perhaps an area that

specializes in a particular market or trade, such as an agricultural community in Arkansas

that specializes in rice or soy production. Through a combination of economic and cultural

factors, individuals may find themselves strongly identifying with a certain place they grew

up or the community they group up with. This is also found to be true in many areas

with cohesive minority and/or immigrant communities. A commonly understood dilemma

is the story of a high achieving community member applying to universities. They have to

negotiate the internal trade-off between going to a high ranking university or perhaps one

that just offers something that is not available in their local area to develop their persona

human capital and staying in their community for reasons including identity loyalty, not

contributing to a local brain drain, etc. This decision carries risk if they do decide to leave

78



their community or even just apply to leave their community. In this context there are two

points where there is a probability of failure which carries the weight of failing on personal

goals and negatively signaling identity membership. The first is when the student applies to

the given university and has to wait on an admissions decision and the second is when the

student actually attends the school and has to maintain an academic standard and manage

to integrate into a new group identity. In our experimental setting, these two points of

potential failure are collapsed into a single decision point.

This motivating example is of a specific decision for a student leaving their community

and identity group to engage in higher level human capital accumulation opportunities.

Though this is the original motivation for the design, this type of decision making process is

repeated across many different scenarios, not all requiring a large geographic move. Another

scenario to consider is the team member in a multi-department organization that wants to

switch to another team or department whether it is to increase pay, benefits, or for personal

utility. In work environments, there are often subgroup identities such as gaining utility

from being a member of the sales team or working in research and development. Even if

financial compensation across opposing teams is equal, individual utility from the type of

work or preferences over work environment or conditions may make one more attractive to

the individual decision maker than the other while being at odds with their group signaling

preferences.

In this paper, we use an experimental approach using a virtual experiment. Participants

were put into two parallel, gender-homogeneous teams to participate in standard public

goods games with the ability to see the opposite team’s contributions and payouts and the

opportunity to switch teams, subject to being approved by a vote, every three rounds. We

find that women are more likely to stay loyal to their identity group than men by way

of not trying to switch teams as often as men when there is more money to be made by

switching. We also find that there is significant impact on contribution decisions based on

how well participants can coordinate. Regardless of gender, participants increase their team
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contributions when they have the ability to chat with each other. We also find that people

are more likely to make their switching decisions in the first half of the experiment, with

attempted and successful switches dropping off after the third opportunity to switch out of

the scheduled six.

The rest of this paper follows in this fashion: Section 2 literature looking at previous

work, Section 3 going over the experimental design, Section 4 presenting and discussing

our estimation results, and Section 5 going over our conclusions and directions for future

work.

2 Literature Review

Much of the work that economics has done regarding group identity has been predicated by

a wealth of social psychology literature. While economics does not make as significant of a

distinction between identity theory and social identity theory, social psychologists have been

working between these parallel identities since the 1970s. While social identity theory focuses

more on how the individual behaves as part of a group in group processes and intergroup

behavior (Hogg and Abrams, 1988; Hogg and Turner, 1985; St Claire and Turner, 1982;

Tajfel, Turner, Austin and Worchel, 1979; Turner, Hogg, Oakes, Reicher and Wetherell,

1987). Identity theory has been more focused on the individual’s role-related behaviors and

reflexive sense of self. (Burke, 1980; McCall and Simmons, 1968; Turner, 1978). Stets and

Burke (2000) argue that the integration of the of social identity and reflexive view of the

”self” identity help to make the complete sense of self that a person identifies with and

presents themselves. Previous literature had already shown that self-identity is impacted

by social identity and the affects the way intention and behavior are constructed. This is

especially true when it comes to group norms and behaving within a set group expectation

(Terry, Hogg and White, 1999).

Early work in economics laying the foundation for identity in economic models was ini-

tiated by Akerlof and Kranton (2000), which introduced identity as a way to explain some
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group conforming individual behaviors by gender, socioeconomic class, and the way tasks are

distributed in the household. This work is built upon by the same authors in different field

focused papers including education Akerlof and Kranton (2002), labor based organizations

(Akerlof and Kranton, 2005), and the workplace dynamic between employees and supervisors

(Akerlof and Kranton, 2008). The field of education has had great insights into understand-

ing how identity impacts race based learning outcomes beyond Akerlof and Kranton’s 2002

paper. One of the more notable analyses is from Austen-Smith and Fryer Jr (2005), which

breaks down the social pressures on Black and Hispanic students to avoid being seen as

”acting white”. The ”acting white” problem has been discussed in sociology (Horvat and

Lewis, 2003; Tyson, Darity Jr and Castellino, 2005), anthropology (Fordham and Ogbu,

1986; Ogbu, 2004), and education circles. This follows from the social psychology theory of

social identity that prescribes the idea that individuals will adjust behaviors to match group

norms. In the case of the ”acting white” burden, Black and Hispanic students signal group

membership by avoiding certain behaviors in the school setting that may inadvertently signal

them to want to be accepted by their white peers. In a follow up to their analysis paper,

Fryer and Torelli (2010) does an empirical study to measure which activities were avoided

to maintain popularity under this burden including high levels of continuous academic effort

and certain extracurricular activities. Others have found that there is a limited amount of

empirical basis to justify weighting so much explanatory power towards a negative framing

of Black culture (Horvat and Lewis, 2003; Wildhagen, 2011) the underlying identity value is

generally supported.

Gender identity has been studied as a determinant for behavior and habit formation.

Previous literature has found that there is an aversion by women to certain roles within

the household that is attributed to gender identity norms, particularly pertaining to earning

potential relative to their husband’s income (Bertrand, Kamenica and Pan, 2015). Strong

sense of gender norms also impacts how women signal their attributes on the marriage market

and the probability that they are found to be desirable, particularly with respect to income

81



and how household labor is distributed (Bertrand et al., 2015; Greenstein, 2000; Salland,

2018). These identity norms also impact happiness in married couples after the marriage

market (Akerlof and Kranton, 2000; Booth and Van Ours, 2009) and the kind of behavior

that households engage in based on who is the breadwinner (Ke, 2021).

Experimental work in economics has been very useful in detecting group identity impacts

on public goods and production where identity cooperation is a factor. Our experimental de-

sign is motivated by the previous experiment that Charness, Cobo-Reyes and Jimenez (2014)

used to examine identities in the public goods setting. Charness et al. (2014) uses a public

goods game with a 2x2 design with endogenous group formation. The primary treatment

dimensions vary whether participants participate in a team building exercise and whether

some participants receive and endowment twice as much as other participants. Where the

authors allowed for endogenous group formation alongside natural identities, in our experi-

ment we are isolating only natural identities (men and women) and our priming reinforces

those natural identities while the authors of this previous experiment are inducing subtle

endogenous identities through priming. Another notable difference is that our experimental

design limits the number of team members in a way that it is impossible for anybody to

ever be a singleton. We also put everyone through a team building exercise before the public

goods game starts to promote team behavior. The results of Charness et al. (2014) have a

lot of focus on the impacts of the endogenous group identity aspect and how it positively

impacts group cooperation. In particular, the word task that the authors used to induce

group behavior was highly effective.

3 Experimental Design

The goal of our experiment is to address two primary objectives: Evaluate participants’

willingness to maintain their group identity through contributions to the group and evaluate

participants’ loyalty to their groups when facing opportunity costs to identity loyalty.

Our experiment consists of a 2x2 between-subject treatment factorial design in which we
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change the salience of gender identity through identity prime on the one hand and the possi-

bility of communication during the public goods game on the other (Table 1). All treatments

contain two parts: a pre-game anagram challenge to enhance the gender-team identity in

Part I and a 20-period public goods provision game with the possibility of switching groups

in Part II.

Table 1. Treatment Participation

Treatments Part I Part II # of Sessions
Identity: Salient
Communication: Yes

Identity prime questions
Anagram challenge

Team communication 2 sessions; 16 participants

Identity: Salient
Communication: No

Identity prime questions
Anagram challenge

Without communication 2 sessions; 16 participants

Identity: Not Salient
Communication: Yes

Anagram challenge Team communication 2 sessions; 16 participants

Identity: Not Salient
Communication: No

Anagram challenge Without communication 2 sessions; 16 participants

3.1 Participants

Participants were recruited from the University of Arkansas undergraduate population. Re-

cruitment was done using a combination of Sona Systems subject pool recruitment within the

College of Business and recruiting from large principle/intro level classes from the Colleges

of Liberal Arts & Science, Engineering, Business, and Education. Participants were 50%

female and 50% male. The experiment was conducted online using oTree (Chen, Schonger

and Wickens, 2016). Participants accessed the experiment through their web browsers on

their personal internet connected devices using participant-specific dedicated links. They

logged into a Zoom call with their cameras on and microphones muted so they can see all

other participants in their session. Participant links were given to participants upon joining

the Zoom call.
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3.2 Part 1: Anagram Game

All sessions are gender balanced with 8 participants each, 4 men and 4 women. Each session

starts with participants being assigned to two gender-homogeneous teams. The all-women

team is named Team A and is assigned the color purple, and the all-men team is named Team

B and is assigned the color green. The colors are only used when displaying the team names

”Team A” and ”Team B” at the top of each page of the experiment. This is done so that

the team name stands out, and the individual’s current team is salient on each page. The

participants are made aware of the team names and the initial team gender compositions.

In the treatments with the salient gender identity, participants are asked to enter their

gender information and answer several questions that are designed to prime and make salient

their gender identity.3 These questions include asking participants about the gender compo-

sition of their living arrangements and preferred living arrangements. Participants continue

to the Anagram challenge after answering these questions. In the treatments without the

salient gender identity, participants proceed to the Anagram challenge without the gender

prime questions4.

In all the treatments, every session starts with having participants engage in an incen-

tivized pre-game anagram challenge. Each participant is given 20 anagrams to solve and

they receive a bonus for each correctly solved anagram. The anagrams are all five to seven

letters long with the first 10 being five letters, next five being six letters, and the last five

being seven letters. All payouts and bonuses in the experiment are expressed in points and

the participants are paid using a conversion of 600 points= $1 or $0.0017perpoint. Each

anagram is worth a bonus of 50 points for a total potential bonus of 1000 points. During

this pre-game, participants must submit their own responses for grading but have the ability

to use a chat function to communicate with their teammates and help each other. Partici-

pants self-report their team sentiment—attachment to their gender-team at the end of the

3Appendix B
4Appendix C
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anagram challenge. This is to instill a sense of team identity in the participants before mov-

ing on to the public goods game part of the experiment. All teammates have the exact same

anagrams in the exact same order and all participants are aware of this in order to make

coordination easier. Participants are told that they can coordinate with their teammates

for assistance on successfully completing the anagrams and are encouraged to communicate

with each other. The payoffs of Part I were not revealed to participants until the end of the

experiment after the survey.

3.3 Public Goods Game with Team Switching

Part II, the public goods games, consists of 20 total periods, which are broken down into 6

segments of 3 periods and 2 rounds of end game play. In each period, participants decide

how much to contribute to a public goods game within their respective teams. The main

differences between our study and a standard public goods game are asymmetric endowment

distributions across the two teams, the possibilities of team switching, and the dependence

of MPCR on the team size, as detailed below.

3.3.1 Asymmetric Distributions of Endowment

Teams A and B are each randomly assigned to a uniform distribution of endowment, Ei ∼

Uniform(ag, bg), where a and b indicate the upper and lower bounds of the endowment

range, and g indicates the team, with one distribution being better than the other.5 At the

beginning of each period, each team member receives a random draw from the predetermined

team endowment range of their respective uniform distribution. The two distribution ranges

overlap by ¼, i.e., there is a 75% chance that a member from the “wealthier” team receives

a higher endowment than a member from the “poorer” team.

The endowment range stays fixed for each team throughout the experiment once it is

randomly assigned at the beginning of the public goods game. However, all the participants

5Whether {a1, b1} or {a2, b2} is a better endowment range is predetermined by a pre-randomized schedule
at the session level.
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receive a fresh endowment draw from their respective range in each period and decide how

much to keep in their private accounts and how much, cig, to contribute to their respective

team account. The total contributions to their team account,
∑

i cig, is multiplied by the

team’s MPCR Mg and shared equally by all team members. Mg is positively correlated

with team size as presented in Table 2. Individual’s payoff per period is πig = Eig − cig +

(Mg

∑
i cig)/Tg, where Tg is the number of people on Team g. At the end of each period,

participants receive a reminder on their individual endowment, contribution, the number

of their team members, and the associated MPCR. They also receive feedback information

on their team’s contributions, the portion of their earnings from their team’s public good

account, and their individual total earnings in that period. In addition, they are also given

information on the other team, including their endowment range, total contributions to

their public account, the number of team members, the associated MPCR, and each team

member’s portion of earnings from their team’s public account (see the screenshot in the

Appendix). The feedback information on the other team is provided to facilitate one’s

decision making in possible team switching.

3.3.2 Teams and Switching

As mentioned above, Teams A and B start as an all-men and all-women team, respectively,

with one team randomly receiving a better range of endowment distribution than the other.

After every three rounds of public goods contribution decisions, participants will have an

opportunity to stay or switch teams. For example, after playing the public goods game

in periods 1-3, participants will be given a chance to switch teams at the end of the third

period. With the new (or original) teams if some participants (don’t) successfully switch

team, participants will continue to play the public goods game in periods 4-6, and will be

given another chance to switch teams at the end of the sixth period. This cycle repeats with

team switching and voting occurring after public goods contribution decisions in periods 9,

12, 15, and 18. Periods 19 and 20 only contain contribution decisions without team switching
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and voting occurring any more. All these rules are public information to participants before

the public goods games start. If a participant chooses to switch team, the desired team will

see her average contributions, in tokens and as percentage of her endowment, to her team

account during (the previous three periods?) and will then vote on the acceptance. If the

votes do not reach a majority, the requester is not accepted and will stay with the original

team, but her team members will know, by the ID number, she tries to leave but fails. After

each period with possible team switching, the MPCR will be updated to reflect the team

size according to Table 2 before the next period of team switching. No team is allowed to

have fewer than two or more than six members.

Table 2. MPCR by Team Size

n (Team Members) 1 2 3 4 5 6
Multiplier Factor 1.000 1.250 1.500 1.750 2 2.25
MPCR 1.000 0.625 0.500 0.438 0.400 0.375

In the treatments with communication, team members can use the built-in chat program

to communicate at the public goods contribution stage and at the voting stage.

Overall, 96 participants participated in 12 sessions on the one-hour long online experiment

from April 2021 to December 2021. All participants participated in the experiment only once.

They received payments based on their cumulative earnings in the public goods games plus

their earnings in the anagram challenge and a $5 participation fee. The exchange rate was

600 points for $1. The average earnings were $21.08 per participant including the anagram,

public goods game and $5 participation fee.

The experimenter read the experimental instructions aloud through the beginning of the

public goods games while participants were able to follow along on their personal devices.

Participants were given practice questions for comprehension check. After the games and

before the payoff, participants filled a post-experiment survey that gathered information on

demographics, strategy, and background.6

6Survey question list is outlined in Appendix A.
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3.4 Treatments and Hypotheses

This experiment has two primary treatments: chat and prime. Sessions with the chat treat-

ment have the ability to chat during all contribution decisions as well as during voting on

a new member to join a team. Sessions with the prime treatment receive a priming survey

before the anagram stage.

3.4.1 H1 (Chat and Priming): When team members are able to communicate,

there will be an increase in contributions and a decrease in attempts to

switch teams.

Both the chat and prime treatments are expected to have similar directional effects on

participant behavior with respect to their contribution decisions. More specifically, previ-

ous experiments have found that chat improves coordination and efficiency in public goods

games (Haruvy, Li, McCabe and Twieg, 2017; Oprea, Charness and Friedman, 2014; Palfrey,

Rosenthal and Roy, 2017; Palfrey and Rosenthal, 1991). In a similar fashion we expect that

priming will improve the desire to coordinate among group members through the mecha-

nism of increasing the value of their identity signaling and therefore increasing the cost of

signaling ”selfish” behavior to the identity group by holding on to more of one’s endowment

each round.

3.4.2 H2 (Team Switching by Round): Participants will be more likely to switch

in earlier rounds of play.

The primary incentive for individuals to switch groups are centered around the improved

returns from being on a higher endowed team. It is not expected that many individuals will

want to switch to the lower endowed team since initial play is more likely to have higher

returns within the higher endowed team. In the beginning of each session, the teams are

balanced at 4 each but the experimental design restricts the number of team members to 6,

which also leads to a much higher team multiplier. The individuals on a team with 6 members
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are highly incentivized to stay on that team due to much higher potential earnings.

3.4.3 H4 (Feedback): Participants will be more likely to switch teams when

they see the opposing team with higher levels of contributions.

One of the key aspects of our experiment is the transparency of the success of each team

between teams. This improves the information set that participants make their decisions

with and lets participants know whether their team is higher endowed or lower endowed

quickly. The feedback information also informs participants of the relative cooperation levels

between their team and the opposing team. This improved information about the potential

advantages of the opposing team for individual gain will increase incentives to switch if the

other team is doing better than if they did not have the feedback information and had to

develop an information asymmetry guessing strategy.

3.4.4 H5 (Female): Females will have a higher contribution level than male

participants.

Based on previous literature studying the behavior of different genders in public goods games,

we expect females to contribute a higher portion of their endowment in the earlier rounds

of the public goods game (Cadsby and Maynes, 1998; Charness et al., 2014; Nowell and

Tinkler, 1994). There is also supporting work previously done showing women more likely to

be voluntarily cooperative in a variety of different settings even at their own risk of receiving

a lower benefit than the rest of the group (Babcock, Recalde, Vesterlund and Weingart, 2017;

Charness and Rustichini, 2011; Goeree, Holt and Smith, 2017).

4 Results

4.1 Contribution Behavior

Contribution behavior is measured using random effects tobit model where contribution is

measured as a percentage of an individual’s endowment sorted by which round the contribu-
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tion decision was made. The dependent percentage of contribution is censored to the range

Ci,t = [0, 1] where C is the percent of endowment contributed by individual i in round r.

This is expressed by the model

Ci,t = β0 + β1,iChats + β2,iPrimes + β3,iChats ∗ Primes + β3ifemalei + β4izEndowmenti,t

+ ψt−1 + θi + µi

(1)

where Chat and Prime describe the 2x2 treatment design categories, zEndowmenti,t de-

scribes the standardized endowment an individual, i, receives in round r, while ψt−1 describe

the vector of effects caused by the vector of feedback variables presented to individuals in

the previous round including the other team’s contribution and the other team’s individual

returns from the team account. Finally, θi is the vector of demographic controls.

The baseline estimation between contribution behavior and the treatments indicates that

only chat has a significant impact on the percentage of an individual’s endowment that they

contribute to their team accounts. Having access to chat increases an individual’s con-

tribution percentage by 20.3 percentage points (p < .01), while priming has no statistically

significant effect, nor does the interaction between priming and chat as illustrated in Figure 2.

When consideration is added for feedback variables regarding the other team’s performance,

the effect of chat is reduced from .203 to .155 (p < 0.01) This result does not show any

statistically significant changes for gender, same as the simpler specifications, implying that

an individual’s gender does not greatly influence their contribution strategy. This is at odds

with other literature on public goods games that have found that women tend to have higher

initial contribution levels that taper off over multiple rounds (Cadsby and Maynes, 1998)

or have an aptitude to participate in public goods in the field (Greig and Bohnet, 2009)

but is not unique in this regard (Brown-Kruse and Hummels, 1993) different time horizons

and settings have found. While not statistically significant, there is a negative effect from
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Figure 1. Contribution Behavior by Treatment Group
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priming on percentage of endowment contributed.

One interesting result is that the standardized endowment consideration has a negative

impact on the percentage of the gross endowment that an individual contributes (-0.0274,

p < 0.01). The implication of this result is that for every experimental unit that a partici-

pant is endowed with, they will reduce their average contribution to the team account by 2.7

percentage points of their gross endowment. This is not completely surprising and can be

simply understood when considering that even though the percentage of their endowment is

decreasing, we observe that their gross contribution is rising and due to the higher endow-

ment, participants can rationalize providing a higher total amount while retaining a larger

portion of their points. This is similar to someone who is wealthy emphasising the total

amount of money they contribute to taxes or charity rather than the percentage of their
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wealth.

There is a statistically strong but practically insignificant result for understanding how

the seeing the other team’s feedback impacts a participants decision making. Notably, in

the fourth specification, we observe highly significant (p < .01) estimates for the impact on

seeing the other team’s individual payouts (β = 6.99e−5) and the total amount contributed

to their group account (β = 1.77e−4). Both of these have an average impact on percentage

points of less than 0.0018 percentage point increase of endowment contributed in a given

round. The behavior here suggests that when participants are unhappy with their team’s

contributions, they may consider switching teams rather than trying to convince their own

team to change contribution strategies after just a few rounds.

Further, the feedback that participants get each round informs the individual about

the opposing team’s performance, which may impact the way they think about their own

contribution strategy. The specification that controls for this does observe strong statistical

significance around the contributions of the other team in the previous round but the effect

is a small, albeit tightly estimated, nearly 0 effect of 0.00007 (p < .01). This is a similar

effect as displayed by the lagged impact of the individual’s own group contribution from the

previous round of 0.00018 (p < .01). This implies that that the impact of an individual’s own

group and the opposite group have a predictable but nearly 0 positive impact on contribution

decision making.

4.2 Team Switching Behavior

Team switching behavior is measured using a random effects logit model estimating the log

odds that an individual attempts to switch teams. This is specific to whether an individual

selects to try to switch teams during a voting period and does not imply that they are
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Table 3. Percent of Endowment Contributed

(1) (2) (3) (4)
VARIABLES % Contributed % Contributed % Contributed % Contributed

Chat 0.203*** 0.202*** 0.203*** 0.155***
(0.0567) (0.0571) (0.0561) (0.0505)

Prime -0.0670 -0.0699 -0.0601 -0.0378
(0.0567) (0.0571) (0.0562) (0.0502)

Chat×Prime 0.121 0.125 0.115 0.0804
(0.0802) (0.0807) (0.0794) (0.0711)

female 0.00718 0.00482 0.0137
(0.0404) (0.0397) (0.0353)

Endowment -0.0166** -0.0244*** -0.0274***
(0.00669) (0.00682) (0.00686)

MPCR 0.135*** -0.00276
(0.0275) (0.0427

OtherTeamContt−1
a 0.0699***

(0.0267)
OwnTeamContt−1

b 0.177***
(0.0239)

Constant 0.632*** 0.630*** 0.378*** 0.445***
(0.0401) (0.0451) (0.0676) (0.0910)

Observations 1,920 1,920 1,920 1,824
Number of id 96 96 96 96

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

ain thousands of points
bin thousands of points

successful in making the switch. This is measured by the model

Si,t = β0 + β1,iChats + β2,iPrimes + β3,iChats ∗ Primes + β3ifemalei + β4iHEg,t

+ ψt−1 + θi + µi

(2)

where HEg,t indicates if an individual is in the higher endowment group during a given

round.

Unlike contribution strategies, team switching behavior shows to be influenced by both
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Table 4. Logit estimating attempts to switch

(1) (2) (3) (4)
VARIABLES wantswitch wantswitch wantswitch wantswitch

Chat 3.023** 2.726** 2.705** 2.965**
(1.410) (1.145) (1.122) (1.171)

Prime 3.100** 2.734** 2.706** 2.656**
(1.413) (1.147) (1.124) (1.161)

Chat×Prime -5.679*** -5.193*** -5.141*** -5.147***
(2.032) (1.635) (1.605) (1.658)

Female -5.610*** -5.504*** -5.717***
(0.919) (0.908) (0.941)

HighEndowment 0.449 -0.392
(0.486) (0.679)

OtherTeamContt−1
a -1.16*

(0.645)
Constant -2.486** 0.499 0.226 1.51

(0.974) (0.890) (0.920) (1.196)

Observations 576 576 576 576
Number of id 96 96 96 96

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

ain thousands of points

chat coordination and priming treatments, making the desire to switch 2.810 and 2.541 times

more likely, respectively. This is counter to the expected outcomes outlined in hypotheses

2 and 4 since coordination via chat and priming make individuals more likely to attempt

team switching when one or the other is present. Testing the interaction between the two

delivers an opposite effect with a coefficient of -5.079, significant at the 1% level. This makes

the combined effect of both chat and prime lower than the individual treatments but still

positive at 0.272.

Table 6 shows the likelihood of a successful switch given an attempt to switch.7 Endow-

ment showed to have strong impacts on the contribution behavior for individuals but at the

same time, there is no statistical evidence that endowment impacts an individual’s decision

7To see the effects of total switchers leaving one group for another, see Table 7 in Appendix E.
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to stay with their team, specifically whether the individual was a member of the high en-

dowment team during a given round. Gender does have very strong impacts on switching

behavior. That is, females in the study demonstrated that they were over five times less

likely (-5.311) to switch teams, robust to whether they were in a high endowment team or

not. This result was also robust across treatments. This result was further tested by round

to understand the switching behavior by gender identities over the experimental time horizon

as displayed in Table 5.

Across specifications, it is clear that the likelihood an individual participant attempts to

switch teams is inversely related with how many rounds have passed. Again, this is expected

since each team starts with 4 members but a maximum possible team size of 6. It would

be expected that those who are going to switch would attempt to in the earlier part of

the experiment, which by Table 5 is shown to be in the first half of the experiment. By

the second half of the experiment, there are still people wanting to switch teams, but the

opposite team would be full and participants would be aware of that, discouraging them from

even indicating that they wanted to switch teams. This is even more likely when considering

that with only 2 members in a public goods game, retaliation for trying to switch teams can

be applied directly compared to when there are n ≥ members and retaliation cannot be well

directed since defection play would signal general uncooperative action taking that would

adversely impact the entire team.

MPCR and feedback variables did not have enough power to show any statistically sig-

nificant results.

4.3 Voting Behavior

Voting behavior in this experiment is only observed every third round, meaning there are

six voting periods that participants will engage in. Whether or not a given individual will

have to vote or be voted on in any voting period is dependant on them either trying to

switch teams or someone trying to join their team and there being a vacant slot on the
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respective team to vote on. Votes were made one participant at a time and were cast in a

binary fashion. This means that if two participants were both trying to switch into a team

with only one vacant opening, any individual already on that team would be allowed to vote

”yes” for both participants trying to join the team. In other words, votes were not exclusive

between participants trying to join a given team with insufficient openings and a tie would

be resolved by a random pick from the experimental application.

The outcome of a respective participant’s attempt to switch teams was designed as a

simple binary where they either were successfully voted into the new team (switch = 1) or

they were rejected by the new team (switch = 0). Voting success is modeled in this binary

fashion. 8 This outcome is modeled as:9

logit(switchi,t) = β0 + β1,ifemalei + β2,it+ β3,iChats + β4,iPrimes + β5,iChats ∗ Primes + θi + µi

(3)

It is important to note that the round an individual attempts to switch teams is needs to

be controlled for due to the inverse relationship between switching and round number. In

later rounds of the experiment, teams tend to stabilize due to one of the teams reaching the

maximum number of members and MPCR being sufficiently large to discourage anyone from

leaving, as shown in Table 5.

Table 6 gives the results of the logit models estimating the outcomes of an attempt to

switch teams. We start with a simplified model in specification (2) to test for a difference

between male and female participants attempting to switch. The log odds of a female

participant trying to switch teams are slightly better than that of a male participant (1.068

vs constant of -1.842) but no detectable significance based on the percent of contribution

8If there are adequate slots available a participant is successfully voted in by a simple majority. In the event
that there are more participants voted in than there are spots available, the participants with the highest
number of votes are voted in first and then any ties are decided by a random number draw from a uniform
distribution.

9The odds of a successful switch are conditional on an individual attempting to switch in the first place such
that logit(switchi,t) = {logit(switchi,t)|wantswitchi,t = 1}.
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that the participant has given in previous rounds. In the preferred specification (3), we

see a slightly stronger advantage of women vs men in trying to gain access to a new group

with log odds of success increasing 1.153 for women compared to the baseline -1.269. The

likelihood of success does not appear to be strongly differentiated by treatments other than

the joint treatment when participants are primed and have the ability to chat, which shows

slight significance of improving the log odds of a successful switch (1.937) over the baseline

constant when neither treatment is employed (-1.269).

5 Discussion and Conclusion

The purpose of this experiment was to explore how group identity impacts an individual’s

decision to stay with their team and improve their team’s overall position when faced with the

opportunity cost of their individual payout. This was achieved by setting up an environment

where participants were participating in two separate public goods games in respectively

gender homogeneous teams. The two teams can see the each other’s performances and

were given 6 opportunities to switch teams. Through this process we are able to see what

kind of patterns there are in contribution strategies within identity homogeneous teams, the

preferences of identity groups to accept out-group members, and the impacts of chat and

identity priming.

Chat was found to be one of the biggest contributors to team account contribution

strategies and this was robust across genders. This is consistent with previous literature and

matches the intuition that improved coordination capabilities between team members would

lead to more group-centered behavior to everyone’s benefit. The effect of gender priming is

not as clear and statistically insignificant as is the interactive effect between priming and

chat capabilities. Of note, however is that MPCR does have a positive impact on percentage

of endowment contributed, meaning participants were more likely to give on average 13.5

percentage points more of their endowment for each increase in the MPCR. In other words,

people give more when they get more out of it. Other specifications of the model from 3 show
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MPCR being insignificant when we looked at lagged effects on feedback from the opposing

team. This does not discount the importance of the MPCR in contribution strategies though

due to the set of the experiment creating a negative correlation between a team’s MPCR

and the other team’s individual payouts. That is, since the number of participants in given

session is capped at 8, then the higher a team’s MPCR is, the lower the MPCR of the other

team and thus lower individual payouts. Overall, these results match what previous public

goods games experiments have found, save the other team impacts.

Identity played a much bigger role in the decision to stay or leave a given team rather

than how much to contribute. Participants contribute what they will contribute regardless

of their gender identity but their strategy with respect to loyalty to their identity-based team

is a separate decision. We see that while chat still has a strong effect a participant’s decision

to attempt a team switch, it is in the opposite direction than expected, same with priming.

The idea here is mostly based around how participants deal with defection. When chat

is enabled, participants are able to more quickly and surely ascertain if their teammates

playing a ”selfish” strategy was just optimization or defecting from a team focused plan.

When identity priming along is introduced we see a similar impact where participants are

more likely to switch and this can be partially attributed to ”betrayal” from their team. The

interaction between priming participants gender identity and allowing them to chat with

each other essentially counteracts the additive effects of chat and prime on average inducing

switching for men. Women in the experiment still show a five time less likely chance to try

and switch teams, leaving us with our conclusion that women are more affected by their

identity group, regardless of the priming.

Even though women were less likely to try to switch teams during this experiment, they

had a slight advantage in being successful at switching when they did attempt from 6.This

result has two potential mechanisms. One is that women made themselves more attractive

candidates when they decided to switch. This is possible because participants are aware

of what information is portrayed to the opposing team when voting on potential switchers
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and the participants know the schedule of switching opportunities. This mechanism is not

favorable because it does not hold up without evidence that females at any point contribute a

higher percentage on average. The randomization of endowment ranges also guarantees that

there is an even split between high endowment females and males across sessions. The other

mechanism to explain the marginally higher female success is the behavior of men in the

experiment. Rather than the assumption that the women make themselves more attractive

via their contributions, men may be more willing to take on additional team members in

order to increase their team account multiplier.

The results of this experiment at the current stage warrant further investigation into

the role that identity plays in public goods games and using this experimental design to

continue exploring the effect of group loyalty. This work contributes to the existing literature

by demonstrating how gender identity has value in a multiple time period setting when

considered against individual monetary gain. In particular, women demonstrate a much

lower likehlihood to try and change teams even when they are on a lower endowed team. We

also find that there is an interesting consideration that participants, when given the ability

to switch teams, do not necessarily try to improve their own team’s cooperation through

action if they get feedback that the opposing team is doing better at cooperation. Rather,

they continue at their current endowment levels waiting for an opportunity to switch.
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Table 5. Switching Attempts by round and Gender

(1) (2) (3) (4)
VARIABLES wantswitch wantswitch wantswitch wantswitch

round 3 1.284** 3.638*** 3.977***
(0.553) (0.888) (0.926)

round 6 1.284** 3.638*** 3.802***
(0.553) (0.888) (0.893)

round 9 1.147** 2.433*** 2.586***
(0.551) (0.806) (0.816)

round 12 0.150 0.803 0.824
(0.549) (0.742) (0.743)

round 15 -0.153 0.269 0.197
(0.553) (0.734) (0.729)

female -4.807*** -4.675***
(1.265) (1.249)

round 3*female -5.402*** -5.290***
(1.361) (1.335)

round 6*female -5.402*** -5.311***
(1.361) (1.349)

round 9*female -2.799** -2.816**
(1.181) (1.187)

round 12*female -1.577 -1.546
(1.162) (1.181)

round 15*female -1.043 -0.919
(1.155) (1.171)

round -0.110***
(0.0322)

highendowment 1.168*
(0.608)

Constant 0.227 -1.570** 0.981 0.221
(0.659) (0.725) (0.882) (0.950)

Observations 576 576 576 576
Number of id 96 96 96 96

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 6. Likelihood of Successful Switch

(1) (2) (3) (4)
VARIABLES switch switch switch switch

Female 1.069** 1.068** 1.153** 1.179**
(0.522) (0.489) (0.547) (0.570)

Round -0.100** -0.0996** -0.0926* -0.0933*
(0.0495) (0.0487) (0.0504) (0.0507)

Chat -1.043 -1.018
(0.715) (0.730)

Prime -1.249 -1.358
(0.762) (0.842)

Chat×Prime 1.937* 2.103*
(1.098) (1.228)

% Contributed 0.185 -0.373
(0.778) (1.080)

Constant -1.842*** -1.916** -1.269** -1.008
(0.674) (0.786) (0.645) (0.991)

Observations 261 261 261 261
Number of id 63 63 63 63

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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A Appendix A: Post-Experiment Questionnaire

1. How close do you feel to your team from the anagram task?

• Very Close

• Somewhat Close

• Neutral

• Somewhat Distant

• Very Distant

2. Why did you choose to switch or not switch teams?

3. How did you choose how much to contribute?

4. How old are you?

5. What is your gender?

6. What year are you?

7. Are you a varisty athlete? If so, which team are you on?

8. Are you a member of a Greek Life Organization? If so, which one?

9. Which college are you matriculated in?

• Dale Bumpers College of Agricultural, Food and Life Sciences

• Fay Jones School of Architecture and Design

• J. William Fulbright College of Arts and Sciences

• Sam M. Walton College of Business

• College of Education and Health Professions

• College of Engineering

• School of Law

10. What is your major?

11. Are you a first generation college student?
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• Yes

• No

12. Are you of latinx/e descent?

13. If so, which do of the following do you ethnically identify with:

• Mexican

• Central American

• South American

• Caribbean

14. Which racial categories do you identify with:

• Black

• White

• Asian

• Native American/Alaska Native

15. What was your childhood zipcode?
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B Appendix B: Priming Questionnaire

1. Do you normally live on campus or off campus?

• Off Campus

• On Campus

2. Do you normally have a roommate?

• I do not have a roommate

• I have a roommate

3. Is your floor single sex or co-ed?

• Single Sex

• Co-ed

4. Do you prefer a single sex floor or co-ed?

• Single Sex

• Co-ed

5. Why is this your preference?

6. Is your living environment single sex or co-ed?

• Single Sex

• Co-ed

7. Why is this your preference?

8. Do you prefer a single sex living environment or co-ed?

• Single Sex

• Co-ed

9. Why is this your preference?
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C Appendix C: Identity-Neutral Questionnaire

1. Which smartphone operating system do you prefer?

• Android

• iPhone

2. Do you prefer voice calls or video calls?

• Voice calls

• Video calls

3. Do you prefer using a laptop computer or a desktop computer?

• Laptop computer

• Desktop computer

4. Do you prefer a mobile app or a mobile website?

• Mobile app

• Mobile website

5. Do you prefer using a keyboard/keypad or a touchscreen?

• Keyboard/keypad

• Touchscreen

6. Do you prefer using a remote control or your smartphone to control smart devices such
as a smart TV?

• Remote control

• Smart device
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D Appendix D: Rate of Switching Requests by Round

Figure 2. Rate of Switching Requests by Round
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E Appendix E: Total Switching by Group

Table 7 measures how many individuals leave a team clustering on the session level. The

interpretation should be how many individuals leave the indicated team, on average, in a

given session.

Table 7. Number of Switchers Leaving the Team

(1) (2) (3) (4)
VARIABLES Switchers Switchers Switchers Switchers

Female Team -0.308** -0.308** -0.308** -0.308***
(0.122) (0.121) (0.119) (0.118)

High Endowment Team -0.240*** -0.240*** -0.246*** -0.248***
(0.0554) (0.0554) (0.0553) (0.0552)

Chat -0.260 -0.275*
(0.169) (0.167)

Prime -0.379** -0.375**
(0.169) (0.167)

Chat×Prime 0.394* 0.385
(0.239) (0.236)

%Contribution 0.0693 0.0717
(0.0540) (0.0544)

Constant 0.766*** 0.716*** 0.992*** 0.947***
(0.0924) (0.100) (0.138) (0.141)

Observations 1,920 1,920 1,920 1,920
Number of id 96 96 96 96

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Chapter 3: Identity Based Risk and Time Preference Predictions

Nathaniel Burke1

Abstract

Assessing the risk and time preferences of other people is a valuable skill in strategic decision

making situations such as negotiations, debate, sports, or even gambling. The accuracy of

these assessments can vary greatly based on the predictors experience and what information

they know about their opponents, which often times may only be immutable characteristics

such as presented gender or race. This paper uses a two phase experiment to test how well

individuals can predict the race and time preferences of a sample of people with only gender

or demographic information to make their predictions. Specifically, this paper explores if

there is an information advantage to making in-group predictions about someone who shares

the same gender or political identity. In phase 1, participants participate in a modified double

multiple price list (DMPL) to elicit their respective preferences. In phase 2, predictors make

predictions about decisions made in the DMPL and then adjust their predictions for different

gender and political subgroups.

JEL classification: D91, D84, C92.

Keywords: Risk Preference, Time Preference, Identity Bias

1West Virginia University: nathaniel.burke@mail.wvu.edu
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1 Introduction

Information about time and risk preferences is usually obtained by incentivized elicitation or

through unincentivized questioning. How these preferences are formed can be attributed to

many things such as experience or how they were taught to think about risk and preferences

and timing, or even cultural implications towards risk and patience. Regardless of where an

individual’s preferences come from, others can observe these preferences in action based on

decisions made.

This paper outlines an experimental approach to evaluate subject perceptions regarding

the risk and time preferences of others based entirely on certain demographic information. In

this paper, individuals make predictions about risk and time preferences using only reported

gender and political identities. The idea behind testing the kinds of predictions that people

make based on identity measures is there are incentivized decisions that are often made

based on someone’s perception or prediction of another person’s risk and time preferences.

These decisions could looks like anticipating counters in negotiations, it comes into play in

athletics or other tactical environments such as chess, gambling, or even business or legal

decisions. When entering into one of these scenarios and having to come up with strategies,

someone will have to make a decision about how aggressive or risky their opponent is when

trying to come up with their strategy, whether it is an opposing coach making a judgement

based on an individual’s gender, or a gambler going off of a gut feeling.

The question specifically explored in this methodology is whether there is an advantage

when making these judgements about someone if they are in your own identity group vs an

opposing group, or are women better at predicting the preferences of other women than they

are with other men? Beyond just looking at if there is improved information about in-group,

this experiment also explores if identity groups have any advantage over their respective out-

groups when comparing how much better they are at predicting in-group preferences.This

approach also allows for testing of how much bias individuals have regarding the preferences
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of respective identity groups.

The within subject experimental design to test these perceptions starts with a first phase

of deciders participating in incentivized time and risk preference elicitations using multiple

price lists. The individuals making these decisions are incentivized by being told that one of

their decisions will be randomly chosen to count. As noted in Azrieli, Chambers and Healy

(2018) and Laury (2005), it is as effective to randomly select one task to incentivize partic-

ipants as it is to incentivize multiple or all tasks2. The multiple price lists were set up so

that for the risk preference elicitation, participants chose between two lotteries, one ”safer”

and one ”riskier”. The lotteries stayed the same across ten choices while the probability of

getting the higher payout for the chosen lottery monotonically increased, therefore increasing

the expected value of the riskier lottery. In similar fashion, the time preferences used two

fixed time periods, now vs 2 weeks later, where the ”get paid now” option monotonically

decreased and was always lower than the ”get paid in 2 weeks” option. Participants had

to make decisions about 10 risk choices and 6 time based choices. Next, a second phase of

predictors was asked to submit their predictions about what percentage of deciders chose

to be risky in each risk preference lottery decision and what percentage chose to be patient

in each time preference decision. Once they made their initial predictions, predictors were

asked to submit their predictions about specific subgroups including male, female, conser-

vative, and liberal deciders. The results show that while there is not a significant difference

in the in-group:out-group error ratios between identity group predictions across the entire

distribution of decisions, there is some significant differences in the higher risk portions of

the risk preference decisions. This meaning that women are more in tune with other woman

regarding their risk preferences when the probability of receiving a more favorable outcome

is low than men are with other men. There are also t statistically insignificant trends with

similar results among political identity groups.

The rest of this paper follows an order as listed: Section 2 goes over a review of re-

2Azrieli et al. (2018) further argues that it is preferable to actually choose one task to incentivize and may
not be proper to incentivize every decision and task performed by participants

113



lated previous literature, Section 3 outlines the experimental design used in this paper,

Section 4 discuss the results found in the experiment, and 5 gives conclusions based on the

experimental results and discusses follow on avenues of research on this topic.

2 Literature Review

There has been a lot of previous work using multiple price lists to elicit risk preferences

(Andersen, Harrison, Lau and Rutström, 2006; Drichoutis and Lusk, 2016; Holt and Laury,

2002, 2005). The simple idea behind the multiple price list format is that there is a mono-

tonic change risk level or patience level respectively required to choose the column B option.

Once the risk level is within an individual’s tolerance, they will switch to the second col-

umn lottery. Observing this decision in expectation, the expected payout of column B gets

incrementally higher and at some point will switch to having a higher expected payout than

the ”safer” Column A. Since the change in probabilities and therefore expected value is

monotonic, a rational individual should have one switching point from Column A to Column

B as outlined in Holt and Laury (2002). While there are many other methods to examine

risk elicitation which boast simpler analysis and implementation (Dave, Eckel, Johnson and

Rojas, 2010; Eckel and Grossman, 2002; Gneezy and Potters, 1997; Lejuez, Read, Kahler,

Richards, Ramsey, Stuart, Strong and Brown, 2002), multiple price list approach has seen

some a lot of popularity in economics for its ability to identify a single ”switching point”

(Charness, Gneezy and Imas, 2013).

While this paper looks at the perceived differences in risk preferences between gender and

political groups, this does leave the initial condition that there is a reason for individuals to

believe there is a difference in the preferences and risk tolerance between different groups.

There has not been substantial work done on the differences between political groups and

their associated preferences but gender differences have been well studied. The current state

of the literature suggests that if there is any difference it is that males tend to have a higher

risk tolerance than females (Charness and Gneezy, 2012; Holt and Laury, 2002; Hunt, Hopko,
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Bare, Lejuez and Robinson, 2005; Lejuez et al., 2002; Weber, Blais and Betz, 2002). Many of

the significant differences where males are found to have higher risk tolerances than females

are found in elicitation designs that are simpler for the participants. Part of this has been

thought to be that the complex MPL design is easier for participants to properly understand

the instructions and thus behave more true to their incentivized preference (Charness et al.,

2013). Other literature has found that males and females have similar risk preferences across

different elicitation techniques (Dohmen, Falk, Huffman and Sunde, 2010; Fecteau, Pascual-

Leone, Zald, Liguori, Théoret, Boggio and Fregni, 2007; Gneezy, Leonard and List, 2009;

Jacobson and Petrie, 2009; Laury, 2005).

Time preference elicitation is often done separately from risk preference elicitation to

ensure there is not a conflation when time preferences are observed under risk (Andreoni

and Sprenger, 2012).Andersen, Harrison, Lau and Rutström (2008) describes using a double

multiple price list strategy to elicit time and risk preferences in one study but for this study

it was important that later predictors would be able to clearly indicate their predictions for

risk and time preferences, respectively so this paper makes a modification on the double

multiple price list . Similar to risk preference elicitation methods, there are a variety of

approaches for eliciting time preferences. Much of the difference in which methods are most

advantageous is dependent on the setting (field vs lab) and time horizon available.

Previous work in understanding the differences between gender groups and their per-

ceived preferences was done in Eckel and Grossman (2002) where the authors implemented a

laboratory experiment using the Zuckerman Sensation-Seeking Scale (Zuckerman, 1994) and

the now known Eckel-Grossman risk elicitation method. The paper finds a positive difference

between men and women’s risk preferences, with women tending to be more risk adverse, but

they also explored the ability of participants to make guesses about the risk choices of their

fellow participants with rewards given for a correct answer. It should be noted that in this

elicitation method, there are 5 fixed choices in the risk preference elicitation, so it is much

more realistic for a participant to get it precisely correct than in the set up described in Sec-
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tion 3 of this paper where participants much predict a value from 0-100. The authors found

that women tended to overestimate the risk aversion of others, especially other women, while

all participants did better than what would occur in expectation from random guessing. My

work extends beyond the original scope of Eckel and Grossman (2002) by using a within

subjects design to get more observations between different matchups between genders, it

also looks at the effects of political groups. The two other major differences are, as already

stated, participants make predictions about what proportion of individuals are choosing each

option in a MPL, rather than making a guess of which option an individual chooses, and the

framing of my study consistently reminds the participant of their predictions when given no

information, strengthening the prediction about the whole group as a baseline for analysis

of group predictions.

3 Experimental Design

This study consisted of two stages: the Elicitation (Decision) Stage and the Prediction Stage.

Each stage took place online with subjects recruited from the University of Arkansas. Both

stages refer to the same 16 decisions but with the second stage observing these decision

broken down into four demographic subgroups as well as the whole group.

55 subjects were recruited for the Decision Stage and 155 subjects were recruited for the

Prediction Stage. Payments are described in Table 1

Table 1. Average Payments by Stage

Payment N SUF Avg Total
Decision Stage 55 $2.00 $6.497
Prediction Stage 155 $5.00 $8.065

3.1 Decisions Stage: Risk and Time Preference Elicitation

Subjects made all of their decisions in the context of two multiple price lists designed to

elicit risk and time preferences, respectively.
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The time preference elicitation uses a multiple price list with 6 decisions to be made over

two fixed periods of time, now vs two weeks later. Participants in the Decision Stage were

asked to choose between option A and B where option A is to receive some sum of money

today and option B is to receive a fixed 20 EUs in two weeks. The option A earnings start

at 19 EU and monotonically decrease to 11 EU as shown in Table 2.

Table 2. Multiple Price List: Time Preference Elicitation

Choice A Choice B

1.
Today: 19 EU
2 Weeks: 0 EU

Today: 0 EU
2 Weeks: 20 EU

2.
Today: 18 EU
2 Weeks: 0 EU

Today: 0 EU
2 Weeks: 20 EU

3.
Today: 17 EU
2 Weeks: 0 EU

Today: 0 EU
2 Weeks: 20 EU

4.
Today: 16 EU
2 Weeks: 0 EU

Today: 0 EU
2 Weeks: 20 EU

5.
Today: 14 EU
2 Weeks: 0 EU

Today: 0 EU
2 Weeks: 20 EU

6.
Today: 11 EU
2 Weeks: 0 EU

Today: 0 EU
2 Weeks: 20 EU

Exchange: 1 EU = $0.33

The risk preference elicitation also used a multiple price list but with 10 decisions rather

than 6. Participants in the Decision Stage were asked to choose from Lottery A and Lot-

tery B. Each lottery has a ”low payout” and a ”high payout” The probability of receiving

the high payout monotonically and linearly increases with each decision in the list. Lottery

A is a ”safer bet” with a larger low payout but smaller high payout and Lottery B is a

”riskier bet” with a smaller low payout and a larger high payout which are outlined in Ta-

ble 3. The set of probabilities in order of the their presentation to the subjects is: (Pl, Ph) =

{(90, 10), (80, 20), (70, 30), (60, 40), (50, 50), (40, 60), (30, 70), (20, 80), (10, 90), (0, 100)}, where

Ph is the probability of receiving the high payout and Pl is the probability of receiving the

low payout.

All subjects received $2 for completing the stage successfully as a show up payment.
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Table 3. Risk Preference Elicitation Payouts

Lottery A Lottery B
High Payout 20 EUs 38 EUs
Low Payout 16 EUs 2 EUs
Exchange: 1 EU = $0.33

Additional payments were determined by randomly selecting a ”choice that counts”. Partic-

ipants were informed that there was an equal opportunity that any of their sixteen decisions

to be drawn as the ”choice that counts”.

3.2 Prediction Stage

None of the subjects that participated in the Prediction Stage participated in the Decision

Stage. Prediction stage subjects were asked to indicate their beliefs about what percentage

of Decision Stage participants would choose a given option for each decision. For the time

preference elicitation, predictors were submitting their prediction of how many deciders

would take the option to wait two weeks for a higher payout in each decision, Choice B,

and in the risk preference predictions, predictors were asked to submit what percentage of

deciders they believed would take the ”riskier” lottery, Lottery B.

Once predictors responded with their beliefs about the entire group of deciders in the 16

decisions, they were asked to submit their beliefs about 4 different demographic subgroups

within the whole group: female deciders, male deciders, liberal deciders, and conservative

deciders. This made for an additional 64 predictions for a total of 80 predictions. The order

these subsequent predictions were made in was randomized by subgroup, maintaining the

integrity of each MPL decision set.

All subjects received a $5 participation payment for completing this stage as well as a

chance at an additional lottery payment of $5, incentivized by the accuracy of a randomly

chosen ”prediction that counts” using an adapted Binarized Scoring Rule(Burdea and Woon,

2022; Danz, Vesterlund and Wilson, 2022; Hossain and Okui, 2013).
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4 Results

4.1 Decision Phase Outcomes

Phase 1 Deciders made all of their choices under incentive that one of their choices would

be randomly chosen to actually impact their payment and therefore they should be properly

motivated to act like every decision could potentially matter. Table 4 reports the percentage

of deciders in each demographic subgroup, as well as the overall Phase 1 group, that opted

for the ”riskier” Lottery B in the risk preference multiple price list elicitation. Due to the

monotonic nature of the success probabilities across the different risk choices, we would

expect that the percentage of deciders choosing lottery B would also follow a monotonic

nature. This is largely holds in all subgroups except in risk choice 1 for the female subgroup

where one participant chooses Lottery B in choice 1 and then going back to A in following

choices. There are not many statistically significant differences in the average decisions by

choice between the demographic subgroups, though there are some consistent trends, such

as liberal deciders tend to have a later switching point than conservative deciders, though

not significantly as seen in Table A.1 of Appendix A. Similarly, the same table also shows

that females tend to also have a later switching point, but not significantly and with less

consistency that liberals vs conservatives, implying that female participants may be less risk

tolerant than male participants, as with liberals versus conservatives, respectfully.

The deciders in the time preference choices do display the expected monotonic behav-

ior expected in the given decision environment as shows in Table 5. This monotonicity is

consistent across all subgroups as well as the decider group as a whole. Similar to the risk

decisions by Phase 1 participants, there is not a statistically significant difference in decision

making between the difference subgroups with respect to their time decisions which can be

seen in Table A.23.

3The lack of statistical significance in the subgroup differences is not meant to imply a disagreement with
previous literature regarding gender differences in risk and time preferences. The goal of this paper was not
to prove a gender difference but to have a a group from the same population that the Phase 2 predictors
were from so they can make predictions. This paper is agnostic towards the gender and political differences
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Table 4. Percent of Risk Deciders Choosing Lottery B

Choice All Female Male Liberal Conservative

1 1.82 3.03 0 0 0
2 0 0 0 0 0
3 0 0 0 0 0
4 18.18 15.15 22.73 10.53 31.58
5 54.55 51.52 59.09 47.37 63.16
6 65.45 60.61 72.73 52.63 73.68
7 74.55 69.70 81.82 57.89 89.47
8 87.27 81.82 95.45 78.95 100
9 94.55 90.91 100 89.47 100
10 98.18 96.97 100 100 100

n 55 33 22 29 19

Table 5. Percent of Time Deciders Choosing Option B

Choice All Female Male Liberal Conservative

1 40 36.36 45.45 26.32 36.84
2 52.73 54.55 50 47.37 47.37
3 65.45 66.67 63.64 63.16 63.16
4 72.73 75.76 68.18 73.68 73.68
5 89.09 81.82 100 89.47 94.74
6 92.73 87.88 100 94.74 94.74

n 55 33 22 29 19

4.2 Prediction Error by Subgroups

The main question when looking at the prediction outcomes of the predictors and their rela-

tive accuracy was focused on how group predictions compared to whole sample predictions.

In order to achieve this, the ratio of errors between the group predictions and whole sample

predictions are calculated and implemented a specification that accounts for the subgroup

a predictor belongs to and which subgroup they are making predictions about. This is the

described with the simple specification as follows:

in risk and time preferences
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εrc,g = P̂ r
c,g − P r

c,g (1)

ERc =

∣∣∣∣εc,gεc,0

∣∣∣∣ = β0 + β1femalei + β2GuessingFemi + β3femalei ×GuessingFemi + µi

(2)

where εrc,g refers to the risk preferences (r) prediction error for choice c within subgroup g.

g = 0 indicates the entire sample, rather than a subgroup. The indicator variables of liberal

and conservative are demographic variables according to how predictors self-identified their

political preferences on the following 5 point scale:

1. Strongly Conservative

2. Moderately Conservative

3. Moderate

4. Moderately Liberal

5. Strongly Liberal

Those who identified with a 1 or 2 were coded as ”conservative” and those who identified

with 4 or 5 were coded as ”liberal”. Those who identified with 3 were coded as ”moderate”.

Approaching the analysis of the subgroup prediction errors for the multiple price lists

presents an option to implement the data in a pooled manner. However, this would not

be as informative to the applicable intention of the problem. When individuals have to

make predictions about the risk or time preferences of somebody else, they are usually doing

so in a partially informed scenario, where they are roughly aware of the probability of a

favorable outcome for their opponent. This means that real life predictions are not made

about the entire distribution of someone’s risk or time preferences but at specific points

along that distribution in any given moment. An illustrating example is in gambling such

121



as a poker where there is some amount of chance involved. A poker player may need to

attempt predicting their opponents willingness to take risk based on what cards are already

on the table. Since some cards are already displayed and the player has cards in their hand,

they can roughly estimate the probability of a favorable outcome for their opponent if they

make a risky play such as bluffing or going all in, which is necessary for the opponent to

inform their decision on how to play a hand. They would not make a prediction considering

all of the potential points along the probability distribution of a favorable outcome because

it is not necessary to solve the their problem in the moment. To make this analysis more

applicable to actual strategic situations, the analysis will mainly continue by looking at the

individual choices in each MPL with pooled results being primarily used for illustration of

distributional differences.

4.2.1 Gender Subgroups

The results in Table 6 show us how an individual’s error in predictions changes based on

additional information and whether that individual is part of the same gender group as who

they are making predictions about. These coefficients report changes to a ratio comparing

the error in risk prediction of a certain subgroup divided by an individual’s error in prediction

about the entire sample of Deciders. In the following tables, Guessf is an indicator variable

signaling whether a predictor is making a prediction about a group of female deciders or male

if (Guessf = 0). This interaction model allows us to understand the error ratio of four groups:

Men predicting men, men predicting women, women predicting men, and women predicting

women. Specifically, this means that the constant value in this output represents the ratio

errors for men making predictions about other men. For example, in ER1, the constant is

indicated as 1.968. This is interpreted as the error that men make when making predictions

about other men is almost double the error than when they are making predictions about

the general group. There are not any significant differences in this ratio for the other three

prediction groups, but if we look at ER2, ER3, ER4, there is a case to be made that men
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making predictions about women is actually more accurate than when making predictions

within their own group4. That is, men are better off in general with less information than

when they try to account for additional gender information if their opponent is another man

but if it is a woman, they can make a slightly better prediction than if they did not have

any information. This is accounted for by using the Guessf coefficient of −0.288 in ER2, for

example, and adding it to the constant 1.060, yielding 0.772. This is interpreted by saying

that when a man makes a prediction about a women, the expected error in that prediction

is 0.772, or 77.2%, of the error made when making a prediction with no information about

gender. ER4 has a similar result with an informed ratio of 0.988, while ER3 has an informed

ratio just over 1. In all 10 choice outcomes, men do worse when they have gender information

about another man5.

Table 7. Time Prediction Error Ratio by Gender (In Group/Out Group)

(1) (2) (3) (4) (5) (6)
VARIABLES ER1 ER2 ER3 ER4 ER5 ER6

female 0.156 0.479 0.764*** 0.503 0.899* 0.688
(0.188) (0.457) (0.252) (0.317) (0.516) (0.776)

Guessf -0.216 0.101 0.0511 0.254 -0.446*** -0.953*
(0.135) (0.174) (0.128) (0.235) (0.134) (0.555)

female×Guessf -0.129 -0.320 -0.309 -0.501* -0.950** -0.528
(0.171) (0.404) (0.189) (0.298) (0.382) (0.708)

Constant 1.259*** 1.185*** 1.078*** 1.218*** 1.644*** 2.076***
(0.133) (0.223) (0.0758) (0.155) (0.291) (0.595)

Observations 286 301 305 304 305 307
R-squared 0.025 0.004 0.026 0.006 0.040 0.037

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Gendered groups do not have as clear of a difference in time prediction error ratios com-

4The robustness model in presented in Table C.1 of Appendix E shows a similar trend where women making
predictions about women are more accurate when compared to men making predictions about men in the
choices that have a lower probability of a favorable outcome.

5There is a notable change in observations for ER10 of Table 8 due to the high number of perfect predictions
about this particular risk choice. This is expected considering that the probability of a favorable result at
this point of the distribution is P = 1.
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pared to risk prediction. Table 7 shows that there is not as clear of a trend in any particular

part of the distribution regarding improved accuracy for one group nor an advantage in male

vs female predictors for improved relative in-group accuracy. The constants are informative

and highly significant though and tell a similar story as the constants in Table 6. If we look

at the constant for time choice 6 (2.076), then we see that when men are making predictions

about other men, the average error in their predictions is actually twice as much as if they

just made a prediction without any gendered information. In general, this holds across the

other prediction matching with few coefficients showing there is much of statistically signifi-

cant difference. Primarily, choice 5 has an interaction coefficient of -0.950 and discount when

making predictions about females, regardless of the predictor’s gender of -0.446.

Political preferences are not considered to be immutable characteristics (Enriquez, 2013;

Hoffman, 2010; Sen and Wasow, 2016) so it is reasonable that there may not be as strong

of trends for prediction error analysis based on political information compared to gender

information. Table 8 does give a strong baseline ratio on the value of learning political

information about someone when making predictions about their risk preferences. The in-

terpretation of these coefficients is similar to Table 6 but for illustration, the constant in the

estimation for choice 1 (1.947) indicates that the error in predictions when conservative have

information that their opponent is a conservative is nearly twice as large as when they do

not have any information at all. There is no other significant result for the other guessing

group match ups, indicating that across all groups, they are twice as inaccurate once they

have gender information compared to when they do not and are making predictions about

a generic Decider. On the other extreme, Choice 10 shows that individuals with political

information have errors five times as large compared to when they have no information and

are making a general prediction.6

Table 9 depicts the results that examine prediction errors based on politically identifying

6Just as in Table 6, there is a notable change in observations for ER10 of Table 8 due to the high number of
perfect predictions about this particular risk choice. This is expected considering that the probability of a
favorable result at this point of the distribution is P = 1.
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Table 9. Time Prediction Error Ratio by Politics

(1) (2) (3) (4) (5) (6)
VARIABLES ER1 ER2 ER3 ER4 ER5 ER6

liberal -0.0550 -0.00186 -0.944 -0.0931 0.140 0.333
(0.189) (0.267) (0.906) (0.222) (0.246) (0.572)

Guessl 0.217 -0.0447 -0.474 0.818** 0.541 2.365*
(0.158) (0.215) (0.780) (0.330) (0.327) (1.267)

liberal×Guessl -0.250 0.279 0.402 -0.773** -0.800** -2.903**
(0.211) (0.264) (0.785) (0.353) (0.337) (1.325)

Constant 1.118*** 1.132*** 1.998** 1.204*** 1.141*** 1.495***
(0.163) (0.195) (0.892) (0.175) (0.146) (0.315)

Observations 190 195 198 196 198 200
R-squared 0.010 0.006 0.018 0.057 0.023 0.043

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

information compared to general prediction about the entire Decider sample group. The

results in this estimation show a similar result as the other time and risk predictions already

presented, at a base point, across prediction subgroups, there are smaller prediction errors

when individuals are making predictions about a general Decider without any politically

identifying information. The main difference with these results is that the interaction be-

tween the indicator term for a liberal and the indicator for whether someone is making a

prediction about a liberal shows an improvement on the constant. In other words, when a

conservative is making a prediction about another conservative, their error ratio on average

would be 1.204 in Choice 4. When a liberal is making predictions about another liberal,

the value of the error decreases by 0.773. Another way to illustrate this is going group by

group where conservatives predicting conservatives have an error ratio of 1.204, there is no

significant difference when liberals are making predictions about conservatives, conservatives

making predictions about liberals are 0.818 worse or 2.022 meaning a twice as high error

compared to a general and uninformed prediction, and a liberal making a prediction about

another liberal is 1.204 + 0.818 + (−0.773) = 1.249. This means that a liberal making a
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prediction about another liberal carries a 24.9% larger error than an uninformed prediction.

4.2.2 Pooled Distributions and Fixed Effects Model

The pooled error distributions for the four different predictions made are not as helpful in

understanding the specific situations that individuals encounter when applying predictive

behaviors in the real world but do help illustrate the differences in how different subgroup

prediction scenarios are in general across a range of probabilities for a favorable outcome

by the decider that the predictions are being made about. Figures 1, 2, 3, 4 give a kernel

density smoothing of a pooled histogram depicting the distribution of absolute errors for

each of the four predictions types (risk/time vs gender/politic). The interpretation of these

plots should consider that these are pooled across the entire distribution of errors, meaning

that if a certain prediction matching is of better quality than another, we would expect to

see a higher density in the lower regions of the plot, where absolute value is less, and a

lower density when absolute value is higher. This gives us the ability to somewhat rank

the effectiveness of different prediction matching in reducing prediction errors. Whole group

guessing is the uninformed guesses that predictors make without any identifying gender or

political information and can be used as a reference for how well information benefits certain

group match ups.

In Figure 1 it is clear which matching has the worst outcomes with respect to minimizing

absolute error due to female guessing female having the lowest density of low errors and the

highest density of high errors other than at the extreme high end. This is complemented by

male guessing female having the highest density of low errors with no clear distinction past

errors at a level of 20 or higher.

Figure 2 shows a clear advantage in women making predictions about other women with

regards to density of small errors versus a primarily low density of large error relative to

the other matchings. This is particularly true when comparing to the uninformed guessing

baseline and provide further evidence that this improves the outcome in reducing error. The
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Figure 1. Smoothed Pooled Distribution of Risk Prediction Errors across Genders
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other result that is identifiable here is that female guessing men appears to skew towards

having higher errors over all and men guessing men are relatively poor at accuracy, though

not quite as bad.

Figure 3 depicts the pooled distribution of risk prediction errors by political groups. This

plot shows a very tight band between all four prediction matches and the baseline, showing

that there is not much difference in what the match up, additional information does not

appear to help improve the accuracy of predictions. This means that someone making a

prediction is no better off with additional political information. The pooled distribution of

time prediction errors by politics on the other hand has relatively well defined differences

in effectiveness. Namely, we see a clear dominance of conservative guessing about other

conservatives and inferiority of liberals making predictions about other liberals. The distri-
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Figure 2. Smoothed Pooled Distribution of Time Prediction Errors across Genders
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butional switching point from low errors to high errors occurs just under an absolute error

of 30, meaning that below 30 there is a higher density among the more effective prediction

matches and above 30, the ordinal rankings invert.

The results of Table 10 show the effects on the respective subgroup:general error ratios

that gender and political alignment show. These models take into consideration choice fixed

effects regarding the multiple price list choice predictions that the phase two predictors

made. Model (1) looks at the gender based risk prediction error ratio. While neither the

gender nor the political identity coefficients show any significant results, we do see that there

is consistency in the coefficient signs with the trends seen in Table 6. The interpretation

is that there is a suggestion uninformed predictions have a lower error than when there is

gender information, where the error is over double. Model (2) also has a consistent with the
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Figure 3. Smoothed Pooled Distribution of Risk Prediction Errors across Political Identities
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relevant non-fixed effects model from Table 8 with respect to how baseline uninformed error

ratios compare to subgroup prediction match ups where predictors are more accurate when

they have less information rather than more for men making predictions about other men.

When the predictor is a woman making predictions about other men, they are actually less

accurate by almost 40% larger group based error. Men making predictions about women

is no different than when they make predictions about men but finally, when women make

predictions about other women, they have a ratio of approximately 1.5, meaning they are

slightly less accurate with more information then when men are predicting about other men.

Model (3) depicts a near double error in political group level predictions compared to

uninformed whole sample predictions when making predictions about risk preferences across

all guessing groups, similar to what we saw in Table 8 while model (4) shows group level
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Figure 4. Smoothed Pooled Distribution of Time Prediction Errors across Political Identi-
ties

0
.0

05
.0

1
.0

15
.0

2
D

en
si

ty

0 20 40 60 80 100
Absolute Error in Time Prediction

Whole Group Guessing Conserv Guessing Conserv
Liberal Guessing Conserv Conserv Guessing Liberal
Liberal Guessing Liberal

prediction differences. More specifically, conservatives making predictions about other con-

servatives have an error ratio of 1.35, which is not significantly different than liberals making

the predictions about conservatives. Predictions about liberals by conservatives though have

an even higher error rate, nearly double the error compared to having no information about

the decider being liberal, and when a liberal makes a prediction about another liberal, they

are actually more accurate on average than when they have no information with an error

only two-thirds that of their uninformed error. 7

7As described in Section 3, the moderates are left out of this model due to the within subject design not
asking subjects about their preference beliefs about moderates.
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Table 10. Fixed Effects Error Ratio Models

(1) (2) (3) (4)
VARIABLES Risk Gender Time Gender Risk Politics Risk Politics

female -0.209 0.588**
(0.331) (0.234)

Guessf -0.0380 -0.201
(0.299) (0.188)

female×Guessf -0.191 -0.461**
(0.367) (0.233)

liberal 0.465 -0.0931
(0.424) (0.259)

Guessl 0.134 0.574***
(0.349) (0.216)

liberal×Guessl -0.636 -0.686**
(0.470) (0.291)

Constant 2.197*** 1.408*** 1.998*** 1.347***
(0.268) (0.189) (0.314) (0.192)

Observations 2,929 1,808 1,907 1,177
Number of id 155 154 100 100

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

5 Conclusions

This paper presented an experimental design that captured beliefs about time and risk

preferences in an incentivized prediction experiment. The initial preferences were elicited in a

first stage of Deciders who were incentivized to participate in a modified double multiple price

list elicitation activity. In addition to eliciting beliefs about time and risk preferences, the

within subject design also allowed for estimation of in-group and out-group biases by gender

and political identity. Moreover, the difference in predictions by groups allow for estimation

of perceived bias by different subgroups about other subgroups. All of the predictions were

made in the second stage of the experiment by predictors.

The first phase elicitation of decider risk and time preferences resulted in some nominal

differences between identity group preferences but not statistically significant differences.
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Previous literature has been split between finding females have a lower risk preference and

men and women have equal risk tolerances. Since the purpose of this project was to gain

an understanding about how much identity information improves the predictions about risk

and time preferences and informs biases, the actual difference between the identity groups

is not the primary concern and is measured in order to gauge accuracy of the phase 2

predictions. The preference elicitation did reveal mostly rational behavior in the multiple

price list decisions. The primary indicator of this is the mostly monotonic trends in the

proportion of participants choosing the riskier and more patient option in the risk and time

preference elicitations respectively. The only exception to this is one observation8 having two

switching points to lottery B. The time preference elicitation had monotonically increasing

trends across all subgroups and in aggregate.

The results from the subgroup error analysis did not show significant differences for

many of the choice options but there were some interesting results that came out of this

primary analysis. In particular, the risk preference prediction analysis by gender identity

groups showed a significant difference in the improved accuracy bonus that was realized when

participants made in-group predictions vs out-group predictions. In the first four choices of

the risk preference predictions, female participants enjoyed improved accuracy when making

predictions about other women compared to men making predictions about other men from

Table C.1. The interpretation of this is that women are more in touch with how other women

feel about risk than men are about other men when compared to when men and women make

predictions about the opposite gender. This improved perception of risk preference is specific

to when the odds of a good outcome are relatively low. A real life application is when two

individuals are engaged in some sort of strategy based competition such as athletics, chess,

card game, etc, and two individuals do not know anything about each other other than

gender identity. When the two individuals are both women, they have a relatively more

8The one participant was a female observation that chose Lottery B in Choice 1 and then switched back to
Lottery A in Choice 2. This can either be attributed to the individual not understanding the instruction
initially but is more likely exploring the option space.
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accurate perception of each other’s risk tolerances than if it was a woman trying to make

a judgement about an opponent who is a man. This advantage does not carry over well

for men judging other men vs if they are judging woman however nor does this advantage

hold as the probability of a favorable outcome in the lottery choices increases towards near

certainty of preferential payout.

Politically based advantages in the in:out group error ratios were not consistent across

either risk or time preference predictions. There is some indication at the lower risk levels

(choices 7-10) that liberals are better at intuiting the risk tolerances of other liberals com-

pared to their predictions about conservatives than conservatives are about making in-group

predictions vs out-group, but these results only hold statistical significance in choices 8 and

10, where choice 10 is a corner solution 9. Over the time preference predictions, there was

no significant difference between conservative or liberal in-group accuracy advantages.

Testing for differences in the way subgroups made predictions about other subgroups

showed only slight differences. There is not a noticeable difference in how subgroups perceive

each other vs within their own group with regards to risk preferences. There is a difference

in how the different genders perceive the difference between in time preferences however.

Women in the predicting sample tended to believe that the difference between men and

women was smaller than men believed. Women also had a smaller gap in their predictions

regarding conservatives and liberals. This means that men display larger biases about the

difference in the patience of subgroups than women.

Overall, the effects of knowing gender or political identity about an individual in a risk or

time preference scenario does not have a very strong impact on the accuracy of predictions

about the deciding individual. While there is not a universal effect for all types of subgroup

identities or expected value of a risky decision, there are some more specific inferences that

can be made and some marginal advantages to making predictions within identity groups.

9Choice 10 in the risk preference elicitation has a probability of receiving the higher payout of p = 1,
therefore all rational actors in the experiment should choose the ”riskier” lottery. Predictors are aware of
this probability level
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There is further room to explore these types of identity based prediction accuracy problems,

specifically looking into other types of identities that have large cultural impacts such as

race, ethnicity, and and regional identities.
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A Appendix A: Phase 1 Logit Models

Table A.1. Logit on Risk Choices by Gender and Political Identity

VARIABLES risk4 risk5 risk6 risk7 risk8 risk9

female -0.369 0.248 -0.109 -0.332 -0.405
(0.834) (0.688) (0.719) (0.844) (1.278)

liberal -1.314 -0.686 -0.908 -1.778**
(0.904) (0.674) (0.703) (0.886)

Constant -0.585 0.410 1.087* 2.325*** 1.609 1.705**
(0.643) (0.592) (0.649) (0.900) (1.095) (0.769)

Observations 38 38 38 38 19 13
Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Note: Risk Choices 1, 2, 3, and 10 omitted due to no variance in outcome

Table A.2. Logit on Time Choices by Gender and Political Identity

VARIABLES time1 time2 time3 time4 time5 time6

female -0.574 0.0478 -0.258 0.604
(0.719) (0.674) (0.704) (0.757)

liberal -0.406 -0.00754 0.0405 -0.0988 -0.492 0.288
(0.718) (0.658) (0.683) (0.754) (1.305) (1.481)

Constant -0.247 -0.131 0.677 0.733 2.197** 2.197**
(0.595) (0.581) (0.611) (0.628) (1.054) (1.054)

Observations 38 38 38 38 23 23
Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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B Appendix B: Prediction Biases between Groups

B.1 Differences in Predictions by Gender

These results analyze how much of a difference there is in the beliefs about two subgroups’

preferences. Higher differences suggest increased beliefs that the demographic subgroups be-

have differently with respect to their time or risk preferences. These differences are calculated

by simply taking

∆P̂ r
c = P̂ r

c,g − P̂ r
c,g−1 (3)

or

∆P̂ t
c = P̂ t

c,g − P̂ t
c,g−1 (4)

where r represents a risk preferences and t represents time preferences, and then stan-

dardizing each difference within each respective choice.

B.2 Differences in Predictions by Politics

These results analyze how much of a difference there is in the beliefs about two subgroups’

preferences. Higher differences suggest increased beliefs that the demographic subgroups

behave differently with respect to their time or risk preferences. The variable coding follows

from earlier sections measuring political differences.
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Table B.2. Standardized Difference in Time Predictions between Gender Groups

(1) (2) (3) (4) (5) (6)

VARIABLES ∆P̂ r
1 ∆P̂ r

2 ∆P̂ r
3 ∆P̂ r

4 ∆P̂ r
5 ∆P̂ r

6

female 0.171 0.168 0.237 0.281* 0.485*** 0.353**
(0.176) (0.172) (0.170) (0.169) (0.166) (0.168)

Constant -0.115 -0.111 -0.156 -0.184 -0.318** -0.231*
(0.144) (0.140) (0.138) (0.137) (0.134) (0.136)

Observations 146 150 152 153 154 154
R-squared 0.006 0.006 0.013 0.018 0.053 0.028

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table B.4. Standardized Difference in Time Predictions between Political Groups

(1) (2) (3) (4) (5) (6)
VARIABLES P∆lc1 P∆lc2 P∆lc3 P∆lc4 P∆lc5 P∆lc6

liberal 0.0962 0.196 0.383 0.398* 0.437** 0.494**
(0.230) (0.230) (0.231) (0.221) (0.217) (0.210)

Constant -0.104 -0.168 -0.253 -0.329** -0.282* -0.278*
(0.171) (0.170) (0.172) (0.164) (0.161) (0.156)

Observations 96 97 98 98 100 100
R-squared 0.002 0.008 0.028 0.033 0.040 0.053

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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C Appendix C: In:Out Group Ratios in Gendered Risk Prediction

The results in describe the ratio between in:out group predictions according to the following

specification.

εrc,g = P̂ r
c,g − P r

c,g (5)

ERc =

∣∣∣∣ εc,g
εc,g−1

∣∣∣∣ = β0 + β1femalei + β2liberali + ϕiDi + µi (6)

where εrc,g refers to the risk preferences (r) prediction error for choice c within subgroup g,

the out-group is notated as g−1, and ϕiDi is a vector of effects from a vector of demographic

controls.

C.1 Risk Error Ratios

The specification results in Table C.1 shows us an interesting trend where there is a mea-

surable change in the size of the in/out group prediction error ratios. The region of the

distribution of choices where the risk associated with taking Lottery B is higher also shows

a strong trend of smaller error ratios for female predictors. This means that the women in

phase 2 were better at making in group prediction over the high risk portion of choices than

men were. For example, the coefficient on female in the second risk choice can be inter-

preted as estimating a 0.806 reduction in the error ratio for risk choice 2 when the predictor

is a female making predictions about other females versus the baseline of a male making

predictions about other males with a high level of significance (p < 0.01). We see similar

reductions in the error ratio.

The coefficients for risk choices 2, 3, and 4 all estimate an on average reduction of the

error ratios to being slightly below 1, such as ER2 = 1.727 − 0.806 = .921 for the average

woman making a prediction about risk preferences about other women:men. This suggests

that women not only have an advantage over men in reducing their in-group error ratio

but that they are slightly more accurate about their in-group predictions compared their
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out-group predictions with regards to risk preferences.There is no significant or consistent

direction of results for the controls on an individuals political alignment at any point along

the distribution of risk preference choices so in order, the significant prediction error ratios

for women in risk choices 1-4 are 0.541, 0.921, 0.973, and 0.872. These ratios can be thought

of as the size of the in-group prediction error as a percentage of the out-group prediction

error so that a resulting error ratio of 0.541 translates to the in-group error being 54.1% of

the size of the out-group error or 45.9% smaller. The rest of the error comparisons would

be 7.9%, 2.7%, and 12.8% smaller error for the in-group predictions than the out-group,

respectively.
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D Appendix D: Robustness Check

Table D.1 considers the analysis if all double switchers (n=1) from the DMPL elicitation

were dropped from the phase 1 deciders, recalculating the prediction error terms without the

double switching observation(s). The only double switcher was a political moderate, so the

results from Table 8 would not be affected. Additionally, there was no double switching in

the time preference elicitations so none of those portions of the analysis were affected either.
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E Appendix E: Robustness Check for Zero Denominators

To account for missing observations in the main analysis of this paper, I implement a simple

adjustment to rectify the observations missing due to undefined ratios where the denominator

was equal to zero. Specifically, since the ratio in the models was defined as

εrc,g = P̂ r
c,g − P r

c,g (7)

ERc =

∣∣∣∣εc,gεc,0

∣∣∣∣ (8)

any time that a predictor makes a perfect prediction such that P̂ r
c,g = P r

c,g, then the error

ratio becomes ERc =
∣∣ εc,g

0

∣∣, which is undefined and thus is processed as a missing observation

by the estimation. A simple workaround implemented to check how much impact these

missing observations has is used in the following form

ERc =

∣∣∣∣εc,g + .001

.001

∣∣∣∣ (9)

whenever εc,0 = 0. This is not a perfect workaround since it does artificially inflate the

respective coefficents, since it is only a slight adjustment from being undefined. The purpose

of this test though is a check on significance.
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Table E.2. Time Prediction Error Ratio by Gender with Zero Adjustment

(1) (2) (3) (4) (5) (6)
VARIABLES ER1 ER2 ER3 ER4 ER5 ER6

female 635.5* 0.479 0.764*** 0.503 -565.1 0.688
(353.8) (0.457) (0.252) (0.317) (565.2) (0.776)

Guessf -0.216 0.101 0.0511 0.254 -340.1 -0.953*
(0.135) (0.174) (0.128) (0.235) (339.2) (0.555)

female×Guessf -100.2 -0.320 -0.309 -0.501* 338.7 -0.528
(101.2) (0.404) (0.189) (0.298) (339.2) (0.708)

Constant 1.259*** 1.185*** 1.078*** 1.218*** 567.7 2.076***
(0.133) (0.223) (0.0758) (0.155) (565.2) (0.595)

Observations 294 301 305 304 307 307
R-squared 0.011 0.004 0.026 0.006 0.013 0.037

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table E.4. Time Prediction Error Ratio by Politics with Zero Adjustment

(1) (2) (3) (4) (5) (6)
VARIABLES ER1 ER2 ER3 ER4 ER5 ER6

liberal -34.78 -0.00186 -0.944 -0.0931 -1,689 0.333
(266.4) (0.267) (0.906) (0.222) (1,691) (0.572)

Guessl 4.968 -0.0447 -0.474 0.818** -599.5 2.365*
(6.744) (0.215) (0.780) (0.330) (600.8) (1.267)

liberal×Guessl -45.18 0.279 0.402 -0.773** 599.2 -2.903**
(40.95) (0.264) (0.785) (0.353) (600.8) (1.325)

Constant 205.6 1.132*** 1.998** 1.204*** 1,690 1.495***
(204.8) (0.195) (0.892) (0.175) (1,691) (0.315)

Observations 194 195 198 196 200 200
R-squared 0.001 0.006 0.018 0.057 0.013 0.043

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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F Appendix F: Instructions

G Phase II - Predictions

G.1 General Instructions

Thank you for your participation today. Just for participating in this study, you will receive

$5 toward your Take-Home Pay. In order to receive your Take-Home Pay, you must complete

the entire survey today.

In this study, you are a ”Predictor.” Your task today will be to make predictions about

the behavior of other participants in this study. The more accurate your predictions are, the

better the chances that you will earn more money.

We recruited students at the University of Arkansas to be ”Deciders.” The Deciders made

a series of private choices and entered them confidentially into a computer. The Deciders

knew that their choices would never be individually observed by anyone other than the

researchers. One choice made by each Decider was randomly selected to determine the

respective decider’s payment for their participation.

The Deciders made 16 decisions in total. The 16 decisions that Deciders made were

broken up into two different types. 6 questions were about when the decider preferred to

receive payment and 10 questions were about how much risk the decider preferred to take

on to earn more money.

Every question had 2 options. For the questions about payment timing: Receive less

money now or more money in 2 weeks. For the questions about choosing risks: A ”safer”

option with lower potential payout, or a ”riskier” option with a higher potential payout.

Your job is to predict what percentage of deciders (P) chose each option for each question.

One of your predictions will be randomly chosen to determine your payout for today.

Specifically, you will be predicting what percentage of Deciders: Chose to wait 2 weeks

for the higher payout Chose the ”riskier” option with a higher potential payout

You will be making predictions about all 16 decisions for 5 groups of deciders, one will
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be the entire group, the other 4 will be subgroups of the whole group.

One of your predictions will be randomly chosen as the prediction to count for your

payment. You should do your best to make accurate predictions because the closer your

predicted P is to the actual P, the higher your potential payout will be. Since any one of

your predictions can be chosen to count, you should treat every prediction as if it could

determine your payout.

Deciders were given their choices expressed as ”EUs” (Experimental Units). At the end

of the survey, their earnings were converted from EUs to US Dollars using the exchange rate

3 EUs = 1 USD. This means for every 3 experimental units the Deciders earned, $1 was

added to their payment.

G.1.1 Comprehension Questions

1. What is your role in today’s study?

• Make decisions about my preferences

• Guess what decisions the Deciders made

• Help the Deciders make decisions

2. Did the Deciders decisions have consequences

• Yes, their choices mattered item No, their choices did not matter

3. How many of your predictions will count?

• All of them collectively

• One prediction chosen at random

• None of them
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G.2 Payment Instructions

You will have a chance to earn an additional $5 added to your payment in a lottery based

on the accuracy of your prediction that counts.

The computer will randomly draw two numbers from 0-100. We will call these numbers

X and Y . These numbers are whole integers and all numbers from 0-100 have an equal

chance of being chosen.

If your predicted P is less than the true P : You will receive the additional $5 if and only

if your predicted P is greater than or equal to either X or Y .

If your predicted P is greater than the true P You will receive the additional $5 if and

only if your predicted P is less than either X or Y .

The most important thing is to submit your true belief about P . Trying to game the

system by guessing high all the time that will not help. It will only increase the probability

that you miss out on the bonus if you draw a low X and Y .

Conversely, trying to guess low will increase the chance of missing out if you draw a high

X and Y .

G.2.1 Comprehension Questions

1. If your guess about P is that P = 35 and the true P is 40, how will your bonus be

determined?

• I will not get the bonus

• I will get the bonus if 35 is greater than or equal to either the randomly drawnX

or Y

• I will get the bonus if 35 is less than either the randomly drawn X or Y
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G.3 General Time Preference Prediction Instructions

For this section, you will be making predictions about the time preferences of the Decider

group as a whole.

For each of the following decisions, move the slider to indicate your predicted P , which

is what percentage of people you believe chose to wait 2 weeks for 20 EUs vs taking the

indicated payment on that day.

G.4 General Risk Preference Prediction Instructions

For this section, you will be making predictions about the risk preferences of the Decider

group as a whole.

For each of the following decisions, move the slider to indicate your predicted P , which

is what percentage of people you believe chose the second risk option.

G.5 Group Level Time Preference Predictions Instructions

For this section, you will be making predictions about the time preference of a group of

female Deciders.10

For each of the following decisions, move the slider to indicate your predicted P , which is

what percentage of female Deciders you believe chose to wait 2 weeks for 20 EUs vs taking

the indicated payment on that day.

As a reminder, your prediction for the Decider group as a whole was: *insert prediction

from corresponding general prediction* of Deciders would wait 2 weeks for 20 EUs.

10Instructions were consistent across all subgroups, just replacing ”female” with the appropriate subgroup
title (male, liberal, conservative).
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G.6 Group Level Risk Preference Predictions Instructions

For this section, you will be making predictions about the risk preference of a group of

female Deciders.11

For each of the following decisions, move the slider to indicate your predicted P , which

is what percentage of female Deciders you believe chose the second risk option.

As a reminder, your prediction for the Decider group as a whole was: *insert prediction

from corresponding general prediction* of Deciders chose the second risk

11Instructions were consistent across all subgroups, just replacing ”female” with the appropriate subgroup
title (male, liberal, conservative).
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Conclusion

The study of identity as an aspect of behavior is barely 2 decades old in economics, leaving

a lot of innovation and discovery to still be achieved at the forefront of the field. Using

experimental methods to isolate and understand the nuanced impacts of different aspects

of identity and behavior will continue to be an important part in the advancement of the

field. The three studies in this dissertation all explore some aspect of behavior and decision

making that has a core rooting in identity. While not all decisions may have a conscious

identity element in the way they are derived, they at least have an important aspect of self-

identifying that has to be done by a person in a way to signal information to themselves and

others. Sometimes this identity signaling can be an intentional way to make yourself belong

in society or a subgroup thereof. Sometimes the signaling in non-mutable such as with race

or gender. The important consideration is that there is information in the way we choose to

identify ourselves and the way that people perceive our identities.

The applications of this work mainly speak to areas that need further research and

understanding for policy application. Incentivized decision making is an important aspect

of understanding how bias plays a role in the way we interact with each other in constrained

environments. While the other social sciences have written extensively about the sociological

implications of identity and bias, economics needs to continue to speak of the actual cost and

value of identity and bias. It is evident that at times our perceptions of identities and how

they play into stereotypes often causes us to be less effective in understanding each other

and making predictions about the nature of our preferences and decisions. We also have seen

that the reality of social signaling is very effective at masking the true desires of a person,

even when others are aware of the signaling, due to the inability to extract the truth from

bias. Often these biases can become systemic to the point where it is hard to understand

the initial preference in the first place or the actual disposition.

The main takeaway from this work is that identity and bias are important to people, even
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when they are aware that it may come at a personal cost. There is a level of incentive that can

reduce the weighting that individuals put on these but their value is intrinsic to the individual

and cannot be well defined to make a sweeping policy suggestion in an applied setting. The

reality is that broad spectrum policy cannot correct for the idiosyncrasies apparent in the

intersection of bias, identity, and experience resulting in spaces where generalized guidelines

need to be flexible to allow reasonable adjustments. This work has added to the literature

by attempting to test explicitly the values of identity and the perceptions of preferences

and social desirability while leaving room for further exploration beyond the scope of just

gender and politics, such as the implications of race, ethnicity, socioeconomic status, and

their intersection. The intersection is most important in applied areas of labor and education

and offers great opportunities for behavioral and experimental research in economics to make

further connections to policy applications.
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