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ABSTRACT 

Rapid and accurate damage assessment is crucial to minimize downtime in critical 

infrastructure. Dependency on modern technology requires fast and consistent techniques to 

prevent damage from spreading while also minimizing the impact of damage on system users. 

One technique to assist in assessment is data lineage, which involves tracing a history of 

dependencies for data items. The goal of this thesis is to present one novel model and an 

algorithm that uses data lineage with the goal of being fast and accurate. In function this model 

operates as a directed graph, with the vertices being data items and edges representing 

dependencies. Additionally, data is grouped into multiple layers which allows for faster partial 

damage assessment. Lower layers of the graph consist of more granular data items, while 

higher layers consist of containers of lower layer data items. By assessing a higher layer, one 

can immediately conclude that certain portions of the system are undamaged, and those 

portions may begin operation again. In practice, graph creation is a front-loaded operation that 

allows immediate action at the time of damage assessment. Depending on the system, this 

graph will often be cyclic which causes standard assessment to be a computationally slow 

problem. By tracking the time of dependencies, our graph operates as a subclass of temporal 

graph, which are graphs that change over time. By taking advantage of unique properties of this 

subclass, our algorithm is able to function in a way that is nearly only dependent on the number 

of edges. Put together, the model can run quickly, free up undamaged portions of the system 

during assessment, and find the minimum amount of damage which needs to be manually 

assessed. 
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1 INTRODUCTION 

 As the reach of technology continues to grow, so too does our dependence on it. Data 

storage is easier than ever, and processing power continues to become cheaper. As a result, 

more data than ever is being processed and stored. For the vast majority of systems, the scope 

of data has become too large for a human to parse, much less perform the same operations the 

system is performing at a given time. This means that full system understanding is far more 

complex, and should something go wrong in a system, significant amounts of work are required 

to determine what went wrong. Logging and techniques such as data lineage can mitigate the 

necessary amount of work by reducing the amount of human review required. There are a 

variety of potential issues that can arise to create data corruption that range from viruses to 

hardware issues. If the situation is not noticed or resolved quickly the system may be reusing 

damaged data, and what may have been a small problem can become significantly worse. 

         Should a system continue running after some data is corrupted, damage can propagate 

from just a single data item to potentially the entire system. Whenever data is dependent on 

damaged data, it may itself become damaged. As a result, damage can spread quickly as more 

of the system becomes damaged. Without proper preparation, even a small amount of 

corrupted data can make it so a full evaluation of the system is required for repair, as the scope 

of damage is unknown. Again, due to the size of these systems, full manual review is 

impractical, and some technological assistance becomes essential. This is particularly true in 

systems that require minimal downtime, as a system will need to cease operation when 

damaged in order to halt damage propagation. 

         Downtime is always crucial in critical infrastructure. In creating algorithms, a balance 

typically needs to be struck between the speed of the algorithm and its use of computing 

resources. However, in critical infrastructure the assumption is often made that speed is the 

primary goal, and therefore a larger than typical amount of resources can be contributed to 
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processing and preprocessing. Additionally, even marginal gains in speed or efficiency, 

particularly with repairs, can become valuable. This is particularly true when doing damage 

assessment to limit the amount of time the system is down. 

         Some damage or attacks to a system may be hard to detect and as a result will not 

always be caught initially causing damage to propagate. The goal of this thesis is to provide a 

model for data lineage to help detect all potentially damaged data as quickly as possible. 

Moreover, the damage detected should include only information that is potentially damaged as 

this requires the minimal amount of manual review for repair. This model may be particularly 

useful for critical infrastructure as portions of the system may be freed up early during 

assessment, allowing partial functionality. 

         The rest of the thesis is organized as follows. Chapter 2 consists of background and 

related work. Chapter 3 defines the model and the algorithm used to evaluate the model. 

Chapter 4 shows experiments and results. Chapter 5 presents conclusions and future work. 
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2 BACKGROUND AND RELATED WORK 

2.1 Critical Infrastructure 

According to The CISA (Cybersecurity and Infrastructure Security Agency) of the United 

States “Critical infrastructure describes the physical and cyber systems and assets that are so 

vital to the United States that their incapacity or destruction would have a debilitating impact on 

our physical or economic security or public health or safety. The Nation's critical infrastructure 

provides the essential services that underpin American society.” (Infrastructure Security) Many 

countries have a similar definition of critical infrastructure. In this definition, critical infrastructure 

could represent anything ranging from the electrical grid to roads. Throughout this thesis critical 

infrastructure will focus on cyber systems specifically and could refer to all such systems where 

minimizing downtime for repairs is crucial. Having downtime is not the goal of any system, but 

the more users that are harmed by downtime, the more crucial a particular system is as typically 

more resources will be dedicated for maintenance. 

These are typically larger systems or networks of computers that have an important role 

with many dependent users or perhaps other dependent systems. Technological advancements 

have made critical infrastructure more prominent particularly as certain technologies become a 

part of everyday life. Critical infrastructure is vulnerable to a variety of attacks including DDOS 

(Genge and Siaterlis), Malware (Langer), and spyware. In the case of the SolarWinds attack 

(Alkhadra et al.) malware made the systems of nine US federal agencies (“Background Press 

Call”) and at least 100 technology companies vulnerable (most notably to spyware) after 

creating a backdoor in software that was distributed to them. 

Additionally, as dependency on critical infrastructure increases vulnerability and attack 

frequency does as well. Not only are there more providers of critical infrastructure, but the 

infrastructure becomes a larger target, as spying can provide more information, disabling the 
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system will cause more people to be affected, and the effects of ransomware make it more likely 

for a large company to give in to demands. Additionally, more personnel involved means that 

fishing attacks are more likely to work, and insider threats are more likely to happen. Much of 

the current work on critical infrastructure involves risk analysis and preventative measures. 

Some examples of this work include (Ouyang) which provides suggestions for modeling 

interconnected systems in critical infrastructure, as the failure of one system (such as electrical 

grid) could cause another failure (such as the internet). (Husnoo et al.) discusses privacy for IoT 

critical infrastructure. (Alcaraz and Zeadelly) provide general suggestions and discuss the 

modern challenges of critical infrastructure. NIST, the US National Institute of Science and 

Technology, provide a framework for improving cybersecurity for critical infrastructure (Barrett). 

In these guidelines they provide 5 core functions in regard to threats; these are identify, protect, 

detect, respond, and recover. This thesis focuses only on the penultimate tenet, though proper 

maintenance of critical infrastructure involves all of these. Additionally, there is much work that 

is closely related to the other guidelines that does not specifically refer to critical infrastructure, 

such as work that finds a widespread vulnerability, work on system privacy, or work that seeks 

to prevent or mitigate cyber-attacks.  

2.2 Data Lineage 

Data lineage (also called data provenance) is a technique used to trace dependencies of 

data items within a system. Often data lineage is used to trace errors or discrepancies, and in 

this thesis data lineage will be used to trace propagation of damage through the data items of a 

system. This information can also be gathered to assign responsibility to the entity that created 

the data item or learn how it was collected. As a result, data lineage information can also be 

used to assess quality and integrity of data. (Buneman and Tan) discuss the uses of 

provenance data in the context of databases. There are several techniques for data lineage. 
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One such technique is the W3C Open Provenance model, see (Khalid et al.). As this paper 

primarily focuses on the lineage of data items and their dependencies, the following is a brief 

discussion about how the W3C Open Provenance model would look at similar data. This model 

uses a graph to represent data lineage. The vertices in this graph can be data items, people, 

entities, or functions. When these things interact with a data item a new vertex is created with 

an edge from the entity modifying the data to the new vertex. Edges represent the action taken 

to create that edge. An example provided by the Open Provenance primer is shown in figure 1.  

 

 

Fig. 1. An example W3C open provenance graph (Belhajjeme et al.) 

In this way, directed edges point forward in time, and following an edge backwards 

shows their relation based on the edge. For example, in figure 1 dataSet1 used compose1. As a 

result of storing this information one can now see that dataset1 and regionlist1 are both 

dependent on chart1, and should it later be realized that chart1 was damaged both of these 

data items are likely to be damaged as well. Such damage tracing is the focus of the novel 

model provided in this thesis and further distinctions will be discussed later.  

 Work in data lineage includes increasing the efficiency of storage, see (Boa et al) and 

(Amsterdamer et al.). Storage costs can increase by a significant factor particularly when 

holding a large amount of metadata about each data item. This is particularly true in cases 

where data lineage needs to be traced all the way back to when the data item was created, or in 

cases where a large breadth of information about a data item needs to be stored. One 

technique used in (Anand et al.) does this by removing old copies of data items from the graph. 
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It’s also important in many cases to increase the speed of queries to allow provenance data to 

be used more efficiently, see (Karvounarakis et al). (Chapman et al.) focuses both on reducing 

the volume of data and increasing the query speed of lineage information. As data lineage has 

been around for some time now, other work suggests new techniques for data lineage, such as 

(Buneman and Tan) which proposes a technique for data lineage that uses blockchain. Much of 

this work, such as (Heinis and Alonso), is focused on maintaining data integrity, however it 

should be clear that this is not the only use for this information. (Zimmerman and Nagappan) 

and (Cao et al.) both use dependency graphs to assess and mitigate damage in a system.  

2.3 Temporal Graphs 

(Thulasiraman and Swamy 1) define a graph as follows. “A graph G = (V, E) consists of two 

sets: a finite set V of element called vertices and a finite set E of elements called edges. Each 

edge is identified with a pair of vertices. If the edges of a graph G are identified with ordered 

pairs of vertices, then G is called a directed or an oriented graph.” This paper makes use of 

directed graphs or digraphs. Further, these graphs are all temporal graphs. Temporal graphs 

are distinct in that the set of edges E, is now dependent on the time T. i.e., E(T) is a function of 

time that generates a set of edges, see (Othon). Whereas a typical or static graph may 

represent roads between cities, a temporal graph may be used to represent communications 

between satellites. Often satellites (the vertices in this example) will enter and exit the range of 

other satellites, causing a graph representing the communication capabilities of these satellites 

to be dependent on time.  
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Fig. 2. A temporal graph with distinct edges for two values of T 

Figure 2 visualizes a simple temporal graph at two different times, T=0 and T=1. This 

graph contains 3 vertices (A, B, and C) and 5 edges. Notably at a fixed time, a temporal graph 

can be viewed as a static graph. Should edges exist for continuous time frames rather than 

discrete time frames, one could still model this structure as a discrete temporal graph. This is 

done by separating these continuous times into discrete times at which the graph is distinct. As 

a result, all temporal graphs discussed are shown using discreet times. 

Many of the problems for static graphs are also common problems when dealing with 

temporal graphs. Much of the work on temporal graphs seeks to solve these problems. 

(Huanhaun et al. “Path Problems”) discusses techniques used to solve path problems in the 

context of temporal graphs which along typical shortest path, also include earliest arrival, 

fastest, and latest-departure paths. The problem of earliest arrival for two vertices seeks to learn 

the earliest time a specific vertex can be reached from another. (Huanhuan et al. “2016 IEEE”) 

and (Enright et al.) both focus on reachability. The problem of reachability asks for the set of 

vertices that can be reached from the first and, for the purposes of this thesis, can be viewed as 

extension of earliest arrival in the case of temporal graphs. This thesis will discuss earliest 

arrival and reachability in a special case of temporal graphs.   
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3 THE DAMAGE ASSESSMENT MODEL 

3.1 Definitions  

Data Item - Throughout this thesis data item will be a catchall term for an amount of data that 

makes sense to be grouped. This can be a single bit, a file, all data on a computer, or data on a 

collection of computers depending on the specific use case.  

System - A system will refer to some collection of computing resources, whether it’s a process, 

a computer, or a collection of computers. Regarding data lineage information, system will refer 

to the entirety of computing resources whose data lineage information is being tracked.  

Dependency - A dependency B→A (read from B to A) occurs when a data item A is dependent 

on data item B. For example, if A and B are integers setting A = B+1 creates a dependency     

B→A. As another example, in a system that calculates payroll there may be a dependency 

between the hours worked data item and the gross pay data item for each employee. 

Dependencies will be assumed to occur instantaneously.  

Set - A set is a list that can contain no duplicates. If a set already contains an element, and that 

element is added again, the set is unchanged.  

3.2 Dependency Graphs 

The Damage Assessment Model is represented as a temporal graph consisting of 

vertices representing data items, and edges representing a dependency that occurred at a 

specific time. 
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Fig. 3. A temporal dependency graph 

Figure 3 shows a graph representative of 5 data items after 7 dependencies have 

occurred. This is a relatively simple dependency graph with only 5 vertices to be illustrative. 

Typical use cases likely have something in the range of one hundred to one billion vertices, but 

the general structure remains the same. In this case the vertices or nodes consist of the set V = 

{A, B, C, D, E}. The set of Edges E = {C→A at T=1, A→C at T=2, D→B at T=3, C→B at T=4, 

B→E at T=5, D→C at T=6, C→A at T=7} 

 Because the vertices represent data items, in general, discussing Vertex A and the data 

item it represents are distinct. However, throughout this section the vertex and its corresponding 

data item should be thought of as the same. For simplicity a dependency for the data item 

represented by vertex A to the data item represented by vertex B is synonymous with a 

dependency from A to B (shown as A→B).  

The same edge can exist at different times (i.e., C→A exists at T=1 and T=7). 

Additionally, Edges can exist from a vertex to itself, but this does not assist in damage 

assessment as these edges would only matter when the vertex was already damaged. Such an 

edge could however assist when repairing but will largely be ignored for the purposes of the 

model. 

Note that figure 3 represents the data in a temporal graph. This same data could be 

represented in one static graph for each discrete time that a dependency occurred. Also, 

because this is a temporal graph, if continuous times were used, they could be converted into 
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discrete times. Further, due to the data being represented one could always create a single 

static graph per edge. This is due to the fact that if two dependencies were to ever occur at the 

same time atomicity of operations requires that these two dependencies not affect each other. 

This prevents chains of dependencies occurring at the same time. For example, A→C and C→B 

cannot both occur at the same time because C was already being modified. Multiple edges can 

still occur at the same time, as long as no occurrence of such a chain exists. Edges A→C and 

B→C can still occur at the same time, as long as these dependencies are part of the same 

function to modify C.  

One may now begin to notice some key differences between this representation and the 

W3C Open Provenance representation of data. First is that the Damage Assessment Model 

contains vertices of only data items and edges only of dependencies between them. As a result, 

the Damage Assessment Model cannot assess integrity of data sources as integrity information 

is not stored.  

The Open Provenance model is acyclic. Acyclic in this case meaning the graph contains 

no cycles. A cycle exists in a directed graph when a vertex is reachable from itself. The Damage 

Assessment Model does not create a new vertex each time a dependency occurs, only a new 

edge. This means that the Damage Assessment Model is cyclic and as a result many algorithms 

for static graphs become significantly more complex. One such cycle can be seen in figure 3, at 

vertex C with edges C→A at T=1 and A→C at T=2. This simplicity comes with the advantage of 

significantly reducing the amount of required storage, and the Damage Assessment Model 

being temporal will later mitigate its cyclic nature.  
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3.3 Pay Calculation Example 

Table 1 

Information about an employee at an hourly job 

 

 

 

Say then the system calculates both gross and net pay. First gross pay is calculated as 

Hourly Pay * Hours Worked. Net pay is then calculated as Gross pay*(1-Taxes%/100).  

 

 

Fig. 4. Dependency graph after operation on data in table 1 

The dependency graph of this system is now shown in figure 4. One important thing to 

note is that though the dependencies Hourly Pay→Gross Pay and Hours Worked→Gross Pay 

occurred at the same time, in terms of damage tracing either could be looked at first and the 

same result would be found. The same is true for the dependencies from Taxes→Net Pay and 

Gross Pay→Net Pay. As a result, figure 5 is identical in function to figure 4, at least in terms of 

damage assessment. This truth will be a key in the algorithm used to assess damage in the 

model.  

 

Employee # 
Hourly Pay in 

USD 

Hours 

Worked 
Taxes % 

1 15 40 15 
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Fig. 5. A dependency graph displaying damage found 

 

The simple justification for this is that if vertex C is dependent on vertices A and B at the 

same time, they could also be represented as edges at adjacent times. The full justification 

requires that a definition of damage be provided. 

3.4 Propagation of Damage 

In evaluating damage, a vertex is said to be damaged (or potentially damaged as the 

true state of the data item is unknown by the model) if it has a dependency on another damaged 

vertex. IE if Vertex X is damaged at time T and an edge exists X→Y after time T then Y is also 

damaged. In this case the edge from X→Y shows that Y is dependent on X. This means that, in 

some capacity, Y is used to create or modify the value of X. Thus, changing Y before this 

calculation can change the value of X. Note that this is not always the case.  

Say at time T=1 X is set to a value of Y2. This operation creates the edge Y→X at T=1. 

Say then, the value of Y is changed to (-Y) through damage at T=0. Though Y is now damaged, 

and X is dependent on Y, X=Y2=(-Y)2 so the value of X is unchanged with this knowledge. As a 

result, it’s important to note that the damage assessment detects potential damage as opposed 

to actual damage. Due to this nature, further references to damage will refer to potential 

damage unless otherwise specified. By the nature of the model, only potential or probable 

damage is able to be found. After assessing damage further review is necessary to determine 

and repair actual damage.  
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3.5 Separation Of Edges 

In the case of two vertices A and B modifying vertex C at the same time there are four 

possible cases shown by table 2.  

Table 2   

Potential damage in Vertex C in varying potential damage in Vertices A  

and B when they both have an edge to C at the same time 

Vertex A Vertex B Vertex C 

Undamaged Undamaged Undamaged 

Undamaged Damaged Damaged 

Damaged Undamaged Damaged 

Damaged Damaged Damaged 

 

We now compare this with evaluating the state of vertex C having separated the edges 

into different times. Without loss of generality, we evaluate damage at vertex C given the state 

of vertex A first. If vertex A is damaged then vertex C is damaged, otherwise it is currently 

undamaged. We then evaluate vertex C regarding vertex B. If C is already damaged it remains 

so, if not we check if B is damaged. If it is, we then say that C is damaged, otherwise C is 

undamaged. In the end we find that if A or B is damaged for adjacent edges to the same vertex, 

then vertex C is damaged yielding the same result as evaluating them at the same time. This 

same idea can be extended to any number of edges that occur at the same time, and it’s found 

that the order in which edges to the same vertex are assessed does not change the result. This, 

along with atomicity of operations allows these edges to be separated into new discreet times 

without a change in the result after assessment is completed. Again, this separation will be 
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important later as the algorithm used for this evaluation requires that this separation be 

possible.  

In terms of a graph, rather than individual dependencies, damage will start at a single 

vertex at a given time and will be traced until all potential damage is known. In general, this is 

the reachability problem from the damaged vertex. In damage assessment the goal is to find all 

damaged vertices while excluding as many undamaged vertices as possible. This is to minimize 

the number of vertices that need to be reviewed and repaired. More specifically, the desired 

result is the set that contains all damaged vertices that can be found by the model and nothing 

else.  

3.6 Static Assessment 

Due to the time of dependencies being tracked, all edges that occurred before the time 

of damage can be ignored. Approaching the data as a static graph (i.e. after removing edges 

before the time of damage and ignoring dependency times afterward) allows for a simple 

approach to damage assessment as well established algorithms for reachability can be used.  

3.6.1 Static Assessment Examples 

 

 

 

Fig. 6. A dependency graph displaying damage found after assessment 
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Starting at the damaged vertex, all outgoing edges that were created after time of 

damage are used and a breadth first search is done from the damaged vertex. All vertices 

reached are added to the list of damaged vertices.  

Figure 6 shows one such damage assessment of figure 3 after Vertex C was found to be 

damaged at time T=3. All vertices that have been darkened are damaged. In this case only D is 

found to be undamaged. C has an edge to both A (using C→A at T=7) and B (using C→B at 

T=4), thus both are damaged and added to the list of damaged vertices. Finally, E is damaged 

because B is damaged, and assessment is complete. The set of damaged vertices Vd = {A, B, 

C, E}. We can now also use the time of damage for these vertices by looking at when their 

dependency occurred. C is known to be damaged at T=3, A is damaged at T=7 (as earlier 

edges are ignored), B is damaged at T=4, and E is damaged at T=5. 

  

 

Fig. 7. A dependency graph 

Figure 7 shows the dependency graph of another system. Say vertex I is damaged at 

time T=2. This system is now assessed in the same manner as before. Edges before T=2 are 

ignored, in this case G→H at T=1. We now see that both F and G are damaged by vertex I and 

both are added to the list of damaged vertices. J is then damaged by vertex G. Finally, H is 

damaged by vertex J. The set of damaged vertices Vd = {F, G, H, I, J}. However, when 

timestamps are accounted for, and time of damage is observed, one may notice several key 

discrepancies. The first is that vertex G was initially damaged by vertex F at T=4 rather than 
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vertex I. In doing this assessment, the earliest time of damage is sought as once a vertex is 

damaged it can begin to propagate that damage. For example, vertex J was damaged at T=7 by 

vertex G and was undamaged prior. This means that once timestamps are accounted for, vertex 

H should also be undamaged, due to the dependency J→H occurring before J was damaged. 

Thus, not only does reachability matter, but the earliest time a vertex can be reached from a 

damaged vertex matters as well. This is the earliest arrival problem from the damaged vertex 

and must also be solved to know if damage is propagated. In this case, the true set of damaged 

vertices is Vt= {F, G, I, J}, as assuming all dependencies are tracked vertex H cannot be 

damaged.  

This approach of treating the graph as a static graph or static assessment is 

representative of the case where some data lineage is used, but the time of damage is ignored. 

This approach will later be compared to the approach of the Damage Assessment Model in the 

analysis and results section. Notice that static assessment can still eliminate some vertices from 

the scope of potential damage but is overall inefficient. This approach creates a superset of 

damaged vertices as some edges will be used in this approach that will not be used once time 

of damage starts being accounted for. Thus, more damage is found and as a result more 

damage needs to be manually reviewed, which can prolong downtime. Again, the goal is to find 

the minimum set containing all potentially damaged vertices. 

3.7 Multiple Layers 

Another crucial aspect of the Damage Assessment Model is that it operates in multiple 

layers. One important feature of the way data items have been defined is that it is possible for 

one data item to be a container for several smaller data items. This aspect is used to define 

these layers. Data items at each layer above the first represent a mutually exclusive group of 

data items at the layer below it. That is if data item B is contained in a higher layer data item A, 
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then A is the only data item at that layer which contains B. Data items at the bottom layer, or 

first layer, are referred to as granular. This is because data items at this layer could be viewed 

as partitions of higher layer data items, but there are no such partitions for data items at this 

layer. That is, data at the first layer is the smallest subdivision of data items in a system. If data 

item X is part of higher layer item Y, we will say that Y is the parent of X or that X is the child of 

Y.  

3.7.1 Multiple Layer Example 

Imagine the case of implementing the model for a database. This database contains a 

collection of tables, and each of these tables contain a collection of records. Each record 

contains a value for each field in the table. Then to implement the Damage Assessment Model 

one may decide that these values for fields are granular or first layer data items. Then second 

layer data items could be records, and third layer data items could be tables. 

Another potential implementation of this structure could have files representing first layer 

data items, folders or collections of files as second layer data items, and individual computers 

representing third layer data items.  

 

 

Fig. 8. Visualization of Vertex X functioning as a container 
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Figure 8 is a visualization of this concept. Data items A, B, C, D, and E are all on the 

same layer. Data item X exists at one layer above the others. X contains data items A, B, C, D, 

and E. If A, B, C, D, and E are integers, then X would be representative of a list of integers. If 

there was also a data item Y at the same layer as X, Y could not contain any of A, B, C, D, or E 

as the contents of X and Y are mutually exclusive.  

This thesis focuses primarily on the case with 3 layers; however, this concept of layers 

can be extended into less or more depending on the particular use case. Key things to note are 

that all data items within a layer are defined at the same scope, and that this grouping should be 

chosen to closely represent the reality of the data. 

This layering is done to allow partial damage assessment of a system. Each layer has its 

own dependency graph. It is at this point that some assumptions about the system need to be 

made. The first is that all operations that cause a dependency can be condensed into one or 

several edges between granular data items. The second is that higher layer data items consist 

only of lower layer data items. The last is that all dependencies that affect the system are 

tracked. If these assumptions were untrue, then there would be some dependencies or data 

items not tracked by the model, and as a result the model would be unable to represent and find 

all damaged data items.  

When a dependency is created from one data item to another within a layer, if these 

data items are not part of the same data item in the layer above (rephrased these vertices do 

not share a parent vertex), then an edge must also be created from one parent to the other. This 

is the primary reason that the layered structure should represent reality as grouped data items 

should be more likely to have dependencies to one another. This limits the number of 

dependencies on higher layers and makes it more likely for some vertices to be found 

undamaged after assessment. 
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By creating these edges, in function, we now have a dependency graph for these higher 

layer items. When a data item X is found to be damaged, all higher layer data items that contain 

X are also found to be damaged and there will be exactly 1 such data item per layer. By 

assessing the damage at a higher layer, if a vertex is found undamaged, then both the vertex 

and its children will also be undamaged at all lower layers. Additionally, there will be less 

dependencies at higher layers allowing for faster assessment. Put together, this means that 

damage assessment at a higher layer has the potential to make portions of the system usable 

without propagating damage before the slower first layer assessment occurs. Also, because the 

graph of each layer is independent the assessment of each layer can be done in parallel, 

allowing higher layers to be assessed without slowing the overall assessment in comparison to 

an approach with a single layer.  

3.8 The Damage Assessment Algorithm 

 With layers now accounted for, the model can be represented as several temporal 

graphs. More specifically, one temporal graph per layer. These graphs are temporal as they 

change over time, however they are unique in that no edges can be added. This is because, 

during assessment, the system is halted and cannot create new edges. Over time each of these 

graphs can only lose edges. Lose in this sense meaning that as T increases, less edges are 

able to propagate damage. Further, for reasons previously discussed, these graphs can be 

precisely represented as a series of static graphs each with a single edge. The algorithm will 

function by assessing if damage can be propagated by these single edges.  
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3.8.1 Algorithm for Damage Assessment within a layer 

  

Input: A set of Vertices V, an ordered list of Edges E, a damaged Vertex D, and a time of 
damage T 

Output: A set of Damaged vertices Vt 

1. Insert D into Vt 
2. For each Edge in E after time T 

a. If the independent vertex is in Vt 
i. Insert the dependent vertex into Vt 

3. Return Vt 

 

The set of vertices V will be all vertices within a layer. Also note that both V and Vt are sets 

and contain only unique items. The ordered list of Edges E consists of all edges that occurred 

within that layer. These edges consist of a dependent vertex and an independent vertex. In the 

edge A→B, A is independent, and B is dependent. Additionally, these edges are sorted 

chronologically. By sorting them, the operation on line 2 of the algorithm can function using only 

a binary search. Sorting the edges is little work as they should be close to sorted when stored 

immediately after a dependency occurred. Because the number of vertices plays no role in the 

complexity of the algorithm it functions in linear time with respect solely to the number of edges. 

If necessary or helpful, one could also track the earliest time each vertex was damaged by 

looking at the edge that added that vertex to the set of damage. This information could be useful 

in viewing logs for repairs after assessment.  
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3.9 Damage Assessment Example 

 

 

 

 

 

 

Fig. 9. Dependency graph with damage at T = 3 to vertex F  

The system shown in figure 9 has vertices V = {A, B, C, D, F, G}. There are 9 edges 

recorded within the system (ignoring the edge showing damage). The sorted list of Edges E = 

(B→C, F→G, F→C, F→C, C→G, B→A, D→B, F→B, A→D). The set of damage is Vt = {F}. The 

time of Damage is at T=3, so after accounting for time our set of Edges becomes E’ = (F→C, 

F→C, C→G, B→A, D→B, F→B, A→D). Edge F→C is now assessed, and because F is 

damaged vertex C is also damaged. V t= {F, C}. F→C is assessed again, but C is already 

damaged. C→G is now assessed, C is damaged, therefore G is as well. Vt = {F, C, G}. B→A is 

assessed, but B is undamaged, so no damage is propagated. D→B is assessed, but again no 

damage can be propagated. F→B is assessed, and B is now marked as damaged. Vt = {F, C, G, 

B}. Finally, A→D is assessed, but no damage can be propagated. All damage has now been 

found and vertices F, C, G, and B need to be further examined and repaired. Additionally, all 

computing resources held by A and D can now be used (as long as access to damaged portions 

of the system is restricted) as they have been found undamaged. 

This algorithm could be expanded to handle the case where multiple data items are 

damaged with only minor changes. Rather than inserting D into Vt on line 1, all items that are 

damaged need to be inserted into Vt. Before any edges are assessed, Vt must be the set of 
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initial damage at time T. This algorithm is then run per layer, and if possible, in parallel with all 

layers. 

 Once one layer has been assessed, all undamaged portions of that layer can again be 

used in operation without causing further damage. Additionally, because higher layers will have 

less edges and edges are the determining factor in runtime, assessment at higher layers is 

faster. In particular, the highest layers assessment should complete faster, allowing the largest 

partitions of the system to be freed first where possible. Then the same is done on lower layers. 

Once done, further review is required for all first layer data items marked as damaged and the 

system can be repaired. 

When a vertex at a high layer is marked as damaged, its operation cannot resume until 

after assessment at the layer below. This is because once assessment at a layer is complete, 

all damaged items at that layer are known. For example, assessment shows second layer 

vertex X damaged. Now, once first layer assessment completes X no longer needs to be viewed 

as damaged as all damage to first layer items is known. X is a container of first layer items, and 

therefore as long as no damaged portions of X are used, X as a whole need not be viewed as 

damaged, particularly in cases where no data items in X are damaged.  

3.10 A Similar Reachability Problem 

 Imagine a scenario where a salesman sits in an airport. The salesman is sure he has 

completed all the sales he is going to in this town and wishes to travel somewhere new to find 

customers. He decides that he only cares to go to a destination he can fly to. He wants to look 

at all destinations he can reach, and if possible, he wants to arrive at the earliest possible time.  

If the salesman were to view airports as vertices and flights as edges, he now runs into 

the same special case of the temporal graph reachability problem. In the algorithm he can view 

the airport he resides in as the initial damage, and he begins to look at flights that start as soon 
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as he could reach a gate. One primary difference is that his edges have a travel time. This travel 

time necessitates he also keep track of when he arrives after a flight and can board another. 

Then if a flight from that airport happens after that time, then he can board it. If the algorithm 

would see a vertex as damaged, then that denotes an airport he can reach. Should he also 

keep track of arrival times, he can also know the earliest time he can reach any of them. He can 

now make an educated decision about where to go.  

3.11 Suggestions for Implementation, Creation, and Storage of Model Data 

Though vertices are representative of data items, the contents of these data items are 

irrelevant to the model. This means that in regard to the model very little data needs to be 

stored. As long as the ability remains to translate a vertex into its corresponding data item, 

vertices can be referred to by an integer. Another important note is that the only necessary 

metadata required for a vertex is whether or not the vertex is damaged. Thus, along with the 

understanding of which vertices correspond to which data items, all necessary storage can be 

condensed into a single file of bit flags, one per vertex. The position of the vertex in this file 

corresponds to its number, and the bit flag represents whether or not it has been marked as 

damaged. This file can be used to represent Vt and adding a vertex to Vt will simply mean 

flagging that vertex as damaged.  

Edges, then, require 2 integers and a time stamp. For the binary search to function, 

these edges should all be of the same size. In general, this means that each edge stored 

requires 2*log2(Total Vertices) bits to store references to both vertices along with a number of 

bits for the timestamp. Further, because they are already sorted during evaluation only one 

edge needs to be read at a time.  

Whenever a dependency occurs, an edge must be created. In addition, if the vertices 

involved do not share a parent, an edge between the parent vertices must also be created and 
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so on until the top layer is reached and the vertices have no parents. Edges should be created 

chronologically and typically the creation of a new edge requires simply appending the edge to 

the list of edges.  

Damage assessment requires all edges after time of damage. As a result, if the system 

is found to be consistent, then all current edges can be deleted as they will not affect 

assessment. However true consistency of a system is very difficult to determine, and one 

recommended practice is deleting edges with a timestamp that is older than a chosen time in 

order to prevent cases where edges relevant to assessment are deleted. Alternatively, these 

edges could function as a circular log in a fixed size file, where a new edge will simply overwrite 

the oldest edge. As this list is already sorted, finding which edge to replace can either be done 

with a binary search or by storing the location of the last write.   
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4 SIMULATION AND ANALYSIS OF RESULTS 

Sample models were generated, and the algorithm was run to find how much of the system 

would be found damaged given different initial parameters. The amount of damage found by the 

model is compared with the total vertices and damage found by static assessment. For further 

detail on static assessment, this method is discussed in section 3.6.  

To make the models function as they would in reality, whenever an edge is created at a 

higher layer, an edge is also created at lower layers between children of the vertices in that 

edge. This means that creating 1000 edges at the 2nd layer also creates 1000 at the 1st. 

Though such data could be operated on, the trivial case where a high layer data item has only 1 

child is not considered. Thus, for all layers above the first, all vertices have at least 2 children. In 

order to reduce variance in the dataset, and have a more consistent representation of data, the 

first edge created is guaranteed to propagate damage. All tested graphs operate using 3 layers. 

Additionally, edges created within their parameters are randomized. This causes the 

average model to perform worse than most real systems, as often more isolation between data 

items causes damage propagation to be less likely.  

Variables studied include the maximum number of edges, maximum number of children, 

and top layer vertices for cases where the number of edges is varied based on a total, and 

where the number of edges is varied based on the number of vertices in a layer.  
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4.1 Number of Edges per Layer Vs. Number of Vertices at the First layer 

 

Fig. 10. Scatterplot of all datapoints for generated models showing a comparison between total 

vertices and total damage found by static assessment and the Damage Assessment Model on 

the first layer 

100 models were created for each increment of 100 edges (per layer) with otherwise 

identical parameters. There can be a large amount of variance between 2 models with the same 

parameters, but overall trends can be seen through the average of these results. Damage was 

assessed at the first layer and compared to the total number of edges. Each model created had 

25 3rd layer vertices and an average of 10 children for each lower layer.  
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Fig. 11. Scatterplot of averaged data for generated models showing a comparison between total 

vertices and total damage found by static assessment and the Damage Assessment Model on 

the first layer 

Figure 11 shows the average of data in figure 10. Predictably, total vertices remain 

approximately 2500 when averaged throughout the dataset.  

Edges per layer represents the case where the total number of dependencies that occur 

strictly within one layer is similar to the number in other layers. As an example, in the case that 

the modeled system represents a database, 3rd layer vertices represent a table in a database 

and 2nd layer vertices represent records, the total number of dependencies between tables is 

the same as the sum of the number of dependencies that occur between records within the 

same table.  

In this case when an edge is specified to be on a specific layer, that means that the 

vertices of the edge either share a parent or are at the top layer. As an example, if an edge is 
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created at the 2nd layer, both vertices share the same 3rd layer parent vertex. Additionally, a 

first layer edge is created between children of these vertices with respect to their order.  

In reading the graph, M edges per layer means there are M edges generated on each 

layer. This means that M edges are generated at the 3rd layer by selecting 2 random 3rd layer 

vertices per edge. This creates M 1st and 2nd layer edges. Afterward, another M edges are 

generated at the 2nd layer by selecting 2 random children of a randomly selected 3rd layer 

vertex per edge. This does not create any further edges between 3rd layer vertices but does 

create another M edges at the first layer. Finally, M more edges are created on the first layer by 

selecting 2 random children of a randomly selected 2nd layer vertex per edge. Again, this 

creates no edges between higher layer vertices. Once all edges are created, they are shuffled 

randomly. In total M edges per layer represents 3*M total edges for the first layer, 2*M for the 

second layer, and M for the third layer. Under this structure, if it takes N time to assess M 

vertices, the third layer takes N time to assess, the second 2*N, and the first 3*N time. 

There is a clear positive trend between the number of edges and the amount of damage 

found by both methods of assessment. Notably, the highest rate of growth in damage comes 

when approximately half of the vertices (in this case 1250) vertices are damaged for each 

assessment type. This can likely be attributed to the propagation of damage requiring an edge 

from a damaged vertex to an undamaged vertex and the inverse relationship between damaged 

and undamaged vertices. Intuitively, very little of the system is damaged initially so edges are 

unlikely to start at a damaged vertex, and once a majority of the system is damaged, edges are 

less likely to propagate damage to a vertex that was previously undamaged.  

For the Damage Assessment Model, the first layer finds half of its vertices damaged at 

roughly 5000 edges per layer. Given that there are 2500 average vertices at this layer and 

15000 total edges, there are on average 6 dependencies per vertex before half of the system is 

found damaged.  
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4.2 Number of Edges per Layer Vs. Number of Vertices at the Second Layer 

 

Fig. 12. Scatterplot of averaged data for generated models showing a comparison between total 

vertices and total damage found by static assessment and the Damage Assessment Model on 

the second layer 

Figure 12 shows that same data at the second layer and similar growth patterns are 

seen here. In both layers, the Damage Assessment Model significantly outperforms static 

assessment in reducing the number of data items that require repair or validation. In this case, 

the Damage Assessment Model finds a similar amount of damage when given 3 times the 

number of edges when compared to static assessment.  

For the Damage Assessment Model, the 2nd layer finds half of its vertices damaged at 

roughly 625 edges per layer. Given that there are 250 average vertices at this layer and 1250 

total edges at this layer, there are on average 5 dependencies per vertex before half of the 

system is found damaged. This difference between the 2nd and the 1st layer could be caused 

by damage being more often propagated between children of the same data item. In order for 

an edge at the 1st layer where both vertices share a parent to spread damage, damage must 
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already be present in the first vertex, and not present in the second. Such edges represent a 

third of the total edges, and as a result some clustering of damage occurs where nearly all 

children of some 2nd layer data items are damaged, while for others nearly none of their 

children are. It seems likely that this clustering has a more profound effect at the 1st layer as 

clustering can occur at both the 2nd and 3rd layers.  

 

4.3 Number of Edges per Vertex Vs. Number of Vertices at the First layer 

 

Fig. 13. Scatterplot of all datapoints for generated models showing a comparison between total 

vertices and total damage found by static assessment and the Damage Assessment Model on 

the first layer 
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100 Models were created with 25 top layer vertices and an average of 10 children for each 

increment of .2 edges per vertex. In contrast with edges per layer edges per vertex means that 

the number of edges on a given layer are directly proportional to the total number of vertices at 

that layer. 2 edges per vertex means that for a layer with 1000 vertices, there are 2000 edges at 

this layer. This method of creating edges represents the case where dependencies often share 

parent vertices as at any layer any 2 vertices are just as likely to share a dependency. Figure 17 

can be directly contrasted with figure 10. 

 

 

Fig. 14. Scatterplot of averaged data for generated models showing a comparison between total 

vertices and total damage found by static assessment and the Damage Assessment Model on 

the first layer 
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When averaged there is a clear increase in performance when compared to edges per 

layer. With edges per layer at least half of the vertices were found damaged by both 

assessment types at 6 edges per vertex. However, because there are far fewer edges at both 

the second and third layers, significantly more clustering is caused, reducing the likelihood of 

any edge propagating damage. Even at 14 edges per vertex the Damage Assessment Model 

has not found even 20% of the total system to be damaged.  

 

4.4 Number of Top Layer Vertices Vs. Number of Vertices at the First Layer 

 

Fig. 15. A comparison of total vertices and damage found using both types of assessment for 

differing numbers of top layer vertices averaged using 100 distinct generated models per data 

point 

Figure 15 shows total vertices and predicted damage for models with varying numbers of 

3rd layer vertices, 10 average children, and 1200 total edges per layer. Increasing the number 
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of top layer vertices causes a linear increase in total vertices. Additionally, as a certain point 

adding more vertices causes less damage to be found using either type of assessment. When 

seen as a percentage of the total vertices, there is clear decline as more top layer nodes are 

added. 

 

Fig. 16. A comparison of damage found using both types of assessment as a percentage of 

total vertices for differing numbers of top layer vertices averaged using 100 distinct generated 

models per data point 

Figure 16 shows the percentage of total vertices found damaged by both assessment 

types. The decrease in amount of damage found by static assessment is nearly linear, while the 

Damage Assessment Model shows a much more rapid decline to 0. 
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4.5 Number of Children Vs. Number of Vertices at the First Layer 

 

 

Fig. 17. A comparison of total vertices and damage found using both types of assessment for 

differing numbers of maximum children for vertices averaged using 100 distinct generated 

models per data point 

Figure 17 shows how the maximum number of children can affect assessment and total 

vertices. For the models, each high layer vertex has between 2 and the maximum number of 

children. Each model has 10 vertices at the 3rd layer and 1200 edges per layer were assessed. 

The trends in both figure 15 and figure 17 are very similar, but increasing the maximum children 

causes an exponential increase in total vertices.  
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Fig. 18. A comparison of damage found using both types of assessment as a percentage of 

total vertices for differing numbers of maximum children for vertices averaged using 100 distinct 

generated models per data point 

In Figure 18 this same damage is viewed as a percentage of total vertices. For both assessment 

types a clear s-curve is formed as damage becomes less likely to propagate with more vertices 

and a static number of edges.  
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4.6 Comparison of Total Damage Found at Different Layers 

 

 

Fig. 19. Total percentage of vertices found damaged by the Damage Assessment Model at 

different layers averaged using 100 distinct generated models per data point 

Figure 19 shows total system damage found after assessment at different layers of these 

same models with varying numbers of edges per vertex. Higher layers will always have more 

damage found as a total proportion of the system when assessed. As a result, higher layers 

begin to see rapid growth in found damage earlier, but assessment can still allow some of the 

system to resume operation. For any particular number of edges per vertex, the total amount of 

the system that can be freed after assessing each layer can be seen. For 6 edges per vertex a 

third layer assessment finds roughly 90% of the system damaged, so 10% can be immediately 

freed up. After a second layer assessment finds roughly 15% of the system then damaged, 85% 

of the system's resources can now be used. Given that assessment at each layer can be done 
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in parallel, assessment at higher layers is not a costly operation particularly in critical 

infrastructure. 
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5 CONCLUSIONS AND FUTURE WORK 

Should damage occur within a system and propagate, a technique such as data lineage 

can drastically reduce the amount of data that needs to be checked for damage. This is 

particularly true for critical infrastructure where preventing any amount of downtime is crucial. By 

reviewing the time dependencies occurred between data items, searching for damage can 

become the temporal graph reachability problem. Additionally, when assessing, no new edges 

are added to the graph allowing separation of edges and assessment of static graphs with a 

single edge.  

The Damage Assessment Model is one such temporal graph and operates in multiple 

layers which can assist in allowing some portions of the system to resume operation before the 

full assessment is complete. Assessment can be done on each layer in parallel, and it can be 

guaranteed that items found undamaged in a higher layer assessment will also be undamaged 

in the full assessment. Its primary advantages include speed and a predictable and consistent 

runtime. 

The model and algorithm were tested and compared to a static graph approach of 

assessing the same information and significantly outperformed it. As more edges are created 

assessment takes linearly more time, and more damage is likely to be found. Growth of damage 

in terms of edges functions as an s-curve, seeing most rapid growth when half of the system is 

damaged.  

Future work includes an implementation where high layer assessment is taken into account 

for lower layer assessment by removing edges that are from undamaged vertices in a higher 

layer. This could be done by merging edges at a lower layer into a single list as their shared 

parents are found damaged. However, with the current algorithm, unless a large portion of the 

system is isolated, this method will likely underperform. 
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