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Abstract

Wildfires have devastating ecological, environmental, economical, and public health

impacts through the deterioration of water and air quality, CO2 emissions, property damage,

and lung illnesses. The early detection and prevention of wildfires allow for the minimization

of these risks. The use of Artificial Intelligence (AI) in wildfire detection and prediction has

been highly researched as a tool to assist firefighters in stopping wildfires in its early stages.

The three common wildfire prediction categories include image and video detection, behavior

prediction, and susceptibility prediction. Data such as climate, weather, vegetation, satellite

images, and historical wildfire data is most commonly used. Many approaches such as

Support Vector Machines (SVM), Basic Neural Networks (BNN), Recurrent Neural Networks

(RNN), Long Short-Term Memory Networks (LSTM), and Convolutional Neural Networks

(CNN) have been highly used in wildfire prediction. The goal of this research is to discover

the best combination of data and prediction methodology that most accurately predicts a

locations likelihood and scale of a wildfire occurring in any given month to assist in the

resource allocation and planning of fighting wildfires.
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1 Introduction

Although wildfires are a natural occurring event in a healthy ecosystem, they have

detrimental effects to property, human health, and the environment [1]. Since 1983, the

number of wildfires each year in the U.S. has remained relatively constant at around 70,000

annually. However, the intensity of the wildfires have increased since 1983 from roughly 3

million acres burned to around 7 million acres burned annually past 2010 [2]. California is

responsible for a large majority of U.S. wildfires. In 2020, California wildfires were responsible

for 4.1 million acres of the 10 million total acres in the U.S. [3]. For this reason, this research

will focus on California.

With the increase of data related to wildfires, there has been an increase in research

related to the prediction and detection of forest fires using artificial intelligence [4]. One

of the most important motivating factors behind the application of artificial intelligence in

fighting wildfires is locating the most high-risk areas, so that firefighters and other resources

can be deployed to those areas as soon as possible [5]. Many datasets related to climate,

weather, vegetation, satellite, and historical wildfires have shown promising results in pre-

dicting wildfires. New data sources have recently been created that have yet to be utilized

in the existing research.

The goal of this research is to predict the locations that are most vulnerable to

wildfires to know where resources should be deployed to fight wildfires while it is in its

early stages. This will be accomplished by (1) identifying the best features to include, (2)

exploring various prediction methodologies, and (3) optimizing the accuracy of the prediction

model. This research will explore various combinations of features and artificial intelligence

techniques to find the best approach that maximizes the accuracy of predicting the most

vulnerable locations to wildfires.

Chapter 2 begins with a discussion of wildfires including how they ignite and spread,

1



the negative effects of wildfires, and how wildfires are fought and prevented. Next it contin-

ues with a literature review of the three main fields of machine learning in wildfire prediction:

image and video recognition of wildfires, behavior prediction of wildfires, and susceptibility

prediction of wildfires. Chapter 3 discusses the data and the prediction methodology. It

begins by discussing the datasets used and the data processing required to extract the fea-

tures. Then the prediction methodology is discussed. Chapter 4 explains the metrics used

to measure the models performance, and then the top performing hyper-parameters for each

metric is displayed and discussed. Finally, chapter 5 concludes the paper by providing a

summary and an outlook for the future work in this area of study.
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2 Literature Review

This chapter focuses on the review of wildfires and the methodologies used in the

prediction of wildfires. The first section focuses on how wildfires ignite and spread, the

effects of wildfires, and how wildfires are fought and prevented. The second section explores

the previous work related to the use of machine learning on wildfires.

2.1 Background on Wildfires

There are various ignition sources that cause a fire to start, and there are various

conditions that allow a fire to spread more rapidly. Wildfires present some environmental,

ecological, and health concerns. There are various techniques used to put out an ongoing

fire as well as techniques to contain and prevent the spread of a future fire.

2.1.1 How Wildfires Ignite and Spread

All wildfires begin with an ignition source. This ignition source can either be human

or naturally occurring. Some human sources include campfires, smoking, power line failures,

sparks from railroads, and arson. Some naturally occurring sources include lightning strikes,

lava, and meteors [6]. There are certain conditions that allow a fire to start and spread more

rapidly. High temperature, low humidity, little rainfall, dry vegetation, and fast winds are

all conditions that contribute to violent and fast spreading wildfires. Furthermore, certain

plants, trees, and shrubs contain oils that burn more quickly and intensely. The topography

is also a factor, for fires move more quickly uphill. This research aims to utilize these variables

when predicting if a location is currently vulnerable to a wildfire [7].
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2.1.2 Negative Effects of Wildfires

Although wildfires play a key role in shaping the ecosystem by allowing for a renewal

of plants, it causes detrimental environmental, ecological, and health problems. Wildfires

emit CO2 into the atmosphere, and it is estimated that wildfires make up for 5 to 10 percent

of annual CO2 emissions each year [8]. Wildfires also affect the physical, chemical, and bio-

logical quality of streams, rivers, lakes, and reservoirs deteriorating the water quality making

it undrinkable and uninhabitable for wildlife; and these changes can remain present for years

and decades after the fire [9].

Though wildfires are a natural process that is integral to the life history of plants and

animals in the ecosystem [10]. Nevertheless, severe wildfires can undermine the native bio-

diversity by destroying the native vegetation, introducing invasive species, and eliminating

essential wildlife. Scientists are still studying the effects wildfires have on ecosystems, plant,

and animal life [11].

The smoke produced from Wildfires contain pollutants such as particle pollution,

which is a mix of very tiny solid and liquid particles suspended in air that can cause damage

to lungs [12]. According to the Center for Disease Control and Prevention (CDC) smoke

exposure increases respiratory and cardiovascular hospitalizations; emergency department

visits; medication dispensations for asthma, bronchitis, chest pain, chronic obstructive pul-

monary disease (commonly known as COPD), and respiratory infections; and medical visits

for lung illnesses. It has also been associated with hundreds of thousands of deaths annually

[13].

2.1.3 How Wildfires are Fought and Prevented

After a wildfire has been detected, it is declared “active,” and firefighters work to

“contain” the fire. During the containment phase, firefighters surround the fire with a

physical barrier utilizing rivers, obstacles, trenches, and controlled burns. After containment,
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firefighters work to “control” the fire. During this phase they will reinforce the barriers,

remove fuel that could help the spread, and cool certain hot spots. A fire is considered “out”

when no hot spot is detected within the containment area for at least 48 hours [7]

2.2 Machine Learning Applications in Wildfire Prediction

The literature reveals three different applications in machine learning for wildfires:

detecting fires through video and images, predicting the behavior of wildfires such as spread

and scale, and predicting the occurrence of wildfires. Table 2.1 contains a summary of the

current literature related to the machine learning applications in wildfire prediction. The

motivation behind these three prediction strategies is to assist firefighters in containing a

wildfire in its early stages before it gets out of control.

2.2.1 Image and Video Recognition of Wildfires

The existing literature regarding the detection of fires through images and videos

research how cameras, unmanned aerial vehicles (UAV), and satellite images can be used to

detect fires in an effort to locate an extinguish fires quickly. Zhentian et al. [14] proposes

attaching a camera and a microcomputer onto a UAV. The camera will send live footage

to the microcomputer that will run the raw footage through a trained, lightweight CNN

responsible for detecting wildfires. The CNN is able to recognize wildfires with around 83%

accuracy. Chanthiya et al. [15] trained a Support Vector Machine (SVM) with LANDSAT

satellite images to detect fires. Features such as land surface temperature, fire intensity,

water vapor, and top of atmosphere temperature are extracted from the LANDSAT images.

The SVM was able to outperform other techniques with an accuracy of 99.21%.
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2.2.2 Behavior Prediction of Wildfires

Two types of behavior of a wildfire to predict are the directional spread of a wildfire

and the scale of a forest fire. Liang et al. [16] uses meteorological factors, a back-propagation

neural network (BPNN), a recurrent neural network (RNN), and a long short-term mem-

ory (LSTM) network to predict the scale of wildfires in Alberta, Canada. They found that

LSTM exhibited the highest accuracy with 90.9%. They discovered that it is feasible to pre-

dict the scale of a forest wildfire at the beginning of its occurrence by using meteorological

data. Perumal et al. [17] uses both a Gated Recurrent Unit (GRU) and a Long Short-Term

Memory (LSTM) network to determine whether a wildfire will continue to burn and given

that it does, predict which one of the eight cardinal directions the wildfire will spread. They

discovered the GRU performs better for longer time series than the LSTM. The research

showed promise in predicting the direction the wildfire will spread, but are unable to assess

if the wildfire continues to burn.

2.2.3 Occurrence and Susceptibility Prediction of Wildfires

The goal of occurrence and susceptibility prediction of wildfires is to identify the lo-

cations that are currently most vulnerable to forest fires. As previously mentioned in Section

2.1.1, there are certain conditions that allow wildfires to start and spread more rapidly. The

literature that exists in this area of study attempts to train deep learning algorithms that can

discover these conditions and make predictions on the susceptibility of wildfires in certain lo-

cations throughout time. Zhang et al. [18] uses 14 meteorological and geographical features

to predict how susceptible a location is to wildfires for a given year in the Yunnan Province

in China. A convolutional neural network (CNN) is used to predict the probability that a

forest fire would occur within a 500 meter x 500 meter patch of land. This model scored a

0.86 AUC, outperforming other approaches such as random forests, support vector machines,

multilayer perceptron neural network, and kernel logistic regression. Natekar et al. [19] uses
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an LSTM network to predict the latitude and longitude coordinates of a wildfire in India.

This research utilizes satelite observations from the Visible Infrared Imaging Radiometer

Suite (VIIRS) to extract the date and location of wildfires as well as other meteorological

data. The LSTM model could predict the occurrence of wildfires with a 94.77% accuracy.

2.2.4 Future of Deep Learning for Wildfire Prevention

The ideal fire detection and prevention system of the future will incorporate all three

of the wildfire prediction categories. Meteorological data will be used to locate the most

vulnerable areas most susceptible to wildfires to warn firefighters to be prepared. Satellite

and UAV images will be used to detect a wildfire while it is still in its early stages. Behavioral

models will be used to predict the spread of a wildfire to assist firefighters in stopping the

spread. This research focuses on the susceptibility and scale prediction of wildfires by using

satellite and meteorological data.

Author Data Source Prediction Task Methodology

Jiao et al. [14] Images Image CNN
Chanthiya et al. [15] Satellite Image SVM
Liang et al. [16] Meteorological Behavior LSTM
Perumal et al. [17] Satellite Behavior RNN

LSTM
GRU

Zhang et al. [18] Meteorological Susceptibility CNN
Natekar et al. [19] Satellite

Meteorlogical
Location LSTM

Han et al. [20] Video Image
Video

CNN
RNN

Avula et al. [21] Video Video CNN
Arteaga et al. [22] Images Image CNN
Rahul et al. [23] Images Image CNN
Chen et al. [24] Images Image CNN
Maeda et al. [25] Satellite Susceptibility ANN

Table 2.1: Wildfire Prediction Literature
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3 Data Processing and Prediction Methodology

This chapter will begin by discussing the three datasets used in this research and

the data processing required to transform the data into usable inputs and labels. Then the

initial prediction methodology will be introduced such as the labeling technique, the loss

function, and the baseline model.

3.1 Data and Data Processing

This section begins by first introducing the three open datasets from the National

Aeronautics and Space Administration (NASA) and the California Department of Forestry

and Fire Protection. Then the data processing that is required to transform the raw data

into usable features is discussed.

3.1.1 Description of Data

The first dataset, supported by NASA is called Daymet which provides estimates of

daily weather and climatology variables throughout North America [26]. Daymet utilizes

daily meteorological observations from weather stations to produced estimates of seven daily

weather parameters on a 1 km x 1km gridded surface from 1980 to 2020 [27] [28]. The

seven weather parameters include minimum and maximum temperature, precipitation, vapor

pressure, radiation, snow water equivalent, and day length. Figure 3.1 contains a choropleth

map of the maximum temperature in California on January 1, 2020.

The second dataset, supported by NASA, is called MOD13Q1, and it utilizes a satel-

lite based sensor called Moderate Resolution Imaging Spectroradiometer (MODIS) to deter-

mine the vegetation at a 250m resolution [29].The data ranges from 2001 to 2020, and it is

generated every 16 days. MOD13Q1 uses Normalized Difference Vegetation Index (NDVI)

as a measurement for vegetation. NDVI quantifies vegetation by measuring the difference
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Figure 3.1: Example of Daymet data for California on January 1, 2020
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between near-infrared (which vegetation strongly reflects) and red light (which vegetation

absorbs) [30]. Figure 3.2 contains choropleth map of vegetation in California for January

2020.

The third dataset, provided by California Department of Forestry and Fire Protection

is called CAL FIRE, and it contains historical and current data on wildfires. They provide

information such as the acres destroyed, the year of the fire, fire discovery date time, fire

containment date time, and the perimeter location of the fire which is stored as a polygon

shape with longitude and latitude coordinates. The fire discovery date will act as the start

date and the fire containment date will act as the end date of the wildfires. The data spans

from 1950 to 2020. Figure 3.3 contains the area locations and acres burned of all California

wildfires that took place in 2020.

3.1.2 Data Processing

As previously mentioned, the goal of this research is to predict the occurrence and

scale of a wildfire for a given location and time period. Therefore, the data will need to

be aggregated by time and location. The goal of the model is to make predictions on a

locations likelihood and scale of a wildfire occurring during a specific month. From 1980 to

2020, Daymet contains 41 years worth of data, and ranging from 2001 to 2020, MOD13Q1

has 20 years worth of data. To aggregate the data by location, California will first be divided

into grids. The grids are 10km x 10km grids which results in 3,776 total grids. Each grid

for each year will contain its corresponding daily weather data for all 365 days in the year

from Daymet as well as the which will act as the features for the model. Each grid will also

contain the fire scale and occurrence data from CAL FIRE which will act as the labels.

Daymet has a RESTful API that allows a user to query the data by providing specific

dates and the location range. The API request returns a spatio-temporal dataset containing

the monthly seven weather parameters within the time and location range. Further data

processing is required to keep only the California locations and to format the data properly.

Finally, each of the values within the seven weather parameters are normalized between 0
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Figure 3.2: Example of NDVI for California in January of 2020
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Figure 3.3: Locations and Scale of California Wildfires in 2020
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and 1. These values will be used as the features for the model.

A similar approach is used to process the MOD13Q1 data. With data being generated

every 16 days, the NDVI values generated right before the start of a month are used to

represent the vegetation for that month. For example, the vegetation data generated by

MOD13Q1 on January 17, 2020 will be used as features for February 2020. The reasoning

for this approach is to capture the vegetation status of a location before a wildfire occurs

during the month of interest. After the vegetation values for each month from 2001 to

2020 are determined, then the 250m x 250m values are aggregated to fit the 10km x 10km

grids using the mean of the values within each grid. Then finally, the values are normalized

between 0 and 1.

CAL FIRE also has a similar API that allows the user to query the most updated

information from their server. Using the API, a dataset containing wildfires from 1950 to

2020 is created with the five categories of fire year, start date, end date, acres burned, and

location perimeter of wildfires. Depending on the occurrence and scale, six categorical labels

between 0 and 5 are used:

• 0 - No wildfire

• 1 - Less than 100 acres burned

• 2 - Between 100 and 1,000 acres burned

• 3 - Between 1,000 and 10,000 acres burned

• 4 - Between 10,000 and 100,000 acres burned

• 5 - More than 100,000 acres burned

The wildfire locations must then be aggregated into the 10km x 10km grids. Figure 3.4

illustrates this grid for 2020 wildfires after aggregation and categorization. The category

of the wildfire within each grid will be used as the label for the classification model. The

wildfire history of a grid is also used as a feature within the model. Both short-term and

long-term histories are captured by using a 1, 5, 10, and 20 year wildfire history. These four

13



”history” features capture the largest wildfire category (0-5) that occurred during the past

1, 5, 10, or 20 years. These four features are then one-hot encoded thus creating 24 new

features (4 x 6).

3.2 Prediction Methodology

This section describes the methodology used to make monthly predictions on the

likelihood and scale of wildfires using a basic neural network.

3.2.1 Basic Model

The goal of the model is to determine if a wildfire will occur within a 10km x 10km

grid during a specific month, and if it predicts an occurrence, then the model will predict

the scale of the wildfire. This is accomplished via a classification model using the 0-5 labels

as discussed in section 3.1.2. There are six outputs representing each of the six categorical

labels. The inputs include the latitude, longitude, month, maximum temperature, minimum

temperature, vapor pressure, snow water equivalent, precipitation, vegetation, one year fire

history, five year fire history, ten year fire history, and twenty year fire history. The training

sample contains data from 2001 - 2015, and the test sample contains 2016 - 2020 data. Since

the categories are not well balanced with a majority of instances containing a label of 0 (no

wildfire occurring), oversampling is used to avoid a biased model that mostly predicts 0.

Random oversampling is applied to the training data to ensure the categories are balanced.

Since the six classes are numerically ordered, and ordinal regression layer is used as the

final layer. When labels are numerically ranked, ordinal regression is advantageous over the

standard classification approach. Ordinal Regression accounts for the numerical ranking of

the labels whereas the standard classification approach treats each class independently [31].

Dropout and regularization are both used to prevent over fitting the model. The hyper-

parameters of the basic neural network will be tuned to optimize the models performance.

Section 4.2 will discuss the tuning of the hyper-parameters.
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Figure 3.4: Aggregated Location and Category of California Wildfires in 2020
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4 Results and Discussion

This section first discusses the metrics used to measure the performance of the models

ability to predict the likelihood and scale of a wildfire occurring at each location during each

month. Then, the grid search used to tune the hyper-parameters of the model will be

discussed. Finally, the results will be displayed.

4.1 Metrics

As previously mentioned, the two primary goals of the model is to accurately predict

the likelihood and scale of a wildfire. Therefore, metrics that capture both of these per-

formances are necessary. The metrics used for this research are accuracy, occurrence recall

and precision, large fire occurrence recall and precision, scale accuracy, and relaxed scale

accuracy. Occurrence recall and precision finds the recall and precision of detecting the oc-

currence of wildfires ignoring the correct scale of the fire (1-5). Large scale fire occurrence

recall and precision finds the precision and recall of predicting large wildfires (3,4, or 5)

correctly. For example, if a wildfire has a label of 3, 4 or 5, then a prediction of 3, 4, or 5

is considered correct. Scale accuracy finds the accuracy of predicting the scale of a fire that

occurs correctly. Relaxed scale accuracy finds the accuracy of the models ability to predict

the correct scale closely. For example if a wildfire has a label of 4, then a prediction of either

3 or 5 is considered correct. Since wildfires are a costly and dangerous event, false negatives

are much more costly than false positives, therefore, maximizing recall should be prioritized

over precision.

4.2 Hyper-Parameters and Results

There are several hyper-parameters that are tuned to optimize the performance of

the model. A grid search is performed during tuning. The hyper-parameters tuned are the
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number of hidden layers, number of neurons, number of epochs, the batch size, the learning

rate, dropout value, and regularization value. The following values were used for the grid

search:

• learning rate - 0.005, 0.05, 0.1

• number of epochs - 50, 100, 200

• batch size - 5000, 10000, 50000

• number of hidden layers - 2, 3, 4

• number of neurons per layer - 50, 100, 200

• l2 regularization value - 0, 0.0001, 0.0005, 0.001

• dropout value - 0, 0.1, 0.15, 0.2, 0.3

Table 4.1 displays the results for the top five performers in accuracy, occurrence recall, large

fire occurrence recall, scale accuracy, and relaxed scale accuracy.

4.3 Discussion

Looking at the occurrence recall results, this model shows promise in its ability to

identify locations that are susceptible to wildfires with the top five models identifying lo-

cations that had wildfires 97.1%, 95%, 94.8%, 94.7%, and 94.6% of the time. The model

also performs well at identifying large fires (greater than 1,000 acres) with top five large

fire occurrence recall models identifying occurring large fires 86.2%, 81.7%, 77.7%, 75.5%,

and 74.9% of the time. The model has difficulty predicting the correct scale of an occurring

wildfire indicated by the low performances in scale accuracy and relaxed scale accuracy. The

top five performing models in the scale accuracy category only predict the correct scale of an

occuring fire 27.4%, 26.4%, 26.4%, 26.2%, and 25.8% of the time. The top five performing

models in the relaxed scale accuracy category only predict one scale away from the correct

scale 63.8%, 62.6%, 61.2%, 61.1%, and 60.8% of the time. All of the models tend to over

predict the occurrence of wildfires indicated by the low occurrence precision and large fire
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Hyper-Parameters A OR/P LFOR/P SA RSA

(0.005, 200, 5000, 3, 200, 0, 0) 92.2 24.6/8.8 9.2/7.1 5.2 12.0
(0.005, 200, 50000, 3, 200, 0, 0) 90.5 31.3/8.6 14.5/6.2 7.1 16.4
(0.005, 50, 5000, 3, 200, 0, 0) 89.2 36.3/8.4 16.5/6.3 8.2 18.8
(0.050, 200, 5000, 3, 200, 0, 0) 87.6 43.3/8.5 23.8/6.9 9.8 24.9
(0.050, 200, 50000, 3, 200, 0, 0) 87.5 44.0/8.6 26.2/6.6 10.0 24.6
(0.10, 50, 5000, 4, 100, 0.1, 0) 43.4 97.1/3.8 68.1/3.1 19.3 61.2
(0.05, 100, 5000, 3, 200, 0, 0.001) 51.5 95.0/4.3 55.7/3.4 18.6 58.8
(0.05, 100, 5000, 3, 100, 0, 0.001) 53.9 94.8/4.6 86.2/3.1 20.6 57.7
(0.05, 50, 5000, 3, 200, 0.1, 0) 55.2 94.7/4.7 66.9/3.2 24.0 60.1
(0.05, 50, 5000, 3, 50, 0.1, 0) 55.3 94.6/4.7 63.8/3.2 23.1 58.3
(0.10, 100, 5000, 3, 100, 0.20, 0.001) 57.3 90.1/4.7 81.7/3.2 14.7 46.6
(0.10, 200, 10000, 4, 100, 0, 0) 55.9 93.0/4.7 77.7/3.2 18.6 56.5
(0.05, 200, 5000, 3, 50, 0, 0) 54.4 94.5/4.6 75.5/3.3 23.7 63.8
(0.10, 50, 10000, 3, 100, 0, 0) 60.3 91.6/5.1 74.9/3.5 22.0 58.7
(0.10, 100, 5000, 3, 100, 0.15, 0) 60.7 88.7/5.0 27.4/4.4 27.4 50.5
(0.10, 200, 10000, 3, 50, 0, 0) 61.6 86.8/5.0 45.7/4.1 26.4 52.7
(0.05, 50, 5000, 4, 50, 0, 0) 58.4 92.2/4.9 52.4/3.1 26.4 54.4
(0.10, 200, 10000, 4, 100, 0.10, 0) 62.1 89.3/5.2 58.3/3.9 26.2 52.1
(0.05, 50, 10000, 3, 100 0, 0) 59.8 91.7/5.0 57.6/4.2 25.8 59.3
(0.10, 50, 10000, 3, 50, 0.10, 0) 57.6 92.8/4.8 68.4/3.6 20.6 62.6
(0.10, 200, 5000, 4, 100, 0.10, 0) 55.9 92.2/4.6 63.7/3.7 19.2 61.1
(0.05, 100, 5000, 3, 100, 0.15, 0) 58.3 91.7/4.9 65.6/3.7 19.0 60.8

Table 4.1: This table displays the performances of the model with various hyper-parameters.
Each column contains the various metrics: accuracy (A), occurrence recall/precision (OR/P),
large fire occurrence recall/precision (LFOR/P), scale accuracy (SA), and relaxed scale ac-
curacy (RSA) are displayed. The format of the hyper-parameter column is (learning rate,
epochs, batch size, hidden layers, neurons, dropout, regularization). The metric values are
displayed as percentages. Bold values indicate a top five performer in its performance cate-
gory.

occurrence precision values which are all below 10%. This means of all the locations that

the model predicts a fire occurring, only less than 10% of the locations actually contained a

fire.

This brings up the debate of whether it is better to have a model that has a higher

recall or precision performance. Ideally, the perfect model would minimize both the number

of false positives and false negatives. If a deployed model has a false negative and fails to

predict a fire that occurs, then the cost of damage is much higher than if the model predicts

a false positive, for the cost of being unprepared for a wildfire that occurs is greater than the
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cost of preparing for a wildfire that does not occur. Therefore, recall of predicting wildfires

is a more important performance metric than precision. It also might be the case that low

precision values are to be expected due to the nature of how wildfires ignite. As previously

mentioned a wildfire requires an ignition source which usually comes from sources such as

lightning strikes, meteors, and human activities. These sources are random and difficult

to predict. So it might be the case that the model predicts that a location is currently

susceptible to a wildfire because the data shows that it has high temperatures, low humidity,

little rainfall, dry vegetation, etc., but if no ignition source occurs, then a wildfire will not

occur. Thus, many of the false positives could be attributed to locations having the perfect

climate and weather conditions for wildfires, but lacking the ignition source.
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5 Conclusion

Looking ahead at the future implementation of artificial intelligence in assisting the

fight of wildfires, the ability to predict a locations likelihood of a wildfire occurring is crucial

for fighting and minimizing the damage of wildfires. If a location is known to be in high

risk for a wildfire, then resources can be sent to that area such as firefighters to mitigate

the risk or UAV’s to survey the area. The future goal of research in this field is to have an

artificial intelligence system that continuously processes live and historical data to determine

a locations susceptibility to wildfires. This research explores this goal by attempting to

predict the likelihood and scale of wildfires in California. This research showed promise in

its ability to identify locations that are susceptible to fires indicated by the high occurrence

recall values. However, the model has difficulty predicting the correct scale of an occurring

wildfire indicated by the low performances in scale accuracy and relaxed scale accuracy.

Furthermore, it tends to over predict the occurrence of wildfires that never occur indicated

by the low occurrence precision and large fire occurrence precision values.

The future research in this field should look into how the size of a location impacts

the prediction performance. This research used a location size of 10km x 10km, but perhaps

a smaller or larger location size would be advantageous. New features such as elevation

and slope should be explored. Since many wildfires are caused by human activity, perhaps

human behavior in certain location can be captured as features. New model architectures

such as recurrent neural networks (RNN) and convolutional neural networks (CNN) should

be explored. A CNN would be great for capturing the vegetation density of surrounding

locations to better account for the potential spread and scale of wildfires. Overall, this

research shows potential in predicting a locations susceptibility to wildfires, and there is

plenty of progress to be made in the future.
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