
University of Arkansas, Fayetteville University of Arkansas, Fayetteville

ScholarWorks@UARK ScholarWorks@UARK

Graduate Theses and Dissertations

5-2022

Live Access Control Policy Error Detection Through Hardware Live Access Control Policy Error Detection Through Hardware

Bryce Mendenhall
University of Arkansas, Fayetteville

Follow this and additional works at: https://scholarworks.uark.edu/etd

 Part of the Computer and Systems Architecture Commons, Controls and Control Theory Commons,

Digital Circuits Commons, and the Systems and Communications Commons

Citation Citation
Mendenhall, B. (2022). Live Access Control Policy Error Detection Through Hardware. Graduate Theses
and Dissertations Retrieved from https://scholarworks.uark.edu/etd/4524

This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion
in Graduate Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more
information, please contact scholar@uark.edu, uarepos@uark.edu.

https://scholarworks.uark.edu/
https://scholarworks.uark.edu/etd
https://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F4524&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/259?utm_source=scholarworks.uark.edu%2Fetd%2F4524&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/269?utm_source=scholarworks.uark.edu%2Fetd%2F4524&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/260?utm_source=scholarworks.uark.edu%2Fetd%2F4524&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/276?utm_source=scholarworks.uark.edu%2Fetd%2F4524&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/etd/4524?utm_source=scholarworks.uark.edu%2Fetd%2F4524&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu,%20uarepos@uark.edu

Live Access Control Policy Error Detection Through Hardware

A thesis submitted in partial fulfillment

 of the requirements for the degree of

Master of Science in Computer Engineering

by

Bryce Mendenhall

University of Arkansas

Bachelor of Science in Computer Engineering, 2021

May 2022

University of Arkansas

This thesis is approved for recommendation to the Graduate Council.

Jia Di, Ph.D.

Thesis Director

________________________________ ________________________________

Alexander Nelson, Ph.D. Brajendra Panda

Committee Member Committee Member

ABSTRACT

Access Control (AC) is a widely used security measure designed to protect resources and

infrastructure in an information system. The integrity of the AC policy is crucial to the protection

of the system. Errors within an AC policy may cause many vulnerabilities such as information

leaks, information loss, and malicious activities. Thus, such errors must be detected and promptly

fixed. However, current AC error detection models do not allow for real-time error detection, nor

do they provide the source of errors. This thesis presents a live error detection model called

LogicDetect which utilizes emulated Boolean digital logic circuits to provide continual feedback

and error source identification. The outcome is a new error detection model allowing policy

creators to identify the source of errors quickly and accurately at any stage during policy creation.

ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. Jia Di. He has not only guided me through my

undergraduate and graduate education but helped me to become a better student, worker, and

person. I am grateful to have had him and his support throughout the later years of my education.

I would also like to thank the members of my committee Dr. Alexander Nelson and Dr.

Brajendra Panda for their attitude towards education and for their involvement in my

undergraduate and graduate careers.

CONTENTS

1. Introduction ... 1

2. Background ... 4

2.1 Access Control Overview ... 4

2.2 Policies .. 4

2.2.1 Attribute-Based Rules ... 5

2.2.2 Role-Based Rules .. 5

2.2.3 Rule Constraints and Relationships ... 6

2.2.3.1 Role Constraint ... 6

2.2.3.2 Workflow Rule Constraint ... 7

2.2.3.3 General Mutual Exclusion Constraint .. 7

2.2.3.4 N-Person Control Constraint ... 8

2.2.3.5 Inheritance Constraint ... 8

2.2.3.6 Separation of Duty Constraint ... 9

2.2.3.7 Conflict of Interest Constraint ... 10

2.3 Current Error Checking Techniques .. 11

2.4 Logic Circuit Emulation ... 12

3. Methodology and Implementation .. 13

3.1 Overview .. 13

3.2 Logic Circuit Layout... 13

3.3 AC Conversion Script ... 13

3.3.1 Menu Options ... 14

3.3.1 Adding Attribute/Role-Based Rules ... 15

3.3.2 Adding Constraints .. 17

3.3.3 Print Options .. 17

3.3.4 Saving the Policy .. 18

3.3.5 Converting Rules to VHDL ... 18

3.3.5.1 Attribute-Based and Role-Based Rules ... 19

3.3.5.2 Workflow Constraint .. 20

3.3.5.3 General Mutual Exclusion Constraint .. 21

3.3.5.4 N-Person Control Constraint ... 22

3.3.5.5 Inheritance Constraints .. 23

3.3.5.6 Separation of Duty .. 24

3.3.5.7 Conflict of Interest .. 27

3.4 Policy Error Detection .. 28

3.4.1 Conflict Fault .. 28

3.4.2 Privilege Escalation Fault.. 29

3.4.3 Cyclic Inheritance .. 31

3.5 Policy Testing .. 33

3.5.1 Emulation.. 33

4. Results .. 35

4.1 Emulation Results ... 38

5. Conclusion and Future Work .. 41

5.1 Conclusion ... 41

5.2 Future Work .. 41

6. References .. 42

1

1. Introduction

Access Control (AC) is a widely used security measure designed to restrict access to

information system resources or physical facilities. [8] Further, it defines basic permissions for

users or processes within an information system based on the AC policy. An AC policy is a set of

rules describing the security of the system in its entirety. Each rule within the policy designates

the security of a single user or process and assigns authorized Subjects a permission (either Grant

or Deny) to protected Objects and Actions. [7] Correctly defining an AC policy for an information

system is crucial to the security of the system. Any error in the policy may not only lead to

unauthorized Subjects accessing protected materials, but it may also lead to sensitive information

leaks or complete lock outs of protected resources. Therefore, the policy creator must design a

policy to protect sensitive aspects of an information system, and this policy also must be error free.

When working with large information systems, there may be thousands of rules with thin margins

of error. For example, the policy creator may create an illegal Inheritance constraint between two

Subjects. This can lead to unauthorized users gaining access to sensitive material which they are

not allowed to access. Such errors may have detrimental effects on the integrity of an information

system, so faults in AC policies must be detected and swiftly correctly.

Traditional AC policy fault detection is time-consuming for larger policies, and current

approaches usually require a completed policy before testing may begin. [5] Moreover, error

checking in a large policy after it is created can be difficult because the addition of new rules may

exacerbate the severity of existing errors. Many approaches detect errors within the policy but

usually cannot inform the policy creator of where errors originate. [5]

This thesis work studies a new approach to detecting AC policy errors which is fundamentally

different from traditional methods. A new method (referred to as LogicDetect) is developed based

2

on real-time hardware detection to allow a policy creator to check for errors during any phase of

policy creation. LogicDetect not only allows for real time error-detection but also shows the policy

creator problematic rules as well. LogicDetect leverages Boolean digital logic in Field

Programmable Gate Array (FPGA) emulation to detect faults. This method allows policy rules to

be intuitively expressed as Boolean logic expressions, which are translated into hardware and are

added into their corresponding logic circuit (LC). Four LCs are constructed to simulate the AC

policy: the Grant LC, Deny LC, Support LC, and the Cyclic Inheritance LC. The two primary LCs,

the Grant and Deny LC, express authorization or denial of a rule. When specifying rules, gates

within the LC represent a logic operation connecting AC variables enforced by the rules. Rules are

added to their corresponding LCs based on the permission rendered by the rule, either Grant or

Deny. The permission of each rule is defined upon rule creation. To effectively emulate the policy

in hardware, each element of a rule is represented by a single bit. A Grant permission is represented

when all elements of a rule are changed from ‘0’ to ‘1’, so the Grant LC outputs Boolean logic

‘1’. The same is true for Deny permissions in the Deny LC.

The three specific faults studied in this thesis work are the Conflict Fault, the Privilege

Escalation Fault, and the Cyclic Inheritance Fault. The outputs of the Grant LC, Deny LC, and

the Cyclic Inheritance LC are considered when detecting the faults. When both the Grant LC and

Deny LC output Boolean logic ‘1’, a Conflict Fault is present in the policy. When the Cyclic

Inheritance LC output is Boolean logic ‘1’, an illegal chain of Inheritance constraints exists on the

Subjects or Roles of a rule and an error is detected. The Privilege Escalation Fault is detected by

the Grant LC and represents an illegal Inheritance Constraint assigning an unauthorized Subject

access to a resource.

3

LogicDetect shows promising results, and throughout this work, it has consistently succeeded

in error detection. LogicDetect breaks away from traditional methods is two key ways: due to the

modeling of AC rules in hardware and simulating logic circuits, LogicDetect allows for a new real-

time detection strategy for AC policies; additionally, traditional methods traverse through an entire

policy and are computationally expensive. LogicDetect takes advantage of its parallel nature to

emulate rules and allows the policy creator to check individual rules without having to check the

entire policy, thereby saving time and resources.

4

2. Background

2.1 Access Control Overview

Access control is a critical aspect of many systems requiring restrictions, such as in

information systems. In the context of this thesis, access control is defined as the selective

restriction of access to software or computer resources. Specifically, access control is addressed in

terms of information systems and comprising elements handled by a policy creator and may

encompass personal, commercial, or government information systems. An access control policy is

composed to define resource access by various principals (e.g., processes and users). [7] This is a

vital component of keeping information systems secured, so having an appropriate access control

policy for a system is crucial. However, for large systems where there are many access control

policies due to the size and complexity of the system, access control is more susceptible to human

error. [9] For example, with a large AC policy, there may be a rule which gives access to a process

or user for a certain recourse. Even so, the AC policy creator may form another rule with that same

set of principles, resulting in denial of that user or process from the same recourse. This would

cause an error which is called a Conflicting Fault, which occurs when a user or process is both

given and denied permission to access the same resource. This is just one of many errors which

may arise during AC policy creation, all of which will be discussed in later sections.

2.2 Policies

At the heart of access control is the policy. A policy is the list of a variable number of rules

created to protect a system. A rule is a set of enforce conditions to Grant or Deny access to a

system Object or Action. There are two primary rule types in this thesis work, Attribute-Based

rules and Role-Based rules, explained in Sections 2.1.1 and 2.1.2.

5

 It is important to understand that the policies identified and designed in hardware for this

thesis are not intended to control a real system but are example policies. The purpose of this

research is to emulate the proposed policy to detect errors and does not impose adherence to policy

rules. When simulating the policies in hardware, only one rule will be active at a time to detect

faults unless otherwise required. This is a stark difference from a live system where many rules

may be active simultaneously.

2.2.1 Attribute-Based Rules

 The Attribute-Based (AB) rule provides the guidelines for the most basic access control

and is commonly used to create Mandatory Access Control (MAC) policies. This rule requires a

minimum of three inputs: Subject, Object, and Action. It also contains a fourth optional input

named Role. The Subject describes a user within the system who is to be restricted by the rule. The

Object describes a resource, such as sensitive documents, needing protection. The Action describes

what the Subject is allowed to or not allowed to do to the protected resource. For example, consider

a Subject named Jason, an Object named Locked Door, and an Action named Open. If this is a

Grant rule, then Jason has the permission to Open the Locked Door (Equation 1). Conversely, if

the rule is meant to deny Jason, then Jason does not have permission to Open. The policy creator

has authority on whether a rule is a grant or deny rule. Equation 1 shows an example Boolean logic

expression of an Attribute-Based rule with no Roles.

𝑮𝒓𝒂𝒏𝒕 = 𝑱𝒂𝒔𝒐𝒏 𝑨𝑵𝑫 𝑳𝒐𝒄𝒌𝒆𝒅 𝑫𝒐𝒐𝒓 𝑨𝑵𝑫 𝑶𝒑𝒆𝒏 (1)

2.2.2 Role-Based Rules

 Role-Based (RB) rules act the same way as AB rules. Instead of having a Subject like AB

rules, RB rules feature a Role. This can be leveraged in several different ways, from having rules

for certain groups of users to modeling multi-level security policies. For example, an RB rule may

6

be used when a rule is needed for all employees in a company. AB rules would grant each

employee access to unique Objects or Actions, like permission to use an office computer. Only the

Subject of the rule may access the corresponding Object. However, if the Subjects are given a Role,

like Employee, an RB rule considers the Roles of all Subjects. The rule may allow anyone who is

an employee to have access to an employee forum. Any Subject would be checked for the

‘Employee’ Role when they attempt to login under this RB rule. This is an important distinction

from AB rules, as it enables the policy maker to define one rule for many different Subjects.

 Role-Based rules are utilized in a widely used version of access control called multi-level

security (MLS), prevalently used in government systems since it allows the policy creator to create

“levels” of security or clearance. Equation 2 demonstrates an MLS ruleset conversion to Boolean

logic. In this example, a Role check is performed for the SecretClearance Role. Ensuring the

Subject may be granted access if and only if the correct Role constraint is satisfied. Equation 2

features a single RB rule in Boolean logic.

𝑮𝒓𝒂𝒏𝒕 = (𝑺𝒆𝒄𝒓𝒆𝒕𝑪𝒍𝒆𝒂𝒓𝒂𝒏𝒄𝒆 𝑨𝑵𝑫 𝑬𝒅𝒊𝒕 𝑨𝑵𝑫 𝑺𝒆𝒄𝒓𝒆𝒕𝑫𝒐𝒄𝒖𝒎𝒆𝒏𝒕) (2)

2.2.3 Rule Constraints and Relationships

Rule constraints are modifications applied to both AB and RB rules. Each constraint or

relationship relies on existing rules to add more complexity and meaningful access control

parameters. There are seven types of constraints studied in this work throughout Section 2.1.3.1 to

Section 2.1.3.7.

2.2.3.1 Role Constraint

Role constraints are treated differently than RB rules. This is a constraint placed on an

Attribute-Based rule to allow the user access to RB rules. Furthermore, this constraint may be a

7

part of an Inheritance relationship where Privilege Escalation must be weighed. Privilege

Escalation is explained in Section 3.3.2.

2.2.3.2 Workflow Rule Constraint

 The Workflow constraint ensures one or many rules must be fulfilled before a successive

rule is granted. [10] For example, if one rule allows a Subject Janice to take a test on blackboard,

another rule grants permission to the TA to grade the test. In a Workflow relationship, it can be

ensured that Janice has taken the test before the TA is allowed to grade it. This can be represented

in Boolean logic by using the first rule’s Grant signal, S0, as part of the second rule’s input

(Equations 3 and 4). Grant signal S1 will not be granted unless Grant signal S0 is true. Further

steps need to be taken for state-keeping when converting this relationship to VHDL and will be

addressed in Section 3.3.5.2.

𝑺𝟎 = 𝑱𝒂𝒏𝒊𝒄 𝑨𝑵𝑫 𝑻𝒂𝒌𝒆 𝑨𝑵𝑫 𝑻𝒆𝒔𝒕 (3)

𝑺𝟏 = 𝑻𝑨 𝑨𝑵𝑫 𝑮𝒓𝒂𝒅𝒆 𝑨𝑵𝑫 𝑻𝒆𝒔𝒕 𝑨𝑵𝑫 𝑺𝟎 (4)

2.2.3.3 General Mutual Exclusion Constraint

 General Mutual Exclusion (GME) ascertain whether two or more Subjects should not be

able to access the same resource at the same time. [7] For example, if two users, user1 and user2,

both have access to edit a document but should not have simultaneous edit capabilities, a GME

constraint between the two rules is required to Deny user1 access to the document while user2 is

editing and vise-versa. The opposite rule should not be granted while the other rule is active.

Equations 5 and 6 display a GME rule in Boolean logic.

𝑺𝟎 = 𝑼𝒔𝒆𝒓𝟏 𝑨𝑵𝑫 𝑬𝒅𝒊𝒕 𝑨𝑵𝑫 𝑫𝒐𝒄𝒖𝒎𝒆𝒏𝒕 𝑨𝑵𝑫 𝑵𝑶𝑻 𝑺𝟏 (5)

𝑺𝟏 = 𝑼𝒔𝒆𝒓𝟐 𝑨𝑵𝑫 𝑬𝒅𝒊𝒕 𝑨𝑵𝑫 𝑫𝒐𝒄𝒖𝒎𝒆𝒏𝒕 𝑨𝑵𝑫 𝑵𝑶𝑻 𝑺𝟎 (6)

8

2.2.3.4 N-Person Control Constraint

 The N-person control constraint forces multiple Subjects to be Granted access to the same

Object at the same time. [7] With a 2-person control constraint, two Subjects must be active for

the rule to be Granted. For example, if there is a 2-person rule requiring two keys to be scanned

concurrently to open a locked door, both users who possess a certified key must be present for the

door to unlock. Equation 7 shows an example of a 2-person control rule in Boolean logic.

𝑮𝒓𝒂𝒏𝒕 = ((𝑲𝒆𝒚𝟏 𝑨𝑵𝑫 𝑲𝒆𝒚𝟐) 𝑨𝑵𝑫 𝑼𝒏𝒍𝒐𝒄𝒌 𝑨𝑵𝑫 𝑫𝒐𝒐𝒓) (7)

2.2.3.5 Inheritance Constraint

 An Inheritance constraint describes a relationship between two Subjects or Roles by

allowing one Subject or Role to share their corresponding rules with another. A single one-way

Inheritance constraint demands two Subjects or Roles, the beneficiary and the tribute. The tribute

shares all their corresponding rules with the beneficiary. However, with an AB rule, the beneficiary

does not receive any Role constraints for that rule. Consider the example with two Subjects, Bob,

who has two Grant rules and, Alice, who has no rules. Alice inherits from Bob, providing Alice

access to Bob’s two Grant rules. Equations 8 and 9 demonstrate this inheritance example in

Boolean logic.

𝑮𝒓𝒂𝒏𝒕 = (𝑩𝒐𝒃 𝑶𝑹 𝑨𝒍𝒊𝒄𝒆) 𝑨𝑵𝑫 𝑬𝒅𝒊𝒕 𝑨𝑵𝑫 𝑫𝒐𝒄𝒖𝒎𝒆𝒏𝒕 (8)

𝑮𝒓𝒂𝒏𝒕 = (𝑩𝒐𝒃 𝑶𝑹 𝑨𝒍𝒊𝒄𝒆) 𝑨𝑵𝑫 𝑽𝒊𝒆𝒘 𝑨𝑵𝑫 𝑫𝒐𝒄𝒖𝒎𝒆𝒏𝒕 (9)

When Inheritance constraints are combined with Role constraints, the policy runs the risk

of Privilege Escalation. This is an error type resulting in the beneficiary having access to rules

when Role requirements are not met. This fault is considered in-depth in Section 3.3.2.

9

2.2.3.6 Separation of Duty Constraint

 Separation of Duty (SoD) divides critical functions between Subjects so a single Subject

cannot misuse the system independently. [11] There are several different types of SoD rules

studied in this research: Simple Static SoD, Dynamic SoD, Simple Dynamic SoD, Object-Oriented

SoD, and Operational SoD.

Simple Static SoD states that anyone with a certain role should not be allowed to execute

a certain Action. [11] This can be implemented using an RB deny rule. Equation 10 depicts an

example RB rule in Boolean logic to express Simple Static SoD.

𝑫𝒆𝒏𝒚 = 𝑬𝒎𝒑𝒍𝒐𝒚𝒆𝒆 𝑨𝑵𝑫 𝑨𝒑𝒑𝒓𝒐𝒗𝒆 𝑨𝑵𝑫 𝑻𝒊𝒎𝒆𝑺𝒉𝒆𝒆𝒕 (10)

 Dynamic SoD ensures only one Subject may do one of multiple exclusive Actions related

to a certain Object. [11] This type of SoD essentially allows a Subject to claim an Action. When

an Action is claimed, access will not be Granted to any other Subject related to the same Action.

Consider the example shown in Equation 8. There are two Subjects, User1 and User2. They both

have access to Approve and Write Checks. However, due to the DSoD constraint, the Subjects will

not be able to claim the same Action. Furthermore, when a Subject claims one Action, such as

Approve, they may not access the other Action, Write. Equations 10 – 13 demonstrate dynamic

SoD in Boolean logic.

𝑮𝒓𝒂𝒏𝒕𝟏 = 𝑼𝒔𝒆𝒓𝟏 𝑨𝑵𝑫 𝑨𝒑𝒑𝒓𝒐𝒗𝒆 𝑨𝑵𝑫 𝑪𝒉𝒆𝒄𝒌𝒔 𝑨𝑵𝑫 𝑵𝑶𝑻 𝑮𝒓𝒂𝒏𝒕𝟐 𝑨𝑵𝑫 𝒏𝒐𝒕 𝑮𝒓𝒂𝒏𝒕𝟑 (10)

𝑮𝒓𝒂𝒏𝒕𝟐 = 𝑼𝒔𝒆𝒓𝟏 𝑨𝑵𝑫 𝑾𝒓𝒊𝒕𝒆 𝑨𝑵𝑫 𝑪𝒉𝒆𝒄𝒌𝒔 𝑨𝑵𝑫 𝑵𝑶𝑻 𝑮𝒓𝒂𝒏𝒕𝟏 𝑨𝑵𝑫 𝒏𝒐𝒕 𝑮𝒓𝒂𝒏𝒕𝟒 (11)

𝑮𝒓𝒂𝒏𝒕𝟑 = 𝑼𝒔𝒆𝒓𝟐 𝑨𝑵𝑫 𝑨𝒑𝒑𝒓𝒐𝒗𝒆 𝑨𝑵𝑫 𝑪𝒉𝒆𝒄𝒌𝒔 𝑨𝑵𝑫 𝑵𝑶𝑻 𝑮𝒓𝒂𝒏𝒕𝟏 𝑨𝑵𝑫 𝒏𝒐𝒕 𝑮𝒓𝒂𝒏𝒕𝟒 (12)

𝑮𝒓𝒂𝒏𝒕𝟒 = 𝑼𝒔𝒆𝒓𝟐 𝑨𝑵𝑫 𝑾𝒓𝒊𝒕𝒆 𝑨𝑵𝑫 𝑪𝒉𝒆𝒄𝒌𝒔 𝑨𝑵𝑫 𝑵𝑶𝑻 𝑮𝒓𝒂𝒏𝒕𝟐 𝑨𝑵𝑫 𝒏𝒐𝒕 𝑮𝒓𝒂𝒏𝒕𝟑 (13)

10

 Simple-Dynamic SoD restricts the Roles which a user may have. In this constraint a user

may not take on more than one exclusive Roles. [11] This model is implemented by the policy

creator during policy creation.

 Object-oriented SoD is the same as Dynamic SoD with the only difference being the user

claims an Object instead of an Action. [11] The Boolean expression for this rule has the same

structure as the expression for Dynamic SoD.

 Operational SoD ensures one person cannot be a part of every step of a business task. [11]

One person must draft the checks and a different individual must sign them. However, multiple

people may be allowed to participate in such step as long as no one person is allowed access to

every step. Consider the example outlined in Equations 14 - 17. There are two Subjects, User1 and

User2. Both Subjects may Approve and Write checks. However, when the Subject is granted access

to one Action, they will not be granted for the other Action. Both Subjects may access the same

Action given that neither access both Actions.

𝑮𝒓𝒂𝒏𝒕𝟏 = 𝑼𝒔𝒆𝒓𝟏 𝑨𝑵𝑫 𝑨𝒑𝒑𝒓𝒐𝒗𝒆 𝑨𝑵𝑫 𝑪𝒉𝒆𝒄𝒌𝒔 𝑨𝑵𝑫 𝑵𝑶𝑻 𝑮𝒓𝒂𝒏𝒕𝟐 (14)

𝑮𝒓𝒂𝒏𝒕𝟐 = 𝑼𝒔𝒆𝒓𝟏 𝑨𝑵𝑫 𝑾𝒓𝒊𝒕𝒆 𝑨𝑵𝑫 𝑪𝒉𝒆𝒄𝒌𝒔 𝑨𝑵𝑫 𝑵𝑶𝑻 𝑮𝒓𝒂𝒏𝒕𝟏 (15)

𝑮𝒓𝒂𝒏𝒕𝟑 = 𝑼𝒔𝒆𝒓𝟐 𝑨𝑵𝑫 𝑨𝒑𝒑𝒓𝒐𝒗𝒆 𝑨𝑵𝑫 𝑪𝒉𝒆𝒄𝒌𝒔 𝑨𝑵𝑫 𝑵𝑶𝑻 𝑮𝒓𝒂𝒏𝒕𝟏 (16)

𝑮𝒓𝒂𝒏𝒕𝟒 = 𝑼𝒔𝒆𝒓𝟐 𝑨𝑵𝑫 𝑾𝒓𝒊𝒕𝒆 𝑨𝑵𝑫 𝑪𝒉𝒆𝒄𝒌𝒔 𝑨𝑵𝑫 𝑵𝑶𝑻 𝑮𝒓𝒂𝒏𝒕𝟐 (17)

2.2.3.7 Conflict of Interest Constraint

 Conflict of Interest is commonly known as the Chinese Wall model. This constraint states

that if two Objects are conflicting and a Subject has access to one of those Objects, then the Subject

cannot access the other Object. [7] For example, if a company manages security for many other

firms and an employee has access to sensitive information for one of the client firms, the

employees should not have access to sensitive information from any competing firms. In Equations

11

18 - 21, Jason has access to Company A Sensitive Info so he should be denied access to any other

companies sensitive information.

𝑮𝒓𝒂𝒏𝒕𝟏 = 𝑱𝒂𝒔𝒐𝒏 𝑨𝑵𝑫 𝑪𝒐𝒎𝒑𝒂𝒏𝒚𝑨𝑺𝒆𝒏𝒔𝒊𝒕𝒊𝒗𝒆𝑰𝒏𝒇𝒐 𝑨𝑵𝑫 𝑹𝒆𝒂𝒅/𝑾𝒓𝒊𝒕𝒆 (18)

𝑮𝒓𝒂𝒏𝒕𝟐 = 𝑨𝒍𝒊𝒄𝒆 𝑨𝑵𝑫 𝑪𝒐𝒎𝒑𝒂𝒏𝒚𝑩𝑺𝒆𝒏𝒔𝒊𝒕𝒊𝒗𝒆𝑰𝒏𝒇𝒐 𝑨𝑵𝑫 𝑹𝒆𝒂𝒅/𝑾𝒓𝒊𝒕𝒆 (19)

𝑫𝒆𝒏𝒚𝟏 = 𝑱𝒂𝒔𝒐𝒏 𝑨𝑵𝑫 𝑪𝒐𝒎𝒑𝒂𝒏𝒚𝑩𝑺𝒆𝒏𝒔𝒊𝒕𝒊𝒗𝒆𝑰𝒏𝒇𝒐 𝑨𝑵𝑫 𝑹𝒆𝒂𝒅/𝑾𝒓𝒊𝒕𝒆 (20)

𝑫𝒆𝒏𝒚𝟐 = 𝑨𝒍𝒊𝒄𝒆 𝑨𝑵𝑫 𝑪𝒐𝒎𝒑𝒂𝒏𝒚𝑨𝑺𝒆𝒏𝒔𝒊𝒕𝒊𝒗𝒆𝑰𝒏𝒇𝒐 𝑨𝑵𝑫 𝑹𝒆𝒂𝒅/𝑾𝒓𝒊𝒕𝒆 (21)

2.3 Current Error Checking Techniques

There are several current policy verification schemes, but some of the most frequently used

are Model Checking, Multi-Terminal Binary Decision Diagrams (MTBDD), Mutation Testing,

Automated Combinatorial Testing, and Pseudo-Exhaustive Testing.

 Model Checking is a verification technology that provides an algorithmic means of

determining whether an abstract model—representing, for example, a hardware or software

design—satisfies a formal specification expressed as a temporal logic formula [1]. If the

specification is not satisfied, the method identifies a counterexample execution to show the source

of the problem [1].

 Underlying representation of access-control policies, Multi-Terminal Binary Decision

Diagrams (MTBDDs) serve as decision diagrams to map bit vectors over a set of variables to a

finite set of results [2].

 Mutation Testing, on the other hand, exceeds where Model Checking and MTBDD fail.

These aforementioned methods may not be sufficient to guard against some unexpected behaviors

embedded in the AC model [1]. To address this shortcoming, the mutation test of the white box

test method generates additional inputs to consider policy-related entities not covered by black box

test methods [1].

12

 Automated Combinatorial Testing is a methodology to test all t-way combinations of input

parameters in at least one test [1]. This methodology excels at error checking Multi-Level Security

policy models.

 Pseudo-Exhaustive Testing is defined as exhaustive testing of all combinations of Role

values on which an access control decision is dependent [1]. An advantage of this approach is its

potential use to produce a complete test set for all possible rule combinations [1].

2.4 Logic Circuit Emulation

 Digital logic circuits implement Boolean logic expressions. As the name implies, Boolean

logic variables have the value ‘0’ or ‘1’, or false or true, respectively. In the Boolean logic family,

there are three essential operations: OR, AND, and NOT. There are other operations such as XOR

(exclusive OR) and NAND (inverse of AND), but these result from combinations from the three

core operations. Because of the simplicity of Boolean logic, emulating Boolean circuits is

extremely fast, and simulations at Register Transfer Level (RTL) or as a gate-level netlist may take

just a few seconds or less. Boolean emulations may be run on a variety of software tools including

ModelSim from Mentor Graphics, VCS from Synopsys, Quartus from Altera, and ISE from Xilinx,

but for this research, Vivado from Xilinx was used.

 Emulations are run on an FPGA board, which can be configured to run multiple hardware

configurations. The flexibility of FPGAs arises from the programmable circuitry contained, such

as Static Random Access Memory (SRAM) based configurable logic blocks (CLBs) and

programable interconnects. These blocks create a physical array of logic gates united by the

programmable interconnects, allowing a single FPGA board to implement many different logic

circuits.

13

3. Methodology and Implementation

3.1 Overview

 To effectively translate AC policies to hardware in a way to uphold the integrity of the

policy, rules and constraints are designed to function individually. This exempts the rules within

the policy of any dependencies on one another, meaning the policy is considered functional at

every state while being defined. This is crucial to live error detection, as it allows the policy to be

tested at any point even while incomplete. All hardware models designed for AC policy conversion

were done in collaboration with a team member on this research work, Yatish Dubasi. The later

sections in this chapter explain how each rule and constraint is designed in this manner.

3.2 Logic Circuit Layout

 Before diving into how rules are designed and implemented, the layout of the policy must

be understood. The policy consists of 4 distinct Logic Circuits (LCs) working in tandem to form

the hardware model for error detection. These LCs are the Grant LC, Deny LC, Support LC, and

Cyclic Inheritance (CI) LC. The Grant LC and Deny LC consist of the core elements of all Grant

rules and Deny rules within the policy, respectively. The support LC consists of the logic used to

support the Grant and Deny rules while also maintaining necessary dynamic states and other

support logic (e.g., Workflow rules when state keeping is necessary or in Privilege Escalation

when privilege checks are required). The final CI LC consists of hardware to check for CI errors.

These LCs are not physically constrained on the FPGA and are largely used to organize rules in

the script and VHDL files.

3.3 AC Conversion Script

 Originally, converting AC policies to VHDL was done by hand. To streamline the process

and make AC checking more accessible for policy creators, a Python script was developed to

14

automate the conversion. The script currently allows the policy creator to automatically generate

AB and RB rules with most constraints. Current constraints supported by the script are Inheritance,

Workflow, Conflict of Interest, General Mutual Exclusion, N-person control constraints, and a few

SoD types. After the script is functionally complete to support all constraint types, there are plans

to add a user interface. This should further simplify the conversion process by allowing nearly any

user to convert their policies for testing.

3.3.1 Menu Options

On script start-up, the policy creator is presented a series of prompts asking what kind of

rules and constraints they would like to add. Prompts from the script startup menu are provided in

Figure 1. This menu contains the options a policy creator will need to define most rule types.

15

Figure 1: AC Script Menu

3.3.1 Adding Attribute/Role-Based Rules

When the policy creator adds an AB rule using menu option 2, they are offered the prompts

in Figure 2. Likewise, if the policy creator creates an RB rule, they are provided similar prompts:

rule name, Role, Object, and Action.

16

Figure 2: User prompts after selecting menu option 2

Rule name is a crucial field when adding rules into the policy, as the names are used to link

constraints to that rule. To help keep track of added rules and their names, a print function is

implemented in the script and is explained in Section 3.2.3.

 When a rule is created, it must have one of two permissions, Grant or Deny. The rules are

categorized by this permission and added to the Grant and Deny LCs accordingly. The N-person

constraint is one of two constraints added at rule definition. When the prompt for the N-person

constraint is confirmed, the policy creator adds all the Subjects involved in the constraint as a

comma separated list. This list of Subjects is stored as a single variable in the rule object and is

partitioned into individual Subjects when converted to VHDL. The successive three AC script

prompts ask for the core variables: Subject, Object, and Action. If the rule is constrained by an N-

person constraint, the user will not be prompted to enter another Subject. Each variable is stored

in its respective list and will be used as I/O after VHDL conversion. The Role constraint is also

added at rule definition. Any number of Roles may be assigned to a Subject unless otherwise stated

by Simple Static SoD. Although the Role constraint is treated as a regular variable within the rule,

17

it is treated much differently when converting to VHDL. The rule conversion process to VHDL is

elaborated in Section 3.3.5.

3.3.2 Adding Constraints

 In the menu, the constraint options can be observed as “add inheritance’”, “add conflict of

interest”, “add workflow”, and “add general mutually exclusive constraint”. These are options 4,

6, 11, and 13, respectively. Constraints can be added at any time if the same names are used for

the rules which the constraint applies to, even when the policy is empty.

3.3.3 Print Options

 Option 3 in Figure 1 allows the user to print the current rules added using the script. This

selection has two sub-options: “print to file” and “print to console”. As explained in Section 3.3.1,

rule names are essential in referencing rules and constraints, so it is crucial for the policy creator

to remember the names of every rule. However, when dealing with large policies, this is unrealistic.

Thus, the print option was created for the specific purpose of ensuring the policy creator does not

mis-reference rules. Printing to the console is inefficient with large policies but is an appropriate

method to quickly check rule nomenclature for smaller policies. Printing to a file is the preferred

method when working with large policies. Additionally, the file can remain open as a reference

while adding rules and may be refreshed to maintain a running list of rules. Figure 3 depicts the

file generated when printing a policy.

18

Figure 3: Printing policy to a file

3.3.4 Saving the Policy

 Menu options 9 and 10 in Figure 1 permit the user to correspondingly save and load a

policy. These options utilize the Python pickle library, which leverages binary protocols to

serialize and de-serialize the Python objects, in this case the rule objects. When the file is saved,

the object hierarchy is converted into a byte stream, and loading in the file is the inverse operation.

However, this method of pickling is not secure, so users should only un-pickle trusted files.

3.3.5 Converting Rules to VHDL

 Concerning Figure 1, menu option 8 is the most critical aspect of the script, as it converts

all current rules to VHDL. The rules will be converted to VHDL in the same order they were added

into the policy. Supporting Boolean logic and error checking logic are autonomously generated

and placed within their corresponding LC groups. The VHDL file contains all LCs and the logic

needed to test the three errors addressed in this research: Conflicting Faults, Privilege Escalation

Faults, and Cyclic Inheritance Faults. In Section 3.4, the aforementioned errors are explained in

detail.

19

3.3.5.1 Attribute-Based and Role-Based Rules

Attribute-Based and Role-Based rules are largely treated the same when converting to

VHDL. The core inputs Subject, Object, and Action for AB rules or Role, Object, and Action for

RB rules are connected to a single AND gate. For this work, the AND gate where the I/O for a

single rule converges is called the Grant gate or Deny gate depending on their permission. The

layout of the signals change depending on the constraints, but there will always be a Grant or Deny

gate to decide the outcome. These gates are presented in Figures 4 and 5 and represent a simple

schematic of how these rules translate to hardware. While the schematics in Figures 4 and 5 appear

nearly identical, the difference between the two rules is the way they are emulated or constrained.

RB rules may be used to add security functions, such as MLS, and they may be referenced by AB

rules. However, AB rules will not affect or be referenced by RB rules. When no constraints exist

to connect the two rule types, the single difference is the Role and Subject.

Figure 4: Attribute-Based rule schematic

The rule in Figure 4 is the hardware translation of a security measure allowing Jason access

to read but not edit a document using AND gates as the Grant and Deny gates.

20

Figure 5: Role-Based rule schematic

The hardware implementation of an RB rule in Figure 5 describes a security measure

allowing an Employee access to read but not edit a document. This is different from the AB rule

in Figure 4 because the AB rule only Grant or Denies a single Subject, Jason. When this RB rule

exists in a larger policy, any Subject with the Employee Role will be authorized to read but not

edit the document. In a policy with both examples, Jason could be given the Role Employee

through a Role constraint and his AB rules removed while maintaining the integrity of the policy.

3.3.5.2 Workflow Constraint

 As stated in Section 2.2.3.2, when a Workflow constraint is present in the policy, there

must be state keeping for this constraint to function properly. When two or more rules are

constraint by Workflow, the hierarchy of rules is called the Workflow chain. The rule with higher

priority in the Workflow chain must be fulfilled before a successive rule is fulfilled. However,

during emulation, only one rule is flagged at a time. Therefore, the succeeding rule will not be

fulfilled since it depends on the output of the preceding rule, which is no longer fulfilled. To fix

this issue, an SR-flip-flop is introduced between each link along the Workflow chain. The flip-

21

flops represent the state of the rules along the Workflow chain. Figure 6 shows an example of a

Workflow constraint between two rules.

Figure 6: Example schematic of a workflow constraint between two rules

 Before any rules are granted, the Workflow chain is in its first state, meaning only the first

rule may be granted. When the first rule is Granted, its output is stored in an SR latch. A digital

logic ‘1’ stored in the latch represents a granted rule, and it will hold this value until the latch is

reset. The Workflow chain is now considered to be in its second state, so the second rule can be

Granted. When the final rule is Granted, it is not mandatory for the flip-flops to be reset. Resetting

the state of the Workflow chain is at the discretion of the policy creator during testing.

3.3.5.3 General Mutual Exclusion Constraint

 A General Mutually Exclusive (GME) constraint is added when an Object needs to be

protected from more than one Subject accessing it at the same time. The protected Object is defined

when the constraint is added using the script. When the Object is identified and the policy

converted to VHDL, all rules with the protected Object are included in the GME constraint. In

hardware, this is expressed on the Grant/Deny gate of every rule involved. For all rules in the

constraint, a new input is added to each Grant/Deny gate. These inputs represent the inversion of

22

every other rule comprised in the constraint. Figure 7 exhibits an example GME schematic with

two rules with a GME constraint on Document. Two Subjects, User1 and User2, have access to

Edit the Document. Since Document is a protected resource, only one Subject should be allowed

to Edit at any given time.

Figure 7: General Mutually Exclusive constraint schematic

3.3.5.4 N-Person Control Constraint

An N-person constraint is added during rule definition. It is a single-rule type constraint

only affecting the Subjects in the corresponding rule. When converting an N-person constraint to

VHDL, all Subjects involved converge at an AND gate before the Grant/Deny gate. Figure 8

presents a hardware representation of a 2-person rule. enforcing the security of a locked door

needing two keys, Key1 and Key2, to be unlocked. If Key1 and Key2 are not scanned

simultaneously, the rule is not granted, and the Door is not Unlocked.

23

Figure 8: 2-person constraint schematic

3.3.5.5 Inheritance Constraints

To add an Inheritance constraint to a policy, two Subjects or Roles must be defined, one as

beneficiary and the other as tribute. When the Subjects or Roles are identified, the beneficiary is

added as an optional input to all the tribute’s rules. To convert this constraint to VHDL, the tribute

and beneficiary are connected by an OR gate before the grant gate. This allows either the

beneficiary or the tribute to drive a Grant/Deny gate, as shown in the schematic in Figure 9. The

figure demonstrates the relationship between Bob, the tribute, and Alice, the beneficiary. Bob has

two AB rules, and Alice inherits from Bob. Therefore, Alice is allowed access to both of Bob’s

rules. It is important to note if the tribute, Bob, is constrained by a Role constraint, Alice will not

inherit Bob’s Roles.

Figure 9: Basic Inheritance schematic

24

3.3.5.6 Separation of Duty

Separation of duty is not fully implemented into the script at this time. While some SoD

aspects are not handled by the script, there are plans to implement full SoD support in the future.

There are five separate SoD types studied in this work: Simple Static SoD, Dynamic SoD, Simple

Dynamic SoD, Object-Oriented SoD, and Operational SoD.

Simple Static SoD is implemented differently than other constraints, as this SoD type has

no defined relationship. Simple Static SoD is implemented with the addition of new RB Deny rules

as opposed to adding a constraint. This will Deny all Subjects with a certain Role from being

Granted a particular Object or Action. Figure 10 depicts an example hardware implementation of

this SoD rule type. It demonstrates the denial of any Subject with the Employee Role to Write

Checks. This approach is sufficient in representing Simple Static SoD in any policy.

Figure 10: Simple Static SoD schematic

 Dynamic SoD is one of the SoD aspects not currently addressed by the script. When

defining Dynamic SoD (DSoD), the policy creator needs to identify conflicting Actions. Upon

DSoD implementation, a Subject should be able to claim one conflicting Action. When an Action

is claimed, the Subject may not be granted access to any other claimable Action. Furthermore, no

25

other Subject may be granted access to the claimed Action. To realize DSoD in hardware, the state

of the Actions must be stored. To achieve this, an SR latch is attached to the output of each rule

involved in the DSoD rule set. When a rule is granted with a claimable Action, that Action is

considered claimed and results in the SR-flip-flop output being set to Boolean logic ‘1’. The Action

will remain in a claimed state until reset. Figure 11 offers an example schematic of a DSoD

constraint where User3 and User4 can write or approve EmployeeChecks. Consistent with the

DSoD definition above, when one of the Subjects claims one of the Actions, they may not access

the opposing Action, and both Subjects cannot claim the same Action.

Figure 11: Example Dynamic SoD schematic

 Simple dynamic SoD (SDSoD) is implemented during policy definition, meaning the

policy creator must refrain from giving conflicting Roles to the same Subject. This is enough to

satisfy SDSoD and does not require hardware enforcement.

 Object-Oriented SoD is another type not currently addressed by the script. Object-oriented

SoD is converted to hardware in the same manner as DSoD. The difference between these SoD

26

types arises from the conflicting variable. In DSoD the conflicting variable is the Action, but in

Object-Oriented SoD, the conflicting variable is the Object. A Subject will claim an Object, and

when the Object is claimed, the Subject will not be able to access other conflicting Objects. Object-

Oriented SoD requires state-keeping like DSoD. Figure 12 shows an example of Object-Oriented

SoD. User1 and User2 may edit both Document1 and Document2, however, when they Edit one

document, they may not edit the other document. Either user may not edit the document that has

been edited by the other. Given implementation similarities, this hardware approach is nearly

identical to Figure 11 (DSoD), and the difference in this example derives from there being two

Objects and only one Action as opposed to two Action and one Object.

Figure 12: Object-Oriented example schematic

 Respecting Operational SoD (OSoD), similarities between Object-oriented and Dynamic

SoD continue. The difference concerning Operational SoD is that multiple Subjects may access

the same Action, but an individual Subject may not access all Actions. This SoD type does not

necessitate checking for claimed Actions outside of individual Subjects’ rules as opposed to

27

Object-Oriented SoD and DSoD. Figure 13 demonstrates how OSoD is enforced in hardware.

There are three Subjects: User1, User2, and User3. All Subjects may Approve or Write the Object,

EmployeeChecks. However, no individual Subject may perform both Actions.

Figure 13: Example Operational SoD schematic

3.3.5.7 Conflict of Interest

When defining Conflict of Interest (COI) constraints, conflicting Objects must be

designated. Any number of conflicting Objects may be selected. In a COI constraint, a Subject

who has access to a conflicting Object is denied access to other conflicting Objects. During

hardware conversion, deny rules are automatically inserted into the design. For a Subject who has

access to an Object in the COI set, a Deny rule will be generated to disallow access to remaining

conflicting Object in the set. Figure 14 illustrates an example COI relationship in hardware.

28

Company A sensitive info and Company B sensitive info are conflicting Objects. Jason is allowed

to access Company A sensitive info, so a deny rule is automatically generated to deny Jason from

Company B sensitive info.

Figure 14: Schematic of a COI relationship in hardware

3.4 Policy Error Detection

 After the policy is designed using the script, or by hand. The policy creator must emulate

the VHDL in any computer-aided design (CAD) or electronic design automation (EDA) program

to error check the policy. The program used for this work is Xilinx Vivado with the Xilinx Virtex-

7 FPGA VC707 evaluation board. There are three errors studied in this research, Conflict Fault,

Privilege Escalation Fault, and Cyclic Inheritance.

3.4.1 Conflict Fault

 A Conflict Fault only exists in policies with at least one Grant rule and one Deny rule. As

addressed in Section 3.2, when a Grant or Deny rule is created, they are added to the corresponding

Grant or Deny LC. The outputs of rules in each LC are united with an OR gate, providing a single

output for both LCs. If an LC output is high, a rule in the LC is either Granted or Denied, depending

on where the signal originated. The single outputs from the LCs condense into an AND gate, and

29

if both signals are logic ‘1’, there is a Conflict Fault. Figure 15 identifies the schematic for

detecting a Conflict Fault. Grant Logic Circuitry comprises logic for a policy’s Grant rules while

Deny Logic Circuitry contains a policy’s Deny rule logic. Rule Inputs encompass all the inputs for

both rules, including Subjects, Objects, Actions, and Roles.

Figure 15: Example schematic for detecting Conflicting Faults

3.4.2 Privilege Escalation Fault

A Privilege Escalation Fault occurs when a Subject is granted access to an Action or Object

for which they do not have the appropriate Role. In general, a Subject with a lower privileged Role

should not inherit from a Subject with a higher privileged Role, but this may still transpire due to

human error. For this error to develop, three conditions must be met. First, there must be an AB

rule with a Role constraint. Second, the Subject with the Role constrained rule must be the tribute

in an Inheritance constraint. Lastly, the beneficiary in the Inheritance constraint must not have a

Role permitting access to the restricted Object or Action. For example, in an MLS policy, a Subject

with a low-level clearance should not inherit from a Subject of a higher clearance. Figure 16

demonstrates a policy in which a Subject with no Roles, Alice, inherits from a Subject, Jason, with

the Professor Role, leading to a Privilege Escalation Fault.

30

Figure 16: Privilege Escalation model

In the figure there are two grant rules which are as follows.

• Rule Name: rule1 | Type: simple Attribute rule | Permission: grant | Content -> sub: Jason

| obj: Grades | Action: Edit | Roles: ['Professor']

• Rule Name: rule2 | Type: simple Attribute rule | Permission: grant | Content -> sub: Jason

| obj: Grades | Action: View | Roles: []

There are only rules for the Professor, Jason. He is allowed to Edit and View Grades. Alice

inherits from Jason, resulting in her gaining access to Jason’s rules. To represent this, the inputs

from Alice and Jason are combined into an OR gate. However, there is a problem with Jason’s

first rule. It is restricted by the Professor Role, meaning that Jason can only Edit the Grades if he

contains the Professor Role. Alice has no Roles, but by inheriting from Jason, she gains the rule

but not the Role. Before Alice is granted the constrained rule, a Role check must take place. This

is executed after the initial Grant gate (shown in the Missing Privilege Check block in Figure 16).

The rule will only be granted if the Role needed is present. If the Role is not present, the fault will

be detected, and the Privilege Escalation Error output will assert as in Figure 17. Figures 17 and

18 portray these scenarios to convey how Alice is granted or denied Jason’s rules.

31

Figure 17: Privilege Escalation error detected from Alice attempting to Edit Grades

Figure 18: Alice granted access to Jason’s second rule

3.4.3 Cyclic Inheritance

In essence, Cyclic Inheritance is caused by a Subject inheriting from itself, causing a

feedback loop. Respecting the hardware model for Cyclic Inheritance detection, this causes an

endless feedback loop resulting in all Subjects involved in the loop to be asserted. Even when the

Subjects are de-asserted during emulation, the loop continues, suspending the Subjects in a

32

constant asserted state. To detect this fault, the inputs to every Inheritance gate are monitored.

When two or more Subjects are Boolean logic ‘1’, there is a Cyclic Inheritance Fault. Figure 19

outlines Cyclic Inheritance hardware detection. Checking for Cyclic Inheritance only requires

emulation on the Subjects involved in Inheritance constraints and is not affected by any rules. A

new LC is created for Cyclic Inheritance detection and operates parallel to the remainder of the

policy during emulation. During emulation, only one Subject will be set to Boolean logic ‘1’ at a

time to check for this error.

Figure 19: Example schematic of Cyclic Inheritance detection

33

3.5 Policy Testing

 Policy testing is accomplished with Xilinx Vivado on the Xilinx Virtex-7 FPGA VC707

evaluation board. To begin assessing the policy, it requires VHDL conversion using the hardware

models outlined in this work. When the VHDL file is complete, it must pass through three stages

before it is ready to emulate using the FPGA: synthesis, implementation, and loading onto the

FPGA.

Synthesis transforms abstract specifications of the VHDL design and translates it to an

arrangement of logic gates. This step generates register transfer level (RTL) schematics and

prepares the design for implementation. [12]

 Implementation defines where the gates will be physically placed in the board and how

they are routed. When this step is complete a bitstream is generated and used to program the FPGA,

so emulation can ensue.

3.5.1 Emulation

 A testbench is needed to emulate the design on the FPGA by manipulating the inputs of an

individual rule to monitor for Privilege Escalation and Conflicting Faults. Cyclic Inheritance will

also be detected during this time, but only the Subject needs be considered for detection.

 Emulation may transpire in one of two ways: manually or automatically. The policy creator

may design the testbench to allow manual rule switching. This can be accomplished by designing

a testbench to change rule inputs based off a pre-determined input set by using FPGA peripherals.

Alternatively, the testbench may be designed to switch rule inputs autonomously. This is achieved

by using the FPGA user clock to switch between the pre-determined input set. A clock divider may

be used to assure correct set-up and hold times are met to preserve data, or a specific user clock

frequency may be programmed. However, when using the clock to switch between inputs, the

34

LEDs flash too quickly for the human eye to detect, making physical feedback impossible. Vivado

offers a de-bugging tool to allow the policy creator to generate a waveform of the inputs and

outputs (I/O) on the FPGA. In this case, emulations may be quickly completed, resulting in a

waveform for error feedback.

35

4. Results

 The primary objective of this work was to design a scheme for converting AC policies to

hardware to allow for real-time error detection during policy creation. To evaluate the scheme, a

small policy consisting of 45 RB and three AB rules was created to contain the aforementioned

faults while featuring a simplistic schematic for analysis. When creating schematics for

illustration, large policies become increasingly hard to trace for understanding. Thus, limited

constraints were used in the example policy. It is also important to note that all previous constraints

have been assessed in multiple policies throughout this research and are not critical for error

detection. All constraints other than the Role constraint and Inheritance constraints apply only to

policy functionality and are not directly responsible for any of the outlined potential errors.

The test policy is an MLS design with four users added for Inheritances. The Role-Based

rules used in the testing policy can be found in Table 1. Attribute-Based rules and Inheritance

constraints are seen in Table 2 and Table 3, respectively. Due to the amount of space necessary for

listing 48 individual rules, all Objects and Actions are grouped by Role or Subject. Object and

Action combinations in the tables below are an individual rule with the corresponding Role or

Subject in that row. A similar approach was also used when creating the schematic in Figure 20 to

minimize space and to provide a readable appearance.

36

Table 1: Role-Based rules in results testing policy

Role Object Actions Permissions

Administrator OS pages, OS folders,

Widgets

Delete, Publish, Create,

Upload, Modify, View

Grant

Designer OS pages, OS folders,

Widgets

Publish, Create, Upload,

Modify, View

Grant

Editor OS pages, OS folders Upload, Modify, View Grant

Editor OS pages, OS folders,

Widgets

Upload Deny

Table 2: Attribute-Based rule in testing policy

Subject Object Action Role Permission

Gary OS pages, OS

folders, Widgets

Approve Administrator Grant

Table 3: Inheritances in testing policy

Tribute Beneficiary

Gary Alice

Alice Frank

Frank Derek

Derek Gary

37

Figure 20: Testing Policy Schematic

38

4.1 Emulation Results

 In the testing policy, Gary has a Role constrained rule and will receive a beneficiary, Alice

who has no Roles, and this should cause a Privilege Escalation Fault. Alice is also a part of an

Inheritance chain where all other Subjects in the policy either directly or indirectly inherit from

Alice, including Gary. This Inheritance chain causes a loop in the system, suspending those

Subjects in a constant asserted state. During synthesis and implementation, Vivado outputs a

“logical loop” error, indicating there is a loop in the policy before it is loaded onto the FPGA. In

this case, the policy creator may continue to test the design, or they may re-evaluate the Inheritance

constraints within the policy. Figure 23 exhibits the emulation waveform for the values of I/O.

Policy FPGA utilization is presented in Table 4 with the integrated Vivado debugging core, which

is necessary to generate waveforms.

Figure 21: Simulation waveform for the testing policy.

39

Table 4: Testing Policy hardware utilization.

Resource Utilization Available Utilization Percent

Look Up Table

(LUT)

1645 303600 0.54%

LUTRAM 171 130800 0.13%

Flip-Flops (FF) 2551 607200 0.42%

Block RAM

(BRAM)

1 1030 0.10%

I/O 6 700 0.86%

 Not all I/O are identified in Figure 23 for brevity. However, all three faults were

successfully detected by analyzing the I/O in the Figure. Fault detecting outputs are found towards

the bottom of the I/O list on the left side of Figure 23. Fault detecting outputs are asserted at 800ns,

1,000ns, and 1,200ns, respectively. While the waveform presents faults in a specific order, the

procession of faults does not affect their detection. In this design, the first fault detected was the

Conflicting Fault. It is at Boolean logic ‘1’ when the Editor Role is attempting to Upload

OS_pages. This fault is caused because the Editor is both allowed and denied this rule in the policy.

The next fault detected at 1,000ns is the Cyclic Inheritance Fault. In this test, it was

asserted when Gary tries to Approve OS_folder. This rule is still granted as it should be, but due

to the Inheritance loop, there is a resulting fault. The ci_fault value will only be asserted when a

member of that Inheritance loop is also asserted. This simplifies searching for members of

Inheritance loops. As emulation continues, the policy creator may find all Subjects involved in the

Inheritance chain by analyzing active Subjects when ci_fault is ’1’.

40

The final fault detected at 1,200ns is the Privilege Escalation Fault. This is apparent when

Alice tries to Approve OS_pages. Alice inherits this Role-constrained rule from Gary who has the

Administrator Role. Being Role constrained means only Gary may be granted this rule if and only

if he has the Administrator Role. Alice does not have the Administrator Role; therefore, a Privilege

Escalation Fault is detected. It is worth noting that the ci_fault value is high at this time as well,

indicating Alice is also part of the Cyclic Inheritance loop.

41

5. Conclusion and Future Work
5.1 Conclusion

 To practically and adequately emulate AC policies in hardware, a tool flow has been

developed to allow smooth translation between AC policy rules and hardware implementation,

allowing hardware conversion of any policy. The combinations of constraints and rules can create

an incredible amount of diversity for a policy. In this research, there are thirteen different rules

and constraints studied. Any number of constraints may be combined with one of the two core rule

types, resulting in around 4,000 combinations. All combinations should work together, and despite

policy diversity, the scheme will uphold the integrity and functionality of the policy at every step.

5.2 Future Work

The concept of live error detection through hardware is shown to be a success, but there is

still much to be done in terms of automation. The first items planned for future work is the addition

of more robust SoD support. Currently, the only SoD types supported through the script are Simple

Static SoD and Simple Dynamic SoD. Dynamic, Object-Oriented, and Operation SoD types are to

be implemented next.

 Another phase of planned work is to add a user interface. This would facilitate analysis

and error detection of large policies. The most important aspect of a future user interface is

expected to be a window with a running list of added rules. Adding a user interface is not as

highly prioritized as finishing the functionality of the script with full SoD support, but this will

streamline rule conversion and make for a more polished error checking process.

42

6. References

[1] Hu, Vincent C, et al. Verification and Test Methods for Access Control Policiesmodels.

June 2017, 10.6028/nist.sp.800-192.

[2] Clarke, Edmund M., et al. Model Checking. MIT Press Books, 2nd ed., Cambridge, MA,

USA, MIT Press, 4 Dec. 2018, mitpress.mit.edu/books/model-checking-second-edition.

Accessed 28 Apr. 2022.

[3] Trochimiuk, Maciej. “FPGA Programming - What Is It, How It Works and Where It Can

Be Used.” Codilime, 30 Apr. 2021, codilime.com/blog/FPGA-programming-how-it-

works-and-where-it-can-be-used/. Accessed 3 Mar. 2022.

[4] Kugblenu, Francis, and Memon Asim. Separation of Duty in Role Based Access Control

System: A Case Study 0 Separation of Duty in Role Based Access Control System: A

Case Study. 2007.

[5] Hu, Vincent. Real-Time Access Control Rule Fault Detection Using a Simulated Logic

Circuit. 3 Feb. 2014.

[6] ACRLC, https://cms.csrc.nist.gov/projects/access-control-policy-tool/access-control-rule-

logic-circuit-simulation-%28acrl

[7] Li, Qinghua. Real-Time Fault Detection in Access Control Rules Using Logic Circuits.

2019

[8] Editor, CSRC Content. “Access Control - Glossary | CSRC.” Csrc.nist.gov,

csrc.nist.gov/glossary/term/access_control.

[9] Aiello, Samuel. “Human Error: The Nemesis of Access Control.” SSRN Electronic

Journal, 2022. Crossref, https://doi.org/10.2139/ssrn.3999894.

[10] Hu, Vincent, et al. Assessment of Access Control Systems. Sept. 2006.

[11] Kugblenu, Francis, and Memon Asim. Separation of Duty in Role Based Access Control

System: A Case Study 0 Separation of Duty in Role Based Access Control System: A

Case Study. 2007.

[12] Jiang, Jie-Hong. Logic Synthesis in a Nutshell. 2008.

	Live Access Control Policy Error Detection Through Hardware
	Citation

	tmp.1659717723.pdf.OGHWV

