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Abstract 

Soybean [Glycine max (L) Merr.], a legume species native to East Asia in the Fabaceae 

family, ranks among the most important food crops in the world. It is widely grown and known 

for its high protein and oil concentration. Soybean is valuable because its seeds have multiple 

applications in food, feed, pharmaceutical, and industrial enterprises. Even though seed yield is 

the most important trait, breeders have recently given a significant attention to quality traits, such 

as high protein or modified oil concentration. Soybean seed protein inheritance has been 

extensively studied; however, genetics of high-protein ‘BARC-7’ soybean are still unknown. 

On the other hand, soybean production in the United States Mid-South relies heavily on 

irrigation with 85% of soybean surfaces are supplemented with water in Arkansas. The most 

common irrigation practice in the U.S. Mid-South is furrow irrigation. Furrow irrigation could 

add an extra dimension of variation because of water gradients on the front and back of field, and 

potentially unequal flows between rows. However, the National Centers for Environmental 

Information reported a water shortage in eastern Arkansas, causing a reduction in water levels at 

irrigation reservoirs and generating concern on water availability for crop irrigation during 

reproductive stages. A reduction in groundwater availability could result in farmers having to 

skip or delay irrigation at a certain reproductive stage. Reduction in irrigation due to water 

quantity restrictions will significantly affect soybean yield, making variety selection increasingly 

important. Also, exploring molecular approaches to increase yield genetic gain has been one of 

the main challenges for soybean breeders and geneticists.  

Therefore, the objectives of this study were 1) to map of high-protein ‘BARC-7’ gene 

using F2-derived lines 2) to assess if irrigation onsets at different reproductive stages affect 

wilting, seed yield and key agronomic traits on determinate maturity group 5 (MG 5) soybean 3) 



 

 

 

to conduct a nested association mapping (NAM) for wilting, maturity, and seed yield and to 

identify superior individuals in seed yield using genomic approach under different irrigation 

onsets 4) to evaluate the spatial variability of furrow-irrigated soybean for seed yield, wilting, 

and maturity under four different irrigation onsets. 

Results suggested that QTL for protein and oil inherited from ‘BARC-7’ were identified 

on chromosomes 6, 13, and 20. The known major QTL on chromosome 20 was not detected. 

Results also indicated significant differences in wilting and yield but no significant differences in 

maturity, protein, oil content, and 100-seed weight across different irrigation onsets. Results 

revealed that a total of 4, 39, and 7 SNPs were found to be significantly associated with canopy 

wilting, maturity, and seed yield, respectively, using the combined data under different irrigation 

onsets obtained over four environments (location-year combination). Overall genomic selection 

accuracy was moderate ranging from 0.39 to 0.44, and genomic selection was efficient to select 

superior soybean lines under reduced irrigation. The spatial models displayed better data fitting 

(lower AIC and/or BIC) than the block model in each different irrigation level across different 

environments and traits. Indeed, genotype ranking for seed yield was different between the block 

model and the best spatial model, suggesting that spatial adjustment may be necessary for 

soybean breeding operations under furrow irrigation. Further validation in a breeding yield trial 

demonstrated similar results of the effectiveness in terms of AIC and/or BIC of the spatial model 

compared to the block model for soybean seed yield. The results from this study could contribute 

to proceed to a fine-mapping to the regions associated with high protein and oil in ‘BARC-7’ 

genetic background, to better understand mild drought on populations in order to define the 

breeding objectives and subsequent deployment of soybean lines under limited irrigation, and to 

suggest a spatial adjustment for soybean breeding operations under furrow irrigation.   
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Preface 

This dissertation includes six chapters. The first chapter (Chapter I) is related to the 

introduction and literature review to introduce different topics. The second chapter (Chapter II) is 

discussing on mapping a high protein gene “BARC7” gene inheritance with is a unrelated data to 

the chapter III, IV and V. Chapter III evaluates the impact of delaying irrigation on wilting, seed 

yield, and other agronomic traits of determinate MG5 soybeans. Chapter IV is presenting a 

nested association mapping for wilting, maturity, seed yield and seed yield genomic selection 

under reduced irrigation in two RILs soybean populations. Then, Chapter V is assessing the 

spatial models for seed yield, wilting, and maturity in furrow-irrigated soybean plots. Finally, 

Chapter VI is giving an overall conclusion and some recommendations.  
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Introduction and Literature Review 
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Production and importance of soybean 

The major oilseed crops in the United States (U.S.) are soybean [Glycine max (L) Merr.], 

cottonseed, sunflower seed, canola, rapeseed, and peanut, with soybean accounting for 90% of 

the total production (https://www.fas.usda.gov/). Second to Zea mays (corn), soybean are the 

most cultivated crop in the U.S. (https://www.nass.usda.gov/), and the U.S. is the largest soybean 

producer in the world, followed by Brazil and Argentina (https://www.nass.usda.gov/). Global 

soybean production has risen dramatically over the past 40 years in the U.S. (Figure 1.1). Key 

export markets for soybeans include Europe, Japan, Mexico, Taiwan, China, and the Republic of 

Korea. Soybean is one of the most economically important crops in Arkansas, providing a 

substantial source of revenue to growers, as Arkansas ranks among the top ten producers in the 

U.S. (https://www.nass.usda.gov/). In fact, a total of 4.84 million tons of soybean are produced 

(NASS USDA, 2021) by more than 6,800 Arkansans farmers in 1.4 Mha making it the largest 

crop by acreage in the state (AFBF, 2021). The farmers’ production accounted for $747,098,000 

cash receipts in 2001, which represented 13.4% of the total cash receipts from marketing of all 

commodities in Arkansas and 37% of the total cash receipts for crops (Coats & Ashlock, 2001),. 

The demand of soybean has dramatically increased in the past couple of decades (Wilson, 2016). 

Indeed, it is a primary source protein and oil. Soybean is called the “green gold” and the “miracle 

crop” (Liu, 1997) because of its high value in active compounds. 

Soybean seed composition 

Dry Soybeans seed typically contain 38% protein and 18% oil by weight (Figure 1.2). 

The remainder consists of 30% carbohydrates, 9% of water, and ash (Figure 1.2). The majority 

of carbohydrates within soybean seeds is either sucrose (41%-68%), stachyose (12-35%) or 

raffinose (5-16%) (Verma & Shoemaker, 1996). The average fatty acid composition of 

https://www.nass.usda.gov/
https://www.nass.usda.gov/
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commercial soybean oil is about 10% palmitic acid (16:0), 4% stearic acid (18:0), 22% oleic acid 

(18:1), 54% linoleic acid (18:2), and 10% linolenic acid (18:3). Globulins and albumins are the 

two major components of seed storage protein (Figure 1.2). Soybean seed proteins contain 70% 

of globulin that is predominately composed of glycinin and β-conglycinin (Warrington et al., 

2015). β-conglycinin is important for soybean improvement, for it is an essential amino acid that 

monogastric animals cannot synthesize and must be incorporated into their diet (Ma et al., 2016; 

Panthee et al., 2005). 

Protein and oil have a negative correlation with one another (Diers et al., 1992; Sebolt et 

al., 2000; Nichols et al., 2006; Pathan et al., 2013), where increasing the seed content by weight 

of one will cause a linear decrease of the other. Genome-wide association studies (GWAS) 

(Hwang et al., 2014; Vaughn et al., 2014; Bandillo et al., 2015) and Quantitatitve trait loci (QTL) 

analysis (Nichols et al., 2006; Pathan et al., 2013) have shown QTL, haplotype or genomic loci 

in chromosome 20, 15, and 5 associated to both oil and protein, indicating a negative pleiotropic 

effect. In addition to pleiotropic effects of protein on oil, variation in seed protein concentration 

significantly affects seed size, crop growth, and development (Poeta et al., 2016). High-protein 

genotypes showed lower leaf area and harvest index when compared with high-yielding 

genotypes (Poeta et al., 2016). A high-protein large seed was associated with more assimilate 

availability per seed during seed filling, while high-protein small seed showed higher leaf area at 

the beginning of seed fill, more canopy biomass production, and low levels of assimilate per seed 

(Poeta et al., 2016).  

Soybean production in Arkansas 

Soybean is grown in 45 of the 75 counties in Arkansas, which are concentrated in the 

eastern half of the state comprising the Mississippi delta region. It is also grown in counties that 
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lie in the Arkansas River valley and in the southwestern corner of the state (Spradley, 2005). It is 

successfully grown in a wide range of soil types in Arkansas, including sandy loam, silt loam, 

and heavier textured, predominantly clay soils. Approximately 85% of Arkansas soybean are 

irrigated (AFBF, 2021). Commercial production of soybean in Arkansas uses maturity groups 

(MG) 3 through 5.  

A soybean crop will produce approximately 0.13 t/ha for every 25.4 mm of water used 

through the season (Riley, 2014). Soybean yields ranged from 2.69 to 3.36 t/ha require 508 to 

635 mm of available soil moisture during the growing season. A total of 254 to 381 mm of 

irrigation water is required to assure a standard soybean yield (Riley, 2014); however, the 

irrigation needed will vary on the soil moisture and rainfall. There are several methods of 

soybean irrigation used in Arkansas, including furrow irrigation, flood irrigation, and pivot 

systems. Furrow irrigation is a practice in which soybean are planted on raised beds, allowing a 

furrow between each row. Water is then directed down the furrows when irrigation is needed. 

This is usually done using poly pipe (Tacker & Vories, 1998), which is rolled out across the top 

of the soybean field and connected to an irrigation riser (Enciso & Peries, 2005). Another 

irrigation method is flood irrigation, in which soybean are planted on flat land and simply runs 

poly pipe along the top of the field and allows water to flow across the field (Tacker & Vories, 

1998). The problem with this method is getting the water to spread evenly over the field. 

Difficulties with flood irrigation led to the development of the border irrigation method in which 

a large volume of water over a flat surface in a short period is flushed. A fourth irrigation method 

is pivot sprinkler irrigation in which sprinklers mounted on rollers are moved across a field to 

irrigate. The rule-of-thumb is that irrigation for soybean is necessary whenever the available soil 

water falls to 50% (Tacker & Vories, 1998).  
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The timing of irrigation is referred to as irrigation scheduling. Correct timing is critical to 

maximizing yield. Too often growers irrigate by the appearance of the crop. Visual stress, 

especially during bloom and pod set, results in yield loss. Also, once irrigation is started, the time 

required to finish a field will result in part of the crop suffering even greater stress. If the soil 

moisture can be determined, then irrigation timing decisions can be improved. Determining the 

soil moisture by visual observation or by kicking the soil surface is difficult and can be 

misleading (Tacker & Vories, 1998). One available method to apply irrigation in a timely 

manner is the use of atmometer (Nygren & Ingram, 2016). An atmometer or evaporimeter or 

Evapotranspiration Gauge is a scientific instrument used for measuring the rate of water 

evaporation from a wet surface to the atmosphere (Nygren & Ingram, 2016). The setting of the 

atmometer is based on the type of the soil, the type of irrigation, and the growth stages of the 

soybeans (Table 1.2 & Table 1.3). 

Water management in soybean production 

According to a study reported by the Natural Resources Defense Council 

(www.nrdc.org), Arkansas is at risk of water shortage by 2050. Both the 1990 and 2014 

Arkansas Water Plans identified major gaps in groundwater availability when forecasting 40-

year irrigation needs for eastern Arkansas’ agriculture (Arkansas Natural Resources Commission 

[ANRC], 2014). These shortages, as much as 80% of demand, could result in future groundwater 

restrictions for agricultural use. The need for increased water withdrawal in the State, which 

refers to the total volume or removed from a water source such as lake or river and returned to 

the source to be used again, could result in significant costs for the agricultural community 

(Winthrop Rockefeller Foundation, 2008). Groundwater levels dropped from 1980 to 2005 

(Winthrop Rockefeller Foundation, 2008). The drought of 1980–1981 raised concerns about 

http://www.nrdc.org/
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water shortage in Arkansas, including the impact on crop irrigation (Looney, 1984). By 1981, 

groundwater levels in the agriculture dependent Delta counties had dropped from 6 to 9 m below 

the surface to over 12 to 15 m deep (AFBF, 1981). Depletion of the Alluvial Aquifer in the Delta 

had been occurring, and documented, since the 1920s (AFBF, 1981), but during the early 1980s, 

some farmers’ wells were drying up because the groundwater level had been lowered below the 

depth to which many wells had been drilled (AFBF, 1981). Depletion and drop in groundwater 

levels were observed during the summer of 2018, as a large portion of the Arkansas Mississippi 

delta experienced as low as 25 to 50% of normal precipitation for the interval May to July 

(Figure 1.3). 

Drought effects on vegetative stages 

Irrigation is generally not required during germination, unless moisture conditions at 

planting were inadequate. Soybean uses little amounts of water during the seedling stage, and the 

demand increases while during vegetative growths (Table 1.1 & Table 1.2). However, too much 

water in the early season can prolong the vegetative growth stage, which can result in delays in 

flowering, increased plant height, and lodging. Limiting water supply in the early season might 

encourage plants to develop stronger, healthier root systems that grow deeper. Farmers rely on 

soil moisture and natural precipitation as much as possible during the early growth stages 

(McWilliams et al., 1999). 

Drought effects on yield and yield components 

Unpredictable and inadequate rainfall and temperatures reduce soybean yield up to 40% 

(Specht et al., 1999), and 40-year average yields of non-irrigated compared to irrigated AR 

soybean crop show consistent underperformance of non-irrigated soybean (USDA-NASS) 

(Figure 1.4).Also, soybean performance tests include several varieties that consistently produce 
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in the 3.36 t/ha range when irrigated, but the same varieties average 0.67 to 1.34 t/ha less without 

irrigation.  

Water requirements for soybean range from 381 to over 635 mm depending on planting 

date, maturity group, location, and weather (Frederick et al., 2001). Irrigation is required during 

flowering on soils with an insufficient water holding capacity, such as sandy soils or when 

conditions are exceptionally dry. Soybean are most sensitive to water stress during the mid- to 

late-reproductive stages: pod development (R3 to R4) and seed fill (R5 to R6) (Fehr et al., 1971; 

Korte et al., 1983; Specht et al., 1999). Water stress during pod development and early seed fill 

can have the greatest impact on yield, and result in a reduced number of seeds per pod and 

smaller seed size (Desclaux et al., 2000) (Table 1.1 &Table 1.2). Discontinuing irrigation before 

physiological maturity can considerably reduce yield if the soil water content is not adequate 

(Desclaux et al., 2000). 

Drought effects on protein and oil concentration 

Drought might affect protein synthesis as well as the protein structure (Frota & Tucker, 

1978; Termaat & Munns, 1986). The incorporation of amino acids into the leaf proteins might be 

inhibited because of the removal of the hydration shell of the protein that is dissociated. Dornbos 

& Mullen, (1992) investigated soybean seed protein and oil contents and fatty acid composition 

adjustments by drought and temperature. Chemical composition of the seed was altered and 

reduction in yield, viability and vigor were found during seed filling under drought. Protein 

content was increased by 4.4% while oil content decreased by 2.9% under drought stress 

(Dornbos & Mullen, 1992). The increase of protein content is positively and linearly correlated 

to the stress level, whereas oil content is negatively and linearly correlated to the stress degree 

(Dornbos  & Mullen, 1992). An unchanged composition of fatty acid of the oil was denoted; 
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however, the higher the air temperature, the lower the proportion of the polyunsaturated 

components (Dornbos & Mullen, 1992).  

Mechanisms of drought tolerance 

To cope with drought, soybean plants utilize different regulation and metabolic pathways. 

There are three different mechanisms to handle drought: drought escape, drought avoidance, and 

drought tolerance (Carrow, 1996; Levitt, 1980), making drought a very complex trait to discern. 

Drought escape refers to a soybean completing its life cycle before the beginning of the 

drought, by shortening the life cycle to match water supply. One example of drought escape is 

the early soybean planting system used in the southern part of the U.S. Those short season 

soybeans are planted in March or early April in zones where later maturing cultivars have 

traditionally been grown. These early maturing cultivars begin blooming in late April to early 

May; starting setting seed in late May to early June and reach full seed setting by mid-July to 

early August. In the southern part of the U.S., the rainfall is usually plentiful from April to early 

July allowing the soybean crop to reach the critical reproductive stage with ample water prior to 

July and August where conditions often favor drought stress (Heatherly & Elmore, 2004). The 

mechanism involves physiological and developmental characteristics that usually result in earlier 

than anticipated seed production through shortening of the life cycle (Carrow, 1996). 

Drought avoidance is characterized by mechanisms that maintain high water potentials in 

plant tissues under mild or moderate water deficit conditions. It can be accomplished by adopting 

different strategies, such as increasing rooting depth, promoting an efficient root system, 

reducing stomatal conductance, leaf rolling or folding, reducing the evaporation surface, 
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increasing wax accumulation on the leaf surface, and enhancing water storage abilities in specific 

organs (Carrow, 1996; Fang & Xiong, 2015; Ludlow & Muchow, 1990; O’toole % Bland, 1987). 

Drought tolerance allows plants to maintain turgor and cell volume at low leaf water 

potential to continue metabolic activity longer under water stress through osmotic adjustment, 

antioxidant capacity, and cell membrane stability. Species capable of osmotic adjustment can 

maintain turgor at lower leaf water potentials that in non-adjusted species. Thus, osmotic 

adjustment clearly promotes drought tolerance, because such plants show improved growth when 

supplied with limited water than do non-adjusted species. Turgor maintenance under drought 

may sustain cell expansion and stomatal conductance. Soybean is not very efficient in 

maintaining turgor pressure (Hanson and Hitz, 1982). Soybean lack significant amounts of 

osmotica (K+, NO3
-, Na+, Cl-); the reason why their adaption to drought stress is poor (Nuccio et 

al., 1999).  

Physiological traits associated with drought trait tolerance 

Tuberosa (2012) established some physiological traits to screen for drought tolerance in 

soybeans such as water use efficiency (WUE), transpiration, canopy coverage (CC), canopy 

temperature (CT) and canopy witling (CW). 

Water use efficiency 

Water use efficiency is defined as the total dry matter produced (amount of carbon 

dioxide (CO2) used fixed via photosynthesis) by plants per unit of water used (total quantity of 

water applied) (Taiz & Zeiger, 2006). It is the reciprocal of the transpiration ratio. It refers to 

how much dry matter can the plant take up per volume of water used. 

𝑊𝑈𝐸 =
𝐷

𝑊
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where 𝐷  is the mass of dry matter, 𝑊 is the mass of water used (de Wit, 1958).  

Transpiration 

Transpiration represents the water flow through the plant and released into the 

atmosphere, while evaporation characterize the water directly released from the soil surface to 

the atmosphere. The transpiration coefficient is defined as the amount of water (weight or 

volume) required to produce a weight unit of plant dry matter (Mengel, 2001).  

Canopy coverage 

Canopy coverage is the proportion of the soil covered by the leaves. A closed canopy 

could reduce soil evaporation by improving WUE. In fact, a canopy coverage establishment may 

be useful to minimize the water loss as it may store water content in the soil for later 

developmental stages (Purcell & Specht, 2004; Rebetzke et al., 2007; Slafer et al., 2005). Greater 

canopy coverage also improves solar radiation interception, and it is positively associated with 

crop growth and yield (Edwards & Purcell, 2005; Liebisch et al., 2015). 

Canopy temperature 

Canopy temperature (CT) as measured by thermal imaging is the difference in 

temperature between the canopy surface and the surrounding air. In the field, genotypes with a 

higher canopy temperature use more of the available water in the soil to avoid excessive 

dehydration (Tuberosa, 2012). The surface temperature of the canopy is related to the amount of 

transpiration resulting in evaporative cooling. CT could be measured remotely using an infrared 

thermometer, and has advantages compared to other methods for stress detection, such as 

stomatal structure conductance and water potential, because it integrates a larger area of plant 

measurement, is non-destructive, does not interfere with stomata, and is faster and not laborious.  
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Canopy wilting 

Wilting mechanisms appear to be related to soil moisture conservation even before 

drought stress becomes severe (Fletcher et al., 2007; King et al., 2009). Canopy wilting is the 

first visible symptom of soil water deficit in soybean. Soybean genotypes differ in the time of 

onset and the severity of canopy wilting in response to drought (Sloane et al., 1990). A second 

possible mechanism for slow wilting is soil water conservation. When soil water is plentiful, 

some slower-wilting genotypes can relatively maintain lower transpiration rates compared to 

conventional cultivars, and thus do not deplete the soil-moisture reservoir as rapidly. As the 

drought builds, enough soil moisture is available for slow-wilting genotypes to prolong 

transpiration and leaf turgor for several days compared to fast-wilting genotypes. One promising 

soybean trait for improving drought tolerance is delayed-canopy wilting (King et al., 2009). Field 

observations of delayed wilting in soybean were first noted in the early 1980s in a program that 

screened several hundred soybean plant introductions for agronomic drought tolerance in North 

Carolina (Sloane et al., 1990). Under drought conditions in the field, a few soybean genotypes 

wilted slowly compared with most other genotypes of similar maturity (King et al., 2009).  

Biochemical mechanisms of drought tolerance 

Enzyme activity 

Drought stress might also influence enzymatic reactions. Enzyme activities associated 

with photosynthesis and respiration as well as ATPase activity are increased by drought stress in 

order to maintain increased energy demand (Lawlor, 2002).  
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Abscisic acid accumulation 

The relationship between drought stress and phytohormones are complex. Under that 

drought stress, there is a rapid accumulation of abscisic acid (ABA). Accumulation of ABA 

induces stomatal closure and thus inhibits transpiration pathway (Herppich & Peckmann, 1997). 

Nevertheless, moderate drought stress appears to have a little effect on stomatal closure (Hsiao, 

1973; Niinemets et al., 1999). For instance, soybeans showed no reduction in gaseous exchange, 

indicative of substantial closure of stomata, until the water potential of the leaves and fallen to as 

low as -1.0MPa, called threshold value. This indicate that due to turgor loss at relatively low 

water potentials gaseous exchanged is inhibited and thus the diffusion of CO2 from the 

atmosphere through the stomata into the leaf tissue (Kramer & Boyer, 1995).  

Traditional and molecular breeding of soybean 

The center of origin of soybean is in China, and it has spread out to more than 50 

countries in the last five centuries (Wilcox, 2004). Soybean belongs to the Fabaceae family, 

commonly called legumes, and is a cross-compatible plant. Soybean is a paleo-polyploid with 

diploid behavior with 20 pairs of chromosomes (2n=40) (Kim et al., 2010). There are 

approximately 3,500 accessions of perennial Glycine species in germplasm collections 

throughout the world (Verma & Shoemaker, 1996).  

Genetic gain in soybean has been accomplished through conventional breeding methods 

and molecular-based strategies. Each cycle of genetic improvement begins with the breeder 

making choices as to the parents to be used to create segregating populations. Those populations 

are then advanced toward homozygosity with or without selection to produce relatively-

homozygous lines that are the subject to selection for key traits, including yield, maturity, and 

disease tolerance. A given cycle ends when its best lines are released as improved pure-line 
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cultivars. Since a cycle is initiated each year, genetic improvement is a continuous process 

(Boerma & Specht, 2004). Selection of parents is extremely important to create segregating 

population that can be either elite cultivar or exotic material. 

Quantitative trait loci analysis 

The application of QTL analysis allows the identification of chromosomal regions 

conditioning the phenotypic variation in quantitative traits, such as protein, drought tolerance or 

resistance, and identifies the desirable alleles at these QTL for use in marker-assisted selection 

(MAS). With the massive advancement in genomics knowledge about the physiological and 

functional aspects of traits and metabolic pathways controlling trait expression, the candidate 

gene approach has become a powerful technique to associate traits to functional genes. This 

approach can increase the precision of the genetic mapping and increase the accuracy of 

detecting QTL related to the trait of interest (Zhu & Zhao, 2007).  

Genome wide association study 

Association mapping or Genome wide association study (GWAS) analyses the link of a 

molecular marker with a phenotypic trait of interest in unrelated individuals of a population, 

rather than using a mapping population of known pedigree. GWAS does not require any crossing 

and is suitable for fine scale mapping with a greater possibility for recombination to take place 

than traditional pedigree studies (Nordborg & Tavaré, 2002). Linkage analysis gives a more 

precise location of the QTL that controls the trait of interest (Glazier et al., 2002; Gupta et al., 

2005). 
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Genomic selection  

Genomic selection is a form of marker-assisted selection in which genetic markers 

consider the whole genome to predict phenotype based on the genotype (Goddard & Hayes, 

2007). It can enhance genetic gain by speeding up the breeding cycles, as it has the potential for 

making selection of individuals before phenotyping. Instead of utilizing limited number of 

significant linked molecular markers in conventional marker-assisted selection, genomic 

selection estimates genome-wide molecular marker effects simultaneously, generates the 

genomic estimated breeding values (GEBVs) for lines, and selects the superior lines based on 

their GEBVs (Bernardo & Yu, 2007; Piyasatian et al., 2007). Genomic selection utilizes a 

training population, with individuals that are genotyped and phenotyped, and a testing population 

of individuals that are genotyped but not phenotyped. Genome-wide markers are random effects 

and all marker effects on the phenotype are estimated simultaneously in a single model. 

Prediction models attempt to capture the total additive genetic variance to estimate breeding 

value of individuals based on sum of all marker effects (Goddard & Hayes, 2007).  

Genomic selection has been extensively studied in animal breeding (Hayes et al., 2009; 

Legarra et al., 2008; Tribout et al., 2012), and is becoming a powerful tool in plant breeding 

(Heffner et al., 2009; Jannink et al., 2010). Genomic prediction has been carried out in maize 

(Huang et al., 2016), soybean (Xavier et al., 2016; Zhang et al., 2016), rice (Onogi et al., 2016), 

canola (Jan et al., 2016), and wheat (Battenfield et al., 2016). Indeed, genomic selection has been 

frequently and widely applied in wheat breeding. The prediction accuracy of genomic selection 

in wheat breeding has been investigated using cross-validation methodology across multiple 

environments (Dawson et al., 2013) and multiple breeding cycles (Michel et al., 2016). Genomic 

selection has been assessed for quantitative traits (Poland et al., 2012), quality traits (Heffner et 
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al., 2011), and disease resistance traits (Rutkoski et al., 2012; Rutkoski et al., 2011; Rutkoski et 

al., 2014) in wheat breeding. In contrast, soybean breeding programs have rarely addressed the 

application of genomic selection. Genomic selection has been evaluated in soybean breeding for 

agronomic traits such as soybean cyst nematode (SCN) resistance (Bao et al., 2014), seed weight 

(Zhang et al., 2016), and yield components (Xavier et al., 2016). It is reported that genomic 

selection was more accurate than conventional MAS against SCN (Bao et al., 2014).  

The size of the training population, the choice of prediction model, and the marker 

density influence the accuracy of genomic selection. Zhong et al. (2009) reported that the 

accuracy of the genomic prediction increased when the training population size increased. 

However, the gain on genomic prediction accuracies was more relevant at small training 

population size and tends to reach a plateau as training population size increased (Isidro et al., 

2015). No minimum size of the training of population was reported. Wong & Bernardo (2008) 

demonstrated on the studies on the selection of oil palm that a training population size of 30, 50, 

and 70 has been successful. Genomic selection models employed in soybean breeding included 

ridge regression best linear unbiased prediction (rrBLUP) (Bernardo & Yu, 2007), ridge 

regression best linear unbiased prediction with major genes fitted as fixed effects  (Bao et al., 

2014), BayesA, BayesB, BayesC, Bayesian LASSO regression (BLR) (De Los Campos et al., 

2009), reproducing kernel hilbert space , standard genomic best linear unbiased predictor 

(GBLUP) (Gao et al., 2012) which only includes additive effects, extended version of GBLUP 

which includes both additive effects and additive-by-additive effects (Cockerham, 1954; Xu et 

al., 2014), Bayesian Cp (BCP) (Habier et al., 2011), support vector machine (SVM) (Long et al., 

2011), and random forest (RF) (González-Recio & Forni, 2011). In general, additive linear 
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models such as RR and RRF models outperformed sophisticated models such as Bayesian and 

machine learning in prediction accuracy (Bao et al., 2014). 

Breeding for modified protein concentration 

Major QTLs for protein and oil were consistently mapped in chromosome 5, 6, 9, 12, 14, 

15, 17, 18, 20 and confirmed using bi-parental mapping population: derived lines, back cross, 

and RILs (Table 1.5). Additionally, using a GWAS mapping approach, QTLs associated with 

seed protein and oil content were identified on chromosomes, 3, 5, 6, 8, 11, 12, 13, 15, 17, 20 

(Table 1.6). However, due to the lack of large effects, the negative relationship with oil and 

yield, and the inconsistency across environments, very few protein QTL were further used or 

incorporated in breeding programs (Wang et al., 2015).  

Breeding drought-tolerant and slow wilting lines 

Although Soybase, a USDA Soybean Genetics Database, reports a large number of QTL 

for agronomic, physiological, seed composition traits, biotic and abiotic factors in soybean 

(Grant et al., 2010), only a handful of QTLs have been reported for drought in bi-parental 

populations (Table 1.7). In most cases, small population sizes have been used for QTL detection. 

Conducting GWAS of canopy wilting in diverse soybeans (373 maturity group 4 genotypes), 

Kaler et al. (2017) reported 61 environment-specific significant SNP-canopy wilting 

associations, and 21 SNPs that associated with canopy wilting in more than one environment. 

There were 34 significant SNPs associated with canopy wilting when averaged across 

environment, and the significant SNPs identified were located within a gene or very close to 

genes that had a reported biological connection to transpiration or water transport (Kaler et al., 

2017). 
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Breeding lines and plant introductions (PIs) have been developed that wilt more slowly 

than other existing varieties. Two PIs, PI416937 and PI471938, are slow wilting and present 

drought tolerant traits. These lines were among the best drought tolerant sources and have been 

used in most of the breeding programs for drought tolerance. PI416937 was the first slow wilting 

line identified and is the most studied among drought tolerant lines in the U.S. to identify 

mechanisms for tolerance to drought (Pathan et al., 2013). Several possible explanations 

demonstrated why this line wilts more slowly under drought than other soybean lines. PI416937 

had more highly-branched roots in the upper soil profile than drought sensitive lines (Busscher et 

al., 2000; Hudak & Patterson, 1996), and possesses the genetic capability to continue root growth 

on compacted soils. The drought tolerant lines PI416937 and PI471938 have been utilized to 

develop slow wilting varieties that perform well relative to other varieties regardless of water 

regime. N98-9683, a North Carolina State University soybean, G00-3209, a University of 

Georgia soybean line (Paris & Shelton, 2001), and R10-2436 and R11-2933, University of 

Arkansas soybean lines, are examples of slow wilting soybean lines (Ross, 2016). 

Breeding drought-tolerant and high-yielding soybeans is a solution to cope with 

production under non-irrigated conditions. However, there is very little knowledge of the 

differences in response of cultivars with slow wilting versus those that do not possess the trait 

when grown under irrigation schedules that skip certain reproductive stages because of water 

scarcity. Therefore, it is critical to know the crop responses and appropriate breeding 

methodologies for selecting materials adapted to these situations.  
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Table 1.1. Soybean water use (ET) by growth stage (Reference) 

Crop Development Water Use (mm/day) 

Germination and seedling 1.27-2.54 

Rapid vegetative growth 2.54-5.08 

Flowering to pod fill (full canopy) 5.08-7.62 

Maturity to harvest 1.27-5.08 

 

Table 1.2. Water requirements for soybean during late reproductive stages through maturity 

(Table modified from Yonts, C.D. et al., 2008. Predicting the last irrigation of the season. 

NebGuide G1871. University of Nebraska-Lincoln Extension.) 

Growth stage 
Approximate days to 

maturity 

Water use to maturity  

(mm) 

 

End of pod elongation 37 228.6  

Beginning seed 

enlargement 
29 165.1 

 

End of seed enlargement 18 88.9  

Leaves begin to yellow 10 48.26  

Maturity 0 0.0  

    

    

Table 1.3. Allowable Deficits-Soybean as reported by Henry et al. (2014) 

Predominant Soil 
Flood, Furrow, Border 

(mm) 

Sprinkler/Center Pivot 

(mm) 

Clay 50.8 38.1 

Silt loam w/pan† 44.45 31.75 

Silt loam wo/pan ‡ 63.5 50.8 

Sandy loam 57.15 44.45 

Sandy 50.8 38.1 

† Wo/pan – without pan, without shallow restrictive layer 

‡ W/pan – with pan, shallow restrictive layer at 25.4 cm or less below soil surface 
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Table 1.4. Atmometer Setting as reported by Henry et al. (2014). Yellow Soil moisture deficit 

Stage of Growth 31.75† 38.1 44.45 50.8 57.15 63.5 

V1 1st Node 137.16‡ 165.1 193.04 220.98 248.92 276.86 

V2 2nd Node 78.74 96.52 111.76 127 142.24 160.02 

V3 3rd Node 53.34 63.5 73.66 83.82 96.52 106.68 

V4 48.26 58.42 68.58 78.74 88.9 96.52 

V5 43.18 50.8 58.42 68.58 76.2 83.82 

V6 40.64 48.26 55.88 63.5 71.12 78.74 

R1 Begin Bloom 38.1 45.72 53.34 60.96 66.04 73.66 

R2 Full Bloom 35.56 43.18 48.26 55.88 63.5 71.12 

FULL CANOPY  33.02 ‡‡ 40.64 45.72 53.34 60.96 66.04 

R3 Begin Pod 33.02 40.64 45.72 53.34 60.96 66.04 

R4 Full Pod 33.02 40.64 45.72 53.34 60.96 66.04 

R5 Begin Seed 33.02 40.64 45.72 53.34 60.96 66.04 

R6 Full Seed 33.02 40.64 45.72 53.34 60.96 66.04 

 † Value (in mm) of allowable deficits based on soil type and irrigation soil type (Table 3) 

 ‡ Set Atmometer to this value based on soil type and irrigation system 

‡‡ Set Atmometer to this value if canopy closes before growth stage is reached 
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Table 1.5. Major seed protein QTL identified using bi-parental mapping population 
 

  

Population Parent Markers QTL analysis 
Number of 

QTL 

Major QTL 

Chromosomes 

G*E 

effect 
References 

60 F2:3 breeding lines A81356022 X PI 468916 243 RFLP Single-factor ANOVA 3 20, 15, 18 No 
Diers et al. 

(1992) 

Backcross populations BC4 

and BC5 lines 
A81356022 X PI 468916 

SSR and 

AFLP 
Single-factor ANOVA 3 20 No 

Nichols et al. 

(2006) 

60 to 100 F2-derived 

breeding lines 
M82806 X HHP 21 to 85 RFLP Single-factor ANOVA 9 20, 15, 18 No 

Brummer et al. 

(1997) 

120 F4-derived lines and 

111 F2-derived lines 

Young X PI 416937 and PI 

97100 x ‘Coker 237 
RFLP 

single-factor ANOVA 

and interval mapping 
4 15 No 

Lee et al. 

(1996) 

BC3 F4:6 lines Parker X PI 468916 
SSR and 

RFLP 
single-factor ANOVA 2 20 Yes 

Sebolt et al. 

(2000) 

75 F5-derived RILS A3733 X PI 437088A 
329 RPADS 

and 103 SSR 

Linear regression, 

simple interval 

mapping, markers, 

composite interval 

mapping 

3 20 
Yes 

(oil) 

Chung et al. 

(2003) 

180 F2:4 lines 
PI 97100 X Coker 237 and 

Young X PI416937 

SSR and 

RAFLP 
Single factor ANOVA 4 20, 15 No 

Fasoula et al. 

(2004) 

131 F6-derived lines RILs Essex X Williams SSR 
Composite interval 

mapping 
4 6 Yes 

Hyten et al. 

(2004) 
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Table 1.5 (Cont.) 

Population Parent Markers QTL analysis 
Number of 

QTL 

Major QTL 

Chromosomes 

G*E 

effect 
References 

101 F6–derived RILs N87-984-16 X TN93-99 SSR Single factor ANOVA, 

composite interval 

mapping 

3 18 No Panthee et al. 

(2005) 

212 F2:9 RILs ZDD09454 X Yudou12 SSR Composite interval 

mapping 

11 20, 18 Yes Lu et al. (2013) 

216 and 156 RILs Magellan × PI 438489B and 

Magellan × PI 567516C 

SSR and SNP Interval mapping 4 15, 5, 6 Yes Pathan et al. 

(2013) 

242 and 214 RILs R05-1415 × R05-638 and V97-

1346 × R05-4256 

SSR and/or 

SNP 

Composite interval 

mapping 

4 14, 20 No Wang et al. 

(2015) 

140 F5 -derived RILs Benning X Danbaekkong SSR and SNP Composite interval 

mapping 

4 14, 17, 15, 20 No Warrington et 

al. (2015) 

48 F2:3 lines Multiple biparental populations SNP Interval mapping 35 20, 15, 10 No Phansak et al. 

(2016) 

148 F8:11 RILs Huapidou X Qihuang 26 SLAF Inclusive composite 

Interval Mapping and 

Composite interval 

mapping 

35 5 No Zhang et al. 

(2018) 
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Table 1.6. Major seed protein QTL identified using diverse germplasm (GWAS) 

Population size Markers No. Loci Chromosomes References 

298 SoySNP50K 13 20 
Hwang et al. 

(2014) 

3,000 SoySNP50K 20 20 
Vaughn et al. 

(2014) 

139 GBS-47K 8 20, 5, 8 
Sonah et al. 

(2015) 

302 WGRS 20 13, 03, 17, 12, 11, 15 
Zhou et al. 

(2015) 

>12,000 SoySNP50K 20 20, 15, 6 
Bandillo et al. 

(2015) 

106 WGRS 21 20 
Valliyodan et al. 

(2016) 

 

Table 1.7. Reported QTL related to soybean drought tolerance in bi-parental populations. 

Population 

type 
Pedigree Traits Markers 

Major 

QTL 

observed 

QTL 

analysis 
References 

120 F4 Yong X 

PI416937 

WUE RFLP 5 ANOVA Mian et al. 

(1996) 

116 F2 S-100 X 

Tokyo 

WUE RFLP 2 Single-

factor 

ANOVA, 

interval 

mapping 

Mian et al. 

(1998) 

236 RILs Minsoy X 

Noir 1 

Yield - 1 Composite 

interval 

mapping 

Specht et 

al. (2001) 

184 F2:7:11 

lines 

Kefeng1 X 

Nannong1138-

2 

Yield 

and 

drought 

soybean 

index 

SSR 19 Composite 

interval 

mapping 

Du et al. 

(2009) 
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Figure 1.1. Soybean production in the United States (USA) over 40 years (1978-2018) by 

USDA-NASS 

 

Figure 1.2. Amino acid composition of soybean protein. Red essential amino acid, black 

nonessential (Asif & Acharya, 2013) 
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Figure 1.3. Deviation from average precipitation May to July 2018. Source NOAA, 2018. 

 

 

Figure 1.4. Trend in soybean yield for 40 years (1977-2017) in Arkansas by USDA-NASS  
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ABSTRACT 

Soybean [Glycine max (L.) Merr.] seed protein inheritance has been extensively studied; 

however, genetics of high-protein ‘BARC-7’ soybean are still unknown. In this study, we used 

250 F2-derived lines from each of two soybean populations for quantitative trait loci (QTL) 

mapping. UA 5814HP, with high protein content, tracing to BARC-7 as maternal grandfather, 

was a common parent. Field experiments were conducted using a randomized complete block 

design with one replication across four environments. Seed protein and oil were quantified using 

near-infrared (NIR) instrument. Genetic linkage maps were constructed using the Infinium 

Soy6KSNP Beadchips. QTL analysis was performed using a composite interval mapping 

method. QTL for protein and oil were identified on chromosomes 6, 13, and 20. The known 

major QTL on chromosome 20 was not detected; but a novel QTL further downstream on 

chromosome 20 (only detected in population two) had high-protein alleles inherited from BARC-

7-derived parent. Fine mapping efforts are currently ongoing for confirmation of these results.   
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INTRODUCTION 

One of the biggest challenges for plant breeders is feeding an increasing world 

population, forecasted to reach ~9 billion by 2050. Soybean [Glycine max (L) Merr.], a legume 

species native to East Asia in the Fabaceae family, ranks among the most important food crops 

in the world. It is widely grown and known for its high protein and oil contents (Wilson, 2004). 

Soybean is valuable because its seeds have multiple applications in food, feed, pharmaceutical, 

and industrial enterprises (Birt et al., 2004; García et al., 1997; Lusas, 2004). Even though seed 

yield is the most important trait, breeders have recently given a significant attention to quality 

traits, such as high protein or modified oil content (Lee et al., 2019; Carneiro et al., 2020; Singh 

et al., 2020). Soybean seeds contain approximately 40% protein and 20% oil (Clemente & 

Cahoon, 2009); however, there is a negative correlation between yield and protein content in 

soybean (Novikova, 2018; Lee et al., 2019; Sobko et al., 2020; Finoto et al., 2021), and between 

seed protein and oil content (Lee et al., 2019). Broad-sense heritability of protein and oil content 

in soybean is relatively high, ranging between 0.57 to 0.97(Chung et al., 2003; Panthee et al., 

2005; Jain, 2018; Tian, 2020; Jiang, 2020; Zhang, 2021; Arnold, 2021). 

As many as 248 QTL associated with seed protein and 320 with seed oil have been 

reported in Soybase (Grant et al., 2010). Some QTL for protein and oil content were detected at 

the same position, suggesting either closely linked QTL or QTL with pleiotropic effect on both 

traits. Nonetheless, according to the rules established by the Soybean Genetics Committee (error 

rate lower than 0.01 and confirmation study showing alleles at the same locus are segregating in 

all the test populations), only two of those marker associations are accepted (Fasoula et al., 2004; 

Nichols et al., 2006). Two protein QTL, located on chromosomes (Chr.) 15 and 20, were 

commonly identified in several studies. Of these, QTL on Chr. 20 was considered a major QTL 
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with the highest proportion of phenotypic variance explained. The region of the interval on Chr. 

15 is between 10 to 30 centimorgan (cM), whereas that on Chr. 20 is between 20 to 40 cM 

(Grant et al., 2010). Warrington et al. (2015) used a recombinant inbred line population derived 

from the cross Benning/Danbaekkong, and mapped a major protein QTL on Chr. 20 carrying the 

Danbaekkong allele that explained 55% of phenotypic variation in protein content.  

Leffel (1992) released a series of high protein soybean germplasm lines, including 

BARC-6 (Reg.no.GP-127, PI 555396), BARC-7 (Reg.no. GP-128, PI 555397), BARC-8 (Reg. 

no. GP-129, PI 555398) and BARC-9 (Reg. GP-130, PI 555399). Among these, BARC-7 was 

derived from the cross of CX797-21/D80-6931. D80-6931 is a high protein maturity group (MG) 

VI BC3 line, in which PI 86490 was the high protein donor parent and ‘Tracy’ was the recurrent 

parent. BARC-7 is a MG IV germplasm line with purple flowers, tan and brown pods, and 

determinate stem growth habit. The mean seed protein of BARC-7 is 491 g kg-1 (Leefel, 1992). 

BARC-7 was a parent used in the breeding program at the University of Arkansas System 

Division of Agriculture, and had progeny with high seed protein levels, including ‘UA 5814HP’ 

(Chen et al., 2017) and ‘R11-7999’ (Florez-Palacios et al., 2020). However, the genetic 

architecture of protein and oil content in many BARC-7-derived soybean elite lines is unknown. 

Therefore, the goal of this study was to perform QTL mapping for seed protein and oil content in 

two breeding populations that traced high seed protein to BARC-7 soybean germplasm line. 

MATERIALS AND METHODS 

Plant materials and phenotyping 

Four initial crosses (UA 5615C/UA 5814HP, UA 5115C/UA 5814HP, R13-359/UA 

5814HP, R13-532/UA 5814HP) between high-yielding lines and the high-protein cultivar UA 

5814HP were made at the Milo J. Shult Agricultural Research and Extension Center in 
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Fayetteville, AR, in 2017. ‘UA 5814HP’ (Chen et al., 2017) is the progeny of ‘R95-1705’ (high 

protein) and ‘S00-9980-22’ (regular protein content); ‘R95-1705’, in turn, is the progeny of 

‘Hutcheson’ (regular protein) and ‘BARC-7’ (high protein) (Leffel, 1992). On the other hand, 

‘UA 5615C’, ‘UA 5515C’ (Florez-Palacios et al., 2019), R13-359, and R13-532 are commodity 

MG5 soybean varieties and lines with regular seed protein levels. A total of 13, 19, 20, and 26 F1 

seeds of the four populations, respectively, were sent to Costa Rica during the winter of 2018, 

and bulk harvested by population. Approximately 800 seeds of F2 generation for each population 

were then planted in 8 rows of 4.6 m length during the summer of 2018 in Fayetteville, AR. All 

parental lines were screened for marker polymorphisms using the Infinium Soy6KSNP 

Beadchips (Song et al., 2020) (data not shown). Based on parental polymorphism and agronomic 

field adaptation, two populations, UA 5115C/UA 5814HP (Pop1) and R13-532/UA 5814HP 

(Pop2), were selected for QTL analysis. A total of 250 F2 plants for each selected population 

were randomly selected and individually harvested for generation advancement. A sample of 50 

to 100 seeds per F2:3 line was sent to a winter nursery (Costa Rica) in 2019 to advance the 

population and increase the number of seeds via bulk harvesting. Two-hundred fifty F2-derived 

lines from each population were planted in four environments (location-year combination) for 

phenotyping, using a randomized complete block design (RCBD) with one replication. 

Environments included Upala, Costa Rica (inceptisol soil order -series unknown) in 2018 

(18CR); Portageville, MO (Tiptonville silt loam soil (19MO)), and Rohwer, AR (Sharkey and 

Desha silt loam soils (19RO)) in 2019; and Fayetteville, AR (Captina silt loam soil in 2020 

(20FA)). Plots single rows in 19CRwere 0.76 mapart with 4.6 m long with a 1.5 m alley as single 

rows in 19CR. For all the environments plot were two row plots and were 0.96 m, 0.81m and 

0.91m apart with 4.6 m long with 1.5 m alley in 19RO, 20FA, 19MO respectively. Entries within 
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each population were randomly divided into four experiments, and each experiment had three 

checks (P53A67X, AG55X7, and AG56X8). A sub sample of 50-seed from each line was used 

for protein and oil estimation via Near-Infrared Spectroscopy using a DA 7250 NIR analyzer 

(Perten, Sweden).  

Genotyping and QTL mapping 

DNA was extracted from fresh young leaves using the hexadecymethylammonium 

bromide (CTAB) protocol (Doyle, 1990). Genotyping was done using the Infinium Soy6KSNP 

Beadchips (Song et al., 2020) in the Soybean Improvement Laboratory USDA-ARS, Beltsville.  

Data were analyzed using analysis of variance (ANOVA) and treating environments as 

replications. Genotypes were treated as a fixed effect in JMP 16.0. The statistical model for the 

analysis was: 

𝑦𝑖𝑗 = 𝜇 + 𝑔𝑖 +  𝑏𝑗 + 𝜀𝑖𝑗 

where 𝑦𝑖𝑗 is the mean response (protein content or oil content) associated with the ith genotype 

in the jth environment, 𝜇 is the overall mean of protein or for oil content, 𝑔𝑖 is the genotype 

effect (fixed effect), 𝑏𝑗 is the environmental effect (fixed effect), and 𝜀𝑖𝑗is the experimental error 

associated with the ijth observation. Pearson correlation between protein and oil content across 

environments was computed using JMP 16.0. Broad-sense heritability was estimated using the 

following equation:  

ℎ2 =
𝜎𝑔

2

𝜎𝑔
2 +

𝜎𝑒
2

𝑙
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where ℎ2 the is broad-sense heritability, 𝜎𝑔
2 is the variance of the genotype, and 𝜎𝑒

2 is the 

variance of error, and 𝑙 is the number of environments. 

Linkage genetic maps were constructed using JoinMap v.4.1 (Kyazma B.V., 

Wageningen, Netherlands). The segregation distortion for single nucleotide polymorphisms 

(SNPs) was analyzed through a Chi-square test. A total of 1,423 and 1,115 polymorphic markers 

for Pop1 and Pop2, respectively were used to construct the genetic map. The genetic distance 

was estimated using the Kosambi mapping function to address the inference. Based on the 

recombination frequencies, 24 linkages were created for Pop1 and Pop2, representing the 20 

haploid chromosomes in the soybean genome.  

QTL analysis was conducted through WinQTL cartograph v2.5 (Wang et al., 2012). 

Composite interval mapping (CIM) was the statistical model for the QTL search and to estimate 

the magnitude of their effects and their phenotypic variances. Cofactors were added on a 

backward regression analysis to increase the likelihood of finding a QTL. Genomic regions with 

a LOD (log-likelihood) >3 were considered significant QTL (Brody, 2019). 

RESULTS 

Phenotypic variation for seed protein and oil content 

The phenotypic variation for seed protein content for each population across the four 

environments (18CR, 19RO, 19MO, and 20FA) showed a bell-shaped distribution, typical of 

quantitative traits (Supplementary Figure S 2.1). In 18CR, seed protein content (on a % dry 

matter basis) for Pop1 and Pop2 ranged from 38.12 to 46.57 and 38.96 to 47.56, with a mean of 

42.16±1.63% and 43.20 ± 1.47%, respectively. Similarly, for 19MO, seed protein showed a 

range (mean ± standard deviation) of 40.8% to 49.16% (44.8±1.54%) and 39.93% to 49.29% 
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(45.36±1.56%) for Pop1 and Pop2, respectively. In 19RO, range, mean and standard deviation 

for Pop1 and Pop2 were 42.5%-49.42% (45.35±1.23 %) and 41.06%-49.78% (45.83±1.35%), 

respectively. The observed range, mean and standard deviation were 38.43%-45.22% 

(41.98±1.09%) and 38.06%-45.39% (41.69±1.31%) for Pop1 and Pop2, respectively for 20FA 

(Table 2.1). Analysis of variance revealed a high significant effect of environment on protein 

content in both populations (Supplementary Tables S 2.1 & S 2.2). 

Oil content also showed a bell-shaped distribution (Supplementary Figure S 2.2). The 

mean oil content was 20.47±0.72%, 21.29±0.85%, 21.38±0.85% and 23.27±0.95% for Pop1 in 

20FA, 19MO, 19RO, and 18CR, respectively. For Pop2, the oil content was 22.12±0.97% in 

18CR, 20.28±0.91% in 19MO, 20.90±0.93% in 19RO, and 20.10±0.74% in 20FA. Similar to the 

protein content, environments showed highly significant effects on oil content (Table 2.2).  

Trait and environment correlation, and heritability  

Pearson correlation analysis showed a highly significant negative correlation (p <0.0001) 

between seed oil and protein content varying from r= -0.545 to -0.775 for Pop 1 and r= -0.587 to 

-0.655 for Pop2 (Figure 2.1). Additionally, correlation of protein levels among environments 

was found to be significant (p<0.05) and moderately positive, ranging from r = 0.28 to 0.47 and 

r = 0.27 to 0.47 for Pop1 and Pop2, respectively (Figure 2.2). Similarly, correlation of oil levels 

among environments was positive, ranging from 0.23 to 0.43 for Pop1 and from 0.30 to 0.54 for 

Pop2 (Figure 2.3). 

The broad-sense heritability for protein and oil content (ℎ2) was 91.24% and 90.33% for 

Pop1, and 93.44% and 93.91% for Pop2, respectively. These results indicate that soybean seed 
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protein and oil contents were highly heritable and mainly influenced by genetic factors under our 

experimental conditions (Supplementary Table S 2.1 & S 2.2).  

QTL analysis of seed protein 

Analysis of QTL associated with protein content in individual environments for Pop1 

showed eight QTL detected on six chromosomes (Gm03, Gm06, Gm13, Gm15, Gm16, and 

Gm18). Of these eight QTL, one was identified in 19RO, one in 19MO, two in 20FA, and four in 

18CR (Supplementary Table S 2.3). These QTL had absolute additive effects that ranged from 

0.15 to 0.95, and explained 4% to 15% of the phenotypic variation. Of the QTL, a region on Chr. 

Gm03 covering a confidence interval of 28-49cM was observed both in 18CR and 20FA 

environments, albeit the actual SNP closest to peak was different. In addition, two nearby 

regions in Chr. Gm13 were associated with protein content in 19RO and 18CR (Supplementary 

Table S 2.3). All other QTL were not consistent across environments. In an across-environment 

analysis, three QTL were identified on Chr. Gm06, Gm13, and Gm18, with an absolute additive 

effect of 0.42, 0.36, and 0.31, and explaining 12%, 9%, and 7% of phenotypic variation, 

respectively (Table 2.3). The negative value of additive effects -0.36 (Chr.13 for Pop1) and -

0.24, -0.34, -0.45, -0.11, -0.50 (Chr. Gm04, Gm05, Gm13, Gm16, and Gm20, correspondingly) 

for Pop 2 described in Table 3 indicated that favorable alleles for increasing protein were from 

UA 5814HP, except for the QTL on chromosomes Gm06 and Gm18.  

In Pop2, for protein content, individual-environment results showed 14 QTL located on 

10 chromosomes. Two QTL were found in the environments 18CR and 20FA, whereas four QTL 

were identified in the environment 19RO and six in 19MO (Supplementary Table S 2.4). 

Absolute additive effects ranged from 0.03 to 0.81, with 2% to 13% of phenotypic variation 

explained. Similar to Pop1, the negative value of the additive effects was related to the favorable 
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allele for increasing protein coming from male parent UA 5814HP on chromosomes Gm04, 

Gm05, Gm6, Gm17, and Gm20. The QTL analysis across environment for Pop2 showed six 

QTL across six chromosomes (Gm04, Gm05, Gm06, Gm13, Gm16, and Gm20), with absolute 

additive effect values ranging from 0.11 to 0.51, and explaining 1% to 18% of the phenotypic 

variation (Table 2.3).  

Comparing results across populations, we observed that QTL Gm06_46078974_G_A on 

chromosome Gm06 was consistently identified in both Pop1 and Pop2 in the across-environment 

analysis, with mean effects of 0.42 and 0.51 for Pop1 and Pop2, respectively (Table 2.3). 

However, the higher protein allele was not inherited from BARC-7. Additionally, a QTL on 

chromosome Gm13 was identified in both populations and traced to BARC-7, with 0.36 and 0.45 

absolute allelic effects; however, the location in the linkage map was not the same for the Pop1 

and Pop2 resulting in two different QTL (Table 2.3). 

QTL analysis of seed oil 

A total of nine QTL for seed oil content were mapped in Pop1 (UA 5115C/UA 5814HP) 

in single-environment analyses (Supplementary Table S 2.5). Of these, three QTL were 

mapped in 18CR, and two QTL each in 19MO, 19RO, and 20FA. These QTL were identified on 

chromosome Gm06 (3 QTL), Gm08 (1), Gm10 (1), Gm13 (2), Gm18 (1), and Gm20 (1). QTL on 

Gm06, Gm08, Gm10, Gm18 showed negative additive effects (-0.38, -0.31, -0.22, -0.02) and 

contributed an average of phenotypic variation of 8%, 4%, 10%, and 1%, respectively, indicating 

the negative effect on oil content from the UA 5814HP. The QTL on Gm06 (2 QTL), Gm13 (2), 

and Gm20 (1) had a positive additive effect, ranging from 0.10 to 0.64, explaining phenotypic 

variation from 5% to 33%, which indicated that they traced to the normal protein parent. An 

across-environment analysis revealed three QTL associated with oil content, found on 
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chromosomes Gm06, Gm13, and Gm15, with an additive effect of -0.22, +0.42, and +0.34, 

which explained an average of 9%, 15% and 23% of phenotypic variation (Table 4).  

In Pop2 (R13-532/UA 5814HP), in single-environment analyses, a total of 18 QTL on 10 

chromosomes were associated with seed oil content. Seven QTL were observed in the 

environment 18CR, 4 each in 19MO and 19RO, and 3 in 20FA. These QTL were found on 

Gm01 (1 QTL), Gm04 (3), Gm06 (3), Gm08 (2), Gm11 (1), Gm13 (3), Gm14 (1) Gm17 (1), 

Gm18 (1), and Gm20 (2); with a range between 3% and 22% of the phenotypic variation 

explained, and absolute additive effects varied from 0.07 to 0.52 (Supplementary Table S6). 

There were 10 QTL with negative additive effects, indicating that the alleles were from the 

parent UA 5814HP. In the across-environments analysis, we observed four QTL, mapped on 

Chr. Gm04, Gm06, Gm13, and Gm20, with LOD > 3.0 (Table 2.4). Similar to the protein 

results, the QTL on Chr. Gm06 and Gm13 were detected for both populations and detected in 

most environments. We also observed in Table 4 that the additive effect for oil for Gm06 was 

negative (-0.22 for Pop1 and -0.29 for Pop2), and Gm13 was positive (0.42 for Pop1 and 0.28), 

which was in the contrast with the additive effect for protein on the same chromosome, as the 

high correlation coefficient between protein and oil contents. 

DISCUSSION 

The present study investigated the genetic control of the high protein content inherited 

from BARC-7 source, through QTL mapping in two F2-derived populations from a cross 

between UA 5115C/UA 5814HP and R13-532/UA 5814HP, which were evaluated in four 

different environments. Both populations exhibited a typical normal distribution, with protein 

and oil ranges within expected values based on parents. UA 5814HP is a line with high protein, 

averaging 45.5% protein, and moderate oil content (20.5%) on a dry weight basis (Chen et al., 
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2017); and although neither UA 5814HP nor the other parents were evaluated in the trials, the 

progeny showed a wide range for protein and oil values, as expected from transgressive 

segregation. 

The average protein content of both populations was low in environments 18CR and 

20FA compared to 19MO and 19RO. This is likely due to the higher temperature in 18CR and 

20FA than in 19RO and 19MO during the growing season (data not shown). Conversely, higher 

temperature tends to increase oil content (Mourtzinis et al., 2017). That is the case in our current 

study, where environments 19CR and 20 FA had a high oil content compared to 19RO and 

19MO. Similar observations on the effect of temperature on protein and oil were also reported in 

previous studies (Dornbos & Mullen, 1992; Piper & Boote, 1999; Specht et al., 2001; 

Mourtzinis, 2017; Novikova, 2018; Mertz-Henning et al., 2018; Lee et al., 2019, Sobko et al., 

2020). Results also showed a negative correlation between protein and oil content. Highly 

negative phenotypic correlations between protein and oil are well documented in the literature 

(Cober & Voldeng, 2000; Assefa, 2018; Mertz-Henning et al., 2018; Novikova, 2018; Lee, 2019; 

Kambhampati, 2020; Yao, 2020; Li, 2021). This indicated that increasing seed protein 

concentration using phenotypic selection may occur at the expense of oil concentration and vice 

versa (Chung et al., 2003). In addition, we found a significant correlation between environments 

for protein and oil content. The correlation indicated that the environment is a factor that affects 

protein and oil; therefore, it is crucial to evaluate such traits across different environments in a 

mapping study. However, our study also showed high heritability for protein and oil content, 

which indicated that the traits were under a high level of genetic control. The high heritability of 

protein and oil has also been previously reported (Jain, 2018; Tian, 2020; Jiang, 2020; Zhang, 

2021; Arnold, 2021).  
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Previous studies reported many QTL for protein content identified on Chr. Gm06, Gm15, 

Gm18, and Gm20 (Diers et al., 1992; Brummer et al., 1997; Warrington et al., 2015). In our 

study, we identified eight QTL associated with seed protein on Chr. Gm04, Gm05, Gm06, 

Gm13, Gm16, Gm18, and Gm20. The proportion of the phenotypic variance explained by a 

given QTL (R2 value) is a parameter in deciding whether marker-assisted selection can be more 

efficient than conventional phenotypic selection alone (Bernardo, 2001; Bernardo & Charcosset, 

2006). The QTL with large effect (R2 ≥10%) were present on Chr. Gm06, Gm13 and Gm20. It is 

important to note that the major QTL identified in this study on Chr. Gm06 from Pop1, and on 

Chr.  Gm13 from Pop1 and Pop2 have been reported in many previous studies (Table 2.3). It is 

crucial to highlight that the QTL on Chr. Gm06 from Pop2 has been reported as “cqSeedProtein-

012” (Pathan et al., 2013). Indeed, the “cq” designation in SoyBase, indicates a “confirmed 

QTL.” There are only 16 QTL for protein listed as cq in SoyBase and the remaining QTL have 

not been confirmed to date (Grant et al., 2010). The major QTL on Chr. Gm20 (118.7-166.6 cM) 

from Pop2, and Chr. Gm06 (137-166.7 cM) from Pop1 have not been reported yet. Those could 

be potential novel QTL. In fact, the known QTL on Chr. Gm20 (20-40 cM) has been reported in 

multiple studies (Diers et al., 1992; Chung et al., 2003; Nichols et al., 2006; Bandillo et al., 2015; 

Warrington et al., 2015), but was not found to be significant in our study. Previous studies 

revealed that high protein alleles at that locus have historically been associated with decreases in 

both seed yield and oil content. Some sources of high protein alleles include PI 437088A, PI 

407780A, PI 468916, and Danbaekkong (PI 619083) (Chung et al., 2003; Warrington et al., 

2015; Kim et al., 2016; Diers et al., 1992; Nichols et al., 2006). The results of our study suggest 

that BARC-7 may carry alleles different from Danbaekkong; this could be useful for breeders to 

diversify sources of higher protein.  
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Apart from the major QTL, some QTL had relatively small effects and were 

environment-specific. The inconsistency of the protein QTL could be explained by either 

genotype specificity or sensitivity to environmental conditions (Patil et al., 2017). This could 

also be elucidated by the fact that the protein is a complex, quantitative, heritable trait controlled 

by multiple genes and affected by environmental conditions and each of them might express 

differently under given environments (Akond, 2014; Li et al., 2019). These inconsistent QTL 

across environments might bring the challenges for breeders to select by using a few markers in a 

breeding program.  

A total of seven QTL associated with the oil content in this study were mainly detected 

on chromosomes Gm04, Gm06, Gm13, Gm15, and Gm20 for both populations across all 

environments. Of these, the QTL on Chr. Gm13 (175-181 cM) for Pop1 and on Chr. Gm04 for 

Pop2 (77.4-87.4 cM) are novel QTL. Akin to the protein, the inconsistency of the oil QTL can be 

explained by the specificity of the genotype or by its sensitivity to environmental conditions 

(Patil et al., 2017). The oil QTL that has the largest effect is the one on Chr. Gm15 for Pop1 

(R2=23%). Mao et al. (2013) reported the same region on Chr. Gm15 (SeedOil 43-15) in 

Soybase.  

In our study, not all QTL associated with oil and protein content co-located in the same 

exact regions, in agreement with different studies of diverse genetic backgrounds (Feng, 2009; 

Pathan et al., 2013; Mao et al., 2013; Rossi et al., 2013). However, the oil QTL detected on Chr. 

Gm20 (R2=22%) and on Chr. Gm13 (R2=11%) did overlap with protein QTL in Pop2. Moreover, 

the sign of the additive effect is also flipped for the oil content as compared to those of the 

protein QTL. This emphasizes how protein and oil are correlated, as has also been reported in 

many previous studies (Cober & Voldeng, 2000; Assefa, 2018; Mertz-Henning et al., 2018; 
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Novikova, 2018; Lee, 2019; Kambhampati, 2020; Sobko et al., 2020Yao, 2020; Finoto et al., 

2021; Li, 2021). 

CONCLUSIONS 

A preliminary mapping using 250 F2-derived lines each from two populations, showed a 

QTL on Chr. Gm13, explaining approximately 10% of variation for seed protein content, and 

one QTL further downstream in Chr. 20 (only detected on population two), explaining 18% of 

protein variation. An ongoing fine-mapping using an advanced inbred line mapping approach 

will help confirm and fine-map the regions associated with high protein and oil in BARC-7 

genetic background.  
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Table 2.1. Descriptive statistics of seed protein content (% dry matter) in 250 F2-derived 

breeding lines each of two different breeding populations when evaluated in four locations and 

assessed with near-infrared spectroscopy. 

Environment† Population‡ Mean±Sd§ CV (%)⁋ Minimum Maximum Range 

18CR 
Pop1 42.16±1.63 3.88 38.12 46.57 8.45 

Pop2 43.20±1.47 3.41 38.96 47.56 8.6 

19MO 
Pop1 44.8±1.50 3.36 40.80 49.16 8.36 

Pop2 45.33±1.57 3.47 39.93 49.29 9.36 

19RO 
Pop1 45.49±1.19 2.62 42.83 49.42 6.59 

Pop2 45.80±1.31 2.87 41.06 49.78 8.72 

20FA 
Pop1 41.98±1.09 2.59 38.43 45.22 6.69 

Pop2 41.69±1.31 3.16 38.06 45.39 7.33 

† 18CR: 2018 Upala, Costa Rica; 19MO: 2019 Portageville, MO; 19RO: 2019 Rohwer, AR; 20FA: 2020 

Fayetteville, AR 

‡ Pop1: UA 5115C/UA 5814HP; Pop2: R13-532/UA 5814HP 

§ Sd: standard deviation 

⁋ CV: Coefficient of variation 
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Table 2.2. Descriptive statistics of seed oil content (% dry matter) in 250 F2-derived breeding 

lines each of two different breeding populations when evaluated in four locations and assessed 

with near-infrared spectroscopy. 

Environment† Population‡ Mean±Sd § CV(%)⁋ Minimum Maximum Range 

18CR 
Pop1 23.27±0.95 4.08 20.44 26.18 5.74 

Pop2 22.12±0.97 4.41 19.2 24.63 5.43 

19MO 
Pop1 21.29±0.85 4.02 18.4 23.41 5.01 

Pop2 20.28±0.91 4.48 17.4 22.7 5.3 

19RO 
Pop1 21.38±0.85 4.01 17.82 23.63 5.81 

Pop2 20.90±0.93 4.47 18.14 23.77 5.63 

20FA 
Pop1 20.47±0.72 3.55 17.99 22.16 4.17 

Pop2 20.10±0.74 3.72 18.03 22.18 4.15 

† 18CR: 2018 Upala, Costa Rica; 19MO: 2019 Portageville, MO; 19RO: 2019 Rohwer, AR; 20FA: 2020 

Fayetteville, AR 

‡ Pop1: UA 5115C/UA 5814HP; Pop2: R13-532/UA 5814HP 

§ Sd: standard deviation 

⁋ CV: Coefficient of variation 
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Table 2.3. QTL analysis of seed protein content for two breeding populations each consisting of 250 F2-derived breeding lines. 

Analysis conducted using composite interval mapping of phenotypic data consisting of least-square means from 4-environment 1-rep 

trials. Confidence intervals in centimorgan (cM) within each population. Previously reported QTL in the reported region are presented, 

as available on Soybase.org as of October 10, 2021. 

Population QTL Chr. † CI (cM) 
LOD at 

QTL_Peak ‡ 

Closest Marker to 

QTL_Peak 

Additive 

effect 

(%)§ 

R2 

(%) 

Previously reported QTL 

within CI ⁋ 

UA 5115C/ 

UA 5814HP 

qPROT_6 Gm06 137-166.7 4.9 Gm06_46078974_G_A 0.42 12% - 

qPROT_13 Gm13 135.9-140.3 3.06 Gm13_32011502_T_C -0.36 9% SeedProtein 36-20, 36-21 

qPROT_18 Gm18 0-14.9 3.68 Gm18_2228646_C_T 0.31 7% SeedProtein 20-1, 26-12, 

28-5, 36-25, 47-7          

R13-532/ 

UA5814HP 

qPROT_4 Gm04 155.9-169.8 3.67 Gm04_47092275_T_C -0.24 5% - 

qPROT_5 Gm05 46-81.2 4.39 Gm05_3764264_C_T -0.34 5% SeedProtein 9-1, 12-1, 41-1 

qPROT_6 Gm06 97.6-126.1 8.65 Gm06_46078974_G_A 0.51 15% cqSeedProtein-012, 

SeedProtein 13-2, 21-3, 24-

1, 26-7, 28-1, 29-1, 35-1, 

35-2, 36-7, 36-8 

qPROT_13 Gm13 49.8-74.5 6.1 Gm13_29524129_A_C -0.45 11% SeedProtein 21-6, 33-2, 36-

18, 36-20, 36-21, 26-23, 

26-24 

qPROT_16 Gm16 78.1-103.5 4.07 Gm16_33360539_T_C -0.11 1% SeedProtein 41-6 

qPROT_20 Gm20 118.7-166.6 6.1 Gm20_45327121_C_A -0.5 18% - 

† Chromosome number 

‡ Genome-wide 1000 permutation tests - LOD =3 (a threshold value) 

§ Negative value: allele inherited from UA 5814HP; positive value: allele inherited from UA 5115C  

⁋ Previously reported QTL in Soybase.org near particular QTL. A dash symbolized a new QTL.  
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Table 2.4. QTL analysis of seed oil content for two breeding populations each consisting of 250 F2-derived breeding lines. Analysis 

conducted using composite interval mapping of phenotypic data consisting of least-square means from 4-environment 1-rep trials. 

Confidence intervals in centimorgan (cM) within each population. Previously reported QTL in the reported region are presented, as 

available on Soybase.org as of October 10, 2021. 

Population QTL Chr.† CI (cM) 

LOD at 

QTL_Peak 

‡ 

Closest Marker to 

QTL_Peak 

Additive 

effect 

(%)§ 

R2(%) 

Previously 

reported QTL 

within CI ⁋ 

UA 5115C/ 

UA 5814HP 

qOIL_6 Gm06 151.3-153.4 2.65 Gm06_46321637_C_T -0.22 9% SeedOil 43-7 

qOIL_13 Gm13 175.5-181 2.96 Gm13_37339900_C_T 0.42 15% - 

qOIL_15 Gm15 71.5-119.9 4.74 Gm15_12531884_A_G 0.34 23% SeedOil 43-15     
 

 
  

 

R13-532/ 

UA 5814HP 

qOIL_4 Gm04 77.4-87.4 3.15 Gm04_9174100_G_A -0.27 8% - 

qOIL_6 Gm06 83.7-108 
4.92 

Gm06_18447419_G_A 
-0.29 12% 

SeedOil 23-1, 27-1, 

30-5, 33-2 

qOIL_13 Gm13 54.5-74.5 4.68 Gm13_29524129_A_C 0.28 11% SeedOil 36-5, 37-7 

qOIL_20 Gm20 102.6-163.6 6.87 Gm20_41356542_T_C 0.41 22% SeedOil 13-5 

† Chromosome number 

‡ Genome-wide 1000 permutation tests - LOD =3 (a threshold value) 

§ Negative value: allele inherited from UA 5814HP; positive value: allele inherited from UA 5115C  

⁋ Previously reported QTL in Soybase.org near particular QTL. A dash symbolized a new QTL.  
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Figure 2.1. Pearson correlation analysis of oil content (%) and protein content (%) for 250 F2-derived lines derived from UA 

5115C/UA 5814HP (a) and R13-532/UA 5814HP (b) each. The light blue color circle represents the 95% confidence interval for the 

correlation; the thinner the circle, the higher the correlation. 

(a) 

(b) 
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Figure 2.2. Pearson correlation analysis of seed protein among 250 F2-derived lines from UA 5115C/UA 5814HP (a) and R13-

532/UA 5814HP (b). The shaded area represents the 95% confidence interval for the correlation. 

  

(a) (b) 
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Figure 2.3. Pearson correlation analysis of seed oil among 250 F2-derived lines from UA 5115C/UA 5814HP (a) and R13-532/UA 

5814HP (b) each. The shaded area represents the 95% confidence interval for the correlation. 

(a) (b) 
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Table S 2.1. ANOVA table for seed protein content for 250 F2-derived breeding lines originated 

from the cross of UA 5115C/UA 5814HP when grown on non-replicated RCBD planted in four 

environments. 

Source DF Sum of Squares Mean Square F Ratio p-value 𝒉𝟐 

Genotype  249 871.79 3.50 2.61 <.0001 91.24% 

Environment 3 2291.47 763.82 568.39 <.0001 
 

Error 708 951.43 1.34 
   

Total 960 4114.69 
    

 

Table S 2.2. ANOVA table for seed protein content for 250 F2-derived breeding lines originated 

from the cross of R13-532/UA 5814HP when grown on non-replicated RCBD planted in four 

environments. 

Source DF Sum of Squares Mean Square F Ratio p-value 𝒉𝟐 

Genotype 249 1083.43 4.35 3.56 <.0001 93.44% 

Environment 3 2620.26 873.42 714.90 <.0001 
 

Error 701 856.44 1.22 
   

Total 953 4560.13 
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Table S 2.3. QTL analysis for seed protein content in 250 F2-derived progenies of UA 5115C/UA 5814HP 

Environment QTL CI (cM) LOD at QTL_Peak †  Closest Marker to QTL_Peak Additive effect (%)‡  R2 (%) 

Across-environment qPROT_6 137-166.7 4.9 Gm06_46078974_G_A 0.42 12% 

qPROT_13 135.9-140.3 3.06 Gm13_32011502_T_C -0.36 9% 

qPROT_18 0-14.9 3.68 Gm18_2228646_C_T 0.31 7% 

18CR qPROT_3 28.4-49 5.65 Gm03_5796468_A_G -0.75 6% 

qPROT_6 137.3-167.6 6.04 Gm06_46078974_G_A 0.95 15% 

qPROT_13 145.1-150.7 3.13 Gm13_33471044_G_A -0.15 4% 

qPROT_18 0.8-7 3.07 Gm18_1010310_C_T 0.38 11% 

20FA qPROT_3 36.3-48.9 3.13 Gm03_6459920_A_G -0.58 11% 

qPROT_15 128.6-143.5 3.32 Gm15_48596343_G_A -0.47 12% 

19MO qPROT_16 35.2-56.1 3.4 Gm16_4351139_A_C -0.56 7% 

19RO qPROT_13 134.8-144.5 3.13 Gm13_32011502_T_C -0.56 13% 

† Genome-wide 1000 permutation tests - LOD =3 (a threshold value) 

‡ Negative value: allele inherited from UA5 814HP; positive value: allele inherited from UA 5115C  
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Table S 2.4. QTL analysis for seed protein content in 250 F2-derived progenies R13-532/UA 5814HP. 

Environment QTL CI (cM) LOD at QTL Peak † Closest Marker to QTL_Peak Additive effect (%)‡ R2(%) 

Across-environment qPROT_4 155.9-169.8 3.67 Gm04_47092275_T_C -0.24 5% 

qPROT_5 46-81.2 4.39 Gm05_3764264_C_T -0.34 5% 

qPROT_6 97.6-126.1 8.65 Gm06_46078974_G_A 0.51 15% 

qPROT_13 49.8-74.5 6.1 Gm13_29524129_A_C -0.45 11% 

qPROT_16 78.1-103.5 4.07 Gm16_33360539_T_C -0.11 1% 

qPROT_20 118.7-166.6 6.1 Gm20_45327121_C_A -0.5 18% 

18CR qPROT_6 83.6-108.6 7.47 Gm06_18447419_G_A 0.77 17% 

qPROT_20 165.4-167.2 3.1 Gm20_46056821_A_G -0.43 6% 

20FA qPROT_4 146.5-170.4 6.71 Gm04_47092275_T_C -0.63 13% 

qPROT_20 140.7-167.5 4.26 Gm20_45724030_T_C -0.48 9% 

19MO qPROT_6 108.3-128.6 7.39 Gm06_46271407_G_A 0.81 16% 

qPROT_5 45.5-87 5.35 Gm05_31605772_A_G -0.75 12% 

qPROT_5 96.3-108.6 3.54 Gm05_33176582_G_A -0.54 12% 

qPROT_4 92.5-104.9 3.64 Gm04_27207244_A_G 0.15 3% 

qPROT_17 80.8-96.4 4.6 Gm17_13722544_A_G 0.15 5% 

qPROT_13 54.3-75 5.37 Gm13_29677928_G_T -0.66 11% 

19RO qPROT_16 82.1-88.8 3.54 Gm16_32876100_A_G -0.11 6% 

qPROT_2 1.7-20.6 4.04 Gm02_3091665_T_G -0.03 2% 

qPROT_10 20.9-67.7 3.27 Gm10_7074398_A_G 0.54 10% 

qPROT_14 106.8-131 3.42 Gm14_46106800_T_C -0.56 12% 

†  Genome-wide 1000 permutation tests - LOD =3 (a threshold value) 

‡  Negative value: allele inherited from UA 5814HP; positive value: allele inherited from R13-532  
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Table S 2.5. QTL analysis for oil protein content in 250 F2-derived progenies of UA 5115C/UA 5814HP. 

Location QTL CI (cM) LOD at QTL_Peak † Closest Marker to QTL_Peak Additive effect (%)‡ R2(%) 

Combined location qOIL_13 175.5-181 2.96 Gm13_37339900_C_T 0.42 15% 

qOIL_15 71.5-119.9 4.74 Gm15_12531884_A_G 0.34 23% 

qOIL_6 151.3-153.4 2.65 Gm06_46321637_C_T -0.22 9% 

CR qOIL_6 39.8-44.9 2.53 Gm06_7323345_T_G 0.15 8% 

qOIL_6 142.7-152.5 3.26 Gm06_45768166_A_G -0.38 8% 

qOIL_8 17.7-20 2.59 Gm08_14033412_T_G -0.31 4% 

FAY qOIL_18 1.3-2.6 2.61 Gm18_930251_C_T -0.22 10% 

qOIL_10 39.9-46.2 3.35 Gm10_4103498_G_T -0.02 1% 

PR qOIL_13 50-62.1 3.38 Gm13_8529479_G_T 0.1 33% 

qOIL_13 163.1-192.7 5.6 Gm13_36224364_G_A 0.64 33% 

ROH qOIL_6 17.1-19.5 2.62 Gm06_3335673_A_G 0.3 5% 

qOIL_20 0-8.4 3.62 Gm20_827937_T_C 0.5 14% 

†  Genome-wide 1000 permutation tests - LOD =3 (a threshold value) 

‡  Negative value: allele inherited from UA 5814HP; positive value: allele inherited from UA 5115C  
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Table S 2.6. QTL analysis for oil protein content in 250 F2-derived progenies of R13-532/UA 5814HP 

Location QTL CI (cM) LOD at QTL_Peak † Closest Marker to QTL_Peak Additive effect (%)‡ R2 (%) 

Combined 

location 

qOIL_4 77.4-87.4 3.15 Gm04_9174100_G_A -0.27 8% 

qOIL_6 83.7-108 4.92 Gm06_18447419_G_A -0.29 12% 

qOIL_13 54.5-74.5 4.68 Gm13_29524129_A_C 0.28 11% 

qOIL_20 102.6-163.6 6.87 Gm20_41356542_T_C 0.41 22% 

CR qOIL_6 98.1-106.1 3.63 Gm06_18447419_G_A -0.37 9% 

qOIL_6 108.8-117.9 3.68 Gm06_45768166_A_G -0.31 9% 

qOIL_8 73.5-81.4 3.31 Gm08_15573572_T_G -0.27 17% 

qOIL_8 87.7-89.5 3.18 Gm08_17171212_G_A -0.27 17% 

qOIL_11 130.2-156.3 3.24 Gm11_38648336_A_G 0.23 6% 

qOIL_13 0-11 3.29 Gm13_20484995_T_G -0.31 6% 

qOIL_14 100.5-127 3.17 Gm14_46247903_A_G 0.28 5% 

FAY qOIL_6 86.1-105.6 3.91 Gm06_18447419_G_A -0.25 7% 

qOIL_17 61.1-77.9 3.73 Gm17_11272874_G_A -0.27 6% 

qOIL_20 107.7-164.2 4.29 Gm20_45327121_C_A 0.38 16% 

PR qOIL_4 75.8-89.2 3.9 Gm04_9174100_G_A -0.43 10% 

qOIL_13 54.3-74.7 5.25 Gm13_29677928_G_T 0.45 13% 

qOIL_20 102.6-163.3 6.06 Gm20_41356542_T_C 0.52 18% 

qOIL_1 0-5.3 3.14 Gm01_42848317_T_G 0.15 3% 

ROH qOIL_4 0-17.6 4.1 Gm04_1621110_C_A 0.07 10% 

qOIL_4 74.3-88.6 4.66 Gm04_10117285_G_A -0.45 10% 

qOIL_18 97.8-142.8 4.81 Gm18_54021599_G_T -0.62 22% 

qOIL_13 54.3-73.3 4.09 Gm13_29677928_G_T 0.37 10% 

†  Genome-wide 1000 permutation tests - LOD =3 (a threshold value) 

‡  Negative value: allele inherited from UA 5814HP; positive value: allele inherited from R13-532.  
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Figure S 2.1. Variation of seed protein (% dry matter) content in each location for the population derived from UA 5115C/UA 

5814HP (a) and R13-532/UA 5814HP (b). The black line in the middle of the box shows the median, the white box indicates the range 

from the lower quartile to the upper quartile, the grey shaded line represents the dispersion and frequency distribution of the 

phenotypic data. The black dots represent phenotypic data that were extreme in each location 
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Figure S 2.2. Variation of seed oil (% dry matter) content in each location for the population derived from UA 5115C/UA 5814HP (a) 

and R13-532/UA 5814HP (b). The black line in the middle of the box shows the median, the white box indicates the range from the 

lower quartile to the upper quartile, the grey shaded line represents the dispersion and frequency distribution of the phenotypic data. 

The black dots represent phenotypic data that were extreme in each location. 

(a) (b) 
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ABSTRACT 

 Soybean production in the U.S. Mid-South relies heavily on irrigation with 85% of 

soybean surfaces irrigated in Arkansas. Reduction in irrigation due to water quantity restrictions 

will significantly affect soybean seed yield, making variety selection increasingly important. The 

objective of the study was to assess if irrigation onsets at different reproductive stages affect 

wilting, seed yield and key agronomic traits on determinate maturity group 5 (MG 5) soybean. 

One-hundred sixty-five F4-derived populations of recombinant inbred lines with determinate 

growth habit, similar maturity, and contrasting wilting potential were planted in an augmented 

strip-plot design in four environments as a single replicate. Four irrigation onsets were applied at 

R1 (initiation flower), R2 (full bloom), R3 (initiation pod), R4 (full pod) using an atmometer. 

Results indicated significant differences in wilting and yield but no significant differences in 

maturity, protein, oil concentration, and 100-seed weight across different irrigation onsets. There 

was no significant difference between the fast and slow wilting genotypes across different 

irrigation onsets for each trait. Allowable depletions measured in this study indicated that both 

fast-and slow-wilting soybean genotypes determinate MG5 can tolerate high allowable depletion 

with no significant yield penalty at R3 growth stage in silt loam soil.  
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INTRODUCTION 

Soybean [Glycine max (L.) Merr.]) is one of the most important worldwide crops, with a 

cultivated area of 126 million hectares (Mha) and a total production of 353 million tons in 2021, 

with 113 million tons produced by the United States (U.S.) (FAOSTAT, 2022). Soybean yield 

increased dramatically as a result of market development, breeding advances, and improved 

management during the Green Revolution (Pingali, 2012). It is one of the largest row crop in the 

U.S Mid-South accounting for 5.6 Mha for Missouri (MO), 3.6 Mha for Texas (TX), 3.1 Mha for 

Arkansas (AR), 2.1 Mha for Mississippi (MS), 1.5 Mha for Tennessee (TN), and 1 Mha for 

Louisiana (LA) (USDA, 2022). 

Soybean production in the U.S. Mid-South relies heavily on irrigation (Reba & Massey, 

2020), with 85% of soybean surfaces currently supplemented with water in Arkansas (AFBF, 

2022). An average of 575 mm of water is needed during a soybean crop cycle (Dogan et al., 

2007). Water is usually the main limiting factor for soybean productivity (Anda et al., 2020; 

Mekonnen et al., 2020; Ohashi et al., 2006; Sinclair et al., 2014; Xiong et al., 2021). Indeed, in a 

study of two soybean varieties under three irrigation levels, Anda et al. (2020) observed an 

impact of water availability on seed yield when a crop water stress index, proportional to the 

observed versus potential evaporation, was greater than a given threshold at reproductive 

soybean stages. Moreover, in a study of soybean water productivity under irrigated and dryland 

conditions, Mekonnen et al. (2020) observed large variations across the state of Nebraska, due to 

differences in climate, soil, water management, planting date, soybean maturity group/genetics, 

duration of the growing period. 

The National Centers for Environmental Information reported a water shortage in eastern 

Arkansas between May and July 2018 (Young et al., 2018), causing a reduction in water levels at 

irrigation reservoirs and generating concern on water availability for crop irrigation during 
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reproductive stages. Also, some areas in AR, including key soybean growing counties like 

Lonoke, Prairie and Arkansas, have seen alluvial aquifer depth to water greater than 30 m, 

increasing irrigation costs and reducing well output (James et al., 2019). A reduction in 

groundwater availability could result in farmers having to skip or delay irrigation at a certain 

reproductive stage. Reduction in irrigation due to water restrictions will significantly affect 

soybean output and state revenue. As crop water availability becomes hard to predict at planting, 

soybean variety availability and selection become increasingly important for farmers. Yet, 

advances in genetic improvement for drought resistance in soybean is still limited (Fuganti-

Pagliarini et al., 2017; Hufstetler et al., 2007; Yan et al., 2020). 

Crops are subject to different abiotic and biotic stress during their growing season. 

Among abiotic stress, drought has been claimed to be the most devastating, having a drastic 

effect on productivity in rain-fed areas as it reduces plant growth and seed yield (Toker et al., 

2007). According to Clement et al. (2008), as part of the Fabaceae family, soybean is one of the 

most drought-sensitive legumes. One typical feature of legume plants is the presence of nodules 

resulting from the relationship between plants and Bradyrhizobium spp. for biological N2 

fixation. However, this relation is particularly sensitive to drought (Marinković et al., 2019; 

Sheteiwy et al., 2021; Zahran, 1999). Hence, soybean seed yield might be reduced by 40% under 

water stress (Baghel et al., 2018; Dogan et al., 2007; J. E. Specht et al., 1999). Flowering (R1 

and R2 stages (Fehr & Caviness, 1977)) and subsequent periods (pod setting: R3 and R4, and 

seed filling: R5 and R6 (Fehr & Caviness, 1977)) were found to be the most critical for water 

stress in soybeans (Buezo et al., 2019; Manavalan et al., 2009). Plants have different mechanisms 

to adapt to climatic variations by employing biochemical, molecular, physiological, and 

morphological changes (Moore et al., 2008). In soybean, drought tolerance mechanisms include: 
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increased rooting depth, reduced stomatal conductance, leaf rolling/folding, reduced evaporation 

surface, increased leaf-surface wax accumulation, and enhanced water-storage abilities in 

specific organs (Carrow, 1996; Fang & Xiong, 2015; Ludlow & Muchow, 1990; O’Toole & 

Bland, 1987). Canopy wilting is the first visible symptom of water stress, and a number of 

genotypes have been identified as slow wilting under field conditions (Carter, 1999; Carter et al., 

2006). Slow wilting genotype could maintain cell turgor under drought condition (Devi & 

Sinclair, 2013; Sadok et al., 2012). In soybean, slow canopy wilting and sustained nitrogen 

fixation under drought have resulted in maximizing yield under water-limited environments 

(Sinclair et al., 2007).  

In the U.S Great Plains, the effect of reduced irrigation on soybean has been well 

characterized (Kranz & Specht, 2012). However, no information is available on the impact of 

delaying irrigation in soybean in the Midsouth, and on relative performance of slow wilting 

versus non-slow wilting genotypes under delayed irrigation practices. Therefore, the research 

objective of this study was to assess if different irrigation onsets at different reproductive stages 

affect soybean seed yield and other key agronomic traits, including wilting, maturity, protein, oil 

concentration, and 100-seed weight, of determinate maturity group 5 (MG 5) soybean genotypes 

using contrasting wilting-potential populations. 

MATERIALS AND METHODS 

Plant materials and experimental design 

Progeny from two populations were used in this study to magnify the presence of 

different genotypes with slow- and fast-wilting responses. The choice of maturity for this 

experiment was based on the availability of genetic material with slow wilting at the University 

of Arkansas, System-Division of Agriculture soybean breeding program. A total of 165 F4:7 
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breeding lines (73 derived from the cross N07-14753/R11-1057 and 92 derived from R11-

2933/R11-1057) were used, all of which had a determinate grow habit and similar maturity 

group 5 (MG 5), along with two parental checks (PC) (R11-2933 and R11-1057) 

(Supplementary Figure S 3.1) and two commercial checks (CC) based on seed availability 

(AG55X7, AG56X8, P53AG7X, P55A49X). Trials were grown in four environments (location-

year combination) using an augmented strip-plot design under four furrow-irrigation onset 

treatments as a single replicate. Environments included Stuttgart, AR (silt loam soil) in 2019 and 

2020 (19STU and 20STU), and Rohwer, AR (silt loam soil) in 2019 and 2020 (19ROH and 

20ROH). The four irrigation onsets were: 1) full irrigation (irrigation initiated at flowering - R1 

stage), 2) irrigation initiated at full flowering (R2 stage), 3) irrigation initiated at beginning of 

pod development (R3 stage), and 4) irrigation initiated when pods were 2 cm at one of the four 

uppermost nodes (R4 stage). The irrigation at each designated growth stage was triggered using 

the decision table developed by Henry et al. (2014) for atmometer (water-filled device measuring 

the actual evaporation of water) measurements based on 50% of the plots reaching the desired 

stage. The atmometer consists of a green canva cover with a ceramic plate on the top that 

simulates the transpiration of the leave surface (Supplementary Figure S 3.2). Each strip of 

irrigation onset (R1, R2, R3, and R4) was composed of ten blocks. One block was composed of 

four checks (two parental checks and two commercial cultivars) and 16 randomly assigned 

genotypes, including seven and nine genotypes from the first and second population, 

respectively, where individual lines were a random factor within populations (Supplementary 

Figure S 3.3). The plots were 4.6 m long with 1.5 m alley, and consisted of two rows 0.97 m 

apart in 19ROH and 20ROH and 0.91 m apart in 19STU and 20STU. The planting date was 

05/30/2019, 05/28/2019, 05/21/2020, and 05/19/2020 for 19STU, 19ROH, 20STU, and 20ROH, 
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respectively. Standard agronomic practices were used at each location, including fertilization to 

recommended levels as defined by Slaton et al. (2013). 

Weather conditions, soil properties, soil water content and irrigation estimation  

Weather data (air temperature and rainfall) and soil samples were collected to 

characterize the growing conditions. The average minimum temperature, maximum temperature, 

and rainfall for 19ROH, 19STU, 20ROH and 20STU were accessed from the Southern Regional 

Climate Center (www.srcc.lsu.edu/station_search), by searching for the respective weather 

stations where the study was conducted. The estimated cumulative potential evapotranspiration 

(PET) for each environment was calculated based on the sum of the daily potential 

evapotranspiration (ET0). The ET0 was estimated by the FAO–Penman–Monteith method (Allen 

et al., 1998) using the following equation: 

𝐸𝑇0 =
0.408 (𝑅𝑛 − 𝐺) + 𝛾

900
𝑇 + 273 𝑢2(𝑒𝑠 − 𝑒𝑎 )

∆ +  𝛾 (1 + 0.34𝑢2)
  

where 𝐸𝑇0 is the daily potential evapotranspiration (mm.day-1), 𝑅𝑛 the net radiation at the crop 

surface (MJ.m-2.day-1), 𝐺 the soil heat flux density (MJ.m-2.day-1), 𝑇 the daily mean air 

temperature (°C), 𝑢2 the wind speed at 2-m height (m.s-1), 𝑒𝑠 the saturation vapor pressure (kPa), 

𝑒𝑎 the actual vapor pressure (kPa), (𝑒𝑠 − 𝑒𝑎 ) the saturation vapor pressure deficit (kPa), ∆ the 

slope vapor pressure curve (kPa. °C-1), and 𝛾 the psychrometric constant (kPa.°C-1). 

Soil samples were collected at 15-cm depth before planting and before harvest, for each 

environment (19ROH, 19STU, 20ROH, and 20STU). At each sampling date, composite samples 

from five random subsamples were collected on the sides of the planting bed (on each front half 

and back half of the field) to account for field heterogeneity. Samples were sent to the 

Agriculture Diagnostic Laboratory (University of Arkansas, Fayetteville) for analysis. Soil pH 

http://www.srcc.lsu.edu/station_search
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and electrical conductivity (EC) were determined using a potentiometer at a ratio of 1:2 (w/v). 

Nutrients in the soil (P, K, Ca, Mg, S, Na, Fe, Mn, Zn, B, and Cu) were extracted with Mehlich-3 

at a ratio of 1:10 (v/v) and their concentrations analyzed by inductively coupled argon-plasma 

spectrometry (ICAP, Spectro Analytical Instruments, Spectro Arcos ICP, Kleve, Germany). The 

sand, clay, and silt contents were expressed in percentage to determine the soil texture, based on 

the USDA soil texture triangle. 

A total of 64 sensors (WATERMARK Soil Moisture Sensors – 200 SS, Irrometer, 

Riverside, California, USA) were installed in 2020 in Stuttgart (20STU) and Rohwer (20ROH) 

to measure the soil matric potential. For both 20STU and 20ROH, sensors were installed at 15-, 

30-, 46-, and 76-cm depths, on the side of the bed at the ¾ of the field for each irrigation onset 

(R1, R2, R3, and R4). Two sets of 15- and 30-cm depths sensors were placed randomly in each 

irrigation onset. To quantify the water stress intensity, a manual reading of the watermark 

sensors was done at the time of the canopy wilting rating using a hand held meter (30 KTCD-

NL, Irrometer, Riverside, California, USA). The volumetric water content (VWC) of the soil (%) 

at the time of canopy wilting rating was calculated using the average of the soil matric potential 

(SMP) at 15-cm and 30-cm depths (cbar), converted to VWC using soil water retention curve 

reported by Henry et al. (2020) for a silt loam soil in DeWitt (AR), a location close to the study 

site. The field capacity (FC) was 35.6% and the wilting point (WP) 8.9%. The available water 

content (AWC in %) was calculated to be 26.7% (FC-WP) (Henry et al., 2020). The allowable 

depletion (AD) at the time of canopy wilting rating and prior to each irrigation onset, which 

indicates the maximum amount of plant available water allowed to be removed from the soil 

before irrigation refill occurs, was then calculated using the following equation:  

𝐴𝐷 = (1 −
(𝑉𝑊𝐶 − 𝑊𝑃)

𝐴𝑊𝐶
) ∗  100 
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In addition to the watermark sensors, a time-domain reflectometer sensor (TDR-315L, 

Acclima) was installed at 10-cm depth on the side of the bed, in the middle of the field for 

20ROH and 20STU to monitor the soil moisture in each irrigation onset (R1, R2, R3, and R4). 

The TDR sensors were coupled with AquaTrac (AgSense, Huron, SD) telemetry units for 

logging and transmitting the soil moisture data. TDR sensors were installed on 07/20/2022 in 

Stuttgart (20STU) and later in the season (08/06/2020) in Rohwer (20ROH), due to the 

unavailability of the equipment. The VWC measured from the TDR sensors before the irrigation 

was used to compute AD since it has a recording of 30-minute interval. 

A flowmeter (McCrometer, California USA) was used in 20STU to measure the flow rate 

of irrigation. Readings were performed at the beginning and the end of each irrigation. Based on 

the flow rate and the surface irrigated, the amount of irrigation was calculated as follow:  

𝐼𝑟𝑟 =
(𝐹𝑅  −  𝐼𝑅) ∗ 0.01

𝑆
 ∗  25.4 

where Irr is the irrigation amount (mm), 𝐹𝑅 the flow rate at the end of irrigation (acre-inch), 

𝐼𝑅 the flow rate at the beginning of the irrigation (acre-inch) and 𝑆 the surface irrigated (acres).  

Since, the flowmeter was not available for 19STU, but an approximated equal surface 

was used for 20STU for each irrigation onset. The amount of irrigation for 19STU was estimated 

using the average acre-inch of the flow rate for 20STU. For 19ROH and 20ROH, the amount of 

irrigation was also an estimation using an average flow rate of 1000 gallon per minute and the 

duration of irrigation of each irrigation onset, the calculation was based on the following 

equation:  

𝐼𝑟𝑟 =
𝐹𝑙𝑜𝑤 𝑟𝑎𝑡𝑒 ∗ 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛

27514
∗ 𝑆 ∗ 25.4 

where Irr is the irrigation amount (mm) and 𝑆 the surface irrigated (acres).  
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Soybean phenotyping 

Visual rating for canopy wilting was taken using a 10-point scale, from 0 to 9, where (0) 

represents no wilting and (9) a dead plant. The canopy wilting was rated one time prior to the 

onset of irrigation at the designated reproductive stage. Rating evaluations were performed at 

least six days of dry conditions (no precipitation), and to reduce the impact of diurnal variation in 

evaporative demand, data was collected between 11:00 am and 3:00 pm. Maturity was recorded 

when 95% of the pods in a plot had reached mature pod color (Fehr & Caviness, 1977), and was 

expressed as the number of days after 31st August. Total yield (t.ha-1) was calculated from seed 

moisture, weight, and plot dimensions. Seed protein and oil estimation concentration in 

percentage of dry matter was performed for each line using subsamples of 50 seeds via Near-

Infrared Spectroscopy DA 7250 NIR analyzer (Perten, Sweden). Lastly, 100-seed weights were 

evaluated in grams (g).  

Data analysis 

For the soil properties analysis, a matched paired t-test was performed in JMP Pro 16.0 

(SAS Institute, Cary, NC) to analyze the difference between pre-planting and pre-harvest 

samplings within each irrigation onset in each environment. The canopy wilting for the slow 

wilting R11-2933 and the fast-witling parent R11-1057 at the R4 stage were compared using a t-

test in JMP Pro 16.0 (SAS Institute, Cary, NC). Prior to analysis of each trait, lines were 

classified as fast or slow wilting based on the mean of the canopy wilting of R11-2933 ± σ, 

where σ is the sample standard deviation. Mean and standard deviation were calculated from a 

dataset of the four location-year environments under non-irrigated conditions at the R4 stage. 

Entry values greater than the mean plus the standard deviation (> 2.59) were considered a fast-
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wilting genotype, while entries with values equal to or less than the mean plus the standard 

deviation (≤ 2.59) were considered slow wilting.  

Data, including canopy wilting, maturity, yield, protein, oil, and 100 seed-weight, were 

analyzed as an augmented strip-plot design using PROC GLIMMIX in SAS (SAS Institute, 

Cary, NC). The statistical model for the analysis was the following:  

𝑦𝑖𝑗𝑘𝑙 = 𝜇 + 𝑡𝑖 + 𝑔𝑗 + 𝑠𝑘 + 𝑏𝑘(𝑙) + 𝑔𝑡𝑖𝑗 + 𝑡𝑠𝑖𝑘 + 𝑔𝑠𝑗𝑘 +  𝑒𝑖𝑗𝑘𝑙                

where i is the number of irrigation onsets: R1, R2, R3, and R4 (1, 2, 3, 4), j the number of witling 

classes: fast wilting and slow wilting classes (1,2), k the number of the environments: 19ROH, 

19STU, 20ROH, and 20STU (1,2,3,4) and l the number of the blocks (1…10). 𝑦𝑖𝑗𝑘𝑙 is the mean 

response of the ijklth observation (canopy wilting, maturity, yield, protein, oil concentration, and 

100 seed weight), μ the overall mean response. Fixed effects were the irrigation onset 𝑡𝑖, the 

wilting class 𝑔𝑗 and the interaction between the wilting class and the irrigation onset 𝑡𝑔𝑖𝑗. The 

random effects were the environment 𝑠𝑘, the block nested within the environment 𝑏𝑘(𝑙), the 

interaction between the irrigation onset and the environment 𝑡𝑠𝑖𝑘, the interaction between the 

wilting class and the environment 𝑔𝑠𝑗𝑘 and the experimental error 𝑒𝑖𝑗𝑘𝑙.  

RESULTS 

Environment characteristics 

The four environments presented a silt loam soil texture (Supplementary Table S 3.2). 

Results in the difference between pre- and post-samplings showed an in-crease of 0.3 in pH and 

an average decrease of 134.3 µmhos.cm-1 (p-value < 0.05) in electrical conductivity (EC) for 

each irrigation onset (Supplementary Figure S 3.6 and S 3.7). We also measured a general 

decrease in macronutrients including P, K, S, Ca, and Mg and micronutrients (Fe, Mn, Zn) 
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between pre-planting and pre-harvest samplings (Supplementary Table S 3.3). However, an 

increase in Na was observed in the 19ROH environment with an increase of 14.42 mg.kg-1 

soil DW in R1 stage and 36 mg.kg-1 soil DW in the R4 stage (Supplementary Table S 3.3). 

Likewise, a general increase in B was found in each environment except for 20STU in R2, R3, 

and R4 (Supplementary Table S 3.3). 

The monthly average temperature from planting to harvest in each environment is given 

in Supplementary Table S 3.1. The period of July–August corresponds to the pod initiation 

stage, where the average maximum monthly temperature ranged from 30 to 33°C in each 

environment. On the day of the canopy wilting rating, the air temperature ranged between [20—

30], [22—31], [23—36] and [23—33] °C at R1, R2, R3 and R4, respectively, for 19STU and 

between [20—30], [22—31], [23—36] and [23—34] °C at R1, R2, R3 and R4, respectively, for 

19ROH. For 20STU, temperature ranged between [24—33], [23—33], [21—30] and [24—33] 

°C at R1, R2, R3 and R4 canopy wilting rating, respectively. Similar trend of temperature was 

recorded for 20ROH: [24—33], [23—31], [20—30] and [22—31] °C at R1, R2, R3 and R4 

canopy wilting rating, respectively. The cumulative potential evapotranspiration (PET) indicated 

a high evaporative demand between June and July (Supplementary Figure S 3.5), where the 

highest cumulative PET was calculated in 20STU (400 mm). Pod initiation (R4 stage) was 

recorded at the end of July when the highest evaporative demand was recorded in each 

environment. 

The cumulative rainfall from planting to harvest for each environment (19ROH, 19STU, 

20ROH, 20STU) is given in Supplementary Figure S 3.4. Rainfall was more important in 

Rohwer (ROH) than in Stuttgart (STU) with respectively 587 mm and 541 mm in 2020 and 

respectively 471 mm and 417 mm in 2019, in Rohwer (ROH) and Stuttgart (STU). The 
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distribution of rainfall and irrigation during the growing season in each environment, and the 

time of canopy wilting rating is presented in Figure 3.1 and 3.2.   

Prior to canopy wilting rating at R1, there had been no rainfall for 9 to 11 days in each 

environment (19ROH, 19STU, 20ROH, and 20STU). Rating at R2 was carried out when there 

had been no rain for 15 to 17 days for 19ROH, 20ROH, and 20STU. In 19STU, 4 days prior to 

the canopy wilting at R2, there had been 1.5 mm precipitation (Figure 3.2). Canopy wilting 

rating at R3 was recorded when there had been no rainfall for 23 days, 8 days and 7 days in 

19ROH, 19STU and 20ROH, respectively. Five days prior to canopy wilting at R3, we recorded 

2.79 mm of rainfall in 20STU. There had been no rainfall for 9 to 14 days prior to canopy wilting 

rating at R4 in 19ROH, 19STU and 20ROH while 3 mm of rainfall was recorded prior to the 

canopy wilting rating at R4 in 20STU (Figure 3.2).  

The hydraulic properties of the soil at the time of canopy wilting rating are given in 

Table 3.1. At the time of the canopy wilting rating, the soil matric potentials (SMP) in 20STU at 

46-cm depth were -101, -58, -199 and -199 cbar at R1, R2, R3, and R4, respectively. At 76-cm 

depth, the SMP were -52, -77, -199 and -199 cbar for R1, R2, R3, and R4, respectively. R3 and 

R4 showed the lowest value of the average SMP at 15-30 cm depth (-199±0cbar) in 20STU. 

Similarly, in 20ROH, R3 and R4 presented the lowest SMP (-108 ± 21.1 and -124.5 ± 17.9 cbar) 

among the irrigation treatment. At R1 and R2, AD was relatively low in 20ROH compared to 

20STU. The AD at R3 and R4 reached 55% in 20STU while in 20ROH, AD ranged from 33 to 

38%. The lowest VWC was recorded at R3 and R4 for both environments, however, 20ROH 

displayed relatively higher VWC compared to 20STU at R3 and R4 (Table 3.1).  

The irrigation was applied based on the atmometer, but the soil moisture content as well 

as the subsequent allowable depletion (AD) was determined before each irrigation onset (Table 
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3.2). In 20STU, irrigation onset at R4 stage presented the highest average of VWC before the 

onset of irrigation (19.5%). For both environments, the lowest values of VWC before irrigation 

were recorded at R1 with 11.1% and 11.4% for 20STU and 20ROH, respectively. The average 

allowable depletion was 92%, 88%, 75% and 60% when irrigation was onset at R1, R2, R3, and 

R4, respectively in 20STU. In 20ROH, the average depletion in each different irrigation onset 

was 91% at R1, 64% at R2, 71% at R3, and 87% at R4. Both environments had experienced 

water stress since allowable depletion exceeded 50% (assumed stress). 

Canopy wilting 

The t-test across four environments at R4 stage results showed a highly significant 

difference for canopy wilting (p-value < 0.0001) between the slow-witling parental check R11-

2933 (1.59 ± 0.62) and the fast-wilting parental check R11-1057 (3.34 ± 0.87). Furthermore, a 

highly significant wilting class (Fast-wilting (FW) vs slow-wilting (SW)) effect on the canopy 

wilting (p-value < 0.001) was observed, results somewhat expected because of the nature wilting 

classes were constructed nonetheless demonstrating that the group means were statistically 

different and not just one standard deviation away. Moreover, there was a significant treatment 

effect (irrigation onset at different reproductive stages) on canopy wilting (p-value < 0.001), with 

a highly significant interaction effect between wilting class and irrigation treatment 

(p-value < 0.0001). As irrigation was further delayed, higher canopy wilting was observed. The 

FW group mean increased from 1.67 ± 0.32 when irrigation was triggered at R1, to 3.17 ± 0.32 

when irrigation was triggered at R4. A significant difference in wilting severity between FW and 

SW occurred when the irrigation was triggered at R3 and R4 (Figure 3.2). 
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Maturity 

There was no significant wilting-class-by-treatment interaction on maturity 

(p-value = 0.53). Moreover, no significant difference was shown for treatment and maturity 

effect (p-value = 0.68), and for wilting class and maturity (p-value = 0.13). Delaying irrigation 

did not affect maturity under our experimental conditions (Figure 3.3). 

Seed yield 

There was a significant treatment effect on seed yield (p-value < 0.05). However, there 

no was significant wilting class effect on yield (p-value = 0.05), and no interaction between the 

wilting class and the irrigation treatment (p-value = 0.33). Results showed that when irrigation 

was triggered at R4 stage, there was a significant yield reduction (23%) for determinate MG 5 

soybeans. Nevertheless, no significant yield difference was reported by triggering irrigation at 

R1, R2, and R3 stages under our environmental conditions (Figure 3.4). In addition, no yield 

differences between FW and SW genotypes were found under the delayed-irrigation methods 

(Figure 3.4). 

Seed protein and oil concentration, and 100-seed weight 

There was no statistical difference for wilting-class-by-irrigation-treatment interaction in 

terms of seed protein (p-value = 0.6433) or oil content (p-value = 0.2603). Moreover, results 

showed that there was no effect of irrigation treatment on seed protein (p-value = 0.7939) and oil 

content (p-value = 0.8571). Likewise, there was no significant difference in terms of wilting 

class for protein (p-value = 0.3711) and oil content (p-value = 0.4423). Reduced irrigation did 

not affect protein and oil content for FW and SW determinate MG 5 even if irrigation was 

triggered at R4 stage (Table 3.3). The average protein concentration ranged from 39.33 % to 

40.08 %; while the oil concentration ranged from 21.28 % to 21 % (Table 3.3). 
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No significant interaction effect between wilting class and irrigation treatment (p-value = 

0.8127) was found for 100-seed weight. Similarly, there was no statistical difference of irrigation 

treatment (p-value = 0.9885) or witling class (p-value = 0.5200) on 100-seed weight. Seed size 

was not affected if irrigation was delayed at R4 stage under our experimental conditions (Table 

3.3). The average 100-seed weight was 14.99 g to 15.43 g (Table 3.3). 

DISCUSSION 

Drought is one of the greatest threats to crop profitability. Thus, circumventing this 

problem is a priority for farmers (Lauer et al., 2012). When facing precipitation or groundwater 

shortages, Midsouth soybean famers might skip or delay irrigation at critical stages of soybean. 

The present investigation aims to appraise if different irrigation onsets at different reproductive 

stages affect soybean wilting, seed yield, and other key agronomic traits, including maturity, 

protein, oil, and 100-seed weight for determinate maturity group 5 (MG 5) soybean genotypes 

using contrasting wilting potential populations. 

We observed an increase in soil pH with irrigation, in agreement with Bouaroudj et al. 

(2019). The increase in pH could be hypothesized of the result of high content of basic cations 

such as Na+, Ca2+ and Mg2+ in the irrigation water, which increase the alkaline reserve of the soil 

and enhances the rate of denitrification thereby producing hydroxyl ions. Unlike Bouaroudj et al. 

(2019), we observed a decrease in EC with irrigation. In our experiments, pre-harvest soil 

samplings were done in October. The cumulative precipitation (mm) displayed a steep increase 

before harvest (September to October) (Supplementary Figure S 3.4), indicating high 

precipitation right before harvest time, concomitantly decreasing EC as salts move with water. 

The general decrease in nutrients across environments in our results could be explained by the 

uptake of nutrients of soybean plants during their growth.  
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Our results showed an increase in canopy wilting when irrigation was delayed to R3 and 

R4 stages, and that the fast-wilting (FW) group had a significantly higher canopy wilting than 

slow-wilting (SW) group. The severity of canopy wilting in response to drought varies among 

soybean genotypes and the onset time (Carter, 1999; Sloane et al., 1990; Valliyodan et al., 2017). 

Higher canopy wilting at R1 and R2 stages compared to R3 and R4 stages could be explained by 

the greater soil water content at R1 (25.5 % and 33.5 %) and R2 stage (27.9 % and 28.8 %) 

(Table 1). Soybean genotype experienced more water stress at R3 stage and R4 stage in 20STU 

since the allowable depletion exceeded 50%. Moreover, the greater magnitude of canopy wilting 

response at R4 compared to earlier growth stages was because the evaporative demand was 

greater. In fact, the canopy was probably more fully closed (greater transpiration per unit area), 

and the soil moisture was more depleted at R4 stage. According to Valliyodan et al. (2017) and 

Charlson et al. (2009), as the soil dries, soybean with SW have delayed leaf wilting compared 

with FW, which agrees with the results of the current study. Under full soil moisture, plants will 

absorb water through its roots. This water will be used by the plant or released through 

transpiration by opening the stomata in the leaves. Photosynthesis will also occur normally with 

CO2 and O2 being absorbed and released through the open stomata. Once soil moisture becomes 

limited, water loss through transpiration still occurs; therefore, water loss leads to wilting. The 

first visible symptom is wilting under water stress (Carter, 1999; Carter et al., 2006). SW 

genotypes maintain cell turgor under drought condition (Devi & Sinclair, 2013; Sadok et al., 

2012). SW mechanism, a basis for drought tolerance, has been studied by several researchers. 

Pantalone et al. (1996) stated that SW appeared to be involved as a better water resource 

exploration by a larger root system, while Tanaka et al. (2010) reported that the SW trait was due 

to a lower stomatal conductance. Bellaloui et al. (2013) speculated that the mechanisms were 
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related to the accumulation of minerals (such as K, Ca, B, Na) or organic compounds (such as 

sucrose, raffinose and stachyose and oleic acid) under drought stress in SW. Therefore, plants 

could maintain cell turgor, conserve water, and achieve osmoregulation. The higher leaf water 

potentials detected in SW genotypes suggested their ability to retain more water through water 

conservation and nutrient homeostasis (Bellaloui et al., 2013; Kunert & Vorster, 2020). Recently, 

Ye et al. (2020) confirmed the SW mechanism was linked to the water conservation strategy of 

limited maximum transpiration rates.  

Delaying irrigation until R4 stage did not affect maturity of FW and SW in the current 

study. Determinate MG 5 soybean genotypes could sustain their development under mild 

drought. This phenomenon is valuable since it enables delaying irrigation without shortening the 

cycle of soybeans. Yield reductions in this study (23%) when irrigation was delayed at R4 stage 

were higher than previously reported by Karam et al. (2005) but lower than the studies carried 

out by Dogan et al. (2007) under non-irrigated conditions. In our study, yield results indicated 

that soybean was more sensitive to water stress at R4. At an early reproductive stage R1, R2 and 

R3, both fast-and slow-wilting genotypes were under water stress as AD was higher than 50% 

(Table 2). However, soybean genotypes can recover from any effect of moisture stress until R3 

stage in silt loam soil as rainfall or irrigation were triggered; thus, it could compensate the deficit 

of water during R1, R2 and R3 stages. However, when irrigation was withheld at R4 in silt loam 

soil, both fast-and slow-wilting soybean genotypes experienced water stress (AD greater than 

50%) that led to a decrease in seed yield. Indeed, the R4 stage has also been identified as the 

most critical drought-sensitive stage by Karam et al. (2005) and Smith et al. (2021). At R4, the 

plant reaches the full-pod stage in which the pod grows rapidly, and seed development begins. 

As a result of water stress, lower water potential in the leaves reduces the water potential 
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gradient between leaves and pods, reducing the flow of metabolites to the expanding cells 

(Westgate & Peterson, 1993). Water stress imposed on soybean throughout the growth stages 

reduces growth and affects seed yield (Eck et al., 1987; Kanungo et al., 2021; Yang et al., 2020), 

similar to our finding. In contrast, Sweeney & Granade (2002) and Marais & Bufé (2013) 

reported that water stress during flowering followed by full irrigations increased yield. This 

study is also in agreement with Foroud et al. (1993) and Huck et al. (1983), who reported that 

soybean yield components can recover from any effect of moisture stress at the R2 stage. 

The SW phenotype has been used as one of the indicators to screen drought tolerance in 

the field (Charlson et al., 2009). This trait was predicted using a simulation model to improve 

yield under drought by > 80% of the growing seasons in most regions of the U.S (Sinclair et al., 

2010). However, our investigation under reduced irrigation showed no statistical difference in 

seed yield of SW versus the FW genotypes. Similar to the current study, Ye et al. (2020) stated 

that under non-stress (irrigated) conditions, the FW recombinant inbred lines showed no 

statistically significant seed yield over the SW recombinant lines, but 12.8% to 13.7% yield 

advantage over the fast-witling lines under non-irrigated conditions. The disagreement of our 

research results and Ye et al. (2020) could result by the fact that we did not have a non-irrigated 

treatment and our environment received sufficient rainfall for a successful soybean crop 

development. In addition, Ye et al. (2020) indicates that when the yield was evaluated separately 

for each recombinant population, there was no significant difference between FW and SW under 

either condition (irrigated and rain-fed), which agrees with our results.  

The effect of water deficit on soybean protein and oil concentration was evaluated in 

several studies, and different responses have been observed. Foroud et al. (1993) and Ghassemi-

Golezani & Lotfi (2013) detected an increase in protein concentration under well-watered 
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conditions; contrarily, Specht et al. (2001), Rotundo & Westgate (2009), and Navabpour et al. 

(2017) found that water stress during soybean seed filling (R5 and R6) increased protein 

concentration and concluded that the increase in protein content could be due to the stimulation 

of protein synthesis rather from a concentration effect due to lower biomass production under the 

stress condition. In our studies, since irrigation was triggered before or at R4 stage (full pod 

development), we did not see a significant impact of irrigation treatment on seed protein 

concentration, as expected due to the timing of seed protein accumulation (Saldivar et al., 2011). 

Oil has considerable importance to the soybean industry because of its high economic 

value as a source of edible oil and a major renewable feedstock for biodiesel production (Gashaw 

& Lakachew, 2014). Previous studies showed that drought stress reduced the oil concentration of 

seeds at later stages of grain filling in soybean (Ghassemi-Golezani & Lotfi, 2013; Martin et al., 

2019). Indeed, Dornbos & Mullen (1992) found that serious water shortages during seed filling 

(R5 and R6) reduced seed oil concentration by 12.4%. On the contrary, Bellaloui et al. (2012) 

documented that severe drought can increase soybean oil seed concentration. In the present 

investigation, there was no significant difference in oil concentration regardless of the irrigation 

onsets (R1, R2, R3, and R4) and the wilting class. Under different irrigation onsets applied for 

the current study, the oil concentration was an average of 21%, which is above the minimum 

value of 20% required by the industry (Wilson, 2004).  

Dogan et al. (2007) stated that water stress along with severe climatic conditions during 

R3 stage in soybeans increased pod numbers, resulting in lower yield and 1000-seed weights. In 

contrast, McWilliams et al. (1999), Desclaux et al. (2000), Clemente & Cahoon (2009), and 

Xiong et al. (2021) reported that if soybeans are under severe temperature and soil water stress 
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conditions, seed size will decrease. In our study we noted a trend towards the reduction in size as 

irrigation was delayed, but it was not of statistical significance at level of 5%. 

CONCLUSIONS 

Overall, no yield differences between FW and SW determinate MG 5 soybean genotypes 

under delayed irrigation were observed in the current study. As irrigation was further delayed, 

higher wilting severity occurred as water content is lower. Also, delaying irrigation until the R4 

stage led to a reduction in seed yield. However, delaying irrigation did not affect maturity, 

protein, oil concentration, and 100-weight under our experimental conditions. Allowable 

depletions measured in this study indicated that both fast-and slow-wilting soybean genotypes 

determinate MG5 can tolerate high allowable depletion up to 90 % with no significant yield 

penalty at R3 stage in silt loam soil. The study suggests that even if high water deficits are 

experienced at early stages from delayed or inadequate irrigation that yields will likely not be 

significantly reduced in a furrow irrigation production system for soybean in silt loam. A deficit 

irrigation which is a water-saving irrigation strategy without compromising seed yield, could be 

implemented for farmers in the Mid -South as result of a groundwater shortage.  
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Table 3.1: Average soil matric potential (SMP), soil volumetric water content (VWC) and 

allowable depletion (AD) at the time of canopy wilting rating for different irrigation onsets in 

two environments 20STU and 20ROH (15-and 30-cm. depths) 

Environment Irrigation onset 
SMP  

(mean ± se, cbar) 

VWC 

(%) 
AD (%) 

20STU 

R1 -128.2 ± 36.5 25.5 38 

R2 -104.6 ± 46.7 27.9 29 

R3 -199 ± 0 21 55 

R4 -199 ± 0 21 55 

20ROH 

R1 -55.2 ± 16.4 33.5 8 

R2 -90 ± 10.1 28.8 25 

R3 -108 ± 21.1 26.9 33 

R4 -124.5 ± 17.9 25.5 38 

 

 

Table 3.2: Average percent of soil volume water content (VWC) and allowable depletion (AD) 

before irrigation from different irrigation onsets in two environments 20STU and 20ROH 

Environment Irrigation onset VWC before irrigation (%) 
AD before irrigation 

(%) 

20STU 

R1 11.1 92 

R2 12 88 

R3 15.7 75 

R4 19.5 60 

20ROH 

R1 11.4 91 

R2 18.5 64 

R3 16.7 71 

R4 12.4 87 
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Table 3.3. Soybean seed protein, oil, and 100-seed weight of each wilting class under different 

onset irrigations (R1, R2, R3, and R4) evaluated in four environments (location-year 

combination 19ROH, 19STU, 20ROH, and 20STU) 

Wilting Class Irrigation Onset Protein (%) Oil (%) 100-seed weight (g) 

Fast wilting R1 39.33 21.39 14.99 

Slow wilting R1 39.34 21.40 15.07 

Fast wilting R2 40.08 21.28 15.16 

Slow wilting R2 39.94 21.44 15.16 

Fast wilting R3 39.85 21.48 15.23 

Slow wilting R3 39.57 21.60 15.25 

Fast wilting R4 39.62 21.52 15.31 

Slow wilting R4 39.36 21.52 15.43 
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Figure 3.1: Daily distribution of rainfall and irrigation (mm) during the two growing seasons (2019 and 2020) in Rohwer (ROH). 

DOY: day of the year. The ▽ symbol indicates the time of canopy wilting rating. 
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Figure 3.2: Daily distribution of rainfall and irrigation (mm) during the two growing seasons (2019 and 2020) in Stuttgart (STU). 

DOY: day of the year. The ▽ symbol indicates the time of canopy wilting rating. 
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Figure 3.3. Canopy witling of each wilting class under different onset irrigations (R1, R2, R3, 

and R4). Same letters are not significantly different (Tukey's; p < 0.05). Whiskers denote 

standard error of the mean.  
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Figure 3.4. Maturity of each wilting class under different onset irrigations (R1, R2, R3, and R4). 

Same letters are not significantly different (Tukey's; p < 0.05). Whiskers denote standard error of 

the mean. 
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Figure 3.5. Soybean seed yield of each wilting class under different onset irrigations (R1, R2, 

R3, and R4). Same letters are not significantly different (Tukey's; p < 0.05). Whiskers denote 

standard error of the mean. 
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Table S 3.1. Average minimum (Min_T), maximum (Max_T), average (Avg_T) temperature in °C monthly from planting to harvest 

evaluated in four environments (location-year combination 19ROH, 19STU, 20ROH, and 20STU) 

 19ROH 19STU 20ROH 20STU 

  

Min_T 

(°C) 

Max_T 

(°C) 

Avg_T 

(°C) 

Min_T 

(°C) 

Max_T 

(°C) 

Avg_T 

(°C) 

Min_T 

(°C) 

Max_T 

(°C) 

Avg_T 

(°C) 

Min_T 

(°C) 

Max_T 

(°C) 

Avg_T 

(°C) 

May 20 30 25 19 32 26 18 28 23 19 28 23 

June 20 30 25 21 30 25 21 30 25 21 31 26 

July 22 31 27 22 32 27 24 32 28 24 33 28 

Aug 23 32 27 23 32 28 21 30 26 21 32 27 

Sept 22 34 28 22 34 28 19 28 24 19 29 24 

Oct 13 24 19 12 24 18 10 21 16 12 23 17 

 

Table S 3.2. Soil type in each environment based on the percentage of sand, silt and clay 

Field Sand (%) Silt (%) Clay (%) Soil Type 

19ROH 7.1 78.5 14.4 Silt loam 

19STU 1.05 83.8 15.15 Silt loam 

20ROH 12.99 69.71 17.3 Silt loam 

20STU 2.29 76.09 21.62 Silt loam 
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Table S 3.3. Characteristic of elements of soils from soil samplings for pre and post samplings for different irrigation onsets (R1, R2, 

R3, and R4) in four environments (19ROH, 19STU, 20ROH, and 20STU), paired t- test, mean difference, t ratio and p-value 

Elements Env Irrigation level Pre-Sampling Post-Sampling Mean Difference (Post-Pre) t ratio p-value 

P (mg.kg-1) 

19ROH 

R1 46.92 30.83 -16.10 -1.979 0.1421 

R2 71.93 34.31 -37.63 -5.983 0.0093 

R3 46.31 41.55 -4.76 -0.445 0.6862 

R4 37.34 22.30 -15.04 -1.299 0.2848 

19STU 

R1 45.75 25.89 -19.86 -4.734 0.0179 

R2 36.99 30.24 -6.75 -2.501 0.0876 

R3 40.12 29.18 -10.94 -2.381 0.0975 

R4 40.96 32.06 -8.90 -1.732 0.1817 

20STU 

R1 28.39 19.56 -8.83 -2.226 0.1123 

R2 29.01 20.01 -9.01 -15.588 0.0006 

R3 37.10 24.44 -12.66 -14.433 0.0007 

R4 23.98 23.05 -0.92 -0.433 0.6942 

20ROH 

R1 49.24 39.30 -9.94 -8.66 0.0032 

R2 68.28 61.00 -7.28 -2.02 0.1366 

R3 67.73 68.40 0.67 0.216 0.8425 

R4 66.23 71.02 4.79 5.196 0.0138 
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Elements Env Irrigation level Pre-Sampling Post-Sampling Mean Difference (Post-Pre) t ratio p-value 

K (mg.kg-1) 

19ROH 

R1 161.96 115.94 -46.02 -2.042 0.1337 

R2 187.05 119.71 -67.34 -46.765 <0.0001 

R3 156.56 119.97 -36.59 -2.69 0.0744 

R4 149.42 164.30 14.88 4.566 0.0197 

19STU 

R1 157.88 104.58 -53.31 -9.754 0.0023 

R2 161.95 128.30 -33.65 -4.641 0.0188 

R3 176.12 125.98 -50.14 -21.65 0.0002 

R4 167.36 129.10 -38.25 -4.939 0.0159 

20STU 

R1 168.82 102.77 -66.05 -22.863 0.0002 

R2 163.43 107.53 -55.90 -12.124 0.0012 

R3 160.45 114.85 -45.60 -2.57 0.0825 

R4 176.57 111.95 -64.62 -20.312 0.0003 

20ROH 

R1 173.93 112.38 -61.55 -10.738 0.0017 

R2 173.53 141.23 -32.30 -3.411 0.0421 

R3 173.73 140.03 -33.70 -6.826 0.0064 

R4 136.48 145.91 9.43 0.645 0.5647 
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Table S 3.5. (Cont.) 

Elements Env Irrigation level Pre-Sampling Post-Sampling Mean Difference (Post-Pre) t ratio p-value 

Ca (mg.kg-1) 

19ROH 

R1 1056.78 978.13 -78.65 -1.378 0.2618 

R2 1205.34 1034.90 -170.44 -2.534 0.0851 

R3 1060.30 1166.54 106.24 4.145 0.0255 

R4 1379.12 1813.85 434.73 3.965 0.0287 

19STU 

R1 1122.19 1193.60 71.42 1.45 0.2429 

R2 1004.78 1060.78 55.99 1.732 0.1817 

R3 1023.49 965.52 -57.97 -2.79 0.0684 

R4 1193.12 1082.05 -111.07 -5.059 0.0149 

20STU 

R1 1169.34 1248.88 79.53 1.385 0.259 

R2 1073.21 969.45 -103.75 -1.552 0.2184 

R3 1122.21 1068.33 -53.88 -1.6126 0.2052 

R4 1200.12 1228.29 28.18 3.73 0.0336 

20ROH 

R1 1336.47 1332.06 -4.41 -0.065 0.9521 

R2 1567.39 1513.60 -53.79 -2.353 0.1 

R3 1768.38 1583.96 -184.43 -11.62 0.0014 

R4 1522.84 1557.73 34.89 2.02 0.1366 
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Table S 3.6. (Cont.) 

Elements Env Irrigation level Pre-Sampling Post-Sampling Mean Difference (Post-Pre) t ratio p-value 

Mg (mg.kg-1) 

19ROH 

R1 186.33 192.37 6.04 -0.115 0.9154 

R2 146.40 202.02 55.62 -2.209 0.1141 

R3 168.15 170.90 2.75 -0.346 0.7519 

R4 445.51 256.78 -188.73 4.091 0.0264 

19STU 

R1 105.85 100.34 -5.51 -2.886 0.0632 

R2 97.08 94.61 -2.47 -8.66 0.0032 

R3 95.36 89.12 -6.23 -7.505 0.0049 

R4 123.38 98.57 -24.81 -7.715 0.0045 

20STU 

R1 118.92 111.45 -7.48 -6.062 0.009 

R2 106.15 93.39 -12.76 -2.501 0.0876 

R3 110.86 93.77 -17.09 -6.735 0.0067 

R4 111.09 104.06 -7.03 -4.041 0.0273 

20ROH 

R1 219.39 208.55 -10.84 -0.866 0.4502 

R2 257.27 242.35 -14.91 -7.175 0.0056 

R3 277.29 251.03 -26.26 -3.399 0.0425 

R4 238.58 246.00 7.42 1.367 0.2649 
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Table S 3.7. (Cont.) 

 

Elements Env Irrigation level Pre-Sampling Post-Sampling Mean Difference (Post-Pre) t ratio p-value 

S (mg.kg-1) 

19ROH 

R1 8.05 9.36 1.30 3.752 0.0331 

R2 9.25 8.51 -0.74 -0.44 0.6895 

R3 9.32 6.77 -2.55 -2.676 0.0753 

R4 7.15 9.05 1.90 4.701 0.0182 

19STU 

R1 10.89 6.15 -4.74 -7.154 0.0056 

R2 10.75 6.88 -3.88 -14.818 0.0007 

R3 11.10 8.37 -2.73 -8.66 0.0032 

R4 10.24 7.90 -2.34 -9.045 0.0029 

20STU 

R1 10.48 6.21 -4.27 -74.478 <0.0001 

R2 10.35 8.50 -1.86 -1.307 0.2821 

R3 11.53 7.19 -4.34 -4.86 0.0166 

R4 9.86 7.97 -1.89 -1.218 0.31 

20ROH 

R1 14.36 8.70 -5.67 -1.829 0.1648 

R2 15.35 9.40 -5.95 -5.027 0.0152 

R3 14.52 8.70 -5.82 -202.65 <0.0001 

R4 18.18 8.74 -9.44 -4.251 0.0239 
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Table S 3.8. (Cont.) 

 

Elements Env Irrigation level Pre-Sampling Post-Sampling Mean Difference (Post-Pre) t ratio p-value 

Na (mg.kg-1) 

19ROH 

R1 20.87 35.29 14.42 2.027 0.1356 

R2 19.08 20.46 1.37 0.21 0.8465 

R3 22.74 23.00 0.25 0.509 0.6456 

R4 30.14 66.14 36.01 2.808 0.0674 

19STU 

R1 37.74 32.56 -5.18 -1.957 0.1451 

R2 31.96 31.41 -0.55 -0.141 0.8967 

R3 31.74 28.57 -3.17 -3.464 0.0405 

R4 41.01 29.69 -11.32 -8.896 0.003 

20STU 

R1 36.14 33.34 -2.81 -2.407 0.0952 

R2 28.50 20.12 -8.38 -6.427 0.0076 

R3 29.13 20.17 -8.96 -11.991 0.0012 

R4 27.91 20.54 -7.37 -4.992 0.0155 

20ROH 

R1 28.79 23.42 -5.36 -0.677 0.5465 

R2 27.81 23.35 -4.46 -15.588 0.0006 

R3 30.62 19.49 -11.13 -96.128 <0.0001 

R4 34.16 18.25 -15.91 -2.673 0.0754 
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Table S 3.9. (Cont.) 

Elements Env Irrigation level Pre-Sampling Post-Sampling Mean Difference (Post-Pre) t ratio p-value 

Fe(mg.kg-1) 

19ROH 

R1 316.15 251.84 -64.31 -2.771 0.0695 

R2 293.57 270.64 -22.93 -1.285 0.289 

R3 310.25 237.47 -72.77 -2.536 0.0849 

R4 242.63 180.58 -62.05 -2.825 0.0664 

19STU 

R1 592.73 461.22 -131.51 -13.347 0.0009 

R2 711.37 541.74 -169.62 -14.321 0.0007 

R3 640.83 582.04 -58.79 -2.761 0.07 

R4 619.34 569.66 -49.68 -1.884 0.156 

20STU 

R1 620.82 560.81 -60.01 -6.113 0.0088 

R2 620.80 626.74 5.93 0.266 0.8071 

R3 557.64 517.83 -39.81 -20.042 0.0003 

R4 475.73 403.05 -72.69 -4.214 0.0244 

20ROH 

R1 304.44 259.86 -44.58 -38.105 <0.0001 

R2 349.78 321.58 -28.20 -1.102 0.3509 

R3 327.94 334.31 6.37 0.776 0.4941 

R4 376.17 355.38 -20.78 -1.651 0.1972 
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Table S 3.10. (Cont.) 

Elements Env Irrigation level Pre-Sampling Post-Sampling Mean Difference (Post-Pre) t ratio p-value 

Mn (mg.kg-1) 

19ROH 

R1 90.98 56.02 -34.95 -2.331 0.102 

R2 135.65 59.70 -75.96 -8.227 0.0038 

R3 81.14 77.83 -3.31 -0.023 0.8322 

R4 95.78 72.14 -23.64 -1.979 0.1421 

19STU 

R1 101.44 47.64 -53.81 -93.53 <0.0001 

R2 80.69 41.65 -39.04 -19.547 0.0003 

R3 87.78 31.78 -56.00 -96.994 <0.0001 

R4 96.94 38.24 -58.71 -34.063 <0.0001 

20STU 

R1 135.06 63.00 -72.06 -24.9415 0.0001 

R2 129.75 65.42 -64.33 -110.851 <0.0001 

R3 160.87 69.53 -91.34 -105.655 <0.0001 

R4 212.67 129.47 -83.20 -9.584 0.0024 

20ROH 

R1 142.83 116.57 -26.26 -9.006 0.0029 

R2 136.90 103.76 -33.14 -6.35 0.0079 

R3 172.14 119.48 -52.66 -12.124 0.0012 

R4 151.41 124.67 -26.73 -1.798 0.169 
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Table S 3.11. Cont. 

Elements Env Irrigation level Pre-Sampling Post-Sampling Mean Difference (Post-Pre) t ratio p-value 

Zn (mg.kg-1) 

19ROH 

R1 2.67 2.37 -0.30 -1.299 0.2848 

R2 4.17 2.48 -1.69 -4.663 0.0186 

R3 2.85 2.51 -0.34 -0.932 0.419 

R4 2.63 2.29 -0.35 -1.347 0.2707 

19STU 

R1 0.93 0.57 -0.37 -1.732 0.1817 

R2 0.81 0.62 -0.20 -3.464 0.0405 

R3 0.88 0.56 -0.31 . . 

R4 0.72 0.60 -0.12 -5.196 0.0138 

20STU 

R1 0.96 0.75 -0.22 -8.66 0.0032 

R2 0.90 0.73 -0.17 . . 

R3 0.84 0.65 -0.19 -5.196 0.0138 

R4 0.95 0.76 -0.19 -0.866 0.4502 

20ROH 

R1 5.05 4.26 -0.79 -8.66 0.0032 

R2 5.39 4.97 -0.42 -2.309 0.1041 

R3 5.00 4.58 -0.42 -15.588 0.0006 

R4 4.73 4.44 -0.29 -8.66 0.0032 
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Table S 3.12. (Cont.) 

Elements Env Irrigation level Pre-Sampling Post-Sampling Mean Difference (Post-Pre) t ratio p-value 

Cu (mg.kg-1) 

19ROH 

R1 1.04 0.91 -0.12 -5.196 0.0138 

R2 1.28 0.96 -0.32 -12.124 0.0012 

R3 0.85 1.14 0.29 4.041 0.0273 

R4 1.19 1.60 0.40 . . 

19STU 

R1 0.77 0.61 -0.16 3x10-5 <0.0001 

R2 0.58 0.60 0.03 . . 

R3 0.65 0.57 -0.08 . . 

R4 0.67 0.60 -0.07 -1.732 0.1817 

20STU 

R1 0.95 0.73 -0.23 -3.464 0.0405 

R2 0.89 0.74 -0.15 -0.866 0.4502 

R3 1.12 0.76 -0.36 -12.124 0.0012 

R4 1.35 1.17 -0.18 -5.196 0.0138 

20ROH 

R1 1.66 1.54 -0.12 -1.732 0.1817 

R2 1.77 1.78 0.02 . . 

R3 1.86 1.68 -0.18 -3.464 0.0405 

R4 1.62 1.56 -0.06 -0.346 0.7519 
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Table S 3.13. (Cont.) 

Elements Env Irrigation level Pre-Sampling Post-Sampling Mean Difference (Post-Pre) t ratio p-value 

B (mg.kg-1) 

19ROH 

R1 0.41 0.70 0.29 . . 

R2 0.53 0.96 0.43 1.732 0.1817 

R3 0.44 0.95 0.50 8.66 0.0032 

R4 0.48 1.10 0.62 5.196 0.0138 

19STU 

R1 0.37 0.51 0.14 1.732 0.1817 

R2 0.41 0.43 0.02 1.732 0.1817 

R3 0.40 0.98 0.58 3.81 0.0318 

R4 0.37 0.81 0.44 3.117 0.0526 

20STU 

R1 1.16 1.48 0.32 12.124 0.0012 

R2 1.33 1.32 -0.02 -0.577 0.6042 

R3 1.45 1.33 -0.12 -1.732 0.1817 

R4 1.27 1.25 -0.02 . . 

20ROH 

R1 1.37 1.59 0.21 . . 

R2 1.52 1.59 0.07 1.732 0.1817 

R3 1.55 1.60 0.04 1.732 0.1817 

R4 1.62 1.58 -0.04 . . 
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Figure S 3.1. Picture of R11-2933 (slow witling parent) and R11-1057 (fast wilting parent) at R4 stage 
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Figure S 3.2: Atmometer setting up and installation 
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Figure S 3.3. The layout of the experimental design. Each strip (R1, R2, R3, and R4) represents a different irrigation onset composed 

by 10 blocks. Each block was composed of 2 PC, 2 CC, 7 FW, and 9 SW that were randomized. The order of the picture is just for the 

presentation, but lines were randomized. 
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Figure S 3.4: Cumulative precipitation in mm from emergence to harvest time (May 30 to October 31) from each environment 

19ROH, 19STU, 20ROH, and 20STU 
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Figure S 3.5: Cumulative potential evapotranspiration in mm from emergence to harvest time. from each of the environments 

evaluated. The calculation in May was for 2 days (May 30 and May 31) 
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Figure S 3.6. Soil pH evaluation of different irrigation onsets (R1, R2, R3, and R4) in four different environments at either pre-

planting or pre-harvest.  

 

Figure S 3.7. Soil Electrical conductivity evaluation of different irrigation onsets (R1, R2, R3, and R4) in four different environments 

at either pre-planting or pre-harvest. 
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4. CHAPTER IV 

Nested association mapping for wilting, maturity, seed yield and seed yield genomic 

selection under reduced irrigation in two RILs soybean populations 
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ABSTRACT 

Soybean [Glycine max (L.) Merr.] is a diploid legume species. It provides affordable 

source of protein to animals and humans. However, exploring molecular approaches to increase 

yield genetic gain has been one of the main challenges for soybean breeders and geneticists due 

to climate change. Therefore, the objectives of this study were to conduct a nested association 

mapping (NAM) for wilting, maturity, and seed yield and to identify superior individuals in seed 

yield using genomic approach under different irrigation onsets. A total of 167 genotypes along 

with commercial checks were evaluated under four different irrigation onsets. Soybean was 

genotyped using the Infinium Soy6KSNP Beadchips. The results indicated that: 1) a total of 4, 

39, and 7 SNPs were found to be significantly associated with canopy wilting, maturity, and seed 

yield, respectively, using the combined data under different irrigation onsets obtained over four 

environments (location-year combination) 2) overall genomic selection accuracy was moderate 

ranging from 0.39 to 0.44, and genomic selection was efficient to select superior soybean lines 

under reduced irrigation.   
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INTRODUCTION 

Climate change is a major threat to food insecurity in the 21st century (Gowdy, 2020). 

The food and feed sectors are dependent on nutrient-rich crops, such as soybean [Glycine max 

(L.) Merr.]. Soybean a diploid legume (2n= 2x= 20), is one of the most important legumes 

worldwide by providing oil and being a source of vegetable protein. It provides about 60% of the 

vegetable-derived proteins and more than 57% of oilseed (USDA FAS, 2018). Developing 

soybean-derived biofuel has been recently increasing, with an estimated value exceeding $30 

billion in the United States (U.S.) (SoyStats, 2022). 

As soybean cultivation is usually rain-dependent, water is usually the main factor for 

soybean productivity (Ohashi et al., 2006; Sinclair et al., 2014; Anda et al., 2020; Mekonnen et 

al., 2020; Xiong et al., 2021). In the U.S. Mid-South, soybean production depends heavily on 

irrigation (Reba & Massey, 2020), with 85% of soybean acres currently supplemented with water 

in Arkansas (AFBF, 2022). Water shortage during soybean developmental and growth stages 

could be detrimental to soybean production. Evidence of the negative effects of drought stress on 

soybean has been reported (Specht et al., 1999; Baghel et al., 2018; Dogan et al., 2007). 

Developing soybean varieties that meet the needs of end users is critical. 

Therefore, soybean breeding programs aiming at improving drought tolerance is still 

required. Breeding for drought tolerance can make use of good understanding of the genetic 

control for drought tolerance. According to Clement et al. (2008), as part of the Fabaceae 

family, soybean is one of the most drought-sensitive legumes. Canopy wilting is the first visible 

symptom of water stress, and a number of genotypes have been identified as slow wilting under 

field conditions (Carter et al.; 1999, 2006). 
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Several QTL mappings were conducted for canopy witling to detect genomic regions 

associated with that trait. Research conducted by Charlson et al. (2009) found seven regions on 

chromosomes Gm08, Gm13, Gm14, and Gm17 using 93 Recombinants Inbred Lines (RILs). 

Genome-wide association studies (GWAS) are a recent tool developed to identify quantitative 

trait loci for various traits. GWAS studies on soybean slow wilting were conducted by Kaler et 

al. (2017), reporting 21 single nucleotide polymorphisms (SNPs) associated with the trait located 

within a gene or very close to genes that had a reported biological connection to transpiration or 

water transport. 

The use of molecular markers through marker-assisted selection (MAS) in soybean 

breeding program has been thriving. Tools such as quantitative trait loci (QTL), genome-wide 

association mapping (GWAS), nested association mapping (NAM) have increasingly become 

popular in efforts towards uncovering the genetic basis of traits of interest in agriculture and 

identifying new markers. Genome-wide association studies (GWAS) have more recently been 

extensively used to compensate for drawbacks of the conventional QTL mapping approach. In 

comparison, GWAS is able to survey numerous historical recombination events in collections of 

landraces, varieties and breeding lines (Flint-Garcia et al., 2003), and achieve a higher resolution 

of QTL mapping than solely on biparental segregating populations. GWAS has been particularly 

successful in interpreting the associations between molecular markers and traits (Si et al., 2016; 

Yano et al., 2016), although the filter of rare variants and inherent population structure in natural 

populations tends to reduce statistical power (Xiao et al., 2017). Rare variants may be the cause 

of the phenotypic variant of interest and thus a source of the missing heritability (Eichler et al., 

2010). Moreover, it is hard to detect variants underlying traits of interest correctly if they are 

significantly correlated to population structure (Flint-Garcia et al., 2005). 
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To overcome spurious associations and increase the detection power of rare alleles in 

crop species, multi-parent cross populations using different cross designs have been developed, 

such as Nested Association Mapping (NAM), Multi-parent Advanced Generation Inter-Crosses 

(MAGIC), and Random-open-parent Association Mapping (ROAM) (Yu & Buckler, 2006; 

Dell’Acqua et al., 2015; Xiao et al., 2016). The NAM population design was first proposed in 

maize (Yu and Buckler, 2006; Yu et al., 2008), and the first example in maize consisted of 5,000 

RILs derived from 25 segregating families generated from crossing the homozygous B73 line 

with 25 lines representing a wide coverage of the domesticated maize genepool (McMullen et al., 

2009). 

Quantitative traits have proven difficult to select for using MAS based on the fact that 

they are polygenic and loci responsible for variation in these traits often have small effects. 

Meuwissen et al. (2001) introduced the concept of genomic selection (GS) to take advantage of 

genotypic data to predict the performance of genotypes for complex traits. The main difference 

between MAS and GS, is that GS utilizes all markers across the genome to predict the 

performance of traits of interest, while MAS relies on a few markers to select specific QTL often 

associated with qualitative traits. Moreover, Heffner et al. (2011) reported that GS provided 

threefold and twofold genetic gain per year compared to MAS for maize and winter wheat 

respectively, when costs were equivalent. With the advent of new genotyping platforms, such as 

single nucleotide polymorphism (SNP) beadchip arrays, Diversity array Technology (DArT), and 

genotyping-by sequencing (GBS), high-throughput genotyping has made GS more affordable 

and efficient (Rasheed et al., 2017). Genomic selection has been frequently used to achieve faster 

genetic gain in plant breeding. There have been several studies examining the potential for GS in 

soybean but relatively few compared to maize and wheat.  
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The research objectives of this study were to conduct a nested association mapping study 

to identify QTL associated with wilting, maturity, and seed yield in soybean under reduced 

irrigation and to carry out a genomic selection study to select superior high yielding lines that are 

potentially drought tolerant. 

MATERIALS AND METHODS 

Plant materials and experimental design 

A Nested Association Mapping (NAM) population composed of two populations of 

recombinant inbred lines (RILs) was constructed from the crosses of N07-14753/R11-1057 

(Pop1) and R11-2933/R11-1057 (Pop2). The common parent was R11-1057, a high-yielding line 

with maturity group 5 (MG 5); while the other parent has MG V: N07-14753 (high yielding line) 

and R11-2933 (drought tolerant: slow wilting line). As the R11-1057 was the common parent of 

the two populations, the NAM was also a half-sib population. A total of 165 F4:7 breeding lines 

(73 from Pop1 and 92 from Pop2) along with two parents checks (PC) R11-2933 and R11-1057 

and two commercial checks (CC) based on seed availability (AG55X7, AG56X8, P53AG7X, 

P55A49X) were grown in four environments (location year-combination) using an augmented 

strip-plot design under four furrow-irrigation onsets. Environments included Stuttgart, AR (silt 

loam) in 2019 and 2020 (19STU and 20STU); and Rowher (silt loam) in 2019 and 2020 (19ROH 

and 20ROH), AR. The four irrigation onsets were: 1) full irrigation (irrigation initiated at 

initiation of flowering (noted as R1; Fehr & Caviness, 1977), 2) irrigation initiated at full 

flowering (noted as R2), 3) irrigation initiated at beginning of pod development (noted as R3), 

and 4) irrigation initiated when pods were 2 cm at one of the four uppermost nodes (noted as 

R4). The irrigation at each designated growth stage was triggered using the decision table 

developed by Henry et al. (2014) for atmometer measurements based on 50% of the plots 
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reaching the desired stage. Each strip of irrigation onset (R1, R2, R3, and R4) was composed of 

ten blocks. One block was composed of four checks (two PC and two CC) and 16 randomly-

assigned genotypes, including seven Pop1 and nine Pop2 genotypes where individual lines were 

a random factor within populations. The plots consisted of two rows 0.76 m apart, 4.6 m long 

with 1.5 m alley. Standard agronomic practices were used at each location, including fertilization 

to recommended levels as defined by Slaton et al. (2013). 

Phenotyping 

To reduce impact of diurnal variation in evaporative demand, rating of canopy wilting 

was conducted between 11: 00 am and 3:00 pm. Plots were rated prior to the onset time of 

triggering irrigation using a score of 0 (no wilting) to 9 (plant death). When 95 % of the plots 

reached mature pod color (Fehr & Caviness, 1977), maturity was recorded and expressed as the 

number of days after 31st August. Seed yield (kg/ha) was calculated from plot moisture, weight, 

and dimensions.  

Genotyping and quality control 

DNA was extracted from young leaves of each lines using the 

hexadecymethylammonium bromide CTAB protocol (Doyle, 1990). Soybean lines were 

genotyped using the Infinium Soy6KSNP Beadchips (Song et al., 2020) in the Soybean 

Improvement Laboratory USDA-ARS, Beltsville. Of the 6,000 single nucleotide polymorphism 

(SNPs), a total of 3,733 were maintained after SNPs filter (missing data <20 %, heterozygosity 

<10%, minor allele frequency>5%). Those SNPs were used for further analysis in the nested 

association (NAM) and the genomic selection (GS) analysis. 
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Best linear unbiased prediction (BLUP) 

Data were run in R using the lme4 package (Bates et al., 2015). Each irrigation onset (R1, 

R2, R3, and R4) was separately analyzed using the following statistical model:  

𝑌𝑖𝑗𝑘 = 𝜇 + 𝐺𝑖 + 𝐸𝑗 + 𝐺𝑖 + 𝐵𝑘(𝑗)+ 𝐺𝐵𝑖𝑘(𝑗) +  𝑒𝑖𝑗𝑘 

where i was the number of genotypes classes (1…169), j number of the environments 

19ROH, 19STU, 20ROH, and 20STU (1,2,3,4), and k: number of the blocks (1…10) 

where 𝑦𝑖𝑗𝑘 was the mean response of the ijk-th observation (canopy wilting, maturity, 

seed yield), μ the overall mean response; 𝐺𝑗 the genotype, 𝐸𝑗 the environment, 𝐵𝑘(𝑗) the block 

nested within the environment, 𝐺𝐵𝑖𝑘(𝑗) was the interaction between the i-th genotype and the kj-

th block, and 𝑒𝑖𝑗𝑘 is the experimental error. All factors were put as random factors to generate the 

best linear unbiased prediction (BLUP) to account for variation resulting from environmental 

factors. NAM and GS analysis were performed using the BLUP values. 

Nested association mapping and candidate gene discovery 

Nested association mapping was conducted using the R package NAM (Xavier et al., 

2015) The mixed linear model designed for multiple parent intercross populations was used for 

the SNP and haplotype-based association (Wei &Xu, 2016): 

𝑌 = 𝜇 + 𝑋𝛼 + 𝑔 + 𝑒 

where 𝑌 the observed trait value (wilting, maturity, seed yield), 𝜇 was the intercept, 𝑋 

was the allele matrix from SNP/haplotype data and family information, 𝛼 was the SNP/haplotype 

effects, 𝑔 was the population structure effect, and 𝑒 was the residual effect. A logarithm of the 



 

128 

odds (LOD) threshold at 3 was used to declare SNP significant in the nested association 

mapping. 

Candidate gene(s) discovery 

Significant SNPs were used for candidate gene(s) discovery. The 40-kb region harboring 

the significant SNP was considered for candidate gene search using Soybase 

(https://www.soybase.org/) based on the SNP density. Functional annotation pertaining to 

candidate gene(s) was investigated using Soybase database as well. 

Genomic estimated breeding values (GEBVS) 

Genomic selection was carried out using 3,733 SNPs. Genomic estimated breeding 

values (GEBVs) were computed under ridge regression best linear unbiased predictor (rrBLUP) 

(Meuwissen et al. 2001). The rrBLUP model was: 

𝑌 = 𝑊𝐺𝛽 +  𝜀 

where 𝑌 was the vector phenotype (BLUP yield), 𝑊 corresponded to the incidence matrix 

relating the genotype to the phenotype, 𝐺 denoted the genetic matrix, 𝛽 indicated the marker 

effect with β~N(0, Iσ2
β), and 𝜀 was the random error. The package “rrBLUP” was used in R 

v.3.6.1 to perform the genomic selection model (Endelman, 2011). GEBVs were estimated using 

a random training population chosen from the NAM population. Since the commercial checks 

were not used of the selection, they were removed prior to the genomic selection, leaving a total 

of 165 soybean breeding lines for the analysis. We performed five-fold cross-validation 

corresponding to a training population/testing population size of 132/33. The training population 

was used to fit the model and the testing population was used to assess the accuracy of the 

model. A total of 100 replications was conducted at each level of cross-validation. Genomic 
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selection accuracy corresponded to the Pearson’s correlation coefficient between the GEBVs and 

the observed phenotypic values in the testing set (Shikha et al., 2017). The Spearman correlation 

run in JMP was done to assess GEBVs ranking of each line in each irrigation onset. And a 

principal component analysis (PCA)was performed in JMP related to each GEBVs in each 

irrigation onset.  

Lines advancement and selection based on Yield GEBVs 

A total of 25 lines were selected based on the yield GEBVs. The selection was composed 

of 12 lines that were from the top 25% across irrigation onsets, top five lines just at irrigation 

onset at R1, top five lines just at irrigation onset at R4, and three lines than performed the worst 

(the lowest GEBVs) at irrigation onset at R1 and R4, and one line that from the cross of Pop1. 

The 25 selected lines previously mentioned, along with four commercial checks (AG48X9, S49-

F5X, AG52XF0, AG53X0, and AG56X8) were grown into two experiments during the growing 

season of 2021: fully irrigated and non-irrigated in Stuttgart, AR. The experimental design was a 

randomized complete block design (RCBD) with three replications. The plots consisted of two 

rows 0.76 m apart, 4.6 m long with 1.5 m alley. Yield (kg/ha) was collected at the end of season. 

The analysis of variance (ANOVA) was done using PROC MXED in SAS (SAS Institute, Cary, 

NC), and the mean separation was assessed using Least Significant Difference (LSD) at level of 

alpha = 0.05. LSD procedure was defined as  

𝐿𝑆𝐷 =  𝑡𝛼
2

√
2𝑀𝑆𝐸𝑟𝑟𝑜𝑟

𝑛
 

with 𝑡𝛼

2
 being the critical value from the t-table and having a degree of freedom [df(Sum 

of Square of the Error)] corresponding to the difference between the number of observations and 
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the number of replications, and n being the number of replications, 𝑀𝑆𝐸𝑟𝑟𝑜𝑟 is the mean square 

of the error.  

RESULTS  

Nested association mapping (NAM) 

NAM was conducted to identify SNP makers associated with wilting, maturity, and seed 

yield. There were no QTLs detected at R1 and R2 for canopy wilting that exceeded the LOD 

threshold (3); however, a total of four QTLs were found to be associated with canopy wilting at 

R3 and R4. QTLs found at R3 were located on Gm06, Gm09, and two QTLs were located on 

Gm16 at R4 (Table 4.1). The results indicated a total of 12, 25, 2 SNPs associated with maturity 

when irrigation was withheld at R2, R3, and R4, respectively. No SNPs having an LOD greater 

than the threshold (3) for maturity was detected when irrigation was withheld at R1. All SNPs 

were found on Gm10 except one at R2 located on Gm15 (Table 4.1). Results did not show any 

significant SNPs having LOD greater than the threshold (3) for seed yield when irrigation was 

withheld at R1. But a total of 4, 2, 1 SNPs were detected when irrigation was withheld at R2, R3, 

and R4, respectively. These SNPs were located in Gm04, Gm05, Gm13, and Gm18 (Table 4.1). 

Among all traits evaluated in this study, maturity had the highest number of significant SNPs. In 

addition, there is a lack of overlap between the significant SNPs across different irrigation 

onsets, and also across different traits, indicating that selection using a marker would be difficult 

as they are complex traits.  

Candidate genes 

A total of four candidate genes were found for canopy wilting under reduced irrigation at 

R3 and R4. These candidate genes consisted of Glyma06g21495, Glyma09g04220, 
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Glyma16g162500, and Glyma16g164500 that encode for basic helix-loop-helix/leucine zipper 

transcription factor, DNA-directed RNA polymerase, alanine aminotransferase, and Zinc finger, 

DHHC-type, palmitoyltransferase, respectively (Table 4.1).  

Out of 39 SNPs found to be associated with maturity at different irrigation onsets (R2, 

R3, R4), 27 had annoted genes in their vicinity. As some SNPs were found at irrigation at R2, 

R3, and R4 at the same time, the genes found close to the top five (highest LOD) SNPs 

associated with maturity were Glyma.10g205500, Glyma.10g210000, Glyma.10g214600, 

Glyma.10g210500, Glyma.10g209600. The annotated gene Glyma.10g205500 encodes for a 

phosphoenolpyruvate carboxylase 4. Glyma.10g210000 and Glyma.10g214600 encode for 

Calcium-dependent lipid-binding and glycine-rich cell wall structural protein 2-like, 

respectively. A probable lysine-specific demethylase JMJ14-like isoform X1 and a protein kinase 

superfamily protein; IPR011009 are encoded by Glyma.10g210500 and Glyma.10g209600 

(Table 4.1).  

NAM suggested a total of 7 SNPs associated with seed yield under reduced irrigation 

(R2, R3, and R4) (Table 4.1). Of which, five were mapped in the vicinity of annotated genes. 

Glyma.18g026200, Glyma.18g028900, Glyma.18g004200, Glyma.13g181200, 

Glyma.04g003300 were the candidate genes that encode for protein YLS7-like anthranilate 

synthase 2, MACPF domain protein, mediator of RNA polymerase II transcription subunit 16, 

and short-chain dehydrogenase-reductase B, respectively (Table 4.1). 

Genomic selection 

Overall, genomic selection for seed yield was moderate. The average genomic selection 

accuracy for seed yield was 0.44, 0.39, 0.39, and 0.41 for irrigation onset at R1, R2, R3 and R4, 



 

132 

respectively. Spearman’s correlation of the GEBVs across the different irrigations were 

evaluated. Overall, correlations were positively moderate and high. The lowest Spearman’s 

correlation coefficient was found between GEBVs at R1 and GEBVs at R3 (ρ=0.51), while the 

highest was between GEBVs at R2 and GEBVs at R4 (ρ=0.81). A principal component analysis 

(PCA) was used to assess the relationship across the yield GEBVs across different irrigation 

onsets. The PCA of the GEBVs identified two distinct components. There was a deviation from 

the GEBVs at R1 from the GEBVs at R2, R3, and R4 (Figure 4.1). 

Lines advancement and selection 

Results showed a highly significant difference among genotypes (p-value <0.0001) in 

fully irrigated and non-irrigated conditions. Under irrigated conditions, AG53X0 had the highest 

yield (6166.02 kg/ha); however, it was not significant different from R18-7427 with 5672.85 

kg/ha based on an LSD of 550.29 kg/ha (Table 4.2). Moreover, yield of R18-7427 was not 

significantly different from the other commercial checks AG52XF0 (4335.77 kg/ha), S49-F5X 

(5406.78 kg/ha), AG48X9 (5489.42 kg/ha), AG56X8 (5185.72 kg/ha) (Table 4.2). There was an 

average decrease in yield of 25% under non- irrigated condition. The highest yield under non- 

irrigated condition was R18-7427 with 4640.81 kg/ha was significantly different from the 

commercial checks based on the LSD of 418.59 kg/ha (Table 4.2). By selecting the top ten 

highest yielding under irrigated and non-irrigated conditions, a total of four breeding lines 

remained in the top ten for both conditions: R18-7427, R18-7456, R18-7389, and R18-7467 

(Table 4.2). 
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DISCUSSION 

Nested Association Mapping (NAM) was conducted to identify SNP markers associated 

with the canopy wilting, maturity, and seed yield. A total of 4, 39, and 7 SNPs were found to be 

significantly associated with canopy wilting, maturity, and seed yield, respectively, using the 

combined data under different irrigation onsets obtained over four environments (location-year 

combination). Diers et al. (2018) reported a total of 19 and 23 SNPs to be associated with 

maturity and seed yield, respectively using a nested association mapping (NAM) soybean 

population. The number of significant SNPs varied across different irrigation onsets for each 

trait. 

SNPs related to canopy wilting and seed yield were distributed across the soybean 

genome and appeared not to be stable as the irrigation was delayed. However, SNPs related to 

the maturity were stable across different irrigations onsets. This could be explained that maturity 

is more heritable trait compared to canopy wilting and seed yield. Dutta et al. (2021) reported 

that heritability for maturity in soybean was 90.41 %. A recent study on genotypic and 

phenotypic parameters associated with early maturity in soybean carried by Silva et al. (2022) 

showed a heritability of 90.37 %. The most significant SNPs for maturity were found on 

chromosome 10. A total of 10 loci on chromosome 10 were reported to be associated with 

maturity in Soybase (https://www.soybase.org/). 

For the canopy-related SNPs, the 4 SNPs mapped in our study were not reported in the 

Soybase. More than 75 SNPs was identified to be related to canopy wilting in Soybase using a 

bi-parental populations. For seed yield, previous reports showed that SNP markers associated 

with yield were scattered across the soybean genome. To date, more than 170 loci have been 

associated with yield in soybean in Soybase (https://www.soybase.org/). Zatybekov et al. (2017) 

https://www.soybase.org/
https://www.soybase.org/
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mapped SNP markers associated with soybean yield on chromosomes 14, 17, and 20 while our 

study SNPs yield were detected on chromosome 04, 05, 13, and 18. Diers et al. (2018) reported 

23 loci affecting soybean yield on chromosome 16 alone. This suggests that seed yield is a 

complex trait that is trait controlled by a large number of loci (Assefa et al. 2019).  

Genomic selection (GS) for seed yield was conducted using a ridge regression best linear 

unbiased predictor model. One of the primary goals of GS is to increase genetic gain for 

economically important traits within breeding programs by reducing the breeding cycle and by 

increasing the accuracy of selection (Asoro et al., 2013; Rutkoski et al., 2015). As a first step in 

GS, defining a training population, which consists of breeding lines phenotyped for a target trait 

and genotyped with genome-wide markers, is crucial. Once trained, the model is used to 

calculate GEBVs to predict performance on a testing population based simply on genotypic 

information. The correlation between the GEBVs and the estimated genetic values is used to 

calculate the prediction accuracy. The GS method is considered cost effective when prediction 

accuracy values are high enough (Combs & Bernardo, 2013). Moreover, GS has been proven to 

be effective when dealing with complex traits (Heffner et al., 2009). In this study, GS accuracy 

was moderate ranging from 0.39 to 0.44 across different irrigation onsets. Many factors affecting 

variability in prediction accuracy values have been reported including prediction models, 

breeding schemes, training population size, the relationship between the training and the 

prediction populations, trait complexities, marker densities, and genotyping platforms (Bernardo, 

2016). 

Even though the genomic selection accuracy was moderate, it can still supplement the 

phenotypic selection and would increase the genetic gain by at least 10% (Lozada et al. 2019). 

Based on the GEBVs ranking and the PCA analysis, breeders should perform independent 



 

135 

selection experiments for soybean under full irrigation as opposed to those targeted to withstand 

any level of water restriction. In fact, by selecting superior breeding lines based on their GEBVs, 

and testing them in irrigated and non- irrigated conditions, our results indicated that some lines 

such R18-7427, R18-7456, R18-7389, and R18-7467 were high yielding and stable under 

irrigated and non- irrigated. This demonstrates the efficiency of genomic selection for a complex 

trait like seed yield.  

CONCLUSIONS 

This study reported the variation in canopy wilting, maturity, seed yield based on NAM 

population soybean genotypes. To the best of our knowledge, this is one the few reports 

investigating the genetics of canopy wilting, maturity, seed yield trait under reduced irrigation. In 

addition, we showed that genomic selection was efficient to select superior individuals. The 

results from this investigation will contribute to a better understanding of genetic architecture of 

soybean lines under reduced irrigation. Also, that breeders should perform independent selection 

experiments for soybean under full irrigation as opposed to those targeted to withstand any level 

of water restriction.   
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Table 4.1. Significant SNPs associated with canopy wilting, maturity, seed yield with their respective LOD (-log10(p_value)) value, annotated gene found within a 40-kb genomic 

region flanking the significant SNP, and functional annotation corresponding to the candidate gene. 

Traits Irrigation onset SNP Chr. 
Position 

(bp) 
LOD Gene name Functional annotation 

Canopy 

wilting 

R3 Gm06_18033759_A_G Gm06 18033759 3.09 Glyma.06g21495 basic helix-loop-helix/leucine zipper transcription factor 

R4 

Gm09_3101824_A_G Gm09 3101824 3.48 Glyma.09g04220 DNA-directed RNA polymerase 

Gm16_32340079_G_A Gm16 32340079 3.37 Glyma.16g162500 alanine aminotransferase 

Gm16_32534697_A_G Gm16 32534697 3.32 Glyma.16g164500 Zinc finger, DHHC-type, palmitoyltransferase 

Maturity R2 

Gm10_44744804_A_C Gm10 44744804 4.82 Glyma.10g214600 glycine-rich cell wall structural protein 2-like 

Gm10_46008769_G_A Gm10 46008769 3.95 NA NA 

Gm10_44274964_T_G Gm10 44274964 3.56 Glyma.10g210000 Calcium-dependent lipid-binding 

Gm10_43783265_G_A Gm10 43783265 3.4 Glyma.10g205500 phosphoenolpyruvate carboxylase 4 

Gm10_44342605_G_A Gm10 44342605 3.33 Glyma.10g210500 GATA transcription factor 9 

Gm10_44972284_T_C Gm10 44972284 3.19 Glyma.10g217300 ATP-binding ABC transporter 

Gm10_44091618_T_C Gm10 44091618 3.15 NA NA 

Gm10_46119255_G_A Gm10 46119255 3.11 Glyma.10g230400, 

Glyma.10g230300, 

Glyma.10g230500, 

Glyma.10g230600 

uncharacterized protein LOC100804894, ornithine 

cyclodeaminase/mu-crystallin, Heavy metal 

transport/detoxification superfamily protein, Heavy metal 

transport/detoxification superfamily protein 

Gm10_45863169_A_G Gm10 45863169 3.1 Glyma.10g227400 ATP-binding cassette protein 

Gm15_20639275_T_C Gm15 20639275 3.08 NA NA 

Gm10_45245539_G_A Gm10 45245539 3.02 Glyma.10g220200 F-box and associated interaction domains-containing protein 

Gm10_46069887_A_G Gm10 46069887 3.02 Glyma.10g229800 ABC transporter G family member 8-like 
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Table 4.2. Cont. 

Traits Irrigation onset SNP Chr. 
Position 

(bp) 
LOD Gene name Functional annotation 

Maturity R3 

Gm10_43783265_G_A Gm10 43783265 7.23 Glyma.10g205500 phosphoenolpyruvate carboxylase 4 

Gm10_44091618_T_C Gm10 44091618 6.28 NA NA 

Gm10_44274964_T_G Gm10 44274964 6.11 Glyma.10g210000 Calcium-dependent lipid-binding 

Gm10_44744804_A_C Gm10 44744804 5.91 Glyma.10g214600 glycine-rich cell wall structural protein 2-like 

Gm10_44342605_G_A Gm10 44342605 5.67 Glyma.10g210500 GATA transcription factor 9 

Gm10_44137020_T_C Gm10 44137020 5.66 NA NA 

Gm10_43984045_G_A Gm10 43984045 5.21 NA NA 

Gm10_44227652_C_T Gm10 44227652 5 Glyma.10g209600, 

Glyma.10g209500 

probable lysine-specific demethylase JMJ14-like isoform X1, 

Protein kinase superfamily protein; IPR011009 

Gm10_44972284_T_C Gm10 44972284 4.84 Glyma.10g217300 ATP-binding ABC transporter 

Gm10_43894668_A_G Gm10 43894668 4.26 Glyma.10g206500 myb transcription factor 

Gm10_43612052_T_G Gm10 43612052 4.08 Glyma.10g204200 two-component response regulator-like APRR2-like isoform X2 

Gm10_45245539_G_A Gm10 45245539 4.04 Glyma.10g220200 F-box and associated interaction domains-containing protein 

Gm10_43178809_G_T Gm10 43178809 3.8 Glyma.10g200100 dual specificity protein phosphatase (DsPTP1) family protein 

Gm10_45890133_C_T Gm10 45890133 3.75 Glyma.10g227700 chitinase A 

Gm10_44563220_A_G Gm10 44563220 3.72 NA NA 

Gm10_44042822_A_G Gm10 44042822 3.71 NA NA 

Gm10_46008769_G_A Gm10 46008769 3.69 NA NA 

Gm10_44553009_T_C Gm10 44553009 3.66 Glyma.10g212100, 

Glyma.10g212200, 

Glyma.10g212300 

Eukaryotic integral membrane protein, ubiquitin-conjugating 

enzyme 20, MLO-like protein 12-like 

Gm10_46177554_C_T Gm10 46177554 3.6 Glyma.10g231300 unknown protein 

Gm10_45863169_A_G Gm10 45863169 3.55 Glyma.10g227400 ABCC subfamily ATP-binding cassette protein 

Gm10_46069887_A_G Gm10 46069887 3.48 Glyma.10g229800 ABC transporter G family member 8-like 

Gm10_43107961_A_G Gm10 43107961 3.4 NA NA 
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Table 4.3. Cont. 

 

Traits 
Irrigation 

onset 
SNP Chr. 

Position 

(bp) 
LOD Gene name Functional annotation 

Maturity 

R3 

Gm10_46119255_G_A Gm10 46119255 3.38 Glyma.10g230500 Heavy metal transport/detoxification superfamily protein 

Gm10_41445184_T_C Gm10 41445184 3.34 Glyma.10g180000 Auxin-responsive protein 

Gm10_44574663_C_T Gm10 44574663 3.25 Glyma.10g212400, 

Glyma.10g212500 

tetraspanin-6, serine carboxypeptidase-like 27 

R4 
Gm10_44744804_A_C Gm10 44744804 3.4 Glyma.10g214600 glycine-rich cell wall structural protein 2-like 

Gm10_45245539_G_A Gm10 45245539 3.06 Glyma.10g220200 F-box and associated interaction domains-containing protein 

Seed yield 

R2 

Gm18_1957770_T_C Gm18 1957770 3.7 Glyma.18g026200 protein YLS7-like 

Gm18_2178121_C_T Gm18 2178121 3.58 Glyma.18g028900 anthranilate synthase 2 

Gm05_32327497_T_C Gm05 32327497 3.1 NA NA 

Gm18_347275_C_A Gm18 347275 3.07 Glyma.18g004200 MACPF domain protein 

R3 
Gm13_28868130_A_C Gm13 28868130 3.37 Glyma.13g181200 mediator of RNA polymerase II transcription subunit 16 

Gm04_282832_A_G Gm04 282832 3 Glyma.04g003300 short-chain dehydrogenase-reductase B 

R4 Gm18_9886770_G_A Gm18 9886770 3.2 NA NA 
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Table 4.4. Yield of different selected soybean lines based on GEBVs under irrigated and non- 

irrigated conditions during the summer of 2021 

Genotype Yield irrigated (kg.ha-1) Yield non-irrigated (kg.ha-1) 

R18-7427 5672.85 4640.81 

R18-7416 3782.80 4334.43 

R18-7456 5344.96 4230.28 

R18-7393 4277.32 4198.03 

R18-7463 4988.19 4115.39 

R18-7389 5287.85 4095.23 

AG52XF0 4335.77 4039.46 

R18-7414 5027.16 4017.96 

R18-7467 5500.17 3909.11 

R18-7466 5110.47 3843.94 

R18-7479 5220.66 3809.67 

S49-F5X 5406.78 3787.50 

R18-347 4742.27 3743.15 

R18-7391 4444.62 3636.99 

AG53X0 6166.03 3618.85 

R18-7462 5045.97 3607.43 

R18-7455 4931.07 3593.32 

AG48X9 5489.42 3546.96 

R18-300 4830.96 3523.44 

R18-7447 5467.92 3473.05 

R18-7395 4731.52 3454.24 

R18-7483 4295.46 3431.39 

R18-7477 4791.99 3378.31 

R18-336 4541.37 3363.53 

R18-7461 3863.43 3361.52 

R18-7475 4806.77 3295.00 

AG56X8 5185.72 3283.58 

R18-7422 5236.12 3023.55 

R18-7453 3475.74 2914.03 

R18-7397 4692.55 2885.81 

Grand mean 4889.80 3671.87 

LSD 0.05 550.29 418.59 
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Figure 4.1. Spearman’s correlation among the GEBVs in each irrigation treatment 

 

Figure 4.2. Principal component analysis among the GEBVs for R1, R2, R3, R4 stages  
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ABSTRACT 

Field experiments are subjected to spatial variability due to factors such as soil moisture, 

fertility, pH, and structure, as well as the pressure of diseases and pests. Soybean yields have 

been shown to be highly variable across fields. Controlling spatial variability could decrease the 

risk of erroneous inferences in breeding trials. This study aims at evaluating the spatial 

variability of furrow-irrigated soybean for seed yield, wilting, and maturity under four different 

irrigation levels. The field experiment was conducted in four environments (location-year 

combination). A total of 165 soybean lines of similar relative maturity (maturity group 5) along 

with commercial checks were planted in an augmented strip plot design. Irrigation treatment 

decisions were triggered using an atmometer based on a threshold at a designated growth stage. 

Data were analyzed via Analysis of Variance as a linear mixed model using a blocking structure 

(block model) and spatial covariances using range and column. Two different spatial models 

were used: exponential and gaussian. Results showed that the spatial models displayed better 

data fitting (lower AIC and/or BIC) than the block model in each different irrigation level across 

different environments and traits. Indeed, genotype ranking for seed yield was different between 

the block model and the best spatial model, suggesting that spatial adjustment may be necessary 

for soybean breeding operations under furrow irrigation. Further validation in a breeding yield 

trial demonstrated similar results of the effectiveness in terms of AIC and/or BIC of the spatial 

model compared to the block model for soybean seed yield.  
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INTRODUCTION 

Soybean [Glycine max (L.) Merr.]) is one of the most important worldwide crops, with a 

cultivated area of 126 million hectares (Mha) and a total production of 353 million tons in 2021 

with 113 million tons produced by the United States (U.S.) (FAOSTAT, 2022). It is one of the 

most economically important crops in Arkansas, providing a substantial source of revenue to 

growers, as Arkansas ranks among the top ten producers in the U.S. (USDA NASS, 2021). A 

total of 4.84 million tons of soybean are produced by more than 6,800 Arkansans farmers in 1.4 

million hectares (Mha), making it the largest crop by acreage in the state (USDA NASS, 2021). 

Arkansas is the third largest irrigated state (2.0 Mha) in the U.S. after Nebraska (2.4 

Mha) and California (3 Mha) (USDA NASS, 2021). Most of the soybean acres in Arkansas are 

irrigated, with only 15% of Arkansas soybeans rainfed (AFBF, 2021). The most common 

irrigation practice in the U.S. Mid-South is furrow irrigation (Bryant et al., 2017; Maupin et al., 

2014), which consists of creating a channel where the water can flow and percolate by gravity. It 

is a cost-efficient method as it lessens water loss by gravity and offers a quick massive irrigation 

(Brouwer et al., 1990; Bryant et al., 2017; Massey et al., 2017). The effectiveness of the furrow 

irrigation resides on a positive and continuous row grade that requires precision land grading 

(Quintana-Ashwell et al., 2020). Since most Arkansas’ soybean acres are irrigated, and the most 

common irrigation method is furrow-irrigation, the soybean breeding program at the University 

of Arkansas System – Division of Agriculture (UADA-SBP) heavily relies on said irrigation 

practices for its breeding trials, in order to have prediction environments that closely resemble 

target environments.  

In the early yield trial stages of a breeding program, a large number of new genotypes has 

to be evaluated (usually 2,000 to 5,000 new entries per year for the UADA-SBP) in non-or 

limited-replication trials. A proposed experimental design to reduce error is to use a block design 
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called the augmented experimental design which allows the adjustment of the breeding line 

means for environmental effects estimated on the repeated checks (Federer, 1956; Patterson et 

al., 1978; Morsy & Fares, 2016, Kumar et al., 2020). Moreover, field experiments are subjected 

to spatial variability which includes soil texture, fertility, and pH, among others (Wibawa et al., 

1993; Gaston et al., 2001; Tola et al., 2017). Furrow irrigation could add an extra dimension of 

variation because of water gradients on the front and back of field, and potentially unequal flows 

between rows. With large experiment sizes resulting from augmented block designs grouped by 

breeding and maturity cohorts, it is very likely to expose soybean plots to various water regimes, 

soil texture, structure, fertility, and salts (Bautista & Wallender, 1985; Bali & Wallender, 1987; 

Drewry et al., 2021; Haghnazari et al., 2015; Zaman et al., 2018). The assessment of genotypic 

effects may be inaccurate, hence lowering the precision of the breeding program's selection. 

Therefore, controlling spatial variability in field experiments is necessary to reduce the error in 

the statistical model such as the estimation of genotype values, and the risk of misleading or 

erroneous inferences (Mo & Si, 1986; Stroup, 2002). In fact, studies have shown that randomized 

block designs including complete and incomplete blocks and lattices are often not optimal and in 

consequence results in poor analysis efficiency (Casler, 2015; Yang et al., 2004). 

There are two methods for controlling spatial variation: the first uses spatial variance–

covariance structures, while the second uses smoothing techniques. In the first case, the model 

includes correlation related to the rows and columns in the field. Cullis & Gleeson (1991) used 

an autoregressive model. Gilmour et al. (1997) extended it using a linear variance model, Piepho 

& Williams (2010) discussed it. Smoothing approaches, on the other hand, were the first applied 

in agriculture by Green et al. (1985). Smoothing methods have shown to be effective for 

modeling large-scale dependency; they have the drawback of not always being able to capture 
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small-scale dependence. Our study aims at evaluating the model effectiveness of the spatial 

model using the row-column adjustment when used to control for spatial variability in furrow-

irrigated soybean research trials as compared to a linear mixed model using blocking structure. 

MATERIALS AND METHODS 

Plant materials and experimental design 

A total of 165 F4-derived breeding lines (73 derived from the cross N07-14753/R11-1057 

and 92 derived from R11-2933/R11-1057) along with four commercial checks (AG55X7, 

AG56X8, P53AG7X, P55A49X) were grown during the summer of 2019 and 2020 in Stuttgart 

(19STU and 20STU) (silt loam soil) and Rowher (19ROH and 20ROH) (silt loam soil), 

Arkansas. All lines in both progenies of the two crosses have similar relative maturity group 

(maturity group 5). The experimental design was an augmented strip-plot design under four 

furrow-irrigation conditions. The irrigation levels were: 1) full irrigation (irrigation initiated at 

initiation of flowering (R1 stage; Fehr & Caviness, 1977), 2) irrigation initiated at full flowering 

(R2 stage), 3) irrigation initiated at beginning of pod development (R3 stage), and 4) irrigation 

initiated when pods were 2 cm at one of the four uppermost nodes (R4 stage). The irrigation at 

each designated growth stage was triggered using the decision table developed by Henry et al. 

(2014) for atmometer measurements based on 50% of the plots reaching the desired stage. Each 

strip of irrigation onset (R1, R2, R3, and R4) was composed of ten blocks. One block was 

composed of four checks (two parental checks and two commercial checks) and 16 randomly 

assigned genotypes, including seven to eight and nine to ten genotypes from the first and second 

progeny of the two crosses, respectively, where individual lines were a random factor within 

populations (Figure 5.1). The plots were 4.6 m long with 1.5 m alley, and consisted of two rows 

0.97 m apart in 19ROH and 20ROH and 0.91 m apart in 19STU and 20STU. The plots consisted 
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of two rows 0.76 m apart, 4.6 m long with 1.5 m alley. The planting date was 05/30/2019, 

05/28/2019, 05/21/2020, and 05/19/2020 for 19STU, 19ROH, 20STU, and 20ROH, respectively. 

Each plot in the field was identified by a unique range and column within each environment 

(Figure 5.1). Standard agronomic practices were used at each location, including fertilization to 

recommended levels as defined by Slaton et al. (2013).  

Phenotyping 

Visual wilting severity was taken using a ten-point scale: 0 (no wilting) to 9 (plant death). 

Wilting score was rated prior to the time of triggering irrigation for each irrigation treatment. 

Rating was conducted between 11:00 am and 3:00 pm to reduce the impact of diurnal variation 

in evaporative demand. Maturity was recorded as the day when 95% of the pods in a plot had 

reached mature pod color (R8; Fehr & Caviness, 1977), and expressed as the number of days 

after 31st August. Plot seed yield (kg.ha-1) was calculated based on the moisture at harvest, the 

weight at harvest, the length of the plot, and the row spacing of the two-row plots in each 

environment. The combine harvester was a plot combine ZÜRN 150 (Zürn Harvesting GmbH & 

Co. KG, Germany).  

Data analysis  

Statistical analysis was run using PROC MIXED in SAS v. 9.4 (SAS Institute, Cary, NC) 

using three different models: linear mixed model with blocking structure; and spatial analyses 

(range and column adjustment) (Hu & Spilke, 2009) including exponential and gaussian models. 

The exponential model and the gaussian model are defined by (Hu & Spilke, 2009) as follows: 

EXP model f(dij) = exp(-dij/ɵ) and GAU model f(dij) = exp(-dij
2/ρ2)  

where dij is the distances of observations i and j in direction row and column, ɵ and ρ2 are the 

covariances parameters.  
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The linear mixed model with blocking structure was defined as  

𝑦𝑖𝑗𝑘 = 𝜇 + 𝑔𝑖 + 𝑡𝑗+𝑔𝑡𝑖𝑗 + 𝑏𝑘 + 𝑒𝑖𝑗𝑘  

where i  was number of genotypes (1…169), j the number of irrigation onsets R1, R2, R3, and 

R4 (1, 2, 3, 4) and k the number of blocks (1…10) 

The spatial designs model with spatial residuals was defined as: 

𝑦𝑖𝑗𝑘𝑙 = 𝜇 + 𝑔𝑖 + 𝑡𝑗+𝑔𝑡𝑖𝑗 + 𝑤(𝑘𝑙)+𝑒𝑖𝑗𝑘𝑙 

where i was number of genotypes (1…169), j the number of irrigation onsets R1, R2, R3, and R4 

(1, 2, 3, 4), k the number of range (1…10), and l the number of column (1…80) 

𝑦𝑖𝑗𝑘 and 𝑦𝑖𝑗𝑘𝑙 were the mean response (wilting severity score, maturity, and yield), 𝜇 the 

overall mean response in each model. The fixed effects were the genotype (𝑔𝑖), the irrigation 

level (𝑡𝑗), and the interaction irrigation level and genotype (𝑔𝑡𝑖𝑗). The random effects included 

block (𝑏𝑘) for the block design and the range and column (𝑤𝑘𝑙) for the exponential, and the 

gaussian models. The experimental errors associated with ijkth and ijklth observation is 𝑒𝑖𝑗𝑘 and 

were 𝑒𝑖𝑗𝑘𝑙 in each model.  

In each analysis, the Akaike Information Criterion (AIC) and the Bayesian Information 

Criterion (BIC) were output to evaluate how well each model fitted the data (Burnham & 

Anderson, 2004). The studentized residuals plots and the quantile-quantile (QQ) plots were also 

generated to assess the pattern of the model in each environment (19ROH, 19STU, 20ROH, and 

20STU). 

The yield Best Linear Unbiased Prediction (BLUP) for each breeding line under different 

irrigations was computed. Based on the yield BLUP for linear mixed model with blocking 



 

152 

structure and the best spatial analysis model, the top 15% (approximately 25 lines) was selected 

and the ranking of the selected lines was evaluated for consistency across models. Also, a 

Kendall correlation was also run in JMP Pro 16.0 (SAS Institute, Cary, NC) to assess the non-

parametric correlation between of the ranking of the selected lines in the linear mixed model 

with blocking structure and the spatial models in each irrigation level. 

Validation of spatial adjustment in breeding trial datasets 

To validate the efficiency of the spatial adjustment in a breeding program, an unrelated 

seed yield dataset from the 2019 Arkansas Final yield trials maturity Group 4 Early noted as 

19AF4E and 2020 Arkansas Final yield trials maturity group 4 Early noted as 20AF4E of 

UADA-SBP were used. The 19AF4E were tested in four different Arkansas furrow-irrigated 

environments arranged as a randomized complete block (RCBD) with two replications in 2019 

(Keiser, Pine Tree, Rohwer, and Stuttgart) (19KEI, 19PTR, 19ROH, 19STU, respectively). The 

20AF4E trial was evaluated in 2020 in two Arkansas furrow-irrigated environments (Rohwer and 

Shoffner) (20ROH and 20SHO) as a RCBD with two replications. PROC MIXED procedure was 

run in SAS v 9.4 with three models (linear mixed model with blocking structure, exponential, 

and gaussian models) as previously described. Models were compared using AIC and/or BIC. In 

addition, seed yield BLUPs from the blocking structure and the best spatial model were used to 

evaluate the change of ranking in each line for the 19AF4E and 20AF4E yield trials. The narrow 

sense heritability was estimated using the following equation:  

ℎ2 =
𝜎𝐺

2

𝜎𝐺
2 +

𝜎𝑒
2

𝑟

 

where ℎ2 the is narrow sense heritability, 𝜎𝐺
2 is the variance of the genotype, 𝜎𝑒

2 is the variance of 

error, and 𝑟 is the number of replications. Because F5-derived RILs were used in this study, 𝜎𝐺
2 
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was composed entirely of additive variance and additive × additive epistasis variance, with 

negligible variance associated with other components of dominance variance. As the result, this 

heritability should be considered as narrow sense heritability.  

RESULTS 

Comparison of the different models for wilting, maturity, and seed yield  

Results showed that AIC and/or BIC of the exponential and gaussian models were 

smaller than those of the linear mixed model with blocking structure and very similar between 

each other. Moreover, we observed that genotype was a significant factor for the linear model 

with blocking structure (p-value < 0.05); however, there was no significant difference in terms of 

the wilting severity for the environment 19STU and 19ROH (p-value > 0.05) for the exponential 

and the gaussian models (Table 5.1). Results showed that there was a highly significant 

difference (p-value < 0.01) of the irrigation treatment on the wilting severity for the mixed model 

with blocking structure, exponential and gaussian models, except for 19ROH environment for 

the gaussian model. Statistical tests on the effect of the interaction between genotype and 

irrigation showed no statistically significant differences for 19ROH and 19STU environments for 

the spatial models, while there was a highly significance (p-value < 0.0001) for the environment 

20ROH and 20STU across all models (Table 5.1). The QQ plots for the wilting severity (Figure 

5.2) indicated an improvement of the spatial models compared to the mixed model with blocking 

structure. Non- spatially adjusted mixed model with blocking structure showed significant 

deviation of the predicted from the observed values. However, the exponential model showed 

best fit as the points approximately followed a straight line. The studentized residuals plots 

(Figure 5.3) showed a heteroscedasticity for all the models. The residual values followed 

straight lines, as result of the discrete categorical scale used to rate canopy wilting. 
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Analysis on maturity displayed akin results as the wilting severity in terms of the 

efficiency of the spatial model. In fact, a generally smaller BIC were found for the exponential 

and the gaussian models (Table 5.2) as compared to the linear mixed model with blocking 

structure. However, AIC value for spatial models were slightly lower than the linear mixed 

model with blocking structure. Significant (p-value < 0.05) maturity differences among the 

genotypes were detected by the three models across all locations, except for the 19STU for the 

exponential model, and for 19ROH, 19STU, and 20STU for the gaussian model (Table 5.2). The 

effect of irrigation on maturity was found to be statistically significant for all environments and 

all models, except for 19STU for the exponential and 19ROH for the gaussian model. Regarding 

the interaction between irrigation and genotype on maturity, there was a discrepancy of results 

between the two spatial models. No significant interaction was discovered across all 

environments for the gaussian model except for 20ROH; however, the exponential and the linear 

mixed model with blocking structure models both showed significant interactions between 

genotypes and irrigation except 19STU and 20STU and (Table 5.2). When comparing the spatial 

models to the blocking structure models, the QQ plots for maturity (Figure 5.4) showed an 

enhancement in terms of the linearity of plots. Also, all of the models demonstrated 

heteroscedasticity for the studentized residuals plots (Figure 5.5).  

According to the AIC and/or BIC, the spatial models were found to be the best-fitting 

models in all environments for the seed yield (Table 5.3). The exponential model was the best-fit 

spatial model for all environments. Variation among genotypes was not significant for two 

environments (19ROH and 19STU; p-value > 0.05) in the linear mixed model with blocking 

structure model but was significant in all environments with the exponential model (Table 5.3). 

Also, a significant irrigation effect on seed yield in all four environments was observed for the 
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linear mixed model with blocking structure and the gaussian models; however, the exponential 

model showed no significance for the 19STU environment. Finally, all models were consistent in 

terms of the significance of the interaction terms across all four environments. The Studentized 

residuals plots (Figure 5.7) showed a homoscedasticity for the spatial model and 

heteroscedasticity for the linear mixed model with blocking structure model. The spatial models 

outperformed the linear mixed model with blocking structure model as observed at the QQ plots 

for yield data (Figure 5.6), for the non-spatially adjusted design, the predicted values were 

considerably different from the observed values. The exponential model, on the other hand, had 

the best match, with the points roughly following a straight line. 

Results of BLUP and ranking of the augmented design and the exponential models are 

summarized in the Supplementary Table S 5.1. We observed a reduced rank correlation between 

mixed model with blocking structure and the exponential models in our study. Indeed, in our 

study the spatial model (exponential model) showed better fit than the linear mixed model with 

blocking structure model. The Kendall’s correlation between the yield BLUPs of genotypes 

between the two models was calculated for each irrigation treatment, and we observed that the 

correlation between the augmented design model and the exponential model was 0.72, 0.65, 

0.74, and 0.58 for R1, R2, R3, and R4 irrigation treatment, respectively (Figure 5.8, 

p-value < 0.0001). 

Selection of the top 25 of the highest yielding breeding lines revealed a coincidence of 

70% of selected breeding lines between the two models (the linear mixed model with blocking 

structure and exponential models) for the results of the irrigation at R1. However, some breeding 

lines that ranked top five in the linear mixed model with blocking structure model, for instance 

R18-7479, was poorly ranked in the exponential model (33rd). On the other hand, the line 
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R18-367 ranked 7th in the exponential model and placed 29th in the linear mixed model with 

blocking structure model. The results of irrigation at R2 showed that there was a total of 56% of 

the overlapping of the selected breeding lines between the blocking structure and the exponential 

model selections. Nonetheless, big differences were observed, for instance genotype R18-7411 

that ranked second place in the exponential model was positioned 43rd in the blocking structure 

model. On the other side, the genotype R18-7463 placed second place in the blocking structure 

model was ranked 149th in the exponential. For the results of the irrigation at R3, we observed 68 

% of overlap, while the R4 had 56 % of overlap between the blocking structure and the 

exponential model selections. Despite being chosen in the top 15% in the blocking structure 

model for the onset at R3, R18-7453 ranked low in the exponential model (42nd). For genotype 

R18-323, the results indicated a ranking of sixth in the exponential model at irrigation R4; but, 

when the yield data was analyzed as a linear mixed model with a blocking structure model, R18-

323 ranked 27th.  

Validation of spatial adjustment in breeding trial datasets 

Similar analysis comparing the two spatial models and blocking structure model was run 

from the 2019 and 2020 Arkansas Final yield trials maturity Group IV Early (19AF4 and 

20AF4E) in the Soybean Breeding Program of Arkansas. Our results stated that the spatial 

models outperformed the blocking structure model for seed yield in fully-irrigated breeding 

trials. Lower AIC and/or BIC were reported for the exponential model (Table 5.4) for seed yield 

in each environment than the blocking structure model. The effect of genotype on seed yield was 

significant for 19KEI in the blocking structure model from the 19AF4E (Table 5.4); however, no 

statistical difference among genotypes was found when the spatial model was applied. In the 

same way for the 20AF4E, there was a statistical difference (p-value < 0.05) of genotype on 
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yield in 20ROH, but the same environment analyzed with the exponential and gaussian models 

showed no statistical genotypic effects.  

The 19AFE4 trial consisted of 34 entries. The top 10 high yielding genotypes selected by 

the exponential model included two genotypes (R13-1463 and R17-2000) that were not selected 

by the blocking structure model (Supplementary Table S 5.2); since these analyses are 

retrospective, there is no information on the performance of said genotypes in subsequent 

breeding stages. Finally, up to the seventh ranked genotype, the same genotypes were selected 

for both block and exponential models. Unlike the 19AF4E, the 20AF4E trial (composed of 19 

entries) revealed a similar ranking among the genotypes for the exponential and block models 

(Supplementary Table S 5.3). Heritabilities in each location (Table 5.5) for the blocking 

structure model and the exponential model showed that there was an average improvement 

of 6%.  

DISCUSSION 

One of the most critical aspects of agricultural experimentation is the proper choice of 

experimental design to control field heterogeneity, especially for large experiments (Casler, 

2015; Piepho et al., 2015). According to Fisher (1937), well-designed experiments are based on 

the three principles: randomization, replication, and local control. Local control or blocking and 

randomization are associated with controlling spatial variation. The purpose of blocking is to 

decrease the variation between plots by defining a homogeneous block. Therefore, blocking is an 

effective way to control experimental error (Casler, 2015), but it is not enough in a situation 

where field heterogeneity and the size of the experiment are large (Brownie et al., 1993). 

Furthermore, designs including blocks without considering the real spatial variation among 

experimental units can strongly decrease the effectiveness of an experiment (Casler, 2015).  
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Our results showed that, across different environments and traits, the exponential model 

had the lower AIC and/or BIC, resulting in a greater efficiency compared to the linear mixed 

model with blocking structure. The smaller AIC and/or BIC, the better the model because of a 

lower test error (Hoefler et al., 2020). Range–column designs (Williams et al., 2006) were 

specifically created to control field heterogeneity. Therefore, models with more covariance 

parameters (range and column vs block) fit better than those with a simpler structure (Duarte & 

Vencovsky, 2005). When there is a large number of treatments where spatial variability resides, 

spatial models better suit the data (Müller et al., 2010). In our study, an exemplary data at 

irrigation R1 in 20STU of the spatial trend of unadjusted seed yield (raw data), block, 

exponential, and gaussian could be visualized in Figure 5.9. 

Müller et al. (2010) found that in barley (Hordeum vulgare L.) and sugar beet (Beta 

vulgaris L.) trials, the best fit according to AIC for most cases was a block design. Kravchenko 

et al. (2006) stated that spatial analyses were not always superior to block designs, especially 

when the spatial structure of the variable could not be clearly defined. It is worth mentioning that 

in our study, we do not have soil sample analysis in each plot. However, because of the 

consistency of the results both in the designed experiment, and in the post-hoc reanalysis of 

breeding datasets, it is expected that the field variability resulting from furrow-irrigation 

soybeans is sufficient to justify the use of spatial adjustments in breeding plots.  

The results reported in the current study showed heteroscedasticity on the student 

residuals plots, and lack of a straight line for the QQ plot, especially for the wilting and maturity 

data, for all the three models. However, our results showed that the QQ and the student residuals 

indicated an improvement of the spatial models compared to the mixed model with blocking 

structure for the seed yield data. This improvement in error control indeed varied according to 



 

159 

the trait studied. Dependence between efficiencies and different traits has also been detected in 

other studies (Chen et al., 2018; Dutkowski et al., 2006; Paget et al., 2015).  

In yield trials, breeders need to separate genotypes based on yield differences (Casler & 

Undersander, 2000). Also, the choice of experimental designs and analysis models are needed to 

control spatial variation. Spatial variability often occurs gradually, and sometimes it is not 

captured well enough by the experimental design (Grondona & Cressie, 1991). Based on AIC 

and/or BIC, and the shape of the QQ and studentized residuals plots in our study, we selected the 

exponential model to spatially-adjust yield values of genotypes. These results agree with Duarte 

& Vencovsky (2005) that identified an autocorrelation in soybean research plot data that was 

explained using an exponential model. In their study, the authors also observed a reduction in 

p-value of genotype effects, and a change on genotype rankings after spatial adjustment, as 

compared to the non-adjusted augmented design model. In our study, an overlap of selected 

genotypes as low as 56% was detected, meaning that approximately half of the genotypes or 

lines selected from the blocking structure model was not chosen in the exponential model and 

vice versa. Stroup et al. (1994) stated that the variability in the blocks may result in inaccurate 

estimations, lowering the capacity to differentiate the best genotypes. In an actual and simulated 

wheat crop data, Borges et al. (2019) demonstrated with a large number of genotypes and a 

significative spatial variability, the right design is critical for achieving more precision and better 

estimations of genetic effects. Using the best design also helps the difficulties of differentiating 

genotypes, error effects, and improve heritabilities (Dutkowski et al., 2006). The outcomes of our 

study support other authors' assertions that spatial models can improve efficiency (Qiao et al., 

2000; Sarker, Singh, & Erskine, 2001; Borges et al., 2019; Dutkowski et al., 2006; Gezan et al., 

2010). 



 

160 

As breeding stages advanced, the number of entries in testing, and the concurrent trial 

field footprint decreases. The 19AF4E and the 20AF4E tests had a lower number of entries as 

compared to the designed experiment in our irrigation treatment study. Even though fewer 

entries and smaller trial footprint could have been hypothesized to be subject to lesser field 

variation, the exponential model showed a better fit to the data compared to the blocking 

structure model. The ranking of genotypes did differ in the 19AF4E trial, although it did not in 

the 20AF4E. Changes in line rankings affect selections and advancements. Plant breeding's 

major purpose is to choose the best genotypes; hence, the phenotypic data collection and 

interpretation are crucial in this process. As a result, the spatial analyses may have an influence 

on plant breeding selections. 

CONCLUSION  

In variety trials with large numbers of treatments, spatial analysis allowed better 

discrimination among genotypes and increased heritabilities. The spatial analysis led to a 

different ranking of the genetic materials in comparison with the non-spatial analysis, and 

selections could have been less influenced by local variation. Such differences in selections may 

have significant consequences for the outcome of plant breeding programs. 
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Table 5.1. Comparison of three different models (block model, exponential model, and gaussian model) in four environments 

(19ROH, 19STU, 20ROH, and 20STU) in terms of AIC (Akaike's Information Criteria), BIC (Bayesian Information Criteria), and 

significant of genotype effects, irrigation effects, and the interaction of the irrigation and genotype effect on soybean wilting. 

              

Model Environment AIC BIC 
p-value p-value p-value 

Genotype Irrigation Irrigation*Genotype 

Block 19ROH 307.1 307.7 <0.0001 <0.0001 0.0349 
 19STU 318.6 319.2 0.0006 <0.0001 0.0038 
 20ROH 246.8 247.7 <0.0001 <0.0001 <0.0001 

  20STU 206.6 207.2 <0.0001 <0.0001 <0.0001 

Exponential 19ROH 305.3 297.3 0.0515 0.0013 0.5207 
 19STU 316.1 308.1 0.1157 <0.0001 0.5648 
 20ROH 247.1 243.1 <0.0001 <0.0001 <0.0001 

  20STU 206.3 202.3 <0.0001 <0.0001 <0.0001 

Gaussian 19ROH 306 298 - - 0.9729 
 19STU 316 308 0.0622 <0.0001 0.5458 
 20ROH 247.1 243.1 <0.0001 <0.0001 <0.0001 

  20STU 206.3 202.3 <0.0001 <0.0001 <0.0001 

(-) the convergence criteria were not met and the model could not be run 
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Table 5.2. Comparison of three different models (block model, exponential model, and gaussian model) in four environments 

(19ROH, 19STU, 20ROH, and 20STU) in terms of AIC (Akaike's Information Criteria), BIC (Bayesian Information Criteria), and 

significant of genotype effects, irrigation effects, and the interaction of the irrigation and genotype effect on soybean maturity. 

              

Model Environment AIC BIC 
p-value p-value p-value 

Genotype Irrigation Irrigation*Genotype 

Augmented 19ROH 621.2 621.5 <0.0001 <0.0001 0.0009 
 19STU 830.1 830.7 0.0056 <0.0001 0.8032 
 20ROH 355.7 356.4 <0.0001 <0.0001 <0.0001 

  20STU 504.1 504.7 <0.0001 <0.0001 0.1612 

Exponential 19ROH 622.7 618.7 <0.0001 <0.0001 0.0007 
 19STU 381 823 . . 0.9909 
 20ROH 350.2 346.2 <0.0001 <0.0001 <0.0001 

  20STU 503.8 497.8 <0.0001 <0.0001 0.6087 

Gaussian 19ROH 624.7 618.7 . . 0.6209 
 19STU 830.8 822.8 0.0656 0.0039 0.6973 
 20ROH 352.1 346.1 0.004 <0.0001 0.0037 

  20STU 505.8 497.8 . <0.0001 0.6124 
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Table 5.3. Comparison of three different models (block model, exponential model, and gaussian model) in four different 

environments (19ROH, 19STU, 20ROH, and 20STU) in terms of AIC (Akaike's Information Criteria), BIC (Bayesian Information 

Criteria), and significant of genotype effects, irrigation effects and the interaction of the irrigation and genotype effect on soybean 

seed yield. 

              

Model Environment AIC BIC 
p-value p-value p-value 

Genotype Irrigation Irrigation*Genotype 

Block 19ROH 2113.1 2113.7 0.6196 <0.0001 0.1332 
 19STU 2269.3 2269.9 0.3968 <0.0001 0.6875 
 20ROH 2034.9 2035.6 <0.0001 <0.0001 0.1157 

  20STU 1751.2 1751.9 <0.0001 <0.0001 0.9971 

Exponential  19ROH 2094.5 2088.5 0.0027 0.0132 0.0988 
 19STU 2240.3 2234 0.0007 0.1361 0.0757 
 20ROH 2037.1 2031.1 0.0005 0.0046 0.6576 

  20STU 1732.6 1724.6 0.0002 0.014 0.0545 

Gaussian 19ROH 2113.2 2105.2 0.0577 <0.0001 0.1458 
 19STU 2254.4 2246.4 0.4485 <0.0001 0.3969 
 20ROH 2039.1 2031.1 0.0005 0.0046 0.6576 

  20STU 1738.9 1730.9 0.1142 <0.0001 0.2118 
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Table 5.4. Comparison of three different models (block model, exponential model,  and gaussian 

model) for the 2019 and 2020 Final Yield Trials (19AF4E and 20AF4E) grown in four 

environments in terms of AIC (Akaike's Information Criteria), BIC (Bayesian Information 

Criteria), and significant of genotype effects on soybean seed yield. 

Yield Trials Models Environment AIC BIC p-value genotype 

19AF4E Block 19KEI 468.2 466.9 0.0402 
  19PTR 495.2 492.6 <.0001 
  19ROH 582.3 579.7 0.0165 
   19STU 666.6 664 <.0001 
 Exponential 19KEI 469.3 465.3 0.069 
  19PTR 494.7 490.7 <.0001 
  19ROH 578.2 574.2 0.0026 
   19STU 664 658 <.0001 
 Gaussian 19KEI 471.3 465.3 0.0615 
  19PTR 496.3 490.3 0.0051 
  19ROH 579.8 575.8 0.0637 

    19STU 666 658 <.0001 

20AF4E Block 20ROH 290.2 288.9 0.0008 
   20SHO 333.2 331.9 <.0001 
 Exponential 20ROH 292.7 286.7 0.0726 
   20SHO 331.5 325.5 <.0001 
 Gaussian 20ROH 289.9 283.9 0.129 

    20SHO 331.5 325.5 <.0001  

Table 5.5. Heritability for seed yield for block model and exponential model for each 

environment for the 2019 Arkansas Final yield trials maturity Group IV Early (19AF4E) and 

2020 Arkansas Final yield trials maturity group IV Early (20AF4E) 

Environment Block Model 

Heritability 

Exponential Model 

Heritability 

19KEI 0.49 0.52 

19PTR 0.51 0.52 

19ROH 0.48 0.52 

19STU 0.77 0.84 

20ROH 0.70 0.81 

20SHO 0.85 0.87 
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Figure 5.1. Aerial image of the layout of the experimental design in the 20STU environment. 

Each strip represents a different irrigation level (R1, R2, R3, R4 growth stages). Each irrigation 

level is separated with four rows of borders.
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Figure 5.2. QQ plots for block model, exponential model, and gaussian model in each environment 19ROH, 19STU, 20ROH, and 20STU for data on soybean wilting.  
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Figure 5.3. Student residuals for block model, exponential model, and gaussian model in each environment 19ROH, 19STU, 20ROH, and 20STU for data on soybean wilting. 
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Figure 5.4. QQ plots for block model, exponential model, and gaussian model in each environment 19ROH, 19STU, 20ROH, and 20STU for data on soybean maturity. 
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Figure 5.5. Student residuals for linear mixed model with blocking structure (a), exponential model (b), and gaussian model (c) in each environment 19ROH, 19STU, 20ROH, and 

20STU for data on soybean maturity. 
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Figure 5.6. QQ plots linear mixed model with blocking structure (a), exponential model (b), and gaussian model (c) in each environment 19ROH, 19STU, 20ROH, and 20STU for 

data on soybean seed yield. 
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Figure 5.7. Student residuals linear mixed model with blocking structure (a), exponential model (b), and gaussian model (c) in each environment 19ROH, 19STU, 20ROH, and 

20STU for data on soybean seed yield.  
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Figure 5.8. Kendall correlation for BLUP yield in each irrigation level at R1, R2, R3, and R4 growth stages between the block model and the exponential model, and p-value of 

the significance of the Kendall correlation 
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Figure 5.9: Range/column exemplary plot of spatial trends for unadjusted (raw) seed yield, and 

seed yield analyzed using block, exponential, and gaussian models for the R1-irrigation 

treatment in the 20STU environment 

  



 

178 

Table S 5.1. Yield BLUPs for each irrigation level and ranking of soybean genotype for the 

block model and the exponential model grown at four Arkansas environments. 

Irrigation 

Level 
Genotype 

BLUP Yield 

Block Model 

Ranking Block 

Model 

BLUP Yield 

Exponential Model 

Ranking 

Exponential 

Model 

R1 AG55X7 41.4 40 50.0 43 

R1 AG56X8 84.0 10 121.4 11 

R1 P53AG7X -5.2 93 -4.2 87 

R1 P55A49X 53.0 30 81.7 29 

R1 R11-1057 43.4 37 65.7 38 

R1 R11-2933 10.6 72 6.0 76 

R1 R18-292 32.7 45 74.3 30 

R1 R18-293 -20.6 112 -14.6 103 

R1 R18-294 -57.8 145 -59.7 133 

R1 R18-295 -92.4 163 -98.5 153 

R1 R18-296 -0.4 86 -8.9 96 

R1 R18-297 -41.4 128 -73.4 143 

R1 R18-298 -83.2 160 -159.4 165 

R1 R18-299 8.5 75 23.3 61 

R1 R18-300 -179.4 168 -274.1 169 

R1 R18-301 -68.4 155 -49.3 125 

R1 R18-302 -1.6 87 -23.6 111 

R1 R18-303 20.0 65 -6.1 90 

R1 R18-304 7.5 79 2.9 79 

R1 R18-305 -5.7 95 -15.5 105 

R1 R18-306 -23.3 116 -45.0 122 

R1 R18-307 22.0 60 -13.2 100 

R1 R18-308 20.2 64 65.7 37 

R1 R18-309 6.1 81 -11.5 99 

R1 R18-310 -103.6 165 -125.5 160 

R1 R18-311 -62.6 150 -29.1 117 

R1 R18-312 -7.0 96 0.6 84 

R1 R18-313 0.7 84 -8.0 94 

R1 R18-314 -45.9 131 -21.3 108 

R1 R18-315 81.7 11 69.9 34 

R1 R18-316 -44.2 130 -23.0 109 

R1 R18-317 -8.6 98 5.2 77 

R1 R18-318 -81.9 159 -141.5 163 

R1 R18-319 -49.1 138 -29.6 118 

R1 R18-322 -27.7 120 -96.9 151 
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Table S 5.2 (Cont.) 

 
    

Irrigation 

Level 
Genotype 

BLUP Yield 

Block Model 

Ranking Block 

Model 

BLUP Yield 

Exponential Model 

Ranking 

Exponential 

Model 

R1 R18-323 20.7 63 24.7 59 

R1 R18-324 -1.7 88 10.3 70 

R1 R18-325 53.4 27 89.2 22 

R1 R18-326 -18.2 111 -99.5 154 

R1 R18-327 -52.1 141 -14.7 104 

R1 R18-328 -9.1 99 -69.6 135 

R1 R18-329 -28.7 122 -127.9 161 

R1 R18-330 -77.7 157 -53.6 128 

R1 R18-331 -115.4 166 -128.4 162 

R1 R18-332 -67.9 154 -75.4 144 

R1 R18-333 -52.7 142 -81.9 147 

R1 R18-334 -5.3 94 -8.2 95 

R1 R18-335 4.0 83 12.7 67 

R1 R18-336 15.2 68 6.6 75 

R1 R18-337 -63.4 151 -95.9 150 

R1 R18-338 -24.2 118 -51.9 126 

R1 R18-339 27.3 50 -73.2 142 

R1 R18-340 -79.5 158 -121.5 157 

R1 R18-341 29.0 49 10.0 71 

R1 R18-342 8.2 77 23.1 62 

R1 R18-343 22.4 58 33.0 54 

R1 R18-344 -39.1 126 -57.9 131 

R1 R18-345 -61.5 149 -70.2 137 

R1 R18-346 11.7 70 0.8 82 

R1 R18-347 -14.5 106 -58.4 132 

R1 R18-348 46.7 34 85.8 23 

R1 R18-349 23.4 56 42.8 48 

R1 R18-350 -58.4 146 -112.9 156 

R1 R18-351 -4.5 91 -55.1 129 

R1 R18-352 -5.0 92 49.8 44 

R1 R18-353 -95.1 164 -188.6 166 

R1 R18-354 -15.5 107 -46.0 123 

R1 R18-355 -46.6 134 -78.6 146 

R1 R18-356 -86.7 162 -97.4 152 

R1 R18-357 -50.5 139 -71.0 139 

R1 R18-358 29.6 48 1.6 81 

R1 R18-359 -15.7 109 -25.9 115 
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Table S 5.3 (Cont.) 

 
    

Irrigation 

Level 
Genotype 

BLUP Yield 

Block Model 

Ranking Block 

Model 

BLUP Yield 

Exponential Model 

Ranking 

Exponential 

Model 

R1 R18-362 -46.5 133 -23.2 110 

R1 R18-363 21.0 62 -10.8 98 

R1 R18-364 16.3 67 89.5 20 

R1 R18-365 -23.9 117 1.7 80 

R1 R18-366 -56.4 144 -94.9 149 

R1 R18-367 53.0 29 137.8 7 

R1 R18-368 -28.7 123 -41.9 121 

R1 R18-7389 74.4 14 135.2 8 

R1 R18-7390 -10.9 101 -75.6 145 

R1 R18-7391 71.2 15 139.2 6 

R1 R18-7392 8.5 76 -4.7 89 

R1 R18-7393 63.3 19 70.7 32 

R1 R18-7394 50.1 32 46.3 47 

R1 R18-7395 70.7 16 123.6 10 

R1 R18-7396 -75.3 156 -123.3 158 

R1 R18-7397 7.7 78 46.5 46 

R1 R18-7398 -47.4 136 -73.2 141 

R1 R18-7399 44.3 35 72.3 31 

R1 R18-7402 -15.5 108 -28.1 116 

R1 R18-7403 25.2 55 19.8 65 

R1 R18-7404 -13.0 105 -46.2 124 

R1 R18-7405 -7.2 97 -10.8 97 

R1 R18-7406 14.3 69 31.6 55 

R1 R18-7407 63.9 18 67.1 36 

R1 R18-7408 22.3 59 10.5 69 

R1 R18-7409 74.4 13 107.8 15 

R1 R18-7410 59.2 21 98.6 18 

R1 R18-7411 0.3 85 23.9 60 

R1 R18-7412 51.8 31 82.4 27 

R1 R18-7413 -67.9 153 -25.7 113 

R1 R18-7414 75.2 12 89.2 21 

R1 R18-7415 -11.4 103 -57.6 130 

R1 R18-7416 57.3 23 92.3 19 

R1 R18-7417 36.0 43 41.0 50 

R1 R18-7418 22.4 57 62.6 39 

R1 R18-7419 94.3 6 124.3 9 

R1 R18-7420 93.1 7 167.2 5 
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Irrigation 

Level 
Genotype 

BLUP Yield 

Block Model 

Ranking Block 

Model 

BLUP Yield 

Exponential Model 

Ranking 

Exponential 

Model 

R1 R18-7421 42.9 39 26.1 58 

R1 R18-7422 128.6 2 113.0 13 

R1 R18-7423 -140.0 167 -215.1 167 

R1 R18-7424 36.5 42 82.2 28 

R1 R18-7425 55.1 24 82.9 26 

R1 R18-7426 27.2 51 15.6 66 

R1 R18-7427 109.9 3 185.4 4 

R1 R18-7428 -30.5 125 -62.6 134 

R1 R18-7429 -22.9 114 -102.0 155 

R1 R18-7430 -47.0 135 8.3 73 

R1 R18-7431 -46.3 132 -38.2 120 

R1 R18-7432 -22.1 113 -2.3 85 

R1 R18-7433 -55.5 143 -72.6 140 

R1 R18-7434 17.3 66 9.8 72 

R1 R18-7435 -42.0 129 -16.5 106 

R1 R18-7436 -9.7 100 12.6 68 

R1 R18-7437 -66.0 152 -124.7 159 

R1 R18-7438 43.3 38 52.0 42 

R1 R18-7439 9.5 74 -3.9 86 

R1 R18-7442 -29.4 124 27.2 56 

R1 R18-7443 31.4 46 -6.8 92 

R1 R18-7444 4.0 82 85.8 24 

R1 R18-7445 -3.8 90 -7.8 93 

R1 R18-7446 -28.0 121 -70.8 138 

R1 R18-7447 -60.9 148 4.8 78 

R1 R18-7448 43.5 36 34.8 53 

R1 R18-7449 26.8 52 20.1 64 

R1 R18-7450 -50.8 140 -93.5 148 

R1 R18-7451 40.2 41 100.3 17 

R1 R18-7452 58.8 22 67.2 35 

R1 R18-7453 53.6 25 35.8 52 

R1 R18-7454 34.0 44 83.5 25 

R1 R18-7455 -58.5 147 -23.7 112 

R1 R18-7456 49.7 33 58.1 40 

R1 R18-7457 -183.5 169 -221.4 168 

R1 R18-7458 -23.1 115 -25.8 114 

R1 R18-7459 -17.8 110 -53.1 127 
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Irrigation 

Level 
Genotype 

BLUP Yield 

Block Model 

Ranking Block 

Model 

BLUP Yield 

Exponential Model 

Ranking 

Exponential 

Model 

R1 R18-7460 59.7 20 114.8 12 

R1 R18-7461 30.6 47 47.1 45 

R1 R18-7462 -48.3 137 -14.1 102 

R1 R18-7463 209.7 1 266.0 1 

R1 R18-7464 -11.8 104 0.6 83 

R1 R18-7465 21.8 61 -6.4 91 

R1 R18-7466 7.4 80 -4.3 88 

R1 R18-7467 -3.0 89 42.6 49 

R1 R18-7468 53.4 28 52.8 41 

R1 R18-7469 26.8 53 26.2 57 

R1 R18-7470 89.7 9 200.3 3 

R1 R18-7471 69.3 17 100.5 16 

R1 R18-7472 -25.5 119 -13.6 101 

R1 R18-7473 102.1 4 213.8 2 

R1 R18-7475 25.5 54 20.7 63 

R1 R18-7476 -11.3 102 -30.5 119 

R1 R18-7477 93.0 8 112.8 14 

R1 R18-7478 -84.6 161 -145.5 164 

R1 R18-7479 97.0 5 70.2 33 

R1 R18-7482 10.1 73 -18.1 107 

R1 R18-7483 53.5 26 36.6 51 

R1 R18-7484 -41.2 127 -70.2 136 

R1 R18-7486 11.1 71 6.8 74 

R2 AG55X7 41.7 40 31.8 37 

R2 AG56X8 74.0 11 48.5 19 

R2 P53AG7X -1.2 93 1.8 87 

R2 P55A49X 60.1 19 41.5 27 

R2 R11-1057 34.0 47 30.4 41 

R2 R11-2933 44.2 37 25.6 47 

R2 R18-292 50.2 30 35.0 32 

R2 R18-293 -61.7 149 -29.7 133 

R2 R18-294 26.8 57 19.0 57 

R2 R18-295 -104.3 164 -63.9 158 

R2 R18-296 -40.2 130 -49.9 149 

R2 R18-297 -18.6 110 -31.0 135 

R2 R18-298 -47.4 136 -7.7 103 

R2 R18-299 49.6 33 30.9 39 
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Irrigation 

Level 
Genotype 

BLUP Yield 

Block Model 

Ranking Block 

Model 

BLUP Yield 

Exponential Model 

Ranking 

Exponential 

Model 

R2 R18-300 -54.6 142 -3.0 92 

R2 R18-301 -22.4 113 -18.1 114 

R2 R18-302 -70.9 153 -50.7 152 

R2 R18-303 -14.1 104 -9.8 105 

R2 R18-304 54.2 28 38.4 29 

R2 R18-305 -31.1 124 -35.6 137 

R2 R18-306 -63.2 150 -161.3 169 

R2 R18-307 52.5 29 -30.6 134 

R2 R18-308 -99.0 163 -85.2 166 

R2 R18-309 6.6 81 16.6 63 

R2 R18-310 -59.8 145 -39.6 140 

R2 R18-311 9.6 78 24.0 50 

R2 R18-312 -96.7 161 -43.9 145 

R2 R18-313 -38.6 128 -24.6 129 

R2 R18-314 -59.9 146 -25.6 131 

R2 R18-315 27.7 56 23.9 51 

R2 R18-316 -22.6 114 2.0 84 

R2 R18-317 21.0 64 1.8 85 

R2 R18-318 -85.2 158 -67.7 160 

R2 R18-319 -81.8 157 -62.6 157 

R2 R18-322 23.3 62 -72.5 162 

R2 R18-323 -50.3 140 -50.7 153 

R2 R18-324 -93.7 160 -50.2 150 

R2 R18-325 33.9 49 43.1 26 

R2 R18-326 -97.3 162 -61.6 156 

R2 R18-327 -50.2 139 -24.0 128 

R2 R18-328 -150.4 168 -94.4 167 

R2 R18-329 -0.8 91 22.9 52 

R2 R18-330 -37.4 127 -3.2 93 

R2 R18-331 -42.7 132 -20.5 121 

R2 R18-332 -7.0 96 -14.4 110 

R2 R18-333 -25.2 118 10.9 69 

R2 R18-334 -59.3 144 -42.2 141 

R2 R18-335 25.2 60 6.0 75 

R2 R18-336 123.1 3 70.4 7 

R2 R18-337 -154.2 169 -84.0 165 

R2 R18-338 -47.3 135 -22.4 127 
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Irrigation 

Level 
Genotype 

BLUP Yield 

Block Model 

Ranking Block 

Model 

BLUP Yield 

Exponential Model 

Ranking 

Exponential 

Model 

R2 R18-339 44.5 36 38.3 31 

R2 R18-340 -79.4 155 -65.3 159 

R2 R18-341 0.0 89 12.1 66 

R2 R18-342 2.5 86 50.3 17 

R2 R18-343 46.9 34 38.4 30 

R2 R18-344 -25.9 119 -21.4 125 

R2 R18-345 -146.2 167 -107.5 168 

R2 R18-346 -28.4 123 -31.5 136 

R2 R18-347 7.7 79 0.0 88 

R2 R18-348 -45.1 134 -42.6 142 

R2 R18-349 18.7 66 49.4 18 

R2 R18-350 -106.7 165 -36.9 138 

R2 R18-351 23.1 63 46.5 21 

R2 R18-352 42.5 39 34.9 33 

R2 R18-353 -11.9 100 -44.0 146 

R2 R18-354 -12.5 101 7.6 72 

R2 R18-355 14.8 67 -24.8 130 

R2 R18-356 -22.2 112 -19.5 120 

R2 R18-357 -36.9 126 -38.0 139 

R2 R18-358 -19.4 111 -18.5 118 

R2 R18-359 -42.4 131 -11.3 108 

R2 R18-362 33.1 50 24.3 49 

R2 R18-363 54.3 26 43.2 25 

R2 R18-364 6.0 82 7.2 73 

R2 R18-365 -11.1 97 -6.8 102 

R2 R18-366 -65.6 151 -73.2 163 

R2 R18-367 57.5 22 30.1 42 

R2 R18-368 -89.9 159 -70.2 161 

R2 R18-7389 -23.2 117 25.5 48 

R2 R18-7390 -26.5 120 -18.1 115 

R2 R18-7391 -0.5 90 15.7 64 

R2 R18-7392 54.2 27 32.9 35 

R2 R18-7393 31.6 53 -0.3 89 

R2 R18-7394 55.5 25 69.1 9 

R2 R18-7395 40.4 42 58.1 12 

R2 R18-7396 65.0 14 22.5 54 

R2 R18-7397 -11.6 99 -4.4 95 
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Irrigation 

Level 
Genotype 

BLUP Yield 

Block Model 

Ranking Block 

Model 

BLUP Yield 

Exponential Model 

Ranking 

Exponential 

Model 

R2 R18-7398 59.8 20 -43.2 144 

R2 R18-7399 -16.9 108 5.1 79 

R2 R18-7402 -2.9 95 -20.9 122 

R2 R18-7403 -16.8 106 -6.8 101 

R2 R18-7404 9.8 77 -1.5 91 

R2 R18-7405 -22.9 115 -22.2 126 

R2 R18-7406 -59.9 147 -3.8 94 

R2 R18-7407 49.8 31 -6.7 99 

R2 R18-7408 -11.1 98 -42.8 143 

R2 R18-7409 35.6 45 28.8 44 

R2 R18-7410 2.2 87 -5.5 98 

R2 R18-7411 39.3 43 77.9 2 

R2 R18-7412 49.8 32 53.1 15 

R2 R18-7413 5.1 83 3.1 82 

R2 R18-7414 3.4 84 22.8 53 

R2 R18-7415 56.5 23 30.7 40 

R2 R18-7416 82.8 10 46.8 20 

R2 R18-7417 -49.2 138 -16.9 112 

R2 R18-7418 -48.8 137 -21.2 123 

R2 R18-7419 21.0 65 32.8 36 

R2 R18-7420 116.6 4 60.9 11 

R2 R18-7421 -12.6 102 17.4 60 

R2 R18-7422 146.0 1 105.1 1 

R2 R18-7423 -60.7 148 -49.2 148 

R2 R18-7424 6.6 80 27.6 45 

R2 R18-7425 62.8 16 38.4 28 

R2 R18-7426 14.6 69 10.6 70 

R2 R18-7427 11.8 73 18.1 59 

R2 R18-7428 14.6 68 2.2 83 

R2 R18-7429 11.5 74 21.7 55 

R2 R18-7430 37.8 44 45.3 23 

R2 R18-7431 -28.2 122 -13.8 109 

R2 R18-7432 93.9 8 66.4 10 

R2 R18-7433 10.3 75 10.0 71 

R2 R18-7434 98.6 6 72.8 5 

R2 R18-7435 56.2 24 34.7 34 

R2 R18-7436 25.3 59 21.0 56 
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Irrigation 

Level 
Genotype 

BLUP Yield 

Block Model 

Ranking Block 

Model 

BLUP Yield 

Exponential Model 

Ranking 

Exponential 

Model 

R2 R18-7437 -18.5 109 -9.8 106 

R2 R18-7438 61.8 18 69.8 8 

R2 R18-7439 43.3 38 18.4 58 

R2 R18-7442 -15.0 105 -21.3 124 

R2 R18-7443 -14.0 103 -18.2 117 

R2 R18-7444 34.1 46 31.3 38 

R2 R18-7445 -59.2 143 -25.7 132 

R2 R18-7446 -75.3 154 -5.3 97 

R2 R18-7447 33.9 48 51.3 16 

R2 R18-7448 97.7 7 77.0 3 

R2 R18-7449 -40.0 129 -18.1 116 

R2 R18-7450 30.6 54 5.6 76 

R2 R18-7451 -44.2 133 -6.7 100 

R2 R18-7452 14.0 70 5.1 78 

R2 R18-7453 108.2 5 -50.3 151 

R2 R18-7454 88.6 9 72.7 6 

R2 R18-7455 12.1 72 5.6 77 

R2 R18-7456 -53.1 141 -17.2 113 

R2 R18-7457 -23.0 116 -4.5 96 

R2 R18-7458 -69.9 152 -52.3 154 

R2 R18-7459 45.0 35 43.9 24 

R2 R18-7460 66.8 13 54.2 14 

R2 R18-7461 3.2 85 3.3 81 

R2 R18-7462 -32.1 125 -11.2 107 

R2 R18-7463 128.4 2 -47.4 147 

R2 R18-7464 62.1 17 56.9 13 

R2 R18-7465 12.4 71 4.2 80 

R2 R18-7466 -1.0 92 -0.8 90 

R2 R18-7467 1.1 88 14.5 65 

R2 R18-7468 64.5 15 26.6 46 

R2 R18-7469 32.2 51 16.9 62 

R2 R18-7470 32.1 52 11.2 67 

R2 R18-7471 -80.1 156 -57.4 155 

R2 R18-7472 -2.5 94 6.8 74 

R2 R18-7473 28.0 55 29.5 43 

R2 R18-7475 26.6 58 17.2 61 

R2 R18-7476 -114.5 166 -79.1 164 
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Irrigation 

Level 
Genotype 

BLUP Yield 

Block Model 

Ranking Block 

Model 

BLUP Yield 

Exponential Model 

Ranking 

Exponential 

Model 

R2 R18-7477 72.6 12 11.0 68 

R2 R18-7478 24.7 61 1.8 86 

R2 R18-7479 41.1 41 46.0 22 

R2 R18-7482 58.6 21 73.4 4 

R2 R18-7483 -27.2 121 -18.8 119 

R2 R18-7484 -16.8 107 -9.2 104 

R2 R18-7486 9.8 76 -15.2 111 

R3 AG55X7 32.6 64 41.8 65 

R3 AG56X8 32.4 65 52.9 55 

R3 P53AG7X -12.2 93 -2.0 94 

R3 P55A49X 107.0 25 97.0 26 

R3 R11-1057 61.4 45 76.2 39 

R3 R11-2933 89.5 34 72.6 43 

R3 R18-292 -67.4 129 -40.6 114 

R3 R18-293 -11.0 92 12.4 79 

R3 R18-294 -166.5 160 -146.2 153 

R3 R18-295 -83.0 138 -94.9 139 

R3 R18-296 -29.9 103 -51.7 119 

R3 R18-297 57.6 49 50.1 57 

R3 R18-298 -54.2 120 -20.5 103 

R3 R18-299 -25.5 101 -26.5 107 

R3 R18-300 -337.9 169 -282.2 169 

R3 R18-301 -192.9 164 -202.2 163 

R3 R18-302 14.2 78 63.2 48 

R3 R18-303 -36.9 110 -34.2 110 

R3 R18-304 -150.0 153 -95.3 140 

R3 R18-305 -65.4 128 -24.0 104 

R3 R18-306 -159.9 158 -260.0 167 

R3 R18-307 117.4 19 142.4 15 

R3 R18-308 -204.9 165 -272.2 168 

R3 R18-309 -67.6 130 24.9 73 

R3 R18-310 -107.2 142 -126.1 150 

R3 R18-311 -34.9 108 -75.1 132 

R3 R18-312 -4.3 89 31.2 70 

R3 R18-313 14.1 79 68.5 45 

R3 R18-314 -163.8 159 -167.6 158 

R3 R18-315 126.6 15 10.4 81 
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Irrigation 

Level 
Genotype 

BLUP Yield 

Block Model 

Ranking Block 

Model 

BLUP Yield 

Exponential Model 

Ranking 

Exponential 

Model 

R3 R18-316 -61.7 124 -27.8 108 

R3 R18-317 200.6 6 193.8 5 

R3 R18-318 -76.2 136 -103.2 144 

R3 R18-319 -38.5 112 -24.6 106 

R3 R18-322 -32.4 107 -46.6 116 

R3 R18-323 -53.9 119 4.1 87 

R3 R18-324 -110.9 143 -62.4 126 

R3 R18-325 28.4 68 82.3 36 

R3 R18-326 -184.4 163 -182.3 159 

R3 R18-327 -151.2 154 -133.0 151 

R3 R18-328 -24.1 99 20.6 75 

R3 R18-329 111.3 24 102.2 23 

R3 R18-330 -174.8 161 -149.8 155 

R3 R18-331 -129.8 148 -234.3 165 

R3 R18-332 74.9 38 75.0 41 

R3 R18-333 -32.0 106 -7.3 97 

R3 R18-334 -78.5 137 -110.7 146 

R3 R18-335 36.7 62 53.0 54 

R3 R18-336 -57.6 121 -40.3 113 

R3 R18-337 -208.3 167 -153.6 156 

R3 R18-338 -30.4 104 -24.1 105 

R3 R18-339 -83.8 139 -149.0 154 

R3 R18-340 -154.5 155 -164.8 157 

R3 R18-341 -61.2 123 -52.9 121 

R3 R18-342 50.2 55 108.6 21 

R3 R18-343 -0.2 87 2.6 88 

R3 R18-344 -64.1 125 -51.8 120 

R3 R18-345 -181.5 162 -257.2 166 

R3 R18-346 137.4 10 93.3 29 

R3 R18-347 -156.0 156 -184.7 160 

R3 R18-348 -59.3 122 -84.4 135 

R3 R18-349 190.0 7 207.8 4 

R3 R18-350 -23.5 98 10.5 80 

R3 R18-351 -24.8 100 -65.1 127 

R3 R18-352 21.7 73 95.0 27 

R3 R18-353 -99.1 140 -96.0 142 

R3 R18-354 28.2 70 25.2 72 



 

189 

Table S 5.12 (Cont.) 

 
    

Irrigation 

Level 
Genotype 

BLUP Yield 

Block Model 

Ranking Block 

Model 

BLUP Yield 

Exponential Model 

Ranking 

Exponential 

Model 

R3 R18-355 -8.7 90 -11.5 99 

R3 R18-356 -207.0 166 -201.9 162 

R3 R18-357 -74.9 134 -119.2 148 

R3 R18-358 16.9 76 63.9 47 

R3 R18-359 -46.6 116 14.2 78 

R3 R18-362 -76.0 135 46.8 62 

R3 R18-363 -65.2 127 -71.8 130 

R3 R18-364 63.0 43 33.5 69 

R3 R18-365 -114.6 145 -93.4 138 

R3 R18-366 -44.9 115 -75.7 133 

R3 R18-367 -118.3 146 -119.6 149 

R3 R18-368 -128.0 147 -91.2 137 

R3 R18-7389 18.4 75 97.5 25 

R3 R18-7390 52.6 52 1.4 90 

R3 R18-7391 99.1 30 153.6 12 

R3 R18-7392 -138.2 151 -58.5 124 

R3 R18-7393 115.0 21 49.9 58 

R3 R18-7394 39.9 60 55.3 53 

R3 R18-7395 -38.5 113 -18.8 102 

R3 R18-7396 60.3 47 40.4 66 

R3 R18-7397 -69.7 131 -48.7 117 

R3 R18-7398 340.9 2 245.5 2 

R3 R18-7399 -225.5 168 -229.0 164 

R3 R18-7402 136.3 11 123.8 18 

R3 R18-7403 -159.8 157 -95.8 141 

R3 R18-7404 -132.8 150 -69.9 129 

R3 R18-7405 21.6 74 34.4 68 

R3 R18-7406 117.0 20 152.9 13 

R3 R18-7407 101.9 29 121.9 19 

R3 R18-7408 90.8 33 66.4 46 

R3 R18-7409 54.3 50 55.7 52 

R3 R18-7410 -18.3 95 -12.2 100 

R3 R18-7411 131.5 14 160.0 10 

R3 R18-7412 74.1 39 110.9 20 

R3 R18-7413 -23.0 97 -38.0 112 

R3 R18-7414 50.6 54 82.5 35 

R3 R18-7415 -1.6 88 49.9 59 
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Irrigation 

Level 
Genotype 

BLUP Yield 

Block Model 

Ranking Block 

Model 

BLUP Yield 

Exponential Model 

Ranking 

Exponential 

Model 

R3 R18-7416 93.8 32 69.5 44 

R3 R18-7417 40.3 58 75.2 40 

R3 R18-7418 30.1 66 89.6 34 

R3 R18-7419 28.3 69 49.2 61 

R3 R18-7420 216.8 4 165.8 8 

R3 R18-7421 -37.1 111 4.4 86 

R3 R18-7422 104.7 26 -1.6 93 

R3 R18-7423 -114.0 144 -103.0 143 

R3 R18-7424 97.1 31 90.0 32 

R3 R18-7425 64.7 41 79.0 37 

R3 R18-7426 24.0 71 49.8 60 

R3 R18-7427 355.8 1 224.1 3 

R3 R18-7428 -52.0 118 -54.4 122 

R3 R18-7429 -30.8 105 -45.1 115 

R3 R18-7430 168.0 8 173.4 6 

R3 R18-7431 -65.1 126 -77.2 134 

R3 R18-7432 1.2 86 6.1 84 

R3 R18-7433 -145.8 152 -137.9 152 

R3 R18-7434 40.3 59 26.5 71 

R3 R18-7435 -48.0 117 -4.2 95 

R3 R18-7436 -131.6 149 -114.5 147 

R3 R18-7437 -11.0 91 -11.4 98 

R3 R18-7438 120.8 18 144.8 14 

R3 R18-7439 121.5 17 131.1 16 

R3 R18-7442 4.8 83 -59.4 125 

R3 R18-7443 9.3 82 -55.3 123 

R3 R18-7444 71.6 40 100.0 24 

R3 R18-7445 45.9 56 -7.1 96 

R3 R18-7446 -70.8 132 -65.4 128 

R3 R18-7447 -35.1 109 -51.2 118 

R3 R18-7448 -70.9 133 -88.0 136 

R3 R18-7449 24.0 72 23.5 74 

R3 R18-7450 43.3 57 19.9 76 

R3 R18-7451 80.8 36 156.0 11 

R3 R18-7452 37.3 61 57.4 51 

R3 R18-7453 126.0 16 73.0 42 

R3 R18-7454 28.9 67 0.0 92 
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Irrigation 

Level 
Genotype 

BLUP Yield 

Block Model 

Ranking Block 

Model 

BLUP Yield 

Exponential Model 

Ranking 

Exponential 

Model 

R3 R18-7455 -27.4 102 -37.9 111 

R3 R18-7456 80.0 37 46.8 63 

R3 R18-7457 132.2 13 57.5 50 

R3 R18-7458 133.5 12 161.3 9 

R3 R18-7459 104.6 27 89.9 33 

R3 R18-7460 59.4 48 -16.9 101 

R3 R18-7461 1.5 85 0.7 91 

R3 R18-7462 3.4 84 1.6 89 

R3 R18-7463 111.7 23 6.5 83 

R3 R18-7464 103.4 28 169.7 7 

R3 R18-7465 11.4 81 43.5 64 

R3 R18-7466 -12.4 94 4.8 85 

R3 R18-7467 35.5 63 91.3 30 

R3 R18-7468 294.6 3 301.9 1 

R3 R18-7469 52.2 53 51.9 56 

R3 R18-7470 12.0 80 -108.5 145 

R3 R18-7471 -107.1 141 -200.1 161 

R3 R18-7472 16.0 77 77.5 38 

R3 R18-7473 -42.9 114 -32.7 109 

R3 R18-7475 60.3 46 8.8 82 

R3 R18-7476 -22.2 96 -73.1 131 

R3 R18-7477 205.7 5 104.1 22 

R3 R18-7478 64.1 42 36.0 67 

R3 R18-7479 153.7 9 94.5 28 

R3 R18-7482 113.0 22 124.7 17 

R3 R18-7483 61.5 44 62.8 49 

R3 R18-7484 85.7 35 90.1 31 

R3 R18-7486 53.0 51 14.8 77 

R4 AG55X7 8.1 77 -0.2 82 

R4 AG56X8 5.5 79 26.9 50 

R4 P53AG7X -3.5 87 -4.1 87 

R4 P55A49X 63.5 21 73.3 20 

R4 R11-1057 42.6 37 55.1 27 

R4 R11-2933 43.2 34 56.3 26 

R4 R18-292 -8.8 94 19.2 63 

R4 R18-293 16.2 68 -0.5 83 

R4 R18-294 -16.0 100 -33.9 118 
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Table S 5.15 (Cont.) 

 
    

Irrigation 

Level 
Genotype 

BLUP Yield 

Block Model 

Ranking Block 

Model 

BLUP Yield 

Exponential Model 

Ranking 

Exponential 

Model 

R4 R18-295 23.1 65 4.2 77 

R4 R18-296 -26.9 110 -41.0 125 

R4 R18-297 30.5 53 26.4 51 

R4 R18-298 -97.4 164 -112.5 164 

R4 R18-299 -86.2 159 -67.9 147 

R4 R18-300 72.4 13 48.7 34 

R4 R18-301 -32.3 113 -63.8 142 

R4 R18-302 -72.9 149 -39.3 122 

R4 R18-303 -47.5 131 -76.9 157 

R4 R18-304 12.8 73 12.4 71 

R4 R18-305 -58.2 139 -70.3 152 

R4 R18-306 -45.6 130 -109.1 162 

R4 R18-307 43.2 35 51.8 31 

R4 R18-308 -40.6 126 -60.5 140 

R4 R18-309 30.9 51 -21.7 108 

R4 R18-310 -78.8 154 -64.8 145 

R4 R18-311 30.5 52 -38.9 121 

R4 R18-312 -52.8 135 -52.4 134 

R4 R18-313 -40.9 127 -41.3 127 

R4 R18-314 -50.3 133 -79.0 158 

R4 R18-315 -0.4 84 -26.3 114 

R4 R18-316 -36.2 119 -30.6 116 

R4 R18-317 15.4 69 -66.8 146 

R4 R18-318 -91.3 161 -64.1 143 

R4 R18-319 -13.1 98 -24.4 110 

R4 R18-322 29.9 54 -43.2 129 

R4 R18-323 55.1 27 105.3 6 

R4 R18-324 -16.3 101 -59.0 139 

R4 R18-325 0.8 83 37.8 44 

R4 R18-326 -167.8 169 -181.0 168 

R4 R18-327 -54.0 137 -75.4 156 

R4 R18-328 29.6 55 65.9 24 

R4 R18-329 -41.4 128 -27.1 115 

R4 R18-330 -33.7 116 -119.3 165 

R4 R18-331 7.9 78 -41.1 126 

R4 R18-332 29.4 56 -19.1 102 

R4 R18-333 -61.9 141 -57.1 137 
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Table S 5.16 (Cont.) 

 
    

Irrigation 

Level 
Genotype 

BLUP Yield 

Block Model 

Ranking Block 

Model 

BLUP Yield 

Exponential Model 

Ranking 

Exponential 

Model 

R4 R18-334 -79.0 155 -69.0 150 

R4 R18-335 35.9 46 33.5 47 

R4 R18-336 9.5 76 35.0 46 

R4 R18-337 -35.6 118 -21.0 106 

R4 R18-338 -79.4 156 47.2 37 

R4 R18-339 -76.8 152 -46.2 131 

R4 R18-340 -62.2 142 -148.0 166 

R4 R18-341 -64.9 144 -25.4 113 

R4 R18-342 55.9 25 44.9 38 

R4 R18-343 -93.6 162 -64.2 144 

R4 R18-344 14.2 70 20.0 60 

R4 R18-345 -4.8 89 12.0 72 

R4 R18-346 -4.3 88 24.0 53 

R4 R18-348 -78.1 153 -32.7 117 

R4 R18-349 40.8 39 20.7 58 

R4 R18-350 -73.6 150 -20.0 104 

R4 R18-351 -87.9 160 -98.8 160 

R4 R18-352 -47.8 132 -58.9 138 

R4 R18-353 34.9 48 81.4 18 

R4 R18-354 -28.9 111 -53.4 135 

R4 R18-355 43.1 36 47.2 36 

R4 R18-356 -16.6 102 -38.1 120 

R4 R18-357 26.5 60 -5.2 88 

R4 R18-358 -105.9 165 -68.3 148 

R4 R18-359 -9.7 95 -39.5 123 

R4 R18-362 -72.3 147 -150.5 167 

R4 R18-363 -72.6 148 -47.3 132 

R4 R18-364 -21.4 104 -16.5 99 

R4 R18-365 2.7 81 -20.7 105 

R4 R18-366 -33.6 115 -36.8 119 

R4 R18-367 -38.1 123 -14.4 98 

R4 R18-368 -65.9 145 -12.6 93 

R4 R18-7389 75.6 10 105.1 7 

R4 R18-7390 13.1 72 67.0 23 

R4 R18-7391 45.2 31 22.3 56 

R4 R18-7392 -62.6 143 -55.2 136 

R4 R18-7393 -120.8 167 -190.5 169 
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Table S 5.17 (Cont.) 

 
    

Irrigation 

Level 
Genotype 

BLUP Yield 

Block Model 

Ranking Block 

Model 

BLUP Yield 

Exponential Model 

Ranking 

Exponential 

Model 

R4 R18-7394 -52.3 134 17.2 66 

R4 R18-7395 115.5 5 89.8 13 

R4 R18-7396 -11.7 97 -44.6 130 

R4 R18-7397 73.8 11 64.3 25 

R4 R18-7398 -26.8 109 -74.1 155 

R4 R18-7399 34.8 49 10.4 74 

R4 R18-7402 10.0 75 -13.4 95 

R4 R18-7403 55.7 26 53.5 29 

R4 R18-7404 -66.2 146 -25.2 112 

R4 R18-7405 38.1 42 8.6 75 

R4 R18-7406 111.8 6 105.5 5 

R4 R18-7407 67.8 15 38.1 43 

R4 R18-7408 -7.4 91 -14.0 96 

R4 R18-7409 64.7 19 39.1 42 

R4 R18-7410 25.3 62 -16.7 100 

R4 R18-7411 96.5 7 89.9 12 

R4 R18-7412 44.4 32 70.3 22 

R4 R18-7413 67.5 16 19.2 62 

R4 R18-7414 28.0 58 101.1 8 

R4 R18-7415 -33.4 114 30.0 48 

R4 R18-7416 -22.9 106 1.4 81 

R4 R18-7417 64.5 20 84.2 16 

R4 R18-7418 -3.2 86 -3.9 86 

R4 R18-7419 36.6 45 17.4 65 

R4 R18-7420 37.8 44 89.7 14 

R4 R18-7421 -23.2 107 47.7 35 

R4 R18-7422 232.5 2 295.9 2 

R4 R18-7423 -84.8 158 -111.7 163 

R4 R18-7424 -84.3 157 -68.7 149 

R4 R18-7425 67.2 17 2.9 79 

R4 R18-7426 -8.2 92 -5.8 89 

R4 R18-7427 -53.6 136 -21.0 107 

R4 R18-7428 -41.9 129 -23.7 109 

R4 R18-7429 51.7 28 92.1 11 

R4 R18-7430 -22.3 105 -72.9 153 

R4 R18-7431 56.9 23 15.4 69 

R4 R18-7432 19.6 66 97.3 10 
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Table S 5.18 (Cont.) 

 
    

Irrigation 

Level 
Genotype 

BLUP Yield 

Block Model 

Ranking Block 

Model 

BLUP Yield 

Exponential Model 

Ranking 

Exponential 

Model 

R4 R18-7433 -34.8 117 -60.6 141 

R4 R18-7434 -56.4 138 29.8 49 

R4 R18-7435 11.5 74 -1.1 84 

R4 R18-7436 73.1 12 54.1 28 

R4 R18-7437 2.1 82 -10.1 92 

R4 R18-7438 -24.7 108 22.7 55 

R4 R18-7439 40.9 38 1.7 80 

R4 R18-7442 -19.8 103 -85.6 159 

R4 R18-7443 -11.5 96 15.6 68 

R4 R18-7444 24.4 63 -12.7 94 

R4 R18-7445 5.3 80 -41.3 128 

R4 R18-7446 -38.5 125 6.7 76 

R4 R18-7447 35.0 47 -19.8 103 

R4 R18-7448 84.7 8 78.2 19 

R4 R18-7449 -74.1 151 -9.6 91 

R4 R18-7450 49.2 29 23.6 54 

R4 R18-7451 62.2 22 89.5 15 

R4 R18-7452 84.4 9 37.1 45 

R4 R18-7453 47.1 30 72.9 21 

R4 R18-7454 13.7 71 50.5 33 

R4 R18-7455 417.7 1 372.7 1 

R4 R18-7456 -36.4 121 -25.1 111 

R4 R18-7457 -8.3 93 -69.6 151 

R4 R18-7458 -6.7 90 53.2 30 

R4 R18-7459 -14.1 99 -14.0 97 

R4 R18-7460 37.8 43 10.7 73 

R4 R18-7461 66.1 18 44.2 39 

R4 R18-7462 -60.7 140 -49.8 133 

R4 R18-7463 119.0 4 106.1 4 

R4 R18-7464 27.1 59 19.8 61 

R4 R18-7465 19.1 67 21.7 57 

R4 R18-7466 68.9 14 98.2 9 

R4 R18-7467 38.4 41 14.7 70 

R4 R18-7468 -38.3 124 25.1 52 

R4 R18-7469 25.6 61 51.7 32 

R4 R18-7470 24.0 64 -17.4 101 

R4 R18-7471 39.4 40 44.0 40 
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Table S 5.19 (Cont.) 

 
    

Irrigation 

Level 
Genotype 

BLUP Yield 

Block Model 

Ranking Block 

Model 

BLUP Yield 

Exponential Model 

Ranking 

Exponential 

Model 

R4 R18-7472 29.3 57 39.5 41 

R4 R18-7473 -31.7 112 17.4 64 

R4 R18-7475 -110.6 166 -41.0 124 

R4 R18-7476 -122.5 168 -108.7 161 

R4 R18-7477 143.5 3 140.6 3 

R4 R18-7478 56.2 24 15.8 67 

R4 R18-7479 -2.1 85 20.5 59 

R4 R18-7482 44.3 33 83.4 17 

R4 R18-7483 34.1 50 4.0 78 

R4 R18-7484 -37.0 122 -5.9 90 

R4 R18-7486 -36.4 120 -2.6 85 
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Table S 5.20. Soybean Yield BLUP for the 2019 Final Yield Trials Maturity group IV (19 

AF4E) grown in four Arkansas environment under a randomized-complete block design (RCBD) 

with two replications and ranking of the genotypes after analysis using an exponential model and 

RCBD models. 

Genotype 
BLUP Yield 

Exponential 
Ranking Exponential 

BLUP Yield 

RCBD 
Ranking RCBD 

P48A60X 634.05255 1 584.45757 1 

R16-2711 604.47876 2 484.94721 2 

AG46X6 480.35846 3 450.05111 3 

R17C-257 467.02821 4 415.82963 4 

R17-2115 410.39857 5 388.4304 5 

R16-247 366.00511 6 375.56648 6 

R16-2463 351.26132 7 265.62862 7 

R13-1463 272.253 8 239.25551 10 

R17-2000 258.40257 9 222.0892 12 

R17-2069 256.85386 10 232.96907 11 

R17C-130 173.29599 11 173.13314 13 

R17C-135 161.32367 12 246.16394 8 

R17-56 153.12137 13 245.90949 9 

R17C-118 70.256797 14 86.313741 14 

R17C-126 27.289597 15 7.0463897 19 

R17-2040 12.825484 16 9.3842326 18 

R17C-133 -6.080089 17 59.613002 15 

R17C-334 -6.802705 18 -3.579024 20 

R16-1807 -16.0208 19 11.774524 17 

R17C-129 -19.47522 20 -115.4194 25 

R17C-105 -24.91122 21 19.349851 16 

R17C-128 -52.72936 22 -59.7778 21 

R17C-138 -62.50106 23 -82.17117 22 

R17C-106 -81.41497 24 -85.22125 23 

AG43X8 -119.2773 25 -89.13781 24 

R17C-110 -145.5191 26 -184.2027 27 

R17C-127 -158.2158 27 -226.7044 28 

R17-2170 -246.406 28 -183.0835 26 

R17C-132 -271.5854 29 -249.0712 29 

R17C-410 -521.6261 30 -458.5194 30 

AG39X7 -529.7405 31 -464.9272 31 

R17-1945 -606.6862 32 -589.6093 33 

R17C-142 -659.3112 33 -584.2931 32 

R17C-587 -1170.902 34 -1142.196 34 
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Table S 5.21. Soybean Yield BLUP for the 2020 Final Yield Trials Maturity group IV (20AF4E) 

grown in two or four Arkansas environments as a randomized-complete block design (RCBD) 

with two replications and ranking of the genotypes after analysis using an exponential model and 

a block model. 

Genotype Yield BLUP Block Ranking Block Yield BLUP Exponential Ranking Exponential 

AG46X6 1133.8061 1 993.30648 1 

AG51X8 1060.0022 2 903.55705 2 

AG39X7 672.30601 3 546.04518 3 

AG43X8 546.08446 4 333.08319 5 

R18-1417 419.59607 5 353.94512 4 

R18-1427 299.00858 6 121.57391 7 

R18C-175 184.00012 7 84.869285 8 

AG48X9 147.72264 8 23.415576 9 

R18-1419 76.433135 9 127.54173 6 

R18C-117 -8.099703 10 -42.72571 10 

R18-1421 -71.08118 11 -54.03118 11 

R18-1420 -94.9929 12 -70.70525 12 

R18C-197 -193.1597 13 -287.9568 15 

R18C-131 -340.2449 14 -248.4175 14 

R18C-137 -535.0847 15 -130.6421 13 

R18-1479 -565.5356 16 -503.4771 16 

R18-1440 -750.5323 17 -689.8923 17 

R18C-120 -863.5431 18 -729.9606 19 

R18C-116 -1116.685 19 -729.5289 18 
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6. CHAPTER VI 

Overall Conclusions 

The research studies presented in this dissertation provide in first the part a novel insight 

of the localization of the high protein gene inherited from ‘BARC-7. We have investigated the 

genetic architecture high protein ‘BARC-7’ gene using a F2- derived populations. In fact, one 

QTL further downstream in Chr. 20 (only detected on population two), explaining 18% of 

protein variation. The results of our study suggest that ‘BARC-7’ may carry alleles different 

from Danbaekkong; this could be useful for breeders to diversify sources of higher protein. 

However, in order to efficiently implement that in a breeding program, an ongoing fine-mapping 

using an advanced inbred line mapping approach will help confirm and fine-map the regions 

associated with high protein and oil in BARC-7 genetic background. Afterwards, we could 

validate identified SNPs using a Kompetitive allele specific -KASP analysis.  

The work presented throughout this dissertation should allow to assess the impact of 

delaying irrigation on wilting, seed yield, and other agronomic traits of determinate MG 5 

soybean. The study suggests that even if high water deficits are experienced at early stages from 

delayed or inadequate irrigation that yields will likely not be significantly reduced in a furrow 

irrigation production system for soybean in silt loam soil. A deficit irrigation which is a water-

saving irrigation strategy without compromising seed yield, could be implemented for farmers in 

the Mid -South as result of a groundwater shortage. There are several opportunities for future 

work stemming from this dissertation. The irrigation was triggered using an atmometer and the 

reproductive stages due to the variability of the field. A deficit irrigation study would also be 

meaningful for famers as they are facing groundwater shortage. In fact, a good question that 

could be interesting to answer is also what happen if we just have specific amount of water to 

use? How that impact irrigation management on soybean farmers? How could we implement 
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TDR vs watermark sensors in soybean farm? Additionally, how those results could impact 

soybean selection on fast- and slow-witling genotype under deficit irrigation? On the other hand, 

as the canopy wilting is a visual rating that prone to be subjective, using high throughput 

technology such a drone with thermal sensor would help to discriminate fast- and slow-wilting 

and might be leading a selection a drought tolerant soybean genotype. 

The results of the dissertation pinpointed that canopy wilting and seed yield were 

quantitative traits. Also, our current showed that genomic selection was efficient to select 

superior individuals. This investigation will contribute to a better understanding of genetic 

architecture of soybean lines under reduced irrigation. Also, that breeders should perform 

independent selection experiments for soybean under full irrigation as opposed to those targeted 

to withstand any level of water restriction. In fact, implementing genomic selection in breeding 

could earlier in a breeding pipeline would enhance genetic gain. 

The last objective of the dissertation was to evaluate spatial models for seed yield, 

wilting, and maturity in furrow-irrigated soybean plots. Results revealed that in variety trials 

with large numbers of genotype, spatial analysis allowed better discrimination among genotypes 

and increased heritabilities. The spatial analysis led to a different ranking of the genetic materials 

in comparison with the non-spatial analysis, and selections could have been less influenced by 

local variation. Such differences in selections may have significant consequences for the 

outcome of plant breeding programs. Sound recommendations might be applied on the 

preliminary trials where large genotypes are evaluated in the Soybean Breeding program in 

Arkansas.  
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