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ABSTRACT  

Researchers have recognized that respondents may not answer items in a way that 

accurately reflects their attitude or trait level being measured. The resulting response data that 

deviates from what would be expected has been shown to have significant effects on the 

psychometric properties of a scale and analytical results. However, many studies that have 

investigated the detection of aberrant data and its effects have done so using dominance item 

response theory (IRT) models. It is unknown whether the impacts of aberrant data and the 

methodology used to identify aberrant responding when using dominance IRT models apply 

similarly when scales fit an unfolding IRT model. This dissertation is aimed at contributing to 

the literature with unfolding IRT models (specifically the generalized graded unfolding model 

[GGUM]) in three main ways: 1) by providing insight on GGUM model-data fit when various 

types of aberrant data are systematically entered, 2) by investigating how nonparametric person-

fit statistics (𝐻𝑇 ,  𝑈3𝑃,   𝐺𝑁
𝑃,  and  𝐺𝑃 ) perform under the unfolding framework of GGUM 

compared to the dominance framework of the generalized partial credit model (GPCM), and 3) 

by examining how the performance of parametric person-fit statistics (𝑙𝑧(𝑝) and 𝑙𝑧(𝑝)
∗ ) is impacted 

by misspecifying a dominance model (GPCM) to unfolding model data (GGUM) and 

conversely, GGUM to GPCM data. As unfolding models have many advantages and are 

becoming more widely used by researchers, the rise of questions regarding the effects of data 

quality and the performance of person-fit statistics under this context is expected. It is essential 

to gain a better understanding on how underlying response processes affect data-model fit, and 

how effectively different types of aberrant data are identified using multiple data model 

frameworks. 



 

 

The dissertation is organized into three studies based on a simulation design that 

investigates the impacts of type of aberrant responding, proportion of aberrant responders in the 

sample, proportion of aberrant responses within a response vector, test length, model-data 

generation and application on model-fit and person-fit statistic performance. In the first study, 

the impact of aberrant data on model fit for GGUM and GPCM data is investigated and found to 

be severe in some cases. However, the GGUM was found to effectively fit both dominance and 

unfolding data, even with 10% aberrant data in many cases. It is suggested that researchers 

carefully examine data quality before making conclusions about model-data fit or misfit. The 

second study investigates the application of popular nonparametric person-fit statistics used with 

dominance data to data that fit an unfolding model. Given their poor performance, further 

research is recommended to identify or develop person-fit statistics effective for different types 

of aberrant behavior exhibited in ideal point response data. Study 3 compares type I error and 

power rates for parametric person-fit statistics with GGUM and GPCM data that are correctly 

and incorrectly specified, compared to nonparametric person-fit performance. No person-fit 

statistic was robust against model misspecification when GPCM was fit to GGUM data. 

Conversely, results were comparable for GPCM data, regardless of fitting the GPCM or GGUM 

to the data. 
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CHAPTER 1 

INTRODUCTION 

 

“Between stimulus and response there is a space. In that space, is 

our power to choose our response.” 

– Viktor E. Frankl 

 

Underlying response processes are often overlooked when researchers apply statistical 

models to their response data. As it suggests in the name, item response theory (IRT) uses both 

items and responses to estimate latent trait levels for respondents. The majority of psychological 

measurement models in IRT literature involves dominance IRT models (Harris-Watson et al., 

2020; Tay & Ng, 2018; e.g., 1-, 2-, 3-parameter logistic models for dichotomous data and the 

graded response model or the generalized partial credit model for polytomous data) to obtain this 

goal, which assume the underlying response process is cumulative and the probability of a 

response is monotonically increasing along with the latent trait level that is being assessed. 

However, many researchers utilize dominance IRT models without giving much thought to 

alternative underlying response processes that may be used when examinees are answering the 

items. Many complex, non-cognitive constructs may be difficult to measure with strictly 

dominance IRT (Chernyshenko et al., 2001; Drasgow et al., 2010; Meijer & Baneke, 2004; Stark 

et al., 2006). That is, items may elicit an ideal point response process whereby respondents 

choose to endorse (or not) the item according to how well the item-level matches their trait-level 

on the underlying latent construct being assessed. Tay and Ng (2018) give an example of this 

with a questionnaire meant to assess people’s political views, where a political moderate would 
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be more likely to strongly endorse a more moderate political item than more extreme items at 

either end of the construct continuum. Conversely, a respondent may disagree with the moderate 

political item for one of two reasons: either their political views are located below or above the 

item on the underlying continuum. Thus, the moderate item may demonstrate a non-monotonic 

item response function, violating an assumption of dominance IRT. 

Researchers have clearly warned of the potential adverse consequences for mis-

specifying a dominance IRT model for ideal point response data (Chernyshenko et al., 2001; 

Drasgow et al., 2010; Meijer & Baneke, 2004; Stark et al., 2006). As a result, the use of 

unfolding models that reflect an ideal point response process has become somewhat more 

widespread in the last few decades (e.g., Javaras & Ripley, 2007; Joo et al., 2017, 2019;  Kartal 

& Di̇rli̇k, 2021; Santos et al., 2021; Sgammato, 2009; Tendeiro, 2017; Weekers & Meijer, 2008; 

Weiss et al., 2018; Williams, 2015; Zampetakis, 2010). Even still, the use of unfolding models in 

practice is sparse in comparison to the use of dominance IRT models.  

When investigating data for appropriate model fit, such as comparing dominance and 

ideal point response models, a researcher may also need to consider the quality of the data 

provided by the participants. If a dataset contains response strings from participants who do not 

use sufficient effort in answering the questions, it can impact the selection of an appropriate 

model for the valid data. The use of person-fit statistics to detect insufficient effort or aberrant 

responders has gained popularity in the last two decades (e.g., Cizek & Wollack, 2016; Conijn et 

al., 2014; Niessen et al., 2016; Sinharay, 2021; Turner, 2018). However, there is a substantial 

gap in the literature merging these two concepts (aberrant data and unfolding models). Many 

studies have investigated the performance of person-fit statistics in dominance IRT settings, but 

only one study has applied person-fit statistics in an unfolding model context (Tendeiro, 2017).  
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It is still uncertain how many popular person-fit statistics perform when an underlying ideal point 

response process is present. Similarly, it is unclear how aberrant data affects model fit for 

unfolding versus dominance IRT models.   

Purpose of the Study 

 In three studies, I explore relationships between model fit, presence of aberrant 

responding, and detection of aberrant responding under dominance and unfolding model 

contexts. The investigation begins with Study 1, where the differential impacts of aberrant 

responding on model fit for two parametric IRT models based on different response processes 

are examined. Determining how model fit may be affected by aberrant responding to items 

reflecting a dominance or ideal point response process in Study 1 will lay a foundation for 

Studies 2 and 3. In Study 2, the performance of various nonparametric person-fit statistics is 

examined under the dominance generalized partial credit model as well as the generalized graded 

unfolding model. With information about how aberrant responding affects model fit from Study 

1, and with the results from Study 2 informing on how nonparametric person-fit statistics 

perform under both dominance and unfolding model contexts, Study 3 extends Studies 1 and 2 

by examining how the parametric person-fit statistics, 𝑙𝑧(𝑝) and 𝑙𝑧(𝑝)
∗ , perform in both dominance 

and unfolding settings and how misspecification of the underlying response process may affect 

detection of aberrant responding. The overarching goal for this dissertation is to fill the gaps in 

current literature regarding aberrant responding and person-fit analyses with unfolding models 

and its relation with dominance models.   
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Study 1: An Investigation of the Effects of Aberrant Responding on Model-Fit for Unfolding 

and Dominance Response Models 

 Aberrant responding has been an issue recognized by researchers for decades, with recent 

studies focusing on the detrimental impacts on various survey characteristics (DeSimone et al., 

2018). Previous research has demonstrated that aberrant responding can influence the 

psychometric properties of a scale (e.g., reliability estimates, factor structure, interitem 

correlations) and alter the results of statistical analyses (DeSimone et al., 2018; Turner, 2018). 

As item characteristics have been shown to change with the presence of aberrant responding, 

models that fit different types of items such as dominance and unfolding models, may fit the data 

differently when aberrant responding occurs. Liu and Wang (2019) showed in an empirical study 

that parameters estimated by the General Unfolding Model (GUM) may be biased when response 

styles are ignored. However, no studies to date have examined how other types of aberrant 

responding may affect how an unfolding model fits the data, compared to a dominance model. In 

reality, researchers will not know if model-data misfit is due to the aforementioned changes 

resulting from the presence of aberrant responding, or if it is due to true model misspecification. 

One of the advantages of using a simulation design for the current study is the control over these 

factors. Aberrant responding and model misspecification (based on the underlying response 

process) will be manipulated to provide insight on the confounding effects that may arise with 

real data. For example, it could be that aberrant responding affects model fit more severely for 

certain data types and conditions, which would then point the researcher to investigate data 

quality before making conclusions about model misfit.  

Researchers have emphasized the importance of assessing model-data fit before 

interpreting results (Chernyshenko et al., 2001). Study 1 focuses on the differential impacts of 
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aberrant responding on model-data fit using unfolding and dominance models, GGUM and 

GPCM. This study will contribute to growing literature on unfolding versus dominance models 

as well as the effects of data quality. For the purpose of this study, response styles that impact 

participant response strings, resulting in answers that would be different than expected based on 

latent trait, are included as forms of aberrant responding. Thus, four types of aberrant responding 

will be investigated in the study, including two common insufficient effort response types 

(longstrings and random responding), and two types of response styles (midpoint responding and 

extreme responding). Other factors in the study include the number of items, number of response 

categories, proportion of aberrant respondees in the sample and proportion of aberrant responses 

in a response vector. If the types and proportion of aberrant responding have different impacts on 

model-fit, implications for researchers may include the importance of the approach used for 

identifying aberrant responding when creating a data screening plan.  

Additionally, the cross-fit of the GGUM model to GPCM data and the GPCM model to 

GGUM data is compared in order to assess the flexibility of both models with different types of 

data. Previous research has suggested more flexibility exists with GGUM (i.e., the GGUM fits 

dominance data reasonably well; Stark, 2006) but this has not been investigated with aberrant 

data as a factor. It would be helpful to know if either of the two models is flexible in fitting data 

types, especially in situations where there is aberrant responding (of different types and 

proportions).   

If model-data misfit is shown to increase the estimated parameter bias in Study 1, then 

the detection of the aberrant responses may in turn be affected. Tendeiro (2017) found that bias 

of estimated parameters affected the detection rates of extreme responding more so than for 

midpoint responding. Thus, if aberrant responding affects the model-data fit, and the model-data 
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fit affects the detection of aberrant responding, the researcher faces a difficult decision while 

attempting to maintain the integrity of the data quality. More research in this area is warranted to 

help guide researchers in data cleaning when fitting unfolding or dominance models. 

Study 2: Performance of Nonparametric Person-Fit Statistics with Unfolding versus 

Dominance Response Models 

 The primary purpose of Study 2 is to examine the performance of several polytomous 

person-fit statistics under an unfolding model context. Although a large body of literature exists 

covering the performance of person-fit statistics, all studies but one assume an underlying 

dominance response process. However, in the last fifteen years, an ideal point response process 

has been recognized as more appropriate than a dominance response process for several types of 

non-cognitive data such as assessment for creativity using the Gough’s Creative Personality 

Scale (Zampetakis, 2010), conscientiousness (Carter et al., 2014), personality inventory of self-

judgement on the order-facet (a feature of conscientiousness; Chernyshenko et al., 2007; 

Weekers & Meijer, 2008), 16 personality factor subscales (Stark et al., 2006), and job 

satisfaction (Carter & Dalal, 2010). Because the ordering of persons based on latent trait scores 

may be severely affected by the underlying item response process (Stark et al., 2006), it is 

reasonable to question the applicability of the findings from previous person-fit studies using 

dominance IRT models to an ideal point model context.  

Tendeiro (2017) studied the 𝑙𝑧(𝑝) and 𝑙𝑧(𝑝)
∗  person-fit statistic under the generalized 

graded unfolding model (GGUM) which assumes an ideal point response process. The study 

suggested that the detection rates for midpoint response style patterns using the 𝑙𝑧(𝑝)
∗  person-fit 

statistic were promising in many conditions. Detection rates for extreme response style patterns 

were lower, but the author believes this may be due to specific data generation conditions in the 
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study. As this was the first person-fit study using an unfolding model, many questions still 

remain regarding how person-fit statistics perform assuming an underlying ideal point response 

process.  

Study 2 extends the work of Tendeiro (2017) in two fundamental ways. First, several 

other person-fit statistics’ performance under the unfolding framework are investigated. While 

𝑙𝑧(𝑝) and  𝑙𝑧(𝑝)
∗  are popular parametric person-fit statistics, nonparametric person-fit statistics 

have been found to perform just as well, if not better than parametric person-fit statistics under 

various conditions when applied to data using dominance response models (Emons, 2008; 

Karabatsos, 2003; Tendeiro & Meijer, 2014).  However, their application to data that more 

appropriately fit an unfolding model has not been studied. Study 2 includes four nonparametric 

person fit statistics (𝐻𝑇 ,  𝑈3𝑃,   𝐺𝑁
𝑃,  and  𝐺𝑃 ) that have been shown to perform relatively well in 

comparison with other person fit statistics (Emons, 2008; Karabatsos, 2003; Tendeiro & Meijer, 

2014; Turner, 2018). Second, in addition to midpoint and extreme responding, aberrant 

responding due to longstring responses and random responding is also considered in Study 2. 

These types of aberrant responding have been a concern in a variety of contexts such as 

employee surveys, customer surveys, training evaluations, personality inventories and attitudinal 

surveys.  

The goal of Study 2 is to compare person-fit results obtained from fitting dominance and 

unfolding IRT models to polytomous data simulated to reflect different response processes. The 

aforementioned extensions will add to the data quality literature in attempt to facilitate decisions 

made for analytical procedures in settings where unfolding models are appropriate.  
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Study 3: Impacts of Misspecification of Underlying Response Processes on the Performance 

of Nonparametric and Parametric Person-Fit Statistics 

Selecting the most appropriate IRT model that reflects the response process for the items 

on a test may be a crucial step in person-fit analyses, as misspecification of the item response 

process has been shown to significantly alter the rank ordering of persons based on latent trait 

scores (Roberts et al., 1999; Stark et al., 2006). When items are nonmonotonic and reflect an 

ideal point response process, using a dominance IRT model to fit the data may incorrectly 

suggest that people with the most extreme attitudes or opinions will have more moderate 

positions on the underlying latent attitude continuum (Roberts et al., 1999). If the ordering of 

people on the underlying latent continuum is distorted, then it is likely that person-fit statistics 

anchored to this order will misclassify aberrant responders. For example, if a person with an 

extremely high true attitude is incorrectly identified as having a more moderate attitude due to 

using a dominance IRT model for items reflecting an ideal point response process, then when 

this person gives an extreme answer to an item, the response may be flagged as aberrant due to 

the expectation of a moderate response. Similarly, if the person with an extremely high true 

attitude gives a moderate answer to an item, they may not be flagged even though this may be an 

aberrant response. If misclassification rates of true attitudes are high, this could have severely 

detrimental effects on scales intended to serve as admission criteria or classification status.  

Furthermore, using person-fit statistics based on the erroneous ordering of persons in the data 

cleaning process could make matters worse. The previous Study 2 informs on this issue for 

nonparametric person-fit statistics. However, no studies have explored the potential effects of 

misspecification of dominance models for unfolding data (and vice/versa) on the performance of 

parametric person-fit statistics. 



 

 9 

 

In study 3, parametric person-fit statistics, 𝑙𝑧(𝑝) and 𝑙𝑧(𝑝)
∗ , are included to assess their 

performance with the aforementioned GGUM and GPCM datasets with varying conditions (test 

length, proportion of aberrant responders and proportion of aberrant responses) for midpoint and 

extreme responding, longstring responses, and random responding. Model-data fit results from 

Study 1 will inform decisions made for Study 3. It is anticipated that in the cases of poor model 

fit, the person-fit statistics will not perform as well. This study aims to provide insight on the 

point at which these declines in performance are most apparent.   

Because parametric person-fit statistics depend on parameters estimated by the applied 

IRT model, misspecification could potentially lead to inaccurate results in flagging aberrant 

responses. In this case, data cleaning could do more harm than good. Therefore, an additional 

condition is included in Study 3 where the cross-fitting of the GGUM model to GPCM data and 

the GPCM model to the GGUM data is implemented. The primary goal of Study 3 is to reveal 

the impacts of model misspecification (GPCM to GGUM data and the GGUM to GPCM data) on 

the person-fit statistics. The nonparametric person-fit statistic(s) selected from the results of 

Study 2 are hypothesized to be less affected by model misspecification since nonparametric 

person-fit statistics do not rely on parameter estimates. Thus, it will be informative to compare 

the performance of the parametric and nonparametric person-fit statistics under these conditions.  

Research Questions 

The research questions driving each of the three studies include: 

1)  How does model fit compare for dominance and unfolding models (GPCM and GGUM) 

applied to both dominance and ideal point response data simulated with no aberrant 

responses?  [Study 1]  
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a) Is the GGUM able to fit data generated under a dominance response process 

reasonably well in comparison to the GPCM?  

2) How is model fit impacted for both dominance and unfolding models applied to both 

dominance and ideal point response datasets (GGUM fit to GGUM data, GGUM fit to 

GPCM data, GPCM fit to GGUM data, GPCM fit to GPCM data) when different types and 

proportions of aberrant response strings are included?  [Study 1]  

a) Do certain conditions (type of aberrant response, proportion of aberrant responders 

and proportion of aberrant responses within an aberrant response vector) have 

different results for model-data fit? 

3) How do the selected nonparametric person-fit statistics (𝐻𝑇 ,  𝑈3𝑃 ,   𝐺𝑁
𝑃,  and 𝐺𝑃) perform 

under an unfolding model versus a dominance model framework?  [Study 2]  

a) Are the trends and magnitudes for detection and type I error rates (e.g., higher 

detection rates with longer tests) the same under unfolding and dominance 

frameworks?   

4) What kinds of aberrant behavior are most/least easily detectable via nonparametric person-fit 

analyses when using unfolding vs dominance response frameworks?  [Study 2]  

5) How does the performance of the parametric person-fit statistics 𝑙𝑧(𝑝) and 𝑙𝑧(𝑝)
∗   compare 

under an unfolding and dominance model context?  [Study 3] 

a) Are the trends and magnitudes for detection and type I error rates (e.g., higher 

detection rates with longer tests) the same under unfolding and dominance 

frameworks?   
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6) What kinds of aberrant behavior are most/least easily detectable via parametric person-fit 

analyses when using unfolding vs dominance response frameworks, and under what 

conditions?  [Study 3]  

7) How accurately do the selected person-fit statistics identify aberrant responding when a(an): 

a) Dominance model is applied to dominance data? 

b) Unfolding model is applied to unfolding data?  

c) Dominance model is applied unfolding data?  

d) Unfolding model is applied to dominance data? 

8) What are the effects (if any) of model misspecification of dominance models for unfolding 

data and unfolding models for dominance data on the performance of person-fit statistics? 

[Study 3] 

a) If 𝑙𝑧(𝑝) and 𝑙𝑧(𝑝)
∗  do not perform well when models are misspecified, do the optimal 

nonparametric person-fit statistics for dominance and ideal point data (identified in 

Study 2) perform better for the types of aberrant responding studied?  

Summary 

Application of person-fit analyses has gained prominence in several fields including 

education, personality assessment, psychological assessment, and attitudinal assessment (Rupp, 

2013). Although the importance of addressing person-misfit in data has gained relative 

awareness in the last few decades, a paucity remains in the literature regarding person-fit under 

unfolding model frameworks. In order to effectively investigate these joint concepts, it is 

necessary to first understand any differential impacts of aberrant responding on model-fit for 

unfolding and dominance IRT models (Study 1). Once model fit with aberrant data is better 

understood for these two IRT approaches, the performance of nonparametric person-fit statistics 
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is further investigated under dominance and unfolding model contexts (Study 2). Lastly, the 

impacts of model misspecification on the performance of parametric person-fit statistics, that use 

model-specific parameter estimates for evaluating aberrant responding, are investigated (Study 

3).  

When an ideal point response process is responsible for observed empirical data, the 

application of an unfolding IRT model is practical, and many times advised. Unfolding models 

are considered flexible in that they are able to scale items from both extreme ends of a 

continuum as well as scaling neutral items in the middle of a continuum.  Recoding reverse 

worded items is also unnecessary in an unfolding model context, due to the nature of how the 

probabilities are computed. As unfolding models have many advantages and are becoming more 

widely used by many researchers, the rise of questions regarding how data quality measures 

perform in the data cleaning process is expected. It is essential to gain a better understanding on 

how underlying response processes affect data-model fit, and how effectively aberrant data are 

identified when screening for higher quality data when using an unfolding model framework 

versus the more popular dominance models. 

The three main novel contributions of this dissertation include: 1) insight on GGUM 

model-data fit when aberrant data is systematically entered, 2) how nonparametric person-fit 

statistics (𝐻𝑇 ,  𝑈3𝑃,   𝐺𝑁
𝑃,  and  𝐺𝑃 ) perform under the framework of GGUM, and 3) how the 

performance of parametric person-fit statistics (𝑙𝑧(𝑝) and 𝑙𝑧(𝑝)
∗ ) is impacted by misspecifying the 

GPCM to GGUM data and the GGUM to GPCM data. Additionally, the conditions of existing 

research in the field (e.g., how 𝑙𝑧(𝑝) and 𝑙𝑧(𝑝)
∗  perform in GGUM context) are extended to 

complement the literature.  

 



 

 13 

 

CHAPTER 2 

LITERATURE REVIEW 

 The literature review is organized into three main parts. Part I focuses on building an 

understanding of what aberrant responding is and provides a brief background on its detection 

with person fit statistics. Part II describes dominance and unfolding models. This section first 

covers the underlying response processes (ideal point and dominance) and how they are reflected 

in the respective unfolding and dominance IRT models. The primary differences and similarities 

between the two model frameworks are outlined and previous research is reviewed. Lastly, 

research involving the detection of aberrant responses under an unfolding model context is 

recognized and factors relevant to the current study are presented in Part III.  

Part I: Detection of Aberrant Responding 

Aberrant Responding 

 Several cognitive models for answer processes exist that help explain how and why 

people respond the way they do. Understanding these processes is imperative in recognizing their 

potential relationship with data quality. For example, Tourangeau and Rasinski (1988) theorized 

that the process of answering attitude questions begins with interpreting the question and 

retrieving information from the brain, followed by using the retrieved information to form 

judgement, and finally mapping the participant’s judgement on to one of the available answer 

choices (additionally, participants may edit their choices by checking their consistency with 

other answered questions). Ideally all participants would go through an honest cognitive process 

similar to this. In reality however, participants may lack motivation, or the cognitive effort 

required for such a process, yielding response data that is aberrant, or deviant from what would 

be expected if the participants were accurately recording their perspectives.  Researchers have 
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long been aware that responders may be distracted or lack the cognitive effort to provide 

accurate and meaningful responses (Cronbach, 1946). Further, some respondents may possess 

the cognitive effort, but willfully provide false responses for social desirability or some ulterior 

motive (Paulhus, 1984).  Both cases would be considered aberrant data, and the inclusion of 

these types of responses can lead to misleading conclusions by researchers. 

Types of Aberrant Responding. Aberrant responses stem from numerous possible 

behaviors and characteristics of the respondent. It is important for researchers to be aware of the 

sources of these behaviors and knowledgeable about the different forms they can take. Many of 

these behaviors are linked to carelessness (or inattentiveness), random responding, straight-lining 

(or long-string responses), and creative responding (Curran, 2016; Huang et al., 2012; Johnson, 

2005; Karabatsos, 2003; Meijer et al., 1996).  

Types of Response Styles. Additionally, various types of response styles may result in 

misfitting item scores. Extreme response style (ERS) refers to people tending to choose the upper 

or lower extreme categories, regardless of the item content (Greenleaf, 1992). People who tend 

to choose the middle response option regardless of item content may be deemed as exhibiting 

what is known as middle response style (MRS; Baumgartner & Steenkamp, 2001), or mid-lining. 

Another type of response style includes acquiescent response style (ARS; Baumgartner & 

Steenkamp, 2001), where respondents tend to agree with items or select positive responses 

regardless of item content. Researchers have warned that when a sample has large disparities in 

exhibiting response styles (such as ERS), comparing participants’ test scores becomes very 

difficult and the contamination may threaten the validity of conclusions drawn from the data 

(Baumgartner & Steenkamp, 2001; de Jong et al., 2008; van Herk et al., 2004). Person-fit 

analyses, discussed later, may help identify participants that contribute to this lack of 
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comparability due to response styles or other types of aberrant responding present in the data 

(Emons, 2008, 2009; Karabatsos, 2003; Meijer & Sijtsma, 2001; Tendeiro, 2017).  

Impact of Aberrant Responding. When the proportion of aberrant responses to items on 

an instrument is at least moderate (a common scenario), these aberrant response vectors have the 

potential to impact the reliability of the measure, its validity, and ultimately lead to misleading 

conclusions made from the data. DeSimone et al. (2018) found that even 10 to 15 percent 

contamination (of insufficient effort response vectors) in a dataset should be a cause for concern. 

Random responding, for example, may lead to lower interitem correlations, lower reliability 

estimates, and mask the real factor structure. Thus, the researcher is at higher risk for making 

Type II errors and failing to reveal relationships between variables that may actually exist 

(McGrath et al., 2010).  Straight-lining (or long-string responses) on the other hand, may 

artificially inflate reliability if the items are worded in only one direction.  

In a study investigating the impact of simulated aberrant response vectors, researchers 

confirmed that response vectors mimicking random responding have a different impact than 

those that are invariant (i.e., straight-lining; DeSimone et al., 2018).  More specifically, random 

responding seemed to decrease inter-item correlations, resulting in flatter eigenvalue 

distributions in the PCA, and lower coefficient alpha estimates. The samples in the study that 

contained straight-line vectors showed an increase in inter-item correlations, increased reliability, 

and more skewed PCA results.  

The impacts of aberrant responding on the performance of person fit statistics has also 

been studied (Emons et al., 2003; Glas & Meijer, 2003; Karabatsos, 2003; Rudner, 1983; 

Tendeiro, 2017; Tendeiro & Meijer, 2014). Many studies have found that the accuracy of person 

fit statistics increases as the amount of aberrant responses within a response string increases 
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(conditions studied up to 41%; Emons et al., 2003, 2004; Glas & Meijer, 2003; Karabatsos, 

2003; Tendeiro, 2017). St-Onge and colleagues (2011) found that this relationship may not be 

linear, but rather increase until a peak is reached. Specific peaks ranged from approximately 30% 

to 55% depending on the type of person fit statistic and the type of aberrant response.   

Overall, research suggests a somewhat more complex answer to how aberrant responders 

are going to impact data and analyses. The answer depends on several factors including, but not 

limited to, how items are written (negatively versus positively), inter-item correlations, types of 

aberrant responding, proportion of aberrant responses, proportion of aberrant respondents in the 

sample, and the number of items. What is certain, is that researchers should be cognizant of the 

potential detriment low quality data may have on their conclusions (e.g., increased Type I and 

Type II error and obscured factor structure).  

Detecting Aberrant Responses 

Several methods for detecting aberrant responses have been studied and utilized to 

minimize threats to data quality. Response time is one of the most common methods used to 

identify “speeders” who do not meet the criteria based on a minimum time necessary for 

sufficient cognitive effort (Cyr, 2000; Huang et al., 2012; Wood et al., 2017; Zhang & Conrad, 

2014). Instructed items may also serve as an attention check (DeSimone et al., 2015; Kung et al., 

2018; Meade & Craig, 2012a). Other data quality measures include, but are certainly not limited 

to, psychometric and semantic synonyms and antonyms, Mahalanobis Distance, a long-string 

index, and an individual reliability measure (Bowling et al., 2016; Cyr, 2000; DeSimone et al., 

2015, 2018; Huang et al., 2012; Jackson, 1976; as cited in Johnson, 2005; Meade & Craig, 

2012a; Turner, 2018). For the purpose of this dissertation, methods used to detect aberrant 

responses are focused on person-fit statistics which are described below. 
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Person-Fit. As mentioned above, person-fit statistics exist among many methods for 

examining response behaviors on cognitive and non-cognitive assessments. “Person-fit,” also 

referred to as “appropriateness measurement,” refers to the degree to which a person’s item 

response pattern departs from what is expected based on an item response theory (IRT) model or 

the response patterns of other non-aberrant responding persons in the group. Researchers have 

been concerned with person-fit since the early 1900’s, involving theories and methods for 

estimating reliability and recognizing measurement error (Cronbach, 1946; Lord & Novick, 

2008; Spearman, 1910; Thurstone, 1927). Rupp (2013) notes that applications of person-fit have 

gained popularity in several assessment areas including educational settings, psychological 

assessment, personality assessment, attitudinal assessment, and health outcomes assessment. The 

establishment of item response theory initiated an escalation in person-fit research, resulting in 

over forty statistics available to test person-fit (Meijer & Sijtsma, 2001).  

Two general types of person-fit statistics include parametric and nonparametric statistics. 

Parametric statistics involve some form of measuring the disparity between the observed data 

and the estimated response predictions resulting from an IRT model. In contrast, nonparametric 

person-fit statistics are based on a more general model framework and less strict assumptions 

than parametric IRT (Sijtsma & Molenaar, 2002).  Additionally, person-fit statistics may be 

considered global or local. Global person-fit refers to assessing misfit of persons using all items 

in a response vector. Conversely, local person-fit is evaluated using subsets of items in a 

response vector (Emons, 2009; Rupp, 2013).  These distinctions are important in reviewing 

person-fit statistics literature and prompt deep consideration in comparing results across studies.  

Person-Fit Comparison Studies. Table 1 outlines several person fit simulation studies 

and contains information on the generating model(s), sample size(s), percent aberrant 
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respondents, percent aberrant responses, test length, type of aberrant behavior(s), and person fit 

statistic(s) involved. The table has been adapted from Rupp’s (2013) review of methodology for 

person fit analysis research spanning the timeframe of 2000 to 2010, with the addition of more 

current studies up to 2020. The additional studies were found by searching key words such as 

“person fit,” “fit,” “aberrant response,” “longstring,” “random response,” “insufficient effort,” 

and related words. Sources included Google Scholar and the University of Arkansas library and 

dissertation database.  Various studies from the table, as well as empirical person fit studies, are 

discussed in more detail below. 

Table 1. Person Fit Simulation Studies (modified and updated from Rupp, 2013) 

Author(s) Model 
Sample 

Size 

% 

AbN 

Test 

Length 
% AbI 

Type of 

Aberrant 

Response 

Person Fit 

Statistic(s) 

Armstrong 

et al. 

(2007) 

3PL 10,000 50 121 
15, 20, 

30 

Spuriously 

high/low 
𝑙𝑧 

Armstrong 

& Shi 

(2009a) 

3PL 10,000 1,3 100 
8, 10, 

12 

Spuriously 

high/low/mixed 

𝐶𝑈𝑆𝑈𝑀𝐿𝑅 , 𝐶𝑈𝑆𝑈𝑀𝐿𝑅 , 
𝐶𝑈𝑆𝑈𝑀𝐼𝑅𝑇, 𝑈3, 𝐶∗ 

Armstrong 

& Shi 

(2009b) 

3PL 10,000 1,3 100 
8, 10, 

12 
Aberrant 

𝐶𝑈𝑆𝑈𝑀𝐿𝑅 , 𝐶𝑈𝑆𝑈𝑀𝐿𝑅 , 
𝑙𝑧 , 𝑈, 𝑊, 𝑈𝐵 

Artner 

(2016) 
1PL 

100, 

500 
5, 30 25, 50 

variou

s 

Careless, 

Cheating, 

Guessing, 

Distorting, 

Fatigue 

𝐶∗, 𝑈3, 𝐻𝑇 

Choi & 

Cohen 

(2008) 

3PL-T 1,000 

5, 

10, 

20 

35 20 Guessing 𝑙, 𝑈, 𝑊 

Clark 

(2010) 
GRM 1,000 

1, 5, 

10, 

25 

25 
10, 30, 

50 
Cheating 

𝑙𝑐0, 𝑙𝑐𝑧, 𝑀
− 𝑙𝑐0, 𝑀 − 𝑙𝑐𝑧 
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Table 1 (Cont.) 

Conijn et 

al. (2014) 
GRM 10,000 

10, 

30 
30, 60 

20, 40, 

50, 60, 

80, 

100 

Random 

responding 

𝑙𝑧(𝑢𝑛𝑖)
𝑝 , 𝑙𝑧(𝑠𝑢𝑏)

𝑝 , 𝑙𝑧𝑚
𝑝 , 

𝑙𝑧(𝑐𝑜𝑚)
𝑝 , 𝑙𝑧(𝑠𝑒𝑙)

𝑝
 

Cui & 

Leighton 

(2009) 

AHM 4,000 50 
14, 28, 

42 
100 

Creative, 

Structural 

Misspecificatio

n, Random 

𝐻𝐶𝐼 

de la Torre 

& Deng 

(2008) 

3PL 5,000 100 
10, 30, 

50 
10, 30 

Cheating, 

Speeding, Lack 

of Motivation 

𝑙𝑧 

Dimitrov & 

Smith 

(2006) 

1PL 9,000 27 
10, 20, 

30 
20, 40 

Guessing, 

Cheating 
𝑡, 𝑡∗, 𝑍3, 𝑍3

∗, 𝐻𝑇 

Emons et 

al. (2003) 
4PL 1,000 100 20, 40 

12, 20, 

25, 50 

Cheating, 

Inattentive 
𝐺∗, 𝑈3, 𝑙0, 𝜁 

Emons et 

al. (2004) 
4PL 1,000 NP 20, 40 

12.5, 

25, 40 

Answer 

Copying, Test 

Anxiety 

𝐿𝑅 − 𝛽, 𝑍𝑈3,
𝐺𝛽

2, 𝐺γ,SL
2 , 𝐺γ,SH

2  

Emons 

(2008) 

2PL, 

GRM 
6,000 50 12, 24 

25, 50, 

75, 

100 

Careless, 

Extreme 

options, 

Reverse 

wording 

𝑈3𝑝, 𝐺𝑁
𝑝, 𝑙𝑧

𝑝
 

Emons 

(2009) 
GRM 

1,000; 

3,000 
5, 10 12, 24 

17, 25, 

33, 50, 

67, 

100 

Careless, 

Extreme options 
𝑙𝑧

𝑝, 𝑝𝑥𝑣+ 

Ferrando 

(2009) 
LFA 5,000 6 

10, 18, 

24 
20, 25 Random 

𝑀 − 𝑙𝑐0, 𝑀
− 𝑙𝑐𝑧 

Ferrando 

(2010) 
CRM 500 6 10, 30 20 Random 𝑙𝑐0, 𝑙𝑐𝑧 

Glas & 

Meijer 

(2003) 

3PL 
400; 

1,000 
10 30, 60 

17, 33, 

50 

Local 

dependence, 

Guessing 

𝑙, 𝑊, 𝑈𝐵, 𝑇1, 𝑇2, 
𝑇𝑙𝑎𝑔, 𝛾1, 𝛾2 

Glas & 

Dagohoy 

(2007) 

2PL, 

GRM, 

SM, 

GPCM 

400; 

1,000 
10 40, 60 25, 50 

Ability 

increase, 

Guessing 

LM test 

Hendrawan 

et al. 

(2005) 

3PL 
400; 

1,000 
10 30, 60 

17, 33, 

50 

Item disclosure, 

Guessing 
𝑙, 𝑈𝐵, 𝑊, 𝜁1, 𝜁2 
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Karabatsos 

(2003) 
1PL 500 

5, 

10, 

25, 

50 

17, 33, 

65 

18, 41, 

100 

Cheating, 

Guessing, 

Careless, 

Creative, 

Random 

36 statistics 

Liu et al. 

(2009) 
DINA 

1,000; 

2,200 

18, 

100 
60, 90 100 

Spuriously 

high/low, 

Strategy 

switching 

𝐿𝑅 𝑡𝑒𝑠𝑡(𝑇1, 𝑇2) 

Raiche & 

Blais 

(2003) 

1PL 1,000 100 
variou

s 
10, 20 

Incorrect, 

Random 
𝑙𝑧 , 𝑊, 𝜁, 𝐼𝑟𝑎𝑛, 𝐼𝑖𝑛𝑣, 𝐼𝑐𝑜𝑚𝑏 

Sijtsma & 

Meijer 

(2001) 

1PL, 

4PL 
3,000 100 40, 80 12.5 Careless 𝑃, 𝑍𝑈3 

St-Onge et 

al. (2009) 

1PL, 

2PL, 

3PL 

100; 

1,000 
5 40 20 Spuriously high 𝐸𝐶𝐼2𝑧 , 𝐸𝐶𝐼4𝑧 , 𝑙𝑧 

St-Onge et 

al. (2011) 
2PL 1,000 5 

20, 40, 

60, 80 

10 to 

60 

Spuriously 

high/low 
𝑙𝑧 , 𝑈3, 𝐸𝐶𝐼2, 𝐻𝑇 

Tendeiro 

(2017) 

GGUM

* 
1,000 

5, 

10, 

20 

10, 20, 

40, 

100 

10, 20, 

25 

Extreme and 

midpoint 

responding 

𝑙𝑧(𝑝), 𝑙𝑧(𝑝)
∗  

Tendeiro & 

Meijer 

(2014) 

3PL 1,000 

5, 

10, 

25 

15, 25, 

40 

20, 40, 

50 

Spuriously 

high/low/mixed 

𝐶∗, 𝑈1, 𝑈3, 𝐻𝑇 , 
 𝑃𝐸, 𝐶𝑈𝑆𝑈𝑀𝑙 , 

 𝐶𝑈𝑆𝑈𝑀𝑢, 
𝐶𝑈𝑆𝑈𝑀2−𝑠𝑖𝑑𝑒𝑑 

Turner 

(2018) 
RSM 1,000 

5, 

10, 

15, 

20, 

25, 

30 

36 
50, 

100 

Random, 

careless, 

fatigued, 

semantically 

driven, 

straightlined 

𝑈3+, 𝑍ℎ
+, 𝑙𝑧

∗ 

Wang et al. 

(2008) 
1PL 6,000 18 60 20 Cheating 𝑙𝑧 , 𝐸𝐶𝐼4𝑧 , 𝜒𝐷

2  

Zhang & 

Walker 

(2008) 

2PL 1,000 10 
10, 20, 

40 
20 Cheating 𝐻𝑇 , 𝐷(𝜃) 

Note. % AbN= percent of simulated respondents with aberrant responses. % AbI= percent of 

items with aberrant responses in a single aberrant response vector. U= Unfolding model. D = 

dominance model. 1PL, 2PL, 3PL, 4PL= 1-, 2-, 3-, and 4-parameter logistic models respectively. 

3PL-T = 3-parameter logistic testlet. GRM = graded response model. AHM = attribute hierarchy 

method. LFA = Linear factor analysis. CRM = continuous response model. SM = sequential 
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model. DINA = deterministic inputs noisy and-gate.  GGUM = Generalized graded unfolding 

model. RSM = Rating Scale Model.  Table adapted from Rupp (2013) and modified with 

relevant person fit studies.  

 

Karabatsos’ (2003) simulation study is one of the most cited person-fit comparison 

studies. In the study, the performance of 36 person-fit statistics in detecting aberrant responding 

examinees (cheaters, creative respondents, lucky guessers, careless respondents, and random 

respondents) is compared under the context of the Rasch model. The five types of aberrant-

responding examinees are crossed with two other factors: 1) Proportion of aberrant-responding 

examinees (5%, 10%, 25%, 50%) and 2) test length (17 items, 33 items, and 65 items). Results 

were organized by factor (type of aberrant-responding examinee, proportion of aberrant-

responding examinee, and test length). With respect to the type of aberrant-responding examinee, 

the results suggested that creative and cheating respondents are the most difficult to detect, while 

careless and random respondents are the easiest to detect. For cheaters, creative respondents, and 

careless respondents, the person-fit statistics 𝐻𝑇  and 𝐷(𝜃) performed the best. In addition to 𝐻𝑇  

and 𝐷(𝜃), 𝐸𝑖 also performed the best at detecting lucky-guessing respondents. Several person-fit 

statistics (𝐻𝑇, 𝐷(𝜃), 𝐸𝑖, 𝑟𝑝𝑏𝑖𝑠, 𝐶, 𝑀𝐶𝐼, 𝑈3, 𝐸𝐶𝐼3, 𝐸𝐶𝐼5, 𝑎𝑛𝑑 𝑀) were considered the most 

effective at identifying random responding examinees. In reference to the proportion of aberrant-

responding examinees, detection rates typically decreased as the proportion of aberrant 

responders increased. While there were negligible differences in the person-fit statistics’ 

performances under the 5%, 10%, and 25% aberrant-responding examinee conditions, 

𝐸𝑖, 𝐸𝐶𝐼1, 𝐸𝐶𝐼2, and 𝐸𝐶𝐼6 performed the best when 50% of the examinees had aberrant response 

vectors. Finally, with regards to the test length conditions, results illustrated how detection rates 

increased as test lengths increased. For all three test lengths, 𝐻𝑇, 𝐷(𝜃), and 𝑙 were the most 

effective person-fit statistics.  Furthermore, when all simulees from all conditions were 
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combined, 𝐻𝑇 was the most effective at detecting aberrant responding examinees, with 

𝐷(𝜃), 𝐶, 𝑀𝐶𝐼, and 𝑈3 tying for second-best. Karabatsos (2003) concludes by suggesting critical 

values for these top five performing person-fit statistics which maximizes the sensitivity and 

specificity rate (𝐻𝑇 ≤ .22, 𝐷(𝜃) ≥ .55, 𝐶 ≥ .53, 𝑀𝐶𝐼 ≥ .26, and 𝑈3 ≥ .25). 

 Rudner (1983) compared the ability of nine person-fit statistics 

(𝑟𝑝𝑏𝑖𝑠, 𝑟𝑏𝑖𝑠, 𝑁𝐶𝐼, 𝐶𝑖, 𝑈1, 𝑈3, 𝑊1, 𝑊3, 𝑎𝑛𝑑 𝐿3) to detect spuriously low and high respondents. 

Two datasets were independently generated using a 3PL model based on the parameterization of 

80 verbal Scholastic Aptitude Test items and 45 teacher-developed biology exam items. 

Response outcomes were changed for 5, 10, 15, or 20 percent of items to create spuriously high 

and low performing respondents.  Critical values were set to the cut-off point where the lowest 

5% of the most extreme values lied for the control group. As the number of aberrant item 

responses increased, detection rates also increased, indicating the severity of aberrant response 

vectors does make a difference in misfit detection. Spuriously high scores were usually easier to 

detect than the spuriously low scores. The 𝑈3 seemed to work well on the longer test but not on 

the shorter test.  

 In 2014, Tendeiro and Meijer conducted a simulation study similar to Rudner (1983) in 

that they examined person-fit statistic performance for detecting spuriously high and spuriously 

low responding examinees with dichotomous items generated using a 3PL model (Tendeiro & 

Meijer, 2014). Spuriously high responding examinees were generated by taking a proportion 

(.05, .10, or .25) of the low ability examinees (theta value below -.5) and replacing 20%, 40% or 

50% of the failed items (responses of 0) with scores drawn from a Bernoulli distribution with a 

.80 probability. Thus, incorrect responses (values of 0) had a .80 probability of being replaced 

with correct responses (values of 1). Spuriously low response vectors were similarly created 
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using a Bernoulli distribution with a .20 probability, resulting in a .80 chance for 1s to be 

changed to 0s. Data was analyzed using three types of datasets according to the type of aberrant 

response behavior involved: 1) datasets with proportions of only spuriously low response 

vectors, 2) datasets with proportions of only spuriously high response vectors, and 3) datasets 

with equal proportions of both spuriously low and high response vectors (mixed). Datasets were 

simulated such that aberrant responding was spread throughout the test as well as constrained to 

be local (consecutive). Nonparametric person-fit statistics 𝐶∗, 𝑈1, 𝑈3, 𝐻𝑇 , 𝑃𝐸 were compared. 

Additionally, they examined the performance of the lower, upper and two-sided cumulative sum 

(CUSUM) indices proposed by Krimpen-Stoop and Meijer (2001). Furthermore, the corrected 

version of the popular 𝑙𝑧 statistic (Drasgow et al., 1985),  𝑙𝑧
∗ (Snijders, 2001), was estimated in 

order to compare the nonparametric statistics with a well-known parametric statistic.  The true-

positive rate, false-positive rates, and correlations between the person-fit statistic and total scores 

were used for evaluation criteria. Four-way ANOVAs were conducted for the person-fit statistics 

to investigate the impacts of item discrimination, test length, proportion of aberrant respondents, 

and proportion of aberrant responses. For the general, non-consecutive aberrant data, the 

proportion of aberrant responders had a negligible effect for all indices except 𝑙𝑧
∗ , where detection 

rates decreased as the proportion of aberrant responders increased. The proportion of item 

responses in a response vector had no practical effect with spuriously low respondents, but for 

spuriously high respondents, detection rates increased as the proportion of aberrant items 

increased from 20% to 40%, but no additional increase from 40% to 50%. Increasing the 

proportion of aberrant responses in a response vector also had a moderate effect, increasing 

detection rates for the sample with mixed spuriously high and low respondents. For all indices, 

increasing the discrimination parameters increased detection rates. Detection rates also increased 
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as test lengths increased, especially for spuriously low and mixed respondents. The results from 

this study suggested that the 𝐻𝑇 statistic was the most efficient in detecting spuriously low, high, 

and mixed response vectors with general-type data (𝑈3, 𝐶∗, 𝑎𝑛𝑑 𝑈1 were a close second-best). 

This corresponds with Karabatsos’ (2003) finding that 𝐻𝑇 was the best performing person-fit 

statistic.  

 Emons (2008) conducted nonparametric person-fit analyses with polytomous items using 

both simulated and empirical, dominance response-type data to compare three person-fit 

methods: 1) Number of Guttman errors for polytomous items (𝐺𝑃), 2) normed Guttman 

errors (𝐺𝑁
𝑃), and 3) the generalized 𝑈3 statistic (Van der Flier, 1982). The parametric 𝑙𝑧

𝑝
 person-

fit statistic was also included in the study for comparison purposes. In the simulation study, data 

were generated under the graded response model (GRM) and misfitting item score vectors were 

created to mimic carelessness and inattention, extreme response style, and reverse scoring 

effects. By simulating two datasets (one clean, normal behavior and one with aberrant 

responses), the critical value for each Type I error rate was obtained. For the normal behavior 

(“clean”) dataset, the distribution of the 𝐺𝑃 statistic conditional on the sum score varied across 

sum scores with the distributions for middle range sum scores having a higher mean and larger 

variance.  The conditional distributions of 𝐺𝑁
𝑃 and 𝑈3 across sum scores were fairly consistent 

except for very high and very low sum scores. Emons notes that this finding supports the notion 

that person-fit indices should not be used with extreme scores. Therefore, extreme scores were 

removed from the datasets for subsequent analyses. For the careless and inattentive response 

condition, 𝐺𝑃 showed the best overall performance out of the three nonparametric statistics. 

However, the parametric 𝑙𝑧
𝑝
 statistic revealed slightly higher detection rates (differences ranged 

from .01 to .11) for the aberrant response behavior than the nonparametric indices. Increasing the 



 

 25 

 

number of response options only slightly increased detection rates, with a somewhat larger effect 

when the number of mis-fitting items in a response vector was larger. Detection rates were lower 

for extreme response style and showed low power (for test length of 12 and the number of misfit 

items in a vector equaling 6, the power was less than .50 for conventional Type I error rates), 

indicating this type of aberrant response behavior is difficult to detect. However, increasing the 

number of response options from 3 to 5 yielded acceptable detection rates when the number of 

aberrant responses in a response vector was high enough. The detection rates for extreme 

response behavior were actually higher for lower item discrimination. Emons posits that this can 

be explained by the fact that higher discrimination for easy and difficult items will lead to higher 

probabilities of choosing the highest and lowest categories respectively. Thus, the difference 

between normal and aberrant behavior (due to extreme responding) diminishes with higher item 

discrimination. 𝐺𝑁
𝑃 and 𝑈3 were recommended over 𝐺𝑃 and 𝑙𝑧

𝑝
 for extreme response behavior, 

however 𝐺𝑃 generally performed better than the other two nonparametric person-fit statistics for 

the other types of aberrant responding, and even slightly better than 𝑙𝑧
𝑝
 in some conditions 

(though differences were small).  In the empirical study, Emons (2008) used data from a study 

using 17 items to assess people’s coping behavior with industrial malodor (Cavalini, 1992). 

Items were on a 4-point scale and a subset of eight items were selected that demonstrated a 

unidimensional scale. The three nonparametric person-fit statistics used in the simulation study 

were applied to the empirical dataset. Correlations between the person-fit statistic ranged from 

.88 to .89. A total of 44 response vectors (out of the sample of 675) were flagged by at least one 

person-fit statistic. 𝐺𝑃 flagged 10 respondents that were not flagged by either 𝐺𝑁
𝑃 nor 𝑈3, and 𝐺𝑁

𝑃 

flagged 10 respondents that were not flagged by either 𝐺𝑃nor 𝑈3. The statistic 𝑈3 did not flag 

any response vectors that were not also flagged by either of the other two statistics.  
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 Dimitrov and Smith (2006) simulated datasets using the dichotomous Rasch model to 

compare four parametric person-fit statistics (𝑡, 𝑡∗, 𝑍3, 𝑍3
∗) and one nonparametric person-fit 

statistic (𝐻𝑇). They used three different shorter test lengths (10, 20, and 30 items) and two levels 

of aberrant response severity (20% or 40% of the most difficult items within a response vector 

were considered aberrant) to test the performance of the five person-fit statistics in detecting two 

types of aberrant response behavior (cheating or guessing). Results suggested that the adjusted 

parametric statistics (𝑡∗ and 𝑍3
∗) consistently outperformed the respective unadjusted parametric 

statistics (𝑡 and 𝑍3), but not by a large amount. Additionally, the nonparamtric person-fit statistic 

(𝐻𝑇) once again outperformed the parametric person-fit statistics in most conditions. 

Specifically, for the longer test lengths of 20 and 30 items, 𝐻𝑇 seemed to consistently detect 

cheating and guessing more efficiently. However, for the shorter test length of 10 items, t and 𝑡∗ 

slightly outperformed the other statistics in detecting guessing, while the nonparametric statistics 

all had very similar results for detecting cheating (with 𝐻𝑇 somewhat behind). 

Overall, the general consensus seems to be that the comparative performance of person-

fit statistics depends on the conditions in place, such as test length, aberrant response type, 

proportion of aberrant responding examinees, proportion of aberrant responses within each 

response vector, distributions of item parameters, item characteristics, and more. Regarding 

methodology, Rupp (2013) notes four principal steps taken by almost all person fit simulation 

studies: 1) data generation according to a specified model, 2) generated response vectors are 

altered to reflect a type and severity of aberrant responding, 3) the statistical model(s) is (are) fit 

to the updated data from step 2, and 4) the person fit statistics are computed and performance is 

evaluated. Results have been vast and somewhat varied across studies. However, disregarding a 
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few exceptions, trends have emerged within certain conditions. These trends are noted in Table 2 

and described in the section below. 

Aberrant Responding Detection Under Various Conditions. The performance of 

person fit statistics in the detection of aberrant responding has been shown to depend on several 

conditions including how many people respond aberrantly in a sample, how many of their item 

responses are aberrant, test length, and number of response options. For example, as the 

proportion of aberrant responders in a sample increases, detection rates may decrease due to 

over-contamination and blurring the lines between what response patterns are normal and which 

are abnormal (Armstrong & Shi, 2009a, 2009b; Emons, 2009; Karabatsos, 2003). On the other 

hand, as the proportion of aberrant responses in a response vector for a specific individual 

increases, detection rates have generally increased (Emons, 2009; Rupp, 2013). Additionally, 

detection rates of several person-fit statistics seem to increase as the test length increases 

(Dimitrov & Smith, 2006; Emons, 2009; Karabatsos, 2003; Meijer et al., 1996; Tendeiro & 

Meijer, 2014). Increasing the number of response options has also been shown to increase 

detection rates (Emons, 2008).    The performance of person fit statistics has also been shown to 

depend on the type of aberrant responding (cheating, guessing, random responding, etc.). Table 2 

provides four examples of studies with regards to the type of aberrant responding and person fit 

performance. The diversity in results of the studies highlights the complexity in determining 

which person fit statistic is the optimal choice. Determining which person-fit statistic to use 

requires careful consideration of all of these conditions.  
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Table 2. Examples of Person-Fit Performance Under Various Test Lengths, Types of 

Aberrant Responding, and Proportions of Aberrant Respondents 

Condition: Aberrant Response Types 

Author and Person-

Fit Statistics Used 

Type Results 

Karabatsos (2003) 

36 Person-fit 

statistics 

1) cheaters  

2) lucky 

guessers  

3) creative 

4) careless 

5) random  

Creative and cheating respondents were the most 

difficult to detect, while careless and random 

respondents were the easiest to detect. 

 

For cheaters, creative respondents, and careless 

respondents, the person-fit statistics, 𝐻𝑇  and 𝐷(𝜃), 

performed the best. In addition to 𝐻𝑇  and 𝐷(𝜃), 𝐸𝑖 

also performed the best at detecting lucky-guessing 

respondents. Several person-fit statistics (𝐻𝑇, 𝐷(𝜃), 

𝐸𝑖, 𝑟𝑝𝑏𝑖𝑠, 𝐶, 𝑀𝐶𝐼, 𝑈3, 𝐸𝐶𝐼3, 𝐸𝐶𝐼5, 𝑎𝑛𝑑 𝑀) were 

considered the most effective at identifying random 

responding examinees. 

 

Rudner (1983) 

𝑟𝑝𝑏𝑖𝑠, 𝑟𝑏𝑖𝑠, 𝑁𝐶𝐼, 𝐶𝑖 ,  

𝑈1, 𝑈3, 𝑊1, 
 𝑊3, 𝑎𝑛𝑑 𝐿3 

 

Spuriously low 

and high 

respondents 

 

Spuriously high scores were usually easier to detect 

than the spuriously low scores. 

The weighted Birnbaum model, 𝑊3, seemed to be 

the most consistent at efficiently identifying spurious 

respondents over all condition. 

 

Tendeiro & Meijer 

(2014) 

𝐶∗, 𝑈1, 𝑈3, 𝐻𝑇 , 𝑃𝐸, 𝑙𝑧
∗ 

 

Spuriously 

low, high, and 

mixed 

respondents 

 

𝐻𝑇 statistic was the most efficient in detecting 

spuriously low, high, and mixed response vectors 

(𝑈3, 𝐶∗, 𝑎𝑛𝑑 𝑈1 were a close second-best) 

 

 

 

  

 

Emons(2008)  

𝐺𝑃, 𝐺𝑁
𝑃, 𝑈3 and 𝑙𝑧

𝑝
 

 

Carelessness 

and 

inattention, 

extreme 

response style, 

and reverse 

scoring effects 

 

Detection rates were lower for extreme response 

style and show low power (For this response 

behavior, 𝐺𝑁
𝑃and 𝑈3 were recommended over 𝐺𝑃 and 

𝑙𝑧
𝑝) 

𝐺𝑃 and 𝑙𝑧
𝑝
 performed better for reverse wording 

effect. 

 

 

Based on results from previous research, popularity in practice, and prior use with ideal 

point response data, the following person-fit statistics were chosen for inclusion in this 
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dissertation: 𝑙𝑧(𝑝), 𝑙𝑧(𝑝)
∗ , 𝐻𝑇 , 𝑈3𝑃,  𝐺𝑁

𝑃,and  𝐺𝑃 . Further details on the choice for inclusion are 

given for each statistic in the following section. 

Person-Fit Statistics 

The body of literature involving person-fit statistics is immense. Therefore, the following 

descriptions cover the statistics that are most commonly used and relevant to the current study. 

As previously mentioned, there are two general types of person-fit statistics: parametric and 

nonparametric. The person-fit statistics discussed below are organized according to which of the 

two classification methods they belong (parametric: 𝑙𝑧(𝑝) and 𝑙𝑧(𝑝)
∗ , nonparametric: 

 𝐻𝑇 , 𝑈3𝑃,  𝐺𝑁
𝑃,and  𝐺𝑃 ).  Throughout the chapter, mathematical notation is used to help 

demonstrate how each person fit statistic is computed. Respondents are indexed by n (n=1, ..., N) 

and items are indexed by j (j=1, ..., J). In IRT, theta (𝜃) is generally used to represent each 

respondent’s trait or ability level, and the probability of observing a particular response to an 

item can be estimated using an IRT probability function (𝑃) which incorporates theta and certain 

item characteristics (e.g., discrimination, difficulty, guessing).   Observed responses of 

respondent n to item j are represented by 𝑋𝑛𝑗 and the probabilities of a response to an item, given 

by an IRT model, are represented by 𝑃𝑛𝑗. Further, the probability of endorsement (or correct 

response) of an item by a person is represented by 𝑃𝑛𝑗1, where the probability of non-

endorsement (or incorrect response) of an item by a person is represented by 𝑃𝑛𝑗0. 

Parametric statistics. Person-fit statistics that involve some form of measuring the 

disparity between the observed data and the estimated response predictions resulting from an 

IRT model’s parameter estimates are considered parametric (Karabatsos, 2003). 

𝒍𝒛(𝒑)
∗ . The  𝑙𝑧(𝑝)

∗  statistic (Drasgow et al., 1985) stems from possibly the most well-known 

parametric person-fit statistic, 𝑙  (Levine & Rubin, 1979). To clearly demonstrate how 𝑙𝑧(𝑝)
∗  is 
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computed, it is beneficial to illustrate its transformation from the earlier 𝑙 statistic which 

measures the log-likelihood fit of a response to an item with the prediction based on an IRT 

model (Karabatsos, 2003). The binomial loglikelihood statistic is computed as follows: 

𝑙 = ∑ [𝐽
𝑗=1 𝑋𝑛𝑗(ln 𝑃𝑛𝑗1) + (1 − 𝑋𝑛𝑗)(𝑙𝑛𝑃𝑛𝑗0)].            (1) 

To better understand this formula, consider all four possible scenarios for item j, given that 

ln(1) = 0 and ln(0) →  −∞: 

Table 3. Possible Scenarios in Illustrating the Nature Of l  

Scenario 

Probability 

of correct 

answer 

𝑃𝑛1 

Response: correct 

(1) or 

incorrect (0) 

(𝑋𝑛) 

 

𝑙 = 𝑋𝑛(ln 𝑃𝑛1) + (1 − 𝑋𝑛)(𝑙𝑛𝑃𝑛0) 

 

A High → 1 1 𝑙 → 0 

B Low → 0 0 𝑙 → 0 

C High → 1 0 𝑙 → −∞ 

D Low → 0 1 𝑙 → −∞ 

 

Notice how if the examinee’s response matches what is expected from the probability 

(scenarios A and B), the likelihood statistic approaches zero. However, if the response does not 

match what is expected from the probability, the statistic approaches negative infinity (scenarios 

C and D). This demonstrates how a smaller 𝑙-statistic indicates larger misfit. 

The limitation of the likelihood-statistic is that it is not standardized and it is unknown 

what the distribution under a fitting IRT model is. Drasgow et al. (1985) proposed a standardized 

normal version of the likelihood statistic, 𝑙𝑧 , in the following way: 

𝑙𝑧 =
𝑙−𝐸(𝑙)

√𝑣𝑎𝑟(𝑙)
,      (2) 

where 𝐸(𝑙) = ∑ {𝑃𝑛𝑗1(𝜃)ln (𝑃𝑛𝑗1(𝜃)) + 𝑃𝑛𝑗0(𝜃)ln (𝑃𝑛𝑗0(𝜃))𝐽
𝑗=1  and                                

𝑣𝑎𝑟(𝑙) = ∑ 𝑃𝑗(𝜃)𝑄𝑗(𝜃) (𝑙𝑜𝑔
𝑃𝑗(𝜃)

𝑄𝑗(𝜃)
 )

2
𝐽
𝑗=1 . 
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For the polytomous case where the number of response categories minus 1 is C, the mean 

and variance for equation 2 are defined as follows (Sinharay, 2016): 

               𝐸(𝑙) = ∑ ∑ [𝐶
𝑘=1 [𝐽

𝑗=1 𝑃𝑗𝑘(𝜃)(ln 𝑃𝑗𝑘(𝜃))]] and  

𝑣𝑎𝑟(𝑙) = ∑ ∑ ∑ 𝑃𝑗𝑘1
(𝜃)𝑃𝑗𝑘2

(𝜃) ln (𝑃𝑗𝑘1
(𝜃)) ln (

𝑃𝑗𝑘1
(𝜃)

𝑃𝑗𝑘2
(𝜃)

)

𝐶𝑗

𝑘2=1

𝐶𝑗

𝑘1=1

𝐽

𝑗=1

. 

Sinharay (2016, p. 996) further describes the mathematical reasoning behind the above equation. 

The interpretation of 𝑙𝑧 is similar to the interpretation of 𝑙 (i.e. lower (more negative) 

values of the statistic indicates greater misfit). Still, it is only when true theta values are used, 

that this statistic can be assumed to have an asymptotically standard normal distribution 

(Molenaar & Hoijtink, 1990). In practice, it is unrealistic to assume true theta values are 

available. Consequently, a modified version of 𝑙𝑧, 𝑙𝑧
∗ , was proposed that addresses this concern 

by accounting for the sampling variability of the estimated theta parameters (Sinharay, 2016).  

A thorough, and helpful explanation of the computational formulas involved in 

calculating 𝑙𝑧
∗ can be found in Magis et al. (2012). Sinharay (2016) further extended this 

corrected version for polytomous cases, 𝑙𝑧(𝑝)
∗ . Although Tendeiro (2017) found very similar 

results for the 𝑙𝑧(𝑝) and 𝑙𝑧(𝑝)
∗  statistics in an unfolding context, the current study will include both 

statistics to provide a second study to test whether they perform similarly under different 

conditions.  

 Nonparametric statistics. In contrast to the parametric person-fit statistics, 

nonparametric person-fit statistics are based on a more general model framework and less strict 

assumptions than parametric IRT (Sijtsma & Molenaar, 2002).  

𝑯𝑻. The 𝐻𝑇 statistic (Sijtsma, 1986; Sijtsma & Meijer, 1992) is an adapted version of 

Mokken’s (1971) 𝐻𝑗  index, which permits an item to be scaled to the Guttman (1944) model. In a 
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Guttman scale, items are arranged hierarchically so that the endorsement of one item suggests 

the endorsement of items below it. Further explanation of the Guttman scale and errors can be 

found in the Guttman person fit statistic section (𝐺𝑝) of this chapter. In order to focus this 

procedure on persons rather than items, Sijtsma (1986) simply transposed the item by person 

matrix. This transposition results in a statistic that could then detect respondents that do not 

conform to the Guttman model. Below, the 𝐻𝑇 statistic is generalized for polytomous items.  

The data matrix for the  𝐻𝑇statistic is composed of N rows of participants and J columns 

of items, with each element in the matrix representing an item score. Suppose participant 𝑛1 has 

an item-score vector, 𝑿𝑛1
, composed of j = 1 . . . J item-scores. The total score for item j, 𝑻𝑗 , is 

then computed as the sum of all participants’ scores for that particular item. The vector T is 

composed of the total scores for all items (𝑇1 𝑡𝑜 𝑇𝐽) and the vector 𝑻𝑛 = 𝑻 − 𝑿𝑛. That is, 𝑻𝑛 is 

the vector of all item-score totals excluding participant n. Finally, the scalability coefficient for 

participant n is computed as follows: 

𝐻𝑛
𝑇 =

𝐶𝑜𝑣(𝑿𝑛,𝑻𝑛)

𝐶𝑜𝑣𝑚𝑎𝑥(𝑿𝑛,𝑻𝑛)
,        (3) 

where  𝐶𝑜𝑣(𝑿𝑛, 𝑻𝑛) is the covariance between the participant n’s item-scores and the item-score 

totals for the remaining participants in the sample (excluding that participant).  𝐶𝑜𝑣𝑚𝑎𝑥(𝑿𝑛, 𝑻𝑛) 

is the maximum covariance possible between 𝑿𝑛 and 𝑻𝑛, given the marginal distributions. 

The 𝐻𝑛
𝑇 person fit statistic represents the degree to which a respondent’s item responses 

match the same ordering as the item-score totals. This statistic is included in the study because it 

has been found to have improved detection efficiency in several studies (Beck et al., 2019; 

Karabatsos, 2003; Tendeiro & Meijer, 2014). The coefficient 𝐻𝑇 can be used to summarize the 

individual 𝐻𝑇 statistics for all participants in a sample (Ligtvoet et al., 2010): 
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𝐻𝑇 =
∑ 𝐶𝑜𝑣(𝑿𝑛,𝑻𝑛)𝑁

𝑛

∑ 𝐶𝑜𝑣𝑚𝑎𝑥(𝑿𝑛,𝑻𝑛)𝑁
𝑛

.           (4) 

If a clear ordering exists among items and item response functions are spread apart, the 𝐻𝑇 

coefficient should be high. However, if item response functions overlap, the 𝐻𝑛
𝑇 statistics will be 

less stable and result in lower values for a dataset. If 𝐻𝑇for the overall sample is low, it may not 

be an appropriate indicator to use for the dataset. 𝐻𝑇 values less than or equal to 0.22 have been 

generally considered unreliable or a result of aberrant data (Karabatsos, 2003). 

 𝑮𝒑. The 𝐺𝑝 statistic summarizes the number of Guttman errors for polytomous items 

(Molenaar, 1991). To do this, the item step difficulties (𝜋𝑗𝑥𝑗
) are computed as the proportion of 

respondents who scored 𝑥𝑗  or higher on item j. Using an example similar to Emons (2008), 

suppose a four-category item (item 1) with response options 0 = strongly disagree, 1 = disagree, 

2 = agree, and 3= strongly agree, had step difficulties of 𝜋11 =  .85,  𝜋12 =  .40, and 𝜋13 =  .20. 

This means that 85% of the respondents passed the first step (chose a category higher than the 

first option), 40% passed the second step (chose an option higher than or equal to the third 

category), and 20% passed the third step (chose the fourth category).  Now suppose item 2, with 

the same response options, had step difficulties equal to 𝜋21 =  .60,  𝜋22 =  .30, and 𝜋23 =  .10. 

If a respondent scored 𝑥1 = 1 on the first item and 𝑥2 = 3 on the second item, the ordered vector 

(based on item step difficulties from least difficult to most difficult) of item step scores for this 

respondent would be (Y= ordered vector; yk = element k of vector Y): 

Table 4. Example of Item Step Scores Vector 

Ordered 

Item Steps 
𝜋11 =  .85 𝜋21 =  .60 𝜋12 =  .40 𝜋22 =  .30 𝜋13 =  .20 𝜋23 =  .10 

Y 1 1 0 1 0 1 

 

This respondent passed the second step of item 2 but failed to pass the easier second step of item 

1. Additionally, this respondent passed the third step of item 2 but failed to pass the easier third 
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step of item 1. Because the 𝐺𝑝 statistic counts all pairwise Guttmann ordering errors of all 

possible item-step pairs, the 𝐺𝑝 for this respondent would be equal to three.  Formally, the 𝐺𝑝 

statistic is given by the following equation: 

𝐺𝑝 = ∑ 𝑦𝑘(1 − 𝑦𝑙),𝐽𝐶
𝑙<𝑘                                                       (5) 

where J is the number of items which here are assumed to all have the same number of response 

categories (V), and thus the same number of steps (C). Thus, if C= 1, the 𝐺𝑝 statistic is specified 

for dichotomous items. In equation 6, 𝑦𝑙 represents all elements of vector Y that are prior to 𝑦𝑘.  

The more Guttmann errors a respondent has, the greater the 𝐺𝑝 statistic, indicating greater 

person misfit. 

 𝑮𝑵
𝑷 . The normed number of Guttmann errors, 𝐺𝑁

𝑃, normalizes the 𝐺𝑝 statistic to have a 

range of [0, 1]. Emons (2008) explains that while the minimum possible 𝐺𝑝 value is equal to 0 

(no misfit), the maximum depends on the sum score (X+) of the respondent and the ordering of 

the item steps. In order to compare the 𝐺𝑝 statistics across different X+ scores, the 𝐺𝑝 statistic 

was normed using the following equation (Emons, 2008): 

𝐺𝑁
𝑃 =

𝐺𝑝

max (𝐺𝑝|𝑋+)
.                       (6) 

Because the denominator of Equation 6 cannot be expressed in closed form (the item-step scores 

are structurally dependent), a recursion algorithm can be used to determine the maximum of 𝐺𝑝 

conditional on the item step ordering. Both the 𝐺𝑝 and 𝐺𝑁
𝑃 statistics are fairly simple, and thus 

popular. The statistics are also included in the PerFit package in R. Due to their popularity and 

effectiveness with certain conditions such as careless and inattentive responders (e.g., Emons, 

2008), they are included in the current study. 

 𝑼𝟑𝑷. Emons (2008) generalized the 𝑈3 person-fit statistic (Van der Flier, 1980) for 

application to polytomous items, resulting in the creation of the 𝑈3𝑃statistic. It is included in the 
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study because several studies have found this polytomous version of 𝑈3 to have comparative if 

not better performance than other parametric and nonparametric person-fit statistics (Emons, 

2008; Karabatsos, 2003; Tendeiro & Meijer, 2014; Turner, 2018). The statistic is defined in a 

few steps. First, the sum of the log-odds of the item step difficulties of the steps that were passed, 

𝑊(𝒚), is computed as follows: 

𝑊(𝒚) = ∑ 𝑦𝑘 log (
�̂�𝑘

1−�̂�𝑘
) ,𝐽𝐶

𝑘=1            (7) 

where 𝒀 is an observed response vector for J items with C+1 response categories, 𝑦𝑘 is the item-

step score for item-step k (taking a value of 1 if step k is passed or 0 if step k is not passed), and 

�̂�𝑘 is the item-step difficulty for item-step k where 𝜋𝑘 is the population proportion of 

respondents who passed item-step k. To clarify, recall that the vector Y contains elements (yk) for 

each step of each item, ordered by difficulty. Next, norming 𝑊(𝒚) results in the 𝑈3𝑃 person-fit 

statistic as follows: 

𝑈3𝑃 =
max(𝑊|𝑋+)−𝑊(𝒚) 

max(𝑊|𝑋+)−min (𝑊|𝑋+)
,         (8) 

where 𝑋+ is the sum score computed as 𝑋+ = ∑ 𝑦𝑘
𝐽𝐶
𝑘=1  . The max(𝑊|𝑋+) can only be obtained if 

the following holds: 

max(𝑊|𝑋+) = ∑ 𝑙𝑜𝑔𝑖𝑡(
𝑋+
𝑘=1 �̂�𝑘).       (9) 

For example, if 𝑋+ = 10, then the max(𝑊|10) = ∑ 𝑙𝑜𝑔(10
𝑘=1

�̂�𝑘

1−�̂�𝑘
). The min(𝑊|𝑋+) cannot be 

expressed in closed form due to the structural dependencies between the item-step scores. That 

is, based on Guttman scaling principals it is assumed that passing a step for an individual item 

means that all easier steps of that same item are also passed. Thus, Emons (2008) proposed to 

compute min(𝑊|𝑋+) using a recursion algorithm. For more details on the recursion algorithm, 

see the Appendix from Emons (2008). 



 

 36 

 

Methods for Evaluating Person-Fit Statistic Performance  

 The true positive rate and true negative rates, reflecting sensitivity and specificity, are 

commonly used in the literature for evaluation of aberrant response behavior detection (Huang et 

al., 2012; Meade & Craig, 2012b; Niessen et al., 2016; Turner, 2018). A 2x2 contingency table 

as demonstrated in Table 3 can be used for classification purposes. As illustrated by the table, if 

an examinee has aberrant response behavior in reality and is correctly flagged by the detection 

method, the flagged vector is considered a “true positive” (TP). Similarly, if the examinee has 

normal response behavior in reality and is correctly not flagged, then the vector is considered a 

“true negative” (TN).  However, if an examinee has normal response behavior in reality, but is 

incorrectly flagged for aberrant response behavior by the detection method, the flagged vector is 

considered to be a “false positive” (FP). Finally, if the examinee’s response behavior is actually 

aberrant but they are not flagged then the response vector is considered a “false negative” (FN).  

Table 5. Contingency Table for Aberrant Response Classification  

 Aberrant Response 

Behavior in Reality 

Normal Response 

Behavior in Reality 

Marginal 

Flagged True Positive (TP) False Positive (FP) TP+FP 

Not Flagged False Negative (FN) True Negative (TN) FN+TN 

Marginal TP+FN FP+TN  

   

  𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑁+𝑇𝑃

𝑇𝑜𝑡𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒
     (10) 

As noted in Turner’s (2018)  dissertation on “The Detection and Impact of Low 

Cognitive Effort Survey Responses,” some researchers use accuracy (see Equation 10) to 

summarize detection efficiency (Meade & Craig, 2012b; Turner, 2018). However, the proportion 

of the sample that is contaminated (with aberrant responses) must be considered when 

interpreting results this way. That is, if one is testing the detection performance of a method for a 

sample containing 8% aberrant response vectors, and the method flags zero aberrant response 
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vectors, the accuracy rate may still be as high as 92%. Thus, it is important to report multiple 

measures of performance assessment (e.g., false positives, false negatives, etc.). 

Part II: Dominance and Unfolding Models 

Response Processes: Dominance vs Ideal Point Process 

 The way test-takers respond to items may differ based on the psychological process used 

to address the item. The approach to measuring the relationship between these two locations 

differs depending on the type of model conceptualized.  In the dominance response process, as 

the test-taker’s ability or trait level increases, the probability of endorsing an item increases 

regardless of the item’s location on the continuum. For example, when measuring the extravert 

nature of respondents with items like “I enjoy interacting with people,” it may be reasonable to 

assume that the more extraverted the respondent is, the more likely he or she will endorse this 

item.  The dominance approach has been conceptualized as early as the 1930’s (Likert, 1932) 

and gained more recognition by Coombs (1964), who described the approach asserting that 

someone who has a trait level higher than the item’s standing on that trait will endorse the item. 

 Evidence from several self-report inventories has indicated that response processes may 

not always align with what would be expected under the dominance approach. Some items on the 

16 Personality Factor Questionnaire (16PF; Conn & Rieke, 1994) have been shown to be non-

monotonic (Chernyshenko et al., 2001; Stark et al., 2006). Similarly, the probability of 

endorsement of some items on the depression content scale for the Minnesota Multiphasic 

Personality Inventory-2 (MMPI-2; Butcher et al., 1989) has been shown to decrease at the higher 

end of the trait continuum (Meijer & Baneke, 2004).  Researchers have suggested the use of an 

ideal point model in place of a dominance model in cases like these measuring personal 

preferences and attitudes (Drasgow et al., 2010). The ideal-point process is based on a notion 
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conceptualized by Thurstone (1928) and termed by Coombs (1964), that assumes a person will 

endorse an item to the degree that the item reflects the person’s own standing on the construct 

being measured. With this approach, the likelihood of endorsing an item increases as the 

difference between the test taker’s and item’s location on the continuum representing the 

construct of interest decreases.  

IRT Models. Item response theory (IRT) refers to a framework of mathematical models 

that aim to link the observed performance of a test taker (item scores) and the latent 

(unobservable) ability or trait level of the test taker (Hambleton & Swaminathan, 2013).  IRT 

models are widely used for the development and scaling of assessments in a variety of fields.  

With IRT, one can model the probability of a response as a function of the latent trait of interest 

in what is called an item response function (IRF). Figure 1 provides a visual representation of an 

IRF for a dichotomous item. Note that only the IRF for the probability of a correct response is 

depicted in Figure 1. Technically, one could show the IRF for an incorrect response as well, 

however, for a dichotomous item, this would yield redundant information.  
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Unidimensionality, local independence, invariance, and a specific form of the IRF 

underlie the assumptions of most IRT models (Meijer & Baneke, 2004; Weekers & Meijer, 

2008). Unidimensionality refers to the measurement of only one latent trait (i.e., responses do not 

depend on more than one underlying latent construct). When the observed item response is not 

dependent on other item responses on the test, for participants of equal trait levels, local 

independence holds, and suggests that the latent trait is what relates items to one another. 

Additionally, IRT models assume that the IRFs produce specific shapes depending on the IRT 

model. When fitting IRT models to the data, it is critical to distinguish which IRF best 

characterizes the relationship between the probability of a response and the latent trait level 

(Weekers & Meijer, 2008).  One of the observable differences between dominance and unfolding 

IRT models is the shape of the IRF functions for each. 

Figure 1. Example dominance item response function for a dichotomous item  

 

(a = 1.25, b = -0.77) 
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Dominance IRT Models. Dominance IRT models assume a cumulative or dominance 

response process is utilized, therefore as the trait level increases, so does the probability of item 

endorsement. With this characteristic, item response functions are monotonically increasing, as 

depicted in Figure 1 for a dichotomous item. For polytomous items, unique IRFs for each 

possible item outcome are specified. A pictorial representation of the IRFs under dominance IRT 

models for items with four response options are displayed in Figures 2.  

 

 

 

 

Figure 2. Dominance item response function for polytomous (4-category item) 
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Two types of IRT models include parametric and nonparametric models. With parametric 

models, parameters for both items and persons are considered.  Nonparametric IRT models are 

more flexible in that they do not consider item parameters and do not specify an exact shape for 

the IRF, only that it is monotonically increasing. For example, the Mokken’s nonparametric 

Model for Monotone Homogeneity (MH;  Mokken, 1971) assumes that the IRFs are non-

decreasing (along with other assumptions such as unidimensionality and local independence of 

items). This is less strict than the parametric IRT assumption that a strict mathematical form 

underlies the IRFs. With the MH model, IRFs are not parametrically defined and orderings of 

persons are based on the number-correct true score from classical test theory (Sijtsma & Meijer, 

1992). The double montonicity model adds the assumption of having invariant item ordering 

with non-intersecting item response functions. Although parametric IRT models are more 

common, nonparametric models are starting to become more popular (Sijtsma and Ark, 2017; 

Meijer & Baneke, 2004; Sijtsma & Molenaar, 2002).  

Popular parametric, unidimensional IRT models include the one-parameter logistic (1PL) 

model (Rasch, 1960), the two-parameter logistic (2PL) model (Birnbaum 1957; as cited in 

Hambleton & Swaminathan, 1985), and the three-parameter logistic (3PL) model (Birnbaum, 

1968; as cited in Baker, 2001). The 3PL model (Birnbaum, 1968; as cited in Baker, 2001) 

includes three item parameters (item discrimination, item difficulty, and guessing) represented 

by a, b, and c, respectively: 

𝑃(𝜃) = 𝑐 +
(1−𝑐)

1+𝑒−𝑎(𝜃−𝑏)         (11) 

The c-parameter is the probability of getting an item correct by guessing or chance. As 

mentioned previously the b-parameter represents the difficulty of an item. For a 3PL model, b is 

equal to the ability or trait level that corresponds with a (1+c)/2 chance of getting the item 
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correct. When no guessing is present (c = 0), the b parameter is equivalent to the 𝜃 value where 

respondents have a 50% chance of getting the item correct. The 2PL model is represented when c 

= 0.  The 1PL model occurs when one average discrimination parameter is estimated for all 

items. 

When items are polytomous, intermediary step functions are modeled. Step functions are 

defined by modeling the transition, or “stepping” to successively higher score categories. Four 

popular approaches for defining step functions include adjacent category, continuation ratio, 

cumulative, and nominal (Penfield, 2014). Within the adjacent category approach is the partial 

credit model (PCM; Masters, 1982), which models step functions as the probability of success at 

the adjacent kth step as specified by the Rasch model. The generalized partial credit model 

(GPCM; Muraki, 1992) also uses the adjacent category approach to defining step functions, but 

the 2PL model is used and an item-level discrimination parameter is estimated.  

GPCM. As briefly mentioned above, the GPCM uses the adjacent category approach to 

defining step functions, and the 2PL model is used which allows for the estimation of an item-

level discrimination parameter.  The item-step response function (ISRF) using the GPCM is 

given by 

𝑃(𝑌𝑗 = 𝑙|𝜃𝑛) =
exp {∑ [𝑎𝑗(𝜃−𝑏𝑗𝑘)]}𝑙

𝑘=1

1+∑ {exp ∑ [𝑎𝑗(𝜃−𝑏𝑗𝑘)]}𝑟
𝑘=1

𝑚
𝑟=1

            (12) 

where 𝑌𝑗 is the observed response of person n (with ability or trait level, 𝜃𝑛) to item j,  k = 

1, 2, …, l, . . ., L represents the steps from one response category to the next adjacent score 

category (e.g., if l = 2 for person n, this means person n was successful in passing the second 

step), 𝑎𝑗 is the discrimination parameter, and 𝑏𝑗𝑘 is the difficulty parameter or location parameter 

of the kth step, and r = 1, 2, . . . , m represents the total m exponent terms in the denominator. 
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Unlike dichotomous items, the denominator includes an exponent term for each step (i.e., m 

corresponds with the total number of steps for the item). 

Unfolding IRT Models. Unfolding models assume an ideal-point response process, 

taking into account the disparity between person and item locations on the underlying continuum 

for the construct being measured. In contrast to dichotomous IRF’s for dominance IRT models 

(Figure 1), unfolding models yield peaked IRFs. Figure 3 provides a visual representation of an 

IRF of a dichotomous item for an unfolding model. Note that instead of the probability 

increasing as the trait level increases (as seen in Figure 1 for dominance models), the IRF for the 

unfolding model peaks when the difference between the trait level (𝜃) and item difficulty (𝛿𝑖) is 

equal to zero. As the respondent’s trait level gets farther away from the item’s location (either 

higher or lower), the probability of endorsing the item decreases. In other words, respondents 

may not endorse the item for one of two reasons: either the respondent disagrees because they 

display a trait level lower than required by the item, or the respondent disagrees because their 

theta is higher than the item’s location. 
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At the root of most unfolding models, is the parallelogram model suggested by Coombs 

(1964): 

     𝑌𝑛𝑗 = 1 𝑖𝑓 |𝜃𝑛 − 𝛿𝑗| ≤  𝜏,                    (13a) 

     𝑌𝑛𝑗 = 0 𝑖𝑓 |𝜃𝑛 − 𝛿𝑗| >  𝜏,                (13b) 

where 𝑌𝑛𝑗 is the response of person 𝑛, 𝑛 = 1, 2, … , 𝑁, to item 𝑗, 𝑗= 1, 2, …, J, 

          𝜃𝑛 is the ability or trait level of person n,  

          𝛿𝑗 is the location of item j on the underlying continuum for the construct, and 

          𝜏 is the threshold that determines the maximum distance between 𝜃𝑛 and 𝛿𝑖where the 

respondent will still answer with a “positive” response (𝑋𝑛𝑗 = 1). The limitation to this model is 

that it is deterministic in nature (the probabilities of a “positive” response can only be 0 or 1). 

This may be too restrictive for ordered response options of polytomous items. Johnson and 

Figure 3. Item response function for dichotomous item under GGUM (unfolding) 
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Junker (2003) give the example of having four ordered stimuli (A, B, C, and D) where, using 

Coomb’s deterministic model, there would only be 11-item response patterns possible because 

the triplet 1, 0, 1, would not be possible (i.e. a person could not agree with A and C, but not B).   

Hoijtink (1991) suggested a probabilistic version for the IRF of Coomb’s (1964) model: 

𝑃(𝑋𝑛𝑗 = 𝑥𝑛𝑗|𝜃𝑛, 𝛿𝑗) = 𝑓(|𝜃𝑛 − 𝛿𝑗|, 𝑥𝑛𝑗)           (14) 

Using a probabilistic model with stochastic parameterizations of the IRF makes it possible for 

researchers to make statistical inferences about person and item parameters (M. S. Johnson & 

Junker, 2003; Sgammato, 2009).  

A number of probabilistic unfolding models have been developed over the past few 

decades. Assumptions of these models include conditional independence, unidimensionality, and 

non-monotonic (unimodal) item response functions (M. S. Johnson & Junker, 2003). Some 

common unfolding models include the Squared Logistic Model (SLM; Andrich, 1988), 

PARELLA model (Andrich, 1988), Hyperbolic Cosine Model for dichotomous data (HCM; 

Andrich & Guanzhong Luo, 1993), General Hyperbolic Cosine Model for polytomous data 

(GHCM; Andrich, 1996), Graded Unfolding Model (GUM; Roberts & Laughlin, 1996), and the 

generalized graded unfolding model (Roberts et al., 2000). Several aspects of the GGUM make it 

a popular choice, and rationalize its selection for this investigation. First, it can be used with both 

polytomous and dichotomous data, and the discrimination parameters are allowed to vary across 

items. The thresholds for each response option are also allowed to vary across items. The 

freedom for variability among the discrimination and threshold parameters create a flexibility for 

the IRFs under this model to take on a wide range of shapes (Stark et al., 2006). Further, the 

GGUM package in R (Tendeiro & Castro-Alvarez, 2019) makes it an accessible option for 

researchers. Although many unfolding models have been used for ideal point data, the GGUM 
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has been recognized as the most popular choice for applied studies in the non-cognitive field 

(Joo et al., 2019).   

The Generalized Graded Unfolding Model (GGUM). The GGUM uses three types of 

item parameters to describe each IRF. The location parameter (𝛿𝑗) describes where each item (j) 

lies on the underlying latent continuum for the construct being measured and can be depicted as 

the maximum point on the single-peaked IRF for a dichotomous item under the GGUM. The 

discrimination parameter (𝛼𝑗) measures the degree to which the item discriminates between 

persons. The GGUM also incorporates a subjective response category threshold (𝜏𝑗) parameter. 

Because the GGUM assumes two possible unobserved reasons for endorsing a certain response 

category, each observed response category (ORC; Roberts et al., 2000) is unfolded to incorporate 

two subjective (unobserved or latent) response categories. Thus, a four-category item (strongly 

agree, agree, disagree, and strongly agree) would have seven thresholds that separate the eight 

subjective response categories (SRCs; Roberts et al., 2000). An illustration of the SRC 

probability functions for a hypothetical four-category item is given by Figure 4.  In the figure, 

the x-axis is defined by the signed distance of the person location (𝜃) from the item location on 

the underlying continuum.  The hypothetical item has a 𝛼𝑗 parameter equal to 1.0 and the 𝜏𝑗𝑘 for 

each step function, k, equal -1.3, -.7, -.3, .0, .3, .7, and 1.3.  The seven vertical lines represent the 

thresholds (𝜏𝑗𝑘), or points of intersection that divide the possible responses into seven subjective 

response categories. The most likely SRC for each interval is labeled in the figure. As the 

discrimination parameter increases, the probability for the corresponding most likely SRC will 

increasingly “dominate” within each interval (Roberts et al., 2000).  
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 Under the GGUM proposed by Roberts et al. (2000), each subjective response follows 

the generalized partial credit model (GPCM; Muraki, 1992). As mentioned above in the 

dominance IRT Models section, the GPCM uses the adjacent category approach to defining step 

functions, and the 2PL model is used which allows for the estimation of an item-level 

discrimination parameter. The ISRF using the GPCM is given by Equation 12. Ultimately, the 

model must be defined in terms of observed responses. Because the two subjective responses 

associated with an observed response are mutually exclusive, the probability that a person will 

respond using a specific observed response category is equal to the sum of the probabilities for 

each of the subjective responses. This is illustrated with the following equation where 𝑍𝑗 is the 

observed response to item j, and 𝑧 = 0, 1, 2, . . . , 𝐶 with z = 0 corresponding to the strongest level 

Figure 4. The subjective response curve probability functions for a hypothetical 

four-category item from Roberts et al., 2000, p. 5.  
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of disagreement and z = C corresponds with the strongest level of agreement (C is equal to the 

number of ORC minus 1), 𝑌𝑗 is the subjective response of person n to item j,  y = 0, 1, 2, . . . , M 

such that y = 0 corresponds to the strongest level of disagreement from below the item and y = M 

corresponds to the strongest level of disagreement from above the item (M is the total number of 

SRCs minus 1; M= 2C+1),  

𝑃(𝑍𝑗 = 𝑧|𝜃𝑛) = 𝑃(𝑌𝑗 = 𝑧|𝜃𝑛) + 𝑃[𝑌𝑗 = (𝑀 − 𝑧)|𝜃𝑛].    (15) 

 In other words, if an item had four observable response categories (C = 3 and z = 0, 1, 2, 

3), then the item would have eight subjective response categories (M = 7). Using the above 

equation, the probability of choosing the second observed response category (e.g. “disagree”; z = 

1), will be equal to the sum of the probabilities of choosing the subjective response “disagree 

from below” (z = 1) and the subjective response “disagree from above” (M - z = 6). To visualize 

this, see Figure 5 (SRC probability functions for a four-category item) and note that passing the 

first threshold yields the response “disagree from below”, and passing the 6th threshold yields 

“disagree from above”.  

 Under the GGUM, the threshold parameters, 𝜏𝑗𝑘s, are symmetric about the point (𝜃𝑛 −

𝛿𝑗) which implies that participants are just as likely to agree with an item that is located h units 

below their personal location on the continuum as they are to agree with an item located h units 

above their location. Roberts et al. (2000) offer the following identity that describes this 

relationship: 

∑ 𝜏𝑗𝑘 = ∑ 𝜏𝑗𝑘
𝑀−𝑧
𝑘=0  𝑧

𝑘=0         (16) 

Hence, the formal equation for the GGUM is given by incorporating the identity above (Equation 

16) into Equation 15 (sum of mutually exclusive probabilities):  

𝑃(𝑍𝑗 = 𝑧|𝜃𝑛) =
exp {𝛼𝑗[𝑧(𝜃𝑛−𝛿𝑗)−∑ 𝜏𝑗𝑘]}+exp {𝛼𝑗[(𝑀−𝑧)(𝜃𝑛−𝛿𝑗)−∑ 𝜏𝑗𝑘]} 𝑧

𝑘=0
𝑧
𝑘=0

∑ {exp {𝛼𝑗[𝑤(𝜃𝑛−𝛿𝑗)−∑ 𝜏𝑗𝑘]}}𝑤
𝑘=0

𝐶
𝑤=0 +∑ {exp {𝛼𝑗[(𝑀−𝑤)(𝜃𝑛−𝛿𝑗)−∑ 𝜏𝑗𝑘]}}𝑤

𝑘=0
𝑀
𝑤=0

    (17) 
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Comparison of Dominance and Ideal Point Models 

Table 4 outlines a few basic differences between unfolding and dominance IRT models 

including underlying response process, model examples, item characteristics, and examples of 

items that would be expected to fit well under the corresponding model. 

Table 6. Comparisons between dominance and unfolding IRT models 

IRT Model 

Underlying 

Response 

Process 

Model 

Examples 
Item Characteristics Item examples 

Dominance 

IRT 

Cumulative/ 

Dominance  

(the higher your 

theta, the more 

likely you are to 

agree/get 

correct/ etc.) 

Rasch, 

1PL, 

2PL, 

3PL, 

4PL, 

GRM, 

GPCM, 

PCM, 

NRM 

Response function: 

Logistic/ogive/monoto

nic 

 

My social skills are at 

least as good as those of 

an average person. 

(example from 

Cheryshenko, et al., 2007) 

 

Unfolding 

IRT 

 

Ideal-point  

(takes into 

account the 

disparity 

between person 

and item 

locations on the 

underlying 

continuum ) 

 

GUM, 

GGUM, 

SLM, 

HCM, 

GHCM 

 

Response function: 

Single-peaked, non-

monotonic 

 

 

a) My social skills are 

about average. (example 

from Cheryshenko, et 

al., 2007)  

b) Abortion is basically 

immoral except when 

the woman’s physical 

health is in danger. 

(Roberts at al., 1999) 

c) Although I try to keep 

everything in its place, 

it does not always work 

for me (Weekers & 

Meijer, 2008) 

 

Weekers and Meijer (2008) (also see Stark et al., 2006) highlight three important 

differences between dominance and ideal point approaches. First, under the dominance approach, 

scales are mostly constructed with items that are either slightly negatively or positively worded, 

or extremely negatively or positively worded. This is because constructing scales under the 
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dominance approach hinges on having high item-total correlation, high internal consistency 

reliability, and are essentially unidimensional with high item factor loadings. Because dominance 

IRT models assume monotonically increasing IRFs, they tend to not include neutrally worded 

items. For example, a neutrally worded item like, “My ability to process my emotions is about 

average,” will most likely result in a non-monotonic IRF because people with trait levels near the 

middle of the continuum will have the highest probability of endorsing this item.  Under a 

dominance model, neutral-worded items will have a single-peaked item information curve, while 

under an unfolding model, the information curve may be double-peaked. The spread of 

information across a latent continuum is greater for unfolding models than dominance models 

when neutral items are used.  If scales using a dominance model include more extreme items, 

they will tend to have higher precision at the extreme ends of the continuum.     

The second difference noted by Weekers and Meijer (2008) is the notion that a 

dominance model may be thought of as a special case of ideal point models where the ideal point 

is located at positive or negative infinity. Unfolding models have been considered more general 

models than dominance models and thus may be less prone to misspecification (Weekers & 

Meijer, 2008; Zampetakis, 2010). Thirdly, positively and negatively worded items are commonly 

used in non-cognitive measures and the use of reverse scoring is not necessary when using 

unfolding models. This is because it is the absolute distance from theta to item location that 

matters for estimating ideal point responses. 

The dominance approach to modeling item responses is more appropriate in many 

settings. The most commonly cited context suitable for dominance models is in cognitive testing. 

For example, for an item that asks examinees to choose the response that gives the most closely 

related synonym to the provided word, one would reasonably expect examinees with a higher 
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vocabulary ability to have a higher probability of getting the item correct. There is, however, the 

case where respondents have such a high ability level, they may give an “incorrect” response, 

sometimes termed as a “creative” response. Cognitive items more prone to this situation may 

result in non-monotonic IRFs, though it is not as common. Findings from a study by Zampetakis 

et al. (2015) suggest that a dominance response process may also underlie participants self-

reports of anticipated affect (what people predict about their affective responses to events in the 

future; Loewenstein & Lerner, 2003, as cited in Zampetakis et al., 2015). Results from the study 

revealed better fit of the graded response model (dominance) than the GGUM (unfolding) for 

data collected from participants regarding self-reported anticipated positive and negative affect. 

However, this is not always the case. The following section highlights a few studies where 

unfolding models provided a better framework for a scale than a dominance model framework. 

Research Comparing Dominance and Unfolding Models  

 An empirical study by Chernyshenko et al. (2007) highlighted the advantages of using 

ideal point methodology over the dominance response process approach for scale construction 

for the order facet of conscientiousness. The authors constructed three different scales using 

three different underlying frameworks: 1) traditional classical test theory (CTT), 2) dominance 

IRT, and 3) ideal point IRT.  The data collected using the three scales were scored using a 

dominance model (2PLM) and an unfolding model (GGUM).  The IRT scores for the scale 

constructed using the ideal point process were highly correlated with those from the dominance 

IRT (r = .92) and CTT (r = .88) scales, providing evidence that including neutral items did not 

reduce the validity for the ideal point order scale.  Also highlighted in the results was the 

flexibility demonstrated by using the ideal point model (GGUM) to score items from the scale 

constructed using the dominance IRT approach. Results revealed that using the GGUM on the 



 

 52 

 

data from the dominance scale yielded IRT estimates highly correlated with the estimates using 

the 2PL model (r = .97). Conversely, using the 2PL model to fit the data collected from the ideal 

point order scale resulted in theta estimates that differed from those using the GGUM, especially 

on the lower (theta range from -3 to -1) and upper (theta range from +1 to +3) extremes of the 

continuum where correlations between the sets of scores were .33 and .21. Chernyshenko et al. 

(2007) conclude that using the ideal point process allowed for greater flexibility (wider range of 

item options in scale construction, e.g., neutral items) while maintaining validity of personality 

test scores. 

Stark et al. (2006) compared the model fit of two ideal point process IRT models and two 

dominance IRT models using cross validation samples of 13,059 respondents who took the 

Sixteen Personality Factor Questionnaire (16PF; Conn & Ricke, 1994, as cited in Stark et al., 

2006).  The two ideal point process IRT models involved in the study included the parametric 

GGUM (Roberts et al., 2000) and Levine’s nonparametric maximum likelihood formula scoring 

(MFS) model with ideal point constraints (Levine, 1984). The two dominance IRT models were 

the parametric 2PL (Birnbaum, 1968; as cited in Baker, 2001) and the nonparametric MFS with 

dominance constraints (as Stark et al., [2006] note, the MFS allows researchers to impose 

different mathematical constraints on the IRFs to test various assumptions about responding 

processes). The graphical comparison of fit plots for the IRFs using each type of model and the 

direct comparison of chi square statistics for items, item pairs and item triplets were used to 

examine model fit. Nine of the sixteen PF subscales contained items with non-monotonic IRFs, 

with four of those subscales containing four or more non-monotonic items (Liveliness, 

Sensitivity, Abstractedness, and Privateness). The majority of folding took place at the extreme 

ends of the continuums. When all items were monotonic, both dominance and ideal point process 



 

 53 

 

models had similar fit. This concurs with Roberts et al. (1999) who also note that ideal point 

process and dominance models produce similar IRFs for extreme items that also have high item-

total correlations, as Stark et al. (2006) mention was the case for most of the 16PF items. 

However, for seven of the nine subscales with items that failed to pass the montonicity 

assumption, MFS with ideal point constraints provided the better fit. The authors concluded that 

the ideal point process models fit the data for the majority of the16PF subscales (which were 

constructed under the assumption of a dominance response process) as well, if not better than the 

dominance IRT models used in the study.  

 Weekers and Meijer (2008) extended the work of Stark et al. (2006) and Chernyshenko et 

al. (2007) by comparing the fit of unfolding and dominance models to data from two personality 

trait inventories constructed using the ideal-point process (Order Scale; Chernyshenko et al., 

2007) or the dominance response process (NPV-J; Luteijn et al., 2005). One nonparametric and 

one parametric model for each approach (dominance and unfolding) was utilized to analyze the 

data. Item analysis revealed the presence of some single-peaked items in both types of scales. 

The authors note that these are usually neutrally worded items and can influence the fit of an IRT 

model to the data, which led to the suggestion that dominance response process scales may be 

useful for scales that consists of extreme statements in attempt to measure extreme behavior, as 

in psychopathology scales. On the other hand, the authors suggest general personality self-report 

inventories that intend to measure people on a greater spread of the latent continuum where 

neutral items are necessary, may be best described by an unfolding model.  Similar to 

conclusions made by Stark et al. (2006), Weekers and Meijer (2008) note that misspecification of 

the underlying response process may have crucial effects on conclusions drawn from ordering 

persons by latent trait scores. They illustrated this by plotting the estimated trait scores (𝜃) using 



 

 54 

 

the unfolding and dominance models. The correlations between the trait scores using both 

models were high for the scale constructed under the dominance response process (r = .988) and 

the scale that was constructed under the ideal point process (r = .971). However, for the ideal 

point process scale (where items had both monotonically increasing and single-peaked IRFs), the 

scatterplot showed a departure from the diagonal line for a compelling number of people at the 

higher end of the continuum. This indicates that people, especially those located at the upper end 

of the continuum for these constructs, are ordered differently using dominance versus unfolding 

models. Thus, if decisions or cutoffs are made using the top 5%, for example, conclusions may 

be inappropriate.  

In the last few decades, researchers have become somewhat more aware of the 

applicability of unfolding models to non-cognitive data. Researchers have used unfolding models 

to successfully describe non-cognitive data such as assessment for creativity (Zampetakis, 2010) 

using the Gough’s Creative Personality Scale, conscientiousness (Carter et al., 2014), personality 

inventory of self-judgement on the order-facet (a feature of conscientiousness; Chernyshenko et 

al., 2007; Weekers & Meijer, 2008), 16 personality factor subscales (Stark, 2006), control 

preferences in medical contexts (Control preferences Scale; Degner et al., 1997), attitude and 

affect constructs (LaPalme et al., 2018), censorship data (C.-W. Liu & Wang, 2019),  and job 

satisfaction (Carter & Dalal, 2010). Nonetheless, dominance models are much more widely used 

than unfolding models. This may be due to the increased complexity of unfolding models or 

because they are still in the earlier stages of applied research (Sgammato, 2009; Stark et al., 

2008). As such, further research to understand their application with non-cognitive data, and the 

use of other data management procedures such as data quality assessments are potentially useful.  

The next sections include a discussion of the assessment of model fit with unfolding and 
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dominance models and the application of person-fit statistics to assess data quality with data 

using these two frameworks.  

Assessment of Dimensionality and Model Fit. The underlying assumption of 

unidimensionality for probabilistic unfolding and dominance IRT models can be assessed using a 

principal components analysis (Roberts et al., 2000). Davison (1977, as cited in Roberts et al., 

2000) demonstrated that two main principal components underlie ideal point responses from 

unfolding models which has been supported by GGUM simulation studies that have revealed this 

structure as well (Roberts et al., 2000). Item-level communality estimates from the first two 

principal components can be used in dimensionality assessment, where Roberts et al. (2000) used 

cut-off of greater than or equal to 0.3 based on previous simulations indicating unidimensionality 

(“for analysis purposes”).  

 Item fit for dominance polytomous IRT models can be evaluated using a likelihood ratio 

𝜒2 statistic. This is usually computed using an 𝑅 ×  𝐶 contingency table, where R is the number 

of groups formed by dividing respondents into equal intervals based on their 𝜃𝑗  values and C is 

the number of response categories for the item.  The observed versus expected frequencies are 

then compared within each cell of the contingency table. For comparison purposes, it is 

suggested that the number of groups, R, be constant across items. For unfolding models, 

however, expected frequencies can be small due to the fact that respondents are only expected to 

endorse items that are located near their trait level on the underlying continuum. Because the 

distribution of the 𝜒2 statistic becomes suspect if the expected frequency in any cell of the 

contingency table is small (say, less than 5), and because correcting this problem by collapsing 

groups would be difficult to do consistently across all items, using the statistic as described 

above for dominance IRT models can be problematic for unfolding models. Item fit in unfolding 



 

 56 

 

models can be evaluated using chi square statistics by dividing participants into groups of equal 

size based on the signed distance of 𝜃𝑗 − 𝛿𝑖  for every item-person pair. The expected and 

observed responses for each item can be averaged for each group and plotted as a function of the 

group 𝜃𝑗 − 𝛿𝑖  mean.  Model-data misfit can be observed across the latent continuum where large 

differences between observed and expected frequencies exist on the plot. It may also be useful to 

compute correlations between observed and expected frequencies. 

 The formula for the 𝜒2 statistic is computed using the observed frequencies of item j 

response option z (𝑂𝑗𝑧) and the expected frequencies (𝐸𝑗𝑧) based on the estimated item 

parameters and distribution of abilities. 

                                                                     𝜒𝑗
2 = ∑

(𝑂𝑗𝑧−𝐸𝑗𝑧)
2

𝐸𝑗𝑧

𝐶
𝑧=0 ,                             (18) 

with 𝐸𝑗𝑧 = 𝑁 ∫ 𝑃𝑗𝑧(𝜃)𝜙(𝜃)𝑑𝜃, where 𝜙(𝜃) is the standard normal density function. This 

equation is written for single items, but is often generalized to apply to pairs of items (doublets) 

and triples of items (triplets) as this has been shown to be more reliable estimates of model 

(mis)fit that with single items (Drasgow et al., 1995). The adjusted 𝜒2 ratio (𝜒2/𝑑𝑓) can also be 

computed to adjust the sample size to 3,000 (Drasgow et al., 1995): 

𝜒2/𝑑𝑓 =  
3,000(𝜒𝑗

2−𝑑𝑓)

𝑁
+ 𝑑𝑓              (19) 

The degrees of freedom in Equation 19 depend on the number of singlets, doublets or triplets 

used. It has been suggested that values of 𝜒2/𝑑𝑓 larger than 3 be considered heuristically 

indicative of model misfit (Tendeiro, 2017). 

 If models are nested, the likelihood ratio statistic can test the incremental fit of a 

constrained model to a less constrained model. For example, the GUM is a constrained version 

of the GGUM, where the discrimination parameter is constrained to 1 and the threshold 
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parameters are constrained to be equal across all items.  Because the dominance IRT model 

(GPCM) and the unfolding IRT model (GGUM) used in this study are not nested, this statistic 

cannot be used for their comparison. Instead, information criterion based statistics, Akaike 

Information Criterion (AIC; Akaike, 1974) and Bayes Information Criterion (BIC; Schwarz, 

1978) are used to compare relative model fit. These indices take into account the number of 

parameters being estimated and are computed as follows: 

𝐴𝐼𝐶 = 2𝑘 − 2 ln(�̂�)         (20) 

𝐵𝐼𝐶 = 𝑘 ln(𝑛) − 2ln (�̂�)            (21) 

Here, 𝑘 is the number of parameters estimated by the model, �̂� is the maximized value of the 

likelihood function for the model, and 𝑛 is the sample size. Lower AIC and BIC values indicate 

better fit. 

Part III: Detection of Aberrant Responding with Ideal Point Responses 

Person-fit Analysis Under Unfolding Models 

While there exists an immense body of literature regarding person-fit statistics, it is 

unclear how they perform under an unfolding framework.  To date, only one publication has 

reported on assessing person-fit in the unfolding model context. Tendeiro (2017) conducted a 

simulation study to understand how the modified log likelihood person-fit statistic for 

polytomous items (𝑙𝑧(𝑝)
∗ ) works under the generalized graded unfolding model (GGUM; Roberts 

et al., 2000; Roberts & Laughlin, 1996). Type I error and power were evaluated for detecting 

extreme and middle response style patterns under varied conditions for four factors: Scale length 

(I) with four levels (10, 20, 40, 100 items), number of observed response categories with three 

levels (4, 6, 8), the proportion of simulees with aberrant response vectors with three levels (AbN 

= .05, .10, .20), and the proportion of aberrant item scores (AbI ) within the aberrant response 
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vectors with three levels (.10, .20, .25).  Half of the aberrant responding simulees [(N X AbN)/2] 

had response vectors that contained a proportion of aberrant item scores (AbI) that reflected 

extreme responding while the other half reflected middle responding. Extreme response patterns 

were generated by replacing randomly selected middle responses from the randomly selected 

“aberrant simulees’” response vectors, with the closest extreme response option with probability 

1 (e.g., if an aberrant responding simulee had a response of ‘1’ to an item with four observable 

response categories (0, 1, 2, and 3) and the strongest level of agreement is 3, then a ‘1’ would be 

changed to a ‘0’ because that is the closest extreme response option to the middle response of 

‘1’). Conversely, middle response patterns were generated by replacing randomly selected 

extreme responses with the corresponding middle response with probability 1 (e.g., a response of 

‘0’ would be changed to ‘1’).  Results for the detection rates of extreme response patterns 

revealed low power with no more than 30% of the aberrant response vectors detected for 92 of 

the 108 conditions. Only for large numbers of items (40 or 100) and answer options (8 response 

options), with AbI = .20 or .25 did the detection rates increase beyond .30 (range .32 to .90). 

Similar to other studies, as the proportion of aberrant respondents increased, detection rates 

decreased (Karabatsos, 2003). The mean detection rate for middle responding (M = .45; quartile1 

= .17 and quartile 3 = .72) was higher than the mean detection rate for extreme responding (M = 

.17; quartile 1 = .06 and quartile 3 = .22).  The author hypothesizes that the discrepancy between 

performances of the statistic for extreme and middle responding may be due to the number of 

extreme item scores being much higher than the number of middle item scores (ratio ranged from 

1.40 to 1.89). Because of this saturation, extreme responding was less likely to be detected as 

“unexpected” or aberrant.  
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Two four-way ANOVAS revealed that the main effects of I, the number of response 

options (C), AbI, and AbN all had moderate to strong effects on detection rates for both middle 

and extreme responding. Detection rates increased with I, AbI, and C, and decreased, as 

previously mentioned, with AbN. The effect of increasing C on detection rate for extreme 

responding was especially strong, which the author notes may be explained by other research 

indicating the evidence for extreme responding is stronger when the middle and extreme options 

are further apart. Type I error rates for the 𝑙𝑧(𝑝)
∗  statistic across all conditions were conservative, 

averaging .03 (SD = .01) compared to the nominal rate of .05. Although power for detecting 

extreme responding was low using 𝑙𝑧(𝑝)
∗  under the GGUM, the author posits that the detection 

method showed promising results for detecting middle response style patterns in some 

conditions.  

Emons (2008, p. 242) mentioned that a “topic for further research is applications of 

person-fit methods to nonmonotonic items.” Tendeiro (2017, p. 56) states: “The lack of 

published research concerning person-fit analytical approaches suitable to unfolding models is 

striking.” Even a few years after the publication of Tendeiro’s work with 𝑙𝑧(𝑝)
∗  and the GGUM, 

research is still severely lacking in the area. Information on how other person-fit statistics 

perform, as well as the detection of other types of aberrant responding (other than middle and 

extreme responding) under an unfolding model context remains unknown.  
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CHAPTER 3 

METHODS 

 

To investigate aberrant responding with underlying dominance and unfolding response 

processes, three simulation studies were conducted that build upon prior dominance response 

model research to include conditions with the unfolding model. The components of the studies 

that advance the literature include 1) providing insight on GGUM model-data fit when aberrant 

data is systematically entered, 2) examining how nonparametric person-fit statistics 

(𝐻𝑇 ,  𝑈3𝑃,   𝐺𝑁
𝑃,  and  𝐺𝑃 ) perform under the framework of the GGUM, and 3) investigating how 

the performance of parametric person-fit statistics (𝑙𝑧(𝑝) and 𝑙𝑧(𝑝)
∗ ) is impacted by misspecifying 

the GPCM to GGUM data and the GGUM to GPCM data. All three studies are based on the 

datasets generated in Study 1. 

Study 1: An Investigation of the Effects of Aberrant Responding on Model-Fit Assuming 

Different Underlying Response Processes 

Simulation Factors 

The first study focused on simulated IRT data for 6-point items and a fixed sample size of 

1,000. Various types, proportions, and degrees of aberrant responding were incorporated. Four 

types of aberrant responding were considered in the study, including two types of insufficient 

effort: random responding and longstrings, and two types of response styles: extreme response 

style (ERS) and midpoint response style (MRS). Additionally, the four aberrant response types 

were combined in a ‘mixed aberrant response type’ condition to simulate realistic situations 

where a sample may be composed of several types of aberrant responders including those due to 

insufficient effort and those due to response styles. Response data were simulated using three 

different proportions of aberrant responders (AbN): .04, .10, .20. Furthermore, aberrant response 
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vectors were simulated using different proportions of aberrant responses to the items (AbI). That 

is, each response vector that was classified as aberrant was generated so that either 20%, 40%, or 

60% of the items within the vector were not as expected (aberrant). The levels for both AbN and 

AbI are similar to the conditions used in Tendeiro (2017) for comparison purposes in studies 2 

and 3 when person fit statistics are implemented. Two test lengths of 20 and 40 items were 

considered. Data were generated using two data response processes: a dominance response 

model and an ideal-point (unfolding) response model. All datasets were also analyzed using a 

dominance and an unfolding model. A total of 2 (data generating mechanisms: GGUM and 

GPCM) × 2 (applied model fit: GGUM and GPCM) × 3 (proportion of aberrant responders in 

the sample, AbN) × 3 (proportion of aberrant responses in response vectors, AbI) × 2 (test 

lengths) × 5 (types of aberrant responding and response styles) = 360 fully crossed conditions. 

Each condition was replicated 100 times. All code for generating and estimating model 

parameters, model fit statistics, and person-fit statistics was written in R (R Core Team, 2020) 

and is available on the Open Science Framework (https://osf.io/) as well as listed in the 

Appendices. 

Models 

Two models were chosen to generate and fit the data according to either an underlying 

dominance or ideal-point (unfolding) response process. For the unfolding model, the GGUM was 

selected. It incorporates a subjective response category threshold (𝜏𝑗) parameter and two 

subjective response categories (from above or below) for each response category. The GGUM 

allows the item discrimination as well as category threshold parameters to vary. The GGUM is 

becoming increasingly popular in applied research, and accessible software for estimating the 

model is readily available. This investigation used the GGUM proposed by Roberts et al. (2000), 

https://osf.io/
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where each subjective response follows the generalized partial credit model (GPCM; Muraki, 

1992). For this reason, the GPCM was chosen to model the polytomously-scored dominance data 

in order to maximize comparability of results.  

Item Parameter Generation 

The GenData.GGUM function in R was used to generate all model (item and person) 

parameters as well as the item scores. Procedures for generating ideal-point data under the 

GGUM closely followed those taken by Tendeiro (2017). The true item discrimination 

parameters (𝛼𝑗) were randomly sampled from a uniform distribution with the interval (0.5, 2.0). 

The true item location parameters (𝛿𝑗) were randomly sampled from the standard normal 

distribution truncated between -2.0 and 2.0, since extreme values of 𝛿𝑖 may sometimes lead to 

issues of low accuracy and variability of MML estimates under the GGUM (Roberts & 

Thompson, 2011 as cited in Tendeiro, 2017). The true location of the threshold parameters (𝜏𝑗𝑘) 

(relative to the location of the ith item) are typically constrained so that 

𝜏𝑗(𝐶+1) = 0              (22) 

and 

𝜏𝑗𝑧 = −𝜏𝑗(𝑀−𝑧+1) 𝑓𝑜𝑟 𝑧 = 1, … , 𝐶,        (23) 

where M represents the number of subjective response thresholds and C represents the number of 

item response steps. For example, if an item had 6 observable response categories (C = 5; 12 

subjective response categories; 11 subjective response thresholds, M = 11), the first constraint 

illustrates that the middle subjective response threshold (𝜏𝑗(𝐶+1) = 𝜏𝑗6) would equal zero. And 

the second constraint illustrates that the other subjective response thresholds are symmetric about 

that middle threshold. So, for the score of z = 2 on a 6-point scale,  

 𝜏𝑗2 = −𝜏𝑗(𝑀−𝑧+1)      (24a) 
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𝜏𝑗2 = −𝜏𝑗(11−2+1)                 (24b) 

𝜏𝑗2 = −𝜏𝑗10.                      (24c) 

This example demonstrates how the 2nd and 10th subjective thresholds are symmetric about the 

6th subjective threshold for an item with 6 observable response categories.  

Using the GenData.GGUM function, the true locations of the threshold parameters (𝜏𝑗𝑘) 

(relative to the location of the jth item) were recursively generated using the following procedure 

also used in Roberts et al. (2002). First, the 𝜏𝑗𝑘 parameter was randomly drawn from a uniform 

distribution ranging from (-1.4, -.4). Next, the locations for the thresholds were computed using 

the recursive equation (Roberts et al., 2002): 

𝜏𝑗𝑘−1 = 𝜏𝑗𝑘 − .25 + 𝑒𝑗𝑘−1, for k = 2, 3, …, C,    (25) 

where 𝑒𝑗𝑘−1 represents a random error term generated from a N(0, .04) distribution. 

To generate data under the GPCM, item category thresholds, 𝑑𝑗𝑘, for step k of item j were 

simulated. First, uncentered 𝑑𝑗𝑘 parameters were simulated by taking the sequential cumulative 

sum of five numbers drawn from a random uniform distribution between .3 and 1. This interval 

ensured that the distance between categories will not be less than .30 because if the categories 

are too close, some may not be chosen as often (Chalmers, 2012). For example, say five numbers 

were randomly drawn from a uniform distribution between .3 and 1 (.8, .4, .5, .6, .7). Then the 

numbers were transformed to be the sequential cumulative sum (.8, 1.2, 1.7, 2.3, 3.0).  Next, the 

mean for the set of sequential cumulative sums was subtracted from each number in the set [e.g., 

(.8-1.8), (1.2-1.8), (1.7-1.8), (2.3-1.8), (3.0-1.8); or (-1.0, -.6, -.1, .5, 1.2)]. This new set of 

numbers represented the djk parameters, or the item j category thresholds for step k. Additionally, 

an initial item category threshold, dj0, was arbitrarily set to 0 in order for the model to be 

identified (Muraki, 1992). This is the recommended constraint for GPCMs.  The item location 
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parameters (bj) were randomly drawn from a standard normal distribution. To get the item 

location parameters for each step (bjk), the item category thresholds were subtracted from the 

item location parameters using Equation 26:  

bjk = bj - djk                     (26) 

By definition, item location parameters are the mean of all step location parameters (bjk) for a 

particular item. Item parameters were generated so that the item discrimination and difficulty 

parameters were comparable to those generated for the unfolding data. Thus, the item 

discrimination parameters were sampled from a uniform distribution (0.5, 2.0), and item 

difficulty parameters for each item were sampled from the standard normal distribution N(0,1). 

Once these parameters were generated, the sim_gpcm function from the PP package R (Reif & 

Steinfeld, 2021) was used to simulate the dominance data under the GPCM. The person 

parameters used for the GGUM and GPCM data were randomly drawn from the standard normal 

distribution.  

Generation of Clean Data 

 Simulee latent ability/trait levels were generated by taking random samples from the 

standard normal distribution. Response data was then created by comparing a random number 

drawn from a uniform distribution (0,1), r,  to the cumulative distribution of 𝐹𝑗𝑘 , where 𝐹𝑗𝑘 =

𝑃(𝑢𝑗𝑘|𝜃𝑛) + 𝑃(𝑢𝑗𝑘−1|𝜃𝑛) + ⋯ + 𝑃(𝑢𝑗0|𝜃𝑛), and j represents the item, k represents the step, and 

n represents the participant. For each replication and condition, response vectors for 1,000 

simulees were generated according to the model specified.  

Generation of Aberrant Responses 

 Once clean datasets were generated, a proportion (depending on the AbN condition) of 

response vectors were selected and replaced with aberrant response vectors. The aberrant 
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response vectors were created by replacing a proportion of the item scores (depending on the AbI 

condition) with aberrant scores stemming from either random responding, longstrings, midpoint 

response style (MRS), or extreme response style (ERS). A fifth aberrant type included a mixture 

of all four aberrant response types or styles. For this condition, an equal proportion of each type 

of aberrant response (or response style) was simulated to make up the total proportion of aberrant 

respondents. For example, if the condition called for 4% of the sample to have aberrant response 

vectors, those 40 respondents (4% of 1,000) would be made up of 10 random responders, 10 

longstrings, 10 MRS responders, and 10 ERS responders. Procedures for creating the aberrant 

scores are described below. 

Random Responders.  Many researchers have investigated the sources for insufficient 

effort responding that lead to aberrant response vectors and low-quality data. One source 

involves participants who lack the motivation to provide thoughtful responses. This often results 

in random responding to complete the survey with the minimum cognitive effort. To simulate 

aberrant responses due to random responding, first, AbI% of items were randomly selected. 

Next, AbI% of values  were selected from {0, 1, 2, 3, 4, 5}. Finally, original scores were 

replaced with the randomly generated scores.  

Longstrings. Longstring responding occurs when a respondent answers the same way to 

a long string of consecutive items disregarding item content, identified by invariant response 

vectors (e.g., Costa & McCrae, 2008; Huang et al., 2012). To create aberrant responses due to 

longstrings, proportions of item scores (based on AbI) were replaced with an invariant set of 

responses. To do this, a random number was generated from a uniform distribution [0, C]. The 

specified proportion of consecutive items (𝐴𝑏𝐼 ×  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑚𝑠) were set to equal the 

randomly generated number (DeSimone et al., 2018).  
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Midpoint Responding. When participants consistently tend to choose the middle 

response option over the adjacent categories, regardless of the construct being measured, they are 

said to exhibit midpoint response style (MRS). To create response vectors that demonstrate MRS 

for 6-point items, endpoint item scores and item scores adjacent to the endpoints were replaced 

with the corresponding midpoint response. For example, on the 6-point scale ranging from 0 to 5, 

items scores of 0 and 1 were replaced with a 2. Additionally, scores of 4 and 5 were replaced 

with a 3.  

Extreme Responding. Extreme response style (ERS) is indicative of the tendency to 

choose the response options at the extreme categorical endpoints across multiple content areas. 

Although response styles such as MRS and ERS may not be considered as “aberrant” responding 

by all, for the purpose of this study, aberrant responding will be used loosely to describe 

tendencies that influence data quality by reducing the comparability of individual test scores and 

yield item scores that may not be expected based on true ability or trait level values (𝜃).  To 

mimic responses reflecting ERS, item scores in the middle range were changed to the 

corresponding endpoint responses. For example, on the 6-point scale ranging from 0 to 5, 1s and 

2s were changed to 0 and 3s and 4s were changed to 5.  

Fitting the IRT Models 

 After response strings for all simulees were generated based on the GPCM and GGUM, 

the two IRT models were fit to the response data both before and after inputting aberrant scores. 

This resulted in each dataset being fit twice for each condition in the study. The GPCM was fit to 

the data using the MIRT function (itemtype = gpcm) in R (Chalmers, 2012) whereas the GGUM 

was fit to the data using the GGUM function in the GGUM package in R (Tendeiro & Castro-

Alvarez, 2020). The convergence tolerance was set to .001. Using the GGUM function, item 
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parameters were estimated using marginal maximum likelihood (MML) algorithm from Roberts 

et al. (2000). Using MIRT, item parameters were estimated using maximum likelihood. Using 

both R packages GGUM and MIRT, person parameters were estimated using an estimated a 

posteriori (EAP) method. It is worth noting, that there is sign indeterminacy for location 

parameters for GGUM models (Roberts & Cui, 2004).  Thus, for replications of GGUM fittings 

to data where the correlations between true and estimated location parameter values were highly 

negative (e.g., r = -.98), the location parameters were transformed to their opposite value by 

multiplying by negative one, resulting in opposite theta signs as well. Any time GPCM was fit to 

GGUM responses, reverse coding of items on the lower end of the continuum (lower 30% of 

items) was carried out. Further reverse coding was completed for items that still had negative 

loadings on the principal component (Tay et al. 2011; Tay and Drasgow, 2012). 

Evaluating Model Fit 

Chernyshenko et al. (2007) recommend that in IRT, model-data fit be evaluated by 

examining both the model assumptions and tests of goodness of fit. Therefore, investigating the 

relative model-data fit with respect to all conditions in the study was primarily two-fold. First, 

model assumptions for the data were checked. For the purpose of this study, the underlying 

response process was varied and thus, this assumption was purposely violated under certain 

conditions. Attention to the IRT assumption for unidimensionality was the primary focus of the 

first step in evaluating model fit.  Second, predictions based on the estimated model and 

observed data were compared using statistical methods to test goodness of fit. Additionally, 

relative model data fit was examined using information based fit indices. Specifically, 

information criterion based statistics (AIC and BIC) and adjusted 𝜒2/𝑑𝑓 ratios for singles, pairs 

and triplets of items were reported (Drasgow et al., 1995). Further, quality of parameter estimates 
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using correlations, mean absolute deviations and bias were used to reveal any important 

differences in parameter recovery for each model and dataset reflecting the different response 

processes used in the study.   

Testing the Assumption of Dimensionality. One of the first tasks in practical research is 

to test model assumptions. Both the GPCM and GGUM models assume that the probability of a 

response is a function of a single underlying latent trait (theta) or a unidimensional composite of 

skills. Literature regarding how to assess dimensionality with cumulative, dominance IRT 

models is immense. Various procedures exist for testing the assumption of unidimensionality 

including the modified parallel analysis (Drasgow & Lissak, 1983), an automated item selection 

procedure (AISP), confirmatory factor analysis, and DIMTEST (Stout, 1987). However, there is 

a lack of research and direction for how to assess dimensionality with unfolding models.  

Nandakumar et al. (2002) showed that linear principal component analyses do not work in the 

same way for dominance and unfolding models. The study revealed that two linear principal 

components arise for every single unfolding dimension. In William’s thesis (2015), an (r + 1) 

rule is suggested for using results from a PCA on unfolding polytomous data, where r is the 

number of unfolding dimensions. In this study, parallel analysis is used to assess dimensionality 

derived from the observed simulated data with and without aberrant data present. For unfolding 

data, the r + 1 rule is used and if r < 2 it is concluded that the assumption of unidimensionality 

for the unfolding data is met.  

Model-fit.  Information criterion fit indices AIC and BIC were utilized in comparing 

relative data model fit because both of these indices not only consider the non-nested structure of 

the two models but they also factor in penalties for additional parameters in more complicated 

models like GPCM and GGUM. A lower AIC and BIC value indicates better fit. 
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Tay et al. (2011) recommend that when determining which model (unfolding or 

dominance) fit the data better, the doubles and triples adjusted 𝜒2 ratios may be used. Using the 

MODFIT function in R, the adjusted 𝜒2 ratios (𝜒2/𝑑𝑓) were computed for item doublets and 

triplets in this study. This function uses the equations for the adjusted chi-square ratio introduced 

by Drasgow et al. (1995). 

Assessing Estimated Parameter Quality. Estimated parameters from the generated 

datasets including aberrant responders (DataAb) and the datasets free of aberrant responders 

(Dataclean) were compared to true parameter estimates. Procedures in Tendeiro (2017) were 

followed by looking at the bias, mean absolute deviation (MAD), and the correlation (COR) 

between true and estimated parameters. The following equations were used: 

𝑀𝐴𝐷 = ∑ |𝛾𝑡 − 𝛾𝑡
𝑇𝑅𝑈𝐸|/𝑇𝑇

𝑡=1              (27) 

𝐵𝐼𝐴𝑆 = ∑ (𝛾𝑡 − 𝛾𝑡
𝑇𝑅𝑈𝐸)/𝑇𝑇

𝑡=1              (28) 

                                                           𝐶𝑂𝑅 = 𝑐𝑜𝑟(𝛾𝑡, 𝛾𝑡
𝑇𝑅𝑈𝐸), 𝑡 = 1, … , 𝑇,                       (29) 

where 𝛾𝑡 is the parameter representing either 𝛼𝑖 , 𝛿𝑖, 𝜏𝑖𝑘, 𝑜𝑟 𝜃𝑗  for the GGUM parameters or 𝛼𝑖 ,

𝑏𝑖𝑘𝑜𝑟 𝜃𝑗  for the GPCM, and T is the corresponding total number of that parameter. For example, 

T is equal to the number of items for 𝛼𝑖 and 𝛿𝑖. T equals I (the number of items) times C (the 

number of observed response categories minus 1) for 𝜏𝑖𝑘, and T is equal to the sample size for 𝜃𝑗 . 

The MAD, bias, and correlations were computed and averaged over all replications for each 

condition. Standard deviations for these averages are also reported to examine the variability in 

the results. 

In the case of cross-fitting models to the opposing type of data (e.g., GPCM fit to GGUM 

data), several estimated parameters are not comparable. For example, the location parameter in 

dominance IRT models represents the theta associated with a .50 probability of choosing a 
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response. However, in unfolding models, the location parameter represents the theta associated 

with the highest probability of endorsement. Furthermore, discrimination parameters for non-

monotonically increasing items may result in negative values. Thus, for cross fitting models, 

parameter quality was assessed for person scoring only. Worse model fit for cross-fitting 

conditions was anticipated. In Study 1, the goal is to examine these trends for the two model 

types. For example, if the GGUM is not as affected by aberrant data, or is able to fit dominance 

data reasonably well in comparison to the dominance model, this information could be useful for 

researchers and possibly expand the use of ideal point models in practice. 

Study 2: Performance of Nonparametric Person-Fit Statistics with Unfolding versus 

Dominance Response Models 

Simulation Factors 

The second study examines 180 completely crossed conditions including 2 types of data 

generating mechanisms (dominance data modeled by the GPCM and unfolding data modeled by 

the GGUM)  × 3 proportions of aberrant responders in the sample (AbN: .04, .10, .20) × 3 

proportions of aberrant responses within response vectors (AbI: 20%, 40%, or 60% ) × 2 test 

lengths (20, 40) × 5 (types of aberrant responding and response style conditions).  No cross-

fitting of models to data was relevant in Study 2 since the focus was on the performance of the 

nonparametric person fit statistics which do not rely on parameter estimates. Data were generated 

with 0 AbN and 0 AbI to obtain a baseline for “clean”, non-aberrant data. This results in a total of 

180 conditions replicated 100 times. Each dataset contained simulated response vectors for 1,000 

respondents. All code for generating and estimating model parameters, model fit statistics, and 

person-fit statistics was written in R (R Core Team, 2020) and is available on the Open Science 

Framework (https://osf.io/) as well as listed in the Appendices. 

https://osf.io/
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Methods for the second study can be summarized in 5 fundamental steps:  

1) Generate the “clean” data for the unfolding data under the GGUM and dominance 

data under the GPCM. 

2) Generate aberrant data for simulated random responders, longstrings, ERS, MRS, and 

mixed aberrant responders. 

3) Test how well the items are ordered and if this ordering is consistent across 

conditions.  

4) Compute the person-fit statistics for each simulee and flag simulees who meet the 

decided criteria for having aberrant responses. 

5)  Calculate the type I error rates (falsely identifying a simulee as aberrant when their 

responses were “clean”) and detection rates (correctly identifying a simulee as 

aberrant).  

Methods for the generation of the data (steps 1 – 2) are described in Study 1.  Steps 3 through 5 

are detailed below.  

Testing Item Ordering (Step 3) 

It is good practice to test the ordering of items before drawing conclusions from 

nonparametric person-fit statistics that depend on invariant item ordering (Van der Ark, 2007). 

For example, if the overall HT coefficient (sum of 𝐻𝑖
𝑇 for all participants) is less than 0.3, 

researchers suggest that invariant item ordering may be too unstable to be useful (Ligtvoet et al., 

2010). For the current study, the overall HT coefficient was computed for every condition and 

averaged across replications to assess how well and consistent the simulated items were ordered. 

It was hypothesized that the violations of monotonicity under the unfolding data would affect 

item ordering among simulees and thus adversely affect the performance of the nonparametric 
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person-fit statistics. An aim of the study was to investigate the degree to which type I error and 

power is impacted for the person-fit statistics assuming monotonicity with the unfolding versus 

dominance data.  

Computing Nonparametric Person-Fit Statistics (Step 4) 

The values for each of the four nonparametric person-fit statistics were computed of each 

simulee in step 4. For 𝑈3𝑃,   𝐺𝑁
𝑃,  and  𝐺𝑃 , the PerFit package in R was utilized. The 𝐻𝑇 statistic 

was not computed using the same package because the PerFit package only provides the 

dichotomous version of the 𝐻𝑇 statistic. The 𝐻𝑇statistic is essentially a modified version of 

Mokken's (1971) Hi statistic, which uses a data matrix consisting of items as rows, and people as 

columns; it measures how well items on a scale order respondents according to a Guttman 

pattern. In fact, if the data matrix used to compute Hi is transposed, then the resulting HT statistic 

measures how well people respond to items according to the Guttman scale. Thus, the statistic 

was computed using the Mokken package in R and transposing the data matrix so that simulees 

were represented by rows and items by columns.   

Cutoff Criteria for Aberrant Identification. For all four nonparametric person-fit 

statistics, the distribution of each statistic value for simulees was examined for the clean datasets 

across all conditions and replications. A cutoff for each statistic was then determined by finding 

the value associated with the critical value for a 5% probability of a type I error. For example, for 

the 𝐺𝑝 statistic, the more Guttmann errors a respondent has, the greater the 𝐺𝑝 statistic, 

indicating greater person misfit. Thus, in the equation P(Gp) ≥ valuecritical = .05, the person-fit 

statistic critical value (valuecritical) was used as the cutoff criteria. Several researchers have used 

the 5% quantile as the cutoff value (e.g., Magis et al., 2012; Emons, 2008; Tendeiro, 2017).   
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Evaluating Performance of Person-Fit Statistics (Step 5) 

 The true positive rate and true negative rates, reflecting sensitivity and specificity, are 

commonly used in the literature for evaluation of aberrant response behavior detection (Huang et 

al., 2012; Meade & Craig, 2012b; Niessen et al., 2016; Turner, 2018). In this study, both type I 

error (false positive) and detection (true positive) rates were computed to assess the performance 

of the person-fit statistics. Type I error was computed as the proportion of simulees with “clean” 

or non-aberrant responses that were flagged as aberrant by the person-fit statistic. Detection rates 

were computed as the proportion of simulees generated to have aberrant response vectors that 

were correctly flagged as aberrant by the person-fit statistic. Additionally, accuracy rates are 

summarized and reported (computed as the sum of true positives and true negatives, divided by 

the total sample size). All rates were computed for each condition and each replication and then 

averaged (raw data were not aggregated).  

Study 3: Impacts of Misspecification of Underlying Response Processes on the Performance 

of Nonparametric and Parametric Person-Fit Statistics 

Simulation Factors 

The third and final study included 360 completely crossed conditions including 2 data 

generating mechanisms (GPCM and GGUM) × 2 models used in fitting the data (GPCM and 

GGUM) × 3 proportions of aberrant responders in the sample (AbN: .04, .10, .20) × 3 

proportions of aberrant responses within response vectors (AbI: 20%, 40%, or 60%) × 5 types of 

aberrant responding and response style conditions (random responders, longstring, MRS, ERS, 

mixed) × 2 test lengths (20, 40). This resulted in a total of 360 conditions. A total of 100 

replications were generated for each condition. All code for generating and estimating model 

parameters, model fit statistics, and person-fit statistics was written in R (R Core Team, 2020) 
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and is available on the Open Science Framework (https://osf.io/) as well as listed in the 

Appendices. 

Methods for the third study can be summarized in 7 fundamental steps:  

1)  Generate the “clean” or uncontaminated unfolding data under the GGUM and 

dominance data under the GPCM. 

2) Generate aberrant data for simulated random responders, longstrings, ERS, MRS, and 

mixed condition. 

3) Use GPCM and GGUM to estimate item and person parameters for all conditions. 

4) Assess the quality of the estimated parameters. 

5) Evaluate how each model (GPCM and GGUM) fits each dataset per condition. 

6) Compute the 𝑙𝑧(𝑝) and 𝑙𝑧(𝑝)
∗   parametric person-fit statistics for each simulee (and 

selected nonparametric person-fit statistics identified in study 2) and flag simulees 

who meet the decided criteria for having aberrant responses. 

7) Calculate the type I error rates (falsely identifying a simulee as aberrant when their 

responses were “clean”) and detection rates (correctly identifying a simulee as 

aberrant) for each condition.  

Methods for the generation of the data along with estimating the parameters and 

assessing their quality (steps 1 – 4), and model-data fit (step 5) are described in Study 1. For this 

study, the  𝑙𝑧(𝑝) and the 𝑙𝑧(𝑝)
∗   statistics will use both the GPCM and the GGUM (depending on 

the condition) to estimate relevant parameters in its computation, thus model fit and parameter 

quality will include conditions where GPCM fits GPCM data, GGUM fits GGUM data, as well 

as the cross-fitting of the GPCM to GGUM data and the GGUM to GPCM data.  

https://osf.io/
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As Tendeiro (2017) notes, it is important to assess the quality of the parameters estimated 

and ensure that the aberrant data did not affect these estimates to a large degree because it would 

then be difficult to determine if the performance of the person-fit statistic was primarily due to 

the context of the data or the quality of the estimates. This is primarily a concern for the 

parametric person-fit statistics in the study (𝑙𝑧(𝑝) and the 𝑙𝑧(𝑝)
∗ ) which use item and person 

parameter estimates in their calculations. However, in the cross-fitting conditions (e.g., where the 

statistic uses GPCM to fit GGUM), parameter quality is not expected to be relatively high, even 

for clean data. In these cases, it is expected for the person-fit statistics to not perform as well. 

The purpose for this type of condition is to evaluate the flexibility of the models and investigate 

the rate at which the person-fit statistic performance declines.  Because the nonparametric 

person-fit statistic(s) selected from the results of Study 2 should not be affected by model 

misspecification since nonparametric person-fit statistics do not rely on parameter estimates, 

selected statistics from Study 2 were chosen for inclusion in Study 3 in order to compare the 

performance of the parametric and nonparametric person-fit statistics under misspecified model 

conditions. The appropriate model was also fit to the corresponding data (e.g., the GGUM was fit 

to the GGUM data), and parameter quality as well as model-data fit was assessed to ensure data 

was simulated properly for the purpose of the study.  These insights are all taken from Study 1 to 

gain a better understanding of the context for which the person fit statistics are used in the 

current Study 3.  

Computing 𝒍𝒛(𝒑)  and the 𝒍𝒛(𝒑)
∗  Person-Fit Statistics (Step 6) 

 Code was written in R to compute two versions of the 𝑙𝑧(𝑝) and 𝑙𝑧(𝑝)
∗  statistics: one 

specifying the GPCM, and one specifying the GGUM as the model used to estimate the item 

parameters. When fitting the GPCM to each type of data, the 𝑙𝑧(𝑝) was computed using the 
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lzpoly function in the PerFit package in R, with the IRT model argument set to ‘GPCM’, to 

validate the coding was done correctly. To the author’s knowledge, no packages in R exist for 

the 𝑙𝑧(𝑝)
∗  statistic and none for the  𝑙𝑧(𝑝) and 𝑙𝑧(𝑝)

∗  statistics with an option to specify the GGUM 

model.  Thus, for these conditions, the results reflect the newly written code for this dissertation. 

After values were obtained for each simulee, the distribution was examined. To identify simulees 

as aberrant or non-aberrant, a flagging criterion had to be set. This cutoff was determined by 

finding the value associated with the critical value for a 5% probability of a type I error using the 

data with no aberrant responding. For example, for the 𝑙𝑧(𝑝) statistic, lower (more negative) 

values of the statistic indicate greater misfit. Thus, in the equation P(𝑙𝑧(𝑝)) ≤ valuecritical = .05, the 

person-fit statistic critical value (valuecritical) was used as the cutoff criteria. This methodology for 

setting flagging criteria has been used in previous person-fit research (e.g., Magis et al., 2012; 

Emons, 2008; Tendeiro, 2017).   

Evaluating Performance of 𝒍𝒛(𝒑) and  𝒍𝒛(𝒑)
∗   (Step 7) 

 To assess the performance of the 𝑙𝑧(𝑝) and and  𝑙𝑧(𝑝)
∗  person-fit statistics, both type I error 

and detection rates were computed using GPCM and GGUM data for each condition. Type I 

error was calculated using the subset of each sample that was not designated to be aberrant and 

calculating the proportion of these simulees that were incorrectly flagged as aberrant. Detection 

rates were relevant in each condition where datasets included aberrant response vectors and were 

calculated as the proportion of simulees that were generated to have aberrant response vectors 

that were correctly flagged as aberrant by the person-fit statistic.  

Summary 

In attempt to address the issue of data quality, researchers are using person-fit analyses in 

various fields (Rupp, 2013). Additionally, the use of unfolding models for non-cognitive 
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measures is growing (e.g., Harris-Watson et al., 2020; S. Kartal & Di̇rli̇k, 2021; S. K. Kartal & 

Kutlu, 2020; Liu & Zhang, 2020). Nonetheless, a paucity remains in the literature regarding 

person-fit under unfolding model frameworks. In order to effectively investigate these joint 

concepts, Study 1 investigates the differential impacts of aberrant responding on model-fit for 

unfolding models (and dominance models for comparison), Study 2 examines the performance of 

nonparametric person-fit statistics under unfolding model contexts, and Study 3 extends the 

research on parametric person fit statistic performance under an unfolding model by looking at 

different types of aberrant responding and the impacts of model misspecification.  

The methods for all three studies are closely related. In Study 1, the methods outline how 

the data is generated and models are fit to the data. In Study 2, the methodology is extended to 

apply nonparametric person fit statistics to detect the generated aberrant respondents. The 

methods in Study 3 describe how the parametric person fit statistics are tested under the various 

conditions including model misspecification. All three studies aim to add to the literature 

regarding the relationships between model fit, presence of aberrant responding, and detection of 

aberrant responding specifically under an unfolding model framework. 
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CHAPTER 4 

STUDY 1 

An Investigation of the Effects of Aberrant Responding on Model-Fit Assuming Different 

Underlying Response Processes 

 

Abstract 

  

Aberrant responding on tests and surveys has been shown to affect the psychometric 

properties of scales and the statistical analyses from the use of those scales in cumulative model 

contexts.  This study extends prior research by comparing the effects of four types of aberrant 

responding on model fit in both cumulative and ideal point model contexts using graded partial 

credit (GPCM) and generalized graded unfolding (GGUM) models. When fitting models to data, 

model misfit can be both a function of misspecification and aberrant responding. Results 

demonstrate how varying levels of aberrant data can severely impact model fit for both 

cumulative and ideal-point data.  Specifically, longstring responses have a stronger impact on 

dimensionality for both ideal point and cumulative data, while random responding tends to have 

the most negative impact on data model fit according to information criteria (AIC, BIC). The 

results also indicate that ideal point data models such as GGUM may be able to fit cumulative 

data as well as the cumulative model itself (GPCM), whereas cumulative data models may not 

provide sufficient model fit for data simulated using an ideal point model. 
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Introduction 

 

Ideally, all respondents in a sample respond to items using a cognitive process that 

accurately reflects their attitude or the trait level being measured. Tourangeau and Rasinski 

(1988) theorized that when people answer attitude questions, the response process begins with 

interpreting the question and retrieving information from the brain, followed by forming a 

judgement based on the retrieved information, and finally mapping the participant’s judgement 

on to one of the available answer choices. In reality, however, a subset of participants in a 

sample may lack the motivation to expend the cognitive effort required for such a process (i.e. 

low cognitive effort, LCE; Murphy, 1996; Turner, 2018). Meijer (1996) outlines several types of 

item score patterns that are deviant (aberrant) from what may be expected when participants are 

employing sufficient cognitive effort. Two commonly listed behaviors include providing random 

responses or the same response (longstrings) to a block of items by carelessly or purposely 

disregarding item content. These response strings can impair the accuracy of a validation 

assessment and provide estimates of construct outcomes that are inaccurate for participants. 

Additionally, some participants may possess the cognitive effort, but engage in response styles 

that can also impact instrument validation and trait estimates. Two more commonly studied 

response styles include the tendency to use extreme response options, that is, extreme response 

style (ERS; Bachman & O’Malley, 1984; Baumgartner & Steenkamp, 2001; Chen et al., 1995; 

Greenleaf, 1992; Hui & Triandis, 1985; Marin et al., 1992; Weijters et al., 2010) or the tendency 

to use midpoint response options, that is, midpoint response style (MRS; Baumgartner & 

Steenkamp, 2001; Chen et al., 1995; Stening & Everett, 1984).  These characteristics can result 

in response data that is aberrant or deviant from what would be expected given the participant’s 

trait level and the characteristics of the item.  The literature has revealed many potential adverse 
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effects of aberrant data and thus its detection has gained substantial attention in several fields 

(Rupp, 2013). Once aberrant responses are detected, the next steps for the researcher include 

trying to understand how that data may impact their study. This includes understanding how 

robust their model of choice is in the presence of low quality data.  

Item response theory (IRT) is a latent class model framework that has been recognized 

for its many advantages in item design and analysis in various applied settings (Bortolotti et al., 

2013; Drasgow & Hulin, 1990; Hambleton & Swaminathan, 1985; Reise et al., 2005).Using IRT, 

researchers can evaluate a latent construct for a set of individuals based on information gathered 

from item responses. Some of the most widely used unidimensional IRT models (e.g., 1-, 2-, and 

3-parameter logistic models for dichotomous data) are based on cumulative item response 

functions (IRFs) that are monotonically increasing and imply an underlying dominance response 

process. This approach is derived from the work of Likert (1932), and suggests that when an 

individual has higher agreement to a positively worded scale item, it indicates that individual has 

a higher level of the measured trait (Dalal et al., 2014). However, methods derived from 

Thurstone (1927, 1928, 1929) have been proposed to reflect an ideal-point response process 

where the probability that an individual will endorse an item increases as the disparity between 

the location of the item and individual on the underlying latent continuum decreases. This 

resulting IRT model is said to be “unfolding” and allows for peaked, non-monotonic IRFs.  

Many studies that have investigated the effects of aberrant data have done so using 

dominance IRT models. It is unknown whether impacts of aberrant data when using dominance 

IRT models apply similarly when scales are developed using an unfolding IRT model. The 

current study focuses on the differential impacts of four types of aberrant responding on model-

data fit and parameter recovery using both dominance and unfolding IRT models. 
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Dominance and Unfolding Models 

 

A primary difference between dominance and unfolding IRT models is the assumed 

underlying response process for each.  In the dominance IRT response process, regardless of the 

item’s location on the continuum, the probability of endorsing an item increases as the test-

taker’s ability or trait level increases. This dominance characteristic is illustrated with 

monotonically increasing IRFs [see Figure 5(A)]. For example, when measuring the self-reported 

social skills of respondents with an item like “My social skills are at least as good as those of an 

average person,” it may be reasonable to assume that the more extraverted the respondent is, the 

more likely he or she will endorse this item (Chernyshenko et al., 2007).  On the other hand, the 

ideal-point response process assumes that a person will endorse an item to the degree that the 

item reflects the person’s own standing on the construct being measured. In other words, the 

likelihood of endorsing an item increases as the difference between the test taker’s and item’s 

location on the continuum representing the construct of interest decreases. For example, the item, 

“My social skills are about average,” would most likely elicit an ideal point response process 

where the probability for endorsement is highest for those who feel they have average social 

skills (Chernyshenko et al., 2007). Respondents may disagree with this item for two reasons: 

either they feel their social skills are above average or because they feel their social skills are 

below average. The IRF for this respondent-item relationship can be seen in Figure 5B. Due to 

this “unfolding effect,” items that elicit an ideal point response process are often measured using 

an unfolding model. Some common unfolding models that are available for both dichotomous 

and polytomous data include the Squared Logistic Model (SLM; Andrich, 1988), PARELLA 

model (Andrich, 1988), Hyperbolic Cosine Model for dichotomous data (HCM; Andrich & 

Guanzhong Luo, 1993), General Hyperbolic Cosine Model for polytomous data (GHCM; 
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Andrich, 1996), Graded Unfolding Model (GUM; Roberts & Laughlin, 1996), and the 

generalized graded unfolding model (Roberts et al., 2000). Several aspects of the GGUM make it 

a popular choice and rationalize its selection for this investigation. First, it can be used with both 

polytomous and dichotomous data, and the discrimination parameters are allowed to vary across 

items. The thresholds for each response option are also allowed to vary across items. The 

freedom for variability among the discrimination and threshold parameters create a flexibility for 

the IRFs under this model to take on a wide range of shapes (Stark et al., 2006). Further, the 

GGUM package in R (Tendeiro & Castro-Alvarez, 2019) makes it an accessible option for 

researchers.  

The GGUM proposed by Roberts et al. (2000), defines each subjective response to follow 

the generalized partial credit model (GPCM; Muraki, 1992).  To maximize comparability of 

results in this study, the GPCM was chosen to model the data reflecting a dominance response 

process. The formulas for both the GPCM and GGUM are given below.  

𝐺𝑃𝐶𝑀:  𝑃(𝑍𝑗 = 𝑧|𝜃) =
exp {∑ [𝑎𝑗(𝜃−𝑏𝑗𝑘)]}𝑧

𝑘=0

∑ {exp ∑ [𝑎𝑗(𝜃−𝑏𝑗𝑘)]}𝑟
𝑘=0

𝐶
𝑟=0

            (30) 

where 𝑍𝑗 represents the observed response (with ability or trait level, 𝜃) to item j, and 𝑧 =

0, 1, 2, . . . , 𝐶 with z = 0 corresponding to the strongest level of disagreement and z = C 

corresponding with the step that reflects the strongest level of agreement. Thus, C is the number 

of observed response categories minus 1.  The discrimination parameter for item j is represented 

by 𝑎𝑗, and 𝑏𝑗𝑘 is the difficulty parameter or location parameter of the kth step.  In the 

denominator, r = 1, 2, . . . , C represents the total C exponent terms. 

𝐺𝐺𝑈𝑀:  𝑃(𝑍𝑗 = 𝑧|𝜃) =
exp {𝛼𝑗[𝑧(𝜃−𝛿𝑗)−∑ 𝜏𝑗𝑘]}+exp {𝛼𝑗[(𝑀−𝑧)(𝜃−𝛿𝑗)−∑ 𝜏𝑗𝑘]} 𝑧

𝑘=0
𝑧
𝑘=0

∑ {exp {𝛼𝑗[𝑤(𝜃−𝛿𝑗)−∑ 𝜏𝑗𝑘]}𝑤
𝑘=0

𝐶
𝑤=0  + exp {𝛼𝑗[(𝑀−𝑤)(𝜃−𝛿𝑗)−∑ 𝜏𝑗𝑘]}}𝑤

𝑘=0

 ,           (31) 
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where M is the total number of subjective response categories minus 1 (M = 2C +1), 𝛼𝑗 is the 

discrimination parameter for item j, 𝛿𝑗 is the item location parameter, and 𝜏𝑗𝑘 is the location of 

the kth threshold on latent continuum relative to the location of the jth item. 

Figure 5. IRFs based on Dominance (A) and Ideal Point (B) Models 

 

 

Ideal Point Response Process 

 

 

 

 

 

 

Note. A illustrates a monotonically increasing item response function (IRF). B illustrates a non-

monotonic IRF, violating monotonicity assumption for dominance item response theory models 

 

 Although dominance IRT models like the GPCM are more widely used in the literature 

(Harris-Watson et al., 2020; Tay & Ng, 2018), evidence from several self-report inventories has 

indicated that an unfolding approach (e.g., GGUM) may be more suitable for several types of 

assessments intended to measure non-cognitive constructs. These include the assessment for 

creativity using the Gough’s Creative Personality Scale (Zampetakis, 2010), measures of 

conscientiousness (Carter et al., 2014), personality inventory of self-judgement on the order-facet 

(a feature of conscientiousness; Chernyshenko et al., 2007; Weekers & Meijer, 2008), the fifth 

edition of the Sixteen Personality Factor Questionnaire (Stark et al., 2006), and the Job 

Descriptive Index measuring job satisfaction (Carter & Dalal, 2010).   
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Impacts of Aberrant Responding 

DeSimone et al. (2018) suggested that even 10 to 15 percent contamination of LCE 

response vectors in a dataset should be a cause for concern for researchers. This is consistent 

with Meijer's study in 1997 where 15% or higher contamination led to substantial decreases in 

criterion-related validity under the context of a three parameter logistic (3PL) IRT model. In the 

DeSimone et al. (2018) study, random responding led to lower interitem correlations, lower 

reliability estimates, and masked the true factor structure. Thus, when random responding is 

present, the researcher may be at higher risk for making Type II errors and failing to reveal 

relationships between variables that may actually exist (McGrath et al., 2010).  Longstring 

responses on the other hand may artificially increase inter-item correlations and inflate reliability 

if the items are worded in only one direction (DeSimone et al., 2018).   

Avşar (2021) investigated the impact of aberrant data on confirmatory factor analysis 

results and item parameter estimates under a graded response model and a Mokken Homogeneity 

Model (both dominance IRT models). The study used person fit statistics to trim the data of 

aberrant responses and compared CFA and statistical results with the untrimmed data. Overall, 

results were mixed depending on the person fit statistic used, but generally suggested that 

including the aberrant data resulted in worse goodness-of-fit results. When aberrant data were 

identified and set aside using the 𝑙𝑧
𝑝
 person-fit statistic, item discrimination parameters increased 

and goodness-of-fit results were improved.  

Very few studies have examined the issue of aberrant data under an unfolding model 

context. Liu and Zhang (2020) investigated the appropriateness of ideal point models for 

detecting faking on personality measures (as opposed to honest responding). Results indicated 

that fitting the GGUM to the data under conditions where faking was present resulted in shifts in 



 

 85 

 

item location parameter estimates, demonstrating that faking could increase or decrease 

personality factor scores reflecting conscientiousness and neuroticism. Liu and Wang (2019) 

showed that parameters estimated by the General Unfolding Model (GUM) may be biased when 

response styles are ignored. The study also reported that test-retest reliability decreased with the 

presence of aberrant responses. However, it is unknown how other types of aberrant responding 

(e.g., random responding, longstrings) may affect model fit for unfolding models compared to 

dominance models. Tendeiro (2017) investigated the detection of MRS and ERS using a 

parametric person fit statistic (𝑙𝑧(𝑝)
∗ ) in a GGUM simulation study. Model fit was investigated 

before and after adding aberrant data, with little impact under the conditions used in the study 

(most extreme aberrant condition was 25% of response strings aberrant for 20% of the sample). 

However, the detection rates for ERS were found to be more strongly affected by parameter bias 

than detection rates for MRS. If different types of aberrant data affect model fit and parameter 

bias differently for dominance and unfolding models, this could lead to important implications 

for studies using person fit statistics.  

Purpose 

In reality researchers will not know if model-data misfit is due to the presence of aberrant 

responding, or if it is due to true model misspecification. One of the advantages of using a 

simulation design for the current study is the full control over these factors. Aberrant responding 

and model misspecification (based on two underlying response processes) will be manipulated to 

provide insight on the confounding effects that may arise with real data. For example, it could be 

that aberrant responding affects model fit more severely for certain data types and conditions, 

which would then point the researcher to investigate data quality before making conclusions 

about model misfit.   
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If model-data misfit is shown to increase the estimated parameter bias, then the detection 

of the aberrant responses may in turn be affected. Tendeiro (2017) found that bias of estimated 

parameters affected the detection rates of extreme responding more so than for midpoint 

responding. Thus, if aberrant responding affects the model-data fit, and the model-data fit affects 

the detection of aberrant responding, the researcher faces a difficult decision while attempting to 

maintain the integrity of the data quality. More research in this area is warranted to provide 

insight for researchers in detecting aberrant responses. The purpose of this study is to contribute 

to growing literature on unfolding versus dominance models as well as the impact of aberrant 

data by providing insight on what conditions and types of data may be affected differently by 

aberrant data (Freund & Lohbeck, 2021; LaPalme et al., 2018; Nye et al., 2020; Wilgus & 

Travis, 2019). The research questions driving the study include: 

1) How does model fit compare for dominance and unfolding IRT models (GPCM and 

GGUM) applied to both dominance and ideal point response data simulated with no 

aberrant responses?   

2) How is model fit and parameter recovery impacted for both dominance and unfolding 

models applied to both dominance and ideal point response datasets (GGUM fit to 

GGUM data, GGUM fit to GPCM data, GPCM fit to GGUM data, GPCM fit to GPCM 

data) when different types and proportions of aberrant response strings are included?   

a. Do certain conditions (test length, type of aberrant response, proportion of aberrant 

responders and proportion of aberrant responses within an aberrant response vector) 

have different results for model-data fit and the quality of parameter recovery? 

 

 



 

 87 

 

Methods 

A series of simulations was carried out for 6-point items and a fixed sample size of 1,000. 

Four types of aberrant responding were included: two types of response styles (extreme response 

style and midpoint response style), and two forms of low cognitive effort responding (random 

responding and longstrings). Additionally, a ‘mixed aberrant response’ condition combined all 

four aberrant response types to simulate realistic situations where a sample may be composed of 

several types of aberrant responders within a dataset. Extending two published studies on 

aberrant data within an unfolding IRT model (Liu & Wang, 2019; Tendeiro, 2017), three 

proportions of aberrant responders (AbN = .04, .10, .20) and three proportions of aberrant 

responses to the items within each aberrant response string (AbI = .20, .40, .60) were used to 

simulate aberrant response data. Two test lengths of 20 and 40 items were included. This resulted 

in a total of 2 (data generating mechanisms: GGUM and GPCM) × 2 (applied model fit: GGUM 

and GPCM) × 3 (proportion of aberrant responders in the sample, AbN) × 3 (proportion of 

aberrant responses in response vectors, AbI) × 2 (test lengths) × 5 (types of aberrant responding 

and response styles) = 360 fully crossed conditions. All conditions were replicated 100 times. 

Under certain conditions (especially when cross-fitting an inappropriate model with the data), 

results did not converge. In these cases, more than 100 replications were necessary to generate 

new clean datasets until 100 iterations successfully completed. Each condition began with 

generating a new “clean” dataset and then replacing response strings with aberrant data based on 

the AbI and AbN condition. The clean datasets were used to obtain a baseline for non-aberrant 

responses, and to compare against the aberrant datasets in each condition. Seed values were used 

to allow for replicability. Code for the data generation, model fit, and all analyses were written in 

R (R Core Team, 2016). Code is attached in Appendices A through F. 
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Data Generation 

For both the GGUM and GPCM datasets, person parameters were randomly drawn from 

the standard normal distribution. The GenData.GGUM function in R (Tendeiro & Castro-

Alvarez, 2019) was used to generate all item and person parameters as well as the item scores for 

the GGUM datasets. The item discrimination parameters (𝛼𝑗) were randomly sampled from a 

uniform distribution [0.5, 2.0]. The item location parameters (𝛿𝑗) were randomly sampled from 

the standard normal distribution truncated between -2.0 and 2.0 due to reports of extreme values 

of 𝛿𝑖 sometimes leading to issues of low accuracy and variability of MML estimates under the 

GGUM (Roberts & Thompson, 2011 as cited in Tendeiro, 2017). The locations of the threshold 

parameters (𝜏𝑗𝑘) (relative to the location of the jth item) were recursively generated using 

procedures described in Roberts et al. (2002) using the GenData.GGUM function in R.  

To generate data under the GPCM, the item discrimination parameters were also sampled 

from a uniform distribution [0.5, 2.0], and item difficulty parameters for each item were sampled 

from the standard normal distribution N(0,1). Item category thresholds, 𝑑𝑗𝑘, for step k of item j 

were simulated by taking the sequential cumulative sum of five numbers drawn from a random 

uniform distribution between .3 and 1, as described in Chalmers (2012). This interval was chosen 

because it ensures that the distance between categories will not be less than .30. If the categories 

are too close, some may not be chosen as often. Next, the mean for the set of sequential 

cumulative sums for each item was subtracted from each number in the set. The initial item 

category threshold, dj0, was set to 0 in order for the model to be identified (Muraki, 1992).  Once 

the parameters were generated, the sim_gpcm function in R (PP package; Steinfield & Reif, 

2021) was used to simulate the response data.  
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Generation of Aberrant Responses 

 Aberrant datasets were created by replacing a proportion (depending on the AbN 

condition) of response vectors in the clean datasets with aberrant response vectors. To simulate 

aberrant responses due to random responding, first a random sample of integers were drawn from 

a uniform distribution [0, 5], and then the values of the randomly sampled numbers replaced 

either 20%, 40%, or 60% of the responses (AbI) randomly throughout an aberrant response 

vector. To create aberrant responses due to longstrings, a single random number was drawn from 

a uniform distribution [0, 5]. Next, a valid random starting position in the vector was generated 

and the specified proportion of consecutive items (𝐴𝑏𝐼 ×  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑚𝑠) was set to equal 

the randomly generated number (DeSimone et al., 2018).  

To create response vectors that demonstrate MRS for 6-point items, endpoint item scores 

and item scores adjacent to the endpoints were replaced with the closest midpoint response (i.e., 

on the 6-point scale ranging from 0 to 5, items scores of 0 and 1 were replaced with a 2, and 

scores of 4 and 5 were replaced with a 3). To mimic responses that reflect ERS, item scores in 

the middle range were changed to the corresponding endpoint responses (i.e., 1s and 2s were 

changed to 0; 3s and 4s were changed to 5).  This means that the item score for someone who 

would be expected to respond with a 1 on an item (based on their ability and the item 

parameters) could either be changed to a 2 if they were designated to demonstrate MRS or a 0 for 

ERS. A similar situation could happen for responses of 4. The reason data were simulated in this 

way is due to the potential for this scenario to happen in real life. It is possible that respondents 

with MRS and ERS may move responses more towards the middle or extreme regardless of the 

type of item. That is, we did not want to only move end-point response to the middle for MRS 
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and the most middle responses to the endpoint for ERS, but also include items/person 

combinations where responses would be expected to land anywhere on the scale. 

Fitting the IRT Models 

Once response strings for all simulees were generated based on the GPCM and GGUM, 

an IRT model (depending on the condition) was fit to each set of response data. This resulted in 

each dataset and its corresponding aberrant counterpart were fit by the model in their condition. 

The GPCM was fit to the data using the MIRT function (itemtype = gpcm) in R (Chalmers, 

2012), whereas the GGUM was fit to the data using the GGUM function in the GGUM package 

in R (Tendeiro & Castro-Alvarez, 2020). Any time GPCM was fit to GGUM responses, “Likert-

scaling techniques” described in Tay et al. (2011) and Tay and Drasgow (2012) were applied. 

First, 30% of items on the negative end of the continuum were reverse scored. Next, further 

reverse coding was completed for any items remaining with negative item-total biserial 

correlations. This procedure was employed to reduce the identification of an additional factor in 

ideal-point data which has been pointed out as a potential problem in past research (Tay & 

Drasgow, 2012; van Schuur & Kiers, 1994; Williams, 2015). 

Evaluating Model Fit 

To evaluate model fit, multiple aspects were examined including dimensionality, 

goodness-of-fit, information criteria, and quality of parameter estimates. Dimensionality was 

assessed using parallel analysis in R (‘paran’ package; Dinno, 2018). The method utilized 

implemented Horn’s technique for quantitatively and graphically determining the number of 

factors retained in a Principal Components Analysis (PCA) while adjusting for the sample error-

induced inflation. This method was chosen because other methods such as scree plots and the 

Kaiser rule, have been shown to overestimate dimensionality in data (Zwick & Velicer, 1984).  



 

 91 

 

Information criterion based statistics, Akaike Information Criterion (AIC; Akaike, 1974) 

and Bayes Information Criterion (BIC; Schwarz, 1978) were used to compare relative model fit. 

These indices take into account the number of parameters being estimated and were computed as 

follows: 

𝐴𝐼𝐶 = 2𝑘 − 2 ln(�̂�)         (32) 

𝐵𝐼𝐶 = 𝑘 ln(𝑛) − 2ln (�̂�)            (33) 

where 𝑘 is the number of parameters estimated by the model, �̂� is the maximized value of the 

likelihood function for the model, and 𝑛 is the sample size. Lower AIC and BIC values indicate 

better fit. Nye et al. (2020) found that AIC and BIC criteria were able to distinguish the correct 

model fit for GGUM versus the graded response model (GRM) in a simulation study. However, 

it is emphasized that these are relative model fit indices used to compare the relative fit and do 

not illustrate absolute model fit.  

When determining which model (unfolding or dominance) fit the data better, results from 

the Tay et al. (2011) study suggest researchers may use the doubles and triples adjusted 𝜒2 

ratios. Nye et al. (2020) were also able to use this method to uncover the appropriate model fit to 

GRM versus GGUM data. Adjusted 𝜒2/𝑑𝑓 ratios for pairs and triplets of items in this study 

were reported for model comparisons across conditions (Drasgow et al., 1995). Chi-square 

statistics were computed using the observed frequencies of item j response option z (𝑂𝑗𝑧) and the 

expected frequencies (𝐸𝑗𝑧) based on the estimated item parameters and distribution of abilities. 

                                                                     𝜒𝑗
2 = ∑

(𝑂𝑗𝑧−𝐸𝑗𝑧)
2

𝐸𝑗𝑧

𝐶
𝑧=0 ,                                 (34) 

with 𝐸𝑗𝑧 = 𝑁 ∫ 𝑃𝑗𝑧(𝜃)𝜙(𝜃)𝑑𝜃, where 𝜙(𝜃) is the standard normal density function. This 

equation is written for single items but is often generalized to apply to pairs of items (doublets) 
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and triples of items (triplets) as these have been shown to be more reliable estimates of model 

(mis)fit than single items (Drasgow et al., 1995). Because 𝜒2 statistics are heavily dependent on 

sample size, they suggest adjusting the 𝜒2/𝑑𝑓 statistic to a sample size of 3,000 to make it more 

generalizable across samples of different sizes (also see Lahuis & Clark, 2009). The resulting 

formula is: 

𝜒2/𝑑𝑓 =  
3,000(𝜒𝑗

2−𝑑𝑓)

𝑁
+ 𝑑𝑓              (35) 

The degrees of freedom in Equation 4 depend on the number of singlets, doublets or triplets 

used. It has been suggested that values of 𝜒2/𝑑𝑓 larger than 3 be considered heuristically 

indicative of model misfit (Tendeiro, 2017). 

The quality of parameter estimates was also compared to reveal any differences in 

parameter recovery.  Procedures in Tendeiro (2017) were followed by comparing bias, mean 

absolute deviation (MAD), and the correlation (COR) between true and estimated parameters. 

The following equations were used: 

𝑀𝐴𝐷 = ∑ |𝛾𝑡 − 𝛾𝑡
𝑇𝑅𝑈𝐸|/𝑇𝑇

𝑡=1              (36) 

𝐵𝐼𝐴𝑆 = ∑ (𝛾𝑡 − 𝛾𝑡
𝑇𝑅𝑈𝐸)/𝑇𝑇

𝑡=1              (37) 

                                                           𝐶𝑂𝑅 = 𝑐𝑜𝑟(𝛾𝑡, 𝛾𝑡
𝑇𝑅𝑈𝐸), 𝑡 = 1, … , 𝑇,                       (38) 

where 𝛾�̂� is the estimated parameter and 𝛾𝑡
𝑇𝑅𝑈𝐸 is the true simulated value for the parameter 

representing either 𝛼𝑗 , 𝛿𝑗 , 𝜏𝑗𝑘 , 𝑜𝑟 𝜃𝑛 for the GGUM parameters or 𝛼𝑗 , 𝑏𝑗𝑘, 𝑜𝑟 𝜃𝑛 for the GPCM, 

and T is the corresponding total number of that parameter. For example, T is equal to the number 

of items for 𝛼𝑗 and 𝛿𝑗. T equals the number of items times C (the number of observed response 

categories minus 1) for 𝜏𝑗𝑘, and T is equal to the sample size for 𝜃𝑛. The MAD, bias, and 

correlations were computed and averaged over all replications for each condition. Standard 

deviations for these averages were also reported to examine the variability in parameter bias. 
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When fitting GPCM to GGUM data or the GGUM to the GPCM data, the comparison of 

some estimated parameters is difficult to interpret. For example, the location parameter in 

dominance IRT models represents the theta associated with a .50 probability of choosing a 

response. However, in unfolding models, the location parameter represents the theta associated 

with the highest probability of endorsement. Furthermore, discrimination parameters for non-

monotonically increasing items may result in negative values. Thus, for model cross-fit 

conditions, only the parameter quality for person scoring is presented. 

Results 

Dimensionality 

 A parallel analysis using Horn’s technique was performed when investigating 

dimensionality for all datasets under each condition. The number of factors retained for each 

analysis was averaged across replications and trends were examined across conditions for AbI, 

AbN, the number of items, the types of aberrant responding, and the two types of data 

(dominance and ideal point). Using parallel analysis, the number of factors retained are expected 

to be one for the dominance response data, whereas two factors are expected with ideal-point 

response data (Tay et al., 2011; Tay & Drasgow, 2012; Williams, 2015). The mean number of 

factors retained for clean datasets generated using a dominance response process (GPCM) was 

1.11 for datasets with 20 items and 1.84 for datasets with 40 items. Across all GPCM datasets 

with aberrant data, the mean number of factors retained was 1.44 for datasets with 20 items and 

2.06 for datasets with 40 items. In contrast to the dominance GPCM datasets, adding items and 

aberrant responses to the unfolding GGUM data had a very small impact on the number of 

factors retained. For clean datasets generated according to GGUM, the average number of factors 

retained for both 20-item and 40-item datasets was 2.00. Adding aberrant data to the GGUM 
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datasets had a negligible impact on dimensionality assessment, where the average number of 

factors retained were 2.01 for 20-item aberrant datasets and 2.04 for 40-item aberrant datasets.  

Further investigation of the trends in dimensionality assessment across datasets of 

varying aberrant response conditions are illustrated in Figures 6 (GPCM) and 7 (GGUM). The 

20-item graph in Figure 2 shows the upward trends in factor retention for the GPCM datasets 

with increasing proportions of aberrant responses. This was most evident in the case of 

increasing longstring responses. When 20% of the sample was simulated to have longstring 

responses (AbN = .20) for at least 40% of the items (AbI= .4 or .6), at least 1 additional factor 

was inappropriately retained 100% of the time. A spurious dimension was almost always found 

for the 40-item datasets, where proportions of aberrant responding had a smaller effect on factor 

retention. The exception to this finding was when the AbType was specified as longstring 

responses. In this case, increasing proportions of aberrant responding to AbN = .2 and AbI=.4 or 

.6, resulted in an average of nearly 4 factors being retained.  

Longstring responses had a similar effect on the GGUM data to a slightly lesser extent 

(Figure 7). As reflected by the means, regardless of the number of items (20 or 40), 2 factors 

were nearly always retained. However, when longstring responses were the specified type of 

aberrant response, and the proportion of aberrant respondents was 20% (AbN =.20) with 60% of 

item responses aberrant within each specified vector (AbI = .60), about half of the replications 

resulted in an additional 3rd factor being retained in the 20-item datasets. The same condition in 

the 40-item datasets (and even when AbI =.4) resulted in an additional 3rd factor being retained 

100% of the time.  
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Figure 6. Trends in the Average Number of Factors Retained by Condition in GPCM Data 

 

 
 

Note. ERS = Extreme Response Style. MRS = Midpoint Respoinse Style. Random = Random 

responders. AbI = Proportion of items within response vector designated as aberrant. AbN = 

Proportion of simulees designated to have aberrant response vectors.  
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Figure 7. Trends in the Average Number of Factors Retained by Condition in GGUM Data 

 

 
 

Note. ERS = Extreme Response Style. MRS = Midpoint Respoinse Style. Random = Random 

responders. AbI = Proportion of items within response vector designated as aberrant. AbN = 

Proportion of simulees designated to have aberrant response vectors.  

 

Information Criteria 

To compare the relative fit of each model to the data, information criterion fit indices 

AIC and BIC were utilized because both indices not only consider the non-nested structure of the 

two models in the study, but they also factor in penalties for additional parameters in more 

complicated models like GPCM and GGUM. A lower AIC and BIC value indicates better fit. 

Because these criteria penalize for model complexity, in general the AIC and BIC values for the 

GPCM fit to data are expected to be lower than the values for the GGUM since GGUM is a more 

complex model. Although BIC values were slightly higher than the AIC values due to the stricter 

penalty for model complexity, the results for both AIC and BIC were very similar. Thus, only the 

AIC results are presented for the 20-item and the 40-item datasets (Figure 8 and 9, respectively). 
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The GPCM fit to the GGUM data had the relatively worse fit as indicated by the AIC and BIC, 

whereas GGUM fit the GGUM data better with lower AIC values for all conditions. For 20-item 

datasets, when GGUM was fit to the GPCM data (represented by the hollow squares), slightly 

lower AIC values resulted compared to when GPCM was fit to the GPCM data (represented by 

the solid circles). The difference between the fit of the two models (GGUM and GPCM) for the 

GPCM data disappeared for the 40-item conditions with essentially the same AIC and BIC 

values for both models. For both types of data, random responding tended to have the most 

negative impact on data model fit compared to the other types of aberrant responding according 

to the AIC and BIC. MRS appeared to be more problematic for GGUM data, where ERS was the 

most problematic for GPCM data. Conversely, increased ERS responding often resulted in 

improved model fit for the GGUM data compared to other aberrant conditions, and even the 

clean datasets. When comparing to the clean datasets generated by both GPCM and GGUM, 

longstring responses had a negative effect on model fit, though this result was much more 

pronounced for GPCM data than the GGUM data. 
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Figure 8. Average AIC for Each Model-Data Fit by Condition for 20 Items 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note. AbType 1= Random Responding. AbType 2 = Longstring. AbType 3= Extreme Response Style. AbType 4 = Midpoint 

Respoinse Style. AbType 5 = Mixed Aberrant Responding. AbI = Proportion of items within an aberrant response vector that have 

aberrant responses.  AbN = Proportion of simulees that were designated as aberrant responders.  Clean datasets were generated before 

each condition of aberrant responding, but only shown for one arbitrary setting of AbI=.4 and AbN=.2 in the figure above. 
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Figure 9. Average AIC for Each Model-Data Fit by Condition for 40 Items 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note. AbType 1= Random Responding. AbType 2 = Longstring. AbType 3= Extreme Response Style. AbType 4 = Midpoint 

Respoinse Style. AbType 5 = Mixed Aberrant Responding. AbI = Proportion of items within an aberrant response vector that have 

aberrant responses.  AbN = Proportion of simulees that were designated as aberrant responders.  Clean datasets were generated before 

each condition of aberrant responding, but only shown for one arbitrary setting of AbI=.4 and AbN=.2 in the figure above. 
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𝝌𝟐/𝒅𝒇 Ratios 

The adjusted 𝜒2 ratio introduced by Drasgow et al. (1995) was utilized for the study and 

results for the percent of item triplets flagged for appropriate model fitting conditions and cross-

fitting model conditions are presented in Figure 6. Because results were very similar across scale 

lengths and for item doublets and triplets, only the item triplet results are discussed and presented 

in Figure 10 for only the 20-item conditions. Results for the clean datasets are first discussed, 

then the datasets with aberrant responses included. 

The 𝜒2/𝑑𝑓 ratios for item doublets and triplets consistently pointed to the appropriate 

model for the clean GGUM data (i.e., a larger proportion of item triplets were flagged for cross-

fitting model conditions than when the appropriate model was used for the data). When GPCM 

was cross-fit to GGUM data, even in the clean data, 54.4% of the item doublets were flagged and 

49.2% of the item triplets were flagged. In comparison, when the GGUM was appropriately fit to 

the GGUM datasets with no aberrant responses, less than .08% of the item doublets and .06% of 

triplets were flagged. In the clean GPCM datasets, the 𝜒2/𝑑𝑓 ratios for item doublets and triplets 

did not as clearly point to the appropriate model. Less than 1.4% of the item doublets and triplets 

were flagged for clean GPCM datasets fit by the GPCM compared to the 4.2% and 0.7% of the 

item doublets and triplets being flagged when GGUM was fit to the GPCM data.  

Using 𝜒2/𝑑𝑓 for doublets and triplets, indications of poor fit were minimal with random 

responding, longstrings, ERS and MRS when 10% or less of participants exhibit aberrant 

responding and the proportion of response strings aberrant is 40% or less. It was only when 20% 

or more participants exhibit aberrant responding (or when 10% exhibit 60% AbI) that a 

significant number of item doublets and triplets were flagged. Of the aberrant response types in 

the study, MRS and ERS tended to impact the 𝜒2/𝑑𝑓 ratios the most in both GPCM and GGUM 
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datasets, with random responding and longstrings resulting in fewer doublets and triplets being 

flagged. Even when the appropriate model was used to fit the GGUM data, up to 100% of item 

doublets and triplets were flagged for the most extreme aberrant conditions of MRS in the study 

(AbN = .2; AbI = .6). This suggests the adjusted chi-square doublets and triplets procedure may 

be effective in detecting the appropriate model for GGUM data except in the case where all 

doublets and triplets are flagged (AbN = .2; AbI = .6). Even in the most contaminated GGUM 

datasets (other than MRS), the 𝜒2/𝑑𝑓 ratios for doublets and triplets of items pointed to the 

correct model fit. In the GPCM datasets, the 𝜒2/𝑑𝑓 ratios for item doublets generally pointed to 

the GPCM for the correct model fit, though this was not as clear as with the GGUM datasets. 

Specifically, when ERS, MRS, and longstrings were present, and AbN = .20 with AbI = .60, a 

high proportion of item doublets and triplets were flagged regardless of the model used to fit the 

GPCM data.  

Overall, when GGUM was applied to the GGUM data, MRS had the largest negative 

impact on model fit, while ERS tended to have the largest negative effect within the GPCM 

datasets. When the inappropriate model was used to fit the data, both the AbI and AbN conditions 

seemed to impact model fit. Generally, higher AbI conditions resulted in worse model fit as 

indicated by flagged item doublets and triplets. The exception to this trend involved GGUM data 

being fit by GPCM where no clear trend existed. In this case, the more random responses in a 

response vector generated by the GGUM, the better GPCM fit the data.   
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 Figure 10. Average Percent of adjusted 𝛘𝟐Triplets Flagged by Condition 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note. Graph A (Top) reflects appropriate model fit for the datasets. Graph B (Bottom) reflects inappropriate cross-fit of models for the 

datasets. ERS = Extreme Response Style. MRS = Midpoint Response Style. AbI = Proportion of items within an aberrant response 

vector that have aberrant responses. AbN = Proportion of simulees that were designated as aberrant responders. Results presented for 

the 20-item condition.  For each replication of each condition, clean datasets were generated and included in the graphs for 

comparison purposes (AbN = 0). For each model generating mechanism, model fit condition, AbI, and AbType, there were 3 AbN 

conditions of 100 replications each. Thus, clean datasets for this graph were aggregated and include 300 replications each.    

Random Responders                   Longstringers                              ERS                                     MRS                                    Mixed 

Random Responders                   Longstringers                              ERS                                     MRS                                    Mixed 
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Quality of Parameter Recovery 

Using the appropriate model. To assess the quality of parameter recovery across the 

various conditions, measures of BIAS, MAD, and COR were averaged across replications. For a 

graphical illustration of the person parameter (theta) recovery across conditions, see Figure 11. 

Tables 1, 2, and 3 show further details (split by AbN condition) on the quality of parameter 

recovery by AbI conditions .2, .4 and .6, respectively. Sections A and B of the tables show results 

for conditions where the appropriate model was used to fit the data (i.e., Section A = GGUM 

data fit by GGUM and Section B = GPCM data fit by GPCM). In the lowest aberrant conditions 

(e.g., AbN = .04, AbI = .20; Table 7), parameter recovery was good (comparable to the clean 

data) when the appropriate model is used. The estimated person parameters (𝜃𝑛) were strongly 

related to the true simulated parameters, with correlations being at or above .92, even with 

datasets that included AbN=.20 and AbI=.60 (Table 9). In this more extreme aberrant condition, 

person parameters were recovered best in cases where GGUM data was fit by the GGUM (r = 

0.95). Aberrant responses also had very little impact on BIAS and MAD values for person 

parameter estimates in both GGUM and GPCM datasets when the appropriate model was used to 

fit the data. For example, when the average person parameter bias for the clean datasets was 

subtracted from the average person parameter bias for datasets with aberrant responses, the 

average differences in BIAS were less than .01 across all conditions. The average differences 

(between clean and aberrant datasets) in person parameter MAD ranged from 0 to .11 depending 

on AbI and AbN and were less than .04 across all conditions.  

Item location parameters were also strongly correlated to their true values across 

conditions (Tables 7, 8, and 9). For the GGUM, item location parameters (𝛿𝑗) were recovered 

well, with correlations at or above .99 even in the most contaminated datasets. Similarly, the b-
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parameters in the GPCM had correlations at or above .93. Figure 12 shows the discrimination 

parameter recovery in both GPCM and GGUM conditions, where parameter estimates were very 

accurate in the datasets with no aberrant data when the appropriate model was used (r = .98 for 

both). Adding aberrant data decreased parameter recovery accuracy for the discrimination 

parameters in both cases, where the parameters were generally underestimated as reflected by the 

negative BIAS results. Comparing the discrimination parameter recovery in the clean datasets to 

the most aberrant datasets (AbN = .20; AbI = .60), when the appropriate model was used to fit the 

GGUM data, correlation between true and estimated parameters dropped from .98 to .85 and 

dropped from .98 to .77 in the GPCM datasets. The threshold parameters in the GGUM datasets 

seemed to be the most impacted by aberrant data. With the clean datasets, threshold parameter 

estimates correlated with the true parameters at .94, and with the most aberrant data condition 

this dropped to .67.  

Cross-fitting conditions. For the conditions where the GGUM was fit to the GPCM data, 

and the GPCM was fit to the GGUM data, worse parameter recovery was anticipated due to the 

imposed misspecification on the conditions. However, when the GGUM was fit to the GPCM 

data (Table 7, section C; Figure 11 – hollow square), estimated person parameters correlated 

with their true values at .98 for the clean data. Even when AbN = .20 and AbI = .60, GGUM was 

able to recover person parameters for the GPCM data with a correlation between true and 

estimated parameters of .92. These correlations matched those when the correct model was used 

for the GPCM data. In contrast, when the GPCM was fit to the clean GGUM data (Table 1, 

section D; Figure 6 – plus sign), the correlation between estimated and true person parameters 

decreased to .77 (compared to the .98 using the appropriate GGUM model) and the MAD 

increased to .40 (compared to the .12 using the appropriate GGUM model). The quality of the 
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person parameter recovery for the aberrant datasets under this model misfit condition worsened 

substantially with a correlation of .70 and a MAD of .49. Figure 12 highlights the severity of the 

discrimination parameter underestimation that occurred when GPCM was fit to the GGUM data. 

The correlation, MAD, and BIAS of the discrimination parameter was substantially worse with 

the addition of aberrant responses when GPCM fit GGUM, and the correlation between true and 

estimated parameters was always below .45. However, when GGUM was fit to the GPCM data, 

the correlation between true and estimated discrimination parameters were nearly the same as 

when GPCM fit the GPCM data, and even slightly higher in the most aberrant condition. 
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Figure 11. Average Theta (Person) Parameter Recovery Measures by Condition  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Note. Graphs reflect results for 20-item conditions; AbI = Proportion of items within an aberrant 

response vector that have aberrant responses.  AbN = Proportion of simulees that were designated 

as aberrant responders.     
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Figure 12. Average Discrimination Parameter Recovery Measures by Condition  

 

 
 

 

 

Note. Graphs reflect results for 20-item conditions; AbI = Proportion of items within an aberrant 

response vector that have aberrant responses.  AbN = Proportion of simulees that were designated 

as aberrant responders.     
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Table 7. Quality of Parameter Recovery for AbN = .04 
 

DataClean 

 
DataAberrant (AbI = .2)  DataAberrant (AbI = .4)  DataAberrant (AbI = .6) 

Parameter BIAS MAD COR 
 

BIAS MAD COR  BIAS MAD COR  BIAS MAD COR 
A. GGUM Fit to GGUM Data         

𝛼𝑗 
       

        
M -0.03 0.07 0.98  -0.09 0.11 0.96  -0.14 0.15 0.95  -0.16 0.19 0.92 

(SD) (0.03) (0.02) (0.01)  (0.04) (0.03) (0.04)  (0.05) (0.04) (0.04)  (0.06) (0.05) (0.07) 
𝛿𝑗                

M <0.01 0.06 1.00  <0.01 0.06 1.00  <0.01 0.06 1.00  <0.01 0.06 1.00 
(SD) 

(0.04) (0.04) (0.02)  (0.06) (0.08) (0.01)  (0.05) (0.04 (0.01)  (0.04) (0.02) (0.01) 
𝜏𝑗𝑘                

M -0.03 0.09 0.94  -0.03 0.09 0.94  -0.03 0.10 0.93  -0.03 0.10 0.93 
(SD) (0.03) (0.02) (0.05)  (0.03) (0.05) (0.07)  (0.03) (0.02) (0.05)  (0.03) (0.02) (0.05) 

𝜃𝑛                
M <0.01 0.12 0.99  <0.01 0.12 0.99  <0.01 0.13 0.99  <0.01 0.13 0.98 

(SD) (0.04) (0.02) (<0.01)  (0.04) (0.02) (0.01)  (0.04) (0.02) (0.01)  (0.04) (0.02) (0.01) 
B. GPCM Fit to GPCM Data         

aj                
M 0.01 0.06 0.98  -0.04 0.08 0.98  -0.07 0.10 0.97  -0.09 0.12 0.96 

(SD) (0.03) (0.01) (0.01)  (0.04) (0.02) (0.02)  (0.04) (0.03) (0.03)  (0.05) (0.04) (0.04) 
bj                

M <0.01 0.09 0.99  <0.01 0.11 0.99  <0.01 0.14 0.98  <0.01 0.17 0.97 
(SD) (0.03) (0.01) (<0.01)  (0.03) (0.02) (0.01)  (0.03) (0.03) (0.02)  (0.04) (0.04) (0.03) 

𝜃𝑛                
M <0.01 0.14 0.98  <0.01 0.15 0.98  <0.01 0.15 0.98  <0.01 0.16 0.97 

(SD) (0.03) (0.02) (0.01)  (0.03) (0.02) (0.01)  (0.03) (0.02) (0.01)  (0.03) (0.03) (0.01) 
C. GGUM Fit to GPCM Data         

𝜃𝑛                
M -0.03 0.14 0.98  -0.03 0.14 0.98  -0.03 0.15 0.98  -0.03 0.15 0.97 

(SD) (0.03) (0.02) (0.01)  (0.03) (0.02) (0.01)  (0.03) (0.02) (0.01)  (0.03) (0.02) (0.01) 
D. GPCM Fit to GGUM Data         

𝜃𝑛                
M <0.01 0.40 0.77  <0.01 0.40 0.77  <0.01 0.42 0.76  <0.01 0.41 0.77 

(SD) (0.03) (0.26) (0.33)  (0.03) (0.26) (0.33)  (0.03) (0.27) (0.34)  (0.03) (0.25) (0.32) 
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Table 8. Quality of Parameter Recovery for AbN = .10 
 

DataClean 

 
DataAberrant (AbI = .2)  DataAberrant (AbI = .4)  DataAberrant (AbI = .6) 

Parameter BIAS MAD COR 
 

BIAS MAD COR  BIAS MAD COR  BIAS MAD COR 

A. GGUM Fit to GGUM Data         

𝛼𝑗 
       

        

M -0.03 0.07 0.98  -0.09 0.10 0.98  -0.12 0.13 0.97  -0.13 0.16 0.94 

(SD) (0.03) (0.02) (0.01)  (0.05) (0.03) (0.08)  (0.05 (0.04) (0.08)  (0.08) (0.05) (0.15) 

𝛿𝑗                

M <0.01 0.06 1.00  <0.01 0.06 1.00  <0.01 0.06 1.00  <0.01 0.17 1.00 

(SD) (0.05) (0.03) (0.01)  (0.05) (0.05) (0.02)  (0.05) (0.03) (0.01)  (0.05) (0.03) (0.01) 

𝜏𝑗𝑘                

M -0.03 0.09 0.94  -0.01 0.09 0.93  -0.01 0.11 0.91  -0.01 0.13 0.87 

(SD) (0.03) (0.02) (0.05)  (0.04) (0.03) (0.07)  (0.04) (0.02) (0.07)  (0.04) (0.04) (0.10) 

𝜃𝑛                

M <0.01 0.12 0.99  <0.01 0.13 0.99  <0.01 0.14 0.98  <0.01 0.15 0.97 

(SD) (0.04) (0.02) (<0.01)  (0.04) (0.02) (0.01)  (0.04) (0.02) (0.01)  (0.04) (0.03) (0.02) 

B. GPCM Fit to GPCM Data         

aj                

M 0.01 0.06 0.98  -0.10 0.12 0.96  -0.16 0.17 0.93  -0.20 0.22 0.89 

(SD) (0.03) (0.01) (0.01)  (0.05) (0.04) (0.03)  (0.07) (0.06) (0.06)  (0.08) (0.07) (0.08) 

bj                

M <0.01 0.09 0.99  <0.01 0.15 0.98  <0.01 0.21 0.96  <0.01 0.27 0.93 

(SD) (0.03) (0.01) (<0.01)  (0.03) (0.03) (0.02)  (0.04) (0.06) (0.04)  (0.06) (0.08) (0.05) 

𝜃𝑛                

M <0.01 0.14 0.98  <0.01 0.15 0.98  <0.01 0.16 0.97  <0.01 0.18 0.95 

(SD) (0.03) (0.02) (0.01)  (0.03) (0.02) (0.01)  (0.03) (0.02) (0.01)  (0.03) (0.03) (0.02) 

C. GGUM Fit to GPCM Data         

𝜃𝑛                

M -0.03 0.20 0.98  -0.03 0.21 0.98  -0.03 0.24 0.97  -0.03 0.31 0.96 

(SD) (0.04) (0.05) (0.01)  (0.03) (0.05) (0.01)  (0.04) (0.06) (0.01)  (0.04) (0.14) (0.02) 

D. GPCM Fit to GGUM Data         

𝜃𝑛                

M <0.01 0.40 0.77  <0.01 0.42 0.75  <0.01 0.42 0.76  <0.01 0.44 0.75 

(SD) (0.03) (0.26) (0.32)  (0.03) (0.28) (0.36)  (0.03) (0.25) (0.32)  (0.03) (0.25) (0.31) 
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Table 9. Quality of Parameter Recovery for AbN = .20  
DataClean 

 
DataAberrant (AbI = .2)  DataAberrant (AbI = .4)  DataAberrant (AbI = .6) 

Parameter BIAS MAD COR 
 

BIAS MAD COR  BIAS MAD COR  BIAS MAD COR 

A. GGUM Fit to GGUM Data         

𝛼𝑗 
       

        

M -0.03 0.07 0.98  -0.14 0.15 0.97  -0.19 0.20 0.94  -0.20 0.27 0.85 

(SD) (0.03) (0.02) (0.01)  (0.05) (0.04) (0.03)  (0.08) (0.07) (0.04)  (0.14) (0.07) (0.10) 

𝛿𝑗                

M <0.01 0.06 1.00  <0.01 0.06 1.00  <0.01 0.07 1.00  <0.01 0.11 0.99 

(SD) (0.05) (0.04) (0.02)  (0.05) (0.04) (0.01)  (0.05) (0.03) (0.02)  (0.06) (0.08) (0.04) 

𝜏𝑗𝑘                

M -0.04 0.09 0.94  -0.01 0.11 0.91  -0.01 0.15 0.81  -0.01 0.21 0.67 

(SD) (0.03) (0.02) (0.06)  (0.06) (0.03) (0.07)  (0.06) (0.05) (0.16)  (0.06) (0.10) (0.32) 

𝜃𝑛                

M <0.01 0.12 0.99  <0.01 0.13 0.98  <0.01 0.16 0.97  <0.01 0.19 0.94 

(SD) (0.04) (0.02) (<0.01)  (0.04) (0.02) (0.01)  (0.04) (0.04) (0.03)  (0.04) (0.05) (0.04) 

B. GPCM Fit to GPCM Data         

aj                

M 0.01 0.06 0.98  -0.19 0.20 0.92  -0.28 0.28 0.86  -0.33 0.35 0.77 

(SD) (0.03) (0.01) (<0.01)  (0.08) (0.07) (0.07)  (0.11) (0.09) (0.10)  (0.13) (0.11) (0.13) 

bj                

M <0.01 0.09 0.99  <0.01 0.15 0.98  <0.01 0.21 0.96  <0.01 0.27 0.93 

(SD) (0.03) (0.01) (<0.01)  (0.03) (0.03) (0.02)  (0.04) (0.06) (0.04)  (0.06) (0.08) (0.05) 

𝜃𝑛                

M <0.01 0.14 0.98  <0.01 0.17 0.98  <0.01 0.20 0.95  <0.01 0.25 0.92 

(SD) (0.03) (0.02) (0.01)  (0.03) (0.02) (0.01)  (0.03) (0.03) (0.02)  (0.03) (0.05) (0.05) 

C. GGUM Fit to GPCM Data         

𝜃𝑛                

M -0.03 0.14 0.98  -0.03 0.16 0.98  -0.03 0.19 0.96  -0.05 0.24 0.92 

(SD) (0.03) (0.02) (0.01)  (0.03) (0.02) (0.01)  (0.04) (0.03) (0.02)  (0.06) (0.08) (0.05) 

D. GPCM Fit to GGUM Data         

𝜃𝑛                

M <0.01 0.40 0.77  <0.01 0.41 0.77  <0.01 0.44 0.75  <0.01 0.49 0.70 

(SD) (0.03) (0.25) (0.32)  (0.03) (0.24) (0.31)  (0.03) (0.23) (0.30)  (0.03) (0.25) (0.32) 
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Discussion 

 

 In this study, data simulated using unfolding IRT and dominance IRT models, 

specifically the GGUM and the GPCM, were compared for model fit under varying conditions of 

aberrant data contamination. One of the first tasks in empirical research, prior to testing model 

fit, is to test model assumptions. Both the GPCM and GGUM models assume that the probability 

of a response is a function of a single underlying latent trait or a unidimensional composite of 

skills. Literature regarding how to assess dimensionality with cumulative, dominance IRT 

models like the GPCM is immense, but still lacking with regards to unfolding models like the 

GGUM. Results for the uncontaminated GGUM datasets coincided with other studies that have 

found an additional spurious factor appearing for unfolding data (Tay et al., 2011; Tay & 

Drasgow, 2012; Williams, 2015).  In this study, a second factor was also identified in the clean 

GPCM datasets approximately 11% of the time for the 20-item condition and 85% of the time for 

40 items. Other research has found that the likelihood of falsely identifying a second factor may 

increase with test length in dominance data fitting a 2-parameter logistic model (Gessaroli & De 

Champlain, 1996). 

This study adds to the literature by comparing the impacts of different types of aberrant 

responses on the dimensionality of the data. Even with 20% of the sample responding with 

random responses, MRS, ERS, or a combination of various types of aberrant responding, trends 

in factor retention did differ from the trends for clean GGUM datasets when using parallel 

analysis. The one type of aberrant responding that impacted factor structure for the GGUM data 

was longstrings which resulted in an extra factor, especially with the 40-item condition. Aberrant 

responses in the dominance (GPCM) datasets had a stronger impact on dimensionality findings, 

with longstrings having the greatest influence to increase dimensionality. However, MRS and 
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random responding also displayed an increase in the number of factors identified in the 20-item 

condition, with ERS having a smaller impact. Additionally, including more variables (40 items 

instead of 20) resulted in additional factors being retained for all aberrant conditions for the 

GPCM datasets, but not for the GGUM datasets (with the exception of the condition with 

longstringers). Overall, longstring aberrant responders have the largest impact on increasing 

dimensionality results for both dominance and ideal-point response data.  

The results for both AIC and BIC in this study are consistent with the notion posited by 

other studies that the GGUM is able to fit GPCM data as well as the GPCM model, but the 

GPCM model is not able to fit the GGUM data as well as the GGUM model (Chernyshenko et 

al., 2007; Stark et al., 2006). Separating the results by the degree and type of aberrant responding 

revealed that the impact on model-fit based on the information criteria depends on the type of 

aberrant responses. As observed in prior studies with dominance data, increases in random 

responders resulted in poorer model fit for both GPCM and GGUM data (Liu et al., 2019). 

Although longstrings did not have as large of an impact on model fit as random responding 

(according to AIC and BIC), the results indicated poorer model fit as their presence in the data 

increased.  These results do not correspond to research that has found increased reliability for 

empirical data with longstrings included (DeSimone & Harms, 2017), however differences in the 

item characteristics, percentage of response strings, and models being tested may impact these 

results. Future research is needed to better understand when longstrings have a positive versus 

negative effect on model fit.  

ERS and MRS appear to have very different impacts on GGUM data compared to GPCM 

data. In the current study, the more extreme conditions of ERS in a GGUM dataset resulted in an 

improved model fit, whereas adding MRS to the GGUM datasets resulted in worse fit. Although 
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both ERS and MRS were detrimental to model fit for GPCM data, the trend for these two forms 

of aberrant responding were the opposite of that on GGUM data with ERS having a more 

negative impact. Further research is needed to investigate this phenomenon more thoroughly.   

 Regarding the adjusted 𝜒2/𝑑𝑓 ratios for doublets and triplets of items, the simulation 

results suggest that the method is useful for assessing the relative fit for the GPCM versus the 

GGUM in most cases when GGUM data is being used. That is, the flag rates consistently pointed 

to the correct model for the clean datasets and conditions where the proportion of aberrant 

response strings was .1 or less. This supports the findings from Tay et al. (2011) where only 

clean datasets were used. Overall, model misfit is identified at a much higher rate for GPCM 

applied to GGUM data as compared to GGUM applied to GPCM data. This study adds to the 

literature by confirming the 𝜒2/𝑑𝑓 ratio method is useful in pointing to the correct model 

applied to the GGUM data, even when aberrant responses were included. The procedure 

identifies poor data while still pointing to the best model for the data. However, the procedure 

may hit a ceiling effect when there is a fairly large amount of MRS (e.g., when samples consist 

of 20% aberrant respondees who respond to at least 60% of the items using MRS). In 

comparison, with GPCM data, both the GGUM and GPCM models provided similar results 

when using the 𝜒2/𝑑𝑓 ratio method indicating that the GGUM model may fit GPCM data and 

detect the presence of aberrant responses within the data equally as well as GPCM.   

 Finally, results based on the quality of parameter recovery indicated that when the 

GGUM was appropriately applied to GGUM data, person parameter recovery was acceptable 

under all conditions with correlations between estimated and true parameters ranging from .94 in 

the most extreme aberrant conditions for the study to .99 in the clean datasets. Person parameter 

recovery using GPCM on GPCM data was slightly more affected by aberrant data with 
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correlations ranging from .92 in the most extreme aberrant conditions to .98 in clean datasets. 

Similar to previous research on aberrant responding in GPCM datasets (Jin et al., 2018), the 

GPCM underestimated the discrimination parameter for items in GPCM datasets where aberrant 

responding was present. This finding was also apparent when fitting GGUM to the GGUM 

datasets with aberrant responses, though to a slightly lesser degree. Examination of parameter 

recovery under cross-fitting conditions gave further evidence that the GGUM can fit GPCM data 

relatively well under clean and less extreme aberrant conditions. On the contrary, the GPCM was 

not able to recover person parameters as effectively for GGUM data. Although this finding has 

been shown using fit plots and correlations in other studies (Chernyshenko et al., 2007; Stark et 

al., 2006), this study revealed that this phenomenon was evident even when aberrant responses 

were relatively low (AbN = .04 and AbI = .20). 

Limitations 

 As with many simulation studies, the choice of conditions is a natural and important 

limitation to the study. First, only two models are compared (GGUM, GPCM). Future research 

should consider other polytomous unfolding and dominance IRT models. Additionally, the types 

of aberrant responding and ranges of contamination levels (AbI and AbN) could be extended. For 

example, spuriously high and spuriously low responding are a common focus in several studies 

investigating aberrant responding (Li & Olejnik, 1997; Y. Liu et al., 2009; Tendeiro & Meijer, 

2014; Xia & Zheng, 2018). The item parameter recovery was adequate when using the 

appropriate model to fit the data, but the condition with the highest proportion of aberrant 

respondees in a sample was 20%. Although conditions were chosen to mimic realistic and 

common conditions researchers face in empirical studies, some have estimated the proportion of 

aberrant responding in a sample to be as high as 60% (Berry et al., 1992). Item parameter 
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recovery in conditions where higher proportions of aberrant responding is present would add to 

the research. Further, the way aberrant responding was simulated in combination with the 

characteristics of the generated data could have had an impact on results. For example, there 

were more generated extreme scores (0,5) than generated midpoint scores (3, 4) in the GGUM 

datasets. That is, the ratio of extreme to middle scores ranged from 1.40 to 2.08, which could 

have impacted the relative magnitudes of the MRS and ERS effects on the GGUM data. Lastly, 

100 replications of each condition were conducted in this study. Ideally one might include a 

higher number per condition, however the computer time needed per condition for the GGUM 

parameter estimation made more than 100 replications prohibitive of realistic completion times. 

Comparisons across studies with GGUM analyses will be important for interpreting the stability 

of results. 

Conclusions 

As mentioned previously, researchers will not know if model-data misfit is due to the 

presence of aberrant responding, or if it is due to model misspecification. An advantage of the 

current simulation study was the control over these factors. Aberrant responding and model 

misspecification (based on the underlying response process) was manipulated to provide insight 

on the impacts of these factors that may arise with real data. As results demonstrated how 

aberrant data can severely impact model fit, it is suggested to carefully examine the quality of the 

data before making conclusions about model-data fit or misfit. As aberrant data has been shown 

to affect model fit, and model fit may affect the detection of aberrant responding, close 

investigation of these factors is warranted in future research in the field. With most aberrant data 

research conducted with dominance response models and considering the finding that an 

unfolding IRT model framework may fit both ideal point and dominance response data 
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effectively, further research is recommended that studies the effectiveness of current aberrant 

response data detection under an unfolding model framework.  
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CHAPTER 5 

 STUDY 2  

Performance of Nonparametric Person-Fit Statistics with Unfolding versus Dominance 

Response Models 

 

ABSTRACT  

 

Person-fit analyses are commonly used to detect aberrant responding in self-report data. 

Nonparametric person fit statistics such as 𝐺𝑃 (Molenaar, 1991), 𝐺𝑁
𝑃 (Emons, 2008), HT (Sijtsma, 

1986; Sijtsma & Meijer, 1992), and 𝑈3𝑃 (Van der Flier, 1980) do not require fitting a parametric 

test theory model and have been shown to perform well in comparison with other person-fit 

statistics in the context of dominance response data (Emons, 2008; Karabatsos, 2003; Tendeiro 

& Meijer, 2014; Turner, 2018). However, ideal point response models are increasingly being 

applied to non-cognitive constructs(Freund & Lohbeck, 2021; Jin et al., 2021; Kartal & Di̇rli̇k, 

2021; Kutlar et al., 2020). As these models do not exhibit the same relationship between item-

level responses and latent traits as dominance models, person-fit statistics that were developed 

for dominance models may not be as effective for ideal point data. Further, detection of different 

types of aberrant responding has primarily focused on dominance response data, thus the types of 

impacts different aberrant behaviors have on the detection rates of person-fit statistics applied to 

ideal point data is unclear. This study demonstrates the performance of nonparametric person-fit 

statistics in detecting aberrant responding under an unfolding model context in comparison to a 

dominance context. Results for dominance data indicate that increases in detection rates depend, 

among other factors, on the type of aberrant responding and the person-fit statistic used. 

Detection of random responding, longstrings, and extreme response style increases for three 

person-fit statistics (𝐺𝑃 , 𝐺𝑁
𝑃, 𝑈3𝑃 ) when the proportion of aberrant responses within a 
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participant’s response vector increases while the overall proportion of participants with aberrant 

data decreases. 𝐺𝑃 was most effective in identifying random responding, whereas 𝐺𝑁
𝑃 was most 

effective for extreme response styles. None of the person-fit statistics effectively identified 

midpoint response style in our dominance data conditions. In comparison, the detection of 

aberrant responses in ideal point response data was ineffective using the four nonparametric 

person-fit statistics, with slightly higher type I error and power less than 0.25. Additional 

research is needed to identify or develop nonparametric or parametric person-fit statistics 

effective for different types of aberrant behavior exhibited in ideal point response data.  
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Performance of Nonparametric Person-Fit Statistics with Unfolding versus Dominance 

Response Models 

With the increased use of attitudinal and personality measures in organizational behavior 

and human resource management, the detection of aberrant responding has become increasingly 

important for many applied researchers and analysts. Aberrant responding has been shown to 

affect psychometric properties of a scale and ultimately may lead to erroneous measurements and 

classifications for participants (DeSimone et al., 2018; McGrath et al., 2010). Person-fit analyses 

have become a popular option for detecting aberrant responding. In the field of psychometrics, 

person-fit refers to how well participants’ responses fit what would be expected based on the 

stipulated measurement model (Sijtsma & Meijer, 2001). This is not to be confused with person-

job or person-organization fit, which refers to how well a person or applicant will fit with a 

particular job or organization. Rupp (2013) notes that applications of person-fit statistics have 

gained popularity with measures in many fields, including assessments of personality, attitudes, 

health outcomes, psychological traits, and education-related characteristics or skills.  

Most person-fit analyses have been investigated with data assumed to fit a dominance 

response model (Armstrong et al., 2007; Conijn et al., 2014; Dimitrov & Smith, 2006; Emons, 

2008; Glas & Meijer, 2003; Karabatsos, 2003; Sijtsma & Meijer, 2001; St-Onge et al., 2011; 

Tendeiro & Meijer, 2014, 2014; Turner, 2018), where it is assumed that the probability of 

endorsement monotonically increases as the underlying latent trait increases. However, a 

growing body of literature suggests that non-cognitive data is often better fit by models that 

assume an ideal point response process, also known as unfolding models (Chernyshenko et al., 

2007; Drasgow et al., 2010; Stark et al., 2006; Weekers & Meijer, 2008). The ideal point 

response process considers the distance between person and item locations on the underlying 
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continuum for the construct being measured. Researchers have used unfolding models to 

successfully describe non-cognitive data from assessments of creativity  using the Gough’s 

Creative Personality Scale (Zampetakis, 2010), conscientiousness (Carter et al., 2014), 

personality inventory of self-judgement on the order-facet (a feature of conscientiousness; 

Chernyshenko et al., 2007; Weekers & Meijer, 2008), 16 personality factor subscales (Stark, 

2006), control preferences in medical contexts (Control preferences Scale; Degner et al., 1997), 

attitude and affect constructs (LaPalme et al., 2018), censorship data (C.-W. Liu & Wang, 2019), 

and job satisfaction as measured by the Job Descriptive Index (Carter & Dalal, 2010). 

Nonetheless, dominance models are more widely used than unfolding models. As such, further 

research to understand the application of unfolding models with non-cognitive data, and the use 

of data management procedures such as person-fit analyses, is warranted.   

Despite a considerable number of studies that have investigated the impact of assuming 

an incorrect response process on model fit, little attention has been placed on the performance of 

person-fit statistics in the context of different underlying response processes. Applying person-fit 

statistics identified as being most effective with dominance response model data may not be 

appropriate for ideal point response data due to the differing distribution assumptions. Further, 

there is a dearth of research on the identification of different types of aberrant responding with 

ideal point response models using person-fit statistics. The aim of the current study is to examine 

the performance of several polytomous nonparametric person-fit statistics in identifying four 

types of aberrant response strings when applied to data that fit an ideal point model vs a 

dominance response model. 
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Literature Review 

Ideal Point Versus Dominance Response Processes  

The way participants respond to items may differ based on the type of relationship 

between the participant’s and item’s location on a continuum representing the construct of 

interest. In the dominance response process, as the participant’s ability or trait level increases, 

the probability of endorsing an item increases regardless of the item’s location on the continuum. 

For example, when measuring perceived social skills with items like “My social skills are at least 

as good as those of an average person,” it may be reasonable to assume that the higher the 

perceived social skills a respondent has, the more likely he or she will endorse this item 

(example from Chernyshenko et al., 2007, p. 104). In contrast, the ideal point process is based on 

a notion conceptualized by Thurstone (1928) and termed by Coombs (1964), that assumes that 

the probability of endorsing an item increases as the item more closely reflects the person’s 

standing on the construct being measured. With this approach, the probability of endorsing an 

item increases as the difference between the person’s and item’s location on the continuum 

representing the construct decreases. Thus, a notable difference between dominance and ideal 

point models can be illustrated using their respective item response functions (IRFs). Figure 13 

provides a visual representation of these differences for dichotomous items.  
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Note. Figure A demonstrates a monotonically increasing item response function (IRF), where the 

probability of endorsing the item increases with increasing person locations. Figure B 

demonstrates a non-monotonic IRF, where the probability of endorsing the item is the greatest 

when the person and item locations match. 

 

When items are polytomous, intermediary step functions are used to model the transition, 

or “stepping,” to successively higher score categories. Four common approaches for defining 

step functions include adjacent category, continuation ratio, cumulative, and nominal (Penfield, 

2014). Within the adjacent category approach for dominance models is the generalized partial 

credit model (GPCM; Muraki, 1992), where step functions are specified by the two-parameter 

logistic model (Birnbaum 1957; as cited in Hambleton & Swaminathan, 1985) and an item-level 

discrimination parameter is estimated. Many unfolding models use the same or similar 

approaches to defining step functions in the case of fitting polytomous data. A number of 

probabilistic unfolding models have been developed over the past few decades, including the 

Squared Logistic Model (SLM; Andrich, 1988), PARELLA model (Andrich, 1988), Hyperbolic 

Cosine Model for dichotomous data (HCM; Andrich & Luo, 1993), General Hyperbolic Cosine 

Model for polytomous data (GHCM; Andrich, 1996), Graded Unfolding Model (GUM; Roberts 

 

Figure 13. IRFs Based on Dominant (A) and Ideal Point (B) Models 
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& Laughlin, 1996), and the Generalized Graded Unfolding Model (Roberts et al., 2000). The 

GGUM is one of the more widely used unfolding models and includes characteristics similar to 

the GPCM that make it an optimal choice for comparison. GGUM can be used with both 

polytomous and dichotomous data. Discrimination parameters and the thresholds for each 

response option are allowed to vary across items. This allows the IRFs to exhibit different 

distributional shapes across items (Stark et al., 2006). Further, the GGUM package in R 

(Tendeiro & Castro-Alvarez, 2019) is open source and freely accessible to researchers. Although 

many unfolding models have been used for ideal point data, the GGUM has been recognized as a 

very popular choice for applied studies in the non-cognitive field (Joo et al., 2019). Because the 

current study used the GGUM proposed by Roberts et al. (2000), where each subjective response 

follows the Generalized Partial Credit Model (GPCM; Muraki, 1992), it was decided to use the 

GPCM to model the dominance data to maximize comparability of results.  

Aberrant Data Types 

Aberrant responding can stem from several behaviors that include providing invalid 

responses due to insufficient effort and providing responses influenced by factors other than 

content. Random responding and invariant responding are two very common forms of 

insufficient effort (DeSimone et al., 2018). Both types of responding are characterized by 

answering items without regard to item content. Invariant responding is answering with the same 

option for a number of successive items, also known as longstring responding (Huang et al., 

2012; Johnson, 2005; Karabatsos, 2003). In comparison, random responders (often labeled as 

careless, haphazard, or inconsistent responders) vary their responses, possibly in attempt to 

simulate attentive responding (DeSimone et al., 2018; Huang et al., 2012; McGrath et al., 2010). 

Additionally, some participants allow response styles to influence their response choices which 
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can result in misfitting item scores. Extreme response style (ERS) refers to people tending to 

choose the upper or lower extreme categories, regardless of the item content (Greenleaf, 1992). 

People who tend to choose the middle response option are deemed as exhibiting a middle 

response style (MRS; Baumgartner & Steenkamp, 2001), or mid-lining. These types of aberrant 

responding have been a concern in a variety of contexts such as organizational psychology 

(Huang & DeSimone, 2021; Schroeders et al., 2022), student evaluations (AlQuraan, 2019), 

personality inventories (Huang et al., 2012; Johnson, 2005; Niessen et al., 2016) and attitudinal 

surveys (Bowling et al., 2016; Iaconelli & Wolters, 2020) as they contribute to the 

misrepresentation of participants’ true construct levels. It is important for researchers to be able 

to detect these types of responses that increase measurement error in a dataset and to be aware of 

the potential adverse effects they may have on analyses and decisions made from those analyses.  

Nonparametric Person-Fit Statistics 

Person-fit statistics are one of many methods for examining response behaviors on 

cognitive and non-cognitive assessments. Two general types of person-fit statistics include 

parametric and nonparametric statistics. Parametric statistics are computed by measuring the 

disparity between the observed data and the estimated response predictions resulting from a 

parametric IRT model. In contrast, nonparametric person-fit statistics do not rely on parametric 

IRT-based models, but rather are computed from the observed response data (Karabatsos, 2003). 

The focus of this study is on the performance of four nonparametric person-fit statistics 

(𝐻𝑇 ,  𝑈3𝑃,   𝐺𝑁
𝑃,  and 𝐺𝑃) that have been shown to perform well in comparison with other person-

fit statistics, however primarily with data that have a dominance model structure (Emons, 2008; 

Karabatsos, 2003; Tendeiro & Meijer, 2014; Turner, 2018). Each are described briefly below. 
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 𝑮𝒑. When items conform to a Guttman scale, they are arranged hierarchically so that the 

endorsement of one item suggests the endorsement of items located lower on the underlying 

latent continuum of the construct being measured. The number of Guttman errors for polytomous 

items, to be defined below, can be summarized using the 𝐺𝑝 statistic (Molenaar, 1991). First, the 

item step difficulties (𝜋𝑗𝑥𝑗
) for step x of item j, are computed as the proportion of respondents 

who passed step 𝑥𝑗  or higher on the item. Using an example similar to Emons (2008), suppose a 

four-category item (item 1) with response options 0 = strongly disagree, 1 = disagree, 2 = agree, 

and 3= strongly agree had step difficulties of 𝜋11 =  .75, 𝜋12 =  .50, and 𝜋13 =  .18. This means 

that 75% of the respondents passed the first step (chose a category higher than the first option of 

strongly disagree), 50% passed the second step (chose an option higher than or equal to the third 

category), and 18% passed the third step (chose the fourth category). Now suppose item 2, with 

the same response options, had step difficulties equal to 𝜋21 =  .65, 𝜋22 =  .36, and 𝜋23 =  .08. 

If a respondent selected ‘disagree’ for item 1 (𝑥1 = 1) and ‘strongly agree’ for item 2 (𝑥2 = 3), 

the ordered vector (based on item step difficulties from least difficult to most difficult) of item 

step scores for this respondent would be (Y = ordered vector; yk = element k of vector Y): 

Table 10. Example Item Steps Vector 

Ordered 

item steps 
𝜋11 =  .75 𝜋21 =  .65 𝜋12 =  .50 𝜋22 =  .36 𝜋13 =  .18 𝜋23 =  .08 

𝒀 1 1 0 1 0 1 

 

In summary, this respondent passed the second step of item 2 but failed to pass the “easier” (or 

more commonly selected) second step of item 1. Additionally, this respondent passed the third 

step of item 2 but failed to pass the “easier” third step of item 1. Because the 𝐺𝑝 statistic counts 

all such pairwise Guttmann ordering errors of all possible item-step pairs, the 𝐺𝑝 for this 

respondent would be equal to three. The formal equation for the 𝐺𝑝 statistic is given by: 
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𝐺𝑝 = ∑ 𝑦𝑘(1 − 𝑦𝑙),𝐽𝐶
𝑙<𝑘                                (39) 

where J is the number of items which here are assumed to all have the same number of response 

categories (V), and thus the same number of item steps (C) for each item. If C = 1, the 𝐺𝑝 

statistic is specified for dichotomous items. In equation 1, 𝑦𝑙 represents all elements of vector Y 

that are prior to 𝑦𝑘. The more Guttmann errors recorded for a participant, the greater the 𝐺𝑝 

statistic, indicating greater person misfit. In dominance data contexts, the 𝐺𝑝 statistic has been 

shown to identify aberrant responding relatively well compared to other nonparametric person-fit 

statistics when the behavior reflects careless responding that is random or respondents failing to 

notice when items are worded in the opposite direction. However, 𝐺𝑝 has not been as effective 

(compared to 𝐺𝑁
𝑃 and 𝑈3𝑃) in identifying ERS with dominance response data (Emons, 2008). 

Given the design of the fit statistic, we would expect 𝐺𝑝 to effectively indicate misfit in 

dominance data where monotonically increasing response functions are assumed. However, it 

may not be expected to function as effectively for ideal point data where greater agreement is not 

necessarily expected for items located lower on the underlying latent continuum. 

 𝑮𝑵
𝑷 . Because the maximum possible 𝐺𝑝depends on the sum score (X+) of the respondent 

and the ordering of the item steps, it becomes difficult to compare 𝐺𝑝 statistics across different 

X+ scores. One solution is to norm the 𝐺𝑝 statistic using the following equation (Emons, 2008): 

𝐺𝑁
𝑃 =

𝐺𝑝

max (𝐺𝑝|𝑋+)
.               (40) 

Thus, the normed number of Guttmann errors, 𝐺𝑁
𝑃, is simply the 𝐺𝑝 statistic after being 

normalized to have a range of [0, 1]. Unlike 𝐺𝑝, the 𝐺𝑁
𝑃 statistic has been demonstrated as being 

effective in identifying aberrant responding such as ERS with dominance data (Emons, 2008). In 

its dichotomous form, it has not been as effective in identifying cheating with dominance data 

(Karabatsos, 2003). Due to their popularity and effectiveness with certain conditions such as 
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careless and inattentive responders (e.g., Emons, 2008), both 𝐺𝑁
𝑃 and 𝐺𝑝 are included in the 

current study. Similar to 𝐺𝑝, 𝐺𝑁
𝑃 assumes monotonically increasing IRFs, which could possibly 

result in poorer aberrant responding detection for ideal point data than data that reflect a 

dominance response process.  

𝑯𝑻. The 𝐻𝑇 statistic (Sijtsma, 1986; Sijtsma & Meijer, 1992) is a modified version of 

Mokken’s (1971) 𝐻𝑗  index, which allows items to be scaled to the Guttman (1944) model. By 

transposing the item by person matrix, Sijtsma (1986) was able to apply the 𝐻𝑗  index procedure 

to persons rather than items and detect respondents that do not conform to the Guttman model. 

The 𝐻𝑇statistic is computed from a matrix of J columns of items and N rows of participants, with 

each element in the matrix representing an item score. Suppose 𝑿𝑛 represents the item-score 

vector composed of j = 1 . . . J item-scores for participant 𝑛. The total score for item j (𝑻𝑗) is 

computed as the sum of all participants’ scores for that particular item. The vector T is composed 

of the total scores for all items (𝑇1 𝑡𝑜 𝑇𝐽) and the vector 𝑻𝑛 = 𝑻 − 𝑿𝑛. That is, 𝑻𝑛 is the vector of 

all item-score totals excluding participant n. Finally, the 𝐻𝑇 statistic for participant n is 

computed as follows: 

𝐻𝑛
𝑇 =

𝐶𝑜𝑣(𝑿𝑛,𝑻𝑛)

𝐶𝑜𝑣𝑚𝑎𝑥(𝑿𝑛,𝑻𝑛)
,       (41) 

where 𝐶𝑜𝑣(𝑿𝑛, 𝑻𝑛) is the covariance between participant n’s item-scores and the item-score 

totals for the remaining participants in the sample (excluding that participant). 𝐶𝑜𝑣𝑚𝑎𝑥(𝑿𝑛, 𝑻𝑛) 

is the maximum covariance possible between 𝑿𝑛 and 𝑻𝑛 given the marginal distributions. 

The 𝐻𝑛
𝑇 person fit statistic can be used to assess the degree to which a respondent’s item 

responses match the same ordering as the item-score totals. This statistic is included in the study 

because it has been found to have superior detection efficiency in several studies (Beck et al., 

2019; Karabatsos, 2003; Tendeiro & Meijer, 2014). In dominance data contexts, 𝐻𝑇 has been 



 

128 

 

found suitable to detect cheating, creative responding, spuriously high, spuriously low, and 

careless responders relatively well compared to other person fit statistics (Karabatsos, 2003; St-

Onge et al., 2011; Tendeiro & Meijer, 2014). The overall coefficient 𝐻𝑇 can be used to 

summarize the individual 𝐻𝑛
𝑇 statistics for all participants in a sample (Ligtvoet et al., 2010): 

𝐻𝑇 =
∑ 𝐶𝑜𝑣(𝑿𝑛,𝑻𝑛)𝑁

𝑛

∑ 𝐶𝑜𝑣𝑚𝑎𝑥(𝑿𝑛,𝑻𝑛)𝑁
𝑛

.        (42) 

The overall 𝐻𝑇 coefficient will be high if a clear ordering exists among items and the item 

response functions are spread apart. However, if item response functions overlap, the overall 𝐻𝑇 

coefficient will be relatively low and the 𝐻𝑛
𝑇 statistics will be less stable. If 𝐻𝑇for the overall 

sample is low, it may not be an appropriate indicator to use for the dataset.  

 𝑼𝟑𝑷. The 𝑈3 person-fit statistic (Van der Flier, 1980) was generalized for application to 

polytomous items by Emons (2008), resulting in the creation of the 𝑈3𝑃statistic. This statistic is 

included in the investigation because several studies have found it to have comparative, if not 

better performance, than other parametric and nonparametric person-fit statistics (Emons, 2008; 

Karabatsos, 2003; Tendeiro & Meijer, 2014; Turner, 2018). The statistic can be defined in a few 

steps. First, the sum of the log-odds of the item step difficulties for the steps that were passed by 

the participant, 𝑊(𝒚), is computed as follows (Emons, 2008): 

𝑊(𝒚) = ∑ 𝑦𝑘 log (
𝜋𝑘

1−𝜋𝑘
) ,𝐽𝐶

𝑘=1         (43) 

where 𝒀 is an observed response vector for J items with C+1 response categories, 𝑦𝑘 is the item-

step score for item-step k (taking a value of 1 if step k is passed or 0 if step k is not passed), and 

𝜋𝑘 is the item-step difficulty for item-step k. Next, 𝑊(𝒚) is normed which results in the 𝑈3𝑃 

person-fit statistic as follows: 

𝑈3𝑃 =
max(𝑊|𝑋+)−𝑊(𝒚) 

max(𝑊|𝑋+)−min (𝑊|𝑋+)
,       (44) 
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where 𝑋+ is the sum score computed as 𝑋+ = ∑ 𝑦𝑘
𝐽𝑉
𝑘=1  . The max(𝑊|𝑋+) can only be obtained if 

the following holds: 

max(𝑊|𝑋+) = ∑ 𝑙𝑜𝑔𝑖𝑡(
𝑋+
𝑘=1 𝜋𝑘).      (45) 

The min(𝑊|𝑋+) cannot be expressed in closed form due to the structural dependencies between 

the item-step scores. That is, based on Guttman scaling principals, it is assumed that passing a 

step for an individual item means that all easier steps of that same item are also passed. Emons 

(2008) proposed to use a recursion algorithm to compute min(𝑊|𝑋+). For more details on the 

recursion algorithm, see the Appendix from Emons (2008). Several studies have demonstrated 

how 𝑈3𝑃 may be an effective person-fit statistic to detect careless responding that is random, 

spuriously high or low, longstring, and mixed aberrant responding (Emons, 2008; St-Onge et al., 

2011; Turner, 2018). Rudner (1983) showed how the 𝑈3𝑃 statistic was effective in identifying 

spuriously high and low scores on longer tests (e.g., 85 items) but not on “shorter tests” (e.g., 45 

items).  

 A researcher's motivation to evaluate the fit of a model to their data is often rooted in 

their intention to use that model for the estimation of true scores for a latent trait versus when 

they use observed composite scores. As researchers are likely to apply nonparametric person-fit 

statistics to data that use observed composite scores for person-level outcomes, it is important to 

research the functioning of these person-fit statistics with data that more closely fit an ideal point 

response model than a dominance model. To the best of our knowledge, no nonparametric 

person-fit statistics have been created to detect the types of aberrant responding used in this 

study under an ideal point context and there is minimal research on the effectiveness of the 

current procedures. 
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Purpose 

Aberrant responding has been demonstrated to have negative impacts on data outcomes 

(Clark et al., 2003; Credé, 2010; DeSimone et al., 2018; Woods, 2006) which can result in 

decreased accuracy of decisions made from those outcomes. It is important for researchers to be 

able to detect varying types of aberrant responses and to be aware of the potential adverse effects 

they may have on datasets and analyses. Because of the limited research available on the use of 

person-fit statistics with ideal point response data, researchers have recommended that studies 

investigate their use with unfolding frameworks (Drasgow et al., 2010; Lee et al., 2014; Liu & 

Zhang, 2020; Polak et al., 2012; Tendeiro, 2017). The purpose of the current study is to examine 

the performance of several polytomous, nonparametric person-fit statistics in identifying four 

types of aberrant response tendencies (random responding, long-stringing, ERS, MRS) when 

applied to data that fit one of two underlying response processes, the common dominance 

response model vs the less common ideal point response model. Although a large body of 

literature exists covering the performance of the aforementioned person-fit statistics, many have 

not been studied with the types of aberrant data in this study (see Chapter 2 Literature Review of 

this dissertation for a review of methodology for person fit analysis research). Additionally, 

including the dominance data in the current study offers a vis-à-vis between both types of data. 

Nearly all previous studies assume an underlying dominance response process. However, in the 

last fifteen years, an ideal point response process has been recognized as more appropriate than a 

dominance response process for several types of non-cognitive data and the increased use of 

unfolding models reflects that (Carter et al., 2014; Chernyshenko et al., 2007; Stark et al., 2006; 

Weekers & Meijer, 2008; Zampetakis, 2010). Including both types of data provides a means for 

comparison of the performance of these person-fit statistics in the two different contexts. 
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Because the ordering of persons based on latent trait scores may be severely affected by 

the underlying item response process (Stark et al., 2006), it is reasonable to question the 

applicability of the findings from previous person-fit studies using dominance IRT models to an 

unfolding model context. Misuse of these common nonparametric person-fit statistics with data 

that more accurately fit an ideal point response model may result in either false negatives or false 

positives for aberrant response strings. This study will attempt to inform decisions made for 

analytical procedures in settings where unfolding models are appropriate. The research questions 

for this investigation include: 

1) How do the selected nonparametric person-fit statistics (𝐻𝑇 ,  𝑈3𝑃,   𝐺𝑁
𝑃,  and 𝐺𝑃) perform 

in identifying aberrant responding under an unfolding model versus a dominance model 

framework?  

a. Do the data fit the minimum requirements for applying each statistic?  

b. How do the type I error and detection rates for each person-fit statistic for each type 

of aberrant behavior (random responding, longstrings, ERS, MRS) compare for 

unfolding and dominance data? 

c. How do the trends and magnitudes for detection and type I error rates compare for the 

study conditions (e.g., test lengths, contamination levels) under unfolding and 

dominance frameworks?  

Methods 

To investigate the research questions, data were generated using a fixed sample size of 

1,000 for 6-point item responses. Five conditions were varied: type of aberrant responding, 

proportion of aberrant responders, proportion of aberrant responses within a response vector, test 

length, and data model. Five types of aberrant responding (AbType) were simulated: extreme 
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response style (ERS), midpoint response style (MRS), random responding, longstrings, and a 

‘mixed aberrant response’ condition which combined all four aberrant response types. The mixed 

AbType condition was used to simulate realistic situations where a sample may be composed of 

several types of aberrant responders simultaneously. Three proportions of aberrant responders 

with misfitting item scores were considered (AbN = .04, .10, .20). To simulate the response 

vectors for each aberrant respondent, three proportions of aberrant responses to the items within 

each aberrant response string were used (AbI= .20, .40, .60). Additionally, two test lengths of 20 

and 40 items were included. Therefore, combined, the simulation study is based on  a total of 2 

(data generating mechanisms: GGUM and GPCM) × 3 (proportion of aberrant responders in the 

sample, AbN) × 3 (proportion of aberrant responses in response vectors, AbI) × 2 (test lengths) 

× 5 (types of aberrant responding and response styles) = 180 fully crossed conditions. The 

number of replications per condition was 100. Each replication for each condition began with the 

generation of perfect model-fitting data to obtain a baseline for “clean”, non-aberrant data and 

for the purposes of computing type I error for the four person fit statistics 

(𝐻𝑇 ,  𝑈3𝑃,   𝐺𝑁
𝑃,  and 𝐺𝑃). All code for generating and estimating model parameters, model fit 

statistics, and person-fit statistics was written in R (R Core Team, 2016) and is available on OSF. 

The procedure for the study can be summarized in five steps:  

1) Generate “clean” non-aberrant data using GGUM for the unfolding IRT model and 

GPCM for the dominance IRT model. 

2) Generate aberrant data and replace “clean” response vectors with the designated 

random, longstring, ERS, MRS, or mixed aberrant response strings. 

3) Test item ordering for the HT procedure.  

4) Compute the four person-fit statistics for each simulee. 
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5) Calculate the type I error rates (falsely identifying a simulee as aberrant when their 

responses were “clean”) and detection rates (correctly identifying a simulee as 

aberrant).  

Methods for each of the steps are detailed below.  

Data Generation (Step 1) 

Person parameters were randomly drawn from the standard normal distribution for 

GGUM and GPCM datasets. For the GGUM datasets, the GenData.GGUM function from the 

GGUM package in R was used to generate all item and person parameters as well as the item 

scores (Tendeiro & Castro-Alvarez, 2021). The item discrimination parameters (𝛼𝑗) were 

randomly sampled from a uniform distribution [0.5, 2.0]. The item location parameters (𝛿𝑗) were 

randomly sampled from the standard normal distribution truncated between -2.0 and 2.0. The 

truncation was implemented due to reports of extreme values of 𝛿𝑖 sometimes leading to issues 

of low accuracy and variability of MML estimates under the GGUM (Roberts & Thompson, 

2011 as cited in Tendeiro, 2017). The locations of the threshold parameters (𝜏𝑗𝑘), relative to the 

location of the jth item, were recursively generated using procedures described in Roberts et al. 

(2002).  

Similar to the GGUM datasets, the GPCM data were simulated using item discrimination 

parameters sampled from a uniform distribution [0.5, 2.0] and item difficulty parameters 

sampled from the standard normal distribution N(0,1). Item category thresholds, 𝑑𝑗𝑘, for step k of 

item j were simulated by taking the sequential cumulative sum of five numbers drawn from a 

random uniform distribution between .3 and 1. Using this interval ensured that the distance 

between categories would be at least .30. If thresholds are too close, some categories may be 

chosen infrequently (Chalmers, 2012). Next, each number in the set of sequential cumulative 
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sums was transformed by centering around the mean. In order for the model to be identified, the 

initial item category threshold, dj0, was set to 0 (Muraki, 1992). The sim_gpcm function in R (PP 

package; Reif & Steinfield, 2021) was used to simulate the GPCM response data.  

Generation of Aberrant (Misfitting) Responses (Step 2) 

To simulate random responding, 20%, 40%, or 60% (depending on AbI condition) of the 

responses in an aberrant response vector were replaced with randomly sampled integers drawn 

from a uniform distribution [0, 5]. To mimic longstring responses, first an initial starting position 

in the response vector was randomly generated. Next, a single integer was drawn at random from 

a uniform distribution [0, 5] and replaced the specified proportion of consecutive items 

(𝐴𝑏𝐼 ×  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑚𝑠) starting at the randomly drawn initial position in the vector 

(DeSimone et al., 2018). In attempt to simulate MRS responses for 6-point items, endpoint item 

scores were replaced with the closest midpoint response. Item scores adjacent to the endpoints 

were also replaced with the closest midpoint response (i.e., on the 6-point scale ranging from 0 to 

5, items scores of 0 and 1 were replaced with a 2, and scores of 4 and 5 were replaced with a 3) 

to model the behavior of any responses that were not midpoint values being changed to the 

nearest midpoint (Liu et al., 2017). To simulate responses that reflect ERS, the four middle item 

scores were changed to the corresponding endpoint responses (i.e., 1s and 2s were changed to 0 

and 3s and 4s were changed to 5).  

Testing Item Ordering (Step 3) 

Before drawing conclusions from nonparametric person-fit statistics that depend on 

invariant item ordering, it is advised to test the ordering of items (Van der Ark, 2007). For 

example, if the overall H
T
 coefficient (summary of 𝐻𝑖

𝑇 for all participants) is less than 0.3, 

researchers suggest that invariant item ordering may be too unstable to be useful (Ligtvoet et al., 
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2010). For every condition in the study, the overall H
T coefficient was computed and averaged 

across replications to assess how well the simulated items were ordered.  

Computing Nonparametric Person-Fit Statistics (Step 4) 

The values for 𝑈3𝑃,   𝐺𝑁
𝑃,  and 𝐺𝑃 were computed for each simulee using the PerFit 

package in R (Tendeiro, Meijer, and Niessen, 2016). As previously described, the 𝐻𝑇statistic is 

essentially a modified version of Mokken's (1971) Hi statistic.  

Cutoff Criteria for Aberrant Identification. A decision rule was needed to flag a 

simulee as aberrant or not. A common method used to determine the cutoff criteria for each 

person-fit statistic is to use the 5% quantile as the cutoff value (e.g., Emons, 2008; Magis et al., 

2012; Tendeiro, 2017). In this study, item parameters estimated from each aberrant dataset were 

used to simulate 20 datasets, and the distribution of each person-fit statistic value was examined 

for each dataset. Within each of the 20 replications, a cutoff for each statistic was then 

determined by finding the value associated with the critical value for a 5% probability of a type I 

error. For example, for the 𝐺𝑝 statistic, the more Guttmann errors a respondent has, the greater 

the 𝐺𝑝 statistic, indicating greater person misfit. Thus, in the equation P(Gp ≥ valuecritical )= .05, 

the person-fit statistic critical value (valuecritical) was used as the cutoff criteria. Next, the mean 

cut-off score for the 20 model-fitting datasets was then used as the cut-off for that replication and 

condition. Due to time restrictions only 20 replications were used in determining cutoffs. Ideally, 

more than 20 replications would be used in practice, however, results were considered 

sufficiently consistent for the current study (e.g., the mean and standard error for the 𝑈3𝑃 

statistic under the GPCM model was 0.146 and 0.005, respectively). The highest standard error 

relative to its mean was for the 𝐻𝑇 statistic under the GGUM, where the mean was -0.188 and 
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the standard error was 0.01. The mean and standard error for the cut-offs used for each person-fit 

statistic are reported in Table 11. This process was also conducted for a subset of clean datasets 

to compare type I error rates of uncontaminated data to varying levels of contamination.  

Table 11. Means of Person-Fit Statistic Cut-off 

 𝑈3𝑃 𝐺𝑝  𝐺𝑁
𝑃 𝐻𝑇 

Condition M (SE) M (SE) M (SE) M (SE) 

GGUM 0.525 (0.011) 2121.684 (51.488) 0.541 (0.011) -0.188 (0.010) 

GPCM 0.146 (0.005) 635.647 (9.945) 0.152 (0.003) 0.379 (0.009) 

 

Evaluating Performance of Person-Fit Statistics (Step 5) 

 To assess the performance of each person-fit statistic, both type I error (false positive) 

and detection (true positive) rates were computed. Type I error was computed in two ways for 

comparison. First, type I error was computed for all simulees incorrectly flagged as being 

aberrant within a clean data condition. This was used as a base condition for comparison. 

Second, type I error was computed as the proportion of non-aberrant simulees that was 

incorrectly flagged as being aberrant by the person-fit statistic in the datasets that included 

aberrant response strings. Detection rates (true positives) were computed as the proportion of 

aberrant simulees that was correctly flagged as aberrant by the person-fit statistic. Additionally, 

accuracy rates are summarized and reported. Accuracy was computed as the sum of correctly 

classified simulees (true positives and true negatives), divided by the total sample size. All rates 

were averaged over all conditions and replications. While accuracy may be a useful measure in 

providing a different perspective regarding the rate at which participants are correctly classified, 

this measure may be skewed when the proportions of aberrant and non-aberrant participants are 

not equal. For example, in conditions where only 4% of the sample was simulated to be aberrant, 

a method that does not flag anyone would still have a 96% accuracy rate. However, these values 

are provided as a means to compare performance of the same condition across methods. 
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Results 

Before examining the results, item ordering was tested using the overall H
T
 coefficient 

[Figure 14A (20 items) and Figure 14B (40 items)]. If the overall H
T
 coefficient is less than 0.3, 

researchers suggest that invariant item ordering may be too unstable to be useful (Ligtvoet et al., 

2010). For each condition applied to the GPCM datasets, the average overall H
T coefficient was 

above this criterion, with the lowest value of 0.41 for 20-item datasets having 20% aberrant 

responders with 60% of aberrant response vectors containing random responding. The GPCM 

datasets with only 4% aberrant simulees with 20% aberrant items replaced using MRS, had the 

highest average overall H
T coefficient (0.56). In comparison, the item ordering criterion was 

lower than recommended for several of the GGUM datasets, with average values ranging from 

0.24 to 0.31. Random responding had the most negative impact on overall H
T
 for GGUM 

datasets. Similar to the GPCM datasets, the most extreme conditions of random responding (AbN 

= .20, AbI = .60) resulted in the lowest average overall H
T coefficient (0.24). Trends in the 

GPCM datasets, and to a slightly lesser degree in the GGUM datasets, indicated that item 

ordering decreased as the proportion of aberrant responders increased and as aberrant items 

within an aberrant response vector increased. The exception to this trend occurred with 

longstring vectors when the proportion of aberrant responses in a vector made up over half of the 

items (AbI = .60), in which case the coefficient H
T slightly increased. Increasing the number of 

items from 20 to 40 did not substantially impact the coefficient H
T in either type of dataset. In 

the following sections, the degree to which type I error and power is impacted for the person-fit 

statistics with the unfolding versus dominance data is investigated.  
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Figure 14A. Average Overall Coefficient HT by Condition (20 items) 

 
 

Figure 14B. Average Overall Coefficient HT by Condition (40 items) 

 
Note. ERS = Extreme Response Style. MRS = Midpoint Response Style. AbI = Proportion of 

items within response vector designated as aberrant. AbN = Proportion of simulees designated to 

have aberrant response vectors.  

 

 

Type I Error  

First, results for clean data without aberrant response behavior (i.e., AbN = AbI = 0) were 

analyzed to ensure detection methods were working as expected in both unfolding (GGUM) and 

dominance (GPCM) datasets. Using the clean datasets, each person-fit statistic incorrectly 
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identified approximately 4 to 6% of the simulees as aberrant. This matches the expectation based 

on the nominal Type I error rate and corresponds with the cutoff criteria determined by the 5% 

probability of a Type I error. Next, datasets that included aberrant responses were examined to 

determine the impact of aberrant responding on the false detection of non-aberrant simulees. The 

person-fit statistics were computed using the entire dataset (aberrant vectors included) with the 

cutoff criteria obtained from the means of the replicated model fitting data. To compute the Type 

I error for each dataset, the proportion of non-aberrant vectors flagged by the person-fit criteria 

was recorded. Figure 3 illustrates Type I error rates for each type of aberrant response, AbN, and 

AbI condition using the four person-fit statistics for the GPCM and GGUM datasets. The 20- and 

40-item datasets had very similar Type I error rates and trends. Thus, only the 20-item datasets 

are shown in Figure 15. For the GPCM datasets (top graph in Figure 15), increasing the AbI 

condition tended to result in more conservative Type I error rates (i.e., type I error rates were less 

than 0.02 in the highest AbI condition of .6 except when 𝑈3𝑃,  𝐺𝑁
𝑃,  and 𝐺𝑃 were used on the 

MRS datasets). In the AbN =.20 conditions, where 𝑈3𝑃,  𝐺𝑁
𝑃,  and 𝐺𝑃 were used on the MRS 

datasets, Type I error increased with larger proportions of AbI.  

Similar to results when increasing AbI, increased AbN (proportion of simulees with 

aberrant responses) in the GPCM datasets generally resulted in more conservative Type I error 

rates, except when 𝑈3𝑃,  𝐺𝑁
𝑃,  and 𝐺𝑃 were used on the MRS datasets. In the GGUM datasets, 

increasing AbN had a less pronounced impact on Type I error. GGUM datasets with MRS were 

most impacted by increasing AbN, resulting in increased Type I error rates. Using GGUM data, 

type I error rates for many conditions were near the nominal .05, except when MRS was present 

and type I error rates increased to .094. Overall, type I error rates for the person-fit statistics 

applied to GPCM datasets were more conservative than the rates for GGUM data. Type I error 
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rates for the GGUM data tended to be slightly above .05 for non-aberrant simulees in many 

aberrant conditions, with the largest inflation occurring when MRS is present.  

Figure 15. Average Type I Error for GPCM and GGUM Datasets (20 items) 
 

 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

Note. ERS = Extreme Response Style. MRS = Midpoint Response Style. AbI = Proportion of 

items within response vector designated as aberrant. AbN = Proportion of simulees designated to 

have aberrant response vectors.  

 

Power Under the Dominance Context 

 

Figure 16 shows a comparison of the power (true positive detection rates) between the 

four nonparametric person-fit statistics in the dominance GPCM datasets with respect to the 
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number of items and the type of aberrant responding (ERS, MRS, longstrings, random 

responders and mixed aberrant responders). For each of these five aberrant response types, 

results are further broken down by AbI and AbN conditions. Over all four person-fit statistics, 

random responders were the easiest to detect within the GPCM datasets, with detection rates as 

high as 96% using 𝐺𝑃. ERS was also well detected by 𝑈3𝑃,  𝐺𝑁
𝑃,  and 𝐺𝑃, especially in conditions 

where AbI = 0.60 and AbN = 0.04 (Power = 0.96, 0.97, and 0.89, respectively). Generally, when 

40% or 60% of the aberrant participants’ responses were random or exhibited ERS, 

𝑈3𝑃,  𝐺𝑁
𝑃,  and 𝐺𝑃were more likely to identify the participant as aberrant, whereas when only 

20% of the responses were aberrant, detection rates were lower using these methods. Conversely, 

𝐻𝑇was ineffective in detecting ERS in GPCM data under all conditions. 

Patterns reveal that for three of the four person-fit statistics (𝑈3𝑃,  𝐺𝑁
𝑃,  and 𝐺𝑃), aberrant 

responding due to MRS is the most difficult to detect in GPCM data (Figure 16). The fourth 

person fit statistic (𝐻𝑇) had the most difficulty detecting ERS, with MRS being the second-most 

difficult aberrant response type to detect. Although 𝐻𝑇was the best in detecting MRS, it still had 

relatively lower power (the highest condition was .39 for 40 items). Longstrings were the second 

most difficult to detect in GPCM data overall, with 𝐺𝑁
𝑃 having the highest rate in the 20-item 

datasets with an average power = .60 (AbI = .6 and AbN = .04 condition) and 𝐻𝑇 having the 

highest rate in the 40-item datasets with an average power = .76 (AbI = .6 and AbN = .04 

condition). Datasets with a mixed composition of aberrant responders resulted in similar 

detection rates to the datasets with longstrings.  

As the proportion of aberrant examinees in a sample (AbN) increased, the detection rates 

generally decreased. Within each of the two test length conditions (20 and 40 items), the pattern 

of detection rates shown in Figure 4 illustrate how detection rates tended to slightly increase with 
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increasing test lengths. In the shorter tests (20 items), 𝐺𝑁
𝑃 seemed to outperform the other 

statistics when responders exhibit ERS, longstringing, or when mixed aberrant responders are 

present. 𝐺𝑃 was slightly better at identifying random responders. 𝐻𝑇 was favored when 

responders exhibit MRS, however none of the four person-fit statistics were effective at 

identifying MRS in GPCM data. For tests with 40 items, 𝐺𝑁
𝑃 had the highest power for conditions 

with ERS and mixed aberrant responders, 𝐻𝑇 had the highest power for conditions with MRS 

and longstring responders, and 𝐺𝑃 had the highest power for detecting random responders. 

For random responding, longstrings, and mixed aberrant responses, as the proportion of 

aberrant responses within aberrant vectors (AbI) increased, the detection rates generally 

increased as well. The exception to this trend occurred when the power of 𝐺𝑃 increased from AbI 

= .2 to .4 and then decreased from AbI = .4 to .6. For ERS, three of the four statistics 

(𝑈3𝑃,  𝐺𝑁
𝑃,  and 𝐺𝑃) showed a clear trend of increasing power with increasing AbI. However, 

when 𝐻𝑇 was applied to the GPCM data with ERS, not only were detection rates lower, but they 

also decreased with increasing AbI. Increasing the levels of AbI with MRS had differential 

impacts on the detection rates for each person-fit statistic.  
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Figure 16. Power of Person Fit Statistics in GPCM Datasets by Type of Aberrant Response 

and Proportions of Aberrant Responding 

 

 

Note. ERS = Extreme Response Style. MRS = Midpoint Response Style. AbI = Proportion of 

items within response vector designated as aberrant. AbN = Proportion of simulees designated to 

have aberrant response vectors.  
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Power Under Unfolding Context 

 Figure 17 shows a comparison of the power (true positive detection rates) between the 

four nonparametric person-fit statistics in the ideal point GGUM datasets. The most notable 

difference for the person-fit statistics under the unfolding context (GGUM data) compared to the 

dominance context (GPCM data) was the universal drop in power levels. Although all power 

rates are below necessary levels, trends are described as they may contribute to future research 

directions. For the 20-item datasets, ERS had slightly higher detection rates than the other types 

of aberrant responding. However, the highest power on average for ERS in the 20-item tests was 

.25 with the 𝐺𝑁
𝑃 statistic under the condition where few aberrant responders were present in the 

sample (AbI = 0.04) and higher proportions of aberrant items were present within the aberrant 

response vectors (AbN = 0.60). 𝑈3𝑃 had similar power under this condition (0.24), followed by 

𝐺𝑃 (0.21). 𝐻𝑇 had the lowest power in detecting ERS, reaching only 0.06 in the condition where 

AbI = 0.10 and AbN = 0.04. For the 40-item datasets, longstrings and ERS had slightly higher 

detection rates than random responding and MRS, however these true positive rates were not 

substantially higher than type I error rates for the data. As the proportion of longstring values 

within vectors (AbI) increased, detection increased for all four person-fit statistics. However, as 

AbI increased from .4 to .6 for ERS, detection began to decrease. Though less apparent than in 

the GPCM datasets, MRS seemed to be the most difficult type of aberrant response to detect in 

GGUM data using these four person-fit statistics, with random responding having similar levels. 

Similar to the GPCM datasets, 𝐻𝑇 was the best at detecting MRS, though detection rates were 

similar to its detection of ERS which was close to type I error rates (< 0.08).  

The trend of decreasing detection rates for increasing the proportion of aberrant 

responders in a sample (AbN), as seen in the GPCM datasets, was only observed in the ERS 
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condition and was not as pronounced in the GGUM datasets. The comparison of detection ability 

between the four nonparametric person-fit statistics with respect to test length (20 items or 40 

items) among the GGUM datasets revealed an opposite trend from the GPCM datasets, where 

the longer tests resulted in slightly lower detection rates for random responding, ERS, and mixed 

aberrant conditions. For longstrings and MRS, test length seemed to have a negligible effect. In 

both the shorter and longer tests, 𝑈3𝑃 and  𝐺𝑁
𝑃 seemed to outperform the other statistics when 

responders exhibit ERS, while 𝐺𝑃 was slightly more effective when random responders were 

present. 𝑈3𝑃,   𝐺𝑁
𝑃,  and 𝐺𝑃 all performed similarly when aberrant responding types were mixed, 

and 𝐻𝑇 was favored when responders exhibit MRS. Overall, the detection rates using the four 

nonparametric person-fit statistics in this study were not effective at identifying ERS, MRS, 

longstrings, nor random responders in data that fit an unfolding model using GGUM. 
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Figure 17. Power of Person Fit Statistics in GGUM Datasets by Type of Aberrant Response 

and Proportions of Aberrant Responding 

 

 

Note. ERS = Extreme Response Style. MRS = Midpoint Response Style. AbI = Proportion of 

items within response vector designated as aberrant. AbN = Proportion of simulees designated to 

have aberrant response vectors.  

 

 

 

 



 

147 

 

Accuracy 

 To provide a different perspective of classification evaluation, accuracy rates were 

computed for each condition and replication. As mentioned previously, accuracy may be skewed 

when the proportions of aberrant and non-aberrant response vectors are not the same, giving 

more weight to the group that makes up the larger proportion of the sample. In this study, the 

larger group was always the non-aberrant simulees. In the “cleanest” datasets, the non-aberrant 

group made up 96% of the sample. Even in the most extreme aberrant conditions, the non-

aberrant group made up 80% of the sample. Thus, high accuracy rates were obtained by correctly 

identifying non-aberrant response vectors, even if the aberrant vectors were infrequently 

classified correctly. Due to this issue of comparing across different levels of AbI and AbN, 

accuracy was aggregated using the mean across all AbI and AbN levels to focus comparisons on 

the accuracy of person-fit statistics as applied to different aberrant behavior. Figure 18 illustrates 

this comparison across both types of data (GPCM and GGUM). The test length condition (20 or 

40 items) had a very small influence on the accuracy rates, where cases with 40 items had either 

the same or slightly higher averages than the conditions with 20 items. Thus, results are shown 

for conditions with 20 items only. Overall averaged accuracy rates were lower for the GGUM 

datasets which ranged from .83 to .86 in comparison to the GPCM datasets which ranged from 

.85 to .95. For the GPCM datasets, 𝐺𝑃 and  𝐺𝑁
𝑃, had the highest accuracy in detecting random 

responding, longstrings, ERS, and mixed aberrant conditions, while 𝐻𝑇 had the highest accuracy 

for detecting MRS. 𝐻𝑇 had lower accuracy than the other three statistics for all types of aberrant 

responding except MRS. For the GGUM datasets, 𝐺𝑃 had slightly higher accuracy for random 

responding and 𝐺𝑁
𝑃 had slightly higher accuracy for ERS. Similar to the GPCM datasets, 𝐻𝑇 had 

the highest accuracy for detecting MRS. All person fit statistics had very similar accuracy rates 
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for both longstring and mixed aberrant responding conditions. It is important to reiterate that the 

accuracy rates for GGUM are much lower than what would be desired when the proportions of 

non-aberrant responders are .80 to .96. Further, none of the person-fit accuracy rates for 

detecting MRS in GPCM data are sufficient. 

Figure 18. Average Accuracy Rates for 20-item Datasets by AbType and Person-Fit 

Statistic 

 

 

 

 

Note. ERS = Extreme Response Style. MRS = Midpoint Response Style.  

 

Discussion 

This study focused on the application of four nonparametric person-fit statistics that have 

been shown to work well under certain conditions with dominance data (Emons, 2008; 

Karabatsos, 2003; Tendeiro & Meijer, 2014), and tested whether similar trends exist when 

applying them in an unfolding context. Under the dominance conditions, several trends found in 

Person Fit Statistic Aberrant Response Type 
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the study were consistent with prior research. For example, as the proportion of aberrant 

responses within participants’ response strings increases, the detection rates generally increase, 

indicating the degree of aberrant responding within response vectors makes a difference in misfit 

detection (Karabatsos, 2003; Rudner, 1983). Additionally, the study supports the finding that 

increasing the test length (from 20 items to 40 items) increases detection rates under the 

dominance context (Karabatsos, 2003; Meijer et al., 1994, 1996; Rudner, 1983; Tendeiro & 

Meijer, 2014). Results also coincide with Emons (2008) where the normed nonparametric 

person-fit statistics 𝐺𝑁
𝑃 and 𝑈3𝑃 tend to outperform the non-normed 𝐺𝑃 statistic in detecting 

responses that reflect a tendency to choose extreme response categories. However, our results are 

contrary to prior research (Karabatsos, 2003) that indicates 𝐻𝑇may be more effective than the 

dichotomous versions of 𝐺𝑃,  𝐺𝑁
𝑃, and 𝑈3𝑃 in detecting random responding, as our study found 

𝐻𝑇 to be the least effective of these four under our data conditions. Sinharay (2017) also 

displayed conditions of random responding where 𝑈3 is as effective as 𝐻𝑇 for random 

responding identification. 

This study also adds to the research on extreme and midpoint response styles with certain 

person-fit statistics. The results demonstrate how MRS may be very difficult to detect in GPCM 

data when using 𝐺𝑃,  𝐺𝑁
𝑃, and 𝑈3𝑃, and although 𝐻𝑇 has the highest power for detecting this type 

of aberrant responding, it is still ineffective. Further, under the study conditions, 𝐻𝑇 has a very 

difficult time detecting ERS. This is different than findings from research that has found 𝐻𝑇 to 

perform relatively well in detecting spuriously high and spuriously low responses, however ERS 

is a form of extreme responding that is different from spuriously high or low data as ERS occurs 

in a bidirectional manner for participants (i.e., responses are more likely to be both strong 



 

150 

 

agreement and strong disagreement for a single person) rather than a unidirectional response 

tendency (spuriously high, spuriously low) as simulated in Emons (2009).  

Results reveal a clear disparity in the performance of the four nonparametric person-fit 

statistics for dominance and ideal point response data. While each of the four statistics has 

relative success for three of the four aberrant conditions using dominance response data (as 

modeled by the GPCM), a serious concern is highlighted when using these nonparametric 

person-fit statistics with ideal point response data (as modeled by the GGUM). First, we are 

unaware of published research on the detection of random responding or longstrings in an ideal 

point response context. Our findings indicate that none of the four nonparametric person-fit 

statistics that we investigated effectively detect either of these aberrant conditions in unfolding 

model data. Tendeiro (2017) had relative success detecting MRS under an unfolding model 

context using the parametric person-fit statistics 𝑙𝑧(𝑝) and 𝑙𝑧(𝑝)
∗ , however these statistics were 

unable to detect ERS in the conditions of his study. His study did not include the use of 

nonparametric person-fit statistics. In our study, the results for detecting ERS with the normed 

nonparametric person-fit statistic 𝐺𝑁
𝑃 and 𝑈3𝑃 had similar rates to the 𝑙𝑧(𝑝) and 𝑙𝑧(𝑝)

∗  under 

similar conditions in Tendeiro (2017). However, none of our nonparametric person-fit statistics 

were able to detect MRS as well as 𝑙𝑧(𝑝) and 𝑙𝑧(𝑝)
∗ .  

Low power for detecting aberrant responding under an unfolding model context is 

possibly because the item ordering criteria underlying many person-fit statistics were not met for 

several of the GGUM datasets (Figure 1). Though this was anticipated by the researchers, the 

extent of this effect on detection rates and type I error was uncertain. In several conditions for the 

current study, power for the unfolding (GGUM) data is similar to expected type I error rates.  
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 Accuracy rates provide a perspective that focuses on correctly classified respondents, 

which could be useful to compare person-fit statistics as applied to different aberrant behavior. 

Results illustrate how the person-fit statistics have relatively high accuracy rates for three types 

of aberrant data detection in GPCM data, but differ by aberrant response type(s) present in the 

sample. The lowest accuracy rates were found when the person-fit statistics were applied to data 

with MRS, a finding consistent across both GPCM and GGUM datasets. Under the dominance 

context (GPCM datasets), the 𝐺𝑃 statistic applied to data with random responding has the highest 

accuracy overall, while the 𝐺𝑁
𝑃 statistic was relatively accurate in detecting ERS. The four 

person-fit statistics were less effective in identifying longstrings in GPCM data and were 

ineffective in identifying MRS. The accuracy rates for all four person-fit statistics applied to the 

five aberrant data condition in the unfolding context (GGUM datasets) were insufficient.  

Limitations 

 Several limitations of the study are worth discussing, as well as additional areas of 

research that can be investigated further. First, this study did not include the manipulation of 

item parameters as a simulation condition. Of particular interest may be the item discrimination 

parameter since previous research has shown this parameter to have potentially large effects on 

the detection power for nonparametric person-fit statistics (St-Onge et al., 2011; Tendeiro & 

Meijer, 2014). The current study simulated response data using discrimination parameters 

randomly sampled from a uniform distribution [0.5, 2.0]. Extending this range to 2.5 for 

example, may have increased power under certain conditions.  

Second, related to manipulating item parameters, the degree of intersecting item response 

functions (IRFs) could be investigated. The practicality of assuming non-intersecting IRFs is that 

it aligns with the use of the sum score for ordering persons (Emons, 2008; Sijtsma & Molenaar, 



 

152 

 

2002). In replications where the item discrimination parameters were relatively low, the 

intersection of IRFs is expected. This characteristic of the study could have influenced Type I 

error rates and power. Previous research suggests that if the overall 𝐻𝑇  ≥ .30 and the percentage 

of negative 𝐻𝑇 values < 10, it may be assumed that IRFs do not intersect. However if one or 

more of these conditions is violated, it may be assumed that for a substantial number of persons, 

item ordering is different (Sijtsma & Meijer, 1992). This could be one contributing factor to the 

low power in the GGUM datasets where many overall 𝐻𝑇 were less than .30. However, although 

increasing item discrimination parameters within a dominance model may be expected to 

increase power in detecting certain aberrant responses due to the reduction in intersecting IRFs, 

this would not necessarily be expected for an unfolding model. Future research may benefit from 

manipulating the intersection/non-intersection of IRFs by including different IRT models to 

generate data that satisfy the non-intersecting IRFs assumption.  

Third, it is likely that the way the aberrant responding was simulated had method effects 

on the results. For example, the way ERS and MRS were simulated differs from previous studies 

such as Tendeiro (2017) and Emons (2008). Tendeiro (2017) simulated the response styles such 

that middle responses were replaced with the most extreme responses for ERS (or vice versa for 

MRS). Thus, a score of 3 in this study (on a scale of 0 to 5) would have been replaced by a 5, 

however scores of 4 would not have been replaced with a 5. Including only 2-point differences 

and not 1-point differences could have increased the power of aberrant data detection. Other 

ways of simulating extreme response data such as the manipulation of threshold structures 

(Emons, 2008; Johnson, 2004; Rossi et al., 2001) could also impact the results. Future research 

could investigate the differential method effects of different procedures for modeling the extreme 

and midpoint response styles.  
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Conclusions 

This study examined nonparametric person-fit statistics that have been found to perform 

just as well, if not better than parametric person-fit statistics under various conditions when 

applied to data using dominance response models (Emons, 2008; Karabatsos, 2003; Sinharay, 

2017; Tendeiro & Meijer, 2014). Specifically, their application to data that more appropriately 

fits an unfolding model was investigated. Results provided insight on how these nonparametric 

person-fit statistics perform under various conditions and types of aberrant responding when 

applied to data that reflect an unfolding response process in comparison to a dominance response 

process. Results indicate that the nonparametric person fit statistics 𝐺𝑃,  𝐺𝑁,
𝑃  and 𝑈3𝑃 have strong 

power in detecting extreme response style and random responding with data that fit a GPCM 

model, and relatively low power in detecting longstrings. Although 𝐻𝑇 was the most effective at 

identifying midpoint response style with GPCM data, the detection levels were very low. Other 

types of person-fit statistics or procedures (e.g., latent class confirmatory factor analysis models 

[Moors, 2008], multidimensional nominal response models [Johnson & Bolt, 2010], IRTrees [De 

Boeck & Partchev, 2012]) may yield more success in identifying midpoint response style in 

dominance data.  

None of the four nonparametric person-fit statistics were effective in detecting aberrant 

responding with GGUM data. Tendeiro (2017) studied two parametric person fit statistics (𝑙𝑧(𝑝) 

and 𝑙𝑧(𝑝)
∗ ) under an unfolding model context (GGUM) where the detection rates for extreme 

response styles were low however detection of midpoint response style patterns using the 𝑙𝑧(𝑝)
∗  

person-fit statistic were promising in many conditions. As the four nonparametric person fit 

statistics in this study had low power in the unfolding conditions, future research should extend 

the current study to include other types of nonparametric and parametric person fit statistics for 
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varying types of aberrant responding with ideal point models. Specifically, we are unaware of 

person-fit statistics that have been identified as effectively identifying random responding, 

longstrings, or extreme responding in unfolding models. The development of nonparametric or 

parametric person-fit statistics designed specifically for unfolding data may be needed. This 

work might build on research such as Mair, Borg, and Rusch (2016) who apply goodness-of-fit 

assessments to unfolding data, or research that implements nonparametric unfolding models 

(e.g., MUDFOLD) to create new person-fit statistics. However, currently, researchers should be 

advised against applying the popular nonparametric person-fit statistics in this study to unfolding 

data. Many questions still remain regarding how person-fit statistics perform assuming an 

underlying ideal point response process. Indeed, we echo prior researchers’ recommendations 

(e.g., Drasgow et al., 2010; Ferrando, 2007; Polak et al., 2012) that further research is warranted 

to expand our knowledge about the use of these statistics within the growing field of unfolding 

models.  
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CHAPTER 6 

STUDY 3 

Impacts of Misspecification of Underlying Response Processes on the Performance of 

Nonparametric and Parametric Person-Fit Statistics 

ABSTRACT 

Person-fit analyses are widely used to detect aberrant responding that can impact model 

fit and analytical results. However, little attention has been placed on the performance of person-

fit statistics in the context of different underlying response processes (e.g., dominance versus 

ideal point). This study examines the Type I error and power rates of two popular parametric 

person-fit statistics (𝑙𝑧(𝑝) and 𝑙𝑧(𝑝)
∗ ) under various aberrant conditions for data generated 

according to the GGUM and GPCM, reflecting ideal point and dominance response processes 

respectively. Results are benchmarked against two nonparametric person-fit statistics (𝐺𝑁
𝑃 and 

𝐺𝑃). Results indicate that no person-fit statistic was robust against model misspecification when 

GPCM was fit to GGUM data, as Type I error was severely inflated. Conversely, results were 

comparable for GPCM data, regardless of fitting the GPCM or GGUM to the data. When the 

correct model was specified, parametric person-fit statistics were more effective than 

nonparametric statistics in detecting random responding, longstringing, and midpoint response 

style in GGUM data, however not extreme response style. Person-fit results varied across type of 

aberrant responding for GPCM data. As ideal point methods are more appropriate for many 

noncognitive assessments and are becoming more widely used, results from the study provide 

practitioners details on the performance of these person-fit statistics under various conditions for 

data with different underlying response processes.    
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Impacts of Misspecification of Underlying Response Processes on the Performance of 

Nonparametric and Parametric Person-Fit Statistics 

Research concerning the detection of aberrant patterns in item scores can help researchers 

learn about individual responding behavior. For example, person-fit statistics have been used to 

identify examinees who tend to choose extreme or middle response options, lack motivation, or  

exhibit cheating behavior (e.g., Cizek & Wollack, 2016; Conijn et al., 2014; Emons, 2008; 

Karabatsos, 2003; Tendeiro, 2017). Aberrant responding can affect the psychometric properties 

of a scale, which ultimately may lead to negatively impacting the quality of the measure and 

decisions made using the measure (DeSimone et al., 2018; McGrath et al., 2010). Though 

numerous studies have investigated the performance of person-fit statistics, the current study 

focuses on their use under different assumed underlying response processes (dominance and 

ideal point) and the impacts of model misspecification.  

Aberrant Responding 

Aberrant responses result from numerous possible behaviors and characteristics of the 

respondent. For example, misfitting item scores could result from respondents exhibiting 

Extreme Response Style (ERS), which refers to people tending to choose the upper or lower 

extreme categories, regardless of the item content (Bachman & O’Malley, 1984; Baumgartner & 

Steenkamp, 2001; Chen et al., 1995; Greenleaf, 1992; Hui & Triandis, 1985; Marin et al., 1992; 

Weijters et al., 2010). People who tend to choose the middle response option regardless of item 

content have been classified as using a Middle Response Style (MRS;  Baumgartner & 

Steenkamp, 2001; Chen et al., 1995; Stening & Everett, 1984), or mid-lining. The presence of 

ERS and MRS have been found to bias parameter estimates in data that exhibit a dominance (Jin 

& Wang, 2014) or an ideal point response process (C.-W. Liu & Wang, 2019). Further, 
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respondents may also lack the cognitive effort to provide meaningful responses. This can 

manifest itself when respondents give random responses or invariant responses (longstrings) to a 

set of items regardless of the item content. The literature has revealed many potentially adverse 

effects of aberrant data and thus its detection using various methods (e.g., person-fit statistics) 

has gained substantial attention in several fields (Rupp, 2013).  

Person-Fit Statistics 

“Person-fit,” also referred to as “appropriateness measurement,” refers to the degree to 

which a person’s item response pattern departs from what is expected based on an item response 

theory (IRT) model or the response patterns of other persons in the group (Drasgow et al., 1985; 

Meijer et al., 1994). In general, research applications have focused on two classes of person-fit 

statistics: parametric and nonparametric. Parametric person-fit statistics generally measure the 

disparity between the observed data and the estimated response predictions resulting from an 

IRT model’s parameter estimates. Conversely, nonparametric person-fit statistics do not rely on 

IRT-based estimates, but rather are computed using the observed response data to the items in a 

dataset (Karabatsos, 2003). The focus of this study is on the performance of two parametric 

person-fit statistics (𝑙𝑧(𝑝) and 𝑙𝑧(𝑝)
∗ ) that are widely used among researchers (Armstrong et al., 

2007; Conijn et al., 2014; M. Hong et al., 2021; Hong et al., 2020; Magis et al., 2012; Meijer & 

Tendeiro, 2012; Nering & Meijer, 1998; Avşar, 2021; Seo & Weiss, 2013; Sinharay, 2016b, 

2017; St-Onge et al., 2011; Tendeiro, 2017; Torre & Deng, 2008; Xia & Zheng, 2018). 

Additionally, two non-parametric person-fit statistics (𝐺𝑁
𝑃,  and 𝐺𝑃) are included for comparison 

purposes that have been shown to perform well in comparison with other person-fit statistics in a 

variety of aberrant conditions (Emons, 2008; Karabatsos, 2003).  
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Parametric Person-fit Statistics (𝒍𝒛(𝒑) and 𝒍𝒛(𝒑)
∗ ). The 𝑙𝑧(𝑝) and 𝑙𝑧(𝑝)

∗  statistics stem from 

possibly the most well-known parametric person-fit statistic, the likelihood statistic, l (Levine & 

Rubin, 1979). The 𝑙 statistic measures the log-likelihood fit of a response to an item with the 

prediction based on an IRT model (Karabatsos, 2003). The binomial log-likelihood statistic is 

computed as follows: 

𝑙 = ∑ [
𝐽
𝑗=1 𝑋𝑛𝑗(ln 𝑃𝑗(𝜃)) + (1 − 𝑋𝑛𝑗) (𝑙𝑛 𝑄𝑗(𝜃))],             (46) 

where 𝑃𝑗(𝜃) represents the probability of a correct response on item j given the person’s 

estimated ability or trait level (𝜃), and 𝑄𝑗(𝜃) represents the probability of an incorrect response 

on item j [𝑄𝑗(𝜃) = 1 − 𝑃𝑗(𝜃)]. The limitation of the likelihood-statistic is that it is not 

standardized and the distribution under a fitting IRT model is unknown. Drasgow et al. (1985) 

proposed a standardized normal version of the likelihood statistic, 𝑙𝑧 , using the mean and 

variance in the following way: 

𝑙𝑧 =
𝑙−𝐸(𝑙)

√𝑣𝑎𝑟(𝑙)
,      (47) 

𝐸(𝑙) = ∑ {𝑃𝑗(𝜃)ln(𝑃𝑗(𝜃)) + 𝑄𝑗(𝜃)ln(𝑄𝑗(𝜃))𝐽
𝑗=1 , and                     

(48) 

         𝑣𝑎𝑟(𝑙) = ∑ 𝑃𝑗(𝜃)𝑄𝑗(𝜃) (𝑙𝑜𝑔
𝑃𝑗(𝜃)

𝑄𝑗(𝜃)
 )

2
𝐽
𝑗=1 .                                  (49) 

For the polytomous case, where probabilities of a correct response reflect passing the kth 

threshold from one response category to the next, and C is the total number of response 

categories minus 1, the mean and variance for Equation 2 are defined as follows (Sinharay, 

2016): 

                                   𝐸(𝑙) = ∑ ∑ [𝐶
𝑘=1 [𝐽

𝑗=1 𝑃𝑗𝑘(𝜃)(ln 𝑃𝑗𝑘(𝜃))]], and                                 (50)       
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𝑣𝑎𝑟(𝑙) = ∑ ∑ ∑ 𝑃𝑗𝑘1
(𝜃)𝑃𝑗𝑘2

(𝜃) ln (𝑃𝑗𝑘1
(𝜃)) ln (

𝑃𝑗𝑘1
(𝜃)

𝑃𝑗𝑘2
(𝜃)

)
𝐶𝑗

𝑘2=1

𝐶𝑗

𝑘1=1
𝐽
𝑗=1 .                  (51)       

This polytomous version is known as 𝑙𝑧(𝑝), and has become a very popular choice for person-fit 

analyses. Still, it is only when true theta values are used, that this statistic can be assumed to 

have an asymptotically standard normal distribution (Molenaar & Hoijtink, 1990). In practice, it 

is unrealistic to assume true theta values are available. Consequently, a modified version of 𝑙𝑧, 

𝑙𝑧
∗  , was proposed by Snijders (2001) that addresses this concern by accounting for the sampling 

variability of the estimated theta parameters. A thorough and helpful explanation of the 

computational formulas involved in calculating 𝑙𝑧
∗ can be found in Magis et al. (2012). Sinharay 

(2016) further extended this corrected version for polytomous cases, 𝑙𝑧(𝑝)
∗ .  

The majority of published research concerning the performance of 𝑙𝑧 and 𝑙𝑧
∗ for 

dichotomous and polytomous data has been conducted using dominance IRT models (Armstrong 

et al., 2007; Conijn et al., 2014; de la Torre & Deng, 2008; Emons, 2008, 2009; Karabatsos, 

2003; Turner, 2018). Emons (2008) used 𝑙𝑧(𝑝) as a benchmark against several nonparametric 

person-fit statistics and found that for careless responding (as simulated by drawing random 

numbers from a uniform distribution), 𝑙𝑧(𝑝)had the highest detection rates. Extreme responding 

was more difficult to detect than careless responding by all person-fit statistics in the study, 

particularly when the tendency to choose extreme options is exhibited on less than half of the 

items. Normed nonparametric person-fit statistics (𝐺𝑁
𝑃, 𝑈3𝑃) used in their study had higher 

detection rates than parametric statistics for most of the conditions under extreme responding. 

Other studies (Niessen et al., 2016; Turner, 2018) have also found the 𝑙𝑧  statistic to have 

comparatively higher detection rates for random and careless responding under a dominance 

framework.  
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In the single study investigating the performance of 𝑙𝑧(𝑝) and 𝑙𝑧(𝑝)
∗  when data have an 

ideal point response (or unfolding) framework, Tendeiro (2017) found the parametric person-fit 

statistics to have relatively low detection rates for extreme response style (mean across 

conditions = .17; first and third quartiles = .06 and .22 respectively). Overall, the parametric 

person-fit statistics were conservative (low type I error rates), but midpoint response style had 

relatively higher detection rates (mean = .45; first and third quartiles = .17 and .72 respectively). 

Although Tendeiro (2017) found very similar results for the 𝑙𝑧(𝑝) and 𝑙𝑧(𝑝)
∗  statistics in an 

unfolding context, the current study will include both statistics to test whether they perform 

similarly under additional aberrant conditions, and in comparison to nonparametric statistics, 

including conditions where assumed models are misspecified.  

Nonparametric Person-fit Statistics. In contrast to parametric person-fit statistics, 

nonparametric person-fit statistics do not rely on the predicted responses based on an IRT 

model’s parameter estimates (Karabatsos, 2003). This study includes two nonparametric person-

fit statistics (𝐺𝑁
𝑃,  and 𝐺𝑃) that have been shown to outperform other person-fit statistics in 

various aberrant conditions under a dominance response process setting (Emons, 2008; 

Karabatsos, 2003). The 𝐺𝑃 statistic (Molenaar, 1991) is based on the Guttman scaling procedure 

where items are arranged in order according to their locations on the underlying continuum for 

the latent trait being measured, and endorsement of a particular item suggests endorsement of all 

items located lower on the latent continuum. The 𝐺𝑃 statistic summarizes the number of 

deviations from a perfect Guttman pattern of responses for a participant. Thus, more Guttman 

errors result in a larger 𝐺𝑃 statistic, which indicates a larger degree of person misfit. The 

following equation is used to compute the 𝐺𝑝 statistic: 

𝐺𝑝 = ∑ 𝑦𝑘(1 − 𝑦𝑙),𝐽𝐶
𝑙<𝑘                                (52) 
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where J is the number of items and C is the number of response categories minus 1 (number of 

item steps) for each item.  The 𝑦𝑙 in Equation 7 represents all elements of vector Y that are prior 

to 𝑦𝑘. To compare the 𝐺𝑝 statistics across respondents with different sum scores (X+), the 

following equation can be used to normalize the 𝐺𝑝 statistic to have a range of [0, 1] (Emons, 

2008): 

𝐺𝑁
𝑃 =

𝐺𝑝

max (𝐺𝑝|𝑋+)
.               (53) 

Both Guttman person-fit statistics have been shown to detect random responding well, and 𝐺𝑁
𝑃 

has been shown to outperform 𝐺𝑃 in detecting ERS in dominance contexts (Emons, 2008). 

Study 2 demonstrated the limitations of these nonparametric statistics under an ideal point 

framework due to their dependencies on invariant item ordering assumptions and Guttman 

scaling procedures. However, no studies have shown a direct comparison of their performance to 

the performance of parametric person-fit statistics in an unfolding context. It is especially useful 

to investigate their side-by-side performance for aberrant responding such as ERS, where 

detection rates using parametric person-fit statistics have been shown to be modest at best 

(Tendeiro, 2017).  

Dominance Response Process 

Researchers have long recognized and studied the differences in underlying response 

processes used by individuals when responding to items. Coombs (1964) used the term 

“dominance” to describe situations when individuals with higher trait levels dominate, or 

correctly answer, assessment items. In data that reflect a dominance response process, the 

probability of endorsing an item increases monotonically with the increase of the latent trait 

being measured (regardless of the item’s location on the continuum). Dominance IRT models 

reflect this characteristic, which can be illustrated with monotonically increasing item response 
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functions (IRFs) for dichotomous items (see Figure 19). When items are polytomous, 

intermediary step functions are modeled. Step functions are defined by modeling the transition, 

or “stepping” to successively higher score categories. Four popular approaches for defining step 

functions include adjacent category, continuation ratio, cumulative, and nominal (Penfield, 

2014). Within the adjacent category approach is the partial credit model (PCM; Masters, 1982), 

which models step functions as the probability of success at the adjacent kth step as specified by 

the Rasch model. The generalized partial credit model (GPCM; Muraki, 1992) also uses the 

adjacent category approach to defining step functions, but the 2PL model is used and an item-

level discrimination parameter is estimated. In the current study, the GPCM was chosen to 

simulate the dominance data because of its flexibility for estimating different discrimination 

parameters for items and its comparability with the unfolding model chosen for the study 

(GGUM; described below). The IRF using the GPCM is given by 

 𝑃(𝑍𝑗 = 𝑧|𝜃) =
exp {∑ [𝑎𝑗(𝜃−𝑏𝑗𝑘)]}𝑧

𝑘=0

∑ {exp ∑ [𝑎𝑗(𝜃−𝑏𝑗𝑘)]}𝑟
𝑘=0

𝐶
𝑟=0

 ,           (54) 

where 𝑍𝑗 represents the observed response (with ability or trait level, 𝜃) to item j, and 𝑧 =

0, 1, 2, . . . , 𝐶 with z = 0 corresponding to the strongest level of disagreement and z = C 

corresponding with the step that reflects the strongest level of agreement. Thus, C is the number 

of observed response categories minus 1. The discrimination parameter for item j is represented 

by 𝑎𝑗, and 𝑏𝑗𝑘 is the difficulty parameter or location parameter of the kth step.  In the 

denominator, r = 1, 2, . . . , C represents the total C exponent terms. 
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Figure 19. Example of IRF Based on Dominant Model 

 

 

 

 

 

 

 

 

 

 

 

Note. The IRF illustrates a monotonically increasing item response function (IRF). 

 

Ideal Point Response Process 

The ideal point response process is based on the notion conceptualized by Thurstone 

(1928) that assumes that the probability an individual will endorse an item increases to the 

degree that the item reflects the person’s sentiment/trait-level on the construct being measured. 

Thus, as the difference between the person’s and item’s location on the underlying latent trait 

continuum decreases, the probability of endorsing the item increases. This distinction between 

ideal point and dominance response processes may be best illustrated using a depiction of the 

IRFs modeled by IRT models with the respective underlying response process assumptions. In 

contrast to the monotonically increasing IRF modeled by the dominant IRT model in Figure 1, 

the IRF resulting from an item that reflects an ideal point response process is single-peaked 

(Figure 20).  

 



 

164 

 

Figure 20. Example of IRF Based on Ideal-Point Model 

 

 

 

  

 

 

 

 

 

 

 

Note. The IRF illustrates a non-monotonic IRF, violating monotonicity assumption for 

dominance item response theory models. 

 

Differences between items representing ideal point and dominance response approaches 

can be explained using an example with a neutral item on a mathematics efficacy scale: “I have 

about average math skills.” Someone who perceives themselves to have about average math 

skills is likely to strongly agree with this item. However, someone who perceives themselves to 

have below average math skills (their location is below the item location) will likely disagree 

with the item. Similarly, someone with self-perceived above average math skills (their location is 

above the item’s location) will also likely disagree with the item. The characteristic that two 

people may disagree with the item for two very different reasons yields an unfolding quality that 

is problematic for dominance IRT models. However, ideal-point (unfolding) IRT models can be 

used for data that reflect an ideal point response process because they incorporate subjective 

response functions that account for disagreeing (or agreeing) with an item due to the individual’s 
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trait level being above or below the item’s location on the underlying latent trait continuum. An 

increasingly popular model used for ideal point response data is the generalized graded unfolding 

model (GGUM). This investigation used the GGUM proposed by Roberts et al. (2000), where 

each subjective response follows the GPCM (Equation 7). The formal equation for the GGUM is 

given by equation 8.  

 𝑃(𝑍𝑗 = 𝑧|𝜃) =
exp {𝛼𝑗[𝑧(𝜃−𝛿𝑗)−∑ 𝜏𝑗𝑘]}+exp {𝛼𝑗[(𝑀−𝑧)(𝜃−𝛿𝑗)−∑ 𝜏𝑗𝑘]} 𝑧

𝑘=0
𝑧
𝑘=0

∑ {exp {𝛼𝑗[𝑤(𝜃−𝛿𝑗)−∑ 𝜏𝑗𝑘]}𝑤
𝑘=0

𝐶
𝑤=0  + exp {𝛼𝑗[(𝑀−𝑤)(𝜃−𝛿𝑗)−∑ 𝜏𝑗𝑘]}}𝑤

𝑘=0

 .    (55) 

The additional parameters include M, which corresponds to the strongest level of disagreement 

from above the item (M is the total number of subjective response categories minus 1), 𝛿𝑗 is the 

item location parameter, and 𝜏𝑗𝑘 is the location of the kth threshold on the latent continuum 

relative to the location of the jth item. Although a relative increase in complexity is evident, the 

GGUM package in R (Tendeiro & Castro-Alvarez, 2019) makes it an accessible option for 

researchers. 

Person-Fit Statistic Performance Under Model Misspecification 

From a statistical standpoint, the performance of a person-fit statistic depends on several 

assumptions. One of these, and a particular focus of this study, is the assumption that the correct 

underlying response process is correctly specified. The performance of person-fit statistics under 

model misspecification have been studied under dominance frameworks. Meijer and Tendeiro 

(2012) highlight the importance of investigating model and item fit before assessing person-fit 

with the 𝑙𝑧 and 𝑙𝑧
∗ statistics for dichotomous data. Without information regarding model and item 

fit, item response patterns may be flagged by person-fit statistics due model-data misfit or due to 

actual aberrant responding behavior. In the empirical study, when the better-fitting IRT model 

(2PL) was fit to the data, the study illustrated how the distribution of the  𝑙𝑧
∗ was superior and 

relatively closer to standard normal than the 𝑙𝑧 distribution. This is in contrast to the findings by 
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Magis et al. (2012) where the 𝑙𝑧
∗ statistic had worse fit for extreme values, which the authors note 

may have been due to possible misfit of the IRT model used to fit the data (i.e., the 2-parameter 

logistic model was used instead of the possibly more appropriate 3-parameter logistic model for 

language assessment data). When Tendeiro and Meijer (2012) intentionally used the wrong IRT 

model (done by constraining the discrimination parameters), the left tails of the 𝑙𝑧 and 𝑙𝑧
∗ 

distributions were thicker, though the differences were not as large for the 𝑙𝑧
∗. Under the 

misspecification condition, the 𝑙𝑧 distribution appeared to be slightly closer to standard normal 

probably because of the inflation of the statistic due to the many misfitting scores detected 

because of model misfit. These results resemble those found in the Magis et al. (2012) paper, 

supporting the suggested possible explanation for why the 𝑙𝑧
∗  statistic had a somewhat different 

distribution than the expected standard normal density (model misfit).  

More recently, Hong et al. (2020) used a simulation study along with two empirical 

examples to reveal potential consequences of model misspecification for common logistic IRT 

models (i.e., 1PL, 2PL, and 3PL) when using the popular 𝑙𝑧
∗  and the extended caution index 𝜁2

∗ 

(Sinharay, 2016a; Tatsuoka, 1984). In the simulation study, data did not include aberrant 

response vectors. Thus, detected responses by the person-fit statistics reflected type I error rates. 

Results illustrated that type I error rates were inflated for conditions where models were 

misspecified compared to when the correct models were fit to the data. When type I error rates 

were compared conditionally on person parameters (𝜃), the impact of misspecification was 

amplified for extreme values of 𝜃, reaching rates of .27 under certain conditions. The study also 

showed that neither of the person-fit statistics used were robust to model misspecification. The 

model misfit conditions where the 1PL was fit to either the 2PL or 3PL had the greatest inflated 

type I error rates. The authors encouraged practitioners to consider specifying relatively complex 
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IRT models for the purpose of producing person-fit statistics. However further research is 

warranted to test this hypothesis, especially in the context of unfolding versus dominance 

models, where the impact of model misspecification on person-fit statistic performance is 

unstudied.  

Purpose 

The current research extends these previous studies by including both dominance and 

unfolding models in a simulation study where conditions can be fully controlled by the 

researcher to reveal the effects of various factors on the performance of person-fit statistics. In 

addition to investigating the relative performance of the person-fit statistics under the context of 

two different underlying response processes, the study will add to the literature regarding the 

effects of model misspecification as well. Although model fit is routinely part of item analysis 

procedures, the primary driver for model fit investigation is usually not person-fit analyses. For 

example, model fit investigations may be conducted for a scale intended to be used for 

proficiency classification, which may be quite robust to model misspecification (S. E. Hong et 

al., 2020). Another example includes the retention of items, even though items may show misfit, 

due to practical concerns such as the need to satisfy test assembly requirements. These examples 

of model misspecification and the retention of items exhibiting misfit could have severe effects 

on person-fit analyses and need to be investigated further, especially under an unfolding model 

context where very little research regarding person-fit analysis has been published. The purpose 

of this study is to assess the performance of parametric and nonparametric person-fit statistics in 

identifying varying types of aberrant responders (midpoint and extreme responding, 

invariant/longstring responding, random responding) in the context of two underlying response 

processes (dominance versus ideal point) that have either been correctly or incorrectly specified. 
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It is anticipated that in the cases of poor model fit, the person-fit statistics will not perform as 

well. One goal is to provide insight on the point at which this hypothesized decline in 

performance is most apparent. The research questions driving the study include: 

1) What are the effects of model (mis)specification of dominance and unfolding models 

applied to dominance or unfolding data on the performance of parametric and 

nonparametric person-fit statistics for detecting aberrant data?  

a. How accurately do the selected person-fit statistics identify aberrant responding when 

a(an): 

i. dominance model is applied to dominance data? 

ii. unfolding model is applied to unfolding data?  

iii. dominance model is applied unfolding data?  

iv. unfolding model is applied to dominance data? 

b. How does the performance of the parametric person-fit statistics 𝑙𝑧(𝑝) and 

𝑙𝑧(𝑝)
∗  compare to nonparametric person-fit statistics (𝐺𝑝 and 𝐺𝑁

𝑃  ) under unfolding and 

dominance model contexts?   

i. Are the trends and magnitudes for detection and type I error rates (e.g., higher 

detection rates with longer tests) the same under unfolding and dominance 

frameworks?   

c. What kinds of aberrant behavior are most/least easily detectable via parametric and 

nonparametric person-fit analyses when using unfolding vs dominant response 

frameworks, and under what conditions?   
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Methods 

Simulation Factors 

A series of simulations was conducted to assess the performance of the person-fit 

statistics for a fixed sample size of 1,000 simulee responses to 6-point items. The study included 

360 completely crossed conditions including 2 data generating mechanisms (GPCM and GGUM) 

× 2 models used in fitting the data (GPCM and GGUM) × 3 proportions of aberrant responders 

in the sample (AbN: .04, .10, .20) × 3 proportions of aberrant responses within response vectors 

(AbI: 20%, 40%, or 60%) × 5 types of aberrant responding and response style conditions 

(random responders, longstring, MRS, ERS, mixed) × 2 test lengths (20, 40). A total of 100 

replications were generated for each condition. All code for generating and estimating model 

parameters, model fit statistics, and person-fit statistic values were written in R (R Core Team, 

2016). Code is attached in Appendices A through F. 

Simulation Procedures 

First, data were generated for the “clean” or uncontaminated unfolding data under the 

GGUM and dominant data under the GPCM. To do this, person parameters were randomly 

drawn from the standard normal distribution. For the GGUM datasets, the GenData.GGUM 

function in R was used to generate the person parameters, item parameters, and item scores. The 

item discrimination parameters (𝛼𝑗) were randomly sampled from a uniform distribution [0.5, 

2.0], and the item location parameters (𝛿𝑗) were randomly sampled from the standard normal 

distribution truncated between -2.0 and 2.0. Using procedures described in Roberts et al. (2002), 

the locations of the threshold parameters (𝜏𝑗𝑘), relative to the location of the jth item, were 

recursively generated.  
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For the GPCM datasets, item discrimination parameters were also randomly sampled 

from a uniform distribution [0.5, 2.0], and item difficulty parameters were sampled from the 

standard normal distribution N(0,1). To simulate item category thresholds, 𝑑𝑗𝑘, for step k of item 

j, the sequential cumulative sum was taken for five numbers drawn from a random uniform 

distribution between .3 and 1. This results in distances of .30 or greater between categories to 

increase the chance of responses in each category (Chalmers, 2012). Next, each number in the set 

of sequential cumulative sums was centered around their mean. Additionally, the initial item 

category threshold, dj0, was set to 0 in order for the model to be identified (Muraki, 1992). The 

sim_gpcm function in R (PP package; Reif & Steinfeld, 2021) was used to simulate the GPCM 

response data.  

To obtain datasets that included aberrant data, response vectors from the clean datasets 

were replaced with vectors simulated to be aberrant. The proportion of items (AbI) and response 

vectors (AbN) that were replaced depended on the condition. For random responding, the values 

of randomly sampled numbers from a uniform distribution [0,5] replaced a proportion of items 

(𝐴𝑏𝐼 × the number of items) for each simulee designated to be “aberrant.” To simulate 

longstring responses, a single value randomly sampled from a uniform distribution [0,5] replaced 

either 20%, 40%, or 60% of consecutive item responses (AbI) in an aberrant response vector 

(DeSimone et al., 2018). To do this, an initial starting position in the response vector was 

randomly drawn so that the longstring could fulfill the AbI condition. For response vectors 

reflecting MRS, endpoint item scores and item scores adjacent to the endpoints were replaced 

with the nearest midpoint response (i.e., on the 6-point scale ranging from 0 to 5, items scores of 

0 and 1 were replaced with a 2, and scores of 4 and 5 were replaced with a 3). Conversely, for 

ERS responding, item scores in the middle range were changed to the nearest endpoint responses 
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(i.e., 1s and 2s were changed to 0; 3s and 4s were changed to 5). An additional “mixed” 

condition of aberrant responding was included in the study to mimic the realistic testing situation 

where a mixture of aberrant response types show up in the data. For this condition, an equal 

proportion of each type of aberrant responding replaced the response vectors for aberrant 

simulees (random responding, longstrings, ERS and MRS). To clarify, each aberrant simulee was 

designated with a single type of aberrant responding, and the datasets consisted of a mixture of 

the four types of aberrant responders for the “mixed” condition.  

Model Fit and Parameter Recovery 

Once the datasets were created (clean and aberrant), both the GPCM (using the MIRT 

function in R; Chalmers, 2012) and GGUM (using the GGUM package in R; Tendeiro & Castro-

Alvarez, 2019) were used to fit the data under the various conditions. Any time GPCM was fit to 

GGUM responses, “Likert-scaling techniques” described in Tay et al. (2011) and Tay and 

Drasgow (2012) were applied by reverse scoring the lower 30% of items on the continuum. 

Then, any remaining items with negative item-total biserial correlations were also reverse scored. 

The investigation of model fit, item fit, and parameter recovery was an important precursor to 

investigating person-fit with the person-fit statistics in the study. As noted in the research, model 

fit can have an impact on the performance of person-fit statistics (Meijer & Tendeiro, 2012). As 

Tendeiro (2017) notes, and others have shown (St-Onge et al., 2011), the impact of the 

operationalization of the aberrant responding entered into the data could have effects on the 

performance of person-fit statistics. In the cross-fitting conditions (e.g., where the parametric 

statistics use parameter estimates from the GPCM fit to GGUM data), parameter quality is not 

expected to be relatively high, even for clean data. In these cases, it is expected for the person-fit 

statistics to not perform as well. The purpose for this type of condition is to evaluate the 
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flexibility of the models and investigate the rate at which the person-fit statistic performance 

declines. One of the advantages to using a simulation for the study was having full control over 

factors to reveal effects undetectable in realistic empirical studies. 

Under each condition, multiple aspects of model fit were examined including 

dimensionality, information criteria, item-fit, and quality of parameter estimates. Dimensionality 

was investigated using parallel analysis in R (‘paran’ package; Dinno, 2018) where Horn’s 

technique was used. This technique adjusts for the sample error-induced inflation while 

quantitatively and graphically determining the number of factors retained in a Principal 

Components Analysis (PCA).  

Information criterion-based statistics are commonly used in the process of selecting a 

model. The Akaike Information Criterion (AIC; Akaike, 1974) and Bayes Information Criterion 

(BIC; Schwarz, 1978) allow for relative model fit and penalize for parameters being added to the 

model. The BIC penalty is stronger and lower values indicate better fit, as demonstrated in the 

computations: 

𝐴𝐼𝐶 = 2𝑘 − 2 ln(�̂�)         (56) 

𝐵𝐼𝐶 = 𝑘 ln(𝑛) − 2ln (�̂�)            (57) 

where 𝑘 is the number of parameters estimated by the model, �̂� is the maximized value of the 

likelihood function for the model, and 𝑛 is the sample size. Both the AIC and BIC are used in the 

current study to demonstrate the relative fit of each model to the data under different conditions.  

To further assess model fit, the item-level goodness-of-fit was examined using adjusted 

𝜒2/𝑑𝑓 ratios (Drasgow et al., 1995) for doublets and triplets of items. This procedure was 

successfully used by Tay et al. (2011) when comparing relative model fit for dominance and 

unfolding models. The ordinary chi-square statistic is computed using the observed (𝑂𝑗𝑧) and 
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expected (𝐸𝑗𝑧) frequencies of item j response option z based on the estimated item parameters 

and distribution of abilities. 

                                                                     𝜒𝑗
2 = ∑

(𝑂𝑗𝑧−𝐸𝑗𝑧)
2

𝐸𝑗𝑧

𝐶
𝑧=0 ,                                 (58) 

with 𝐸𝑗𝑧 = 𝑁 ∫ 𝑃𝑗𝑧(𝜃)𝜙(𝜃)𝑑𝜃, where 𝜙(𝜃) is the standard normal density function. Equation 11 

is written for single items. However, chi-squares for single items have been found to be 

insensitive to unidimensionality and local independence violations (Drasgow et al., 1995). Thus, 

Equation 3 is often generalized to apply to pairs of items (doublets) and triples of items (triplets). 

Additionally, the 𝜒2 statistic is adjusted to a sample size of 3,000 (Drasgow et al., 1995; Lahuis 

& Clark, 2009) to make it more generalizable across samples of different sizes. The resulting 

formula is: 

𝜒2/𝑑𝑓 =  
3,000(𝜒𝑗

2−𝑑𝑓)

𝑁
+ 𝑑𝑓              (59) 

where the degrees of freedom (df) depend on the number of singlets, doublets or triplets used. A 

common rule of thumb is that an adjusted  𝜒2/𝑑𝑓 larger than 3 be considered indicative of model 

misfit (Stark et al., 2006; Tay et al., 2011; Tendeiro, 2017). 

Additionally, the quality of parameter estimates was compared across conditions to reveal 

any differences in parameter recovery that may affect the performance of the person-fit statistics.  

Following the procedures used in Tendeiro (2017), the bias, mean absolute deviation (MAD), 

and the correlation (COR) between true and estimated parameters were computed using the 

following equations: 

𝑀𝐴𝐷 = ∑ |𝛾𝑡 − 𝛾𝑡
𝑇𝑅𝑈𝐸|/𝑇𝑇

𝑡=1              (60) 

𝐵𝐼𝐴𝑆 = ∑ (𝛾𝑡 − 𝛾𝑡
𝑇𝑅𝑈𝐸)/𝑇𝑇

𝑡=1              (61) 

𝐶𝑂𝑅 = 𝑐𝑜𝑟(𝛾𝑡, 𝛾𝑡
𝑇𝑅𝑈𝐸), 𝑡 = 1, … , 𝑇,                                   (62) 
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where 𝛾�̂� is the estimated parameter and 𝛾𝑡
𝑇𝑅𝑈𝐸 is the true simulated value for the parameter 

representing either 𝛼𝑗 , 𝛿𝑗 , 𝜏𝑗𝑘 , and 𝜃𝑛 for the GGUM parameters or 𝛼𝑗 , 𝑏𝑗𝑘, and 𝜃𝑛 for the 

GPCM, and T is the corresponding total number of that parameter. For example, T is equal to the 

number of items for 𝛼𝑗 and 𝛿𝑗. For 𝜏𝑗𝑘 , T equals I (the number of items) times C (the number of 

observed response categories minus 1), and for 𝑛, T is equal to the sample size. For each 

condition, the MAD, bias, and correlations were computed and averaged over all replications. To 

illustrate the variability in parameter bias, standard deviations for these averages are also 

reported. 

For the cross-fitting conditions (fitting GPCM to GGUM data or the GGUM to the 

GPCM data), some estimated parameters are not directly comparable. For example, in dominant 

IRT models the location parameter represents the person parameter associated with a .50 

probability of choosing a response. However, in unfolding models, the location parameter 

represents the person parameter associated with the highest probability of endorsement. The 

subjective thresholds in GGUM do not exist for GPCM, and the discrimination parameters for 

non-monotonically increasing items may result in negative values, so averaging over a condition 

may be misleading. Thus, for conditions where the inappropriate model was applied to the data, 

parameter quality is discussed for person scoring only. 

Computing and Evaluating the Person-fit Statistics 

To compute the parametric person-fit statistics used in the study, 𝑙𝑧(𝑝) and the 𝑙𝑧(𝑝)
∗ , both 

the GPCM and the GGUM were used to estimate relevant parameters. Code was written in R to 

compute two versions of the 𝑙𝑧(𝑝) and 𝑙𝑧(𝑝)
∗  statistics: one specifying the GPCM and one 

specifying the GGUM to estimate parameters. When GPCM was fit to the data, results for the 

𝑙𝑧(𝑝) statistic were checked using the PerFit package in R. When GGUM was fit to the data, R 
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code closely followed publicly available code written by Tendeiro (2021) on the Open Science 

Framework (OSF) repository. Once parameters were estimated from each aberrant dataset within 

each condition and replication, model-fitting data were generated for 1,000 simulees based on 

these parameter estimates. Person-fit statistics were then computed for the model-fitting data. 

Next, the value associated with the critical point for a 5% probability of a type I error for each 

person-fit statistic was found as demonstrated in previous research (Emons, 2008; Tendeiro, 

2017). This procedure was replicated 20 times within each replication for all study conditions 

and the median cutoff value was used as criteria for identifying aberrant simulees.  To assess the 

performance of the 𝑙𝑧(𝑝) and  𝑙𝑧(𝑝)
∗  person-fit statistics, both type I error and detection rates were 

computed for each replication of each condition. Type I error was calculated by computing the 

detection rate for simulees in a dataset with non-aberrant responses (i.e., calculating the 

proportion of simulees that were incorrectly flagged as aberrant). Power was also computed for 

each person-fit statistic as the proportion of simulees that were generated to have aberrant 

response vectors that were correctly flagged as aberrant.  

Results 

Dimensionality and Model Fit 

 Results for dimensionality and model fit are described in detail in Study 1 of this 

dissertation. Using parallel analysis with Horn’s technique, the number of factors retained were 

averaged across replications to compare dimensionality results across different conditions. The 

clean data with 20 items generated under a dominance framework (GPCM) were almost always 

found to be unidimensional (mean factors retained over all replications was 1.11) and more often 

found to retain 2 factors under the 40-item condition (M = 1.84). Adding aberrant responses to 

the dominance data resulted in additional factors being retained (M = 1.44 for aberrant datasets 
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with 20 items and M = 2.06 for aberrant datasets with 40 items). Data generated according to an 

ideal point framework (GGUM), nearly always retained 2 factors for both 20-item and 40-item 

datasets. Adding aberrant responses to the GGUM datasets had very little impact on 

dimensionality. 

 Comparing relative fit of each model to the data using information criteria (AIC and BIC) 

revealed that the GGUM may be able to fit GPCM data as well as the GPCM. However, the 

GPCM did not fit GGUM data as well according to these criteria. When adding aberrant 

responses to the data, random responding seemed to have the greatest negative impact on model 

fit for both GPCM and GGUM data. ERS had the lowest impact on model fit for GGUM data, in 

many cases resulting in improved fit compared to the clean data according to the AIC and BIC 

values. For GPCM data, MRS tended to impact model fit less. Nonetheless, adding aberrant 

responses to the dominance data always resulted in a decline in model fit.  

 When the correct model was used to fit the data, or when GGUM was used to fit GPCM 

data, results based on adjusted 𝜒2/𝑑𝑓 for item doublets and triplets showed that no fit issues 

occurred when the proportion of aberrant responders (AbN) was 10% or less and the proportion 

of aberrant responses within a response vector (AbI) was 40% or less. Under these conditions, 

the percent of flagged triplets was lower than 5% for all types of aberrant responding except 

MRS, where up to 14% of the triplets were flagged when GGUM fit GPCM data. However, 

when GPCM was fit to GGUM data, all aberrant and clean conditions resulted in 38% or more of 

item triplets being flagged. Further, when 20% of the sample was designated as aberrant 

responders and 60% of the items were replaced with aberrant scores within each response vector 

for those simulees, item triplets were flagged at rates of 25% or higher for all model fitting 

conditions except one. When GGUM was correctly fit to GGUM data, even the most severe 
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conditions of random responding used in the study (AbI = 60% and AbN = 20%) had negligible 

effects on the percent of item triplets being flagged. The flag rates were highest for ERS and 

MRS, reaching 90-100% for all model fitting conditions.  

 The quality of parameter recovery was also evaluated, as it could potentially affect the 

performance of the parametric person-fit statistics used in the study. When the correct model was 

used, or when GGUM was fit to GPCM data, estimated person parameters were always strongly 

correlated with their true values (r ≥ .91), even under conditions with AbN = 20% and AbI = 

60%. When GPCM was fit to GGUM data, correlations between estimated and true person 

parameters ranged from .65 to .71, indicating GPCM is not as capable of recovering person 

parameters for ideal point data compared to GGUM when used with dominance data. Average 

discrimination parameter recovery was slightly more affected by factors AbI and AbN, where 

correlations between estimated and true values declined and MAD increased with increasing 

levels of AbI and AbN. Discrimination parameters were nearly always underestimated. When the 

appropriate model was used to fit the data, estimated discrimination parameter BIAS ranged 

from -0.04 to -0.19 for ideal point data, and -0.04 to -0.32 for dominance data. Overall, when 

AbN was 10% or less, discrimination parameters were recovered well with the correlations 

ranging from .94 to .98 for ideal point data (GGUM), and from .89 to .97 for dominance data 

(GPCM). Once AbN and AbI reached 20% and 60% respectively, correlations between estimated 

and true discrimination parameters declined to .77 for dominance data and .85 for ideal point 

data. This is important to keep in mind because if the operationalization of these types of 

aberrant responding under certain conditions affect estimation of model parameters, the 

adequacy of the performance of the parametric person-fit statistics may be distorted. While it 

may be difficult to determine whether performance under these certain conditions is due to the 
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person-fit statistic or the operationalization of the aberrant responding, this mimics what may 

happen in real research situations. Looking at overall trends and considering the broader picture 

could reveal situations where these statistics may have difficulty in detecting aberrant 

responding. 

Type I Error 

 Figure 21 shows the false detection rates (Type I error) of all person-fit statistics under all 

four model-data fit conditions when 20 items were used. The first model-data fit condition shows 

Type I error rates when GGUM was appropriately fit to GGUM data. Under this condition, the 

two parametric person-fit statistics (𝑙𝑧(𝑝) and 𝑙𝑧(𝑝)
∗ ) tended to have more conservative Type I 

error rates, compared to the nonparametric person-fit statistics, for all types of aberrant 

responding except ERS. This was especially true in the case of random responding, where type I 

error rates were as low as .01 for both 𝑙𝑧(𝑝) and 𝑙𝑧(𝑝)
∗  when AbI = 60% and AbN = 20%. Type I 

error rates were slightly inflated for the nonparametric person-fit statistics when the aberrant 

responding was set to MRS under this model-data fit condition. When GPCM was appropriately 

fit to GPCM data, Type I error rates tended to stay at or below the 5% nominal error rate. In 

general, a downward trend in Type I error resulted from increasing the aberrant responding 

conditions AbI and AbN, except in the case where MRS was the specified aberrant response type. 

These results were very similar when GGUM was fit to the GPCM data. However, when GPCM 

was fit to GGUM data, Type I error rates were inflated under all conditions, reaching false 

detection rates as high as 21%.  

 In datasets with 40 items (Figure 22), type I error was slightly higher for correctly 

specified models and when GGUM was applied to GPCM data. However, rates were generally 

not inflated when the percentage of simulees with aberrant data was 10% or less (AbN) with up 



 

179 

 

to 60% AbI. The conditions of 20% simulees with random responding or longstrings also 

retained sufficient control of type I error. Inflated type I error occurred with GGUM data when 

20% of simulees had ERS or MRS. In comparison, when GPCM was misapplied to GGUM data, 

all person-fit statistics for all aberrant conditions exhibited inflated type I error rates (> .10) with 

the highest type I error occurring in data with ERS simulees when using 𝑙𝑧(𝑝). Across all aberrant 

conditions when GPCM was misapplied to GGUM data, 𝑙𝑧(𝑝) demonstrated the highest type I 

error rates, whereas 𝑙𝑧(𝑝)
∗  exhibited the second highest type I error rates.  
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Figure 21. Average Type I Error for Non-Aberrant Simulees in GPCM and GGUM 

Datasets (20 items) 
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Figure 22. Average Type I Error for Non-Aberrant Simulees in GPCM and GGUM 

Datasets (40 items)    
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Detection of Random Responding 

 Figure 23 shows the average power rates for detecting random responding in datasets 

containing 20 (upper) and 40 items (lower). In general, increasing the number of items and level 

of AbI, and decreasing levels of AbN, resulted in higher detection rates for random responding, 

except in the case for nonparametric person-fit statistics applied to the GGUM fit to GGUM data 

condition. When the appropriate model was fit to the dominance data (Section A – GPCM fit to 

GPCM data), 𝑙𝑧(𝑝) and 𝑙𝑧(𝑝)
∗  and 𝐺𝑃tended to have slightly higher power rates than the 𝐺𝑁

𝑃  

statistic, though the gap narrowed when the number of items increased from 20 to 40. Power was 

highest (97%) for the condition of AbI = 60% and AbN = 4% using 𝑙𝑧(𝑝). When GGUM was fit to 

the GGUM data, the parametric person-fit statistics clearly outperformed the nonparametric 

person-fit statistics. However, 𝑙𝑧(𝑝) and 𝑙𝑧(𝑝)
∗  had slightly lower power in the ideal point setting 

where detection rates ranged from .33 to .89 for 20-item datasets, compared to .46 to .97 in the 

dominance setting. 

 In the cross-fitting model conditions (when GGUM was fit to GPCM data or when 

GPCM was fit to GGUM data) shown in section B of Figure 23, trends continued to follow the 

pattern where increasing the number of items and AbI increases the ability for the person-fit 

statistics to detect aberrant responding. Additionally, decreasing the proportion of aberrant 

simulees in the sample (AbN) resulted in higher power rates. When GGUM was inappropriately 

fit to GPCM data, the person-fit statistics had very comparable power rates to when the 

appropriate model was fit to the GPCM data. Conversely, when GPCM was inappropriately fit to 

the GGUM data, results were drastically different. First, the power to detect random responding 

using the parametric person-fit statistics, dropped to a range of .21 to .57. Second, the detection 

rates of the nonparametric person-fit statistics in the ideal point setting increased. However, these 
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results should be interpreted jointly with the results for Type I error rates. In other words, while 

the power increased for the nonparametric person-fit statistics in the ideal point setting when the 

inappropriate model was used to fit the data and compute cut-off criteria, so did the Type I error 

to a large degree.  

 

Figure 23. Average Power for Detecting Random Responding 
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Detection of Longstrings 

Longstrings were more difficult to detect than random responding (Figure 24). The 𝑙𝑧(𝑝) 

and 𝑙𝑧(𝑝)
∗  statistics seemed to have the highest power detecting this type of aberrant responding 

compared to the other person-fit statistics in the study. Increasing the number of items from 20 to 

40 noticeably increased power. In general, as the proportion of aberrant items within a response 

string increased, so did power. However, in several cases, once AbN hit 20% and more than half 

of the response string was replaced with a longstring (AbI = 60%), power levels either plateaued 

or decreased. The 𝑙𝑧(𝑝) and 𝑙𝑧(𝑝)
∗  statistics had the most success under all conditions, especially 

under the condition where GGUM was fit to the GGUM data. When GPCM was fit to GPCM 

data, power to detect longstrings ranged from .37 to .69 under the 20-item conditions (.46 to .85 

when 40 items) using 𝑙𝑧(𝑝)
∗ . When GGUM was appropriately fit to GGUM data, power to detect 

longstrings using 𝑙𝑧(𝑝)
∗  was comparatively low, ranging from .28 to .44 under the 20-item 

conditions (.34 to .53 under the 40-item conditions). When GGUM was fit to GPCM, the 𝑙𝑧(𝑝) 

and 𝑙𝑧(𝑝)
∗  statistics demonstrated slightly higher power than they did when GPCM was 

appropriately used for the GPCM data, however power was moderate. Power under the cross-

fitting condition of GPCM fit to GGUM data revealed higher detection rates for parametric than 

nonparametric person-fit statistics compared to when the appropriate model was used, again, at 

the cost of inflated Type I error.  
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Figure 24. Average Power for Detecting Longstrings 
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Detection of ERS 

Figure 25 shows the power rates for all person-fit statistics used to detect ERS. In the 

dominance setting (when GPCM was appropriately fit to the GPCM data), ERS was most easily 

detected by 𝐺𝑁
𝑃 with power reaching 100% in the 40-item datasets when AbN = 4% and AbI = 

60%. The parametric person-fit statistics had the most trouble detecting ERS in all model-data fit 

conditions. Within the conditions where the appropriate model was fit to the 20-item datasets, in 

the dominance context power using the 𝑙𝑧(𝑝) and 𝑙𝑧(𝑝)
∗  statistics ranged from .21 to .85, and in the 

ideal point context power ranged from .02 to .15. For the nonparametric person-fit statistics used 

on the GPCM data, increasing AbI and the number of items, while decreasing AbN, generally 

resulted in higher power. ERS was very difficult to detect in the ideal point setting. When 

GGUM was fit to GGUM data, 𝐺𝑁
𝑃 had the highest detection rates, topping out at 25% for 20-

item (18% for 40-item) datasets when AbN = 4% and AbI = 60%. Contrary to the results under 

the other model fitting conditions, adding items slightly decreased the detection rates for ERS 

when GGUM was fit to GGUM data. When aberrant conditions were highest (AbN = 20% and 

AbI ≥ 40%), the 𝑙𝑧(𝑝) and 𝑙𝑧(𝑝)
∗  statistics had the most trouble detecting ERS within GGUM data. 

Regarding the model cross-fit conditions, when GGUM was fit to GPCM data, detection rates 

were very similar to when the appropriate model was used for the GPCM data. When GPCM 

was fit to GGUM data, power increased for the nonparametric person-fit statistics, however 

caution is again provided as type I error was inflated for this condition. The lower detection rates 

using the 𝑙𝑧(𝑝) and 𝑙𝑧(𝑝)
∗  statistics, which depend on the parameter estimates from the 

inappropriate model fit of GPCM to GGUM data, became more evident (as low as 2% in some 

cases). 
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Figure 25. Average Power for Detecting Extreme Response Style (ERS) 

Model Fit/AbN 
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Detection of MRS 

When data reflected a dominance framework, MRS seemed to be the most difficult type 

of aberrant responding to detect (Figure 26). When data were generated using GPCM and the 

GPCM was used to fit the data, detection rates ranged from 5 to 33% across all person-fit 

statistics used in the study for the 20-item datasets and from 6 to 46% for the 40-item datasets. In 

the cleaner GPCM datasets, 𝑙𝑧(𝑝) and 𝑙𝑧(𝑝)
∗  had the highest detection rates, but once 10% of the 

sample demonstrated MRS (AbN ≥  .10), the differences in detection rates across the different 

person-fit statistics became very small. Detection of MRS under the ideal point setting with the 

appropriate model fit to 40-item datasets had a very broad range depending on the condition (0 to 

96%). When 40 items were used, AbN = .04, and AbI = .60, 𝑙𝑧(𝑝) and 𝑙𝑧(𝑝)
∗  were both able to 

detect MRS at a rate of 96%. However, using the same person-fit statistics under the same 

conditions except increasing AbN from .04 to .20, detection rates declined to 16%. When the 

appropriate model was fit to the GGUM data, the 𝑙𝑧(𝑝) and 𝑙𝑧(𝑝)
∗  statistics demonstrated a clear 

advantage over the nonparametric person-fit statistics in detecting MRS in the ideal point setting. 

In the cross-fitting conditions, power never reached above 32% for 20-item datasets and 45% for 

40-item datasets. Using the highest performing person-fit statistics in each model-data fit 

condition, power generally increased with increasing levels of AbI until AbI reached 60%, at 

which point power tended to decrease. In other words, once artificial middle responses made up 

over half of the responses within a response vector, they often became more difficult to detect.  
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Figure 26. Average Power for Detecting Midpoint Response Style (MRS) 

Model Fit/AbN 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Detection of Mixed Aberrant Responding 

 The mixed aberrant responding condition was used to mimic what data may look like in a 

real testing scenario, where different respondents in the sample may demonstrate different types 

of aberrant tendencies. When the sample consisted of all four types of aberrant respondents 

(random responders, longstrings, MRS and ERS), the parametric person-fit statistics generally 

had higher detection rates compared the nonparametric person-fit statistics used in the study (see 

GPCM fits GPCM      GGUM fits GGUM     GGUM fits GPCM      GPCM fits GGUM 

A. Appropriate Model Fit                                     B. Cross Model Fit 
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Figure 27). This superiority was most notable for GGUM datasets when the appropriate model 

was used to estimate parameters. In the dominance data setting, the non-normed 𝐺𝑃demonstrated 

slightly lower power on average, a trend more noticeable in the 40-item datasets. When the 

appropriate model was fit to the data, 𝑙𝑧(𝑝) and 𝑙𝑧(𝑝)
∗  had slightly higher power in the dominance 

setting compared to the ideal point setting. For example, in the 40-item datasets with 4% AbN 

and 60% AbI, 𝑙𝑧(𝑝) and 𝑙𝑧(𝑝)
∗  both detected aberrant responding at an average rate of 86% in the 

GPCM datasets and 69% in the GGUM datasets. Patterns in detection rates across the different 

conditions for mixed aberrant responding illustrated an aggregate upward trend when AbI 

increased, the number of items increased, and when AbN decreased.  
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Figure 27. Average Power for Detecting Mixed Aberrant Responding 
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Discussion 

Many researchers suggest that the quality of data be inspected before interpreting 

analytical results (e.g., DeSimone et al., 2018; Huang et al., 2012; Kline, 2009) as the presence 

of aberrant data can impact conclusions made from statistical analyses. As discussed in this 

paper, many approaches used to detect aberrant responding have been studied under a dominance 

GPCM fits GPCM      GGUM fits GGUM     GGUM fits GPCM      GPCM fits GGUM 

A. Appropriate Model Fit                                     B. Cross Model Fit 
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context. The nonparametric person-fit statistics used in the study are popular due to their ease of 

computation, not being based on strict model assumptions, and previous work that has shown 

their potential in detecting certain types of aberrant responding. However, these procedures have 

not been well-studied with ideal point response data, and the published research work regarding 

parametric person-fit statistics is scarce under an ideal point context (Tendeiro, 2017). Further, it 

was unclear how these nonparametric and parametric person-fit statistics would perform when 

dominance or ideal point response data are misspecified. Researchers who use nonparametric 

person-fit statistics may do so without assessing model fit if their primary analyses do not require 

the fit of an IRT model. Without knowing which type of response process is more appropriate for 

a set of data, researchers may be using person-fit statistics that are not effective for their data and 

the type of aberrant behavior present. Further, selecting cutoff criteria using a procedure that 

does not represent the response process of the empirical data may also have a significant impact 

on aberrant data detection. In this study, two nonparametric and two parametric person-fit 

statistics that have been shown to work well in the dominance setting were applied to ideal point 

data in a simulated design so that full control of factors could allow for comparison between the 

different approaches across various settings. 

 Under model misspecification, results were consistent with expectations that the Type I 

error would be most inflated when GPCM was inappropriately fit to data generated according to 

GGUM. Several studies, including the current study, suggest that unfolding models may be able 

to adequately fit dominance data, while the same may not be true for dominance models (e.g., 

GPCM) fit to unfolding data (e.g., Stark et al., 2006; Tay et al., 2011). Type I error rates reached 

as high as 31% when GPCM was used to fit GGUM data with 40 items. This is partially due to 

how the cutoff criteria was obtained. As previously mentioned, under the condition where 
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GPCM was fit to GGUM data, it was assumed that the researcher would also use GPCM to 

generate the model-fitting data in the process of obtaining the cut-off values for the person-fit 

statistics. For instance, for the nonparametric person-fit statistic, 𝐺𝑃, it can be assumed that the 

statistic values would be lower (indicating better person-fit) in the case for GPCM model-fitting 

data, where invariant item ordering and the Guttman scale is better upheld compared to a GGUM 

setting. In this case, the median cut-off would then be lower too. When this cutoff value was 

applied to the GGUM data (where 𝐺𝑃 values were higher due to the nature of unfolding data), 

more vectors would be flagged, even though they may not be aberrant, resulting in high Type I 

error rates. Under the second cross fit condition (GGUM fit to GPCM data), Type I error rates 

were much closer to the 5% nominal rate, an indication that data generated according to GGUM 

may be an adequate approximation of GPCM data under the conditions used in the study. 

 To the researchers’ knowledge, there is no published work on parametric person-fit 

analysis detecting random responding and longstrings in GGUM data. Random responding in the 

GGUM datasets was more prone to detection than any other type of aberrant responding in the 

study (longstrings, ERS, MRS and Mixed aberrant responding). The parametric person-fit 

statistics had the most success in detecting random responding in the unfolding setting. 

Longstrings were relatively more difficult to detect than random responding in both GPCM and 

GGUM datasets. Compared to when GPCM was appropriately fit to GPCM data, cross-fitting 

GGUM to GPCM data resulted in power to detect random and longstring responses that was 

equally as high or higher in some cases. However, when cross-fitting GPCM to GGUM data, 

detection rates were low for longstring and random responding, while Type I error rates were 

inflated under this condition.  
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Researchers have cautioned that when respondents within a sample are inconsistent in 

exhibiting response styles (such as ERS or MRS),  it can be very difficult to compare 

participants’ test scores and the validity of conclusions drawn from the data is threatened 

(Baumgartner & Steenkamp, 2001; de Jong et al., 2008; van Herk et al., 2004). In the presence of 

ERS, 𝐺𝑁
𝑃 had the highest detection rates across all data-model fit conditions in the study. Emons 

(2008) also found 𝑈3𝑃 and 𝐺𝑁
𝑃 to outperform 𝑙𝑧(𝑝) for detecting ERS when the dominance graded 

response model (GRM) was used. The 𝑙𝑧(𝑝) and 𝑙𝑧(𝑝)
∗  statistics had the most difficulty detecting 

ERS within the GGUM data when the proportion of the sample demonstrating ERS was higher 

(e.g., AbN = 20%). Considering the assumptions of nonparametric person-fit statistics, it was 

assumed that their detection rates would be lower in the ideal point data conditions of the study. 

This was the case for all GGUM data except when data included vectors exhibiting ERS. The 

only time nonparametric person-fit statistics outperformed the parametric person-fit statistics in 

the unfolding context was in the presence of ERS.  Tendeiro (2017) also found ERS to be more 

difficult to detect than MRS in the unfolding data context using the 𝑙𝑧(𝑝) and 𝑙𝑧(𝑝)
∗  statistics. The 

overall, lower power rates for detecting ERS in the unfolding context using the parametric 

person-fit statistics in this study were comparable to Tendeiro (2017). Liu and Wang (2019) 

demonstrated how fitting standard unfolding IRT models that assume no response style results in 

biased parameter estimates and suggest using a general unfolding model combined with a 

softmax function to accommodate various response styles via scoring functions. Thus, future 

research could investigate the performance of the 𝑙𝑧(𝑝) and 𝑙𝑧(𝑝)
∗  statistics in the ideal point 

setting when the parameter estimates are obtained using Liu and Wang’s suggested general 

unfolding model for multiple response styles. 
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Aberrant responding due to MRS was the most difficult type of aberrant responding to 

detect in the dominance setting.  Compared to the other person-fit statistics used in the study, the 

𝑙𝑧(𝑝) and 𝑙𝑧(𝑝)
∗  statistics had the most success detecting MRS in both dominance and ideal point 

settings. In the ideal point data conditions, MRS was more effectively detected than ERS by the 

𝑙𝑧(𝑝) and 𝑙𝑧(𝑝)
∗  statistics, which is also a reported finding on similar conditions in Tendeiro’s 

(2017) study. The parametric person-fit statistics demonstrated a broad range of detection rates 

for MRS in the ideal point settings, where detection rates were reasonably high unless the 

proportion of the sample with MRS (AbN) reached 20%. The detection rates for ERS and MRS 

in the unfolding and dominance settings may be affected by the proportion of extreme and 

midpoint item scores present in the randomly generated GGUM and GPCM data. For example, 

the ratio of extreme scores (0, 5) to midpoint scores (3, 4) in the clean GGUM datasets ranged 

from 1.40 to 2.08 (similar to what was reported in Tendeiro’s [2017] paper where the range was 

1.40 to 1.89). If more extreme scores naturally existed in the data, then it makes sense that 

extreme response style would be more difficult to detect. Conversely, it is reasonable to postulate 

that MRS may be relatively easier to detect in this setting.  

  Results also demonstrated how none of the person-fit statistics in the study were robust to 

model misspecification of the GPCM to GGUM data as demonstrated by the inflated type I error.  

These results serve as an important caveat to be careful when classifying aberrant responding 

within the context of ideal point data. Even when a dominance model may have adequate fit as 

deemed by some statistics, the person-fit statistic Type I error may be greatly inflated if the 

underlying response process assumptions are violated. Future research could involve different 

methods for obtaining cutoff criteria which may help alleviate this potential problem. On the 
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other hand, when GGUM was misspecified to GPCM data, both Type I error and power were 

comparable to results when the appropriate model (GPCM) was used.  

Limitations 

 There are several limitations of the study that warrant attention in the interpretation of 

results. Firstly, while the purpose of using a simulation study was to have full control over 

factors, and these factors were chosen to approximate realistic settings, the results may be limited 

in their generalizability to other factors and levels of the factors not used in the study. For 

example, the number of response categories and item discrimination were not factors in the study 

but have been found to affect the performance of person-fit statistics (Tendeiro, 2017; Tendeiro 

& Meijer, 2014). Another limitation concerns possible effects of methodological choices 

regarding how aberrant data were simulated. That is, an assumption was made that the creation 

of aberrant data accurately reflects, or at least approximates real response behavior that is 

considered aberrant. Along these lines, the definition of aberrant data could be different 

depending on the purpose and nature of the assessment. Further, the procedures used for 

determining cut-off criteria may have a significant effect on the results reported in this study, as 

the use of data replication processes for identifying cut-score heuristics would provide different 

results than pre-set criterion values. Finally, it should be realized that a confounding effect 

resulting from the impact of aberrant data on model fit and parameter estimates likely affected 

the performance of the person-fit statistics. St-Onge et al. (2011) report that the accuracy of 

person-fit statistics may increase to a certain point, and then decrease with continued increases in 

the amount of aberrant responses in the data. Thus, the operationalization of the different types 

of aberrant behavior may have systematically biased parameter estimates, which in turn could be 

the reason for the decline in person-fit statistic performance in some conditions.  
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Conclusions 

Practitioners should carefully choose the person-fit indices that make the most sense for 

their analyses. This study evaluated several parametric and nonparametric person-fit statistics for 

detecting random, longstring, ERS, MRS and mixed aberrant responding present in both 

dominance (GPCM) and ideal point (GGUM) data. The simulation results show that 

nonparametric person-fit statistics have a very limited ability to detect aberrant responding in the 

ideal point context. Additionally, extreme response style may be very difficult to detect in data 

generated according to GGUM, while MRS is difficult to detect in data generated according to 

the GPCM. Future research could improve on the detection of these types of aberrant responding 

under the two different response process assumptions.  

Prior to this study, it was unclear how the person-fit statistics would perform in detecting 

longstring and random responding in ideal point settings. The parametric person-fit statistics had 

high power for detecting random responding in the ideal point setting, and comparable power to 

results in the dominance data for longstrings. It is recommended that researchers be particularly 

careful when applying person-fit statistics to unfolding data as model fit and choice of statistics 

could greatly impact results. 
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CHAPTER 7 

OVERALL CONCLUSIONS 

The three studies presented in this dissertation explore the model fit, impacts of aberrant 

responding, and detection of aberrant responding under dominance and unfolding model contexts 

while varying conditions of test length, proportion of aberrant responders in the sample, 

proportion of aberrant responses within a response vector, types of aberrant responding, and 

model-data generation and specification. The investigation began with Study 1, where the 

impacts of aberrant responding on model fit for two parametric IRT models (GPCM and GGUM) 

based on different underlying response process assumptions were examined. One of the first 

endeavors of an empirical researcher often involves testing model assumptions and ultimately 

model fit, though recommendations for assessing dimensionality under an unfolding framework 

(compared to dominance) are far less apparent in published literature. Results from Study 1 for 

the clean (non-aberrant) GGUM datasets coincided with other studies that have found an 

additional spurious factor appearing for unfolding data (Tay et al., 2011; Tay & Drasgow, 2012; 

Williams, 2015). Aberrant responding using longstrings tended to have a greater impact on 

dimensionality assessment compared to the other types of aberrant responding in the study for 

both GPCM and GGUM datasets, with additional factors being retained from the parallel 

analyses as the occurrences of longstrings increased. Results also suggested that GGUM was 

able to fit GPCM data reasonably well, however the same was not true for GPCM fit to the 

GGUM data, a finding consistent with the literature (Chernyshenko et al., 2007; Stark et al., 

2006). A valid concern for the practical researcher involves the unknowingness of whether 

model-data misfit is a result of poor-quality data or if it is due to model misspecification. Study 1 

results emphasize the importance of carefully examining the quality of data before making 
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conclusions about model misspecification. It was also a critical precursor to Studies 2 and 3 

because model fit can impact the detection of aberrant responding which was the focus of these 

studies.  

The detection of aberrant responding under a dominance framework (using GPCM) has 

been widely researched. However, the studies in this dissertation included combinations of types 

and amounts of aberrant responding that add to the current literature in this setting. Random 

responding and ERS were relatively easier to detect than longstrings, and MRS was actually very 

difficult to detect. In the GPCM datasets with less aberrant data, 𝑙𝑧(𝑝) and 𝑙𝑧(𝑝)
∗  had the highest 

detection rates for MRS compared to the other types of person-fit statistics, but once 10% of the 

sample demonstrated MRS (AbN ≥  .10), the 𝐻𝑇 statistic usually had higher detection rates. The 

parametric person-fit statistics, 𝑙𝑧(𝑝) and 𝑙𝑧(𝑝)
∗ , also had higher detection rates than the other 

studied person-fit statistics for longstrings and random responding (along with 𝐺𝑃 ). However, 

detection of ERS in the dominance data was highest using the normed nonparametric person-fit 

statistics, 𝑈3𝑃 and 𝐺𝑁
𝑃, similar to results from Emons (2008).  

Within the conditions involving unfolding data, the detection of aberrant responding was 

reasonably effective using the parametric person-fit statistics, 𝑙𝑧(𝑝) and 𝑙𝑧(𝑝)
∗ , though power was 

slightly lower in most conditions compared to the power of these two statistics in the dominance 

setting. Similar to the results for the dominance data, the parametric person-fit statistics had the 

most success in detecting random responding in the unfolding data. However, these statistics had 

the most trouble detecting ERS. The difficulty in detecting ERS was also a finding for Tendeiro 

(2017), where the author notes this could be a consequence of the higher proportion of extreme 

responses generated in GGUM data, making ERS less likely to be identified as abnormal. 

Generally, all nonparametric person-fit statistics had a clear disadvantage in detecting aberrant 
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responding in GGUM data, except in the case of ERS, where 𝑈3𝑃 and 𝐺𝑁
𝑃 outperformed the 

parametric person-fit statistics. Nonetheless, power never reached above 25% for the 

nonparametric statistics applied to GGUM data when using the appropriate model to generate 

cutoff criteria. Currently, no known nonparametric person-fit statistics exist that have been 

shown to detect aberrant responding reasonably well in the unfolding context. 

The simulations in Study 3 also explored the effects of model misspecification on the 

performance of person-fit statistics under various conditions of aberrant responding. Results 

demonstrated how type I error rates when GPCM was misspecified to GGUM data were inflated 

compared to when the correct model was specified and compared to when GGUM was 

misspecified to GPCM data. Results also suggest that detection rates are affected by model 

misspecification when using the resampling-based method described in the study to obtain cutoff 

criteria. Again, this was most notable for the misspecification condition where GPCM was fit to 

GGUM data. Based on the findings from the study, type I error and detection rates were 

comparable for the conditions where the correct model was used and when GGUM was fit to 

GPCM data. Hong et al. (2020) encourage researchers to consider specifying relatively more 

complex alternative models when computing person-fit statistics. The current study supports this 

recommendation if the appropriate model is not known. As GGUM is considered the more 

complex model in the study, it may be used to fit GGUM and GPCM data to produce person-fit 

statistics with relatively similar results compared to when the most appropriate model is used. 

However, fitting GPCM (less complex) to GGUM data resulted in severely inflated type I error. 

Limitations 

A few principal limitations noted within each of the three studies are worth highlighting 

here. The leading purpose behind using a simulation design for the studies was to have full 



 

201 

 

control over the factors which would not have been possible using empirical data. While 

conditions were carefully chosen to reflect realistic conditions when using real data, the 

generalizability of results to real data may be limited to settings where conditions closely follow 

those used in the study. These studies used only two IRT models, two test lengths, and fixed 

sample sizes and number of response categories. In reality, results may be different for the 

numerous other possible levels of these conditions. Additionally, method effects regarding how 

the aberrant data were simulated could have impacted results. It was assumed that the way 

aberrant data (e.g., ERS, MRS) was generated mimics the behavior of respondents who exhibit 

this behavior in reality. Further, it was noted that data generated according to GGUM had a 

larger ratio of extreme to middle responses. The predominance of extreme responses within the 

unfolding data may have been a contributing factor to the low power to detect ERS since extreme 

responses would not be as abnormal in these datasets. Lastly, only 100 replications were 

conducted for the studies due to the restrictive completion times needed per condition. Ideally, 

more replications would be run to improve the reliability of the results. 

Future Research 

In order to further research in this area, studies could focus on using different levels of 

various conditions including test length, sample size, and number of response categories. The use 

of other dominance and unfolding models (other than GPCM and GGUM) in the process of data 

generation and model fit would also contribute to the literature. Item discrimination parameters 

have also been found to influence detection rates using person-fit statistics (Tendeiro & Meijer, 

2012) and could be manipulated to explore the effect on detection of aberrant responding in the 

unfolding context.  
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Because GGUM is a unidimensional IRT model, researchers must test the assumption of 

unidimensionality before applying the model in an IRT analysis (Chernyshenko et al., 2007). As 

previously mentioned, a substantial amount of published work can be found on dimensionality 

assessment under a dominance framework. However, literature is lacking with regards to 

dimensionality assessment under an unfolding framework. Future work could focus on 

establishing methodology used to assess dimensionality under the unfolding model framework or 

expand and validate the work of other recent advances in this area (Fan, 2020; Joo et al., 2021).  

 Although this dissertation was an attempt to contribute to sparse literature regarding the 

detection of aberrant responding in an unfolding model context, many questions still remain, and 

additional research is needed. As noted in the limitations, to the best of the author’s knowledge, 

no nonparametric person-fit statistic has been developed for detecting aberrant responding in an 

unfolding model context. The use of nonparametric unfolding models (e.g., MUDFOLD; 

Balafas, 2016) could assist in the development of a nonparametric person-fit statistic. It is 

unclear how other person-fit statistics not included in the current dissertation perform in an 

unfolding model context. Additionally, the way cutoff criteria were obtained for each person-fit 

statistic used in the study could have influenced results. A separate study could investigate how 

cutoff criteria methodology impacts detection of aberrant responding under various conditions 

for dominance and unfolding contexts, as well as model misspecification. As research has 

indicated that the use of ideal point response models may provide more flexibility in applications 

to unidimensional empirical data than dominance models, continuing research to identify person-

fit statistics that function effectively for unfolding data is recommended.  
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APPENDICES 

Appendix A 

R Code for Condition of GGUM Fit to GGUM Data 

#Much of the below code is inspired by and adapted from Tendeiro's work on OSF: 

https://www.jorgetendeiro.com/publication/tendeiro_2017/  

 

 

# 0. Prepare environment ---- 

rm(list=ls()) 

if (!is.null(dev.list())) dev.off(dev.list()["RStudioGD"]) 

library(Rcpp) 

library(psych) 

library(fastGHQuad) 

library(abind) 

#Sys.setenv(JAVA_HOME='C:/Users/jreimers/Documents/Jreimers/jdk1.8.0_232') 

#install.packages("rJava", type="binary") 

#install.packages("GGUM", type="binary") 

library(rJava) 

library(GGUM) 

#Parallel Analysis 

library(paran) 

#install.packages("Hmisc",dependecies=T)  

library(Hmisc) 

#PF 

#install.packages("PerFit", type="binary") 

#install.packages("RCurl", type="binary")    

library(RCurl) 

library(PerFit) 

library(mokken) 

# Parallel processing: 

library(doParallel) 

library(foreach) 

 

#1. Conditions and fixed parameters 

n_items.vec   <- c( 20, 40) 

AbI.vec <- c(.20, .40, .60) 

AbN.vec <- c(.04, .10, .20) 

AbType.vec   <- c(  "Random_Responders", "Longstringers",   "ERS", "MRS", "Mixed") 

parameters           <- expand.grid(n_items.vec, AbI.vec, AbN.vec, AbType.vec) 

colnames(parameters) <- c("n_items.vec", "AbI.vec", "AbN.vec", "AbType.vec") 

rm(n_items.vec, AbI.vec, AbN.vec, AbType.vec) 

# Fixed parameters: 

n       <- 1000 
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N       <- 1000 

cats    <- 6 

#detectCores() 

 

 

#  Setup parallel backend to use 39 processors (cores): 

cl <- makeCluster(39, setup_strategy = "sequential") 

registerDoParallel(cl, cores = 39) 

# END SECTION 

 

# 3. Run the simulation ---- 

 

# 

start.time <- Sys.time() 

print(start.time) 

 

outcome.simulation <- foreach(i=1:90) %:% # i=27 rep=1 c(17, 18, 35, 6, 24) i=1 rep=1 

  foreach(rep=1:100, .packages=c("psych", "fastGHQuad", "abind", "GGUM", "mokken", 

"PerFit", "paran", "Hmisc")) %dopar% { 

    set.seed(1000*i+rep) 

    # Specify varying parameters for cell i:i=1 

    n_items    <- parameters[i, 1] 

    AbI        <- parameters[i, 2] 

    AbN        <- parameters[i, 3] 

    AbType     <- parameters[i, 4] 

    n_Abitems<-(n_items*AbI) 

    n_Cleanitems<-n_items-n_Abitems 

     

     

     

     

######START: STEP 1 Generate CLEAN Data & Estimate Parameters ############### 

##############################################################################

############################################################################## 

    # Generate item scores according to the GGUM: 

    gendata <- GenData.GGUM(n, n_items, cats-1, seed=(1000*i+rep)) 

    data.ext<-gendata[[5]] 

    write.table(data.ext, file=paste0("C:/Users/jreimers/Documents/Jreimers/NEW 

DISSERTATION/SimOutcomes/Datasets/1.GGUMGGUM_clean/GGUM_condition_", 

i,"rep",rep,".txt"),col.names=TRUE, row.names=FALSE, sep=", ", quote=FALSE) 

     

    # Estimate item and person parameters BEFORE aberrant behaviour: 

    IP.est     <- GGUM(data.ext, cats-1) 

     

    ##correct for negative delta and thus opposite signed thetas from true 

    for (item in 1:n_items) { 
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      if ((gendata[[2]][item]<0 && IP.est$delta[item]>0)||(gendata[[2]][item]>0 && 

IP.est$delta[item]<0)){ 

        IP.est$delta[item]<-IP.est$delta[item]*(-1) 

      } 

    } 

     

    Th.est     <- GGUM::Theta.EAP(IP.est) 

    Th.est.ext  <- as.vector(Th.est [,2]) 

     

     

     

     

    # Compare generated and estimated parameters, save results: 

    MAD.alpha  <- round(sum(abs(IP.est$alpha - gendata[[1]])) / n_items, 4) 

    BIAS.alpha <- round(sum(    IP.est$alpha - gendata[[1]])  / n_items, 4) 

    cor.alpha  <- round(cor(    IP.est$alpha, gendata[[1]])      , 4) 

    MAD.delta  <- round(sum(abs(IP.est$delta - gendata[[2]])) / n_items, 4) 

    BIAS.delta <- round(sum(    IP.est$delta - gendata[[2]])  / n_items, 4) 

    cor.delta  <- round(cor(    IP.est$delta, gendata[[2]])      , 4) 

    MAD.taus   <- round(sum(abs(IP.est$taus[, 1:cats-1] - gendata[[3]][, 1:cats-1])) / (n_items * 

cats-1), 4) 

    BIAS.taus  <- round(sum(    IP.est$taus[, 1:cats-1] - gendata[[3]][, 1:cats-1]) / (n_items * cats-

1), 4) 

    cor.taus   <- round(cor(  c(IP.est$taus[, 1:cats-1]), c(gendata[[3]][, 1:5])), 4) 

    MAD.th     <- round(sum(abs(Th.est.ext  - gendata[[4]]), na.rm=TRUE) / n, 4) 

    BIAS.th    <- round(sum(    Th.est.ext  - gendata[[4]], na.rm=TRUE) / n, 4) 

    cor.th     <- round(cor(    Th.est.ext , gendata[[4]], use = 'complete.obs'), 4) 

     

 ######END: STEP 1 Generate CLEAN Data & Estimate Parameters ############### 

##############################################################################

############################################################################## 

   

     

     

 ###### START: STEP 2 Create ABERRANT data & Estimate Parameters ############### 

##############################################################################

############################################################################## 

    

     

 ########################Generate aberrant datasets############################# 

 ############(1 & 2) ERS and MRS############ 

    if (AbType == "MRS") { 

      N.middle  <- which(rowSums((gendata[[5]][, 1:n_items] >= 1) * (gendata[[5]][, 1:n_items] 

<=  4)) >= ceiling(AbI * n_items)) 

      N.extreme <- which(rowSums((gendata[[5]][, 1:n_items] == 0|gendata[[5]][, 1:n_items] ==1) 

+ (gendata[[5]][, 1:n_items] == 4|gendata[[5]][, 1:n_items] ==5)) >= ceiling(AbI * n_items)) 
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      if (length(N.extreme) > (n * AbN)) #if n_ppl with sufficient extreme scores is greater tha 

n*AbN then sample n*AbN ppl from them...otherwise just use as many as available. 

      {subs.middle <- sort(sample(N.extreme, (n * AbN), replace = FALSE))} else { 

        subs.middle <- N.extreme} 

 

      scrs.middle  <- gendata[[5]][subs.middle,  1:n_items, drop = FALSE] 

      scrs.middle  <- t(apply(scrs.middle, 1, function(vec) 

      { 

        extreme.scrs <- which((vec == 0|vec == 1|vec == 4|vec ==5)  == 1) #Take the extreme 

scores and below will sample from them to eventually replace with middle scores to mimic MRS 

        extreme.scrs <- sort(sample(extreme.scrs, ceiling(n_items * AbI), replace = FALSE)) 

        if (length(extreme.scrs) > 0) {vec[extreme.scrs] <- sapply(vec[extreme.scrs], function(x) 

        {  

          if (x == 0) {2} 

          else if (x == 1) {2} 

          else 3}) 

        } 

        vec 

      })) 

       

      data.aberrant<-gendata[[5]] 

      data.aberrant[subs.middle, 1:n_items]  <- scrs.middle 

      subs <- sort(c(subs.middle)) 

    } 

     

     

    if (AbType == "ERS") { 

      N.middle  <- which(rowSums((gendata[[5]][, 1:n_items] >= 1) * (gendata[[5]][, 1:n_items] 

<=  4)) >= ceiling(AbI * n_items)) 

      N.extreme <- which(rowSums((gendata[[5]][, 1:n_items] == 0|gendata[[5]][, 1:n_items] ==1) 

+ (gendata[[5]][, 1:n_items] == 4|gendata[[5]][, 1:n_items] ==5)) >= ceiling(AbI * n_items)) 

       

      if (length(N.middle) > (n * AbN)) #if n_ppl with sufficient middle scores is greater tha 

n*AbN then sample n*AbN ppl from them...otherwise just use as many as available. 

      {subs.extreme <- sort(sample(N.middle, (n * AbN), replace = FALSE))} else { 

        subs.extreme <- N.middle} 

       

 

      scrs.extreme <- gendata[[5]][subs.extreme, 1:n_items, drop = FALSE] #as of now this is just 

the clean scores generated for the random sample of to-be aberrant responders 

      scrs.extreme <- t(apply(scrs.extreme, 1, function(vec) #apply the function to scrs.extreme 

rows 

      { 

        middle.scrs <- which(((vec >= 1) * (vec <= 4)) == 1) #take the middle scores (1,2,3,4) and 

below will sample n_items*AbI from them 
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        middle.scrs <- sort(sample(middle.scrs, ceiling(n_items * AbI), replace = FALSE)) 

        if (length(middle.scrs) > 0) {vec[middle.scrs] <- sapply(vec[middle.scrs], function(x) 

        { 

          if (x == 1) {0} 

          else if (x == 2) {0} 

          else 5}) 

        } 

        vec 

      })) 

       

      data.aberrant<-gendata[[5]] 

      data.aberrant[subs.extreme, 1:n_items] <- scrs.extreme 

      subs <- sort(c(subs.extreme)) 

    } 

     

     

    ############(3)Longstringers############ 

     

    #JR# The following is a redo of longstring simulation where value and initial index were first 

found for 

    #JR#  each ab respondee and then repeated so that string was consecutive 

    if (AbType == "Longstringers") { 

      data.aberrant<-as.data.frame(gendata[[5]]) 

      subs.longstring <- sort(sample(1:1000, (n * AbN), replace = FALSE)) 

       

      #Find Longstring Value 

      for (p in 1:1000){ 

        longstringvalue<-sample(0:(cats-1),1) 

        data.aberrant$Longstringvalue[p] <-longstringvalue 

      } 

      #Find initial position to start longstring 

      data.aberrant<-as.data.frame(data.aberrant) 

      for (p in 1:1000){ 

        initial.position<-sample(1:(n_items-(AbI*n_items)+1),1) 

        data.aberrant$Longstringinitial[p] <-initial.position 

      } 

       

      scrs.longstring <- data.aberrant[subs.longstring, 1:(n_items+2), drop = FALSE] #as of now 

this is just the clean scores generated for the random sample of to-be aberrant responders 

       

      for (p in 1:nrow(scrs.longstring)){ 

        

scrs.longstring[p,(scrs.longstring$Longstringinitial[p]:(scrs.longstring$Longstringinitial[p]+(AbI

*n_items)-1))] <- scrs.longstring$Longstringvalue[p] 

      } 
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      #remove last two columns specifying Longstring value and initial position 

      scrs.longstring<-as.matrix(scrs.longstring[, 1:n_items]) 

       

      data.aberrant<-gendata[[5]] 

      data.aberrant[subs.longstring, 1:n_items] <- scrs.longstring 

      subs <- sort(c(subs.longstring)) 

    } 

    

    ############(4)Random Responders############ 

     

    if (AbType == "Random_Responders") { 

      data.aberrant<-gendata[[5]] 

      subs.random <- sort(sample(1:1000, (n * AbN), replace = FALSE)) 

       

      scrs.random <- gendata[[5]][subs.random, 1:n_items, drop = FALSE] #as of now this is just 

the clean scores generated for the random sample of to-be aberrant responders 

      scrs.random <- t(apply(scrs.random, 1, function(vec) 

      {  

        random.scrs      <- sort(sample(1:n_items, ceiling(n_items * AbI), replace = FALSE)) 

        vec[random.scrs] <- sample(0:(cats-1), ceiling(n_items * AbI), replace = TRUE) 

        vec 

      })) 

       

      data.aberrant[subs.random, 1:n_items] <- scrs.random 

      subs <- sort(c(subs.random)) 

    } 

     

     

    ############(5) Mixed - includes all 4 types of aberrant responders############ 

AbType<-"Mixed" 

    if (AbType == "Mixed") { 

      #Index of respondents who have enough middle and extreme responses to be changed for the 

condition of MRS and ERS 

      N.middle  <- which(rowSums((gendata[[5]][, 1:n_items] >= 1) * (gendata[[5]][, 1:n_items] 

<=  4)) >= ceiling(AbI * n_items)) 

      N.extreme <- which(rowSums((gendata[[5]][, 1:n_items] == 0|gendata[[5]][, 1:n_items] ==1) 

+ (gendata[[5]][, 1:n_items] == 4|gendata[[5]][, 1:n_items] ==5)) >= ceiling(AbI * n_items)) 

       

      #First sample from simulees for each AbType and make sure they do not overlap 

       

       

      if (length(N.middle) <= length(N.extreme)) 

      { 

        if (length(N.middle) > ((n * AbN) / 4)) 

        {subs.extreme  <- sort(sample(N.middle, (n * AbN) / 4, replace = FALSE))} else { 

          subs.extreme  <- N.middle} 
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        if (length(setdiff(N.extreme, subs.extreme)) > ((n * AbN) / 4)) 

        {subs.middle <- sort(sample(setdiff(N.extreme, subs.extreme), (n * AbN) / 4, replace = 

FALSE))} else { 

          subs.middle <- setdiff(N.extreme, subs.extreme)} 

      } 

      if (length(N.extreme) < length(N.middle)) 

      { 

        if (length(N.extreme) > ((n * AbN) / 4)) 

        {subs.middle  <- sort(sample(N.extreme, (n * AbN) / 4, replace = FALSE))} else { 

          subs.middle  <- N.extreme} 

        if (length(setdiff(N.middle, subs.middle)) > ((n * AbN) / 4)) 

        {subs.extreme <- sort(sample(setdiff(N.middle, subs.middle), (n * AbN) / 4, replace = 

FALSE))} else { 

          subs.extreme <- setdiff(N.middle, subs.middle)} 

      } 

       

      subs.random <-  sort(sample(setdiff(1:n, c(subs.middle, subs.extreme)), (n * AbN) / 4, 

replace = FALSE)) 

      subs.longstring <- sort(sample(setdiff(1:n, c(subs.middle, subs.extreme, subs.random)), (n * 

AbN) / 4, replace = FALSE)) 

   

      #Once all subs.AbType have been created, substitute their response data accordinginly 

      scrs.extreme <- gendata[[5]][subs.extreme, 1:n_items, drop = FALSE] 

      scrs.extreme <- t(apply(scrs.extreme, 1, function(vec) 

      { 

        middle.scrs <- which(((vec >= 1) * (vec <= 4)) == 1) 

        middle.scrs <- sort(sample(middle.scrs, ceiling(n_items * AbI), replace = FALSE)) 

        if (length(middle.scrs) > 0) {vec[middle.scrs] <- sapply(vec[middle.scrs], function(x) 

        { 

          if (x == 1) {0} 

          else if (x == 2) {0} 

          else 5}) 

        } 

        vec 

      })) 

      # 

      scrs.middle  <- gendata[[5]][subs.middle,  1:n_items, drop = FALSE] 

      scrs.middle  <- t(apply(scrs.middle, 1, function(vec) 

      { 

        extreme.scrs <- which((vec == 0|vec == 1|vec == 4|vec ==5)  == 1) 

        extreme.scrs <- sort(sample(extreme.scrs, ceiling(n_items * AbI), replace = FALSE)) 

        if (length(extreme.scrs) > 0) {vec[extreme.scrs] <- sapply(vec[extreme.scrs], function(x) 

        { #if x is a 0 or 1, replace with middle option of 2. If x is a 4 or 5, replace with middle 

option of 3. 

          if (x == 0) {2} 

          else if (x == 1) {2} 
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          else 3}) 

        } 

        vec 

      })) 

       

       

       

      #scores for longstringers 

      data.aberrant<-as.data.frame(gendata[[5]]) 

      #Find Longstring Value 

      for (p in 1:1000){ 

        longstringvalue<-sample(0:(cats-1),1) 

        data.aberrant$Longstringvalue[p] <-longstringvalue 

      } 

      #Find initial position to start longstring 

      data.aberrant<-as.data.frame(data.aberrant) 

      for (p in 1:1000){ 

        initial.position<-sample(1:(n_items-(AbI*n_items)+1),1) 

        data.aberrant$Longstringinitial[p] <-initial.position 

      } 

       

      scrs.longstring <- data.aberrant[subs.longstring, 1:(n_items+2), drop = FALSE] #as of now 

this is just the clean scores generated for the random sample of to-be aberrant responders 

       

      for (p in 1:nrow(scrs.longstring)){ 

        

scrs.longstring[p,(scrs.longstring$Longstringinitial[p]:(scrs.longstring$Longstringinitial[p]+(AbI

*n_items)-1))] <- scrs.longstring$Longstringvalue[p] 

      } 

       

      #remove last two columns specifying Longstring value and initial position 

      scrs.longstring<-as.matrix(scrs.longstring[, 1:n_items]) 

       

       

       

      #scores for random responders 

      scrs.random <- gendata[[5]][subs.random, 1:n_items, drop = FALSE] #as of now this is just 

the clean scores generated for the random sample of to-be aberrant responders 

      scrs.random <- t(apply(scrs.random, 1, function(vec) 

      { 

        random.scrs      <- sort(sample(1:n_items, ceiling(n_items * AbI), replace = FALSE)) 

        vec[random.scrs] <- sample(0:(cats-1), ceiling(n_items * AbI), replace = TRUE) 

        vec 

      })) 
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      #substitute subs scores with ab subs scores from above 

      data.aberrant                    <- gendata[[5]] 

      data.aberrant[subs.middle, ]     <- scrs.middle 

      data.aberrant[subs.extreme, ]    <- scrs.extreme 

      data.aberrant[subs.random, ]     <- scrs.random 

      data.aberrant[subs.longstring, ] <- scrs.longstring 

       

       

      subs <- sort(c(subs.extreme, subs.middle, subs.longstring, subs.random)) 

      subs.tbl <- matrix(c(subs.extreme, subs.middle, subs.longstring, subs.random), 

nrow=(AbN*n/4)) 

      colnames(subs.tbl)=c("subs.extreme", "subs.middle", "subs.longstring", "subs.random") 

      write.table(subs.tbl, file=paste0("C:/Users/jreimers/Documents/Jreimers/NEW 

DISSERTATION/SimOutcomes/Datasets/Subs_Data_Folder/GGUMab_mixedsubs_condition_", 

i,"rep",rep,".txt"),col.names=TRUE, row.names=FALSE, sep=", ", quote=FALSE) 

       

    } 

     

     

     

    write.table(data.aberrant, file=paste0("C:/Users/jreimers/Documents/Jreimers/NEW 

DISSERTATION/SimOutcomes/Datasets/1.GGUMGGUM_ab/GGUMab_condition_", 

i,"rep",rep,".txt"),col.names=TRUE, row.names=FALSE, sep=", ", quote=FALSE) 

    write.table(subs, file=paste0("C:/Users/jreimers/Documents/Jreimers/NEW 

DISSERTATION/SimOutcomes/Datasets/Subs_Data_Folder/GGUMab_subs_condition_", 

i,"rep",rep,".txt"),col.names=TRUE, row.names=FALSE, sep=", ", quote=FALSE) 

    

########################################################################## 

 ##now that the ab dataset is created, next fit the model to the data##################### 

     

    # Estimate item and person parameters (aberrant): 

    IP.est.aber     <- GGUM(data.aberrant, cats-1) 

     

    for (item in 1:n_items) { 

      if ((gendata[[2]][item]<0 && IP.est.aber$delta[item]>0)||(gendata[[2]][item]>0 && 

IP.est.aber$delta[item]<0)){ 

        IP.est.aber$delta[item]<-IP.est.aber$delta[item]*(-1) 

      } 

    } 

     

    Th.est.aber    <- GGUM::Theta.EAP(IP.est.aber) 

    Th.est.ext.aber <- as.vector(Th.est.aber[,2]) 

     

     

    #export IPs for both clean and aberrant datasets 
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    write.table(IP.est.aber[["alpha"]], file=paste0("C:/Users/jreimers/Documents/Jreimers/NEW 

DISSERTATION/SimOutcomes/Datasets/1.GGUMGGUM_ab_IP/GGUMab_IP.alpha_conditio

n_", i,"rep",rep,".txt"),col.names=TRUE, row.names=FALSE, sep=", ", quote=FALSE) 

    write.table(IP.est[["alpha"]], file=paste0("C:/Users/jreimers/Documents/Jreimers/NEW 

DISSERTATION/SimOutcomes/Datasets/1.GGUMGGUM_clean_IP/GGUM_IP.alpha_conditio

n_", i,"rep",rep,".txt"),col.names=TRUE, row.names=FALSE, sep=", ", quote=FALSE) 

    write.table(IP.est.aber[["delta"]], file=paste0("C:/Users/jreimers/Documents/Jreimers/NEW 

DISSERTATION/SimOutcomes/Datasets/1.GGUMGGUM_ab_IP/GGUMab_IP.delta_condition

_", i,"rep",rep,".txt"),col.names=TRUE, row.names=FALSE, sep=", ", quote=FALSE) 

    write.table(IP.est[["delta"]], file=paste0("C:/Users/jreimers/Documents/Jreimers/NEW 

DISSERTATION/SimOutcomes/Datasets/1.GGUMGGUM_clean_IP/GGUM_IP.delta_conditio

n_", i,"rep",rep,".txt"),col.names=TRUE, row.names=FALSE, sep=", ", quote=FALSE) 

    write.table(IP.est.aber[["taus"]], file=paste0("C:/Users/jreimers/Documents/Jreimers/NEW 

DISSERTATION/SimOutcomes/Datasets/1.GGUMGGUM_ab_IP/GGUMab_IP.taus_condition

_", i,"rep",rep,".txt"),col.names=TRUE, row.names=FALSE, sep=", ", quote=FALSE) 

    write.table(IP.est[["taus"]], file=paste0("C:/Users/jreimers/Documents/Jreimers/NEW 

DISSERTATION/SimOutcomes/Datasets/1.GGUMGGUM_clean_IP/GGUM_IP.taus_condition

_", i,"rep",rep,".txt"),col.names=TRUE, row.names=FALSE, sep=", ", quote=FALSE) 

    write.table(Th.est.aber, file=paste0("C:/Users/jreimers/Documents/Jreimers/NEW 

DISSERTATION/SimOutcomes/Datasets/1.GGUMGGUM_ab_IP/GGUMab_IP.theta_condition

_", i,"rep",rep,".txt"),col.names=TRUE, row.names=FALSE, sep=", ", quote=FALSE) 

    write.table(Th.est, file=paste0("C:/Users/jreimers/Documents/Jreimers/NEW 

DISSERTATION/SimOutcomes/Datasets/1.GGUMGGUM_clean_IP/GGUM_IP.theta_conditio

n_", i,"rep",rep,".txt"),col.names=TRUE, row.names=FALSE, sep=", ", quote=FALSE) 

     

     

    # Compare generated and estimated parameters, save results: 

    MAD.alpha.aber  <- round(sum(abs(IP.est.aber$alpha - gendata[[1]])) / n_items, 4) 

    BIAS.alpha.aber <- round(sum(    IP.est.aber$alpha - gendata[[1]])  / n_items, 4) 

    cor.alpha.aber  <- round(cor(    IP.est.aber$alpha, gendata[[1]])      , 4) 

    MAD.delta.aber  <- round(sum(abs(IP.est.aber$delta - gendata[[2]])) / n_items, 4) 

    BIAS.delta.aber <- round(sum(    IP.est.aber$delta - gendata[[2]])  / n_items, 4) 

    cor.delta.aber  <- round(cor(    IP.est.aber$delta, gendata[[2]])      , 4) 

    MAD.taus.aber   <- round(sum(abs(IP.est.aber$taus[, 1:cats-1] - gendata[[3]][, 1:cats-1])) / 

(n_items * cats-1), 4) 

    BIAS.taus.aber  <- round(sum(    IP.est.aber$taus[, 1:cats-1] - gendata[[3]][, 1:cats-1]) / 

(n_items * cats-1), 4) 

    cor.taus.aber   <- round(cor(  c(IP.est.aber$taus[, 1:cats-1]), c(gendata[[3]][, 1:cats-1])), 4) 

    MAD.th.aber     <- round(sum(abs(Th.est.ext.aber - gendata[[4]]), na.rm=TRUE) / n, 4) 

    BIAS.th.aber    <- round(sum(    Th.est.ext.aber - gendata[[4]], na.rm=TRUE)  / n, 4) 

    cor.th.aber     <- round(cor(    Th.est.ext.aber, gendata[[4]], use = 'complete.obs'), 4) 

    # 

    MAD.th.aber.fit     <- round(sum(abs(Th.est.ext.aber[-subs] - gendata[[4]][-subs]), 

na.rm=TRUE) / length((1:n)[-subs]), 4) 

    BIAS.th.aber.fit    <- round(sum(    Th.est.ext.aber[-subs] - gendata[[4]][-subs], na.rm=TRUE)  

/ length((1:n)[-subs]), 4) 
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    cor.th.aber.fit     <- round(cor(    Th.est.ext.aber[-subs], gendata[[4]][-subs], use = 

'complete.obs'), 4) 

    MAD.th.aber.misfit  <- round(sum(abs(Th.est.ext.aber[subs] - gendata[[4]][subs]), 

na.rm=TRUE) / length((1:n)[subs]), 4) 

    BIAS.th.aber.misfit <- round(sum(    Th.est.ext.aber[subs] - gendata[[4]][subs], na.rm=TRUE)  

/ length((1:n)[subs]), 4) 

    cor.th.aber.misfit  <- round(cor(    Th.est.ext.aber[subs], gendata[[4]][subs], use = 

'complete.obs'), 4) 

     

    

##############################################################################

########################################################################### 

###############END: STEP 2 Create ABERRANT data & Estimate Parameters 

############################################################################# 

     

     

     

    

##############################################################################

############################################################################# 

################START: STEP 3 MODEL FIT & Reliability ######################### 

     

     

    ################# Model Fit, Item Fit, and Dimensionality################### 

     

    # Compute chisq/df ratios for single, pairs, and triples of items (Drasgow et al., 1995): 

    MODFIT.res <- MODFIT(IP.est) 

    MODFIT.res.aber <- MODFIT(IP.est.aber) 

     

    perc.item.flagged<-rowSums(MODFIT.res[[4]][, 4:7]) / rowSums(MODFIT.res[[4]][, 1:7]) 

    perc.item.flagged.ab<-rowSums(MODFIT.res.aber[[4]][, 4:7]) / 

rowSums(MODFIT.res.aber[[4]][, 1:7]) 

     

    Mean.SD.chsqr<-MODFIT.res[[4]][, 8:9] 

   

    Mean.SD.chsqr.ab<-MODFIT.res.aber[[4]][, 8:9] 

     

     

    #Likert-scaled data processing as done in Tay, et. al, 2011 & Tay & Drasgow, 2012 

  

   #Clean data 

    #First Reverse code lower 30% items  

    #Note: items are ordered by delta either inc or dec (arbitrary), thus use if then statement to 

determine which end the negative deltas are 

    Items.Neg.Deltas<-which(gendata[["delta.gen"]]<0) 

    Nitems.revcode<- .3*n_items 
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    if (IP.est$delta[1]<0){ 

      Items.revcode<-Items.Neg.Deltas[1:Nitems.revcode] 

    } else if (IP.est$delta[1]>0){ 

      Items.revcode<-(n_items-Nitems.revcode+1):n_items} 

    data.ext.reverse1<-data.ext 

    data.ext.reverse1[,Items.revcode]<- (cats-1)-data.ext[,Items.revcode] 

    #### Next, item-total biserial correlation 

    #### and further reverse scoreing for items with negative item-total correlations 

    interitemstats<-psych::alpha(data.ext.reverse1, check.keys = TRUE) 

    keys<-unlist(interitemstats["keys"]) 

    data.ext.reverse2<-reverse.code(keys, data.ext.reverse1) 

    item_array<- paste0("item", 1:n_items) 

    colnames(data.ext.reverse2)<-item_array 

    #Parallel Analysis for clean data 

    parallel<-paran(data.ext.reverse2, cfa=FALSE) 

    factors_retained.paran<-parallel[[1]] 

    #eigs for clean data 

    data.cor<-cor(data.ext.reverse2, use="complete.obs") 

    eig<-eigen(data.cor) 

    eig<- eig$values 

     

   

     

    #ab data 

    #First Reverse code lower 30% items  

    #Note: items are ordered by delta either inc or dec (arbitrary), thus use if then statement to 

determine which end the negative deltas are 

    Items.Neg.Deltas<-which(IP.est.aber$delta<0) 

    Nitems.revcode<- .3*n_items 

    if (IP.est.aber$delta[1]<0){ 

      Items.revcode<-Items.Neg.Deltas[1:Nitems.revcode] 

    } else if (IP.est.aber$delta[1]>0){ 

      Items.revcode<-(n_items-Nitems.revcode+1):n_items} 

    data.ab.reverse1<-data.aberrant 

    data.ab.reverse1[,Items.revcode]<- (cats-1)-data.aberrant[,Items.revcode] 

    #### Next, item-total biserial correlation 

    #### and further reverse scoreing for items with negative item-total correlations 

    interitemstats<-psych::alpha(data.ab.reverse1, check.keys = TRUE) 

    keys<-unlist(interitemstats["keys"]) 

    data.ab.reverse2<-data.ab.reverse1 

    data.ab.reverse2<-reverse.code(keys, data.ab.reverse2) 

    item_array<- paste0("item", 1:n_items) 

    colnames(data.ab.reverse2)<-item_array 

    #Parallel Analysis for ab data 

    parallel.ab<-paran(data.ab.reverse2, cfa=FALSE) 

    factors_retained.paran.ab<-parallel.ab[[1]] 
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    #eigs for ab data 

    data.cor.ab<-cor(data.ab.reverse2, use="complete.obs") 

    eig.ab<-eigen(data.cor.ab) 

    eig.ab<- eig.ab$values 

     

    

     

    #Information Criterion 

    AIC<-IP.est[[12]][3] 

    BIC<-IP.est[[12]][4] 

     

    AIC.aber<-IP.est.aber[[12]][3] 

    BIC.aber<-IP.est.aber[[12]][4] 

     

     

     

    ##Prep dataset for IIO and HT analyses 

    #remove invariant response strings from clean data 

    find.invariants <- apply(data.ext.reverse2, 1, function(vec) max(vec) - min(vec)) 

    pos.invariants  <- which(find.invariants == 0)  

    H_data          <- if (length(pos.invariants) > 0) data.ext.reverse2[-pos.invariants,] + 1 else 

data.ext.reverse2 + 1 #JT# Not sure why we need the '+1'! Can you tell me?... 

     

    #remove invariant response strings from ab data 

    find.invariants <- apply(data.ab.reverse2, 1, function(vec) max(vec) - min(vec)) 

    pos.invariants  <- which(find.invariants == 0) 

    H_data.ab          <- if (length(pos.invariants) > 0) data.ab.reverse2[-pos.invariants,] + 1 else 

data.ab.reverse2 + 1 #JT# Not sure why we need the '+1'! Can you tell me?... 

     

    ###Check item ordering with coef h 

    H.list<-coefH(H_data) 

    H<-as.numeric(H.list$H[[1]]) 

    H_SE<-gsub("\\(", "", (H.list$H[[2]])) 

    H_SE<-as.numeric(gsub("\\)", "", (H_SE))) 

     

    H.list.aber<-coefH(H_data.ab) 

    H.aber<-as.numeric(H.list.aber$H[[1]]) 

    H_SE.aber<-gsub("\\(", "", (H.list.aber$H[[2]])) 

    H_SE.aber<-as.numeric(gsub("\\)", "", (H_SE.aber))) 

     

    # Reliability using Molenaar Sijtsma MS statistic. 

    reliab.MS.aber<-check.reliability(data.ab.reverse2)[[1]] 

    reliab.MS<-check.reliability(data.ext.reverse2)[[1]] 

    reliab.alpha.aber<-check.reliability(data.ab.reverse2)[[2]] 

    reliab.alpha<-check.reliability(data.ext.reverse2)[[2]] 

    reliab.lambda2.aber<-check.reliability(data.ab.reverse2)[[3]] 
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    reliab.lambda2<-check.reliability(data.ext.reverse2)[[3]] 

     

     

     

    

##############################################################################

############################################################################ 

###########################END: STEP 3 MODEL FIT & Reliability ################# 

 

##############################################################################

########################START: STEP 4 OBTAINING CUTOFFS 

############################################################################## 

     

    #Step 1: Generate model-fitting item score vectors based on GGUM using the person and item 

parameters estimated from the aberrant data. 

    #Step 2: Estimate item parameters for modelfitting data from step 1 

    #Step 3: Reverse code items with negative deltas (Likert scaling technique; Tay et al. 2011) 

for use of nonparametric PFS (not neccessary for parametric lz and lzstar); We thought this is 

what a researcher would do in realistic setting when data is ideal point and trying to use 

nonparametric pfs 

    #Step 4: Compute PFSs for modelfitting data and obtain the upper or lower 5% value as cutoff 

depending on the PFS 

    #Step 5: Run steps 1-4 in loop for multiple replications and take the median cutoff value to be 

used **Will only be able to run 20 replications due to time (see step 2 ~ 20minutes) 

     

     

    ##PART A: Steps 1-5 using Parm ests from aberrant data 

     

     

    # Generate data based on estimated model parameters (aber): 

    #install.packages("Hmisc") 

    ##Step 1: Generate model-fitting item score vectors based on GGUM using the person and 

item parameters estimated from the aberrant data. 

    ##Start loop to generate data, compute PFSs, and take median to get the cutoff to be used 

     

    Nreps=20 

    N=1000 

    Th.est.aber.NA <- which(is.na(Th.est.ext.aber)) 

    PFS.cutoffs <- matrix(NA, Nreps, 6) 

    for (r in 1:Nreps){ #r=1 

      set.seed(1000*i+1000*rep+r) 

      I<-n_items 

      probs.array <- array(NA, dim = c(N, I, cats)) 

      C<-cats-1 

      for (z in 0:C) 

      { 
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        probs.array[, , z + 1] <- GGUM:::P.GGUM(z, IP.est.aber$alpha, IP.est.aber$delta,  

IP.est.aber$taus,Th.est.ext.aber,  C) 

      } 

       

       

      if  (length(Th.est.aber.NA) >0 ){ 

        modelfitting.data <- apply(probs.array[-Th.est.aber.NA, , ], 1:2, function(vec) which( 

rmultinom(1, 1, vec) == 1) - 1) #JT# 997x20, so the three NA simulees were removed. 

      } else{ 

        modelfitting.data <- apply(probs.array, 1:2, function(vec) which( rmultinom(1, 1, vec) == 

1) - 1) #JT# 997x20, so the three NA simulees were removed. 

      } 

      IP.est.modelfitting    <- GGUM(modelfitting.data, cats-1) #Step 2 

       

       

      Th.est.gendata     <- GGUM:::Theta.EAP(IP.est.modelfitting) 

      Th.est.ext.gendata <- as.vector(Th.est.gendata[,2]) 

       

      #Reverse code before computing PFSs 

      #Note: items are ordered by delta either inc or dec (arbitrary), thus use if then statement to 

determine which end the negative deltas are 

      Items.Neg.Deltas<-which(IP.est.modelfitting$delta<0) 

      Nitems.revcode<- .3*n_items 

      if (IP.est.modelfitting$delta[1]<0){ 

        Items.revcode<-Items.Neg.Deltas[1:Nitems.revcode] 

      } else if (IP.est.modelfitting$delta[1]>0){ 

        Items.revcode<-(n_items-Nitems.revcode+1):n_items} 

      modelfitting.data.reverse1<-modelfitting.data 

      modelfitting.data.reverse1[,Items.revcode]<- (cats-1)-modelfitting.data[,Items.revcode] 

      #### Next, item-total biserial correlation 

      #### and further reverse scoreing for items with negative item-total correlations 

      interitemstats<-psych::alpha(modelfitting.data.reverse1, check.keys = TRUE) 

      keys<-unlist(interitemstats["keys"]) 

      modelfitting.data.reverse2<-modelfitting.data.reverse1 

      modelfitting.data.reverse2<-reverse.code(keys, modelfitting.data.reverse2) 

      item_array<- paste0("item", 1:n_items) 

      colnames(modelfitting.data.reverse2)<-item_array 

       

       

       

      #compute PFSs for the generated data for the purpose of creating the cutoffs (median over 

replications)  

       

      ##Prep dataset for IIO and HT analyses 

      find.invariants <- apply( modelfitting.data.reverse2, 1, function(vec) max(vec) - min(vec)) 

      pos.invariants  <- which(find.invariants == 0) 
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      H_data.cutoff   <- if (length(pos.invariants) > 0)  modelfitting.data.reverse2[-pos.invariants,] 

+ 1 else  modelfitting.data.reverse2 + 1 

       

       

      #compute PFs 

      #U3poly 

      U3poly.res.list<-U3poly( modelfitting.data.reverse2 , cats) 

      U3poly.res.modfit<-U3poly.res.list[[1]] 

       

      #Gpoly 

      Gpoly.res.list<-Gpoly( modelfitting.data.reverse2 , cats) 

      Gpoly.res.modfit<-Gpoly.res.list[[1]] 

       

       

      #Gnormed.poly 

      Gnormed.poly.res.list<-Gnormed.poly( modelfitting.data.reverse2 , cats) 

      Gnormed.poly.res.modfit<-Gnormed.poly.res.list[[1]] 

      #HT 

      #first ranspose the data matrix so that persons are columns and items are rows 

      data.aberrant.t<-as.matrix(t(H_data.cutoff)) 

      # Using CoefH in Mokken to calculate the Ht for persons instead of items. 

      HT.list<-coefH(data.aberrant.t, se=FALSE) 

      HT.res.modfit<-as.data.frame(HT.list[[2]]) 

       

       

      #lz  

      lzpoly.res.list<-lzpoly.mixed(matrix=as.matrix(modelfitting.data), IP= IP.est.modelfitting 

,Ability= Th.est.ext.gendata, C=5) 

      lzpoly.res.modfit<- as.data.frame(lzpoly.res.list) 

       

      #lzstar 

      lzstar.res.list<-lzstarpoly.mixed(matrix=as.matrix(modelfitting.data), IP=IP.est.modelfitting, 

C=5, Ability= Th.est.ext.gendata) 

      lzstar.res.modfit<- as.data.frame(lzstar.res.list) 

       

       

       

      #Compute cutoff (used median) 

      U3poly.modfit.cut        <- round(quantile(U3poly.res.modfit$PFscores, probs = .95), 4) 

      Gpoly.modfit.cut         <- round(quantile(Gpoly.res.modfit$PFscores, probs = .95), 4) 

      Gnormed.poly.modfit.cut  <- round(quantile(Gnormed.poly.res.modfit$PFscores, probs = 

.95), 4) 

      HT.modfit.cut            <- round(quantile( HT.res.modfit, probs = .05, na.rm=TRUE), 4) 

      lzpoly.modfit.cut        <- round(quantile(lzpoly.res.modfit, probs = .05, na.rm=TRUE), 4) 

      lzstar.modfit.cut        <- round(quantile(lzstar.res.modfit, probs = .05, na.rm=TRUE), 4) 
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      PFS.cutoffs[r, 1]<-  U3poly.modfit.cut  

      PFS.cutoffs[r, 2]<-  Gpoly.modfit.cut 

      PFS.cutoffs[r, 3]<-  Gnormed.poly.modfit.cut 

      PFS.cutoffs[r, 4]<-  HT.modfit.cut 

      PFS.cutoffs[r, 5]<-  lzpoly.modfit.cut 

      PFS.cutoffs[r, 6]<-  lzstar.modfit.cut 

      names(PFS.cutoffs)<- c("U3poly", "Gpoly", "Gnormed.poly", "HT", "lzpoly", "lzstar") 

       

    

    }  

    set.seed(1000*i+rep) 

     

     

    cutoff.use.U3poly <- round(median( PFS.cutoffs[, 1]), 4) 

    cutoff.SE.U3poly  <- round(sd(PFS.cutoffs[, 1]), 4) 

     

    cutoff.use.Gpoly <- round(median( PFS.cutoffs[, 2]), 4) 

    cutoff.SE.Gpoly  <- round(sd(PFS.cutoffs[, 2]), 4) 

     

    cutoff.use.Gnormed.poly <- round(median( PFS.cutoffs[, 3]), 4) 

    cutoff.SE.Gnormed.poly  <- round(sd(PFS.cutoffs[, 3]), 4) 

     

    cutoff.use.HT <- round(median( PFS.cutoffs[, 4]), 4) 

    cutoff.SE.HT  <- round(sd(PFS.cutoffs[, 4]), 4) 

     

    cutoff.use.lzpoly <- round(median( PFS.cutoffs[, 5]), 4) 

    cutoff.SE.lzpoly  <- round(sd(PFS.cutoffs[, 5]), 4) 

     

    cutoff.use.lzstar <- round(median( PFS.cutoffs[, 6]), 4) 

    cutoff.SE.lzstar  <- round(sd(PFS.cutoffs[, 6]), 4) 

     

   

    ##PART B: Using clean data 

    

    #compute PFSs for the generated data for the purpose of creating the cutoffs (median over 

replications)  

     

    ##Prep dataset for IIO and HT analyses 

    find.invariants <- apply( data.ext.reverse2, 1, function(vec) max(vec) - min(vec)) 

    pos.invariants  <- which(find.invariants == 0) 

    H_data.cutoff   <- if (length(pos.invariants) > 0)  data.ext.reverse2[-pos.invariants,] + 1 else  

data.ext.reverse2 + 1 

     

     

    #compute PFs 



 

235 

 

    #U3poly 

    U3poly.res.list<-U3poly( data.ext.reverse2 , cats) 

    U3poly.res.modfit<-U3poly.res.list[[1]] 

     

    #Gpoly 

    Gpoly.res.list<-Gpoly( data.ext.reverse2 , cats) 

    Gpoly.res.modfit<-Gpoly.res.list[[1]] 

     

     

    #Gnormed.poly 

    Gnormed.poly.res.list<-Gnormed.poly( data.ext.reverse2 , cats) 

    Gnormed.poly.res.modfit<-Gnormed.poly.res.list[[1]] 

    #HT 

    #first ranspose the data matrix so that persons are columns and items are rows 

    data.aberrant.t<-as.matrix(t(H_data.cutoff)) 

    # Using CoefH in Mokken to calculate the Ht for persons instead of items. 

    HT.list<-coefH(data.aberrant.t, se=FALSE) 

    HT.res.modfit<-as.data.frame(HT.list[[2]]) 

     

     

     

    #lz 

    lzpoly.res.list<-lzpoly.mixed(matrix=data.ext, IP= IP.est , Ability= Th.est.ext, C=5) 

    lzpoly.res.modfit<- as.data.frame(lzpoly.res.list) 

     

    #lzstar 

    lzstar.res.list<-lzstarpoly.mixed(matrix=data.ext, IP=IP.est, C=5, Ability= Th.est.ext) 

    lzstar.res.modfit<- as.data.frame(lzstar.res.list) 

     

     

     

    #Compute cutoff (used median) 

    U3poly.modfit.cut        <- round(quantile(U3poly.res.modfit$PFscores, probs = .95), 4) 

    Gpoly.modfit.cut         <- round(quantile(Gpoly.res.modfit$PFscores, probs = .95), 4) 

    Gnormed.poly.modfit.cut  <- round(quantile(Gnormed.poly.res.modfit$PFscores, probs = .95), 

4) 

    HT.modfit.cut            <- round(quantile( HT.res.modfit, probs = .05, na.rm=TRUE), 4) 

    lzpoly.modfit.cut        <- round(quantile(lzpoly.res.modfit, probs = .05, na.rm=TRUE), 4) 

    lzstar.modfit.cut        <- round(quantile(lzstar.res.modfit, probs = .05, na.rm=TRUE), 4) 

     

    PFS.cutoffs<- data.frame(matrix(ncol = 6, nrow = Nreps)) 

    PFS.cutoffs[1, 1]<-  U3poly.modfit.cut  

    PFS.cutoffs[1, 2]<-  Gpoly.modfit.cut 

    PFS.cutoffs[1, 3]<-  Gnormed.poly.modfit.cut 

    PFS.cutoffs[1, 4]<-  HT.modfit.cut 

    PFS.cutoffs[1, 5]<-  lzpoly.modfit.cut 
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    PFS.cutoffs[1, 6]<-  lzstar.modfit.cut 

    names(PFS.cutoffs)<- c("U3poly", "Gpoly", "Gnormed.poly", "HT", "lzpoly", "lzstar")   

     

    cutoff.use.U3poly.clean <- round( PFS.cutoffs[1, 1], 4) 

     

    cutoff.use.Gpoly.clean <- round( PFS.cutoffs[1, 2], 4) 

     

    cutoff.use.Gnormed.poly.clean <- round( PFS.cutoffs[1, 3], 4) 

     

    cutoff.use.HT.clean <- round( PFS.cutoffs[1, 4], 4) 

     

    cutoff.use.lzpoly.clean <- round( PFS.cutoffs[1, 5], 4) 

     

    cutoff.use.lzstar.clean <- round( PFS.cutoffs[1, 6], 4) 

     

    

##############################################################################

##############################################################################

######################END: STEP 4 OBTAINING CUTOFFS 

############################################################################## 

     

##############################################################################

##############################################################################

##############START: STEP 5 Type I error and power rates 

############################################################################# 

     

     

     

    #PART A: Compute PFS for the aberrant datasets 

    #First Prep data for HT using Mokken package 

     

     

     

    #compute PFs 

    #U3poly 

    U3poly.res.list<-U3poly(data.ab.reverse2, cats) 

    U3poly.res<-U3poly.res.list[[1]] 

     

    #Gpoly 

    Gpoly.res.list<-Gpoly(data.ab.reverse2, cats) 

    Gpoly.res<-Gpoly.res.list[[1]] 

    #Gnormed.poly 

    Gnormed.poly.res.list<-Gnormed.poly(data.ab.reverse2, cats) 

    Gnormed.poly.res<-Gnormed.poly.res.list[[1]] 

    #HT 

    #first ranspose the data matrix so that persons are columns and items are rows 
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    data.aberrant.t<-as.matrix(t(H_data.ab)) 

    # Using CoefH in Mokken to calculate the Ht for persons instead of items. 

    HT.list<-coefH(data.aberrant.t, se=FALSE) 

    HT.res<-as.data.frame(HT.list[[2]]) 

     

     

     

    #lz 

     

    lzpoly.res.list<-lzpoly.mixed(matrix=as.matrix(data.aberrant), IP=IP.est.aber, Ability= 

Th.est.ext.aber, C=5) 

    lzpoly.res<- as.data.frame(lzpoly.res.list) 

    Avglzpoly<-mean(na.omit(as.matrix(lzpoly.res))) 

    SDlzpoly<-sd(na.omit(as.matrix(lzpoly.res))) 

     

    #lzstar 

    lzstar.res.list<-lzstarpoly.mixed(matrix=as.matrix(data.aberrant), IP=IP.est.aber, C=5, 

Ability= Th.est.ext.aber) 

    lzstar.res<- as.data.frame(lzstar.res.list) 

    Cor_lzandlzstar<-cor(lzpoly.res, lzstar.res, use = 'complete') 

    Avglzstar<-mean(na.omit(as.matrix(lzstar.res))) 

    SDlzstar<-sd(na.omit(as.matrix(lzstar.res))) 

     

     

    #PART B: Compute Power and Type I error Using cuttoffs computed with Aberrant parms 

    # Type I error and power rates: 

    #U3poly 

    TypeIerror.U3poly    <- round(mean(na.omit(U3poly.res[[1]][-subs]                  >  

cutoff.use.U3poly)), 4) 

    Power.U3poly <- round(mean(na.omit(U3poly.res[[1]][subs]                           >  

cutoff.use.U3poly)), 4) 

     

    #Gpoly 

    TypeIerror.Gpoly    <- round(mean(na.omit(Gpoly.res[[1]][-subs]                    > 

cutoff.use.Gpoly)), 4) 

    Power.Gpoly <- round(mean(na.omit(Gpoly.res[[1]][subs]                             > 

cutoff.use.Gpoly)), 4) 

     

     

    #Gnormed.poly 

    TypeIerror.Gnormed.poly    <- round(mean(na.omit(Gnormed.poly.res[[1]][-subs]      > 

cutoff.use.Gnormed.poly)), 4) 

    Power.Gnormed.poly <- round(mean(na.omit(Gnormed.poly.res[[1]][subs]               > 

cutoff.use.Gnormed.poly)), 4) 

     

    #HT 
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    TypeIerror.HT    <- round(mean(na.omit(HT.res[[1]][-subs]                          < cutoff.use.HT)), 

4) 

    Power.HT <- round(mean(na.omit(HT.res[[1]][subs]                                   < cutoff.use.HT)), 

4) 

     

     

     

    #lzpoly 

    TypeIerror.lzpoly    <- round(mean(na.omit(lzpoly.res[[1]][-subs]                  <  

cutoff.use.lzpoly)), 4) 

    Power.lzpoly <- round(mean(na.omit(lzpoly.res[[1]][subs]                           <  

cutoff.use.lzpoly)), 4) 

     

    #lzstar 

    TypeIerror.lzstar   <- round(mean(na.omit(lzstar.res[[1]][-subs]                   <  

cutoff.use.lzstar)), 4) 

    Power.lzstar<- round(mean(na.omit(lzstar.res[[1]][subs]                            <  cutoff.use.lzstar)), 

4) 

     

     

 

    #################################################################### 

    ############ACCURACY##################### 

    # 

    Accuracy.HT<-((Power.HT*length(subs))+((1-TypeIerror.HT)*(n-length(subs))))/n 

    Accuracy.Gnormed.poly<-((Power.Gnormed.poly*length(subs))+((1-

TypeIerror.Gnormed.poly)*(n-length(subs))))/n 

    Accuracy.Gpoly<-((Power.Gpoly*length(subs))+((1-TypeIerror.Gpoly)*(n-length(subs))))/n 

    Accuracy.U3poly<-((Power.U3poly*length(subs))+((1-TypeIerror.U3poly)*(n-

length(subs))))/n 

    Accuracy.lzpoly<-((Power.lzpoly*length(subs))+((1-TypeIerror.lzpoly)*(n-length(subs))))/n 

    Accuracy.lzstar<-((Power.lzstar*length(subs))+((1-TypeIerror.lzstar)*(n-length(subs))))/n 

     

    #Again, these (below) were not used in the dissertation. I was just curious to see the difference 

    Accuracy.HT.clean<-((Power.HT.clean*length(subs))+((1-TypeIerror.HT.clean)*(n-

length(subs))))/n 

    Accuracy.Gnormed.poly.clean<-((Power.Gnormed.poly.clean*length(subs))+((1-

TypeIerror.Gnormed.poly.clean)*(n-length(subs))))/n 

    Accuracy.Gpoly.clean<-((Power.Gpoly.clean*length(subs))+((1-TypeIerror.Gpoly.clean)*(n-

length(subs))))/n 

    Accuracy.U3poly.clean<-((Power.U3poly.clean*length(subs))+((1-

TypeIerror.U3poly.clean)*(n-length(subs))))/n 

    Accuracy.lzpoly.clean<-((Power.lzpoly.clean*length(subs))+((1-TypeIerror.lzpoly.clean)*(n-

length(subs))))/n 

    Accuracy.lzstar.clean<-((Power.lzstar.clean*length(subs))+((1-TypeIerror.lzstar.clean)*(n-

length(subs))))/n 
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##############################################################################

#################################   RESULTS    ################################  

     

     

    result<- list( 

      c(i,  n_items, AbI, AbN, AbType, 

        # 

        factors_retained.paran, factors_retained.paran.ab,eig[1], eig[2], eig[3], eig[4], eig[5], eig[6], 

eig[7], eig[8], eig[9], eig[10],eig.ab[1], eig.ab[2], eig.ab[3], eig.ab[4], eig.ab[5], eig.ab[6], 

eig.ab[7], eig.ab[8], eig.ab[9], eig.ab[10], 

        # 

        AIC, BIC, AIC.aber, BIC.aber, 

        #MODFIT 

        perc.item.flagged[1], perc.item.flagged[2], perc.item.flagged[3],  Mean.SD.chsqr[1,1], 

Mean.SD.chsqr[1,2],Mean.SD.chsqr[2,1],Mean.SD.chsqr[2,2], Mean.SD.chsqr[3,1], 

Mean.SD.chsqr[3,2], 

        perc.item.flagged.ab[1], perc.item.flagged.ab[2], perc.item.flagged.ab[3], 

Mean.SD.chsqr.ab[1,1], Mean.SD.chsqr.ab[1,2],Mean.SD.chsqr.ab[2,1],Mean.SD.chsqr.ab[2,2], 

Mean.SD.chsqr.ab[3,1], Mean.SD.chsqr.ab[3,2], 

        # 

        length(subs), 

         

        # 

        MAD.alpha, BIAS.alpha, cor.alpha, 

        MAD.delta, BIAS.delta, cor.delta, 

        MAD.taus , BIAS.taus , cor.taus , 

        MAD.th   , BIAS.th   , cor.th   , 

        # 

        MAD.alpha.aber    , BIAS.alpha.aber    , cor.alpha.aber, 

        MAD.delta.aber    , BIAS.delta.aber    , cor.delta.aber, 

        MAD.taus.aber     , BIAS.taus.aber     , cor.taus.aber , 

        MAD.th.aber       , BIAS.th.aber       , cor.th.aber   , 

        # 

        MAD.th.aber.fit   , BIAS.th.aber.fit   , cor.th.aber.fit, 

        MAD.th.aber.misfit, BIAS.th.aber.misfit, cor.th.aber.misfit, 

        # 

        H, H_SE, H.aber, H_SE.aber, 

        reliab.MS, reliab.MS.aber, reliab.alpha, reliab.alpha.aber, reliab.lambda2, 

reliab.lambda2.aber, 

        # 

        Power.U3poly, Power.U3poly.clean, Power.Gpoly, Power.Gpoly.clean, 

Power.Gnormed.poly,Power.Gnormed.poly.clean, Power.HT, Power.HT.clean, Power.lzpoly, 

Power.lzpoly.clean,Power.lzstar, Power.lzstar.clean, 
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        TypeIerror.U3poly, TypeIerror.Gpoly, TypeIerror.Gnormed.poly, 

TypeIerror.HT,TypeIerror.lzpoly, TypeIerror.lzstar, 

        TypeIerror.U3poly.clean, TypeIerror.Gpoly.clean, TypeIerror.Gnormed.poly.clean, 

TypeIerror.HT.clean,TypeIerror.lzpoly.clean, TypeIerror.lzstar.clean, 

         

        # 

        Accuracy.U3poly, Accuracy.Gpoly, Accuracy.Gnormed.poly, 

Accuracy.HT,Accuracy.lzpoly,Accuracy.lzstar, 

        Accuracy.U3poly.clean, Accuracy.Gpoly.clean, Accuracy.Gnormed.poly.clean, 

Accuracy.HT.clean,Accuracy.lzpoly.clean,Accuracy.lzstar.clean, 

        # 

        # Avglzpoly.rev,  Avglzpoly,  SDlzpoly.rev,  SDlzpoly,  Avglzstar.rev,  Avglzstar,  

SDlzstar.rev,  SDlzstar, 

        #cutoffs 

        cutoff.use.U3poly.clean, cutoff.use.U3poly, 

        cutoff.use.Gpoly.clean, cutoff.use.Gpoly, 

        cutoff.use.Gnormed.poly.clean, cutoff.use.Gnormed.poly, 

        cutoff.use.HT.clean, cutoff.use.HT, 

        cutoff.use.lzpoly.clean, cutoff.use.lzpoly, 

        cutoff.use.lzstar.clean, cutoff.use.lzstar, 

        cutoff.SE.U3poly, 

        cutoff.SE.Gpoly, 

        cutoff.SE.Gnormed.poly, 

        cutoff.SE.HT, 

        cutoff.SE.lzpoly, 

        cutoff.SE.lzstar 

         

      ) 

    ) 

     

     

    #Clean memory: 

     

     

    rm(data.ext, gendata, data.aberrant, IP.est, IP.est.aber,factors_retained.paran.ab, 

factors_retained.paran, 

       N.extreme, N.middle, subs, subs.extreme, subs.middle, subs.random, subs.longstring, 

       #ratio.median.extreme.to.middle, Median.I.extreme.scores, Median.I.middle.scores,eig, 

eig.ab 

       Th.est, Th.est.ext, Th.est.aber, Th.est.ext.aber,eig, eig.ab, 

       n_items, AbI, AbN, 

       # 

       scrs.extreme, scrs.longstring, scrs.middle, scrs.random, 

       # 

       MAD.alpha, BIAS.alpha, cor.alpha, 

       MAD.delta, BIAS.delta, cor.delta, 
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       MAD.taus , BIAS.taus , cor.taus , 

       MAD.th   , BIAS.th   , cor.th   , 

       MAD.alpha.aber    , BIAS.alpha.aber    , cor.alpha.aber, 

       MAD.delta.aber    , BIAS.delta.aber    , cor.delta.aber, 

       MAD.taus.aber     , BIAS.taus.aber     , cor.taus.aber , 

       MAD.th.aber       , BIAS.th.aber       , cor.th.aber   , 

       MAD.th.aber.fit   , BIAS.th.aber.fit   , cor.th.aber.fit, 

       MAD.th.aber.misfit, BIAS.th.aber.misfit, cor.th.aber.misfit, 

       MODFIT.res, MODFIT.res.aber, AIC, BIC, AIC.aber, BIC.aber, data.cor,eig, 

eig_gte1,data.cor.aber,eig.aber, eig_gte1.aber, 

       H, H_SE, H.aber, H_SE.aber, 

       reliab.MS, reliab.MS.aber, reliab.alpha, reliab.alpha.aber, reliab.lambda2, 

reliab.lambda2.aber, 

       # 

       #TypeIerror.U3poly, Power.U3poly, TypeIerror.Gpoly, 

Power.Gpoly,TypeIerror.Gnormed.poly, Power.Gnormed.poly,TypeIerror.HT, Power.HT, 

       #MODFIT 

       perc.item.flagged,  perc.item.flagged.ab, Mean.SD.chsqr, Mean.SD.chsqr.ab, 

       #power/typeIerror 

       Power.U3poly, Power.Gpoly, Power.Gnormed.poly, Power.HT, TypeIerror.U3poly, 

TypeIerror.Gpoly, TypeIerror.Gnormed.poly, TypeIerror.HT,  Power.lzpoly, 

Power.lzpoly.clean,Power.lzstar, Power.lzstar.clean, 

       Power.U3poly.clean, Power.Gpoly.clean, Power.Gnormed.poly.clean, Power.HT.clean, 

TypeIerror.U3poly.clean, TypeIerror.Gpoly.clean, TypeIerror.Gnormed.poly.clean, 

TypeIerror.HT.clean,   

       TypeIerror.lzpoly, TypeIerror.lzstar, 

       # 

       Accuracy.U3poly, Accuracy.Gpoly, Accuracy.Gnormed.poly, 

Accuracy.HT,Accuracy.lzpoly,Accuracy.lzstar, 

       Accuracy.U3poly.clean, Accuracy.Gpoly.clean, Accuracy.Gnormed.poly.clean, 

Accuracy.HT.clean,Accuracy.lzpoly.clean,Accuracy.lzstar.clean, 

       # 

       # Avglzpoly.rev,  Avglzpoly,  SDlzpoly.rev,  SDlzpoly,  Avglzstar.rev,  Avglzstar,  

SDlzstar.rev,  SDlzstar, 

       #cutoffs 

       cutoff.use.U3poly.clean, cutoff.use.U3poly, 

       cutoff.use.Gpoly.clean, cutoff.use.Gpoly, 

       cutoff.use.Gnormed.poly.clean, cutoff.use.Gnormed.poly, 

       cutoff.use.HT.clean, cutoff.use.HT, 

       cutoff.use.lzpoly.clean, cutoff.use.lzpoly, 

       cutoff.use.lzstar.clean, cutoff.use.lzstar, 

       cutoff.SE.U3poly, 

       cutoff.SE.Gpoly, 

       cutoff.SE.Gnormed.poly, 

       cutoff.SE.HT, 

       cutoff.SE.lzpoly, 
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       cutoff.SE.lzstar,  

        

       modelfitting.data, modelfitting.data.reverse1, modelfitting.data.reverse2 

        

        

        

    ) 

     

     

     

    result.tbl<-as.data.frame(t(unlist(result))) 

     

    colnames(result.tbl) <- c("i",  "n_items", "AbI", "AbN", "AbType", 

                              # 

                              "factors", "factors.aber","eig[1]", "eig[2]", "eig[3]", "eig[4]", "eig[5]", 

"eig[6]", "eig[7]", "eig[8]", "eig[9]", "eig[10]","eig.ab[1]", "eig.ab[2]", "eig.ab[3]","eig.ab[4]", 

"eig.ab[5]", "eig.ab[6]", "eig.ab[7]", "eig.ab[8]", "eig.ab[9]", "eig.ab[10]", 

                              # 

                              # 

                              "AIC", "BIC", "AIC.aber", "BIC.aber", 

                              #MODFIT 

                              "perc.sing.flagged", "perc.dbls.flagged", "perc.trpls.flagged", 

"mean.chisqr.sing", "SD.chisqr.sing", "mean.chisqr.dbls", "SD.chisqr.dbls", "mean.chisqr.trpls", 

"SD.chisqr.trpls", 

                              "perc.sing.flagged.ab", "perc.dbls.flagged.ab", "perc.trpls.flagged.ab", 

"mean.chisqr.sing.ab", "SD.chisqr.sing.ab", "mean.chisqr.dbls.ab", "SD.chisqr.dbls.ab", 

"mean.chisqr.trpls.ab", "SD.chisqr.trpls.ab", 

                              # 

                              "length(subs)", 

                              #ratio.median.extreme.to.middle, Median.I.extreme.scores, 

Median.I.middle.scores, 

                              # 

                              "MAD.alpha", "BIAS.alpha", "cor.alpha", 

                              "MAD.delta", "BIAS.delta", "cor.delta", 

                              "MAD.taus" , "BIAS.taus" , "cor.taus" , 

                              "MAD.th"   , "BIAS.th"   , "cor.th"   , 

                              # 

                              "MAD.alpha.aber"    , "BIAS.alpha.aber"    , "cor.alpha.aber", 

                              "MAD.delta.aber"    , "BIAS.delta.aber"    , "cor.delta.aber", 

                              "MAD.taus.aber"     , "BIAS.taus.aber "    , "cor.taus.aber" , 

                              "MAD.th.aber"       , "BIAS.th.aber"      , "cor.th.aber"   , 

                              # 

                              "MAD.th.aber.fit"   , "BIAS.th.aber.fit"   , "cor.th.aber.fit", 

                              "MAD.th.aber.misfit", "BIAS.th.aber.misfit", "cor.th.aber.misfit", 

                              # 

                              "H", "H_SE", "H.aber", "H_SE.aber", 
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                              "reliab.MS", "reliab.MS.aber", "reliab.alpha", "reliab.alpha.aber", 

"reliab.lambda2", "reliab.lambda2.aber",#74 

                              # 

                              "Power.U3poly","Power.U3poly.clean", "Power.Gpoly","Power.Gpoly.clean", 

"Power.Gnormed.poly","Power.Gnormed.poly.clean", "Power.HT", 

"Power.HT.clean","Power.lzpoly", "Power.lzpoly.clean","Power.lzstar", "Power.lzstar.clean", 

                              "TypeIerror.U3poly", "TypeIerror.Gpoly", "TypeIerror.Gnormed.poly", 

"TypeIerror.HT","TypeIerror.lzpoly", "TypeIerror.lzstar", 

                              "TypeIerror.U3poly.clean", "TypeIerror.Gpoly.clean", 

"TypeIerror.Gnormed.poly.clean", "TypeIerror.HT.clean","TypeIerror.lzpoly.clean", 

"TypeIerror.lzstar.clean", 

                              # 

                              "Accuracy.U3poly", "Accuracy.Gpoly", "Accuracy.Gnormed.poly", 

"Accuracy.HT","Accuracy.lzpoly","Accuracy.lzstar", 

                              "Accuracy.U3poly.clean", "Accuracy.Gpoly.clean", 

"Accuracy.Gnormed.poly.clean", 

"Accuracy.HT.clean","Accuracy.lzpoly.clean","Accuracy.lzstar.clean", 

                              # 

                              #"Avglzpoly.rev",  "Avglzpoly",  "SDlzpoly.rev",  "SDlzpoly",  

"Avglzstar.rev",  "Avglzstar",  "SDlzstar.rev",  "SDlzstar", 

                              #cutoffs 

                              "cutoff.use.U3poly.clean", "cutoff.use.U3poly", 

                              "cutoff.use.Gpoly.clean", "cutoff.use.Gpoly", 

                              "cutoff.use.Gnormed.poly.clean", "cutoff.use.Gnormed.poly", 

                              "cutoff.use.HT.clean", "cutoff.use.HT", 

                              "cutoff.use.lzpoly.clean", "cutoff.use.lzpoly", 

                              "cutoff.use.lzstar.clean", "cutoff.use.lzstar", 

                               

                              "cutoff.SE.U3poly", 

                              "cutoff.SE.Gpoly", 

                              "cutoff.SE.Gnormed.poly", 

                              "cutoff.SE.HT", 

                              "cutoff.SE.lzpoly", 

                              "cutoff.SE.lzstar" 

                               

    ) 

    result.df<-as.data.frame(result.tbl) 

    result.df$rep<-rep   

    result.df$modelcondition<-"1A" 

    result.df$modelgen<-"GGUM" 

    result.df$modelfit<- "GGUM" 

     

    write.table(result.df, file=paste0("C:/Users/jreimers/Documents/Jreimers/NEW 

DISSERTATION/SimOutcomes/1A_Results/GGUMGGUM_condition_", 

i,"rep",rep,".txt"),col.names=TRUE, row.names=FALSE, sep=", ", quote=FALSE) 
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  } 

 

print(Sys.time()) 

print(Sys.time() - start.time) 

 

# Stop parallel cluster: 

stopCluster(cl) 

 

# END SECTION 
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Appendix B 

 

R Code for Condition of GPCM Fit to GPCM Data 

### much of the below code is inspired by and adapted from Tendeiro's work on OSF: 

https://www.jorgetendeiro.com/publication/tendeiro_2017/ 

 

 

# 0. Prepare environment ---- 

rm(list=ls()) 

if (!is.null(dev.list())) dev.off(dev.list()["RStudioGD"]) 

library(Rcpp) 

library(psych) 

library(fastGHQuad) 

library(abind) 

library(mirt) 

library(stats4) 

library(stats) 

library(PP) 

library(Matrix) 

library(paran) 

 

#Parallel Analysis 

library(paran) 

library(Hmisc) 

#PF 

  

library(RCurl) 

library(PerFit) 

library(mokken) 

# Parallel processing: 

library(doParallel) 

library(foreach) 

 

#1. Conditions and fixed parameters 

n_items.vec   <- c( 20, 40) 

AbI.vec <- c(.20, .40, .60) 

AbN.vec <- c(.04, .10, .20) 

AbType.vec   <- c(  "Random_Responders", "Longstringers",   "ERS", "MRS", "Mixed") 

parameters           <- expand.grid(n_items.vec, AbI.vec, AbN.vec, AbType.vec) 

colnames(parameters) <- c("n_items.vec", "AbI.vec", "AbN.vec", "AbType.vec") 

rm(n_items.vec, AbI.vec, AbN.vec, AbType.vec) 

# Fixed parameters: 

n       <- 1000 

N       <- 1000 

cats    <- 6 
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#detectCores() 

 

 

#  Setup parallel backend to use 3 processors (cores): 

cl <- makeCluster(7, setup_strategy = "sequential") 

registerDoParallel(cl, cores = 7) 

# END SECTION 

 

 

#Also run Modfit.gpcm and lzstarMix functions 

# 

# 

# 

# 3. Run the simulation ---- 

 

# 

start.time <- Sys.time() 

print(start.time) 

 

outcome.simulation <- foreach(i=1:1) %:%  

  foreach(rep=1:50, .packages=c("psych", "fastGHQuad", "abind", "mokken", "PerFit", "paran", 

"Hmisc", "PP", "mirt", "Matrix")) %dopar% { 

    set.seed(1000*i+rep) 

    # Specify varying parameters for cell  

    n_items    <- parameters[i, 1] 

    AbI        <- parameters[i, 2] 

    AbN        <- parameters[i, 3] 

    AbType     <- parameters[i, 4] 

    n_Abitems<-(n_items*AbI) 

    n_Cleanitems<-n_items-n_Abitems 

   

    

##############################################################################

############################################################################## 

##############START: STEP 1 Generate CLEAN Data & Estimate Parameters############ 

     

    # Generate item scores according to the GPCM: 

    ## discrimination parameters from random uniform distribution for each dataset (a_1, a_2,...) 

    a <- matrix(runif(n=n_items*1, min=.5, max=2)) #create dataset for each rep 

    data.a<- t(a) 

     

    ###generating step difficulty parms: used website: https://rpubs.com/okanbulut/pcmsimulation 

    zerovector<- (rep(0,n_items)) 

    #generate differences using cumsum 

    difmatrix<-t(apply(matrix(runif(n_items*(cats-1),.3,1),n_items),1, cumsum)) 

    #transform differences to d_jk by making them relative to mean 
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    d_jk <- -(difmatrix-rowMeans(difmatrix)) 

    #generate item location parms b_j 

    i.locations<- rnorm(n_items) 

    #compute item category location parms 

    True.bparms_gpcm<- (i.locations+d_jk)*-1 

    thresholds<- rbind(t(zerovector), t(True.bparms_gpcm)) 

     

     

    ##Generate true thetas 

    TrueThetasGPCM= rnorm(n, mean=0, sd=1) 

    data.TrueThetasGPCM=as.matrix(TrueThetasGPCM) 

    colnames(data.TrueThetasGPCM)<- c("TrueTheta") 

     

    Taus_gpcm<-as.data.frame("NA") 

     

    data.gpcm<- as.matrix(sim_gpcm(thres=thresholds, alpha=a, theta=TrueThetasGPCM)) 

     

    gendata<-list(alpha.gen=data.a, b.gen=True.bparms_gpcm, Taus_NA=Taus_gpcm, 

theta.gen=data.TrueThetasGPCM, data=data.gpcm) 

     

    data.ext <-gendata[[5]] 

     

    item_array<- c(paste0("item", seq(1,n_items))) 

    colnames(data.gpcm)<-item_array 

     

    #write.table(data.ext, file=paste0("/Volumes/Backup Plus/NEW 

DISSERTATION/Datasets/1C GPCMGPCM/3.GPCMGPCM_clean/GPCMGPCM_condition_", 

i,"rep",rep,".txt"),col.names=TRUE, row.names=FALSE, sep=", ", quote=FALSE) 

                                        

    # Estimate item and person parameters BEFORE aberrant behavior: 

    model.gpcm<-paste0("f=1-",n_items) 

    results.gpcm<-mirt(data=data.gpcm, model=model.gpcm, itemtype="gpcm", SE=TRUE, 

verbose=FALSE) 

    IP.est<- as.data.frame(coef(results.gpcm, IRTpars=TRUE, simplify=TRUE)) 

     

    Th.est     <- fscores(results.gpcm, method="EAP", full.scores=TRUE) 

    Th.est.ext <- as.vector(Th.est) 

     

   

     

    

##############################################################################

############################################################################## 

####################END: STEP 1 Generate CLEAN Data & Estimate Parameters 

############################################################################## 

     



 

248 

 

##############################################################################

##############################################################################

######################START: STEP 4 OBTAINING CUTOFFS 

############################################################################# 

     

     

    ##PART A: Using Parm ests from aberrant data 

    Nreps=20 

    Th.est.aber.NA <- which(is.na(Th.est.ext)) 

    PFS.cutoffs <- matrix(NA, Nreps, 6) 

    for (r in 1:Nreps){ #r=1 

      #Generate model-fitting item score vectors based on GPCM and the estimated person and 

item parameters using the aberrant data. 

      #### 

      thresholds.modelfit<- as.data.frame(rbind(t(zerovector), t(IP.est[, 2:cats]))) 

       

      modelfitting.data <- as.matrix(sim_gpcm(thres=thresholds.modelfit, alpha=IP.est$items.a , 

theta=Th.est.ext)) 

       

      item_array<- c(paste0("item", seq(1,n_items))) 

      colnames(modelfitting.data )<-item_array 

       

      #estimate parms for study 3 with parametric PFS 

      model.gpcm<-paste0("f=1-",n_items) 

      results.gpcm.modelfit<-mirt(data=modelfitting.data, model=model.gpcm, itemtype="gpcm", 

SE=TRUE, verbose=FALSE) 

      IP.est.modelfitting <- as.data.frame(coef(results.gpcm.modelfit, IRTpars=TRUE, 

simplify=TRUE)) 

       

      Th.est.gendata   <- fscores(results.gpcm.modelfit, method="EAP", full.scores=TRUE) 

      Th.est.ext.gendata <- as.vector(Th.est.gendata) 

       

     

     

    #compute PFSs for the generated data for the purpose of creating the cutoffs (median over 

replications) 

     

    ##Prep dataset for IIO and HT analyses 

    find.invariants <- apply( modelfitting.data, 1, function(vec) max(vec) - min(vec)) 

    pos.invariants  <- which(find.invariants == 0) 

    H_data.cutoff   <- if (length(pos.invariants) > 0)  modelfitting.data[-pos.invariants,] + 1 else  

modelfitting.data + 1 

     

     

    #compute PFs 

    #U3poly 
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    U3poly.res.list<-U3poly( modelfitting.data , (cats)) 

    U3poly.res.modfit<-U3poly.res.list[[1]] 

     

    #Gpoly 

    Gpoly.res.list<-Gpoly( modelfitting.data , (cats)) 

    Gpoly.res.modfit<-Gpoly.res.list[[1]] 

     

     

    #Gnormed.poly 

    Gnormed.poly.res.list<-Gnormed.poly( modelfitting.data , (cats)) 

    Gnormed.poly.res.modfit<-Gnormed.poly.res.list[[1]] 

    #HT 

    #first ranspose the data matrix so that persons are columns and items are rows 

    data.aberrant.t<-as.matrix(t(H_data.cutoff)) 

    # Using CoefH in Mokken to calculate the Ht for persons instead of items. 

    HT.list<-coefH(data.aberrant.t, se=FALSE) 

    HT.res.modfit<-as.data.frame(HT.list[[2]]) 

     

    #lzpoly and lzstar using Sandhip's lzstarMix function 

    a.star<-as.numeric(unlist(IP.est.modelfitting[,1])) 

    b.star<-matrix(as.numeric(unlist(IP.est.modelfitting[, 2:cats])), nrow=n_items) 

    scores.1<- matrix(as.double(as.character(modelfitting.data)), nrow=n) 

     

    lzstar.res.list<-lzstarMix(scores = scores.1,theta=Th.est.ext.gendata,a=a.star,b=b.star, 

c=NULL, est="mle") 

    lzstar.res.modfit<-lzstar.res.list[,2] 

    lzpoly.res.modfit<-lzstar.res.list[,1] 

  

     

     

     

    #Compute cutoff (used median) 

    U3poly.modfit.cut        <- round(quantile(U3poly.res.modfit$PFscores, probs = .95), 4) 

    Gpoly.modfit.cut         <- round(quantile(Gpoly.res.modfit$PFscores, probs = .95), 4) 

    Gnormed.poly.modfit.cut  <- round(quantile(Gnormed.poly.res.modfit$PFscores, probs = .95), 

4) 

    HT.modfit.cut            <- round(quantile( HT.res.modfit, probs = .05, na.rm=TRUE), 4) 

    lzpoly.modfit.cut        <- round(quantile(lzpoly.res.modfit, probs = .05, na.rm=TRUE), 4) 

    lzstar.modfit.cut        <- round(quantile(lzstar.res.modfit, probs = .05, na.rm=TRUE), 4) 

    

    #r=1 

     

    PFS.cutoffs[r, 1]<-  U3poly.modfit.cut 

    PFS.cutoffs[r, 2]<-  Gpoly.modfit.cut 

    PFS.cutoffs[r, 3]<-  Gnormed.poly.modfit.cut 

    PFS.cutoffs[r, 4]<-  HT.modfit.cut 
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    PFS.cutoffs[r, 5]<-  lzpoly.modfit.cut 

    PFS.cutoffs[r, 6]<-  lzstar.modfit.cut 

    } 

    names(PFS.cutoffs)<- c("U3poly", "Gpoly", "Gnormed.poly", "HT", "lzpoly", "lzstar") 

     

     

 

    cutoff.use.U3poly <- round( median(PFS.cutoffs[, 1]), 4) 

    cutoff.SE.U3poly  <- round(sd(PFS.cutoffs[, 1]), 4) 

     

    cutoff.use.Gpoly <- round( median(PFS.cutoffs[, 2]), 4) 

    cutoff.SE.Gpoly  <- round(sd(PFS.cutoffs[, 2]), 4) 

     

    cutoff.use.Gnormed.poly <- round( median(PFS.cutoffs[, 3]), 4) 

    cutoff.SE.Gnormed.poly  <- round(sd(PFS.cutoffs[, 3]), 4) 

     

    cutoff.use.HT <- round( median(PFS.cutoffs[, 4]), 4) 

    cutoff.SE.HT  <- round(sd(PFS.cutoffs[, 4]), 4) 

     

    cutoff.use.lzpoly <- round( median(PFS.cutoffs[, 5]), 4) 

    cutoff.SE.lzpoly  <- round(sd(PFS.cutoffs[, 5]), 4) 

     

    cutoff.use.lzstar <- round( median(PFS.cutoffs[, 6]), 4) 

    cutoff.SE.lzstar  <- round(sd(PFS.cutoffs[, 6]), 4) 

     

     

     

   

     

     

    

##############################################################################

##############################################################################

############################END: STEP 4 OBTAINING CUTOFFS 

##############################################################################  

     

     

     

     

     

#####################START: STEP 5 Type I error and power rates ################### 

##############################################################################

############################################################################## 

     

     

    #PART A: Compute PFS for the aberrant datasets 
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    #First Prep data for HT using mokken package 

     

    #compute PFs 

    #U3poly 

    U3poly.res.list<-U3poly(data.ext, (cats)) 

    U3poly.res<-U3poly.res.list[[1]] 

     

    #Gpoly 

    Gpoly.res.list<-Gpoly(data.ext, (cats)) 

    Gpoly.res<-Gpoly.res.list[[1]] 

    #Gnormed.poly 

    Gnormed.poly.res.list<-Gnormed.poly(data.ext, (cats)) 

    Gnormed.poly.res<-Gnormed.poly.res.list[[1]] 

    #HT 

    #first ranspose the data matrix so that persons are columns and items are rows 

    data.aberrant.t<-as.matrix(t(data.ext)) 

    # Using CoefH in Mokken to calculate the Ht for persons instead of items. 

    HT.list<-coefH(data.aberrant.t, se=FALSE) 

    HT.res<-as.data.frame(HT.list[[2]]) 

     

     

     

    #lzpoly and lzstar using Sandhip's lzstarMix function 

    a.star<-as.numeric(unlist(IP.est[,1])) 

    b.star<-matrix(as.numeric(unlist(IP.est[, 2:cats])), nrow=n_items) 

    scores.1<- matrix(as.double(as.character(data.ext)), nrow=n) 

     

    lzstar.res.list<-lzstarMix(scores = scores.1,theta=Th.est.ext,a=a.star,b=b.star, c=NULL, 

est="mle") 

    lzstar.res<-lzstar.res.list[,2] 

    lzpoly.res<-lzstar.res.list[,1] 

     

     

    #PART B: Compute Power and Type I error Using cuttoffs computed with Aberrant parms 

    # Type I error and power rates: 

    #U3poly 

    TypeIerror.U3poly    <- round(mean(na.omit(U3poly.res[[1]]                 >  cutoff.use.U3poly)), 

4) 

     

    #Gpoly 

    TypeIerror.Gpoly    <- round(mean(na.omit(Gpoly.res[[1]]                  > cutoff.use.Gpoly)), 4) 

    

     

    #Gnormed.poly 

    TypeIerror.Gnormed.poly    <- round(mean(na.omit(Gnormed.poly.res[[1]]      > 

cutoff.use.Gnormed.poly)), 4) 
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    #HT 

    TypeIerror.HT    <- round(mean(na.omit(HT.res[[1]]                       < cutoff.use.HT)), 4) 

      

     

     

    #lzpoly 

    TypeIerror.lzpoly    <- round(mean(na.omit(lzpoly.res        <  cutoff.use.lzpoly)), 4) 

     

    # #lzstar 

    TypeIerror.lzstar   <- round(mean(na.omit(lzstar.res                        <  cutoff.use.lzstar)), 4) 

     

     

     

    

##############################################################################

############################################################################## 

################################RESULTS    ################################### 

############################################################################## 

   

    result<- list( 

      c(  TypeIerror.U3poly, TypeIerror.Gpoly, TypeIerror.Gnormed.poly, 

TypeIerror.HT,TypeIerror.lzpoly, TypeIerror.lzstar) 

    ) 

     

 

    result.tbl<-as.data.frame(t(unlist(result))) 

     

    colnames(result.tbl) <- c("TypeIerror.U3poly", "TypeIerror.Gpoly", 

"TypeIerror.Gnormed.poly", "TypeIerror.HT","TypeIerror.lzpoly", "TypeIerror.lzstar") 

                             

                               

     

    result.df<-as.data.frame(result.tbl) 

    result.df$rep<-rep   

    result.df$modelcondition<-"1C" 

    result.df$modelgen<-"GPCM" 

    result.df$modelfit<-"GPCM" 

     

    write.table(result.df, file=paste0("/Volumes/Backup Plus/NEW 

DISSERTATION/SimOutcomes/TypeIError/C/GPCMGPCM_condition_", 

i,"rep",rep,".txt"),col.names=TRUE, row.names=FALSE, sep=", ", quote=FALSE) 

     

     

  } 
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print(Sys.time()) 

print(Sys.time() - start.time) 

 

# Stop parallel cluster: 

stopCluster(cl) 

 

# END SECTION 
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Appendix C 

R Code for MODFIT function Using GPCM 

MODFIT.gpcm <- function(data, model, C, IP.est, precision = 4) 

{ 

  N     <- nrow(data) 

  I     <- ncol(data) 

  N.NAs <- N - colSums(is.na(data)) 

   

  if (I <= 10) 

  { 

    doublets <- t(combn(I, 2)) 

    triplets <- t(combn(I, 3)) 

  } else { 

    # Find packets: 

    obs.props   <- colMeans(data > 0, na.rm = TRUE) 

    group.low   <- sort(order(obs.props)[1:ceiling(I / 3)]) 

    group.med   <- sort(order(obs.props)[(ceiling(I / 3) + 1) : ceiling(2*I/3)]) 

    group.high  <- sort(order(obs.props)[(ceiling(2*I / 3) + 1) : I]) 

    groups      <- cbind(group.low = group.low[1:floor(I / 3)],  

                         group.med[1:floor(I / 3)],  

                         group.high[1:floor(I / 3)]) 

    packets     <- lapply(seq_len(nrow(groups)), function(row) sort(groups[row, ])) 

    if ((I %% 3) == 1) {packets[[1]][4] <- group.low[ceiling(I / 3)]} 

    if ((I %% 3) == 2) { 

      packets[[1]][4] <- group.low[ceiling(I / 3)] 

      packets[[2]][4] <- group.med[ceiling(I / 3)] 

    } 

     

    #  

    # singlets    <- 1:I 

    doublets    <- matrix(unlist(lapply(packets, function(x) combn(x,2))),  

                          ncol = 2, byrow = TRUE) 

    triplets    <- matrix(unlist(lapply(packets, function(x) combn(x,3))),  

                          ncol = 3, byrow = TRUE) 

  } 

   

  # NAs for doublets and triplets: 

  N.NAs.doublets <- apply(doublets, 1,  

                          function(vec) N - sum(rowSums(is.na(data[, vec])) > 0)) 

  N.NAs.triplets <- apply(triplets, 1,  

                          function(vec) N - sum(rowSums(is.na(data[, vec])) > 0)) 

   

  # Nodes and weights: 

  nodes.chi   <- seq(-3, 3, length.out = 61) 
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  N.nodes.chi <- length(nodes.chi) 

  weights     <- dnorm(nodes.chi) / sum(dnorm(nodes.chi)) 

   

   

  # Singlets: 

  probs.array.aber.drasgow <- array(NA, dim = c(N.nodes.chi, I, max(C) + 1)) 

  if (model == "GPCM") 

  { 

    probs.list.drasgow<-  

      plink::gpcm(x=IP.est[1:(C+1)], cat=rep((C+1), I), theta=nodes.chi ) 

    probs.out.drasgow<-probs.list.drasgow@prob[,2:(I*(C+1)+1)] 

    for (i in 1:I) 

    { 

      for (z in 0:C)  

      {  

        probs.array.aber.drasgow[, i, z + 1] <- probs.out.drasgow[,((z+1)+((i-1)*(C+1)))] 

         

      } 

    } 

  } 

  weights.arr              <- array(rep(weights, I * (max(C) + 1)),  

                                    c(N.nodes.chi, I, max(C) + 1)) 

  N.NAs.mat                <- matrix(rep(N.NAs, max(C) + 1), nrow = I,  

                                     byrow = FALSE) 

  if (length(C) > 1) for (i in 1:I) N.NAs.mat[i, (C[i] + 1):(max(C) + 1)] <- NA 

  expected.mat.drasgow     <- N.NAs.mat * apply((probs.array.aber.drasgow * weights.arr), 2:3, 

sum) 

  if (length(C) == 1)  

  { 

    observed.mat.drasgow     <- t(apply(data, 2,  

                                        function(vec) table(factor(vec, levels = 0:C)))) 

  } else  

  { 

    observed.mat.drasgow <- matrix(NA, nrow = I, ncol = max(C) + 1) 

    for (i in 1:I)  

    { 

      observed.mat.drasgow[i, 1:(C[i] + 1)] <- table(factor(data[, i], levels = 0:C[i])) 

    } 

  } 

  # Merge cells with expected frequencies < 5: 

  expected.order                 <- t(apply(expected.mat.drasgow, 1, order)) 

  expected.mat.drasgow           <- t(sapply(1:I, function(it) expected.mat.drasgow[it, 

expected.order[it, ]])) 

  observed.mat.drasgow           <- t(sapply(1:I, function(it) observed.mat.drasgow[it, 

expected.order[it, ]])) 

  expected.mat.drasgow.less5     <- rowSums(expected.mat.drasgow < 5, na.rm = TRUE) 
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  N.expected.mat.drasgow.less5   <- sum(expected.mat.drasgow.less5 > 0) 

  pos.expected.mat.drasgow.less5 <- which(expected.mat.drasgow.less5 > 0) 

  df                             <- if (length(C) == 1) rep(C, I) else C 

  if (N.expected.mat.drasgow.less5 > 0) 

  { 

    sapply(1:N.expected.mat.drasgow.less5, function(it)  

    { 

      item    <- pos.expected.mat.drasgow.less5[it] 

      pos.sum <- expected.mat.drasgow.less5[item] 

      if (sum(expected.mat.drasgow[item, 1:pos.sum]) < 5) {pos.sum <- pos.sum + 1} 

      expected.mat.drasgow[item, pos.sum]         <- sum(expected.mat.drasgow[item, 1:pos.sum]) 

      expected.mat.drasgow[item, 1:(pos.sum - 1)] <- 1 

      observed.mat.drasgow[item, pos.sum]         <- sum(observed.mat.drasgow[item, 1:pos.sum]) 

      observed.mat.drasgow[item, 1:(pos.sum - 1)] <- 1 

      df[item] <- if (length(C) == 1) (C + 1) - pos.sum else (C[item] + 1) - pos.sum 

    }) 

  } 

  # Compute (adjusted) chi squares (/df): 

  chisq        <- rowSums(((observed.mat.drasgow - expected.mat.drasgow)^2) / 

expected.mat.drasgow, na.rm = TRUE) 

  chisq.df     <- chisq / df 

  chisq.adj    <- sapply(1:I, function(it) max(0, 3000 * (chisq[it] - df[it]) / N.NAs[it] + df[it])) 

  chisq.adj.df <- chisq.adj / df 

  singlets.res <- cbind(Item = 1:I, N.NAs, df, chisq, chisq.df, chisq.adj, chisq.adj.df) 

   

  # Doublets: 

  doublets.NAs <- cbind(doublets, N.NAs.doublets) 

  doublets.res <- t(apply(doublets.NAs, 1, function(vec) 

  { 

    item1   <- vec[1] 

    item2   <- vec[2] 

    N.NAs.d <- vec[3] 

    probs.array.aber.drasgow.item1     <- probs.array.aber.drasgow[, item1, ] 

    probs.array.aber.drasgow.item2     <- probs.array.aber.drasgow[, item2, ] 

    probs.array.aber.drasgow.item1.arr <- array(rep(probs.array.aber.drasgow.item1, max(C) + 1), 

c(N.nodes.chi, max(C) + 1, max(C) + 1)) 

    probs.array.aber.drasgow.item2.arr <- array(rep(probs.array.aber.drasgow.item2, max(C) + 1), 

c(N.nodes.chi, max(C) + 1, max(C) + 1)) 

    probs.array.aber.drasgow.item2.arr <- aperm(probs.array.aber.drasgow.item2.arr, c(1, 3, 2)) 

    weights.arr2                       <- array(rep(weights.arr, (max(C) + 1) * (max(C) + 1)), 

c(N.nodes.chi, max(C) + 1, max(C) + 1)) # For doublets 

    expected.mat.drasgow.it1.it2       <- N.NAs.d * apply(probs.array.aber.drasgow.item1.arr * 

probs.array.aber.drasgow.item2.arr * weights.arr2, 2:3, sum) 

    if (length(C) > 1) 

    { 

      if (C[item1] < max(C)) expected.mat.drasgow.it1.it2[(C[item1] + 2):(max(C) + 1), ] <- NA 
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      if (C[item2] < max(C)) expected.mat.drasgow.it1.it2[, (C[item2] + 2):(max(C) + 1)] <- NA 

    } 

    if (length(C) == 1)  

    { 

      observed.mat.drasgow.it1.it2 <- table(factor(data[, item1], levels = 0:C), factor(data[, item2], 

levels = 0:C)) # table(data[, item1], data[, item2]) 

    } else  

    { 

      observed.mat.drasgow.it1.it2 <- matrix(NA, nrow = max(C) + 1, ncol = max(C) + 1) 

      observed.mat.drasgow.it1.it2[1:(C[item1] + 1), 1:(C[item2] + 1)] <- table(factor(data[, 

item1], levels = 0:C[item1]), factor(data[, item2], levels = 0:C[item2])) 

    } 

    # Merge cells with expected frequencies < 5: 

    expected.order.it1.it2             <- order(c(expected.mat.drasgow.it1.it2)) 

    expected.mat.drasgow.it1.it2       <- c(expected.mat.drasgow.it1.it2)[expected.order.it1.it2] 

    observed.mat.drasgow.it1.it2       <- c(observed.mat.drasgow.it1.it2)[expected.order.it1.it2] 

    expected.mat.drasgow.it1.it2.less5 <- expected.mat.drasgow.it1.it2 < 5 

    if (length(C) == 1) {df.it1.it2 <- (C + 1)^2 - 1} else {df.it1.it2 <- (C[item1] + 1) * (C[item2] + 

1) - 1} 

     

    if (sum(expected.mat.drasgow.it1.it2.less5, na.rm = TRUE) > 0) 

    { 

      pos.sum <- max(which(expected.mat.drasgow.it1.it2.less5 == 1)) 

      if (sum(expected.mat.drasgow.it1.it2[1:pos.sum]) < 5) {pos.sum <- pos.sum + 1} 

      expected.mat.drasgow.it1.it2[pos.sum] <- sum(expected.mat.drasgow.it1.it2[1:pos.sum]) 

      expected.mat.drasgow.it1.it2          <- expected.mat.drasgow.it1.it2[pos.sum : ((max(C) + 

1)^2)] 

      observed.mat.drasgow.it1.it2[pos.sum] <- sum(observed.mat.drasgow.it1.it2[1:pos.sum]) 

      observed.mat.drasgow.it1.it2          <- observed.mat.drasgow.it1.it2[pos.sum : ((max(C) + 

1)^2)] 

      if (length(C) == 1) {df.it1.it2 <- (C + 1)^2 - pos.sum} else {df.it1.it2 <- (C[item1] + 1) * 

(C[item2] + 1) - pos.sum} 

    } 

    # Compute (adjusted) chi squares (/df): 

    chisq        <- sum(((observed.mat.drasgow.it1.it2 - expected.mat.drasgow.it1.it2)^2) / 

expected.mat.drasgow.it1.it2, na.rm = TRUE) 

    chisq.df     <- chisq / df.it1.it2 

    chisq.adj    <- max(0, 3000 * (chisq - df.it1.it2) / N.NAs.d + df.it1.it2) 

    chisq.adj.df <- chisq.adj / df.it1.it2 

    c(Item1 = item1, Item2 = item2, N = N.NAs.d, df = df.it1.it2, chisq = chisq, chisq.df = 

chisq.df, chisq.adj = chisq.adj, chisq.adj.df = chisq.adj.df) 

  })) 

  doublets.res <- cbind(Doublet = 1:nrow(doublets), doublets.res) 

   

  # Triplets: 

  triplets.NAs <- cbind(triplets, N.NAs.triplets) 
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  triplets.res <-  t(apply(triplets.NAs, 1, function(vec) 

  { 

    item1   <- vec[1] 

    item2   <- vec[2] 

    item3   <- vec[3] 

    N.NAs.t <- vec[4] 

    probs.array.aber.drasgow.item1     <- probs.array.aber.drasgow[, item1, ] 

    probs.array.aber.drasgow.item2     <- probs.array.aber.drasgow[, item2, ] 

    probs.array.aber.drasgow.item3     <- probs.array.aber.drasgow[, item3, ] 

    probs.array.aber.drasgow.item1.arr <- array(rep(probs.array.aber.drasgow.item1, (max(C) + 1) 

* (max(C) + 1)), c(N.nodes.chi, max(C) + 1, max(C) + 1, max(C) + 1)) 

    probs.array.aber.drasgow.item2.arr <- array(rep(probs.array.aber.drasgow.item2, (max(C) + 1) 

* (max(C) + 1)), c(N.nodes.chi, max(C) + 1, max(C) + 1, max(C) + 1)) 

    probs.array.aber.drasgow.item2.arr <- aperm(probs.array.aber.drasgow.item2.arr, c(1, 3, 2, 4)) 

    probs.array.aber.drasgow.item3.arr <- array(rep(probs.array.aber.drasgow.item3, (max(C) + 1) 

* (max(C) + 1)), c(N.nodes.chi, max(C) + 1, max(C) + 1, max(C) + 1)) 

    probs.array.aber.drasgow.item3.arr <- aperm(probs.array.aber.drasgow.item3.arr, c(1, 4, 3, 2)) 

    weights.arr3                       <- array(rep(weights.arr, (max(C) + 1)^3), c(N.nodes.chi, max(C) + 

1, max(C) + 1, max(C) + 1)) 

    expected.mat.drasgow.it1.it2.it3   <- N.NAs.t * apply(probs.array.aber.drasgow.item1.arr * 

probs.array.aber.drasgow.item2.arr *  

                                                            probs.array.aber.drasgow.item3.arr * weights.arr3, 2:4, 

sum) 

    if (length(C) > 1) 

    { 

      if (C[item1] < max(C)) expected.mat.drasgow.it1.it2.it3[(C[item1] + 2):(max(C) + 1), , ] <- 

NA 

      if (C[item2] < max(C)) expected.mat.drasgow.it1.it2.it3[, (C[item2] + 2):(max(C) + 1), ] <- 

NA 

      if (C[item3] < max(C)) expected.mat.drasgow.it1.it2.it3[, , (C[item3] + 2):(max(C) + 1)] <- 

NA 

    } 

    if (length(C) == 1)  

    { 

      observed.mat.drasgow.it1.it2.it3   <- table(factor(data[, item1], levels = 0:C), factor(data[, 

item2], levels = 0:C), factor(data[, item3], levels = 0:C)) # table(data[, item1], data[, item2], 

data[, item3]) 

    } else  

    { 

      observed.mat.drasgow.it1.it2.it3 <- array(NA, dim = c(max(C) + 1, max(C) + 1, max(C) + 

1)) 

      observed.mat.drasgow.it1.it2.it3[1:(C[item1] + 1), 1:(C[item2] + 1), 1:(C[item3] + 1)] <-  

        table(factor(data[, item1], levels = 0:C[item1]), factor(data[, item2], levels = 0:C[item2]), 

factor(data[, item3], levels = 0:C[item3])) 

    } 

    # Merge cells with expected frequencies < 5: 
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    expected.order.it1.it2.it3             <- order(c(expected.mat.drasgow.it1.it2.it3)) 

    expected.mat.drasgow.it1.it2.it3       <- 

c(expected.mat.drasgow.it1.it2.it3)[expected.order.it1.it2.it3] 

    observed.mat.drasgow.it1.it2.it3       <- 

c(observed.mat.drasgow.it1.it2.it3)[expected.order.it1.it2.it3] 

    expected.mat.drasgow.it1.it2.it3.less5 <- expected.mat.drasgow.it1.it2.it3 < 5 

    if (length(C) == 1) {df.it1.it2.it3 <- (C + 1)^3 - 1} else {df.it1.it2.it3 <- (C[item1] + 1) * 

(C[item2] + 1) * (C[item3] + 1) - 1} 

    if (sum(expected.mat.drasgow.it1.it2.it3.less5, na.rm = TRUE) > 0) 

    { 

      pos.sum <- max(which(expected.mat.drasgow.it1.it2.it3.less5 == 1)) 

      if (sum(expected.mat.drasgow.it1.it2.it3[1:pos.sum]) < 5) {pos.sum <- pos.sum + 1} 

      expected.mat.drasgow.it1.it2.it3[pos.sum] <- 

sum(expected.mat.drasgow.it1.it2.it3[1:pos.sum]) 

      expected.mat.drasgow.it1.it2.it3          <- expected.mat.drasgow.it1.it2.it3[pos.sum : 

((max(C) + 1)^3)] 

      observed.mat.drasgow.it1.it2.it3[pos.sum] <- 

sum(observed.mat.drasgow.it1.it2.it3[1:pos.sum]) 

      observed.mat.drasgow.it1.it2.it3          <- observed.mat.drasgow.it1.it2.it3[pos.sum : 

((max(C) + 1)^3)] 

      if (length(C) == 1) {df.it1.it2.it3 <- (C + 1)^3 - pos.sum} else {df.it1.it2.it3 <- (C[item1] + 1) 

* (C[item2] + 1) * (C[item3] + 1) - pos.sum} 

    } 

    # Compute (adjusted) chi squares (/df): 

    chisq        <- sum(((observed.mat.drasgow.it1.it2.it3 - expected.mat.drasgow.it1.it2.it3)^2) / 

expected.mat.drasgow.it1.it2.it3, na.rm = TRUE) 

    chisq.df     <- chisq / df.it1.it2.it3 

    chisq.adj    <- max(0, 3000 * (chisq - df.it1.it2.it3) / N.NAs.t + df.it1.it2.it3) 

    chisq.adj.df <- chisq.adj / df.it1.it2.it3 

    c(Item1 = item1, Item2 = item2, Item3 = item3, N = N.NAs.t, df = df.it1.it2.it3,  

      chisq = chisq, chisq.df = chisq.df, chisq.adj = chisq.adj, chisq.adj.df = chisq.adj.df) 

  })) 

  triplets.res <- cbind(Triplet = 1:nrow(triplets), triplets.res) 

   

  # Summarize results: 

  f.int          <- function(x) {if (x < 1) 1 else (if (x < 2) 2 else (if (x < 3) 3 else (if (x < 4) 4 else (if 

(x < 5) 5 else (if (x < 7) 6 else 7)))))} 

  singlets.table <- c(table(factor(sapply(singlets.res[, 7], f.int), levels=1:7)), 

round(mean(singlets.res[, 7]), 4), round(sd(singlets.res[, 7]), 4)) 

  doublets.table <- c(table(factor(sapply(doublets.res[, 9], f.int), levels=1:7)), 

round(mean(doublets.res[, 9]), 4), round(sd(doublets.res[, 9]), 4)) 

  triplets.table <- c(table(factor(sapply(triplets.res[, 10], f.int), levels=1:7)), 

round(mean(triplets.res[, 10]), 4), round(sd(triplets.res[, 10]), 4)) 

  all.table      <- rbind(singlets.table, doublets.table, triplets.table) 

  rownames(all.table) <- c("Singlets", "Doublets", "Triplets") 
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  colnames(all.table) <- c("Less_1", "1_to_2", "2_to_3", "3_to_4", 

"4_to_5","5_to_7","Larger_7", "Mean", "SD") 

   

  res <- list(Singlets      = round(singlets.res, precision),  

              Doublets      = round(doublets.res, precision),  

              Triplets      = round(triplets.res, precision),  

              Summary.table = round(all.table, precision)) 

  class(res) <- "MODFIT" 

  return(res) 

} 

 

# Export data in MODFIT friendly format ---- 

Export.MODFIT <- function(data, C, IP, file.name = "MyData") { 

  # Missing values: NA -> 9 

  data[is.na(data)] <- 9 

  write.xlsx2(data, paste0(file.name, "SCORES.xlsx"), col.names = FALSE, row.names = 

FALSE) 

  write.xlsx2(cbind(IP$alpha, IP$delta, IP$taus[, 1:C]), paste0(file.name, "IPs.xlsx"), col.names 

= FALSE, row.names = FALSE) 

} 
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Appendix D 

R Code for Computing lz and lzstar Using GPCM 

#Credit to Sandhip Sinharay who shared the following code via email to Jorge Tendeiro 

 

# The function lzstatMx to compute lz and lzstar for a mixed-format test 

   lzstarMix=function(scores,theta,a,b,c,est) 

    {nitem=ncol(scores) 

     mxscores=apply(b,1,f1) 

     dich=which(mxscores %in% 1) 

     poly=setdiff(1:nitem,dich) 

     n3PL=length(dich) 

     out=NULL 

     for (j in 1:nrow(scores)) 

     {cnnum=0 

     cnden=0 

     s0num=0 

     s0den=0  

     if (n3PL>0) 

     {pr=pr3PL(theta[j],a[dich],b[dich,1],c[dich]) 

     w=log(pr/(1-pr)) 

     e = exp(a[dich]*(theta[j]-b[dich,1])) 

     p1 =  (1-c[dich])*a[dich]*e/((1+e)*(1+e)) 

     r = p1/(pr*(1-pr)) 

     cnden = sum(p1*r) 

     cnnum = sum(p1*w) 

     if (est=="wle") {p2 = p1*a[dich]*(1-e)/(1+e) 

                  s0num = sum(p2*r) 

                  s0den = 2*cnden}} 

     if (n3PL<nitem) 

     {for (i in poly) 

     { probs=prGPCM(theta[j],a[i],b[i,1:mxscores[i]]) 

       der1=d1prGPCM(theta[j],a[i],b[i,1:mxscores[i]]) 

       cnnum=cnnum+sum(der1*log(probs)) 

       cnden=cnden+sum(der1**2/probs)}} 

     cn=cnnum/cnden 

     lznum=0 

     lzden=0 

     lzstden=0 

     if (n3PL>0) 

     {lznum=sum((scores[j,dich]-pr)*w) 

     lzden=sum(w*w*pr*(1-pr)) 

     lzstden= sum(pr*(1.0-pr)*(w-cn*r)**2)} 

     if (n3PL<nitem) 

     {for (i in poly) 
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     { probs=prGPCM(theta[j],a[i],b[i,1:mxscores[i]]) 

       vmat=diag(probs)-probs%*%t(probs) 

       lznum=lznum+log(probs[scores[j,i]+1])-sum(probs*log(probs)) 

       lzden=lzden+t(log(probs))%*%vmat%*%log(probs) 

       der1=d1prGPCM(theta[j],a[i],b[i,1:mxscores[i]]) 

lzstden=lzstden+t(log(probs)-cn*der1/probs)%*%vmat%*%(log(probs)-cn*der1/probs) 

       if (est=="wle") 

           {scores=seq(0,mxscores[i]) 

             l1=sum(scores*probs) 

             l2=sum(scores**2*probs) 

             l3=sum(scores**3*probs) 

             s0den=s0den+2*a[i]**2*(l2-l1**2) 

             s0num=s0num+a[i]**3*(l3-3*l1*l2+2*l1**3)}}} 

     lz = lznum/sqrt(lzden) 

     lzstar = lznum/sqrt(lzstden) 

     if (est=="wle") {lzstar = (lznum+cn*s0num/s0den)/sqrt(lzstden)} 

     vrat=lzstden/lzden 

     out=rbind(out,c(lz,lzstar))} 

     return(out)} 

# Some R functions required by lzstarMix are defined below 

# Probability of a correct answer under the 3PL model 

pr3PL=function(t,a,b,c){return(c+(1-c)/(1+exp(a*(b-t))))} 

# Probabilities of different scores under GPCM  

prGPCM=function(theta,a,b)#b for scores 1,2,...m for item scored on 0,1,...m. 

  {probs=rep(exp(a*theta),length(b)+1) 

   for (k in 2:length(probs)) 

     {probs[k]=exp(log(probs[k-1]) + a*(theta-b[k-1]))} 

   return(probs/sum(probs))} 

# Derivative of the P_ij for a GPCM item 

d1prGPCM=function(theta,a,b) 

{ probs=prGPCM(theta,a,b) 

  scores=seq(0,length(b)) 

  return(a*probs*(scores-sum(scores*probs)))} 

f1=function(x){return(sum(!is.na(x)))} 

 

 

 

 

 

 

 

 

 

 

 

 



 

263 

 

Appendix E 

R Code for Computing lz_poly Using GGUM 

# lzpoly.mixed under GGUM 

#######Source: Tendeiro, Jorge. osf https://osf.io/jpmy2/########## 

 

lzpoly.mixed <- function(matrix, IP, Ability, C) 

{ 

  N <- dim(matrix)[1] 

  I <- dim(matrix)[2] 

  alpha <- IP$alpha 

  delta <- IP$delta 

  taus  <- IP$taus 

  # Perfect response vectors allowed. 

  P.CRF     <- array(NA, dim = c(N, I, max(C) + 1)) 

  for (z in 0:max(C)) {P.CRF[, , z + 1] <- GGUM:::P.GGUM(z, alpha, delta, taus, Ability, C)} 

  log.P.CRF <- log(P.CRF) 

  array.01  <- array(0, dim = c(N, I, max(C) + 1)) 

  for (n in 1:N) {array.01[n, , ][cbind(1:I, matrix[n, ] + 1)] <- 1} 

  # 

  l0p  <- apply(array.01 * log.P.CRF, 1, sum, na.rm = TRUE) 

  El0p <- apply(P.CRF    * log.P.CRF, 1, sum, na.rm = TRUE) 

  # Variance: 

  var.arr <- array(NA, dim = c(N, I, max(C) + 1, max(C) + 1)) 

  for (z in 0:max(C))  

  { 

    P.CRF.slice          <- array(rep(P.CRF[, , z + 1], z + 1), dim = c(N, I, max(C) + 1)) 

    var.arr[, , , z + 1] <- P.CRF * P.CRF.slice * log.P.CRF * log(P.CRF / P.CRF.slice) 

  } 

  Vl0p <- apply(var.arr, 1, sum, na.rm = TRUE) 

  res  <- (l0p - El0p) / sqrt(Vl0p) 

  return(round(res, 4)) 

} 
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Appendix F 

R Code for Computing lzstar_poly Using GGUM 

 

# lzstarpoly.mixed from (https://www.jorgetendeiro.com/publication/tendeiro_2017/) 

 

lzstarpoly.mixed <- function(matrix, IP, Ability, P.CRF, C) 

{ 

  N <- nrow(matrix) 

  I <- ncol(matrix) 

  alpha <- IP$alpha 

  delta <- IP$delta 

  taus  <- IP$taus 

  M<-2*C+1 

  #   # Perfect response vectors allowed. 

  P.CRF     <- array(NA, dim = c(N, I, C + 1)) 

  for (z in 0:C) {P.CRF[, , z + 1] <-  GGUM:::P.GGUM(z, alpha, delta, taus, Ability, C)} 

  #  

  d1P       <- dP.theta.arr(matrix, alpha, delta, Ability, taus, C)    # N x I x (C+1) 

  ri        <- d1P / P.CRF 

  array.01  <- array(0, dim = c(N, I, C + 1)) 

  for (n in 1:N) {array.01[n, , ][cbind(1:I, matrix[n, ] + 1)] <- 1} 

  r0        <- -apply((array.01 - P.CRF) * ri, 1, sum, na.rm = TRUE) 

  #  

  wi       <- log(P.CRF) 

  Wn       <- apply((array.01 - P.CRF)*wi, 1, sum, na.rm = TRUE) 

  # Variance: 

  var.arr <- array(NA, dim = c(N, I, C + 1, C + 1)) 

  for (z in 0:C)  

  { 

    P.CRF.slice          <- array(rep(P.CRF[, , z + 1], z + 1), dim = c(N, I, C + 1)) 

    var.arr[, , , z + 1] <- P.CRF * P.CRF.slice * wi * log(P.CRF / P.CRF.slice) 

  } 

  Vl0p     <- apply(var.arr, 1, sum, na.rm = TRUE) 

  sigma2n  <- Vl0p / I 

  cn       <- apply(d1P * wi, 1, sum, na.rm = TRUE) / apply(d1P * ri, 1, sum, na.rm = TRUE) 

  wi.tilde <- wi - array(rep(cn, I * (C + 1)), dim = c(N, I, C + 1)) * ri 

  # 

  # Variance tau: 

  V.tau <- c() 

  D.arr <- array(NA, dim = c(N, I, C+1, C+1)) 

  tmp   <- P.CRF * (1 - P.CRF) 

  for (z in 0:C) 

  { 

    P.CRF.2ndterm <- array(rep(P.CRF[, , z + 1], C+1), dim = c(N, I, C+1)) 
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    D.arr[ , ,      , z + 1] <- - P.CRF * P.CRF.2ndterm 

    D.arr[ , , z + 1, z + 1] <- tmp[, , z + 1] 

  } 

  for (n in 1:N) 

  { 

    sum <- 0 

    for (i in 1:I) 

    { 

      sum <- sum + t(wi.tilde[n, i, ]) %*% D.arr[n, i, , ] %*% wi.tilde[n, i, ] 

    } 

    V.tau <- c(V.tau, sum) 

  } 

  tau2n    <- V.tau / I 

  EWn      <- -cn * r0 

  VWn      <- I * tau2n 

  res      <- as.vector((Wn - EWn) / sqrt(VWn)) 

  return(round(res, 4)) 

} 
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