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Abstract  

The tricarboxylic acid (TCA) cycle is a very important, centrally located, energy-producing 

pathway that connects numerous other metabolic and regulatory pathways.  Enzymes of this 

cycle have been more recently implicated in various cancers and neurometabolic disorders, 

however, the exact mechanism by which this happens becomes quite complex when considering 

the potential modification of these enzymes and the presence of multiple forms of the enzymes 

and therefore there is much to be studied in this area.    

Aconitase has become a recent enzyme of interest as its substrate, citrate, has been found to play 

a major role in many vital processes within an organism, including the survival and expansion of 

cancer. Additionally, the modification of aconitase by acetylation has been recently found to 

drive its activation to support energy, growth, and metastasis in prostate cancer tissue.   

In this master’s thesis, I apply the genetic code expansion technique to E. coli aconitase 

isozymes AcnA and AcnB to examine the changes in function caused by the modification of the 

structure in order to achieve a greater understanding of the impact of lysine acetylation in these 

isozymes.  
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CHAPTER I  

Introduction  

1.1 Tricarboxylic Acid Cycle  

Mitochondria are folded and complex organelles surrounded by a simple outer membrane.  The 

space inside the inner membrane is known as the matrix, and the space between the inner and 

outer membranes is referred to as the intermembrane space.  Most of the enzymes of energy 

production are found in the matrix, while many enzymes that utilize ATP are found in the 

intermembrane space.  About 150 different mitochondrial diseases involving enzyme 

dysfunction have been reported. With such a vital role in energy production and consumption, 

defects arising from mitochondrial enzyme dysfunction are quite serious and affected human 

embryos rarely survive to see birth.  

  

The tricarboxylic acid (TCA) cycle or the citric acid cycle, more commonly called the Kreb’s 

cycle, is a series of eight enzymes that are found in the mitochondrial matrix—with the exception 

of succinate dehydrogenase, which is found in the inner membrane, to produce adenosine 

triphosphate (ATP) and carbon dioxide (CO2) from the oxidation of acetyl-CoA derived from 

fats, carbohydrates and lipids.  Molecules of NADH and FADH2 are produced throughout the 

course of this cycle to be used by eukaryotes to create more energy via the electron transport 

chain in the inner mitochondrial membrane.1  The TCA cycle supplies energy via oxidative 

catabolism and also produces intermediates for other biosynthetic processes such as 

gluconeogenesis, transamination, deamination and fatty acid synthesis.2  This makes the TCA 

cycle a very important centrally- located pathway that connects numerous other metabolic 

pathways (Figure 1.1). There is an emerging role of the TCA- cycle related enzymes in human 
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diseases such as neurometabolic disorders and tumors, however the role of these enzymes is not 

fully understood.3    

 

 Figure 1.1. The TCA cycle shown with enzymes in italics.  Asterisks indicate known 

enzymopathies as of 2008 reviewed by Munnich “Casting an eye on the Krebs cycle.4”  

  

1.2 Glyoxylate Cycle  

The glyoxylate cycle bypasses the rate-limiting decarboxylation steps of the TCA cycle by 

utilizing 2 moles of acetyl-CoA and producing 1 mole of oxaloacetate and allowing the carbon 

atoms derived from fatty-acid oxidation to be converted to glucose.5  In the past it was generally 

accepted that the glyoxylate cycle existed in microorganisms and higher plants but was absent in 

higher animals; however, there is data to support the conclusion that the activation of the 
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glyoxylate cycle can serve as a part of the mobilization of carbohydrates and lipids by adrenaline 

and that the fatty acids produced from fat not only maintain energy reactions, but 

gluconeogenesis as well.6 Among the 5 enzymes that participate in this cycle, aconitase, citrate 

synthase and malate dehydrogenase are the enzymes common to the TCA cycle.  Assays of these 

enzymes common to both the TCA and glyoxylate cycles show that their activities were 20-40% 

higher in the livers of newborn rats versus adult rats, perhaps suggesting an activation of the 

glyoxylate cycle as a result of adrenaline produced during the first few days after birth.6    

  

1.3 Aconitase   

Citrate, a key metabolite in the TCA cycle, is implicated in many processes such as 

inflammation, cancer, insulin secretion, histone acetylation and neurological disorders.7  The 

greater understanding of the dual role of citrate in the survival and expansion of cancer has 

directed attention to two enzymes that determine the concentration and ultimate destination of 

citrate: citrate synthase (CS) and aconitase, with the focus of this work on aconitase. It has been 

shown that under iron rich conditions the isomerization of citrate to isocitrate is catalyzed in two 

steps by the enzyme aconitase in the TCA cycle as well as in the glyoxylate cycle. Aconitase first 

dehydrates citrate, removing the elements of water to yield aconitate, which is then rehydrated 

with H and OH added back in opposite positions to produce isocitrate.  This allows for the TCA 

cycle to oxidize a newly secondary alcohol as opposed to directly oxidizing the tertiary alcohol.  

   

The aconitase superfamily encompasses five phylogenetic groups: (i) mitochondrial aconitases 

(mAcn), (ii) cytoplasmic aconitases (cAcn) and iron regulatory proteins (IRP1 and IRP2) of 
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higher organisms and bacterial aconitase A’s (AcnA), (iii)homoaconitases, (iv) fungal and 

bacterial isopropylmalate isomerases (IPMI), and (v) bacterial aconitase B’s (AcnB).8    

In the antibiotic producing species Streptomyces viridochromogenes, Tü494, sufficient iron 

present allows AcnA to function as this enzyme of the TCA cycle while insufficient iron results 

in AcnA functioning as a regulator of iron metabolism and oxidative stress response.9 This is 

achieved by the iron-sulfur prosthetic group structure of aconitase, a cube-like cluster essential 

for activity.10 Insufficient iron or oxidative stress causes the [4Fe-4S]2+ catalytic center cluster to 

disassemble and reform to the catalytically inactive apo-enzyme [3Fe-4s]+ that is accessible for 

binding of iron response elements (IRE).11  AcnA enzymes from S. viridochromogenes and E. 

coli as well as IRP1 in eukaryotes have been shown to serve in this bifunctional manner; they 

can serve not only as enzymes but also as post-transcriptional regulators.12    

  

1.3.1 Isozymes of Aconitase   

Many of the enzymes of the TCA cycle, including aconitase, are known to exist in both 

cytosolic and mitochondrial forms.  Results of biochemical and phylogenetic studies suggest that 

early during the evolution of the aconitase family, a gene duplication enabled a cytosolic 

aconitase to evolve independently from the mitochondrial aconitase, and another duplication of 

the cytosolic aconitase resulted in two cytosolic homologues in animals that subsequently 

acquired the RNA binding capabilities of aconitase as mentioned above.  Therefore, some 

unicellular eukaryotes and protozoan parasites contain single aconitase genes that encode 

isozymes with functions in the cytosol and the mitochondria meanwhile multicellular eukaryotes 

have separate genes that encode these isozymes.13  For example, the cytosolic aconitase of C. 

elegans has no RNA-binding activity14, while one of the two cytosolic aconitases in Drosophila 
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also functions as an RNA-binding, iron regulatory protein (IRP).15  In mammals,  IRP1 (also 

known as cytosolic aconitase, or ACO1) has both aconitase and RNA-binding functions, while 

IRP2 functions solely as a RNA-binding protein.16   

   

The presence of two isozymes of aconitase in E.coli was first elucidated after the successful 

deletion of the acnA gene resulted in a mutant that still retained residual aconitase activity and 

did not demonstrate glutamate auxotrophy.17  This provided evidence for the existence of 2 

aconitases, designated AcnA and AcnB.  The mutant and wild type aconitase both grew equally 

well under most growth conditions, demonstrating that the iron-sulfur isozymes are functionally 

overlapping; however, underlying functional specialization was suggested from the differential 

regulation of the genes under other growth conditions.17    

  

In a study characterizing the stabilities of AcnA and AcnB, it was determined that under normal 

conditions, AcnB serves as the primary aconitase, processing the bulk of metabolic flux. 18  The 

same study determined that the enzyme AcnB is sensitive to both oxidative stress as well as iron 

depletion while AcnA on the other hand, is resistant to both stressors.  During the early growth 

stage of E.coli, AcnB is the major aconitase expressed, while AcnA is expressed during the late 

growth stage.19 This mechanism of differential expression of aconitase based on growth stage is 

useful for the organism to adapt to the necessities of the varying stages.  

  

1.3.2 Aconitase Structure  

As aforementioned, aconitase is an iron sulfur protein that utilizes an intact [4Fe-4S] to 

participate as an enzyme in the TCA cycle, while in some species in its disassembled apo-form it 
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can bind mRNA transcripts and serve as a posttranscriptional regulator.  During cell growth, 

reactive oxygen species (ROS) such as peroxynitrite and hydrogen peroxide are accumulated in 

cells, causing damage and the subsequent inactivation of aconitase.13 The oxidated, inactive, 

[3Fe-4S]+ aconitase can be reactivated by intracellular iron and a reducing agent such as 

glutathione or cysteine.  The amino acids of aconitase can also be targets of reactive species, 

resulting in nitrated, glutathionylated and carbonylated enzyme, among other potential 

modifications.  The formation of disulfide or dityrosine bonds can also occur in this oxidated 

aconitase, resulting in aggregation of the protein.  This oxidated [3Fe-4S]+ form of aconitase is 

also susceptible to degradation by Lon Protease.20   

  

The overall structures of E.coli and human aconitases are similar, despite having low sequence 

identities (Figure 1.2). In fact, when looking at equivalent residues of structues of mAcn and 

AcnB, it can be shown that 19 out of 23 active-site residues are identical, despite domain 

reorganization.  The additional domain in AcnB has been characterized as a HEAT-like domain 

that has been found to form a tunnel leading to the aconitase active site, implicating this domain 

in protein-protein recognition and substrate channeling.8   
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Figure 1.2. The structures of E. coli AcnB (PDB ID: 1I5J) and human cytosolic Acn (cAcn) 

(PDB ID: 2B3Y). The substrate isocitrate or aconitate was in red and Fe-S clusters are in 

yellow.  

 

1.4 Post-translational Modifications  

Simple proteins such as the enzyme ribonuclease and the contractile protein actin exist consisting 

of only amino acids with no other chemical groups.  Other proteins, such as aconitase, exist 

containing various chemical constituents as an important part of their structure.  These chemical 

constituents are brought about by modification of the primary structure or covalent alterations to 

the amino acid side chains after a protein has been synthesized.  This is called post-translational 

modification. The four main groups of protein functions requiring covalent post-translational 

modifications of amino acid residue side chains are: (i) the necessity of a prosthetic group to be 

covalently bound to the polypeptide chain for activity of the enzyme, (ii) the switching on and 

off of enzyme activity, (iii) the intracellular localization of proteins and (iv) the spatial structure 

of the protein is influenced by such modification.21 Post-translational modification of aconitase 

occurs in both redox-dependent and redox-independent manners, with the reversible oxidation of 

the iron-sulfur clusters and cysteine residues and the reversible phosphorylation being well-

known mechanisms of posttranslational aconitase activity regulation.22    
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1.5 Acetylation/ Deacetylation  

The reversible acetylation and deacetylation of lysine residues changes the positively charged 

epsilon-NH3
+ group to a neutral amide.   Proteomic studies show acetylation of metabolic 

enzymes as an important mechanism for regulation of metabolic substrates in metabolic 

pathways such as the TCA cycle.1  The acetylation of lysine residues in the C-terminal domains 

of certain proteins has been found to have the capability to protect the protein from further 

modification that would decrease the lifespan or functioning time of the protein, thus increasing 

such factors.23    

The enzymatic deacetylation of proteins is performed by a family of enzymes known as sirtuins.  

Sirtuin 3 (SIRT3) is a deacetylase present in the mitochondria that plays a primary role in 

regulation of mitochondrial acetylation.  The deacetylation of lysine residues is catalyzed by 

protein lysine deacetylases (KDAC), with the sirtuin-type CobB being the well-known KDAC in 

E. coli.   

  

The change of charge that acetylation brings allows cells to sense energy status and respond to 

environmental stimuli accordingly.  Therefore, this modification results in activation for some 

enzymes while it results in inhibition of others. In human prostate adenocarcinoma, 

mitochondrial aconitase (ACO2) has been noted to have increased activity compared to adjacent 

normal tissue, with the acetylation of Lysine 258 being identified to play a regulatory role in the 

function of this enzyme.18  Acetylation of ACO2 is reversibly regulated by SIRT3, with the 

reduction of SIRT3 leading ACO2 to exhibit the increased TCA cycle activity found in prostate 

cancer metastatic lesions. The acetylation of K144 in human heart mitochondrial aconitase has 

also been found to activate the enzyme in vivo.25   
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1.6 Genetic Code Expansion (GCE)  

During protein synthesis, the ribosome translates mRNA sequences into polypeptides through the 

matching of complementary aminoacylated tRNAs with their triplet-codons.  There are 3 triplet 

STOP codons (TAA, TGA and TAG, designated as “ochre,” “opal” and “amber,” respectively)25 

that trigger the release of the newly formed polypeptide chain from the ribosome, due to the 

absence of tRNAs with anticodons complementary to the STOP codons.  

  

In this project, the genetic code expansion strategy is applied to homogeneously incorporate 

acetyllysine (AcK) at determined positions on the E.coli aconitase AcnA and AcnB isozymes 

and monitor the effects caused by the modification.  This direct co-translational incorporation of 

modified amino acids is dependent upon three major premises: 1) the existence of an orthogonal 

aminoacyl-tRNA synthetase (aaRS)/tRNA pair, 2) specificity of the aaRS for an unnatural amino 

acid and 3) the presence of a “blank” codon.   

  

As mentioned above, 3 triplet codons designated as STOP codons normally cause the termination 

of translation; however, in some species such as Archean Methanococcus jannaschii the amber 

codon is used to introduce an amino acid such as tyrosine at a UAG codon.26  This has been used 

advantageously for recombinant expression of therapeutic proteins in E. coli, with the 

Methanococcus jannaschii  derived TyrRS/tRNATyr pair (MjTyrRS/tRNATyr) being the most 

widely used aaRS/tRNA pair.27 (Figure 1.3)  
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Figure 1.3. The strategy of genetic code expansion. The projected AA (pAA) is specifically 

recognized by an engineered aminoacyl-tRNA synthetase (AARS) and attached to an orthogonal 

tRNA, which is decoded on the ribosome during translation in response to an introduced stop 

codon, allowing the incorporation of pAA into the target protein at a controlled site. 
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CHAPTER 2  

Studying acetylation of aconitase isozymes by genetic code expansion*  

* This chapter was adapted from the original publication (Jessica Araujo, Sara Ottinger, Sumana 

Venkat, Qinglei Gan, Chenguang Fan*. Studying acetylation of aconitase isozymes by genetic 

code expansion. Front. Chem. 2022; 10:862483.)  

  

2.1 Abstract  

Aconitase catalyzes the second reaction of the tricarboxylic acid cycle, the reversible conversion 

of citrate and isocitrate. Escherichia coli has two isoforms of aconitase, AcnA and AcnB. 

Acetylomic studies have identified acetylation at multiple lysine sites of both E. coli aconitase 

isozymes, but the impacts of acetylation on aconitases are unknown. In this study, we applied the 

genetic code expansion approach to produce 14 site-specifically acetylated aconitase variants. 

Enzyme assays and kinetic analyses showed that acetylation of AcnA K684 decreased the 

enzyme activity, while acetylation of AcnB K567 increased the enzyme activity. Further in vitro 

acetylation and deacetylation assays were performed, which indicated that both aconitase 

isozymes could be acetylated by acetyl-phosphate chemically and be deacetylated by the CobB 

deacetylase at most lysine sites. Through this study, we have demonstrated practical applications 

of genetic code expansion in acetylation studies.  

  

2.2 Introduction  

Aconitase catalyzes the reversible conversion of citrate and isocitrate in the tricarboxylic acid 

(TCA) and glyoxylate cycles. It is an iron-sulfur (Fe-S) enzyme.1 Depending on the state of the 

Fe-S cluster, aconitase has three forms: the active [4Fe-4S] form, the inactive [3Fe-4S] form, and 
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the apo-enzyme form. The [4Fe-4S] cluster is sensitive to reactive oxygen species (ROS) and 

iron depletion which impair aconitase activities, so aconitases are widely used as biomarkers for 

oxidative stress and intracellular sensors of iron and redox states.2, 3 In E. coli cells, there are two 

aconitase isozymes, AcnA and AcnB.4 Enzymological and regulatory analyses indicated that 

AcnB is the major TCA enzyme expressed during the exponential phase while AcnA is 

synthesized during the stationary phase or under stress conditions.5 Inactivated by ROS or iron 

depletion, both AcnA and AcnB apo-enzymes can bind to 3’-untranslated region of acnA and 

acnB mRNAs to stabilize them and increase their own expression, mediating a post-

transcriptional positive autoregulation.6 Furthermore, aconitases are also regulated by post-

translational modifications (PTMs), mostly oxidation, nitrosylation, and thiolation of cysteine 

residues around the Fe-S cluster.7 Recently, a number of acetylated lysine residues have been 

identified in aconitase isozymes of both mammals and bacteria.8 Two studies on human 

mitochondrial aconitase (mAcn) showed that acetylation of K144 and K258 can increase the 

enzyme activity.9, 10 10 However, both E. coli AcnA and AcnB have low sequence identities with 

human mAcn, so the impacts of acetylation on aconitase isozymes in E. coli remain unknown.  

  

The classic approach to study lysine acetylation is to use glutamine (KQ mutation) as a mimic of 

acetyllysine. However, this method undermines the structural difference between glutamine and 

acetyllysine. The side chain of glutamine residue is ~4Å shorter than acetyllysine, so it may not 

reflect the real impacts of lysine acetylation. Indeed, our previous study on lysine acetylation of 

isocitrate dehydrogenase compared its activity with KQ mutations and real acetylated lysine 

residues, showing that at some acetylation sites the KQ mutation method derived different or 

even opposite conclusions.11  To overcome this problem, the genetic code expansion technique 
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has been used to generate site-specifically acetylated enzyme variants. This technique introduces 

an aminoacyl-tRNA synthetase which has been engineered to recognize acetyllysine and a tRNA 

which can decode a stop codon (UAG) as acetyllysine to produce site-specifically and purely 

acetylated proteins.12 In this work, we used this approach to study lysine acetylation of aconitase 

isozymes, demonstrating a practical application of genetic code expansion in protein PTM 

studies.  

  

2.3 Materials and Methods  

General molecular biology and protein analyses  

Chemicals were purchased from VWR International (Radnor, PA, USA) or Chem-Impex 

International (Wood Dale, IL, USA). Plasmid were constructed by the NEBuilder HiFi DNA 

Assembly Kit (New England Biolabs, Ipswich, MA, USA). Point mutations were generated by 

the Q5 Site-Directed Mutagenesis Kit (New England Biolabs). For western blotting, purified 

aconitase isozymes and their variants were separated on SDS PAGE gels and transferred to the 

PVDF membranes. The horseradish peroxidase (HRP)-conjugated acetyllysine antibody (Cell 

Signaling Technology, Danvers, MA, USA) was used as the primary antibody, and 

chemiluminescence for detection was generated by Pierce ECL Western Blotting substrates 

(Thermo Scientific, Waltham, MA, USA).  

  

Expression and purification of aconitases and acetylated variants  

The gene of acnA or acnB or their mutants was cloned into the pCDF-1b plasmid (EMD 

Millipore, Burlington, MA, USA) with a C-terminal His6-tag, individually. Then it was 

transformed into BL21 (DE3) cells together with the acetyllysine incorporation system routinely 
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used in our group.13 Cells was grown in 400 mL of LB medium with 100 μg/mL streptomycin, 50 

μg/mL chloramphenicol, 10 mM acetyllysine, and 20 mM nicotinamine (NAM, the deacetylase 

inhibitor) at 37°C to OD 600nm of 0.6–0.8, then 0.1 mM Isopropyl β-D-1-thiogalactopyranoside 

(IPTG) was added to induce protein expression. Cells were then incubated at 16°C for an 

additional 12 h and harvested by centrifugation at 4,000 × g for 20 minutes at 4 °C. Cell pellets 

were suspended in 12 mL of 50 mM Tris (pH 7.8), 300 mM NaCl, 20 mM imidazole, 20 mM 

NAM, and 5 mM β-mercaptoethanol with cocktail protease inhibitors (Roche, Basel, 

Switzerland), and then broken by sonication. The crude extract was centrifuged at 20,000 × g for 

30 min at 4°C. The soluble fraction was filtered through a 0.45-µm membrane and loaded onto a 

column containing 2 mL of Ni-NTA resin (Qiagen, Hilden, Germany). The column was then 

washed with 25 mL of 50 mM Tris (pH 7.8), 300 mM NaCl, 1mM DTT, and 50 mM imidazole, 

and eluted with 2 mL of 50 mM Tris (pH 7.8), 300 mM NaCl, 1mM DTT, and 200 mM 

imidazole. SDS-PAGE electrophoresis was performed to check the purity of aconitases and their 

variants. Western blotting and mass spectrometry were performed to confirm the incorporation 

of acetyllysine at correct sites.  

  

The aconitase activity assay and kinetic analyses  

Before enzyme activity assays, purified aconitases and their acetylated variants were reactivated 

by incubating with 1 mM (NH4)2Fe(SO4)2 and 5 mM DTT in 50 mM Tris (pH 8) for 30 

minutes following previous protocols.14 Enzyme assays were performed with the commercial 

aconitase assay kit from BioAssay System (Hayward, CA). Briefly, it measures the isocitrate 

generated as a product of the aconitase reaction. The isocitrate is then oxidized producing 

NADPH and the oxidation product. The NADPH converts the dye to an intense violet color with 
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an absorption maximum at 565 nm. The increase in absorbance at 565 nm is directly proportional 

to aconitase activity. To determine steady-state kinetic parameters, the concentration of the 

substrate citrate was varied from 0.1 mM to 50 mM. Kinetic parameters were calculated by non-

liner regression with software Grafit (Erithacus Software).  

  

Mass spectrometry (MS) analyses  

The LC-MS/MS analyses were performed by the Yale Keck Proteomics facility and followed the 

previous protocol.11 Briefly, aconitases and their variants were separated by SDS-PAGE 

electrophoresis. Protein bands were cut and digested in gel by trypsin, and analyzed by LC-

MS/MS on an LTQ Orbitrap XL equipped with a nanoACQUITY UPLC system. The Mascot 

search algorithm was used to search for the substitution of the lysine residue with acetyllysine.  

  

The in vitro acetylation assay  

The acetylation reaction was performed in the buffer of 50 mM Tris (pH 8.0), 0.1 mM EDTA, 1 

mM DTT and 10 mM sodium butyrate, initiated by mixing 10 μg enzyme and 3 mM AcP in a 

total volume of 100 μl, and then incubated at 37°C for 1 hour.  

  

The in vitro deacetylation assay  

The deacetylation reaction was performed in the buffer of 50 mM HEPES (pH 7.0), 5 mM 

MgCl2, 1.0 mM NAD+, and 1 mM DTT, initiated by mixing 10 μg enzyme and 10 μg purified 

CobB in a total volume of 100 μl, and then incubated at 37°C for 1 hour.  
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2.4 Results  

Generation of site-specifically acetylated aconitase variants  

Several quantitative acetylomic studies of E. coli cells have demonstrated that both aconitase 

isoenzymes have higher acetylation stoichiometry than many other E. coli proteins. 15 16 17 Thus, 

we aimed to identify the effects of acetylation on aconitase isoenzymes site-specifically. 

Although a series of acetylomic studies have been performed for E. coli cells, the sets of 

acetylation sites identified in aconitase isoenzymes do not overlap well because of differences in 

strains, growth media, and MS detection and resolutions.18 19 20 21 22 23 24 25 26 To be feasible and 

avoid biased selection, we chose all the lysine residues identified to be acetylated by more than 

three independent acetylomic studies, which were K164, K342, K482, K684 of AcnA and K77, 

K373, K396, K407, K539, K559, K567, K728, K759, K835 of AcnB.  

  

In this study, we utilized our optimized acetyllysine incorporation system to produce site-

specifically acetylated aconitase variants at selected sites listed above individually.13 To 

minimize the non-specific acetylation of other lysine residues in aconitases, we used the BL21 

(DE3) strain as the host cell line, which has a low level of acetylation globally.21 Our previous 

studies on acetylation of malate dehydrogenase, isocitrate dehydrogenase, and citrate synthase 

have shown that those wild-type enzymes purified from BL21 (DE3) cells have low levels of 

non-specific acetylation.27 11 28 As expected, wild-type AcnA and AcnB overexpressed in BL21 

(DE3) cells had no or very weak level of acetylation (Figure S1). We fused the His6-tag to the C-

terminus of aconitase variants for easy purification and to remove truncated proteins terminated 

at inserted UAG codons. All the purified acetylated aconitase variants had clear single bands in 

SDS-PAGE gels and were detected by the acetyllysine antibody in western blots (Figure S1). 
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The positions of acetyllysine incorporation were confirmed by LC-MS/MS analyses (Figure S2-

S15).  

  

The site-specific effects of lysine acetylation on aconitase activities  

First, we measured the enzyme 

activities of purified AcnA and AcnB as well as their site-specifically acetylated variants with 

the commercial kit individually (Figure 2.1). Acetylation of most lysine sites had no significant 

effects on aconitase activities. There were only two variants which significantly affect aconitase 

activities. Interestingly, the impacts of acetylation on enzyme activities were different in 

aconitase isozymes. Acetylation of AcnA K684 decreased the activity by ~3-fold while 

acetylation of AcnB K567 increased the activity by ~2-fold.  

   

Figure 2.1. The enzyme activities and kinetic analyses of AcnA, AcnB and their acetylated 

variants. The upper panel is enzyme activities measured by the commercial kit with 50 mM 

citrate as the substrate concentration. Mean values and standard deviations were calculated based 

on three replicates. The lower panel is the steady-state kinetic parameters. Kinetic parameters 

were calculated by non-liner regression with software Grafit.  
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To obtain insights into the impacts of acetylation on aconitase activities, we performed steady-

state kinetic analyses of AcnA and AcnB as well as those two variants (AcnA-684AcK and 

AcnB-567AcK) which significantly affected activities. Acetylation of AcnA K684 impairs both 

the substrate binding and the turnover number while acetylation of AcnB K567 only enhances 

the turnover number.  

  

The acetyl-phosphate-dependent acetylation of aconitase isozymes  

It is known that lysine acetylation in E. coli is mostly generated non-enzymatically with acetyl-

phosphate (AcP) as the acetyl-donor while acetyl-CoA-dependent enzymatic acetylation only 

applies for a small portion of proteins.21 29 Our previous studies also showed that AcP itself can 

acetylate several TCA cycle enzymes chemically.11 28 In this study, WT AcnA and AcnB 

expressed in BL21 (DE3) cells were purified and treated with 3 mM AcP in vitro. Western blots 

showed that AcP acetylated both AcnA and AcnB in a time-dependent manner (Figure 2.2A). 

The activities of AcnA and AcnB before and after AcP-treatment were measured. Consistent 

with site-specific results above, acetylation of AcnA impaired its activity while acetylation of 

AcnB enhanced its activity (Figure 2.2B). The impacts of acetylation by AcP-treatment were not 

as significant as the site-specific acetylation above, probably because AcP cannot acetylate 

lysine residues completely while purely acetylated variants were tested in above site-specific 

experiments.  
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Figure 2.2. AcP-dependent acetylation of AcnA and AcnB. (A) SDS-PAGE and western blots of 

purified WT AcnA and WT AcnB treated with AcP in vitro. 2 µg of proteins were loaded for 

each lane. The full image of western blots is in Figure S16. (B) Enzyme activities of purified 

WT AcnA and WT AcnB before and after AcP-treatment. Mean values and standard deviations 

were calculated based on three replicates.  

  

  

Then we performed LC-MS/MS analyses to identify acetylation sites in AcnA and AcnB by 

AcP-treatment. Those 14 sites selected for site-specific tests above were all acetylated by in vitro 

AcP-treatment. Besides them, we also identified 12 additional acetylation sites in AcnA (K10, 

K16, K116, K257, K283, K391, K406, K453, K578, K758, K770, and, K823) and 11 additional 

acetylation sites in AcnB (K20, K64, K73, K135, K137, K144, K356, K387, K571, K613, and 

K722). Among them, K116, K257, K406, K453, K578, K823 of AcnA and K64, K137 of AcnB 
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have not been identified to be acetylated in E. coli cells ever before, probably because 

acetylation of these sites has low stoichiometry and can be deacetylated easily in living cells. On 

the other hand, K18, K30, K71, K161, K460, K585, K832 of AcnA and K85, K110, K117, 

K221, K229, K267, K537, K588 of AcnB listed in the E. coli acetylation database8 were not 

identified in our in vitro AcP-acetylation tests, implying that specific acetyltransferases or 

cofactors could be necessary for acetylation of these lysine sites in cells.  

  

The CobB-dependent deacetylation of aconitase isozymes  

Acetylation of lysine residues is reversible, and the deacetylation of acetylated lysine residues is 

catalyzed by protein lysine deacetylases (KDAC). To date, CobB is still the only well-known 

KDAC in E. coli.30 Our previous studies showed that CobB can deacetylate acetylated lysine 

residues in several TCA cycle enzymes, but not for all the acetylation sites. In this study, we 

incubated those 14 site-specifically acetylated AcnA and AcnB variants with CobB, and used 

western blotting to determine the site specificity of CobB for AcnA and AcnB (Figure 2.3A). 

Most of acetylation sites were sensitive to CobB, while K164 of AcnA and K567, K728, K759 of 

AcnB were resistant to CobB.  

  

Then we incubated AcP-treated AcnA and AcnB with CobB in vitro. After that, we measured the 

enzyme activities (Figure 2.3B). CobB-dependent acetylation restored AcnA activity but did not 

affect AcnB activity significantly. Acetylation of K684 in AcnA decreases AcnA activity and 

K684 is sensitive to CobB, so deacetylation of K684 could restore its enzyme activity. On the 

other hand, acetylation of K567 in AcnB increases AcnB activity but K567 is resistant to CobB, 

so CobB-dependent deacetylation could not restore AcnB activity. These results also indicated 
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that K684 of AcnA and K567 of AcnB are the two lysine residues whose acetylation affects their 

enzyme activities the most, which is consistent to our site-specific results above.  

    

Figure 2.3. CobB-catalyzed deacetylation of AcnA and AcnB. (A) SDS-PAGE and western blots 

of site-specifically acetylated AcnA and AcnB variants incubated with CobB in vitro. 2 µg 

of AcnA/AcnB and CobB were loaded for each lane. The full image of western blots is in Figure 

S17. Samples from lane 1 to 4 are AcnA-164AcK, -342AcK, -482AcK, and -684AcK. Samples 

from lane 5 to 14 are AcnB-77AcK, 373-AcK, -396AcK, -407AcK, -539AcK, -559AcK, -

567AcK, -728AcK, -759AcK, and -835AcK. (B) Enzyme activities of AcP-

treated AcnA and AcnB before and after CobB-incubation. Mean values and standard deviations 

were calculated based on three replicates.  
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2.5 Discussion  

The effects of acetylation on aconitase activities  

Before our work, only two papers have reported acetylation of aconitase isoenzymes, which 

showed that acetylation of K144 and K258 in human mAcn activates enzyme activities.9, 10 To 

find the structure-function relationships of aconitase acetylation, we mapped those two lysine 

residues onto the crystal structures of mAcn. Because there is no reported human mAcn 

structures, we used bovine mAcn as the model which has 96% sequence identify with human 

mAcn (Figure 2.4A). The active site is at the center of the enzyme (the purple molecule is the 

intermediate analog methyl-isocitrate). K144 is at the back of the active site. The previous study 

proposed that acetylation of K144 strengthens its interaction with the nearby Q541, hence 

inducing conformational changes to facilitate substrate binding.9 K258 is at the entrance of the 

active site, so its acetylation could also cause conformational changes to enhance enzyme 

activities.  

  

Although both E. coli AcnA and AcnB have low sequence identifies with human mAcn (28% 

and 24%, respectively), the overall structures of difference aconitases are very similar.31 Thus, 

we mapped K684 of AcnA and K567 of AcnB onto their structures. The structure of human 

cytosolic Acn (cAcn) which has a 53% sequence identify with E. coli AcnA was used as the 

template for homology modeling for AcnA (Figure 2.4B). The structure of E. coli AcnB has 

been solved (Figure 2.4C). Clearly, both K684 of AcnA and K567 of AcnB are located at the 

entrance of the active sites of aconitase isozymes, like the position of K258 of human mAcn. 

However, the effects of acetylation of those two lysine residues are opposite. Similar to that of 
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K258 of human mAcn, acetylation of K567 of AcnB enhances the enzyme activity. On the other 

hand, acetylation of K684 of AcnA decreased the enzyme activity.  

    

Figure 2.4. Mapping of acetylated lysine residues on the structures of AcnA and AcnB. A) The 

crystal structure of human cAcn (PDB ID: 2B3Y). B) The homology model of AcnA structure 

based on human cAcn. C) The crystal structure of AcnB (PDB ID: 1L5J). D) The homology 

model of AcnA dimer based on human cAcn. E) The dimer of AcnB (PDB ID: 1L5J).  

  

  

Why do the same PTMs have totally opposite impacts on aconitase isozyme activities? We 

proposed that cells use this mechanism to adapt to different growth stages. E. coli. AcnB is the 

major aconitase which is expressed during the early growth stage.5 During cell growth, ROS is 

accumulated in cells which damages aconitase.3 In order to restore aconitase activities to 

maintain the necessary rate of the TCA cycle, cells use acetylation of AcnB to enhance its 

activity. During the late growth stage, AcnA is expressed.5 Acetylation of AcnA decreases the 

enzyme activity, which is consistent with the slower metabolic rate in late growth stage.  

The sensitivities of acetylated lysine residues in aconitases towards CobB deacetylase  
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Our deacetylation tests showed that CobB can remove most of acetylated lysine resides in both 

AcnA and AcnB (Figure 2.3). Then we mapped those residues which are sensitive to CobB 

(Figure S18). CobB-sensitive sites are all located at protein surface for easy CobB access, 

consistent with our previous studies on other TCA cycle enzymes.11, 27 28 On the other hand, we 

also mapped those residues which are resistant to CobB. Both AcnA and AcnB form dimers in 

solutions.32 We used human cAcn as the template to model the AcnA structure. K164 of AcnA is 

located at the interface of two subunits (Figure 2.4D). K728 and K759 of AcnB are also at the 

subunit interface (Figure 2.4E). Such steric hindrance limits the access of CobB for 

deacetylation. Although K567 is located at the entrance of the active site, the primary amine 

group points to interior of the active site (Figure 2.4C), and this orientation also limits the access 

of CobB for deacetylation.  
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CHAPTER 3  

3.1 Conclusion  

The importance of the TCA cycle has been a process repeatedly highlighted in vital processes of 

life.  The enzymes of the TCA cycle, which can exist in different modifiable forms, are 

functional to other pathways or can serve a non-enzymatic function. Further implicating the 

cycle in other processes, the metabolites of the TCA cycle can be useful in cell signaling.  

Aconitase is an iron-sulfur enzyme that catalyzes the isomerization of citrate to isocitrate in the 

TCA cycle under conditions of sufficient iron; however in some species its low iron, 

disassembled, apo-form it can bind mRNA transcripts to serve as a post-transcriptional 

regulator.  It also participates in the glyoxylate cycle and its substrate, citrate, has been 

implicated in many disease states.  

  

The focus of this research is to elucidate the effects of acetylation on the enzyme activity of the 

TCA cycle enzyme aconitase.  The aconitase isozymes AcnA and AcnB in E. coli were 

acetylated at specific lysine residues and then the enzyme activity was determined. Utilizing 

Genetic Code Expansion, it was found that K567 of AcnB and K684 of AcnA are important 

residues with a potential role in the regulation of the isozymes during different growth stages.    

  

3.2 Significance of this work  

Acetylation of aconitase residues have been implicated in the regulation of the enzyme’s 

activities in human mAcn, and with residue mapping on homology modeled structures it can 

reasonably be speculated that conserved residues are present in E. coli, thus illustrating the utility 

of this research for future understanding of TCA cycle isozyme structure-function relationship.  



 

32 

A greater understanding of the TCA cycle would greatly aid in the advancement of many fields 

of research.  Metabolic dysregulation is a hallmark of cancer progression; however, much is 

unknown about the cellular processes that promote these metabolic alterations that drive 

metastatic cancer.  The functioning of this centrally located pathway can determine life or death 

for an organism and thus, the research to reveal the inner workings of the enzymes involved is 

very valuable. The understanding of the mechanism by which various isozymes of the TCA 

cycle function within an organism must be fully understood in order to further the development 

of diagnostic, prognostic, and therapeutic techniques.  

  

3.3 Future Directions  

With improved methods available to aid in the study of protein modifications, the expansion of 

knowledge on acetylation in eukaryotes will indubitably prove to be useful. Future studies must 

be performed to validate the importance of these residues, in vivo, as modification can occur in a 

dynamic manner.   
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Supplementary Data  

 

  

Figure S1. The incorporation of acetyllysine (AcK) at individual lysine sites of AcnA and AcnB. 

SDS-PAGE (upper panels) and western blots (lower panels) of purified aconitases and their 

variants from BL21(DE3) cells. Lane 1, wild-type AcnA; lane 2, AcnA-164AcK; lane 3, AcnA-

342AcK; lane 4, AcnA-482AcK; lane 5; AcnA-684AcK; lane 6, wild-type AcnB; lane 7, AcnB-

77AcK; lane 8, AcnB-373AcK; lane 9, AcnB-396AcK; lane 10, AcnB-407AcK; lane 11, AcnB-

539AcK; lane 12, AcnB-559AcK; lane 13, AcnB-567AcK; lane 14, AcnB-728AcK; lane 15, 

AcnB-758AcK; lane 16, AcnB-835AcK. For each lane, 2 mg of purified proteins were loaded. 

Anti-AcK: acetyllysine antibody.  
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Figure S2. LC-MS/MS analysis of AcnA 164-AcK. The tandem mass spectrum of the peptide 

(residues 162-169) WGKQAFSR from purified AcnA 164-AcK. KAC 

denotes AcK incorporation. The partial sequence of the peptide containing the AcK can be read 

from the annotated a/b or y ion series. Matched peaks are in red.  
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Figure S3. LC-MS/MS analysis of AcnA 342-AcK. The tandem mass spectrum of the peptide 

(residues 333-345) SEDQVELVEKYAK from purified AcnA 342-AcK. KAC 

denotes AcK incorporation. The partial sequence of the peptide containing the AcK can be read 

from the annotated a/b or y ion series. Matched peaks are in red.  
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Figure S4. LC-MS/MS analysis of AcnA 482-AcK. The tandem mass spectrum of the peptide 

(residues 475-484) VVSDYLAKAK from purified AcnA 482-AcK. KAC 

denotes AcK incorporation. The partial sequence of the peptide containing the AcK can be read 

from the annotated a/b or y ion series. Matched peaks are in red.  



 

37 

    

Figure S5. LC-MS/MS analysis of AcnA 684-AcK. The tandem mass spectrum of the peptide 

(residues 664-691) ILAMLGDSVTTDHISPAGSIKPDSPAGR from purified AcnA 684-AcK. 

KAC denotes AcK incorporation. The partial sequence of the peptide containing the AcK can be 
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read from the annotated a/b or y ion series. Matched peaks are in red.  

 

Figure S6. LC-MS/MS analysis of AcnB 77-AcK. The tandem mass spectrum of the peptide 

(residues 74-85) GEAKSPLLTPEK from purified AcnB 77-AcK. KAC 

denotes AcK incorporation. The partial sequence of the peptide containing the AcK can be read 

from the annotated a/b or y ion series. Matched peaks are in red.  



 

39 

 

  

Figure S7. LC-MS/MS analysis of AcnB 373-AcK. The tandem mass spectrum of the peptide 

(residues 371-380) QAKDVAESDR from purified AcnB 373-AcK. KAC 

denotes AcK incorporation. The partial sequence of the peptide containing the AcK can be read 

from the annotated a/b or y ion series. Matched peaks are in red.  
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Figure S8. LC-MS/MS analysis of AcnB 396-AcK. The tandem mass spectrum of the peptide 

(residues 392-399) ACGVKGIR from purified AcnB 396-AcK. KAC denotes AcK incorporation. 

The partial sequence of the peptide containing the AcK can be read from the annotated a/b or y 

ion series. Matched peaks are in red.  
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Figure S9. LC-MS/MS analysis of AcnB 407-AcK. The tandem mass spectrum of the peptide 

(residues 400-422) PGAYCEPKMTSVGSQDTTGPMTR from purified AcnB 407-AcK. KAC 

denotes AcK incorporation. The partial sequence of the peptide containing the AcK can be read 

from the annotated a/b or y ion series. Matched peaks are in red.  
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Figure S10. LC-MS/MS analysis of AcnB 539-AcK. The tandem mass spectrum of the peptide 

(residues 536-547) FEGKMQPGITLR from purified AcnB 539-AcK. KAC 

denotes AcK incorporation. The partial sequence of the peptide containing the AcK can be read 

from the annotated a/b or y ion series. Matched peaks are in red.  
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Figure S11. LC-MS/MS analysis of AcnB 559-AcK. The tandem mass spectrum of the peptide 

(residues 548-567) DLVHAIPLYAIKQGLLTVEK from purified AcnB 559-AcK. KAC 

denotes AcK incorporation. The partial sequence of the peptide containing the AcK can be read 

from the annotated a/b or y ion series. Matched peaks are in red.  
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Figure S12. LC-MS/MS analysis of AcnB 567-AcK. The tandem mass spectrum of the peptide 

(residues 560-568) QGLLTVEKK from purified AcnB 567-AcK. KAC 

denotes AcK incorporation. The partial sequence of the peptide containing the AcK can be read 

from the annotated a/b or y ion series. Matched peaks are in red.  
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Figure S13. LC-MS/MS analysis of AcnB 728-AcK. The tandem mass spectrum of the peptide 

(residues 723-734) LLDAHKGQLPTR from purified AcnB 728-AcK. KAC 

denotes AcK incorporation. The partial sequence of the peptide containing the AcK can be read 

from the annotated a/b or y ion series. Matched peaks are in red.  
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Figure S14. LC-MS/MS analysis of AcnB 759-AcK. The tandem mass spectrum of the peptide 

(residues 743-763) MDAAQLTEEGYYSVFGKSGAR from purified AcnB 759-AcK. KAC 

denotes AcK incorporation. The partial sequence of the peptide containing the AcK can be read 

from the annotated a/b or y ion series. Matched peaks are in red.  



 

47 

    

Figure S15. LC-MS/MS analysis of AcnB 835-AcK. The tandem mass spectrum of the peptide 

(residues 820-842) LPTPEEYQTYVAQVDKTAVDTYR from purified AcnB 835-AcK. KAC 

denotes AcK incorporation. The partial sequence of the peptide containing the AcK can be read 

from the annotated a/b or y ion series. Matched peaks are in red.  
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Figure S16. The full image of western blots for AcP-acetylation experiments in Figure 2A.   
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