University of Arkansas, Fayetteville [ScholarWorks@UARK](https://scholarworks.uark.edu/)

[Graduate Theses and Dissertations](https://scholarworks.uark.edu/etd)

5-2022

Studying Acetylation of Aconitase Isozymes by Genetic Code Expansion

Jessica Araujo University of Arkansas, Fayetteville

Follow this and additional works at: [https://scholarworks.uark.edu/etd](https://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F4552&utm_medium=PDF&utm_campaign=PDFCoverPages)

Part of the [Biochemistry Commons](https://network.bepress.com/hgg/discipline/2?utm_source=scholarworks.uark.edu%2Fetd%2F4552&utm_medium=PDF&utm_campaign=PDFCoverPages)

Citation

Araujo, J. (2022). Studying Acetylation of Aconitase Isozymes by Genetic Code Expansion. Graduate Theses and Dissertations Retrieved from [https://scholarworks.uark.edu/etd/4552](https://scholarworks.uark.edu/etd/4552?utm_source=scholarworks.uark.edu%2Fetd%2F4552&utm_medium=PDF&utm_campaign=PDFCoverPages)

This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [scholar@uark.edu, uarepos@uark.edu.](mailto:scholar@uark.edu,%20uarepos@uark.edu)

Studying Acetylation of Aconitase Isozymes by Genetic Code Expansion

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Cell and Molecular Biology

by

Jessica Araujo University of Arkansas Fort Smith Bachelor of Science in Chemistry, 2019

May 2022 University of Arkansas

This thesis is approved for recommendation to the Graduate Council.

Chenguang Fan, Ph.D. Dissertation Director

Josh Sakon, Ph.D. Committee Member

Yuchun Du, Ph.D. Committee Member

Abstract

The tricarboxylic acid (TCA) cycle is a very important, centrally located, energy-producing pathway that connects numerous other metabolic and regulatory pathways. Enzymes of this cycle have been more recently implicated in various cancers and neurometabolic disorders, however, the exact mechanism by which this happens becomes quite complex when considering the potential modification of these enzymes and the presence of multiple forms of the enzymes and therefore there is much to be studied in this area.

Aconitase has become a recent enzyme of interest as its substrate, citrate, has been found to play a major role in many vital processes within an organism, including the survival and expansion of cancer. Additionally, the modification of aconitase by acetylation has been recently found to drive its activation to support energy, growth, and metastasis in prostate cancer tissue. In this master's thesis, I apply the genetic code expansion technique to *E. coli* aconitase isozymes AcnA and AcnB to examine the changes in function caused by the modification of the structure in order to achieve a greater understanding of the impact of lysine acetylation in these isozymes.

©2022 by Jessica Araujo All Rights Reserved

Acknowledgments

I would like to first thank my advisor Dr. Chenguang Fan for encouraging me as a new researcher. His guidance as a mentor throughout this program has been invaluable. Thank you, Dr. Fan, for welcoming me into your lab.

Thank you to Professor Du and Professor Sakon, for devoting their time to serve on my committee.

A big thank you to my friends and family, who have helped keep my spirits high.

Finally, I would like to give special thanks to my husband Henry for supporting me during this program. His love and support were never wavering through the highs and lows of these past couple of years of my education.

Table of Contents

CHAPTER 1

Chapter 2

Chapter 3

List of Published Papers

Chapter 2

Jessica Araujo, Sara Ottinger, Sumana Venkat, Qinglei Gan, Chenguang Fan*. Studying acetylation of aconitase isozymes by genetic code expansion. Front. Chem. 2022; 10:862483.) Published

CHAPTER I

Introduction

1.1 Tricarboxylic Acid Cycle

Mitochondria are folded and complex organelles surrounded by a simple outer membrane. The space inside the inner membrane is known as the matrix, and the space between the inner and outer membranes is referred to as the intermembrane space. Most of the enzymes of energy production are found in the matrix, while many enzymes that utilize ATP are found in the intermembrane space. About 150 different mitochondrial diseases involving enzyme dysfunction have been reported. With such a vital role in energy production and consumption, defects arising from mitochondrial enzyme dysfunction are quite serious and affected human embryos rarely survive to see birth.

The tricarboxylic acid (TCA) cycle or the citric acid cycle, more commonly called the Kreb's cycle, is a series of eight enzymes that are found in the mitochondrial matrix—with the exception of succinate dehydrogenase, which is found in the inner membrane, to produce adenosine triphosphate (ATP) and carbon dioxide $(CO₂)$ from the oxidation of acetyl-CoA derived from fats, carbohydrates and lipids. Molecules of NADH and FADH₂ are produced throughout the course of this cycle to be used by eukaryotes to create more energy via the electron transport chain in the inner mitochondrial membrane.¹ The TCA cycle supplies energy via oxidative catabolism and also produces intermediates for other biosynthetic processes such as gluconeogenesis, transamination, deamination and fatty acid synthesis.² This makes the TCA cycle a very important centrally- located pathway that connects numerous other metabolic pathways (**Figure 1.1**). There is an emerging role of the TCA- cycle related enzymes in human

diseases such as neurometabolic disorders and tumors, however the role of these enzymes is not fully understood.³

Figure 1.1. The TCA cycle shown with enzymes in italics. Asterisks indicate known enzymopathies as of 2008 reviewed by Munnich "Casting an eye on the Krebs cycle.^{4"}

1.2 Glyoxylate Cycle

The glyoxylate cycle bypasses the rate-limiting decarboxylation steps of the TCA cycle by utilizing 2 moles of acetyl-CoA and producing 1 mole of oxaloacetate and allowing the carbon atoms derived from fatty-acid oxidation to be converted to glucose.⁵ In the past it was generally accepted that the glyoxylate cycle existed in microorganisms and higher plants but was absent in higher animals; however, there is data to support the conclusion that the activation of the

glyoxylate cycle can serve as a part of the mobilization of carbohydrates and lipids by adrenaline and that the fatty acids produced from fat not only maintain energy reactions, but gluconeogenesis as well.⁶ Among the 5 enzymes that participate in this cycle, aconitase, citrate synthase and malate dehydrogenase are the enzymes common to the TCA cycle. Assays of these enzymes common to both the TCA and glyoxylate cycles show that their activities were 20-40% higher in the livers of newborn rats versus adult rats, perhaps suggesting an activation of the glyoxylate cycle as a result of adrenaline produced during the first few days after birth.⁶

1.3 Aconitase

Citrate, a key metabolite in the TCA cycle, is implicated in many processes such as inflammation, cancer, insulin secretion, histone acetylation and neurological disorders.⁷ The greater understanding of the dual role of citrate in the survival and expansion of cancer has directed attention to two enzymes that determine the concentration and ultimate destination of citrate: citrate synthase (CS) and aconitase, with the focus of this work on aconitase. It has been shown that under iron rich conditions the isomerization of citrate to isocitrate is catalyzed in two steps by the enzyme aconitase in the TCA cycle as well as in the glyoxylate cycle. Aconitase first dehydrates citrate, removing the elements of water to yield aconitate, which is then rehydrated with H and OH added back in opposite positions to produce isocitrate. This allows for the TCA cycle to oxidize a newly secondary alcohol as opposed to directly oxidizing the tertiary alcohol.

The aconitase superfamily encompasses five phylogenetic groups: (i) mitochondrial aconitases (mAcn), (ii) cytoplasmic aconitases (cAcn) and iron regulatory proteins (IRP1 and IRP2) of

higher organisms and bacterial aconitase A's (AcnA), (iii)homoaconitases, (iv) fungal and bacterial isopropylmalate isomerases (IPMI), and (v) bacterial aconitase B's (AcnB).⁸ In the antibiotic producing species *Streptomyces viridochromogenes,* Tü494, sufficient iron present allows AcnA to function as this enzyme of the TCA cycle while insufficient iron results in AcnA functioning as a regulator of iron metabolism and oxidative stress response.⁹ This is achieved by the iron-sulfur prosthetic group structure of aconitase, a cube-like cluster essential for activity.¹⁰ Insufficient iron or oxidative stress causes the $[4Fe-4S]²⁺$ catalytic center cluster to disassemble and reform to the catalytically inactive apo-enzyme [3Fe-4s]+ that is accessible for binding of iron response elements (IRE).¹¹ AcnA enzymes from *S. viridochromogenes* and *E. coli* as well as IRP1 in eukaryotes have been shown to serve in this bifunctional manner; they can serve not only as enzymes but also as post-transcriptional regulators.¹²

1.3.1 Isozymes of Aconitase

Many of the enzymes of the TCA cycle, including aconitase, are known to exist in both cytosolic and mitochondrial forms. Results of biochemical and phylogenetic studies suggest that early during the evolution of the aconitase family, a gene duplication enabled a cytosolic aconitase to evolve independently from the mitochondrial aconitase, and another duplication of the cytosolic aconitase resulted in two cytosolic homologues in animals that subsequently acquired the RNA binding capabilities of aconitase as mentioned above. Therefore, some unicellular eukaryotes and protozoan parasites contain single aconitase genes that encode isozymes with functions in the cytosol and the mitochondria meanwhile multicellular eukaryotes have separate genes that encode these isozymes.¹³ For example, the cytosolic aconitase of *C*. *elegans* has no RNA-binding activity14, while one of the two cytosolic aconitases in *Drosophila*

also functions as an RNA-binding, iron regulatory protein (IRP).¹⁵ In mammals, IRP1 (also known as cytosolic aconitase, or ACO1) has both aconitase and RNA-binding functions, while IRP2 functions solely as a RNA-binding protein.¹⁶

The presence of two isozymes of aconitase in *E.coli* was first elucidated after the successful deletion of the *acnA* gene resulted in a mutant that still retained residual aconitase activity and did not demonstrate glutamate auxotrophy.¹⁷ This provided evidence for the existence of 2 aconitases, designated AcnA and AcnB. The mutant and wild type aconitase both grew equally well under most growth conditions, demonstrating that the iron-sulfur isozymes are functionally overlapping; however, underlying functional specialization was suggested from the differential regulation of the genes under other growth conditions.¹⁷

In a study characterizing the stabilities of AcnA and AcnB, it was determined that under normal conditions, AcnB serves as the primary aconitase, processing the bulk of metabolic flux. ¹⁸ The same study determined that the enzyme AcnB is sensitive to both oxidative stress as well as iron depletion while AcnA on the other hand, is resistant to both stressors. During the early growth stage of *E.coli*, AcnB is the major aconitase expressed, while AcnA is expressed during the late growth stage.¹⁹ This mechanism of differential expression of aconitase based on growth stage is useful for the organism to adapt to the necessities of the varying stages.

1.3.2 Aconitase Structure

As aforementioned, aconitase is an iron sulfur protein that utilizes an intact [4Fe-4S] to participate as an enzyme in the TCA cycle, while in some species in its disassembled apo-form it can bind mRNA transcripts and serve as a posttranscriptional regulator. During cell growth, reactive oxygen species (ROS) such as peroxynitrite and hydrogen peroxide are accumulated in cells, causing damage and the subsequent inactivation of aconitase.¹³ The oxidated, inactive, [3Fe-4S]⁺ aconitase can be reactivated by intracellular iron and a reducing agent such as glutathione or cysteine. The amino acids of aconitase can also be targets of reactive species, resulting in nitrated, glutathionylated and carbonylated enzyme, among other potential modifications. The formation of disulfide or dityrosine bonds can also occur in this oxidated aconitase, resulting in aggregation of the protein. This oxidated [3Fe-4S]⁺ form of aconitase is also susceptible to degradation by Lon Protease.²⁰

The overall structures of *E.coli* and human aconitases are similar, despite having low sequence identities (**Figure 1.2**). In fact, when looking at equivalent residues of structues of mAcn and AcnB, it can be shown that 19 out of 23 active-site residues are identical, despite domain reorganization. The additional domain in AcnB has been characterized as a HEAT-like domain that has been found to form a tunnel leading to the aconitase active site, implicating this domain in protein-protein recognition and substrate channeling.⁸

Figure 1.2. The structures of E. coli AcnB (PDB ID: 115J) and human cytosolic Acn (cAcn) (PDB ID: 2B3Y). The substrate isocitrate or aconitate was in red and Fe-S clusters are in yellow.

1.4 Post-translational Modifications

Simple proteins such as the enzyme ribonuclease and the contractile protein actin exist consisting of only amino acids with no other chemical groups. Other proteins, such as aconitase, exist containing various chemical constituents as an important part of their structure. These chemical constituents are brought about by modification of the primary structure or covalent alterations to the amino acid side chains after a protein has been synthesized. This is called post-translational modification. The four main groups of protein functions requiring covalent post-translational modifications of amino acid residue side chains are: (i) the necessity of a prosthetic group to be covalently bound to the polypeptide chain for activity of the enzyme, (ii) the switching on and off of enzyme activity, (iii) the intracellular localization of proteins and (iv) the spatial structure of the protein is influenced by such modification.²¹ Post-translational modification of aconitase occurs in both redox-dependent and redox-independent manners, with the reversible oxidation of the iron-sulfur clusters and cysteine residues and the reversible phosphorylation being wellknown mechanisms of posttranslational aconitase activity regulation.²²

1.5 Acetylation/ Deacetylation

The reversible acetylation and deacetylation of lysine residues changes the positively charged epsilon-NH₃⁺ group to a neutral amide. Proteomic studies show acetylation of metabolic enzymes as an important mechanism for regulation of metabolic substrates in metabolic pathways such as the TCA cycle.¹ The acetylation of lysine residues in the C-terminal domains of certain proteins has been found to have the capability to protect the protein from further modification that would decrease the lifespan or functioning time of the protein, thus increasing such factors.²³

The enzymatic deacetylation of proteins is performed by a family of enzymes known as sirtuins. Sirtuin 3 (SIRT3) is a deacetylase present in the mitochondria that plays a primary role in regulation of mitochondrial acetylation. The deacetylation of lysine residues is catalyzed by protein lysine deacetylases (KDAC), with the sirtuin-type CobB being the well-known KDAC in *E. coli.*

The change of charge that acetylation brings allows cells to sense energy status and respond to environmental stimuli accordingly. Therefore, this modification results in activation for some enzymes while it results in inhibition of others. In human prostate adenocarcinoma, mitochondrial aconitase (ACO2) has been noted to have increased activity compared to adjacent normal tissue, with the acetylation of Lysine 258 being identified to play a regulatory role in the function of this enzyme.¹⁸ Acetylation of ACO2 is reversibly regulated by SIRT3, with the reduction of SIRT3 leading ACO2 to exhibit the increased TCA cycle activity found in prostate cancer metastatic lesions. The acetylation of K144 in human heart mitochondrial aconitase has also been found to activate the enzyme *in vivo.*²⁵

1.6 Genetic Code Expansion (GCE)

During protein synthesis, the ribosome translates mRNA sequences into polypeptides through the matching of complementary aminoacylated tRNAs with their triplet-codons. There are 3 triplet STOP codons (TAA, TGA and TAG, designated as "ochre," "opal" and "amber," respectively)²⁵ that trigger the release of the newly formed polypeptide chain from the ribosome, due to the absence of tRNAs with anticodons complementary to the STOP codons.

In this project, the genetic code expansion strategy is applied to homogeneously incorporate acetyllysine (AcK) at determined positions on the *E.coli* aconitase AcnA and AcnB isozymes and monitor the effects caused by the modification. This direct co-translational incorporation of modified amino acids is dependent upon three major premises: 1) the existence of an orthogonal aminoacyl-tRNA synthetase (aaRS)/tRNA pair, 2) specificity of the aaRS for an unnatural amino acid and 3) the presence of a "blank" codon.

As mentioned above, 3 triplet codons designated as STOP codons normally cause the termination of translation; however, in some species such as Archean *Methanococcus jannaschii* the amber codon is used to introduce an amino acid such as tyrosine at a UAG codon.²⁶ This has been used advantageously for recombinant expression of therapeutic proteins in *E. coli*, with the *Methanococcus jannaschii* derived TyrRS/tRNA^{Tyr} pair (*Mj*TyrRS/tRNA^{Tyr}) being the most widely used aaRS/tRNA pair.²⁷ (**Figure 1.3**)

Figure 1.3. The strategy of genetic code expansion. The projected AA (pAA) is specifically recognized by an engineered aminoacyl-tRNA synthetase (AARS) and attached to an orthogonal tRNA, which is decoded on the ribosome during translation in response to an introduced stop codon, allowing the incorporation of pAA into the target protein at a controlled site.

1.7 References

1) Garrett, R. H.; Grisham, C. M. *Biochemistry*; Cengage, 2017.

(2) Akram, M. Citric Acid Cycle and Role of its Intermediates in Metabolism. *Cell Biochemistry and Biophysics* **2014**, *68* (3), 475-478, Review. DOI: 10.1007/s12013-013-9750-1.

(3) Kang, W.; Suzuki, M.; Saito, T.; Miyado, K. Emerging Role of TCA Cycle-Related Enzymes in Human Diseases. *International Journal of Molecular Sciences* **2021**, *22* (23), Article. DOI: 10.3390/ijms222313057.

(4) Munnich, A. Casting an eye on the Krebs cycle. *Nature Genetics* **2008**, *40* (10), 1148-1149, Editorial Material. DOI: 10.1038/ng1008-1148.

(5) KORNBERG, H.; KREBS, H. SYNTHESIS OF CELL CONSTITUENTS FROM C2- UNITS BY A MODIFIED TRICARBOXYLIC ACID CYCLE. *Nature* **1957**, *179* (4568), 988- 991, Article. DOI: 10.1038/179988a0.

(6) Morgunov, I.; Kondrashova, M.; Kamzolova, S.; Sokolov, A.; Fedotcheva, N.; Finogenova, T. Evidence of the glyoxylate cycle in the liver of newborn rats. *Medical Science Monitor* **2005**, *11* (2), BR57-BR60, Article.

(7) Huang, L.; Wang, C.; Xu, H.; Peng, G. Targeting citrate as a novel therapeutic strategy in cancer treatment. *Biochimica Et Biophysica Acta-Reviews on Cancer* **2020**, *1873* (1), Review. DOI: 10.1016/j.bbcan.2019.188332.

(8) Williams, C.; Stillman, T.; Barynin, V.; Sedelnikova, S.; Tang, Y.; Green, J.; Guest, J.; Artymiuk, P. E-coli aconitase B structure reveals a HEAT-like domain with implications for protein-protein recognition. *Nature Structural Biology* **2002**, *9* (6), 447-452, Article. DOI: 10.1038/nsb801.

(9) Michta, E.; Schad, K.; Blin, K.; Ort-Winklbauer, R.; Rottig, M.; Kohlbacher, O.; Wohlleben, W.; Schinko, E.; Mast, Y. The bifunctional role of aconitase in Streptomyces viridochromogenes Tu494. *Environmental Microbiology* **2012**, *14* (12), 3203-3219, Article. DOI: 10.1111/1462- 2920.12006.

(10) PRODROMOU, C.; HAYNES, M.; GUEST, J. THE ACONITASE OF ESCHERICHIA-COLI - PURIFICATION OF THE ENZYME AND MOLECULAR-CLONING AND MAP LOCATION OF THE GENE (ACN). *Journal of General Microbiology* **1991**, *137*, 2505-2515, Article. DOI: 10.1099/00221287-137-11-2505.

(11) Michta, E.; Ding, W.; Zhu, S. C.; Blin, K.; Ruan, H. Q.; Wang, R.; Wohlleben, W.; Mast, Y. Proteomic Approach to Reveal the Regulatory Function of Aconitase AcnA in Oxidative Stress Response in the Antibiotic Producer Streptomyces viridochromogenes Tu494. *Plos One* **2014**, *9* (2). DOI: 10.1371/journal.pone.0087905.

(12) Tang, Y.; Guest, J. Direct evidence for mRNA binding and post-transcriptional regulation by Escherichia coli aconitases. *Microbiology-Sgm* **1999**, *145*, 3069-3079, Article. DOI: 10.1099/00221287-145-11-3069.

(13) Castro, L.; Tortora, V.; Mansilla, S.; Radi, R. Aconitases: Non-redox Iron-Sulfur Proteins Sensitive to Reactive Species. *Accounts of Chemical Research* **2019**, *52* (9), 2609-2619, Review. DOI: 10.1021/acs.accounts.9b00150.

(14) Gourley, B.; Parker, S.; Jones, B.; Zumbrennen, K.; Leibold, E. Cytosolic aconitase and ferritin are regulated by iron in Caenorhabditis elegans. *Journal of Biological Chemistry* **2003**, *278* (5), 3227-3234, Article. DOI: 10.1074/jbc.M210333200.

(15) Lind, M.; Missirlis, F.; Melefors, O.; Uhrigshardt, H.; Kirby, K.; Phillips, J.; Soderhall, K.; Rouault, T. Of two cytosolic aconitases expressed in drosophila, only one functions as an ironregulatory protein. *Journal of Biological Chemistry* **2006**, *281* (27), 18707-18714, Article. DOI: 10.1074/jbc.M603354200.

(16) Pantopoulos, K.; LeVine, S.; Connor, J.; Schipper, H. Iron metabolism and the IRIE/IRP regulatory system - An update. *Redox-Active Metals in Neurological Disorders* **2004**, *1012*, 1- 13, Article. DOI: 10.1196/annals.1306.001.

(17) GRUER, M.; GUEST, J. 2 GENETICALLY-DISTINCT AND DIFFERENTIALLY-REGULATED ACONITASES (ACNA AND ACNB) IN ESCHERICHIA-COLI. *Microbiology-Sgm* **1994**, *140*, 2531-2541, Article. DOI: 10.1099/00221287-140-10-2531.

(18) Varghese, S.; Tang, Y.; Imlay, J. Contrasting sensitivities of Escherichia coli aconitases A and B to oxidation and iron depletion. *Journal of Bacteriology* **2003**, *185* (1), 221-230, Article. DOI: 10.1128/JB.185.1.221-230.2003.

(19) Cunningham, L.; Gruer, M.; Guest, J. Transcriptional regulation of the aconitase genes (acnA and acnB) of Escherichia coli. *Microbiology-Uk* **1997**, *143*, 3795-3805, Article. DOI: 10.1099/00221287-143-12-3795.

(20) Quirós, P. M. Determination of Aconitase Activity: A Substrate of the Mitochondrial Lon Protease. *Proteases and Cancer: Methods and Protocols, Methods in Molecular Biology* **2018**, *1731*, 49-56.

(21) Knorre, D.; Kudryashova, N.; Godovikova, T. Chemical and Functional Aspects of Posttranslational Modification of Proteins. *Acta Naturae* **2009**, *1* (3), 29-51, Review. DOI: 10.32607/20758251-2009-1-3-29-51.

(22) Lushchak, O.; Piroddi, M.; Galli, F.; Lushchak, V. Aconitase post-translational modification as a key in linkage between Krebs cycle, iron homeostasis, redox signaling, and metabolism of reactive oxygen species. *Redox Report* **2014**, *19* (1), 8-15, Review. DOI: 10.1179/1351000213Y.0000000073.

(23) Feng, L.; Lin, T.; Uranishi, H.; Gu, W.; Xu, Y. Functional analysis of the roles of posttranslational modifications at the p53 C terminus in regulating p53 stability and activity. *Molecular and Cellular Biology* **2005**, *25* (13), 5389-5395, Article. DOI: 10.1128/MCB.25.13.5389-5395.2005.

(24) Dessai, A.; Dominguez, M.; Chen, U.; Hasper, J.; Prechtl, C.; Yu, C.; Katsuta, E.; Dai, T.; Zhu, B.; Jung, S.; et al. Transcriptional Repression of SIRT3 Potentiates Mitochondrial Aconitase Activation to Drive Aggressive Prostate Cancer to the Bone. *Cancer Research* **2021**, *81* (1), 50-63, Article. DOI: 10.1158/0008-5472.CAN-20-1708.

(25) Wals, K.; Ovaa, H. Unnatural amino acid incorporation in E. coli: current and future applications in the design of therapeutic proteins. *Frontiers in Chemistry* **2014**, *2*, Review. DOI: 10.3389/fchem.2014.00015.

(26) Huang, Y.; Liu, T. Therapeutic applications of genetic code expansion. *Synthetic and Systems Biotechnology* **2018**, *3* (3), 150-158, Review. DOI: 10.1016/j.synbio.2018.09.003.

CHAPTER 2

Studying acetylation of aconitase isozymes by genetic code expansion*

* This chapter was adapted from the original publication (Jessica Araujo, Sara Ottinger, Sumana Venkat, Qinglei Gan, Chenguang Fan*. Studying acetylation of aconitase isozymes by genetic code expansion. Front. Chem. 2022; 10:862483.)

2.1 Abstract

Aconitase catalyzes the second reaction of the tricarboxylic acid cycle, the reversible conversion of citrate and isocitrate. Escherichia coli has two isoforms of aconitase, AcnA and AcnB. Acetylomic studies have identified acetylation at multiple lysine sites of both E. coli aconitase isozymes, but the impacts of acetylation on aconitases are unknown. In this study, we applied the genetic code expansion approach to produce 14 site-specifically acetylated aconitase variants. Enzyme assays and kinetic analyses showed that acetylation of AcnA K684 decreased the enzyme activity, while acetylation of AcnB K567 increased the enzyme activity. Further in vitro acetylation and deacetylation assays were performed, which indicated that both aconitase isozymes could be acetylated by acetyl-phosphate chemically and be deacetylated by the CobB deacetylase at most lysine sites. Through this study, we have demonstrated practical applications of genetic code expansion in acetylation studies.

2.2 Introduction

Aconitase catalyzes the reversible conversion of citrate and isocitrate in the tricarboxylic acid (TCA) and glyoxylate cycles. It is an iron-sulfur (Fe-S) enzyme.¹ Depending on the state of the Fe-S cluster, aconitase has three forms: the active [4Fe-4S] form, the inactive [3Fe-4S] form, and the apo-enzyme form. The [4Fe-4S] cluster is sensitive to reactive oxygen species (ROS) and iron depletion which impair aconitase activities, so aconitases are widely used as biomarkers for oxidative stress and intracellular sensors of iron and redox states.^{2,3} In E. coli cells, there are two aconitase isozymes, AcnA and AcnB.⁴ Enzymological and regulatory analyses indicated that AcnB is the major TCA enzyme expressed during the exponential phase while AcnA is synthesized during the stationary phase or under stress conditions.⁵ Inactivated by ROS or iron depletion, both AcnA and AcnB apo-enzymes can bind to 3'-untranslated region of acnA and acnB mRNAs to stabilize them and increase their own expression, mediating a posttranscriptional positive autoregulation.^{6} Furthermore, aconitases are also regulated by posttranslational modifications (PTMs), mostly oxidation, nitrosylation, and thiolation of cysteine residues around the Fe-S cluster.⁷ Recently, a number of acetylated lysine residues have been identified in aconitase isozymes of both mammals and bacteria.⁸ Two studies on human mitochondrial aconitase (mAcn) showed that acetylation of K144 and K258 can increase the enzyme activity.^{9, 10} ¹⁰ However, both E. coli AcnA and AcnB have low sequence identities with human mAcn, so the impacts of acetylation on aconitase isozymes in E. coli remain unknown.

The classic approach to study lysine acetylation is to use glutamine (KQ mutation) as a mimic of acetyllysine. However, this method undermines the structural difference between glutamine and acetyllysine. The side chain of glutamine residue is $\sim 4\text{\AA}$ shorter than acetyllysine, so it may not reflect the real impacts of lysine acetylation. Indeed, our previous study on lysine acetylation of isocitrate dehydrogenase compared its activity with KQ mutations and real acetylated lysine residues, showing that at some acetylation sites the KQ mutation method derived different or even opposite conclusions.¹¹ To overcome this problem, the genetic code expansion technique

has been used to generate site-specifically acetylated enzyme variants. This technique introduces an aminoacyl-tRNA synthetase which has been engineered to recognize acetyllysine and a tRNA which can decode a stop codon (UAG) as acetyllysine to produce site-specifically and purely acetylated proteins.¹² In this work, we used this approach to study lysine acetylation of aconitase isozymes, demonstrating a practical application of genetic code expansion in protein PTM studies.

2.3 Materials and Methods

General molecular biology and protein analyses

Chemicals were purchased from VWR International (Radnor, PA, USA) or Chem-Impex International (Wood Dale, IL, USA). Plasmid were constructed by the NEBuilder HiFi DNA Assembly Kit (New England Biolabs, Ipswich, MA, USA). Point mutations were generated by the Q5 Site-Directed Mutagenesis Kit (New England Biolabs). For western blotting, purified aconitase isozymes and their variants were separated on SDS PAGE gels and transferred to the PVDF membranes. The horseradish peroxidase (HRP)-conjugated acetyllysine antibody (Cell Signaling Technology, Danvers, MA, USA) was used as the primary antibody, and chemiluminescence for detection was generated by Pierce ECL Western Blotting substrates (Thermo Scientific, Waltham, MA, USA).

Expression and purification of aconitases and acetylated variants

The gene of acnA or acnB or their mutants was cloned into the pCDF-1b plasmid (EMD) Millipore, Burlington, MA, USA) with a C-terminal His6-tag, individually. Then it was transformed into BL21 (DE3) cells together with the acetyllysine incorporation system routinely used in our group.¹³ Cells was grown in 400 mL of LB medium with 100 μ g/mL streptomycin, 50 μg/mL chloramphenicol, 10 mM acetyllysine, and 20 mM nicotinamine (NAM, the deacetylase inhibitor) at 37°C to OD 600nm of 0.6–0.8, then 0.1 mM Isopropyl β-D-1-thiogalactopyranoside (IPTG) was added to induce protein expression. Cells were then incubated at 16°C for an additional 12 h and harvested by centrifugation at $4,000 \times g$ for 20 minutes at 4 °C. Cell pellets were suspended in 12 mL of 50 mM Tris (pH 7.8), 300 mM NaCl, 20 mM imidazole, 20 mM NAM, and 5 mM β-mercaptoethanol with cocktail protease inhibitors (Roche, Basel, Switzerland), and then broken by sonication. The crude extract was centrifuged at $20,000 \times g$ for 30 min at 4°C. The soluble fraction was filtered through a 0.45-µm membrane and loaded onto a column containing 2 mL of Ni-NTA resin (Qiagen, Hilden, Germany). The column was then washed with 25 mL of 50 mM Tris (pH 7.8), 300 mM NaCl, 1mM DTT, and 50 mM imidazole, and eluted with 2 mL of 50 mM Tris (pH 7.8), 300 mM NaCl, 1mM DTT, and 200 mM imidazole. SDS-PAGE electrophoresis was performed to check the purity of aconitases and their variants. Western blotting and mass spectrometry were performed to confirm the incorporation of acetyllysine at correct sites.

The aconitase activity assay and kinetic analyses

Before enzyme activity assays, purified aconitases and their acetylated variants were reactivated by incubating with 1 mM (NH4)2Fe(SO4)2 and 5 mM DTT in 50 mM Tris (pH 8) for 30 minutes following previous protocols.¹⁴ Enzyme assays were performed with the commercial aconitase assay kit from BioAssay System (Hayward, CA). Briefly, it measures the isocitrate generated as a product of the aconitase reaction. The isocitrate is then oxidized producing NADPH and the oxidation product. The NADPH converts the dye to an intense violet color with an absorption maximum at 565 nm. The increase in absorbance at 565 nm is directly proportional to aconitase activity. To determine steady-state kinetic parameters, the concentration of the substrate citrate was varied from 0.1 mM to 50 mM. Kinetic parameters were calculated by nonliner regression with software Grafit (Erithacus Software).

Mass spectrometry (MS) analyses

The LC-MS/MS analyses were performed by the Yale Keck Proteomics facility and followed the previous protocol.¹¹ Briefly, aconitases and their variants were separated by SDS-PAGE electrophoresis. Protein bands were cut and digested in gel by trypsin, and analyzed by LC-MS/MS on an LTQ Orbitrap XL equipped with a nanoACQUITY UPLC system. The Mascot search algorithm was used to search for the substitution of the lysine residue with acetyllysine.

The in vitro acetylation assay

The acetylation reaction was performed in the buffer of 50 mM Tris (pH 8.0), 0.1 mM EDTA, 1 mM DTT and 10 mM sodium butyrate, initiated by mixing 10 μg enzyme and 3 mM AcP in a total volume of 100 μl, and then incubated at 37°C for 1 hour.

The in vitro deacetylation assay

The deacetylation reaction was performed in the buffer of 50 mM HEPES (pH 7.0), 5 mM MgCl2, 1.0 mM NAD+, and 1 mM DTT, initiated by mixing 10 μg enzyme and 10 μg purified CobB in a total volume of 100 μl, and then incubated at 37°C for 1 hour.

2.4 Results

Generation of site-specifically acetylated aconitase variants

Several quantitative acetylomic studies of E. coli cells have demonstrated that both aconitase isoenzymes have higher acetylation stoichiometry than many other E. coli proteins. ^{15 16} ¹⁷ Thus, we aimed to identify the effects of acetylation on aconitase isoenzymes site-specifically. Although a series of acetylomic studies have been performed for E. coli cells, the sets of acetylation sites identified in aconitase isoenzymes do not overlap well because of differences in strains, growth media, and MS detection and resolutions.¹⁸ ¹⁹ ²⁰ ²¹ ²² ²³ ²⁴ ²⁵ ²⁶ To be feasible and avoid biased selection, we chose all the lysine residues identified to be acetylated by more than three independent acetylomic studies, which were K164, K342, K482, K684 of AcnA and K77, K373, K396, K407, K539, K559, K567, K728, K759, K835 of AcnB.

In this study, we utilized our optimized acetyllysine incorporation system to produce sitespecifically acetylated aconitase variants at selected sites listed above individually.¹³ To minimize the non-specific acetylation of other lysine residues in aconitases, we used the BL21 (DE3) strain as the host cell line, which has a low level of acetylation globally.²¹ Our previous studies on acetylation of malate dehydrogenase, isocitrate dehydrogenase, and citrate synthase have shown that those wild-type enzymes purified from BL21 (DE3) cells have low levels of non-specific acetylation.²⁷ ¹¹ ²⁸ As expected, wild-type AcnA and AcnB overexpressed in BL21 (DE3) cells had no or very weak level of acetylation (Figure S1). We fused the His6-tag to the Cterminus of aconitase variants for easy purification and to remove truncated proteins terminated at inserted UAG codons. All the purified acetylated aconitase variants had clear single bands in SDS-PAGE gels and were detected by the acetyllysine antibody in western blots (Figure S1).

The positions of acetyllysine incorporation were confirmed by LC-MS/MS analyses (Figure S2- S15).

The site-specific effects of lysine acetylation on aconitase activities

First, we measured the enzyme

activities of purified AcnA and AcnB as well as their site-specifically acetylated variants with the commercial kit individually **(Figure 2.1).** Acetylation of most lysine sites had no significant effects on aconitase activities. There were only two variants which significantly affect aconitase activities. Interestingly, the impacts of acetylation on enzyme activities were different in aconitase isozymes. Acetylation of AcnA K684 decreased the activity by ~3-fold while acetylation of AcnB K567 increased the activity by ~2-fold.

Figure 2.1. The enzyme activities and kinetic analyses of AcnA, AcnB and their acetylated variants. The upper panel is enzyme activities measured by the commercial kit with 50 mM citrate as the substrate concentration. Mean values and standard deviations were calculated based on three replicates. The lower panel is the steady-state kinetic parameters. Kinetic parameters were calculated by non-liner regression with software Grafit.

To obtain insights into the impacts of acetylation on aconitase activities, we performed steadystate kinetic analyses of AcnA and AcnB as well as those two variants (AcnA-684AcK and AcnB-567AcK) which significantly affected activities. Acetylation of AcnA K684 impairs both the substrate binding and the turnover number while acetylation of AcnB K567 only enhances the turnover number.

The acetyl-phosphate-dependent acetylation of aconitase isozymes

It is known that lysine acetylation in E. coli is mostly generated non-enzymatically with acetylphosphate (AcP) as the acetyl-donor while acetyl-CoA-dependent enzymatic acetylation only applies for a small portion of proteins.²¹ ²⁹ Our previous studies also showed that AcP itself can acetylate several TCA cycle enzymes chemically.¹¹ ²⁸ In this study, WT AcnA and AcnB expressed in BL21 (DE3) cells were purified and treated with 3 mM AcP in vitro. Western blots showed that AcP acetylated both AcnA and AcnB in a time-dependent manner (**Figure 2.2A**). The activities of AcnA and AcnB before and after AcP-treatment were measured. Consistent with site-specific results above, acetylation of AcnA impaired its activity while acetylation of AcnB enhanced its activity (**Figure 2.2B**). The impacts of acetylation by AcP-treatment were not as significant as the site-specific acetylation above, probably because AcP cannot acetylate lysine residues completely while purely acetylated variants were tested in above site-specific experiments.

Figure 2.2. AcP-dependent acetylation of AcnA and AcnB. (A) SDS-PAGE and western blots of purified WT AcnA and WT AcnB treated with AcP in vitro. 2 µg of proteins were loaded for each lane. The full image of western blots is in Figure S16. (B) Enzyme activities of purified WT AcnA and WT AcnB before and after AcP-treatment. Mean values and standard deviations were calculated based on three replicates.

Then we performed LC-MS/MS analyses to identify acetylation sites in AcnA and AcnB by AcP-treatment. Those 14 sites selected for site-specific tests above were all acetylated by in vitro AcP-treatment. Besides them, we also identified 12 additional acetylation sites in AcnA (K10, K16, K116, K257, K283, K391, K406, K453, K578, K758, K770, and, K823) and 11 additional acetylation sites in AcnB (K20, K64, K73, K135, K137, K144, K356, K387, K571, K613, and K722). Among them, K116, K257, K406, K453, K578, K823 of AcnA and K64, K137 of AcnB

have not been identified to be acetylated in E. coli cells ever before, probably because acetylation of these sites has low stoichiometry and can be deacetylated easily in living cells. On the other hand, K18, K30, K71, K161, K460, K585, K832 of AcnA and K85, K110, K117, K221, K229, K267, K537, K588 of AcnB listed in the E. coli acetylation database⁸ were not identified in our in vitro AcP-acetylation tests, implying that specific acetyltransferases or cofactors could be necessary for acetylation of these lysine sites in cells.

The CobB-dependent deacetylation of aconitase isozymes

Acetylation of lysine residues is reversible, and the deacetylation of acetylated lysine residues is catalyzed by protein lysine deacetylases (KDAC). To date, CobB is still the only well-known KDAC in E. coli.³⁰ Our previous studies showed that CobB can deacetylate acetylated lysine residues in several TCA cycle enzymes, but not for all the acetylation sites. In this study, we incubated those 14 site-specifically acetylated AcnA and AcnB variants with CobB, and used western blotting to determine the site specificity of CobB for AcnA and AcnB (**Figure 2.3A**). Most of acetylation sites were sensitive to CobB, while K164 of AcnA and K567, K728, K759 of AcnB were resistant to CobB.

Then we incubated AcP-treated AcnA and AcnB with CobB in vitro. After that, we measured the enzyme activities (**Figure 2.3B**). CobB-dependent acetylation restored AcnA activity but did not affect AcnB activity significantly. Acetylation of K684 in AcnA decreases AcnA activity and K684 is sensitive to CobB, so deacetylation of K684 could restore its enzyme activity. On the other hand, acetylation of K567 in AcnB increases AcnB activity but K567 is resistant to CobB, so CobB-dependent deacetylation could not restore AcnB activity. These results also indicated

that K684 of AcnA and K567 of AcnB are the two lysine residues whose acetylation affects their enzyme activities the most, which is consistent to our site-specific results above.

2.5 Discussion

The effects of acetylation on aconitase activities

Before our work, only two papers have reported acetylation of aconitase isoenzymes, which showed that acetylation of K144 and K258 in human mAcn activates enzyme activities.^{9, 10} To find the structure-function relationships of aconitase acetylation, we mapped those two lysine residues onto the crystal structures of mAcn. Because there is no reported human mAcn structures, we used bovine mAcn as the model which has 96% sequence identify with human mAcn (**Figure 2.4A**). The active site is at the center of the enzyme (the purple molecule is the intermediate analog methyl-isocitrate). K144 is at the back of the active site. The previous study proposed that acetylation of K144 strengthens its interaction with the nearby Q541, hence inducing conformational changes to facilitate substrate binding.⁹ K258 is at the entrance of the active site, so its acetylation could also cause conformational changes to enhance enzyme activities.

Although both E. coli AcnA and AcnB have low sequence identifies with human mAcn (28% and 24%, respectively), the overall structures of difference aconitases are very similar.³¹ Thus, we mapped K684 of AcnA and K567 of AcnB onto their structures. The structure of human cytosolic Acn (cAcn) which has a 53% sequence identify with E. coli AcnA was used as the template for homology modeling for AcnA (**Figure 2.4B**). The structure of E. coli AcnB has been solved (**Figure 2.4C**). Clearly, both K684 of AcnA and K567 of AcnB are located at the entrance of the active sites of aconitase isozymes, like the position of K258 of human mAcn. However, the effects of acetylation of those two lysine residues are opposite. Similar to that of

K258 of human mAcn, acetylation of K567 of AcnB enhances the enzyme activity. On the other hand, acetylation of K684 of AcnA decreased the enzyme activity.

Figure 2.4. Mapping of acetylated lysine residues on the structures of AcnA and AcnB. A) The crystal structure of human cAcn (PDB ID: 2B3Y). B) The homology model of AcnA structure based on human cAcn. C) The crystal structure of AcnB (PDB ID: 1L5J). D) The homology model of AcnA dimer based on human cAcn. E) The dimer of AcnB (PDB ID: 1L5J).

Why do the same PTMs have totally opposite impacts on aconitase isozyme activities? We proposed that cells use this mechanism to adapt to different growth stages. E. coli. AcnB is the major aconitase which is expressed during the early growth stage.⁵ During cell growth, ROS is accumulated in cells which damages aconitase.³ In order to restore aconitase activities to maintain the necessary rate of the TCA cycle, cells use acetylation of AcnB to enhance its activity. During the late growth stage, AcnA is expressed.⁵ Acetylation of AcnA decreases the enzyme activity, which is consistent with the slower metabolic rate in late growth stage. **The sensitivities of acetylated lysine residues in aconitases towards CobB deacetylase**

Our deacetylation tests showed that CobB can remove most of acetylated lysine resides in both AcnA and AcnB (Figure 2.3). Then we mapped those residues which are sensitive to CobB (Figure S18). CobB-sensitive sites are all located at protein surface for easy CobB access, consistent with our previous studies on other TCA cycle enzymes.^{11, 27} $\frac{1}{28}$ On the other hand, we also mapped those residues which are resistant to CobB. Both AcnA and AcnB form dimers in solutions.³² We used human cAcn as the template to model the AcnA structure. K164 of AcnA is located at the interface of two subunits (**Figure 2.4D**). K728 and K759 of AcnB are also at the subunit interface (**Figure 2.4E**). Such steric hindrance limits the access of CobB for deacetylation. Although K567 is located at the entrance of the active site, the primary amine group points to interior of the active site (**Figure 2.4C**), and this orientation also limits the access of CobB for deacetylation.

2.6 References

(1) Beinert, H.; Kennedy, M.; Stout, C. Aconitase as iron-sulfur protein, enzyme, and ironregulatory protein. *Chemical Reviews* **1996**, *96* (7), 2335-2373, Review. DOI: 10.1021/cr950040z.

(2) Gardner, P. Aconitase: Sensitive target and measure of superoxide. *Superoxide Dismutase* **2002**, *349*, 9-23, Review. DOI: 10.1016/S0076-6879(02)49317-2.

(3) Castro, L.; Tortora, V.; Mansilla, S.; Radi, R. Aconitases: Non-redox Iron-Sulfur Proteins Sensitive to Reactive Species. *Accounts of Chemical Research* **2019**, *52* (9), 2609-2619, Review. DOI: 10.1021/acs.accounts.9b00150.

(4) GRUER, M.; GUEST, J. 2 GENETICALLY-DISTINCT AND DIFFERENTIALLY-REGULATED ACONITASES (ACNA AND ACNB) IN ESCHERICHIA-COLI. *Microbiology-Sgm* **1994**, *140*, 2531-2541, Article. DOI: 10.1099/00221287-140-10-2531.

(5) Cunningham, L.; Gruer, M.; Guest, J. Transcriptional regulation of the aconitase genes (acnA and acnB) of Escherichia coli. *Microbiology-Uk* **1997**, *143*, 3795-3805, Article. DOI: 10.1099/00221287-143-12-3795.

(6) Tang, Y.; Guest, J. Direct evidence for mRNA binding and post-transcriptional regulation by Escherichia coli aconitases. *Microbiology-Sgm* **1999**, *145*, 3069-3079, Article. DOI: 10.1099/00221287-145-11-3069.

(7) Lushchak, O.; Piroddi, M.; Galli, F.; Lushchak, V. Aconitase post-translational modification as a key in linkage between Krebs cycle, iron homeostasis, redox signaling, and metabolism of reactive oxygen species. *Redox Report* **2014**, *19* (1), 8-15, Review. DOI: 10.1179/1351000213Y.0000000073.

(8) Xu, H.; Zhou, J.; Lin, S.; Deng, W.; Zhang, Y.; Xue, Y. PLMD: An updated data resource of protein lysine modifications. *Journal of Genetics and Genomics* **2017**, *44* (5), 243-250, Article. DOI: 10.1016/j.jgg.2017.03.007.

(9) Fernandes, J.; Weddle, A.; Kinter, C.; Humphries, K.; Mather, T.; Szweda, L.; Kinter, M. Lysine Acetylation Activates Mitochondrial Aconitase in the Heart. *Biochemistry* **2015**, *54* (25), 4008-4018, Article. DOI: 10.1021/acs.biochem.5b00375.

(10) Dessai, A.; Dominguez, M.; Chen, U.; Hasper, J.; Prechtl, C.; Yu, C.; Katsuta, E.; Dai, T.; Zhu, B.; Jung, S.; et al. Transcriptional Repression of SIRT3 Potentiates Mitochondrial Aconitase Activation to Drive Aggressive Prostate Cancer to the Bone. *Cancer Research* **2021**, *81* (1), 50-63, Article. DOI: 10.1158/0008-5472.CAN-20-1708.

(11) Venkat, S.; Chen, H.; Stahman, A.; Hudson, D.; McGuire, P.; Gan, Q.; Fan, C. Characterizing Lysine Acetylation of Isocitrate Dehydrogenase in Escherichia coli. *Journal of Molecular Biology* **2018**, *430* (13), 1901-1911, Article. DOI: 10.1016/j.jmb.2018.04.031.

(12) Neumann, H.; Hancock, S.; Buning, R.; Routh, A.; Chapman, L.; Somers, J.; Owen-Hughes, T.; van Noort, J.; Rhodes, D.; Chin, J. A Method for Genetically Installing Site-Specific Acetylation in Recombinant Histories Defines the Effects of H3 K56 Acetylation. *Molecular Cell* **2009**, *36* (1), 153-163, Article. DOI: 10.1016/j.molcel.2009.07.027.

(13) Venkat, S.; Gregory, C.; Meng, K.; Gan, Q.; Fan, C. A Facile Protocol to Generate Site-Specifically Acetylated Proteins in Escherichia Coli. *Jove-Journal of Visualized Experiments* **2017**, (130), Article. DOI: 10.3791/57061.

(14) Bradbury, A.; Gruer, M.; Rudd, K.; Guest, J. The second aconitase (AcnB) of Escherichia coli. *Microbiology-Sgm* **1996**, *142*, 389-400, Article. DOI: 10.1099/13500872-142-2-389.

(15) Baeza, J.; Dowell, J.; Smallegan, M.; Fan, J.; Amador-Noguez, D.; Khan, Z.; Denu, J. Stoichiometry of Site-specific Lysine Acetylation in an Entire Proteome. *Journal of Biological Chemistry* **2014**, *289* (31), 21326-21338, Article. DOI: 10.1074/jbc.M114.581843.

(16) Meyer, J.; D'Souza, A.; Sorensen, D.; Rardin, M.; Wolfe, A.; Gibson, B.; Schilling, B. Quantification of Lysine Acetylation and Succinylation Stoichiometry in Proteins Using Mass Spectrometric Data-Independent Acquisitions (SWATH). *Journal of the American Society For Mass Spectrometry* **2016**, *27* (11), 1758-1771, Article. DOI: 10.1007/s13361-016-1476-z.

(17) Weinert, B.; Satpathy, S.; Hansen, B.; Lyon, D.; Jensen, L.; Choudhary, C. Accurate Quantification of Site-specific Acetylation Stoichiometry Reveals the Impact of Sirtuin Deacetylase CobB on the E-coli Acetylome. *Molecular & Cellular Proteomics* **2017**, *16* (5), 759-769, Article. DOI: 10.1074/mcp.M117.067587.

(18) Yu, B.; Kim, J.; Moon, J.; Ryu, S.; Pan, J. The diversity of lysine-acetylated proteins in Escherichia coli. *Journal of Microbiology and Biotechnology* **2008**, *18* (9), 1529-1536, Article.

(19) Zhang, J.; Sprung, R.; Pei, J.; Tan, X.; Kim, S.; Zhu, H.; Liu, C.; Grishin, N.; Zhao, Y. Lysine Acetylation Is a Highly Abundant and Evolutionarily Conserved Modification in Escherichia Coli. *Molecular & Cellular Proteomics* **2009**, *8* (2), 215-225, Article. DOI: 10.1074/mcp.M800187-MCP200.

(20) Colak, G.; Xie, Z.; Zhu, A.; Dai, L.; Lu, Z.; Zhang, Y.; Wan, X.; Chen, Y.; Cha, Y.; Lin, H.; et al. Identification of Lysine Succinylation Substrates and the Succinylation Regulatory Enzyme CobB in Escherichia coli. *Molecular & Cellular Proteomics* **2013**, *12* (12), 3509-3520, Article. DOI: 10.1074/mcp.M113.031567.

(21) Weinert, B.; Iesmantavicius, V.; Wagner, S.; Scholz, C.; Gummesson, B.; Beli, P.; Nystrom, T.; Choudhary, C. Acetyl-Phosphate Is a Critical Determinant of Lysine Acetylation in E. coli. *Molecular Cell* **2013**, *51* (2), 265-272, Article. DOI: 10.1016/j.molcel.2013.06.003.

(22) Zhang, K.; Zheng, S.; Yang, J.; Chen, Y.; Cheng, Z. Comprehensive Profiling of Protein Lysine Acetylation in Escherichia coli. *Journal of Proteome Research* **2013**, *12* (2), 844-851, Article. DOI: 10.1021/pr300912q.

(23) Castano-Cerezo, S.; Bernal, V.; Post, H.; Fuhrer, T.; Cappadona, S.; Sanchez-Diaz, N.; Sauer, U.; Heck, A.; Altelaar, A.; Canovas, M. Protein acetylation affects acetate metabolism, motility and acid stress response in Escherichia coli. *Molecular Systems Biology* **2014**, *10* (11), Article. DOI: 10.15252/msb.20145227.

(24) Kuhn, M.; Zemaitaitis, B.; Hu, L.; Sahu, A.; Sorensen, D.; Minasov, G.; Lima, B.; Scholle, M.; Mrksich, M.; Anderson, W.; et al. Structural, Kinetic and Proteomic Characterization of Acetyl Phosphate-Dependent Bacterial Protein Acetylation. *Plos One* **2014**, *9* (4), Article. DOI: 10.1371/journal.pone.0094816.

(25) AbouElfetouh, A.; Kuhn, M.; Hu, L.; Scholle, M.; Sorensen, D.; Sahu, A.; Becher, D.; Antelmann, H.; Mrksich, M.; Anderson, W.; et al. The E. coli sirtuin CobB shows no preference for enzymatic and nonenzymatic lysine acetylation substrate sites. *Microbiologyopen* **2015**, *4* (1), 66-83, Article. DOI: 10.1002/mbo3.223.

(26) Schilling, B.; Christensen, D.; Davis, R.; Sahu, A.; Hu, L.; Walker-Peddakotla, A.; Sorensen, D.; Zemaitaitis, B.; Gibson, B.; Wolfe, A. Protein acetylation dynamics in response to carbon overflow in Escherichia coli. *Molecular Microbiology* **2015**, *98* (5), 847-863, Article. DOI: 10.1111/mmi.13161.

(27) Venkat, S.; Gregory, C.; Sturges, J.; Gan, Q.; Fan, C. Studying the Lysine Acetylation of Malate Dehydrogenase. *Journal of Molecular Biology* **2017**, *429* (9), 1396-1405, Article. DOI: 10.1016/j.jmb.2017.03.027.

(28) Venkat, S.; Chen, H.; McGuire, P.; Stahman, A.; Gan, Q.; Fan, C. Characterizing lysine acetylation of Escherichia coli type II citrate synthase. *Febs Journal* **2019**, *286* (14), 2799-2808, Article. DOI: 10.1111/febs.14845.

(29) Hentchel, K.; Escalante-Semerena, J. Acylation of Biomolecules in Prokaryotes: a Widespread Strategy for the Control of Biological Function and Metabolic Stress. *Microbiology and Molecular Biology Reviews* **2015**, *79* (3), 321-346, Review. DOI: 10.1128/MMBR.00020- 15.

(30) Starai, V.; Celic, I.; Cole, R.; Boeke, J.; Escalante-Semerena, J. Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine. *Science* **2002**, *298* (5602), 2390-2392, Article. DOI: 10.1126/science.1077650.

(31) Williams, C.; Stillman, T.; Barynin, V.; Sedelnikova, S.; Tang, Y.; Green, J.; Guest, J.; Artymiuk, P. E-coli aconitase B structure reveals a HEAT-like domain with implications for protein-protein recognition. *Nature Structural Biology* **2002**, *9* (6), 447-452, Article. DOI: 10.1038/nsb801.

(32) Jordan, P.; Tang, Y.; Bradbury, A.; Thomson, A.; Guest, J. Biochemical and spectroscopic characterization of Escherichia coli aconitases (AcnA and AcnB). *Biochemical Journal* **1999**, *344*, 739-746, Article. DOI: 10.1042/0264-6021:3440739.

CHAPTER 3

3.1 Conclusion

The importance of the TCA cycle has been a process repeatedly highlighted in vital processes of life. The enzymes of the TCA cycle, which can exist in different modifiable forms, are functional to other pathways or can serve a non-enzymatic function. Further implicating the cycle in other processes, the metabolites of the TCA cycle can be useful in cell signaling. Aconitase is an iron-sulfur enzyme that catalyzes the isomerization of citrate to isocitrate in the TCA cycle under conditions of sufficient iron; however in some species its low iron, disassembled, apo-form it can bind mRNA transcripts to serve as a post-transcriptional regulator. It also participates in the glyoxylate cycle and its substrate, citrate, has been implicated in many disease states.

The focus of this research is to elucidate the effects of acetylation on the enzyme activity of the TCA cycle enzyme aconitase. The aconitase isozymes AcnA and AcnB in *E. coli* were acetylated at specific lysine residues and then the enzyme activity was determined. Utilizing Genetic Code Expansion, it was found that K567 of AcnB and K684 of AcnA are important residues with a potential role in the regulation of the isozymes during different growth stages.

3.2 Significance of this work

Acetylation of aconitase residues have been implicated in the regulation of the enzyme's activities in human mAcn, and with residue mapping on homology modeled structures it can reasonably be speculated that conserved residues are present in *E. coli*, thus illustrating the utility of this research for future understanding of TCA cycle isozyme structure-function relationship.

A greater understanding of the TCA cycle would greatly aid in the advancement of many fields of research. Metabolic dysregulation is a hallmark of cancer progression; however, much is unknown about the cellular processes that promote these metabolic alterations that drive metastatic cancer. The functioning of this centrally located pathway can determine life or death for an organism and thus, the research to reveal the inner workings of the enzymes involved is very valuable. The understanding of the mechanism by which various isozymes of the TCA cycle function within an organism must be fully understood in order to further the development of diagnostic, prognostic, and therapeutic techniques.

3.3 Future Directions

With improved methods available to aid in the study of protein modifications, the expansion of knowledge on acetylation in eukaryotes will indubitably prove to be useful. Future studies must be performed to validate the importance of these residues, *in vivo*, as modification can occur in a dynamic manner.

Supplementary Data

Figure S1. The incorporation of acetyllysine (AcK) at individual lysine sites of AcnA and AcnB. SDS-PAGE (upper panels) and western blots (lower panels) of purified aconitases and their variants from BL21(DE3) cells. Lane 1, wild-type AcnA; lane 2, AcnA-164AcK; lane 3, AcnA-342AcK; lane 4, AcnA-482AcK; lane 5; AcnA-684AcK; lane 6, wild-type AcnB; lane 7, AcnB-77AcK; lane 8, AcnB-373AcK; lane 9, AcnB-396AcK; lane 10, AcnB-407AcK; lane 11, AcnB-539AcK; lane 12, AcnB-559AcK; lane 13, AcnB-567AcK; lane 14, AcnB-728AcK; lane 15, AcnB-758AcK; lane 16, AcnB-835AcK. For each lane, 2 mg of purified proteins were loaded. Anti-AcK: acetyllysine antibody.

a	a^{++}	a^*	a^{*++}	h^{++}	$h*$	h^{*++}	Seq.			v^{*+}	l#
1 159.0917	80.0495			187.0866 94.0469			W				
2 216.1131 108.5602				244.1081 122.5577					G 835.4421 418.2247 818.4155 409.7114 7		
3386.2187 193.6130 369.1921 185.0997 414.2136 207.6104 397.1870 199.0972 K 778.4206 389.7139 761.3941 381.2007 6											
$\left \right $ 514.2772 257.6423 497.2507 249.1290 542.2722 271.6397 525.2456 263.1264 0									608.3151 304.6612 591.2885 296.1479 5		
$\left \frac{1}{25} \right 585.3144 \left 293.1608 \right 568.2878 \left 284.6475 \right 613.3093 \left 307.1583 \right 596.2827 \left 298.6450 \right $									480.2565 240.6319 463.2300 232.1186 4		
6732.3828 366.6950 715.3562 358.1817 760.3777 380.6925 743.3511 372.1792 F									409.2194 205.1133 392.1928 196.6001 3		
7819.4148 410.2110 802.3883 401.6978 847.4097 424.2085 830.3832 415.6952 S									262.1510.131.5791.245.1244.123.0659.2		
									175.1190 88.0631 158.0924 79.5498 1		

Figure S2. LC-MS/MS analysis of AcnA 164-AcK. The tandem mass spectrum of the peptide (residues 162-169) WGKQAFSR from purified AcnA 164-AcK. KAC

denotes AcK incorporation. The partial sequence of the peptide containing the AcK can be read from the annotated a/b or y ion series. Matched peaks are in red.

Figure S3. LC-MS/MS analysis of AcnA 342-AcK. The tandem mass spectrum of the peptide (residues 333-345) SEDQVELVEKYAK from purified AcnA 342-AcK. KAC denotes AcK incorporation. The partial sequence of the peptide containing the AcK can be read from the annotated a/b or y ion series. Matched peaks are in red.

#	a	a^{++}	a^*	a^{*++}	b	h^{++}	h^*	h^{*++}	Seq.		v^{++}	\mathbf{v}^*	$x*+$	#
	72.0808	36.5440			100.0757	50.5415			v					10
	2 171.1492	86.0782				199.1441 100.0757						1036.5673 518.7873 1019.5408 510.2740		
	3 258.1812 129.5942					286.1761 143.5917					937.4989 469.2531		920.4724 460.7398	
	4 373.2082 187.1077					401.2031 201.1052			D		850.4669 425.7371		833.4403 417.2238	
	5 536.2715 268.6394					564.2664 282.6368					735.4400 368.2236		718.4134 359.7103	
	6 649.3556 325.1814					677.3505 339.1789					572.3766 286.6920		555.3501 278.1787	
	7 720.3927 360.7000					748.3876 374.6974			A		459,2926 230.1499		442.2660 221.6366	
					8 890.4982 445.7527 873.4716 437.2395 918.4931 459.7502 901.4666 451.2369				К		388.2554 194.6314		371.2289 186.1181	
					961.5353 481.2713 944.5088 472.7580 989.5302 495.2688 972.5037 486.7555				\mathbf{A}		218.1499 109.5786		201.1234 101.0653	
10									K	147.1128	74.0600	130.0863	65.5468	

Figure S4. LC-MS/MS analysis of AcnA 482-AcK. The tandem mass spectrum of the peptide (residues 475-484) VVSDYLAKAK from purified AcnA 482-AcK. KAC

denotes AcK incorporation. The partial sequence of the peptide containing the AcK can be read

Figure S5. LC-MS/MS analysis of AcnA 684-AcK. The tandem mass spectrum of the peptide (residues 664-691) ILAMLGDSVTTDHISPAGSIKPDSPAGR from purified AcnA 684-AcK. KAC denotes AcK incorporation. The partial sequence of the peptide containing the AcK can be read from the annotated a/b or y ion series. Matched peaks are in red.

Figure S6. LC-MS/MS analysis of AcnB 77-AcK. The tandem mass spectrum of the peptide (residues 74-85) GEAKSPLLTPEK from purified AcnB 77-AcK. KAC

denotes AcK incorporation. The partial sequence of the peptide containing the AcK can be read

#	a	a^{++}	a^*	a^{*++}		b^{++}	$b*$	h^{*++}	Seq.		$+ +$	V^*	$x + +$	
	101.0709	51.0391	84.0444		42.5258 129.0659		65.0366 112.0393	56.5233	\mathbf{o}					10
	2 172.1081		86.5577 155.0815		78.0444 200.1030 100.5551 183.0764			92.0418		1032.4956 516.7515		1015.4691 508.2382		
				3 342.2136 171.6104 325.1870 163.0972 370.2085 185.6079 353.1819 177.0946							961.4585 481.2329		944.4320 472.7196	
				4 457 2405 229 1239 440 2140 220 6106 485 2354 243 1214 468 2089 234 608 1					D		791.3530 396.1801		774.3264 387.6669	
				5 5 5 6 7 2 7 7 3 284 1423							676.3260 338.6667		659.2995 330.1534	
				6 6 6 7 .34 6 1 3 1 4 .1 7 6 7 6 1 0 .3 1 9 5 3 0 5 .6 6 3 4 6 5 5 .3 4 1 0 3 2 8 .1 7 4 1 6 3 8 .3 1 4 4 3 1 9 .6 6 0 8							577.2576 289.1325		560.2311 280.6192	
				756.3886 378.6980 739.3621 370.1847 784.3836 392.6954 767.3570 384.1821							506.2205 253.6139		489.1940 245.1006	
				8 8 8 4 3 4 20 7 4 2 2 . 2 1 4 0 8 2 6 . 3 9 4 1 4 1 3 . 7 0 0 7 8 7 1 . 4 1 5 6 4 3 6 . 2 1 1 4 8 5 4 . 3 8 9 0 4 2 7 . 6 9 8 2							377.1779 189.0926		360.1514 180.5793	
				9 958.4476 479.7274 941.421 1 471.214 2 986.4425 493.7249 969.4160 485.2116					D		290.1459 145.5766	273.1193	137.0633	
10									R	175,1190	88.0631	158.0924	79.5498	

Figure S7. LC-MS/MS analysis of AcnB 373-AcK. The tandem mass spectrum of the peptide (residues 371-380) QAKDVAESDR from purified AcnB 373-AcK. KAC denotes AcK incorporation. The partial sequence of the peptide containing the AcK can be read

\mathbf{a}	a^{++}	a^*	a^{*++}	h^{++}	$h*$	$h*+$	Seq.	$+ +$	$x \times x$	v^* ⁺⁺	
1 44.0495	22.5284			72.0444 36.5258			\mathbf{A}				
2 204.0801 102.5437				232.0750 116.5412						831.4505 416.2289 814.4240 407.7156 7	
3 261.1016 131.0544				289.0965 145.0519						G 671.4199 336.2136 654.3933 327.7003 6	
4 360.1700 180.5886				388.1649 194.5861						V 614.3984 307.7028 597.3719 299.1896 5	
5 530.2755 265.6414 513.2490 257.1281 558.2704 279.6389 541.2439 271.1256 K 515.3300 258.1686 498.3035 249.6554 4											
61587.2970 294.1521 570.2704 285.6389 615.2919 308.1496 598.2654 299.6363 G										345, 2245 173.1159 328.1979 164.6026 3	
7 700 3811 350 6942 683 3545 342 1809 728 3760 364 6916 711 3494 356 1784										288.2030 144.6051 271.1765 136.0919 2	
										R 175.1190 88.0631 158.0924 79.5498 1	

Figure S8. LC-MS/MS analysis of AcnB 396-AcK. The tandem mass spectrum of the peptide (residues 392-399) ACGVKGIR from purified AcnB 396-AcK. KAC denotes AcK incorporation. The partial sequence of the peptide containing the AcK can be read from the annotated a/b or y ion series. Matched peaks are in red.

#	a	a^{++}	a^*	a^{*++}	b	h^{++}	$h*$	b^{*++}	Seq.	y	v^{++}	v^*	v^{*++}	#
	70.0651	35.5362			98.0600	49.5337			P					23
	127.0866	64.0469			155.0815	78.0444			G			2416.0578 1208.5325 2399.0312 1200.0192 22		
	198.1237	99.5655			226.1186	113.5629			Λ			2359.0363 1180.0218 2342.0097 1171.5085 21		
	361,1870	181.0972			389.1819	195.0946			Y			2287.9992 1144.5032 2270.9726 1135.9900 20		
	521.2177	261.1125			549.2126	275.1099			C			2124.9359 1062.9716 2107.9093 1054.4583 19		
	650.2603	325.6338			678.2552	339.6312			Е	1964.9052		982.9562 1947.8787	974.4430 18	
	747.3130	374.1602			775.3080	388.1576			P	1835.8626		918.4349 1818.8361	909.9217 17	
	917.4186	459.2129	900.3920	450.6996	945.4135	473.2104	928.3869	464.6971	$\bf K$	1738.8098		869.9086 1721.7833	861.3953 16	
	9 1048.4591		524.7332 1031.4325		516.2199 1076.4540		538.7306 1059.4274	530.2173	M	1568,7043		784.8558 1551.6778	776.3425 15	
	10 1149.5067		575.2570 1132.4802		566.7437 1177.5016		589.2545 1160.4751	580.7412	T	1437.6638		719.3356 1420.6373	710.8223 14	
	11 1236.5388		618.7730 1219.5122		610.2597 1264.5337		632.7705 1247.5071	624.2572	s	1336.6162		668.8117 1319.5896	660.2984 13	
	12 1335.6072		668.3072 1318.5806		659.7939 1363.6021		682.3047 1346.5755	673.7914	v	1249,5841		625.2957 1232.5576	616.7824 12	
	13 1392.6286		696.8180 1375.6021		688.3047 1420.6236		710.8154 1403.5970	702.3021	G	1150.5157		575.7615 1133.4892	567.2482 11	
	14 1479.6607		740.3340 1462.6341		731.8207 1507.6556		754.3314 1490.6290	745.8182	s	1093.4943		547.2508 1076.4677	538.7375 10	
	15 1607.7192		804.3633 1590.6927		795.8500 1635.7142		818.3607 1618.6876	809.8474	\mathbf{o}	1006.4622	503.7347	989.4357	495.2215 9	
	16 1722.7462		861.8767 1705.7196		853.3635 1750.7411		875.8742 1733.7146	867.3609	D	878.4036	439.7055	861.3771	431.1922 8	
	17 1823.7939		912.4006 1806.7673		903.8873 1851.7888		926.3980 1834.7622	917.8848	$\mathbf T$	763.3767	382.1920	746.3502	373.6787 7	
	18 1924.8415		962.9244 1907.8150		954.4111 1952.8365		976.9219 1935.8099	968,4086	T	662,3290	331.6681	645.3025	323.1549 6	
	19 1981.8630		991.4351 1964.8365		982.9219 2009.8579 1005.4326 1992.8314			996.9193	G	561.2813	281.1443	544.2548	272.6310 5	
	20 2078 9158 1039 9615 2061 8892 1031 4482 2106 9107 1053 9590 2089 8841							1045.4457	P	504.2599	252.6336	487.2333	244.1203 4	
	21 2209 9563 1105 4818 2192 9297 1096 9685 2237 9512 1119 4792 2220 9246 1110 9659								M	407.2071	204.1072	390.1806	195.5939 3	
	22 2311.0039 1156.0056 2293.9774 1147.4923 2338.9988 1170.0031 2321.9723 1161.4898								$\mathbf T$	276.1666	138.5870	259.1401	130.0737 2	
23									R	175.1190	88.0631	158.0924	79.5498 1	

Figure S9. LC-MS/MS analysis of AcnB 407-AcK. The tandem mass spectrum of the peptide (residues 400-422) PGAYCEPKMTSVGSQDTTGPMTR from purified AcnB 407-AcK. KAC denotes AcK incorporation. The partial sequence of the peptide containing the AcK can be read from the annotated a/b or y ion series. Matched peaks are in red.

#	а	a^{++}	a^*	a^{*++}	b	h^{++}	$b*$	h^{*++}	Seq.		y^{++}	y^*	v^{*++}	
	120.0808	60.5440			148,0757	74.5415			F					$12 \overline{ }$
		249.1234 125.0653				277.1183 139.0628			E			1271.6776 636.3425 1254.6511 627.8292 11		
		306.1448 153.5761				334.1397 167.5735			G			1142.6350 571.8212 1125.6085 563.3079 10		
		476.2504 238.6288		459.2238 230.1155		504.2453 252.6263	487.2187 244.1130		K			1085.6136 543.3104 1068.5870 534.7972 9		
		607.2908 304.1491		590.2643 295.6358		635.2858 318.1465	618.2592 309.6332		M		915.5080 458.2577	898.4815 449.7444 8		
		735.3494 368.1783	718.3229 359.6651			763.3443 382.1758		746.3178 373.6625	Ω		784.4676 392.7374		767.4410 384.2241	
		832.4022 416.7047		815.3756 408.1915		860.3971 430.7022	843.3706 422.1889			656.4090 328.7081			639.3824 320.1949 6	
		889.4237 445.2155		872.3971 436.7022		917.4186 459.2129	900.3920 450.6996				559.3562 280.1817		542.3297 271.6685 5	
	1002.5077 501.7575			985.4812 493.2442			1030.5026 515.7550 1013.4761 507.2417				502.3348 251.6710		485.3082 243.1577 4	
					10 1103.5554 552.2813 1086.5288 543.7681 1131.5503 566.2788 1114.5238 557.7655						389,2507 195,1290		372.2241 186.6157 3	
					11 1216.6395 608.8234 1199.6129 600.3101 1244.6344 622.8208 1227.6078 614.3075					288.2030 144.6051		271.1765 136.0919 2		
$\boxed{12}$									$\mathbf R$	175.1190	88.0631	158.0924	79.5498	

Figure S10. LC-MS/MS analysis of AcnB 539-AcK. The tandem mass spectrum of the peptide (residues 536-547) FEGKMQPGITLR from purified AcnB 539-AcK. KAC denotes AcK incorporation. The partial sequence of the peptide containing the AcK can be read

#	a	a^{++}	a^*	a^{*++}	b	b^{++}	$h*$	h^{*++}	Seq.	y	y^{++}	y^*	$y^{\star++}$	#
	88.0393	44.5233			116.0342	58.5207			D					20
	201.1234	101.0653			229.1183	115.0628			L			2148.2791 1074.6432 2131.2525 1066.1299 19		
	300.1918	150.5995			328.1867	164.5970			V			2035.1950 1018.1012 2018.1685 1009.5879 18		
	437.2507	219.1290			465.2456	233.1264			\bf{H}	1936.1266		968.5669 1919.1001	960.0537 17	
	508.2878	254.6475			536.2827	268.6450			\mathbf{A}	1799.0677		900.0375 1782.0412	891.5242 16	
	621.3719	311.1896			649.3668	325.1870			л	1728.0306		864.5189 1711.0040	856.0057 15	
	718.4246	359.7160			746.4196	373.7134			P	1614.9465		807.9769 1597.9200	799.4636 14	
	831.5087	416.2580			859.5036	430.2554			L	1517.8938		759.4505 1500.8672	750.9372 13	
0.	994.5720	497.7897			1022.5669	511.7871			Y	1404.8097		702.9085 1387.7831	694.3952 12	
	10 1065.6091	533.3082			1093.6041	547.3057			A	1241.7464		621.3768 1224.7198	612.8635 11	
	11 1178.6932	589.8502			1206.6881	603.8477			п	1170.7093		585.8583 1153.6827	577.3450 10	
	12 1348.7987		674.9030 1331.7722		666.3897 1376.7937		688.9005 1359.7671	680.3872	K	1057.6252		529.3162 1040.5986	520.8030	
	13 1476.8573		738.9323 1459.8308		730.4190 1504.8522		752.9298 1487.8257	744.4165	\mathbf{o}	887.5197	444.2635	870.4931	435.7502	
	14 1533.8788		767.4430 1516.8522		758.9298 1561.8737		781.4405 1544.8471	772.9272	G	759.4611	380.2342	742.4345	371.7209	
	15 1646.9628		823.9851 1629.9363		815.4718 1674.9578		837.9825 1657.9312	829.4692	L	702.4396	351.7234	685.4131	343.2102	
	16 1760.0469		880.52711743.02041		872.0138 1788.0418		894.5245 1771.0153	886.0113	L	589.3556	295.1814	572.3290	286.6681	
	17 1861.0946				931.0509 1844.0680 922.5377 1889.0895 945.0484 1872.0629 936.5351 T					476.2715	238.6394	459.2449	230.1261 4	
	18 1960.1630		980.5851 1943.1364		972.0719 1988.1579 994.5826 1971.1314			986.0693	v	375.2238	188.1155	358.1973	179.6023 3	
	19 2089.2056 1045.1064 2072.1790 1036.5932 2117.2005 1059.1039 2100.1740 1050.5906								к	276.1554	138.5813	259.1288	130.0681	$\overline{2}$
20									K	147.1128	74.0600	130.0863	65.5468 1	

Figure S11. LC-MS/MS analysis of AcnB 559-AcK. The tandem mass spectrum of the peptide (residues 548-567) DLVHAIPLYAIKQGLLTVEK from purified AcnB 559-AcK. KAC denotes AcK incorporation. The partial sequence of the peptide containing the AcK can be read from the annotated a/b or y ion series. Matched peaks are in red.

#	a	a^{++}	a^*	a^{*++}	b	h^{++}	$b*$	h^{*++}	Seq.		v^{++}	y^*	v^{*++}
	1 101.0709	51.0391	84.0444		42.5258 129.0659		65.0366 112.0393	56.5233	\mathbf{o}				
	2 158.0924		79.5498 141.0659		71.0366 186.0873		93.5473 169.0608	85.0340	G			929.5666 465.2869 912.5401 456.7737	
	3271.1765 136.0919 254.1499 127.5786 299.1714 150.0893 282.1448 141.5761											872.5451 436.7762 855.5186 428.2629	
	4 384.2605 192.6339 367.2340 184.1206 412.2554 206.6314 395.2289 198.1181											759.4611 380.2342 742.4345 371.7209	
	5 485.3082 243.1577 468.2817 234.6445 513.3031 257.1552 496.2766 248.6419											646.3770 323.6921 629.3505 315.1789	
	6 584,3766 292,6920 567,3501 284,1787 612,3715 306,6894 595,3450 298,1761											545.3293 273.1683 528.3028 264.6550	
	7 713.4192 357.2132 696.3927 348.7000 741.4141 371.2107 724.3876 362.6974								E			446.2609 223.6341 429.2344 215.1208	
	883.5247 442.2660 866.4982 433.7527 911.5197 456.2635 894.4931 447.7502								к			317.2183 159.1128 300.1918 150.5995	
										K 147.1128		74.0600 130.0863	65.5468

Figure S12. LC-MS/MS analysis of AcnB 567-AcK. The tandem mass spectrum of the peptide (residues 560-568) QGLLTVEKK from purified AcnB 567-AcK. KAC denotes AcK incorporation. The partial sequence of the peptide containing the AcK can be read

Figure S13. LC-MS/MS analysis of AcnB 728-AcK. The tandem mass spectrum of the peptide (residues 723-734) LLDAHKGQLPTR from purified AcnB 728-AcK. KAC denotes AcK incorporation. The partial sequence of the peptide containing the AcK can be read

#	\bf{a}	a^{++}	a^*	a^{*++}	b	b^{++}	$b*$	$b*++$	Seq.	y	y^{++}	y^*	$y^{\star++}$	#
	104.0528	52.5301			132.0478	66.5275			M					21
	219.0798	110.0435			247.0747	124.0410			D	2191.0302 1096.0187 2174.0037 1087.5055 20				
	290.1169	145.5621			318.1118	159.5595			A			2076.0033 1038.5053 2058.9767 1029.9920 19		
	361.1540	181.0806			389.1489	195.0781			\mathbf{A}			2004.9661 1002.9867 1987.9396	994.4734 18	
	489.2126	245.1099	472.1860	236.5967	517.2075	259.1074	500.1810	250.5941	\bf{o}	1933.9290		967.4682 1916.9025	958.9549 17	
61	602.2967	301.6520	585.2701	293.1387	630.2916	315.6494	613.2650	307.1362	L	1805.8705		903.4389 1788.8439	894.9256 16	
	703.3443	352.1758	686.3178	343.6625	731.3393	366.1733	714.3127	357.6600	т	1692.7864		846.8968 1675.7598	838.3836 15	
	832.3869	416.6971	815.3604	408.1838	860.3818	430.6946	843.3553	422.1813	Е	1591.7387		796.3730 1574.7122	787.8597 14	
	961.4295	481.2184	944.4030	472.7051	989.4244	495.2159	972.3979	486.7026	Đ	1462.6961		731.8517 1445.6696	723.3384 13	
	10 1018.4510		509.7291 1001.4244		501.2159 1046.4459		523.7266 1029.4194	515.2133	G	1333.6535		667.3304 1316.6270	658.8171 12	
	11 1181.5143		591.2608 1164.4878		582.7475 1209.5092		605.2583 1192.4827	596.7450	Y	1276.6321		638.8197 1259.6055	630.3064 11	
	12 1344.5776		672.7925 1327.5511		664.2792 1372.5726		686.7899 1355.5460	678.2766	Y	1113.568	557.2880	1096.5422	548.7747 10	
	13 1431.6097		716.3085 1414.5831		707.7952 1459.6046		730.3059 1442.5780	721.7927	s	950.5054	475.7563	933.4789	467.2431	$\boldsymbol{9}$
	14 1530.6781		765.8427 1513.6515		757.3294 1558.6730		779.8401 1541.6465	771.3269	v	863.4734	432.2403	846.4468	423.7271	8
	15 1677.7465		839.3769 1660.7200		830.8636 1705.7414		853.3743 1688.7149	844.8611	в	764.4050	382.7061	747.3784	374.1928	
	16 1734.7680		867.8876 1717.7414		859.3743 1762.7629		881.8851 1745.7363	873.3718	G	617.3366	309.1719	600.3100	300.6586 6	
	17 1904.8735		952.9404 1887.8469		944.4271 1932.8684 966.9378 1915.8419 958.4246 K					560.3151	280.6612	543.2885	272.1479 5	
	18 1991.9055		996.4564 1974.8790		987.9431 2019.9004 1010.4539 2002.8739 1001.9406				s	390.2096	195.6084	373.1830	187.0951 4	
					19 2048 9270 1024 9671 2031 9004 1016 4539 2076 9219 1038 9646 2059 8954 1030 4513				G	303.1775	152.0924	286.1510	143.5791 3	
					20 2119.9641 1060.4857 2102.9376 1051.9724 2147.9590 1074.4831 2130.9325 1065.9699				A	246.1561	123.5817	229.1295	115.0684 2	
$\overline{21}$									$\mathbf R$	175.1190	88.0631	158.0924	79.5498 1	

Figure S14. LC-MS/MS analysis of AcnB 759-AcK. The tandem mass spectrum of the peptide (residues 743-763) MDAAQLTEEGYYSVFGKSGAR from purified AcnB 759-AcK. KAC denotes AcK incorporation. The partial sequence of the peptide containing the AcK can be read from the annotated a/b or y ion series. Matched peaks are in red.

#	a	a^{++}	a^*	a^{*++}	b	b^{++}	$b*$	b^{*++}	Seq.	y	$\mathbf{y}^{\text{++}}$	\mathbf{v}^*	v^{*++}	$\#$
1	86.0964	43.5519			114.0913	57.5493			L					23
$\mathbf{2}$	183.1492	92.0782			211.1441	106.0757			P				2616.2464 1308.6268 2599.2199 1300.1136 22	
31	284.1969	142.6021			312.1918	156.5995			T				2519.1936 1260.1005 2502.1671 1251.5872 21	
	381.2496	191.1285			409.2445	205.1259			P				2418.1460 1209.5766 2401.1194 1201.0633 20	
	510.2922	255.6498			538.2871	269.6472			E				2321.0932 1161.0502 2304.0667 1152.5370 19	
61	639.3348	320.1710			667.3297	334.1685			E				2192.0506 1096.5289 2175.0241 1088.0157 18	
	802.3981	401.7027			830.3931	415.7002			Y				2063.0080 1032.0076 2045.9815 1023.4944 17	
	930.4567	465.7320	913.4302	457.2187	958.4516	479.7295	941.4251	471.2162	\mathbf{o}	1899.9447		950.4760 1882.9181	941.9627 16	
	9 1031.5044		516.2558 1014.4779		507.7426 1059.4993		530.2533 1042.4728	521.7400	T	1771.8861		886.4467 1754.8596	877.9334 15	
	10 1194.5677		597.7875 1177.5412		589.2742 1222.5626		611.7850 1205.5361	603.2717	Y	1670.8384		835.9229 1653.8119	827.4096 14	
	11 1293.6361		647.3217 1276.6096		638.8084 1321.6311		661.3192 1304.6045	652.8059	V	1507.7751		754.3912 1490.7486	745.8779 13	
	12 1364.6733		682.8403 1347.6467		674.3270 1392.6682		696.8377 1375.6416	688.3245	A	1408,7067		704.8570 1391.6801	696.3437 12	
	13 1492.7318		746.8696 1475.7053		738.3563 1520.7268		760.8670 1503.7002	752.3537	\mathbf{o}	1337.6696		669.3384 1320.6430	660.8251 11	
	14 1591.8003		796.4038 1574.7737		787.8905 1619.7952		810.4012 1602.7686	801.8879	v	1209.6110		605.3091 1192.5844	596.7959 10	
	15 1706.8272		853.9172 1689.8006		845.4040 1734.8221		867.9147 1717.7956	859.4014	D	1110.5426		555.7749 1093.5160	547.2617	$\boldsymbol{0}$
	16 1876.9327		938.9700 1859.9062		930.4567 1904.9276		952.9675 1887.9011	944.4542	К	995.5156	498.2615	978.4891	489.7482	
	17 1977.9804		989.4938 1960.9539		980.9806 2005.9753 1003.4913 1988.9488			994.9780	T	825.4101	413.2087	808.3836	404.6954	7
					18 2049.0175 1025.0124 2031.9910 1016.4991 2077.0124 1039.0099 2059.9859 1030.4966				\mathbf{A}	724.3624	362.6849	707.3359	354.1716	6
					19 2148.0859 1074.5466 2131.0594 1066.0333 2176.0808 1088.5441 2159.0543 1080.0308				V	653.3253	327.1663	636.2988	318.6530	5
					20 2263.1129 1132.0601 2246.0863 1123.5468 2291.1078 1146.0575 2274.0812 1137.5443				D	554.2569	277.6321	537.2304	269.1188	
					21 2364.1606 1182.5839 2347.1340 1174.0706 2392.1555 1196.5814 2375.1289 1188.0681				т	439.2300	220.1186	422.2034	211.6053	$\overline{\mathbf{3}}$
					22 2527.2239 1264.1156 2510.1973 1255.6023 2555.2188 1278.1130 2538.1922 1269.5998				Y	338.1823	169.5948	321.1557	161.0815	$\overline{2}$
23									R	175.1190	88.0631	158.0924	79.5498	$\mathbf{1}$

Figure S15. LC-MS/MS analysis of AcnB 835-AcK. The tandem mass spectrum of the peptide (residues 820-842) LPTPEEYQTYVAQVDKTAVDTYR from purified AcnB 835-AcK. KAC denotes AcK incorporation. The partial sequence of the peptide containing the AcK can be read from the annotated a/b or y ion series. Matched peaks are in red.

Figure S16. The full image of western blots for AcP-acetylation experiments in Figure 2A.