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Abstract

In 2014 Brendle and Margalit proved the level 4 congruence subgroup of the braid

group, Bn[4], is the subgroup of the pure braid group generated by squares of all elements,

PB2
n. We define the mod 4 braid group, Zn, to be the quotient of the braid group by the

level 4 congruence subgroup, Bn/Bn[4]. In this dissertation we construct a group

presentation for Zn and determine a normal generating set for Bn[4] as a subgroup of the

braid group.

Further work by Kordek and Margalit in 2019 proved Zn is an extension of the

symmetric group, Sn, by Z(
n
2)

2 . A classical result of Eilenberg and MacLane classifies group

extensions by classes in the second group cohomology with twisted coefficients. We first

construct a representative for the cohomology class, [ϕ], of H2(Sn;Z(
n
2)) classifying the

extension, Gn, of the symmetric group by the abelianization of the pure braid group. We

then show a representative for the cohomology class in H2(Sn;Z
(n2)
2 ) classifying Zn is the

composition of [ϕ] with the mod 2 reduction of integers.



Acknowledgements

First I would like to thank my advisor, Dr. Matthew Day, for his dedication and support.

His meticulous criticism and detailed discussions have greatly improved me as a

mathematician. I would also like to thank Dr. Matthew Clay and Dr. Lance Miller for

their contributions and discussions throughout my time at the University of Arkansas. I

have received nothing but support from the department of mathematics and greatly

appreciate the opportunity given to me by the University of Arkansas. I would also like to

thank Dr. Paola Mantero for helping me adjust to Arkansas and graduate school.

I want to thank my parents, without whom none of this would have been possible. I

would not be the man I am today without their wisdom and guidance. I am truly grateful

for their years of sacrifice; my father’s dedication to our family gave me the foundation to

succeed. I would also like to thank the Toma family and Fr. Mircea for helping me find

faith and the Orthodox Church. I thank God every day for the people He has blessed me

with in my life.



Table of Contents

1 Introduction 1

2 Constructing Presentations via Extensions 5

3 Group Cohomology 12

3.1 Normalized Bar Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Classification of Group Extensions . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Braid group 17

4.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 Extensions of the Symmetric Group . . . . . . . . . . . . . . . . . . . . . . . 19

4.3 Level m Braid Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Universal Cover of an Eilenberg-MacLane space 24

6 Extension by the Abelianization of the Pure Braid Group 30

6.1 Group Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.2 Corresponding Cohomology Class . . . . . . . . . . . . . . . . . . . . . . . . 37

6.3 Order of Cohomology Class . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7 Mod 4 Braid Group 50

7.1 Classification by Cohomology Class . . . . . . . . . . . . . . . . . . . . . . . 50

7.2 Normal generating set for the level 4 braid group . . . . . . . . . . . . . . . 52

A Diagrams for Theorem 6.2 55

References 63



List of Figures

1 Strand Diagram of b1,3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Double cover of D◦
5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Gluing 2-cells of the Cayley Complex. . . . . . . . . . . . . . . . . . . . . . . 25



List of Tables

1 Relations of Gn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2 Relations of Zn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51



1 Introduction

Brendle and Margalit proved the level 4 congruence subgroup, Bn[4], of the braid group,

Bn, can be described as the subgroup of the pure braid group generated squares of all

elements, PB2
n [6]. We define the mod 4 braid group, denoted Zn, to be the quotient of the

braid group by Bn[4] = PB2
n. Kordek and Margalit proved Zn is an extension of the

symmetric group, Sn, by Z(
n
2)

2 in 2018 [12]. Furthermore, a classical result of Eilenberg and

MacLane proves a classification of group extensions by low dimensional group cohomology

with twisted coefficients (page 337 of [10]). In particular, there exists an element of the

second cohomology group of Sn with coefficients in Z(
n
2)

2 twisted by the action of the

symmetric group permuting unordered pairs of integers which corresponds to Zn.

We represent the action of a group, Q, on an abelian group, K, by a map

θ : Q → Aut(K). Let E be an extension of Q by K such that ι : K → E and π : E → Q are

the inclusion and projection maps respectively, then E gives rise to θ if conjugation of

elements in ι(K) by any e ∈ E is determined by θ(π(e)). We will only consider the

standard action of the symmetric group on pairs of {1, 2, . . . , n}, therefore we suppress θ in

our notation and use H2(Q;K) to denote the second cohomolgy of Q with coefficients in K

twisted by θ. By fixing θ, Eilenberg and MacLane’s classification provides a bijection

between H2(Q;K) and the set of equivalence classes of group extensions of Q by K which

give rise to θ [10]. In Section 3, we provide the background of group cohomology and an

explanation for the classification of extensions.

In Section 4 we give a more thorough exposition of the braid group. Extensions of the

symmetric group naturally arise while studying quotients of the braid group. The mod 4

braid group, Zn = Bn/Bn[4], arises as an extension of Sn by Z(
n
2)

2 twisted by the standard

action of the symmetric group on unordered pairs on integers between 1 and n. In Section

4.3 we describe the generalization of the level m braid group, Bn[m], as the kernel of a

representation Bn → GLn(Zm). Recent work by Appel, Bloomquist, Gravel, and Holden
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prove Zn ≈ Bn[m]/Bn[4m] for any odd m [2]. We will construct both a group presentation

and a representative for the corresponding cohomology class of Zn. Our first result states a

representative of the cohomology class corresponding to Zn can be determined by a

representative for an extension of Sn by the abelianization of the pure braid group.

Theorem 1.1. Suppose n ≥ 1 and let [κ] ∈ H2(Sn;Z
(n2)
2 ) correspond to the mod 4 braid

group. If [ϕ] ∈ H2(Sn;Z(
n
2)) corresponds to the extension of Sn by the abelianization of the

pure braid group, then a representative of [κ] is the mod 2 reduction of a representative for

[ϕ]. Furthermore, [ϕ] is order 2 in H2(Sn;Z(
n
2)).

Since group cohomology with twisted coefficients is equivalent to the cohomology of an

Eilenberg-MacLane complex, we construct a representative for the cohomology classes in

Theorem 1.1 using the resolution given by the universal cover of an Eilenberg-MacLane

complex for the symmetric group, K(Sn, 1) complex. In particular we construct a low

dimensional approximation for the cellular chain complex determined by the universal

cover of the presentation complex for Sn. The 2-chains in this resolution are generated by

the Sn orbits of the following three classes of elements:

• c̃i,j for all 1 ≤ i < j ≤ n.

• d̃i,j,k,ℓ for all 1 ≤ i < j ≤ n and 1 ≤ k < ℓ ≤ n such that {i, j} ∩ {k, ℓ} = ∅.

• ẽi,j,k for all distinct triples i, j, k in {1, 2, . . . , n}.

Each class above corresponds to a relation in the symmetric group: the squaring,

commuting, and braid relations respectively. Notice ẽi,j,k and d̃i,j,k,ℓ are generators when

n ≥ 3 or n ≥ 4 respectively. Therefore, to define a representative for [ϕ] or [κ], it suffices to

define the image on these three classes. We use the following presentation to define the

image of our 2-cocycle corresponding to Zn:

Z(
n
2)

2 = ⟨{ḡi,j}1≤i<j≤n | ḡ2i,j = 1, [ḡi,j, ḡk,ℓ] = 1⟩. (1)

2



Theorem 1.2. Suppose n ≥ 1 and {c̃i,j}, {d̃i,j,k,ℓ}, and {ẽi,j,k} have the conditions on

indices above. Then a representative for the cocycle classifying Zn as an extension of Sn by

Z(
n
2)

2 is given by:

κ(c̃i,j) = ḡi,j

κ(d̃i,j,k,ℓ) =


ḡi,k + ḡi,ℓ + ḡj,k + ḡj,ℓ if i < k < j < ℓ or k < i < ℓ < j

0 otherwise

κ(ẽi,j,k) =


ḡi,j + ḡj,k if i < k < j, k < j < i, or j < i < k

0 otherwise

In the construction of the cocycle described by Theorem 1.2 we build a group

presentation for Zn with relations given in Table 2. Considering Artin’s original

presentation for the braid group given by:

Bn =

〈
b1, . . . , bn

∣∣∣∣∣∣∣
bibi+1bi = bi+1bibi+1 for all i

bibj = bjbi if |i− j| > 1

〉
(2)

we use Tietze transformations to determine relations of Zn which are not true in Bn. Since

Zn = Bn/Bn[4], these extra relations determine a normal generating set for Bn[4].

Theorem 1.3. Suppose n ≥ 1. As a subgroup of Bn, the level 4 braid group is normally

generated by elements of the form:

1. [b2i , b
2
i+1] for all 1 ≤ i ≤ n− 1.

2. [bib
2
i+1b

−1
i , bi+1b

2
i+2b

−1
i+1] for all 1 ≤ i ≤ n− 3.

3. b4i for all 1 ≤ i ≤ n− 1.

3



Remark The results in this dissertation appear in a paper submitted for publication.

The version submitted to a journal uses alternative methods to prove the presentation for

Gn and order of the corresponding cohomology class.
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2 Constructing Presentations via Extensions

Let Q and K be groups, then E is an extension of Q by K if the following sequence is

exact:

1 K E Q 1.

To construct a representative for the cohomology class corresponding to an extension, E, of

Q by K we need to lift elements of Q to E and compute products of those lifts in E.

However, this requires the group structure of E. In this section, we describe the process to

construct a presentation for E given presentations for Q and K.

Remarks Although the extensions related to the second cohomology group require K to

be abelian, the results in this section are proved for the non-abelian case. Furthermore, the

results of this section are already known and included for completeness.

Notation Throughout this section, we will refer to the same presentations for Q and K.

Let ⟨S̄Q|R̄Q⟩ and ⟨SK |RK⟩ be group presentations for Q and K respectively. Without loss

of generality, we may assume the trivial elements of Q and K are not in the respective

generating sets. Furthermore, let ι : K → E and π : E → Q be the inclusion and projection

maps in the diagram:

1 K E Q 1.ι π

We will not distinguish between K as a group and ι(K) as a subgroup of E since ι is

assumed to be an embedding.

Generating Set Since E is an extension of Q by K, Q = E/K. A lift of an element

q ∈ Q is an element eq ∈ E such that π(eq) = q. Fix SQ ⊂ E to be a choice of lifts from

elements in S̄Q such that π restricted to SQ is a bijection. We will show S = SK ∪ SQ is a

5



generating set for E.

Relations Since ι embeds K into E, the relations of K must be included in the

presentation for E. Furthermore, K is a normal subgroup of E. Therefore, for each k ∈ K

and e ∈ E there exists k′ ∈ K such that eke−1 = k′. In particular, if k ∈ SK and s ∈ SQ,

we have sks−1 = k′ for some k′ ∈ K. Notice, the choice of s as a lift of an element in S̄Q

determines k′. Furthermore, k′ can be written as a word, wk, on the generators of K. So,

for each k ∈ SK and s ∈ SQ, sks
−1 = wk is a relation of E. By a symmetric argument, for

each k ∈ SK and s ∈ SQ, there exists a word, uk on the generators of K such that

s−1ks = uk is a relation of E. For all k ∈ SK and s ∈ SQ, set R
′ to be the set of relations of

the form sks−1 = wk and s−1ks = uk.

Now, any relation in R̄Q is given by s̄1 · · · s̄q = 1Q where q ≥ 1 and s̄i ∈ S̄Q for all

1 ≤ i ≤ q. Since, for each i, si ∈ SQ is defined to be a lift of s̄i and E is an extension of Q

by K, there exists some k ∈ K such that s1 · · · sq = k. Furthermore, the choices of si as a

lift of s̄i uniquely determines k ∈ K. Therefore, k is expressed as a word k1 · · · kt on the

generators of SK , for some t ≥ 1. Hence s1 · · · sq = k1 · · · kt determines the relation

s1 · · · sqk−1
t · · · k−1

1 = 1E in E. Let RQ be the set of all relations in E determined by lifting

relations of R̄Q using this method. Define R = RK ∪RQ ∪R′ and E ′ = ⟨S | R⟩.

Goal To show the group E ′ defined above is a group presentation for E, we must show

there exists an isomorphism between E ′ and E. Define f : E ′ → E by f(s) = s for all

s ∈ S. Since each element of S is chosen from the elements of E and by the construction of

R in the preceding paragraph, f is a well defined homomorphism. To prove f is an

isomorphism we use the 5-Lemma after constructing maps ι′ and π′ which make the

6



following diagram commute:

1 K E ′ Q 1

1 K E Q 1

ι′

idK

π′

f idQ

ι π

(3)

Inclusion and Projection Maps We begin by defining the inclusion map ι′ : K → E ′.

For every k ∈ K, then there exists a word, k1k2 · · · kt on the generators of SK representing

k. Since SK ⊂ S and RK ⊆ R, the map ι′ : K → E defined by ι′(k) = k1k2 · · · kt is a well

defined homomorphism. Furthermore, notice that f ◦ ι′(k) = ι(k) for all k ∈ K. Therefore

ι′ is injective since ι is injective.

Recall the generating set for E ′ is S = SK ∪ SQ where SQ is a lift of the generating set

for Q. In particular, for each s ∈ SQ, there exists an s̄ ∈ S̄Q such that π(s) = s̄. Define

π′ : E ′ → Q on the generators of E ′ by the following:

π′(s) =


s̄ if s ∈ SQ

1Q if s ∈ SK

Notice that if r = 1 is a relation of RK , then r can be written as a word on the generators

of K. By definition, π′(r) = 1Q and π′ preserves the relations in RK . If r = 1 is a relation

of RQ, then by the construction of RQ as a lift of R̄Q, r can be expressed as a word:

s1s2 · · · spk−1
t k−1

t−1 · · · k1 = 1

on the generators of E ′ where s̄1s̄2 · · · s̄p = 1Q. By definition, π′(r) = s̄1s̄2 · · · s̄p = 1Q.

Furthermore, if r = 1 is a relation in R′, then r can be expressed as sks−1w−1
k or s−1ksu−1

k

where s ∈ SQ, k ∈ SK , and w−1
k and u−1

k are in K. So w−1
k and u−1

k can be expressed as a

word on the generators of SK and π′(r) = s̄s̄−1 = 1Q or π′(r) = s−1s = 1Q. Therefore π′

preserves the relations of E ′ and is a well defined homomorphism. Furthermore, for any

7



q ∈ Q, q = s̄1s̄2 · · · s̄t where s̄i ∈ S̄Q for all i. By the choice of SQ as a lift of S̄Q,

π′(s1s2 · · · st) = q. Therefore π′ is surjective.

Lemma 2.1. Let K and Q be groups with presentations defined above. Let E ′ be the group

with generators and relations described in the preceding paragraphs. Then any element

e ∈ E can be described by w1w2 where w1 and w2 are words in the generators of Q and K

respectively.

Proof. Since E ′ is generated by S, any element of E ′ can be described by a word s1s2 · · · st

where si ∈ S and t ≥ 1. We induct on t, beginning with t = 2. Suppose e = s1s2 where

si ∈ S for i = 1, 2. If s1 ∈ SQ or both s1, s2 ∈ SK then the lemma is trivial. Therefore,

suppose s1 ∈ SK and s2 ∈ SQ. By the relations of R′, there exists a word, us2 , on the

generators of K such that s−1
2 s1s2 = us2 . Therefore:

s1s2 = s2s
−1
2 s1s2

= s2us2 .

Since us2 and s2 are both in SK , the lemma holds for t = 2.

Now, suppose the lemma is true for any element of E ′ that can be represented by a

reduced word of length t− 1 in the generators of S. Suppose e = s1 · · · st, then by

induction s1 · · · st−1 = w1w2 where w1 and w2 are words in the generators of SQ and SK

respectively. If st ∈ SK , then we are done. Therefore assume st ∈ SQ, then we have

e = w1w2st. In particular, w2 = k1 · · · kℓ where k1, . . . , kℓ ∈ SK . By the relations of R′ there

exists a word ui on the generators K such that s−1
t kist = ui for every i such that 1 ≤ i ≤ ℓ.

8



Thus we have:

s1 · · · st = w1w2st

= w1k1 · · · kℓst

= w1k1 · · · kℓ−1sts
−1
t kℓst

= w1k1 · · · kℓ−2sts
−1
t kℓ−1stuℓ

...

= w1stu1 · · ·uℓ.

Since each ui is a word on the generators of K for all i, the product of the ui’s is a word on

the generators of K and the lemma is proven.

Remark In the paragraphs constructing ι′ and π′ we showed ι′ is injective and π′ is

surjective. To apply the 5-Lemma to (3), it remains to show im ι′ = ker π′.

Theorem 2.2. Let K, Q, and E ′ be groups with the presentations described above.

Furthermore, let ι′ : K → E ′ and π′ : E ′ → Q be the homomorphisms defined previously,

then E ′ is an extension of Q by K.

Proof. Suppose ι′ and π′ are the inclusion and projection maps defined above. For any

k ∈ K there exists a word k1k2 · · · kt representing k such that ki ∈ SK for all i. By the

definitions of ι′ and π′:

π′ ◦ ι′(k) = π′(ι′(k))

= π′(k1k2 · · · kt)

= π′(k1)π
′(k2) · · · π′(kt)

= 1Q.

9



Therefore im ι′ ⊆ kerπ′. It remains to show ker π′ ⊆ im ι′. Suppose e ∈ kerπ′, by Lemma

2.1 there exists words w1 on the generators of SQ and w2 on the generators of SK such that

e = w1w2. Let w1 = s1 · · · sq where si ∈ SQ and for all i. By the definition of π′:

π′(e) = π′(s1 · · · sqk1 · · · kt)

π′(e) = s̄1 · · · s̄q

= 1Q.

Therefore s̄1 · · · s̄q = 1Q is a relation of Q. Since R̄Q normally generates all relations of Q,

there exists words x̄1, x̄2, . . . , x̄q on the generators of S̄Q such that:

s̄1 · · · s̄q = x̄1r̄1x̄
−1
1 x̄2s̄2x̄

−1
2 · · · x̄qs̄qx̄

−1
q

where r̄i ∈ R̄Q for all i. For each i, x̄i lifts to a word xi on the generators of SQ and r̄i lifts

to the relation ri = ki for some ki ∈ K. Therefore:

w1 = x1k1x
−1
1 x2k2x

−1
2 · · ·xtktx

−1
t .

Furthermore, for each i, ki can be represented by ki,1ki,2 · · · ki,ℓi where each ki,j ∈ SK .

Therefore, for each i, xikix
−1
i can be represented by:

xiki,1x
−1
i xiki,2x

−1
i · · ·xiki,ℓix

−1
i .

Since each xi is a word on the generators of SQ, applying relations of R′, there exists

k′
i,j ∈ K such that for all i, j:

xiki,jxi = k′
i,j.

For each i, ki = ki,1ki,2 · · · ki,ℓi = k′
i where k′

i ∈ K. Therefore e = k′
1k

′
2 · · · k′

qw2 where ki and

10



w2 are words on the generators of SK . So e can be expressed as a word on the generators of

SK and e ∈ K. Thus ker π′ ⊆ im ι′ and E ′ is an extension of Q by K.

Remark Recall the diagram from (3):

1 K E ′ Q 1

1 K E Q 1

ι′

idK

π′

f idQ

ι π

Theorem 2.2 proves the top row of (3) is exact. Furthermore, f : E ′ → E is defined by

f(s) = s for all s ∈ S. Notice that ι′ and π′ are constructed such that f ◦ ι′(s) = ι(s) and

π′ ◦ f(s) = π(s) for all s ∈ S. Therefore (3) commutes and f is an isomorphism by the

5-Lemma. This completes the proof of the following theorem:

Theorem 2.3. Let E be an extension of Q by K with presentations as above. If S and R

are as defined in the paragraphs on generators and relations, then E ≈ ⟨S | R⟩.

11



3 Group Cohomology

Group cohomology provides information about a group by studying the actions of the

group on modules. In particular, Eilenberg and MacLane proved group extensions of G by

an abelian group A can be classified by elements of the second cohomology group of G with

coefficients in A [10]. However, the structure of cohomology groups is highly dependent on

the action of G on A. In this section we will provide the background on group cohomology

required to construct a representative for the cohomology class corresponding to a group

extension, most of which can be found in chapters I, III, and IV of Brown’s text [7].

Definition Let G be a group, then a topological space, X, is an Eilenberg-MacLane space

of type (G, 1), denoted K(G, 1)-space, if it satisfies the following three properties:

• X is connected.

• The fundamental group of X, π1(X), is isomorphic to G.

• The universal cover of X is contractible.

If X is a CW -complex, then X is often referred to as a K(G, 1)-complex.

Topological Interpretation Let G be a group and A, an abelian group on which G

acts. Suppose X is a K(G, 1)-space with universal cover X̃ and let αx,y be a path in X

which begins at x and ends at y. Let {Ax}x∈X be a set of groups which satisfies the

following three conditions:

• As a group, Ax is isomorphic to A for all x ∈ X.

• For each class of homotopy equivalent paths relative to endpoint, αx,y, there is an

isomorphism Ax → Ay given by a · αx,y for each a ∈ Ax.

• For any two paths αx,y and βy,z in X with a ∈ Ax, (a · αx,y)βy,z = a · (αx,yβy,z).

12



If we take x0 to be the basepoint of x, then the fundamental group of X acts as a right

action on Ax0 by a 7→ a · α for any α ∈ π1(X). Since X is a K(G, 1)-space, π1(X) = G and

we get an action of G on A. We call {Ax}x∈X the local coefficients system determined by A,

denoted MA, if the right action of π1(X) on Ax0 induces the given action of G on A.

Eilenberg proved the following theorem which gives the topological interpretation of group

cohomology [9]:

Theorem 3.1. Let G be a group and suppose A is an abelian group such that G acts on A.

If MA is the local coefficient system determined by A for a K(G, 1)-space, then:

H i(G;A) = H i(K(G, 1);MA).

3.1 Normalized Bar Resolution

Let G be a group. The integral group ring, denoted ZG, is the set of all finite linear

combinations of elements of G. Under addition, consider ZG as the free Z-module with the

elements of G as basis. We extend multiplication in G to multiplication in ZG by satisfying

distribution laws. A resolution of Z over ZG is an exact sequence of ZG-modules:

· · · P2 P1 P0 Z 0.
∂2 ∂1

A resolution of Z over ZG is called projective, or free, if Pi is a projective, or free,

ZG-module, respectively, for all i.

Normalized Bar Resolution Let G be a group and let Pt be the free Z module

generated by t+ 1 tuples (g0, g1, . . . , gt) where gi ∈ G for all i. To describe Pt as a ZG

module, consider the action of G on Pt given by g · (g0, g1, . . . , gt) = (g · g0, g · g1, . . . , g · gt).
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Then, as a ZG module, Pt is freely generated by the G orbits of (1, g1, . . . , gt). Set:

[g1 | g2 | · · · | gt] = (1, g1, g1g2, . . . , g1g2 · · · gt).

Then the set of all [g1 | g2 | · · · | gt] generate Pt as a free ZG module. Let [ ] denote the

generator of P0, define ϵP : P0 → Z by ϵP ([ ]) = 1. For t ≥ 1, define ∂P
t : Pt → Pt−1 by

∂P
t ([g1 | g2 | · · · | gt]) =

t∑
i=0

(−1)idi where:

di[g1 | · · · | gt] =


g1[g2 | · · · | gt] i = 0

[g1 | · · · | gi−1 | gigi+1 | gi+2 | · · · | gt] 0 < i < t

[g1 | · · · | gt−1] i = t

Then the bar resolution of G is the following free resolution of Z over ZG:

P : · · · P2 P1 P0 Z 0.
∂P
2 ∂P

1 εP

Let Dt be the subcomplex of Pt generated by elements of the form [g1 | g2 | · · · | gt] where

gi = gi+1 for some i between 1 and n. The resolution P̄ determined by P̄t = Pt/Dt is the

normalized bar resolution.

Remarks For a topological interpretation of the bar resolution, consider the contractible

simplicial complex, X, in which the vertices are elements of G and every finite subset of G

is a simplex of X. Note that if G is finite, X is a simplex; otherwise X is infinite

dimensional. We get a free resolution of Z over ZG by taking the ordered chain complex

with the basis of (t+ 1)-tuples of vertices (g0, g1, . . . , gt) such that gi ∈ G for all i. The

boundary operator on this ordered chain complex is the alternating sum from i = 0 to t of

the map which forgets gi.

The generating set of Pt is of size |G|t. To define a homomorphism from Pt to another
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module, we would need to define the image on each generated. We will use the fact that any

two projective resolutions of Z over ZG are chain homotopy equivalent (Section I.7 of [7]).

3.2 Classification of Group Extensions

Equivalent extensions Let K be an abelian group and let Q be a group which acts on

K by the map θ : Q → Aut(K). An extension, E, of Q by K, with inclusion and projection

maps ι and π respectively, is said to give rise to θ if it satisfies the following property: for

any k ∈ K and g̃ ∈ E such that π(g̃) = g ∈ G, then g̃ι(k)g̃−1 = ι(θ(g)(k)). Two group

extensions, E1 and E2, are equivalent if there exists an isomorphism φ : E1 → E2 such that

the diagram:

E1

1 K Q 1

E2

φ

commutes. We denote the set of equivalence classes of group extensions giving rise to θ by

E(Q;K).

Constructing 2-cocycles Let K be an abelian group. Suppose E is an extension of Q

by K giving rise to θ. Let ι : K → E and π : E → Q be the inclusion and projection maps.

A section, s, is a function s : Q → E such that π ◦ s = idQ; furthermore we say s is

normalized if s(1Q) = 1E. Since s may not be a homomorphism, s(p1)s(p2) is may not

equal s(p1p2) in E. Therefore we can measure the failure of s to be a homomorphism by

some function κ ∈ HomQ(P2, K) such that s(p1)s(p2) = ι(κ([p1 | p2]))s(p1p2). If we know

the structure of E, we have a formula:

κ([p1 | p2]) = s(p1)s(p2)s(p1p2)
−1
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which determines a cocycle corresponding to E as an extension of Q by K. A thorough

explanation that κ satisfies the cocycle condition can be found in chapter IV, Section 3 of

Brown [7].

Corresponding Extensions Let κ be a representative for a cohomology class in

H2(Q;K) determined by the normalized standard resolution. Suppose Q acts on K by the

action θ, define Eκ to be the twisted semi-direct product K ⋉κ Q with multiplication

defined by:

(a, g) · (b, h) = (a+ g · b+ κ(g, h), gh).

Note that multiplication in Eκ satisfies associativity since κ is a cocycle (page 92 of [7]).

Thus Eκ is a representative for the equivalence class of group extensions of Q by K

corresponding to [κ].

The following theorem by Eilenberg and MacLane provides the classification of group

extensions by 2-cocycles constructed above [10].

Theorem 3.2 (Eilenberg MacLane 1947). Suppose Q and K are groups with K abelian

such that Q acts on K by θ. There exists a natural bijection between E(Q,K) and

H2(Q;K).

Remarks The choice of section determines the representative of the cohomology class in

H2(Q;K). By definition, E is a split extension of Q by K if there exists a section which is

a homomorphism. Since a representative of the cohomology class measures the failure of

the section to split, the semi-direct product K ⋊θ Q corresponds to the trivial cohomology

class.

Furthermore, changing the choice of projective resolution of Z over ZG yields a

corresponding representative in an isomorphic cohomology group. In Section 5 we build the

resolution used to define our cocycle in Theorem 1.2.
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4 Braid group

4.1 Definitions

Strand Diagrams Let {x1, x2, . . . , xn} be a collection of distinct, marked points in C.

We consider an element of the braid group, called a braid, to be a collection of n

non-colliding paths fi : [0, 1] → C× [0, 1], called strands, such that fi(0) = xi, fi(1) = xj for

some j, and fi(t) ∈ C× {t}. Note that since the paths fi and fj are non-colliding,

fi(1) = fj(1) if and only if i = j. An isotopy of any surface, S, is a homotopy

H : S × [0, 1] → S such that H restricted to any t ∈ [0, 1] is a homeomorphism. Two braids

f = (f1, f2, · · · , fn) and g = (g1, g2, . . . , gn), are equivalent if there exists an isotopy

H : (C× [0, 1])× [0, 1] → C× [0, 1] such that gi = H ◦ fi for all i. Notice that strands

cannot cross each other throughout the isotopy.

To obtain the group structure of the braid group under this description it remains to

define the composition of braids, the identity element, and inverses. We compose two

braids, f and g, by gluing fi(1) to gi(0) and scaling by half. The identity element in the

braid group is the braid which is constant on the marked points and the inverse of f is the

reflection through the plane C× {1}.

A strand diagram for a braid is a projection of the images of a braid to R× [0, 1].

Under a projection to R× [0, 1], a rotation between two strands will intersect. In

particular, a clockwise rotation of two adjacent strands should have the lower indexed

strand laying under the higher indexed strand. Therefore we use a gap in the strand which

is laying underneath the other to describe crossings in the strand diagrams. To describe

the multiplication of two braids, f and g, by a strand diagram we do the following: first we

scale both f and g by 1/2, then we stack the diagrams so that g begins where f ends. We

will omit the re-scaling of the diagrams to improve readability.

For any braid, there exists a homotopy such that for any t ∈ [0, 1], there is at most one

crossing in the strand diagram. Therefore the braid group is generated by adjacent
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1 2 3

Figure 1: Strand Diagram of b1,3.

crossings in the strand diagram. Define a positively oriented twist to be the clockwise

rotation between two strands. In Artin’s presentation given by (2), bi represents the

positively oriented twist between the ith and (i+ 1)st strands. For any 1 ≤ i < j ≤ n,

define the the half twist between the ith and jth strands, denoted bi,j, by the following

strand diagram:

• The ith strand passes under all strands between i and j.

• The ith strand passes under the jth strand.

• The jth passes under all strands between i and j.

By the generators given in Artin’s presentation:

bi,j = bibi+1 · · · bj−2bj−1b
−1
j−2 · · · b−1

i+1b
−1
i .

Note that b−1
i,j only changes the description of bi,j by passing the jth strand under the ith

strand. Figure 1 gives the strand diagram for the positively oriented half twist between the

first and third strands. The choice of bi,j gives us the following presentation for the braid

group which is equivalent to the Birman-Ko-Lee presentation [5]:

Bn ≈

〈
{bi,j}1≤i<j≤n

∣∣∣∣∣∣∣
[bi,j, bk,ℓ] = 1 if (j − k)(j − ℓ)(i− k)(i− ℓ) > 0

bi,jbj,kb
−1
i,j = bi,k if i < j < k, k < i < j, j < k < i

〉
(4)
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Remark Artin’s presentation describes all braids by a composition of clockwise rotations

between adjacent strands. Our presentation in (4) describes all braids by a composition of

clockwise rotations between any two strands.

Mapping Class Group Suppose S is an orientable surface. The mapping class group,

Mod(S), is the group of isotopy classses of orientation preserving homeomorphisms which

restrict to the identity on the boundary of S. Let Dn be the closed disk with n marked

points. Let h : Dn → Dn be a homeomorphism which is invariant on the collection of

marked points; note that h may permute the marked points. Forgetting the points are

marked, h is isotopic to the identity, therefore there exists a homotopy

H : D2 × [0, 1] → D2 such that for every t ∈ [0, 1], H restricts to a homeomorphism which

is the identity on the boundary. The marked points will move around the interior of the

disk and return to their starting position throughout H. Therefore we get a collection of

non-colliding paths in D2 × [0, 1] by following the path of each marked point throughout

H. This collection of non-colliding paths describes a braid in the strand diagram definition.

Therefore, we can consider the braid group as the mapping class group of Dn:

Bn ≈ Mod(Dn).

4.2 Extensions of the Symmetric Group

The symmetric group of order n, Sn, is the group of all permutations on the set {1, 2, . . . , n}

under composition. Let σi be the transposition which swaps i with i+ 1. The standard

presentation of the symmetric group generated by adjacent transpositions is given by:

Sn =

〈
σ1, . . . , σn−1

∣∣∣∣∣∣∣
σ2
i = 1, [σi, σj] = 1 if |i− j| > 1

σiσi+1σi = σi+1σiσi+1

〉
. (5)
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Remark Since multiplication in Sn is function composition, words on the generators of

Sn are usually read right to left. For consistency with computations outside the symmetric

group, we will read words on the generators of Sn from left to right.

Under Artin’s presentation (2), the homomorphism which maps bi to σi is surjective.

The kernel of this surjection is the pure braid group, PBn. Since we use the

Birman-Ko-Lee presentation (4) for computations, we use a presentation for Sn generated

by all transpositions. We denote the transposition which permutes the integers i and j by

σi,j and choose as a word on the generators of (5):

σi,j = σiσi+1 · · ·σj−2σj−1σ
−1
j−2 · · ·σ−1

i+1σ
−1
i .

A presentation for the symmetric group of order n generated by all possible transpositions

is given by:

Sn =

〈
{σi,j}1≤i<j≤n

∣∣∣∣∣∣∣
σ2
i,j = 1, [σi,j, σk,ℓ] = 1 if {i, j} ∩ {k, ℓ} = ∅

σi,jσj,kσ
−1
i,j = σi,k for all i, j, k

〉
. (6)

Since the pure braid group is the kernel of the surjection from Bn → Sn, the following

sequence is exact and Bn is an extension of Sn by PBn:

1 PBn Bn Sn 1

Consider the commutator subgroup of the pure braid group, [PBn, PBn]. A well known fact

of group homology is: for any group G, H1(G;Z) with untwisted coefficients is isomorphic

to the abelianization of G (page 36 of [7]). Furthermore, H1(PBn;Z) ≈ Z(
n
2) (page 252 of

[11]). Since [PBn, PBn] is a characteristic subgroup of PBn and PBn is normal in Bn,
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[PBn, PBn] is a normal subgroup of Bn. Therefore, by the third isomorphism theorem:

(Bn/[PBn, PBn])/(PBn/[PBn, PBn]) ≈ Bn/PBn ≈ Sn.

Set Gn = Bn/[PBn, PBn], then Gn is an extension of the symmetric group by

H1(PBn;Z) = PBn/[PBn, PBn]. Recall, in [6], Brendle and Margalit proved Bn[4] is the

subgroup of PBn generated by squares of all elements, PB2
n. Let PZn be the image of

Bn[4] in H1(PBn;Z). By the work of Kordek and Margalit [12], Zn is also an extension of

the Sn by PZn. Therefore we get the following diagram where each row is exact:

1 PBn Bn Sn 1

0 H1(PBn;Z) Gn Sn 1

0 PZn Zn Sn 1

4.3 Level m Braid Group

Integral Burau Representation The unreduced Burau representation is the

representation ρ : Bn → GLn(Z[t, t−1]) defined on the presentation given in (2) by:

bi 7→ Ii−1 ⊕

 1− t t

1 0

⊕ In−i−1

where Ij represents the j × j identity matrix. The Burau representation maps bi to the

square matrix which is the identity except for the square at the i, i+ 1 row and columns.

Evaluating the unreduced Burau representation at t = −1 yields the integral Burau

representation, Bn → GLn(Z).

Topologically we can describe the integral Burau representation by considering the

two-fold branched cover, Xn of the disk with n marked points, Dn, where the branch locus
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p
x1

x2

Figure 2: Double cover of D◦
5

are the marked points. Since the fundamental group of the n punctured disk is the free

group of rank n, Xn is an orientable surface with genus 2n− 2. Furthermore, choose a

basepoint in the boundary of Dn. Since we are taking the two-fold branch cover, the lift of

a loop which encompasses all the marked points in Dn to Xn is a loop if n is even and a

path with different endpoints if n is odd. Therefore Xn is a compact, orientable surface of

genus (n− 1)/2 with one boundary component if n is odd and a compact, orientable

surface of genus (n− 2)/2 with two boundary components if n is even. Recall the mapping

class group of a space is the set of orientation-preserving homeomorphisms which restrict

to a homeomorphism on the boundary equivalent up to homotopy. So each element of the

mapping class group of Dn lifts to a unique element of Xn.

Let D◦
n be Dn with the marked points removed. Pick a basepoint of p ∈ ∂D◦

n and let

{x1, x2} be the lifts of p in Xn. Any path in the fundamental group of D◦
n is a path in Dn,

the lifts of which generate H1(Xn, {x1, x2};Z). Figure 2 depicts the lifts of paths in D5 to

paths in X5. Since Bn is the mapping class group of Dn, the integral Burau representation

can be described by the following composition:

Bn Mod(Xn) Aut(H1(Xn, {x1, x2};Z)) ⊆ GLn(Z).

Furthermore, composing the integral Burau representation with the mod m reduction of

integers yields a representation Bn → GLn(Zm).
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Definitions

• The kernel of the representation of the braid group given by the composition of the

integral Burau representation with the mod m reduction of integers is the level m

braid group, Bn[m]:

Bn[m] = ker{ Bn GLn([Z[t, t−1]) GLn(Z) GLn(Zm)
ρ t=−1 }.

• The mod 4 braid group, denoted Zn, is the quotient of the braid group by the level 4

braid group, Bn/Bn[4].

Structure of Bn[m] In general, the algebraic structure of Bn[m] is unknown. Arnol’d

first proved Bn[2] ≈ PBn in 1968 [3] while Brendle and Margalit proved Bn[4] ≈ PB2
n in

2014 [6]. The algebraic structure of quotients of level m braid groups are better

understood. Stylianakis proved that for each odd prime p, Bn[p]/Bn[2p] ≈ Sn in 2018 [15].

In 2020 Appel, Bloomquist, Gravel, and Holden generalized Stylianakis’ result to

Bn[ℓ]/Bn[2ℓ] ≈ Sn for every positive, odd integer ℓ [2]. Furthermore, they give the following

theorem in the same work [2]:

Theorem 4.1 (Appel, Bloomquist, Gravel, Holden). For each n and each ℓ odd:

Bn[ℓ]/Bn[4ℓ] ≈ Zn.
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5 Universal Cover of an Eilenberg-MacLane space

We begin this section by constructing a truncated resolution of Z over ZSn determined by

the universal cover of a K(Sn, 1)-space. We first construct the 2-skeleton of the Cayley

complex, X̃ for the symmetric group and describe the corresponding cellular chain

complex, denoted C(X̃), in dimensions 0, 1, and 2. Then, for 0 ≤ i ≤ 2 we construct

homomorphisms γi : Ci(X̃) → P̄i such that the following diagram commutes:

C2(X̃) C1(X̃) C0 Z 0

P̄2 P̄1 P̄ Z 0

∂C
2

γ2

∂C
1

γ1

ϵC

γ0 id

∂P
2 ∂P

1 ϵP

The existence of this commuting diagram yields the following theorem:

Theorem 5.1. Let 0 → K → E → Sn → 1 be a group extension which corresponds to

[κ] ∈ H2(Sn;K) under the normalized standard resolution. There exists

κ′ ∈ Hom(C2(X̃), K) such that [κ′] = [κ] in H2(Sn;K) defined by κ′ = κ ◦ γ2.

Cayley Complex Consider the symmetric group with presentation given by (6). The

presentation complex of the symmetric group, X, is the CW-complex with one 0-cell, a

1-cell for each generator of Sn, and a 2-cell for each relation in Sn. Let x0 denote the 0-cell

of X and xi,j denote the 1-cell of X corresponding to the generator σi,j of Sn. Note that we

only use positive generators to label 1-cells. Let ci,j be the two cell glued by the relation

σ2
i,j = 1 and di,j,k,ℓ be the two cell glued by the relation [σi,j, σk,ℓ] = 1 if {i, j} ∩ {k, ℓ} = ∅.

Consider the relation σi,jσj,kσ
−1
i,j = σi,k from (6) as σi,jσj,kσ

−1
i,j σ

−1
i,k = 1; let ei,k,j be the 2-cell

that glues along this relation in X. Note we have one 2-cell, ei,j,k, for each distinct, ordered

triple in {1, 2, . . . , n}, while ci,j and di,j,k,ℓ assume i < j and k < ℓ.

The Cayley complex for the symmetric group, denoted X̃ is the universal cover of X.

For each p ∈ Sn, there exists a 0-cell of X̃ denoted p · x̃0. Choose the basepoint of X̃, x̃0, to
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x̃0 σi,jx̃0

σi,jσk,ℓx̃0σk,ℓx̃0

x̃0 σi,jx̃0

σi,jσj,kx̃0σi,kx̃0

x̃i,j

σi,jx̃k,ℓ

σk,ℓx̃i,j

x̃k,ℓ d̃i,j,k,ℓ

x̃i,j

σi,jx̃j,k

σi,kx̃i,j

x̃i,k ẽi,j,k

Figure 3: Gluing 2-cells of the Cayley Complex.

be the 0-cell corresponding to p = 1Sn . Let C0(X̃) be the set of all 0-cells of X̃, then Sn

acts on C0(X̃) by the following: for any p1, p2 ∈ Sn, p1 acts on p2x̃ by p1 ↷ p2x̃x = p2p1x̃0.

Therefore C0(X̃) is generated by x̃0 as a ZSn module.

For every p ∈ Sn and 1 ≤ i < j ≤ n, there exists a 1-cell of X̃, denoted p · x̃i,j, which

begins at p · x̃ and ends at σi,jp · x̃0. Let C1(X̃) be the set of all 1-cells of X̃, then Sn acts

on C1(X̃) by p1 ↷ p2x̃i,j = p2p1x̃i,j for all p1, p2 ∈ Sn and p1x̃i,j ∈ R0. Take x̃i,j = 1Sn · x̃i,j

for all 1 ≤ i < j ≤ n, then the set of all x̃i,j generate C1(X̃) as a ZSn module.

There are three types of 2-cells glued into X̃. We denote the first type of 2-cell in X̃ by

p · c̃i,j where 1 ≤ i < j ≤ n. Then each p · c̃i,j is glued in by the following loop:

• Begin at p · x̃0 and follow p · x̃i,j to σi,jp · x̃0.

• Follow pσi,j · x̃i,j back to p · x̃0.

If {i, j} ∩ {k, ℓ} = ∅ with 1 ≤ i < j ≤ n and 1 ≤ k < ℓ ≤ n, there is a second type of 2-cell

denoted p · d̃i,j,k,ℓ glued into X̃ by the following loop:

• Begin at p · x̃0 and follow x̃i,j to pσi,j · x̃0.

• Follow pσi,j · x̃k,ℓ to pσk,ℓσi,j · x̃0.

• Follow pσk,ℓ · x̃i,j in reverse to pσk,ℓ · x̃0.

• Follow p · x̃kℓ in reverse back to p · x̃0.
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The third type of 2-cell occurs for all ordered, distinct triples of {1, 2, . . . , n}. For each

p ∈ Sn, let p · ẽi,j,k denote the 2-cell glued in by the following:

• Begin at p · x̃0 and follow x̃i,j to pσi,j · x̃0.

• Follow pσi,j · x̃j,k to pσi,jσj,k · x̃0.

• Follow pσi,k · x̃i,j in reverse to pσi,k · x̃0.

• Follow p · x̃i,k in reverse back to p · x̃0.

Notice Sn acts on the 2-cells of X̃ by changing the 0-cell at which each loop begins and

ends. Therefore the 2-cells c̃i,j, d̃i,j,k,ℓ, and ẽi,j,k representing the 2-cell with p = 1 in their

respective classes generate the 2-cells of X̃, C2(X̃), as a ZSn module. The gluing maps of

d̃i,j,k,ℓ and ẽi,j,k are given in Figure 3.

To construct a resolution of Z over ZSn it remains to define maps on the generators of

Ci(X̃) for 0 ≤ i ≤ 2. Define the augmentation map ϵC : C0(X̃) → Z by ϵC(x̃0) = 1. Since

X̃ is a CW-complex, the differential maps are determined by the gluing maps. So

∂C
1 : C1(X̃) → C0(X̃) is defined by ∂C

1 (x̃i,j) = (σi,j − 1)x̃0. For ∂
C
2 : C2(X̃) → C1(X̃) we get:

∂C
2 (c̃i,j) = (σi,j + 1)x̃i,j

∂C
2 (d̃i,j,k,ℓ) = x̃i,j + σi,j · x̃k,ℓ − σk,ℓ · x̃i,j − x̃k,ℓ

∂C
2 (ẽi,k,j) = x̃i,j + σi,j · x̃j,k − σi,k · x̃i,j − x̃i,k

For 0 ≤ i ≤ 2, Ci(X̃) is the truncated resolution of Z over ZSn corresponding to the

universal cover of a K(Sn, 1)-complex. To describe our cocycle by this truncated resolution,

C(X̃), it remains to construct a map from the truncated resolution C(X̃) determined by the

Cayley complex to the normalized bar resolution, P̄ . Since Ci(X̃) is a free ZSn for

0 ≤ i ≤ 2, it suffices to define γi : Ci(X̃) → P̄i on the generators of Ci(X̃). Define
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γ0(x̃0) = [ ] and γ1(x̃i,j) = [σi,j]. By the construction of the bar resolution, γ0 and γ1

commute with the differential maps.

Theorem 5.2. Define γ2 : C2(X̃) → P̄2 by:

γ2(c̃i,j) = [σi,j | σi,j]

γ2(d̃i,j,k,ℓ) = [σi,j | σk,ℓ]− [σk,ℓ | σi,j]

γ2(ẽi,k,j) = [σi,j | σj,k]− [σi,k | σi,j]

Then γ2 commutes with the differentials:

C2(X̃) C1(X̃) C0(X̃) Z 0

P̄2 P̄1 P̄0 Z 0

∂C
2

γ2 γ1

∂C
1

γ0

ϵC

id

∂P
2 ∂P

1 ϵP

Proof. Since γ2 is defined on the generators of a free ZSn module, γ2 is a well defined

homomorphism. Therefore it suffices to show γ1 ◦ ∂C
2 = ∂P

2 ◦ γ2. Recall the generators of

C(X̃)1 are x̃i,j and γ1(x̃i,j) = [σi,j]. Therefore:

γ1 ◦ ∂C
2 (c̃i,j) = [σi,j] + σi,j[σi,j]

γ1 ◦ ∂C
2 (d̃i,j,k,ℓ) = [σi,j] + σi,j[σk,ℓ]− σk,ℓ[σi,j]− [σk,ℓ]

γ2 ◦ ∂C
2 (ẽi,k,j) = [σi,j] + σi,j[σj,k]− σi,k[σi,j]− [σi,k]

Since we are using the normalized bar resolution, [p1 | · · · | pt] = 0 if pi is trivial for any i.

Now, since ∂R
2 ([p1 | p2]) = p1[p2]− [p1 · p2] + [p1] for any p1, p2 ∈ Sn and ∂P

2 is a ZSn module
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homomorphism, we have:

∂P
2 ([σi,j | σi,j]) = σi,j[σi,j]− [σ2

i,j] + [σi,j]

= σi,j[σi,j]− [1] + [σi,j]

= [σi,j] + σi,j[σi,j].

Thus (∂P
2 ◦ γ2)(c̃i,j) = (γ1 ◦ ∂C

2 )(c̃i,j). To compute ∂P
2 (γ2(d̃i,j,k,ℓ)), recall σi,jσk,ℓ = σk,ℓσi,j

since {i, j} ∩ {k, ℓ} = ∅, therefore:

∂P
2 ([σi,j | σk,ℓ]− [σk,ℓ | σi,j]) = σi,j[σk,ℓ]− [σi,jσk,ℓ] + [σi,j]− σk,ℓ[σi,j] + [σk,ℓσi,j]− [σk,ℓ]

= σi,j[σk,ℓ]− [σi,jσk,ℓ] + [σi,j]− σk,ℓ[σi,j] + [σi,jσk,ℓ]− [σk,ℓ]

= σi,j[σk,ℓ] + [σi,j]− σk,ℓ[σi,j]− [σk,ℓ].

Finally, to compute ∂P
2 (ẽi,k,j) recall that in Sn, σi,k = σi,jσj,kσ

−1
i,j and therefore

σi,kσi,j = σi,jσj,k. Hence we have:

∂P
2 ([σi,j | σj,k]− [σi,k | σi,j]) = σi,j[σj,k]− [σi,jσj,k] + [σi,j]− σi,k[σi,j] + [σi,kσi,j]− [σi,k]

= σi,j[σj,k]− [σi,kσj,k] + [σi,j]− σi,k[σi,j] + [σi,jσj,k]− [σi,k]

= σi,j[σj,k] + [σi,j]− σi,k[σi,j]− [σi,k].

Recall in Section 3.2, the cocycle constructed from a group extension is given by:

κ([p1 | p2]) = s(p1)s(p2)s(p1p2)
−1.

Therefore, given γ2 : C2(X̃) → P̄2 we can describe a cocycle on the generators of C2(X̃) by

the image of C2(X̃) in P̄2. In particular, for the symmetric group we can measure the

28



failure of an extension to split by determining the failure of the relations to lift. By taking

the images of c̃i,j, d̃i,j,k,ℓ, and ẽi,j,k given in Theorem 5.2 we get the following formula for a

corresponding cocycle:

Theorem 5.3. Let K be any Sn module and let E be an extension of Sn by K. Suppose

κ ∈ Hom(P̄2, K) is a representative for the cohomology class in H2(Sn;K) corresponding to

E determined by the normalized bar resolution. Define κ′ ∈ Hom(R2, K) by:

κ′(c̃i,j) = s(σi,j)s(σi,j)

κ′(d̃i,j,k,ℓ) = s(σi,j)s(σk,ℓ)s(σi,jσk,ℓ)
−1 − s(σk,ℓ)s(σi,j)s(σk,ℓσi,j)

−1

κ′(ẽi,k,j) = s(σi,j)s(σj,k)s(σi,jσj,k)
−1 − s(σi,k)s(σi,j)s(σi,kσi,j)

−1

Then κ′ is the 2-cocycle determined by the resolution corresponding to X̃ such that [κ′] and

[κ] represent the same group extension.

29



6 Extension by the Abelianization of the Pure Braid Group

In Section 4.2 we defined Gn to be an extension of the symmetric group by the

abelianization of the pure braid group. Furthermore, the abelianization of the pure braid

group is isomorphic to Z(
n
2) (page 252 of [11]), therefore:

0 Z(
n
2) Gn Sn 1 .

Notice the action of Sn on Z(
n
2) is induced by the conjugating pure braids in Bn by half

twists. Therefore the action of Sn on the abelianization of the pure braid group permutes

the strands of pure braids. So Sn permutes the generators of Z(
n
2) by acting on the indices

of the generators with the standard action of Sn on unordered pairs of integers.

6.1 Group Presentation

Generators Under the presentation of Bn given in (4), bi,j represents the positive half

twist between the ith and jth strands. Let σ̃i,j be the projection of bi,j in Gn. For

1 ≤ i < j ≤ n, let gi,j be the commuting generators of Z(
n
2). Since Z(

n
2) ≈ H1(PBn;Z), each

gi,j represents the positively oriented full twist between the ith and jth strands. From

Section 2 we need to choose a lift of generators for Sn. For each σi,j a generator in (6),

choose σ̃i,j to be the lift in the generating set of Gn. Therefore, for 1 ≤ i < j ≤ n, we get

the following generating set for Gn:

{gi,j} ∪ {σ̃i,j}.

Relations By Section 2, to construct a presentation for Gn, we need to include relations

of Z(
n
2), lift relations of Sn, and conjugate generators of Z(

n
2) by generators of Sn. A full list

of all the relations in Gn are given in Table 1. Notice R1 is the included relation of Z(
n
2),

R2-R5 are the lifted relations of Sn, and R6 is the relation determined by conjugating
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Table 1: Relations of Gn

R1: [gi,j, gk,ℓ] = 1 for all i, j, k, ℓ

R2: σ̃2
i,j = gi,j for all i

R3: σ̃i,jσ̃k,jσ̃
−1
i,j = σ̃i,k if k < i < j; i < j < k; or j < k < i

R4: σ̃−1
i,j σ̃j,kσ̃i,j = σ̃i,k if i < k < j; j < i < k; or k < j < i

R5: [σ̃i,j, σ̃k,ℓ] =


gi,kg

−1
i,ℓ g

−1
j,kgj,ℓ

g−1
k,i gk,jgi,ℓg

−1
ℓ,j

1

i < k < j < ℓ

k < i < ℓ < j

otherwise

R6: σ̃i,jgk,ℓσ̃
−1
i,j = gσi,j(k),σi,j(ℓ) for all i, j, k, ℓ ∈ {1, . . . , n}

generators of Z(
n
2) by lifts of generators of Sn. The rest of this section proves the relations

in Table 1. Since Z(
n
2) embeds into Gn, the relation [gi,j, gk,ℓ] is preserved in Gn. Therefore

R1 holds in Gn as the inclusion of the relation in Z(
n
2). Notice that since σ̃i,j is represents

the half twist between the ith and jth strands while gi,j is the full twist between the ith and

jth strands. R2 in Table 1 states applying a half twist twice yields a full twist. Therefore

relation R2 holds in Gn and it remains to prove relations R3-R6.

Remark Throughout this section we will remove the assumption i < j to simplify the

statements and proofs. Furthermore, in the proof of relation R5 we will use strand

diagrams to determine an equivalent braid in Bn, then project to Gn and use R1 to

determine the relation. Also, relation R4 is derived from relation R3 by conjugating and

relabelling indices but included in the presentation to clarify future computations.

Theorem 6.1. Suppose k < i < j, i < j < k, or j < k < i. In Gn:

σ̃i,jσ̃k,jσ̃
−1
i,j = σ̃i,k.

Proof. In (4), bi,jbj,kb
−1
i,j = bi,k is a relation if i < j < k, k < i < j, or j < k < i. Since Gn is
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a quotient of Bn with σ̃i,j representing the projection of bi,j in Gn, σ̃i,jσ̃j,kσ̃
−1
i,j = σ̃i,k is a

relation of Gn.

Corollary 6.1.1. Suppose i < k < j, j < i < k, or k < j < i. In Gn:

σ̃−1
i,j σ̃j,kσ̃i,j = σ̃i,k.

Proof. Suppose α < β < δ, β < δ < α, or δ < α < β, then by Theorem 6.1:

σ̃α,δσ̃δ,βσ̃
−1
α,δ = σ̃α,β.

Conjugating both sides of the equality by σ̃−1
α,δ yields:

σ̃δ,β = σ̃−1
α,δσ̃α,βσ̃α,δ.

By setting i = β, j = α, and k = δ the proof is complete.

Theorem 6.1 and Corollary 6.1.1 prove relations R3 and R4 hold in Gn. Next we prove

relations R5.

Theorem 6.2. Suppose |{i, j} ∩ {k, ℓ}| ≠ 1. Then

[σ̃i,j, σ̃k,ℓ] =


gi,kg

−1
i,ℓ g

−1
j,kgj,ℓ i < k < j < ℓ

g−1
k,i gk,jgi,ℓg

−1
ℓ,j k < i < ℓ < j

1 otherwise

Proof. Suppose {i, j} ∩ {k, ℓ} = ∅. If (j − k)(j − ℓ)(i− k)(i− ℓ) > 0, then [bi,j, bk,ℓ] = 1 is a

relation of (4). Since σ̃i,j is the projection of bi,j in a quotient of Bn, it follows

[σ̃i,j, σ̃k,ℓ] = 1 if (j − k)(j − ℓ)(i− k)(i− ℓ) > 0.

Suppose (j − k)(j − ℓ)(i− k)(i− ℓ) < 0, since {i, j} ∩ {k, ℓ} = ∅ either i < k < j < ℓ or
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k < i < ℓ < j. Begin with the strand diagram for [bi,j, bk,ℓ] where i < k < j < ℓ. We find

[bi,j, bk,ℓ] as a pure braid by the following sequence of homotopy equivalent rotations:

1. After the first crossing of i and k, introduce a clockwise and counterclockwise half

twist of between the ith and jth strands. As a word in the presentation for the braid

group, we get:

b2i,kb
−1
i,k bk,jb

−1
i,k bk,ℓb

−1
i,j b

−1
k,ℓ.

2. After the first positive half twist between the ith and jth strand, rotate the ith strand

clockwise until it lays to the left of the kth strand in the projection to R× [0, 1].

Then rotate the ith strand counterclockwise around to its starting position after the

positive half twist between the jth and ℓth strands. As a word in Bn we have:

b2i,kb
−1
i,k b

2
k,jbi,kb

−1
k,jbj,ℓbk,jb

−1
i,k b

−2
k,jb

−1
i,k b

−1
k,ℓ.

3. After the full twist between strands i and k, rotate the kth strand clockwise around

the jth strand until it returns to the starting position of the ith strand. To preserve

the isotopy class, after the positive full twist between the ith and jth strands, rotate

the kth strand counterclockwise around the jth strand until it returns to its starting

position. Then we have:

b2i,kb
2
k,jb

2
i,jb

−2
k,jb

−1
k,jbj,ℓbk,jb

−1
i,k b

−2
k,jb

−1
i,k b

−1
k,ℓ.

4. After the positive half twist between the kth and ℓth strands, rotate the kth strand

clockwise until it reaches the starting position of the ith strand. To maintain the

same isotopy class, rotate the kth strand counterclockwise back to the starting

position of the ℓth strand after the final negative half twist between the jth and ℓth
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strands. On the generators of Bn, we get:

b2i,kb
2
k,jb

2
i,jb

−2
k,jb

−1
k,jb

2
j,ℓbk,jbi,kbj,ℓb

−1
k,jb

−2
j,ℓ b

−1
k,jbj,ℓb

−1
i,k b

−1
k,j, b

−2
j,ℓ b

−1
k,j.

5. After the negative full twist between the kth and jth strands, rotate the jth strand

clockwise around the ℓth strand. Continue to rotate the jth strand clockwise around

the ℓth and kth strands. To maintain the equivalence class, rotate the jth strand

counterclockwise around the kth and ℓth strands after the full twist between the kth

and ℓth strands. Continue the counterclockwise rotation of the jth strand until it

returns to the starting position. As a reduced word in Bn, we get:

b2i,kb
2
k,jb

2
i,jb

−2
k,jb

2
j,ℓb

2
k,ℓb

−2
j,ℓ bi,kbj,ℓb

−1
k,jb

−2
j,ℓ b

−1
k,jbj,ℓb

−1
i,k b

−1
k,jb

−2
j,ℓ b

−1
k,j.

6. After the first positive half twist between the ith and ℓth strands, rotate the ℓth strand

clockwise around both the ith and jth strands. After the following full negative twist

between the ith and jth strands, rotate the ℓth strand counterclockwise back to the

starting position. As a word in Bn we get:

b2i,kb
2
k,jb

2
i,jb

−2
k,jb

2
j,ℓb

2
k,ℓb

−2
j,ℓ bi,kb

2
j,ℓb

−2
k,jbj,ℓb

−1
i,k b

−1
k,jb

−2
j,ℓ b

−1
k,j.

7. After the first negative full twist between the jth and ℓth strands, swap the order of

the half twist between the ith and kth strands with the following positive full twist

between the jth and ℓth strand. We get a negative full twist between the jth and ℓth

strands followed by a positive full twist between the jth and ℓth strands, so we omit

them in the diagram.

Next, before the negative full twist between the ith and jth strands, insert a negative

and positive half twist between the ith and kth strands. Then, immediately before the
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negative full twist between the ith and ℓth strands, rotate the jth strand clockwise

around the ith and ℓth strands. To maintain the same isotopy class, we rotate the jth

strand counterclockwise around the ith and ℓth strands after the negative full twist

between the ith and ℓth strands. As a word in Bn, we get:

b2i,kb
2
k,jb

2
i,jb

−2
k,jb

2
j,ℓb

2
k,ℓb

−2
i,j b

−2
i,ℓ b

−1
k,jb

−2
j,ℓ b

−1
k,j.

8. Before full negative twist between the kth and ℓth strands we rotate the jth strand

clockwise around the ℓth strand. Continue rotating the kth strand clockwise around

both the kth and ℓth strands. To maintain an equivalent isotopy class, after the

negative full twist between the kth and ℓth strands, rotate the Kth strand

counterclockwise around both the kth and ℓth strands. Continue rotating the kth

strand counterclockwise until it returns to its starting position. As a word in Bn, we

get:

b2i,kb
2
k,jb

2
i,jb

−2
k,jb

2
j,ℓb

2
k,ℓb

−2
i,j b

−2
i,ℓ b

2
j,ℓb

−2
k,ℓb

−2
j,ℓ b

−2
k,j.

Under the projection Bn → Gn, gi,j is the image of a pure braid. By the choice of σ̃i,j and

since the gi,j’s commute in Gn:

[σ̃i,j, σ̃k,ℓ] = gi,kgk,jgi,jg
−1
k,jgj,ℓgk,ℓg

−1
i,j g

−1
i,ℓ gj,ℓg

−1
k,ℓg

−1
j,ℓ g

−1
k,j

= gi,kg
−1
i,ℓ g

−1
k,jgj,ℓ.

Now, suppose k < i < j < ℓ, then [σ̃i,j, σ̃k,ℓ] = [σ̃k,ℓ, σ̃i,j]
−1. By the previous case relation R4

in Table 1 is proven.

Remark Since the proof of Theorem 6.2 requires eight steps, the strand diagrams are

found in Appendix A.
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Theorem 6.3. Suppose i, j, k, ℓ ∈ {1, 2, . . . , n}. In Gn:

σ̃i,jgk,ℓσ̃
−1
i,j = gσi,j(k),σi,j(ℓ).

Proof. By relation R2 we have:

σ̃i,jgk,ℓσ̃
−1
i,j = σ̃i,jσ̃

2
k,ℓσ̃

−1
i,j .

If {i, j} = {k, ℓ}, then the statement holds trivially. Suppose |{i, j} ∩ {k, ℓ}| = 1. Without

loss of generality, assume j = ℓ. If k < i < j, i < j < k, or j < k < i apply relation R3 to

obtain the result. Otherwise, use relation R4 to substitute σ̃2
i,j with σ̃−1

i,j σ̃
2
i,kσ̃

−1
i,j to obtain

the result.

Suppose {i, j} ∩ {k, ℓ} = ∅. If (i− k)(i− ℓ)(j − k)(j − ℓ > 0, then R5 implies σ̃i,j and

σ̃k,ℓ commute. Therefore the theorem holds. Now, suppose i < k < j < ℓ, then by relation

R3 and the previous case:

σ̃i,jσ̃
2
k,ℓσ̃

−1
i,j = σ̃i,kσ̃k,jσ̃

−1
i,k gk,ℓσ̃i,kσ̃

−1
k,j σ̃

−1
i,k

= σ̃i,kσ̃k,jgi,ℓσ̃
−1
k,j σ̃

−1
i,k

= σ̃i,kgi,ℓσ̃
−1
i,k

= gk,ℓ.

By a symmetric argument, the theorem holds for the case k < i < ℓ < j as well.

Remark Now that we have a presentation for Gn, we can define the inclusion and

projection maps. By the constructions given in Section 2, the inclusion map ι1 : Z(
n
2) → Gn
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by ι1(gi,j) = gi,j for all 1 ≤ i < j ≤ n. The projection map π1 : Gn → Sn is given by:

π1(s) =


σi,j if s ∈ {σ̃i,j}1≤i<j≤n

1Sn if s ∈ {gi,j}1≤i<j≤n

6.2 Corresponding Cohomology Class

Now that we have constructed a presentation for Gn, it remains to choose a normalized

section, s, to measure the failure of Gn to split. The choice of s will determine the image of

the cocycle constructed in Theorem 5.3. We define our section s : Sn → Gn by s(σi,j) = σ̃i,j.

Normal Forms of Permutations Since our normalized section is only defined on the

generators of Sn given in (6), we must choose a normal forms to represent each

permutation. To be consistent with multiplication in Gn, consider multiplication in Sn

from left to right. Let p ∈ Sn such that p(n) = kn, then p · σkn,n ∈ Sn−1. Suppose

p · σkn,n(n− 1) = kn−1, then p · σkn,n · σkn−1,n−1 ∈ Sn−2. Inductively:

p · σkn,n · σkn−1,n−1 · · ·σ1,k1 = 1.

Therefore p = σ1,k1 · σ2,k2 · · · σkn,n. Define the normal section s : Sn → Gn by:

s(p) = σ̃1,k1σ̃2,k2 · · · σ̃kn,n.

This choice of normal forms give the following algorithm to describe a permutation in Sn:

• Rewrites p as a word in the generators of Sn given in (6).

• For all 1 ≤ i < j ≤ n, replaces σ2
i,j with 1Sn .

• If {i, j} ∩ {k, ℓ} = ∅ and max{k, ℓ} < max{i, j}, replaces σi,jσk,ℓ with σk,ℓσi,j.

• If j = max{i, j, k}, replaces σi,jσj,k with σi,kσi,j.
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• If i = max{i, j, k}, replaces σi,jσj,k with σj,kσi,k.

First we determine the normal forms for products of any two transpositions.

Lemma 6.4. Suppose {i, j} ∩ {k, ℓ} = ∅, then

s(σk,ℓσi,j) = s(σi,jσk,ℓ) =


σ̃i,jσ̃k,ℓ j < ℓ

σ̃k,ℓσ̃i,j ℓ < j

Proof. Notice σk,ℓσi,j and σi,jσk,ℓ describe the same permutation, therefore they have the

same normal form. If ℓ < j then we take σi,jσk,ℓσi,jσk,ℓ = 1 and σi,jσk,ℓ becomes σk,ℓσi,j.

Therefore the normal form of both σi,jσk,ℓ and σk,ℓσi,j is σk,ℓσi,j. Therefore

s(σi,jσk,ℓ) = σ̃k,ℓσ̃i,j. Now, suppose j < ℓ. Then we take the transposition fixing k first,

yielding σi,jσk,ℓσk,ℓσi,j and thus s(σi,jσk,ℓ) = σ̃k,ℓσ̃i,j.

Lemma 6.5. The normal form for products of transpositions with intersection are:

s(σi,kσi,j) = s(σi,jσj,k) =


σ̃i,kσ̃i,j max{i, k, j} = j

σ̃i,jσ̃j,k max{i, k, j} = k

σ̃k,jσ̃k,i max{i, k, j} = i

The proof of Lemma 6.5 is a computation similar to the proof of Lemma 6.4 and

omitted. Now that we have the normal forms for products of generators, it is possible to

compute a representative for the cohomology class describing Gn as an extension of Sn by

Z(
n
2).

Theorem 6.6. Let:

0 Z(
n
2) Gn Sn 1

ι1 π1

be the group extension where the action of Sn on Z(
n
2) is determined by the conjugation of
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pure braids by half twists in Bn. The cocycle, ϕ, defined by:

ϕ(c̃i,j) = gi,j

ϕ(d̃i,j,k,ℓ) =


gi,k − gi,ℓ − gk,j + gj,ℓ i < k < j < ℓ

−gi,k + gk,j + gi,ℓ − gℓ,j k < i < ℓ < j

0 otherwise

ϕ(ẽi,k,j) =


gi,j − gk,j i < k < j, j < i < k, k < j < i

0 otherwise

is a representative for the cohomology class of H2(Sn;Z(
n
2)) corresponding to this extension.

Notation The image of ϕ is contained in the abelian group Z(
n
2) with additive notation.

However the extension Gn non-abelian. The computations in the following proof use

additive and multiplicative notation to distinguish between the abelian and non-abelian

settings.

Proof. By Theorem 5.3 we have

ϕ(c̃i,j) = s(σi,j)s(σi,j)

= σ̃i,jσ̃i,j

= gi,j.

Without loss of generality assume i < j and k < ℓ, then consider d̃i,j,k,ℓ. By Lemma 4.8

s(σk,ℓσi,j) = s(σi,jσk,ℓ) depends on max{j, ℓ}. If j < ℓ, then by Lemma 6.4,
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s(σk,ℓσi,j) = σ̃i,jσ̃k,ℓ. Therefore by Theorem 5.3 and relation R5

ϕ(d̃i,j,k,ℓ) = σ̃i,jσ̃k,ℓ(σ̃i,jσ̃k,ℓ)
−1 − σ̃k,ℓσ̃i,j(σ̃i,jσ̃k,ℓ)

−1

= −σ̃k,ℓσ̃i,jσ̃
−1
k,ℓ σ̃

−1
i,j

= −


g−1
i,k gi,ℓgk,jg

−1
j,ℓ i < k < j < ℓ

0 otherwise

= −


−gi,k + gi,ℓ + gk,j − gj,ℓ i < k < j < ℓ

0 otherwise

=


gi,k − gi,ℓ − gk,j + gj,ℓ i < k < j < ℓ

0 otherwise

For ϕ(d̃i,j,k,ℓ), it remains to show the case ℓ < j. By Lemma 6.4, Theorem 5.3, and R5

ϕ(d̃i,j,k,ℓ) = σ̃i,jσ̃k,ℓ(σ̃k,ℓσ̃i,j)
−1 − σ̃k,ℓσ̃i,j(σ̃k,ℓσ̃i,j)

−1

= σ̃i,jσ̃k,ℓσ̃
−1
i,j σ̃

−1
k,ℓ

=


g−1
k,i gk,jgi,ℓg

−1
ℓ,j k < i < ℓ < j

0 otherwise

=


−gk,i + gk,j + gi,ℓ − gℓ,j k < i < ℓ < j

0 otherwise

By Lemma 6.5, to determine ϕ(ẽi,j,k), there are three cases for the normal form of the

permutation σi,kσi,j = σi,jσj,k which depend on max{i, k, j}. Suppose max{i, k, j} = j,
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then by Theorem 5.3 and Lemma 6.5 we have:

ϕ(ẽi,k,j) = s(σi,j)s(σj,k)s(σi,jσk,j)
−1 − s(σi,k)s(σi,j)s(σi,kσi,j)

−1

= σ̃i,jσ̃k,j(σ̃i,kσ̃i,j)
−1 − σ̃i,kσ̃i,j(σ̃i,kσ̃i,j)

−1

= σ̃i,jσ̃k,jσ̃
−1
i,j σ̃

−1
i,k .

By relations R3 and R4 together with Theorem 6.3 we get:

ϕ(ẽi,k,j) = σ̃i,jσ̃k,jσ̃
−1
i,j σ̃

−1
i,k

=


σ̃i,kσ̃

−1
i,k k < i < j

gi,jσ̃
−1
i,j σ̃k,jσ̃i,jg

−1
i,j σ̃

−1
i,k i < k < j

=


0 k < i < j

gi,jσ̃i,kg
−1
i,j σ̃

−1
i,k i < k < j

=


0 k < i < j

gi,jg
−1
k,j i < k < j

=


0 k < i < j

gi,j − gk,j i < k < j

Hence we are done if max{i, k, j} = j.

Now, let max{i, k, j} = k, then by Lemma 6.5 s(σi,kσi,j) = σ̃i,jσ̃j,k. Therefore, as above

we have

ϕ(ẽi,k,j) = σ̃i,jσ̃j,k(σ̃i,jσ̃j,k)
−1 − σ̃i,kσ̃i,j(σ̃i,jσ̃j,k)

−1

= −σ̃i,kσ̃i,jσ̃
−1
j,k σ̃

−1
i,j .
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Now, if i < j < k then R3 applies to σ̃i,jσ̃
−1
j,k σ̃

−1
i,j and if j < i < k then R4 applies:

ϕ(ẽi,k,j) = −


σ̃i,kσ̃

−1
i,k i < j < k

σ̃i,kgi,jσ̃
−1
i,j σ̃

−1
j,k σ̃i,jg

−1
i,j j < i < k

= −


0 i < j < k

σ̃i,kgi,jσ̃
−1
i,k g

−1
i,j j < i < k

= −


0 i < j < k

g−1
i,j gk,j j < i < k

=


0 i < j < k

gi,j − gk,j j < i < k

It remains to prove the result if max{i, k, j} = i. By Lemma 6.5, max{i, k, j} = i

implies s(σi,jσi,j) = σ̃k,jσ̃k,i. Thus

ϕ(ẽi,k,j) = σ̃j,iσ̃j,k(σ̃j,kσ̃k,i)
−1 − σ̃k,iσ̃j,i(σ̃j,kσ̃k,i)

−1

= σ̃j,iσ̃j,kσ̃
−1
k,i σ̃

−1
j,k − σ̃k,iσ̃i,jσ̃

−1
k,i σ̃

−1
j,k .
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If j < k < i, then relation R3 applies to σ̃j,kσ̃
−1
k,i σ̃

−1
j,k while R4 applies if k < j < i. Therefore,

σ̃j,iσ̃j,kσ̃
−1
k,i σ̃

−1
j,k =


σ̃j,iσ̃

−1
j,i j < k < i

σ̃j,igk,jσ̃
−1
k,j σ̃

−1
k,i σ̃k,jg

−1
k,j k < j < i

=


0 j < k < i

σ̃j,igk,jσ̃
−1
j,i g

−1
k,j k < j < i

=


0 j < k < i

gk,ig
−1
k,j k < j < i

Furthermore, if j < k < i then R3 applies to σ̃k,iσ̃j,iσ̃
−1
k,i while R4 applies if k < j < i. Hence

σ̃k,iσ̃j,iσ̃
−1
k,i σ̃

−1
j,k =


σ̃j,kσ̃

−1
j,k j < k < i

gk,iσ̃
−1
k,i σ̃j,iσ̃k,ig

−1
k,i σ̃

−1
k,j k < j < i

=


0 j < k < i

gk,iσ̃k,jg
−1
k,i σ̃

−1
k,j k < j < i

=


0 j < k < i

gk,ig
−1
j,i k < j < i
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Therefore:

ϕ(ẽi,k,j) =


0− 0 j < k < i

gk,ig
−1
k,j − gk,ig

−1
j,i k < j < i

=


0 j < k < i

gk,i − gk,j − (gk,i − gj,i) k < j < i

=


0 j < k < i

gj,i − gk,j k < j < i

6.3 Order of Cohomology Class

To determine the order of [ϕ] we build the extensions G2
n of Sn by Z(

n
2) which correspond to

the class of 2 · [ϕ] and show that G2
n also corresponds to the trivial cohomology class. To

construct G2
n we use the pull-back construction described in Adem and Milgram’s text [1].

Definition Let E1 and E2 be extensions of Q by K with projections maps π1 : E1 → Q

and π2 : E2 → Q. Define the pull-back of E1 and E2 to be the set

E1 ×Q E2 = {(e1, e2) ∈ E1 × E2 | π1(e1) = π2(e2)}. A proof the pull-back construction is a

group can be found on page 20 of [1]. If ι1 : K → E1 and ι2 : K → E2 are the inclusion

maps, define ∆K = {(ι1(k), ι2(k)−1) ∈ E1 × E2 | k ∈ K} to be the skew diagonal of the

pull-back.

Remark Notice that ∆K is a subgroup of E1 ×Q E2, however ∆K may not be normal. If

both the kernel and cokernel of the extension are abelian, then the quotient of the

pull-back by the skew diagonal of the kernel is a group extension and referred to as the

Baer sum of two extensions. In the abelian setting, the set of equivalence classes of group
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extensions form a commutative group with Baer sums as the binary operator. In this

section, we will describe the pull-back of Gn with itself and prove the quotient by the skew

diagonal is an extension of the symmetric group with a corresponding cohomology class

represented by a multiple of ϕ.

Lemma 6.7. Suppose E1 and E2 are extensions of Q by an abelian group K. If E1 and E2

give rise to the same action of Q on K, then the skew diagonal of the pull-back is a normal

subgroup.

Proof. Suppose E1 and E2 are extensions of Q by K which give rise to the action

θ : Q → Aut(K). Let (e1, e2) ∈ E1 ×Q E2 and (ι1(k), ι2(k)
−1) ∈ ∆K . Since multiplication in

E1 ×Q E2 is defined coordinate-wise:

(e1, e2)(ι1(k), ι2(k)
−1)(e1, e2)

−1 = (e1ι1(k)e
−1
1 , e2ι2(k)

−1e−1
2 ).

Since (e1, e2) ∈ E1 ×Q E2, π1(e1) = π2(e2). Furthermore, since E1 and E2 give rise to θ,

θ(π1(e1)) = θ(π2(e2)). Let k
′ = θπ1(e1), then:

(e1ι1(k)e
−1
1 , e2ι2(k)

−1e−1
2 ) = (e1ι1(k)e

−1
1 , (e2ι2(k)e

−1
2 )−1)

=
(
ι1(θπ1(e1)(k)), ι2(θπ2(e2)(k))

−1
)

=
(
ι1(θπ1(e1)(k)), ι2(θπ1(e1)(k))

−1
)

= (ι1(k
′), ι2(k

′)−1).

Since k′ ∈ K, (ι1(k
′), ι2(k

′)−1) ∈ ∆K and by definition ∆K is a normal subgroup of

E1 ×Q ×E2.

The previous lemma gives a necessary condition for the skew diagonal to be a normal

subgroup of the pull-back for non-abelian kernels. The following Lemma shows the quotient

of the pull-back by the skew diagonal is an extension if the skew diagonal is normal.
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Lemma 6.8. Let E1 and E2 be extensions of Q by K. If ∆K is a normal subgroup of

E1 ×Q E2, then (E1 ×Q E2)/∆K is an extension of Q by K.

Proof. Suppose ∆K is a normal subgroup of E1 ×Q E2. Define ι : K → E1 ×Q E2 by

ι(k) = (ι1(k), 1E2) and π : E1 ×Q E2 → Q by π((e1, e2)) = π1(e1) = π2(e2). By construction

π ◦ ι(k) = π1(ι1(k)). Since E1 is an extension of Q by K, π1(ι1(k)) = 1Q for all k ∈ K.

Therefore π ◦ ι(k) = 1Q for all k ∈ K and im ι ⊆ kerπ. It remains to show ker π ⊆ im ι.

Suppose (e1, e2) ∈ kerπ. Then e1 ∈ kerπ1 and, since π1(e1)π2(e2), e2 ∈ kerπ2. Since E1

and E2 are extensions of Q by K, there exists k1, k2 ∈ K such that ι1(k1) = e1 and

ι2(k2) = e2. Since K embeds into both E1 and E2:

(ι1(k1), ι2(k2)) = (ι1(k1) · ι1(k2) · ι1(k2)−1, 1E2 · ι2(k2))

= (ι1(k1) · ι1(k2), 1E2) · (ι1(k2)−1, ι2(k2))

= (ι1(k1k2), 1E2) · (ι1(k2)−1, ι2(k2))

= ι(k1k2).

Therefore (e1, e2) = ι(k1k2) in (E1 ×Q E2)/∆K . So ker π ⊆ im ι and (E1 ×Q E2)/∆K is an

extension of Q by K.

Remark Let G2
n to be the quotient of the pull-back Gn ×Sn Gn by the skew diagonal, ∆,

of Z(
n
2). Lemmas 6.7 and 6.8 imply G2

n is an extension of Sn by Z(
n
2). Next we will show G2

n

corresponds to the cohomology class 2[ϕ] in H2(Z(
n
2).

Recall ι1 : Z(
n
2) → Gn is defined by ι1(gi,j) = gi,j while π1 : Gn → Sn is defined by

π1(σ̃i,j) = σi,j and π1(gi,j) = 1Sn for all 1 ≤ i < j ≤ n. Furthermore, in Section 6.2 we chose

the section s : Sn → Gn which lifted permutations by rewriting them as a product of

2-cycles, then lifting each 2-cycle to the projection of the corresponding half twist in Gn.

Theorem 6.9. Let ϕ be the representative of the cohomology class corresponding to Gn

constructed in Theorem 6.9. G2
n corresponds to the cohomology class 2[ϕ] in H2(Sn;Z(

n
2)).
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Proof. Consider the pull-back Gn ×Sn Gn with the skew diagonal

∆ = {(ι(k), ι(k)−1) ∈ Gn ×Gn | k ∈ Z(
n
2)}. By Lemma 6.7, ∆ is a normal subgroup of

Gn ×Sn Gn. Furthermore, G2
n = (Gn ×Sn Gn)/∆ is an extension of Sn by Z(

n
2) by Lemma

6.7. Recall from Section 3.2, the representative for the corresponding cocycle of an

extension depends on the chosen section from the quotient group to the extension. For any

p ∈ Sn, define s2 : Sn → G2
n by:

s2(p) = (s(p), s(p))

where s : Sn → Gn is from Section 6.2. Applying Theorem 5.3, the corresponding

cohomology class for G2
n, denoted ϕ2, is determined by the image of c̃i,j, d̃i,j,k,ℓ, and ẽi,j,k.

Consider elements of Z(
n
2) under the inclusion to Gn and computing the formula from

Theorem 5.3, we get:

ϕ2(c̃i,j) = (ϕ(c̃i,j), ϕ(c̃i,j))

ϕ2(d̃i,j,k,ℓ) = (ϕ(d̃i,j,k,ℓ), ϕ(d̃i,j,k,ℓ))

ϕ2(ẽi,j,k) = (ϕ(ẽi,j,k), ϕ(ẽi,j,k))

For any (g, h) ∈ G2
n, notice:

(g, h) = (gh, 1Gn) · (h−1, h).

If h ∈ ι(Z(
n
2)), then (h−1, h) is equivalent to (1Gn , 1Gn) in G2

n and (g, h) = (gh, 1Gn). In

particular, ϕ(x) ∈ Z(
n
2) for all x ∈ {c̃i,j, d̃i,j,k,ℓ, ẽi,j,k}. From the proof of Lemma 6.8,
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ι2 : Z(
n
2) is defined by ι2(k) = (k, 1Gn). Furthermore:

ϕ2(x) = (ϕ(x), ϕ(x))

= (ϕ(x)2, 1Gn)

= ι2(ϕ(x))
2

= ι2(ϕ(x) + ϕ(x)).

In H2(Sn;Z(
n
2)), [ϕ2] = [ϕ+ ϕ] = 2[ϕ].

Remark It remains to show [ϕ2] is equivalent to the trivial cohomology class. In Section

6.1 we chose the lift of σi,j to be σ̃i,j, the image of bi,j in Bn/[PBn, PBn], where

bi,j = bi · · · bj−2bj−1b
−1
j−2 · · · b−1

i . As an element of the braid group, bi,j pulls the ith strand

under all strands between i and j, rotates the ith and jth strands clockwise, then pulls the

jth strand under the other strands until it reaches the ith strand’s starting position.

Alternatively, consider the choice bi,j = b−1
i · · · b−1

j−2bj−1bj−2 · · · b−1
i . Notice that bi,j is

the half twist between the ith and jth strands which pulls the ith strand over all strands

between i and j, rotates the ith and jth strands clockwise, then pulls the jth strand over the

other strands until it reaches the ith strand’s starting position. In particular, b−1
i,j is the

braid in which the strands cross in the same order as bi,j with reverse orientation. Let λ̃i,j

be the projection of bi,j in Gn. Consider the section s : Sn → Gn defined by s(σi,j) = λ̃−1
i,j

with the same choice of normal forms as in Section 6.2.

Theorem 6.10. G2
n corresponds to the trivial cohomology class in H2(Sn;Z(

n
2)).

Proof. Since the representative for the corresponding cohomology class is determined by

the choice of section from Sn to G2
n, we define a section s̃ : Sn → G2

n which determines a

cocycle, τ , which is trivial on the generators c̃i,j, d̃i,j,k,ℓ, and ẽi,j,k. Define s̃ by:

s̃(σi,j) = (σ̃i,j, λ̃
−1
i,j )
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Applying Theorem 5.3 with Lemmas 6.4 and 6.5 we get:

τ(c̃i,j) = (σ̃2
i,j, λ̃

−2
i,j )

τ(d̃i,j,k,ℓ) = ([σ̃i,j, σ̃k,ℓ], [λ̃
−1
i,j , λ̃

−1
k,ℓ])

τ(ẽi,j,k) = (σ̃i,jσ̃j,kσ̃
−1
i,j σ̃

−1
i,k , λ̃

−1
i,j λ̃

−1
j,k λ̃i,jλ̃i,k)

Since λ̃i,j reverses the orientation of every crossing for σ̃i,j, the lift or relations in Sn under

s yields the same product of pure braids as s with reverse orientation at the crossing of

every strand. Since the pure braids commute in Gn, reversing the orientation of every

crossing of a pure braid yields the inverse element. Therefore we have the following:

τ(x) = (ϕ(x),−ϕ(x))

for all x ∈ {c̃i,j, d̃i,j,k,ℓ, ẽi,j,k}. In particular, τ(x) = 0 for all x ∈ {c̃i,j, d̃i,j,k,ℓ, ẽi,j,k} since

(ϕ(x),−ϕ(x)) ∈ ∆. Therefore [τ ] is the trivial class in H2(Sn;Z(
n
2)). Thus G2

n corresponds

to the trivial cohomology class.

Remark Since τ and ϕ2 correspond to Gn but are constructed from different choices of

sections, they represent the same cohomology class in H2(Sn;Z(
n
2)). From Theorem 6.9 we

get [ϕ2] = 2[ϕ] where [ϕ] corresponds to Gn. Since τ represents the trivial cohomology class

and [τ ] = [ϕ2], [ϕ] is an order two element of H2(Sn;Z(
n
2)).
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7 Mod 4 Braid Group

Recall the mod 4 braid group, Zn, is the quotient of the braid group by the level 4 braid

group, Bn/Bn[4]. Furthermore, Brendle and Margalit proved the image of Bn[4] in PBn,

denoted PZn, is isomorphic to Z(
n
2) (recall Section 4.2). Therefore we have the following

short exact sequence:

0 Z(
n
2)

2 Zn Sn 1.ι π

Note the action of Sn on Z(
n
2)

2 is induced by the conjugation action of Bn on PBn. Since,

Z(
n
2)

2 ≈ PZn, each ḡij in (1) corresponds to the pure braid between strands i and j in

PBn/Bn[4].

7.1 Classification by Cohomology Class

Theorem 7.1. Let Hn be the subgroup of Gn normally generated by {g2i,j}1≤i<j≤n. Then

Gn/Hn ≈ Zn.

Proof. Since Hn is generated by g2i,j for 1 ≤ i < j ≤ n and gi,j corresponds to the pure

braid between the ith and jth strands, Hn is the subgroup of Gn generated by squares of

standard generators of pure braids. Since the gi,j’s commute in Gn, the image of PBn is an

abelian subgroup of Gn. Therefore the set of all squares of pure braids in Gn is generated

by squares of generators of the pure braid group. Since the image of Bn[4] in PBn is the

subgroup generated by squares of all elements, Hn is the image of Bn[4] in Gn. Thus

Gn/Hn ≈ Zn.

Presentation of Zn Let σ̄i,j be the image of bi,j in Zn. Since An is the image of Bn[4] in

Gn, we get a presentation for Zn by adding the relation g2i,j = 1 to the presentation of Gn.

Furthermore, the projection of gi,j to Zn induces the mod 2 reduction of integers.

Therefore ḡi,j represents the image of a pure braid between the ith and jth strands in Zn.
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Table 2: Relations of Zn

R0: ḡ2i,j = 1 for all i, j

R1: [ḡi,j, ḡk,ℓ] = 1 for all i, j, k, ℓ

R2: σ̄2
i,j = ḡi,j for all i, j

R3: σ̄i,jσ̄k,jσ̄
−1
i,j = σ̄i,k if k < i < j; i < j < k; or j < k < i

R4 σ̄−1
i,j σ̄j,kσ̄i,j = σ̄i,k if i < k < j; j < i < k; or k < j < i

R5 [σ̄i,j, σ̄k,ℓ] =

{
ḡi,kḡi,ℓḡj,kḡj,ℓ

1

i < k < j < ℓ or k < i < ℓ < j

otherwise

R6: σ̄i,j ḡk,ℓσ̄
−1
i,j = ḡσi,j(k),σi,j(ℓ) for all i, j, k, ℓ ∈ {1, . . . , n}

Therefore we get the following generating set for Zn:

{ḡi,j} ∪ {σ̄i,j}.

where 1 ≤ i < j ≤ n. A full list of relations is given in Table 2. Notice that the relation R4

can be determined by relation R3. The following theorem completes the proofs of both

Theorem 1.1 and Theorem 1.2.

Theorem 7.2. Let κ ∈ Hom(R2,Z
(n2)
2 ) be the represenative for the cohomology class in

H2(Sn;Z
(n2)
2 ) corresponding to Zn as an extension of Sn by Z(

n
2)

2 given by the usual

construction. Let η : Z(
n
2) → Z(

n
2)

2 be the mod 2 reduction of integers. Then κ = η ◦ ϕ where

ϕ is the representative for Gn defined in Theorem 6.6.

Proof. Define f : Gn → Zn by f(σ̃i,j) = σ̄i,j and f(gi,j) = ḡi,j for all i, j such that

1 ≤ i < j ≤ n. Then f is a well defined group homomorphism which commutes with the

following diagram:

0 Z(
n
2) Gn Sn 1

0 Z(
n
2)

2 Zn Sn 1

ι1

η

π1

f id

ι π
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Choose a normalized section, s
′
: Sn → Zn by s

′
(σi,j) = σ̄i,j. Notice s

′
(σi,j) = f ◦ s(σi,j). By

Theorem 5.3

κ(c̃i,j) = s
′
(σi,j)s

′
(σi,j)

κ(d̃i,j,k,ℓ) = = s
′
(σi,j)s

′
(σk,ℓ)s

′
(σi,jσk,ℓ)

−1 − s
′
(σk,ℓ)s

′
(σi,j)s

′
(σk,ℓσi,j)

−1

κ′(ẽi,k,j) = s
′
(σi,j)s

′
(σj,k)s

′
(σi,jσj,k)

−1 − s
′
(σi,k)s

′
(σi,j)s

′
(σi,kσi,j)

−1

So κ = ϕ ◦ f . Furthermore, f induces the mod 2 reduction of integers on the cohomology

groups.

7.2 Normal generating set for the level 4 braid group

We begin with a well known consequence of Schreier’s formula which guarantees the

existence of a finite generating set for Bn[4]. The proof of the following proposition can be

found in Lyndon and Schupp’s text (page 164 of [13]).

Proposition 7.3. If G is a group with a generating set of size j and H is a subgroup of

finite index k, then there exists a finite generating set for H of size at most k(j − 1) + 1.

Note that Zn is finite of order n! · 2(
n
2) since Zn is a group extension of finite groups.

Furthermore, Bn is finitely generated with a generating set of size n− 1, therefore there

exists a generating set for Bn[4] of size at most:

n! · 2(
n
2) · (n− 2) + 1.

Theorem 1.3. Suppose n ≥ 1. As a subgroup of Bn, the level 4 braid group is normally

generated by elements of the form:

1. [b2i , b
2
i+1] for all 1 ≤ i ≤ n− 1.

2. [bib
2
i+1b

−1
i , bi+1b

2
i+2b

−1
i+1] for all 1 ≤ i ≤ n− 3.
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3. b4i for all 1 ≤ i ≤ n− 1.

Proof of Theorem 1.3. Consider the quotient of the Artin presentation of Bn given in (2)

by the normal subgroup generated by b4i , [b
2
i , b

2
i+1], and [b2i,i+2, b

2
i+1,i+3]. Then this quotient

has a group presentation:

〈
b1, . . . , bn−1

∣∣∣∣∣∣∣
b4i = 1, [b2i , b

2
i+1] = 1, [b2i,i+2, b

2
i+1,i+3] = 1

bibi+1bi = bi+1bibi+1, bibj = bjbi if |i− j| > 1

〉
. (7)

Now, consider the presentation for Zn defined above. Replace ḡi,j with σ̄2
i,j for all

1 ≤ i < j ≤ n using relation R2. Therefore we can reduce the generating set of Zn to {σ̄i,j}

where 1 ≤ i < j ≤ n. Considering the case of R3 where i < j < k, the set {σ̄i,i+1}

generates the set of all σ̄i,j’s. Thus we can take a generating set of {σ̄i,i+1}1≤i≤n−1 for Zn.

Furthermore, replace R0 and R2 with σ̄4
i,i+1 = 1 in Zn since since σ̄2

i,j = ḡi,j and

ḡ2i,j = 1. By relation R3 and R4, we have σ̄i,i+1σ̄i+1,i+2σ̄
−1
i,i+1 = σ̄i,i+2 and

σ̄−1
i+1,i+2σ̄i,i+1σ̄i+1,i+2 = σ̄i,i+2 respectively. Therefore:

σ̄i,i+1σ̄i+1,i+2σ̄
−1
i,i+1 = σ̄−1

i+1,i+2σ̄i,i+1σ̄i+1,i+2

and we can replace relations R3 and R4 with the relation braid relation. Furthermore, R5

implies [σ̄i,i+1, σ̄j,j+1] = 1 for |i− j| > 1. Replacing ḡi,j with σ̄2
i,j in relation R1 and

restricting to {σ̄i,i+1}1≤i≤n−1 we get [σ̄2
i,i+1, σ̄

2
i+1,i+2] = 1 and [σ̄2

i,i+2, σ̄
2
i+1,i+3] = 1. Thus we

get the same presentation as (7) with σ̄i,i+1 replacing bi. Since Zn = Bn/Bn[4], the relations

of (7) which are not relations of (2) normally generate Bn[4] as a subgroup of Bn.

Remark By Proposition 7.3 we know Bn[4] has a generating set which grows faster than

exponentially in n. Brendle and Margalit pose the question [6]: does there exist a

generating set of Bn[4] with polynomial growth in n? In future research we hope to build a

generating set by taking the normal generating set constructed in Theorem 1.3 and
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determine which generators are missing. Cohen, Falk, and Randell proved there exists a

surjection from PBn to the free group of rank 2 [8], therefore the commutator subgroup of

PBn is not finitely generated. In particular, we first must determine the intersection of the

subgroup of Bn normally generated by squares of pure braids and the subgroup of Bn

normally generated by commutators of pure braids.
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A Diagrams for Theorem 6.2

Step 1

i k j ℓ

bi,j

bk,ℓ

b−1
i,j

b−1
k,ℓ

i k j ℓ i k j ℓ

b2i,k

b−1
i,k

bk,j

b−1
i,k

bk,ℓ

b−1
i,j

b−1
k,ℓ
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Step 2

i k j ℓ

b2i,k

b−1
i,k

bk,j

b−1
i,k

bk,ℓ

b−1
i,j

b−1
i,j

i k j ℓ i k j ℓ

b2i,k

b−1
i,k

b2k,j

bi,k

b−1
k,j

bj,ℓ

bk,j

b−1
i,k

b−2
k,j

b−1
i,k

b−1
k,ℓ
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Step 3

i k j ℓ

b2i,k

b−1
i,k

b2k,j

bi,k

b−1
k,j

bj,ℓ

bk,j

b−1
i,k

b−2
k,j

b−1
i,k

b−1
k,ℓ

i k j ℓ i k j ℓ

b2i,k

b2k,j

b2i,j

b−2
k,j

b−1
k,j

bj,ℓ

bk,j

b−1
i,k

b−2
k,j

b−1
i,k

b−1
k,ℓ
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Step 4
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b−2
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b−1
k,j

bj,ℓ

bk,j

b−1
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b2i,j
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k,j

b−1
k,j

b2j,ℓ

bk,j

bi,k

bj,ℓ

b−1
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b−2
j,ℓ

b−1
k,j
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b−1
i,k

b−1
k,j

b−2
j,ℓ

b−1
k,j
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Step 5
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k,j
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j,ℓ
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k,j

b−2
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b−1
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b−1
k,j
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Step 6

i k j ℓ
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Step 7
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Step 8
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