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Abstract 

The structural, dynamical, electronic, and thermoelectric properties of rock-salt and 

wurtzite Cd1-xZnxO alloys, VTiRhZ (Al, Ga, In, Si, Ge, Sn) and ZrTiRhZ (Ge, Sn) quaternary 

Heusler alloys (QHAs) were investigated using density functional theory (DFT) and semi-

classical Boltzmann transport theory. From these calculations, the alloys were identified as 

potential materials for future thermoelectric applications. Furthermore, the magnetic and spin-

polarization properties of these QHAs were investigated. The total magnetic moments were 

found to be integer values for all QHAs. In addition, all studied QHAs except VTiRhAl possess a 

half-metallic behavior with a 100% spin-polarization. The half-metallic ferromagnetic behavior 

makes them promising materials for spintronic applications.  

Moreover, the influence of the lattice anharmonicity on the lattice thermal conductivity of 

InTe monolayer were studied using the standard Boltzmann transport equation (BTE) approach 

and the self-consistent phonon with Boltzmann transport equation (SCP + BTE).  The SCP + 

BTE approach is believed to be more valid and accurate than the standard BTE approach in 

predicting the   𝜅𝑙  value. These investigations using the SCP + BTE approach show that InTe 

monolayer is promising for thermoelectric applications. 
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1 

Chapter 1: Introduction 

 

1.1 Motivation 

The cost of energy utilized by the growing percentage of population and the resultant 

depletion of energy resources is associated not only with the exceeding economic cost but also 

social and environmental impact. Earth must be provided with sustainable energy resources if the 

future generations are to thrive on the same planet as scarce resources are a threat to the survival. 

The possible solution to this issue does not depend upon researching for alternatives such as 

fusion reactions or similar concepts that could solve the energy crisis problem in one attempt, but 

the energy sector has to be provided with incremental add-ons to harness such energy resources 

that have not been discovered or have not been worked upon to bring them to practical 

implementation. In the current scenario, the renewable energy resources are getting popular 

among the scientific world. Wind, solar, geo-thermal, and tidal energy are among the resources 

that scientists are pondering to enhance their efficiency to be utilized in the practical world. 

Apart from the above-mentioned resources of renewable energy, thermoelectric solid-

state materials are emerging as a promising source of clean energy. Such materials are good 

candidates for waste energy harvesting that can be recycled to produce electricity. For instance, 

in thermoelectric refrigerators, charge carriers are forced by a power source to move from one 

end to the other thereby creating a temperature gradient. The traditional system of electricity 

generation depends on compressors, pumps and gears may be replaced in the future by 

thermoelectric devices for the provision of durable and solid-state alternative. The only 

drawback of these devices is their low efficiency as compared to the conventional modes of 

electricity production. With the increasing power generation demand, the thermoelectric devices 

call for the development of their advanced generation using different materials that could provide 
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sustainable energy in adequate amounts capable of meeting the growing energy consumption. In 

order to produce energy comparable to the previous energy generation technologies, new 

thermoelectric materials are required to be introduced that could provide an enhanced efficiency 

of about three times higher than their current values [1].        

By enhancing the efficiency of thermoelectric devices, it would become possible to 

employ the waste heat generated from currently neglected energy sources. Enhancing the 

efficiency of hybrid automobiles in the future requires the utilization of the generated automotive 

waste heat from as engines, brakes, and exhausts. The heat produced by these sources could be 

exploited on the industrial scale in nuclear power plants and electrical plants for provision of 

new energy sources. For extending the interference of humankind in space related tasks for 

exploration and discoveries, the thermoelectric generators based on radioisotopes could be the 

next generation of thermoelectric devices that would be capable of harnessing energy from waste 

heat released during radioactive decay. Through the implementation of thermoelectric power 

generation, the populations residing in underdeveloped regions struggling with energy issues 

could be provided with an energy source. The conversion of a burning stove into an LED 

lighting source could revolutionize the life in small remote villages. The dependency of 

humankind on energy produced by burning fossil fuels could be replaced by thermoelectric 

energy generation. Inexplicably intense scientific investigations would require time in 

developing the next generation of thermoelectric devices as prominent future energy source.   

The current investigations include the search of new bulk materials as well as low-

dimensional materials for thermoelectric applications.  Bulk materials are being preferred by the 

scientific community exhibit the behavior of glass regarding their thermal conductivity which is 

low in contrast to the electrical conductivity which is high when the glass behaves as a crystal. 
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The name designated for these bulk materials is phonon glass electronic crystals. These crystals 

exhibit weak atomic bonding to provide phonons with scattering centers [2]. The other part is 

dealing with low-dimensional structures for thermoelectric energy generation. It has been shown 

an enhancement in the thermoelectric properties as a result of the quantum confinement. Upon 

lowering the dimension, the thermal conductivity would significantly decrease, which enhances 

the thermoelectric efficiency [3],[4],[5]. 

1.2 Thermoelectric Phenomenon 

The discovery of thermoelectric effect is attributed to the curiosity of some individuals 

who invested their time in understanding the interrelationship between electrical current and heat 

energy. The first individual to delve into the concept of thermoelectric effect was Thomas 

Seebeck, a German physicist in early 19th century [2]. His work revolved around the relationship 

between heat and magnetism, and he also explained the first ever thermoelectric generator that 

could convert the heat energy to voltage. However, later in 1834, another Physicist namely Jean 

Charles Peltier described the effect of thermoelectric refrigeration, which is the opposite 

mechanism of the Seebeck effect. The contribution of these two scientists to the invention of 

thermoelectric figure of merit ZT will be explained in the ensuing sections.       

1.2.1 Seebeck Effect 

Figure 1 presents the concept of heat transfer in a finite rod of a conducting material. If it 

is subjected to heat at only one end, thus charges tend to move from the region of high heat 

towards the region of low heat. Below the critical temperature (TC), entropy is transferred along 

with the charge carriers in materials excluding superconductors. The charge carriers continue to 

travel towards the low heat side until equilibrium is established among both sides as depicted in 

the figure 1. When the temperature is further increased above the already established temperature 
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gradient, the charges will again begin their movement towards the cooler end thereby creating a 

new potential difference. The maximum voltage generated throughout the process is therefore 

restricted by the melting point of the material [2]. 

 

 

 

 

Figure 1 depicts a thermoelectric element exhibiting the movement of charge carriers down the 

gradient when T2 > T1. In this figure, the yellow circles represent the electrons that move under 

the influence of heat energy. Due to the temperature gradient thus created, electrons continue to 

move to T1 until equilibrium is established. Seebeck’s coefficient can be expressed as S= μV / K. 

When two different conductors are connected in such a manner that the temperature 

gradient exists between them when they are joined in series electrically and in parallel thermally, 

they produce a voltage see figure 2.  This difference in potential forms the basis of Seebeck 

Effect. The focus of Seebeck was to investigate the power generating properties of materials 

forming a thermocouple and the effect thus produced was referred to as the Seebeck Effect.  

The voltage created in this phenomenon is dependent upon the Seebeck coefficient S and the 

temperature gradient existing between two dissimilar conductors forming a thermocouple. The 

Seebeck coefficient is the measure of the thermoelectric voltage in response to temperature 

gradient existing across the surface.  
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Figure 1. The movement of charge carriers down the 

gradient when T2 > T1. 
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Figure 2. The Seebeck effect 

  

1.2.2 Peltier Effect 

 The opposite form of Seebeck effect is referred to as the Peltier Effect, where the 

electromotive force is utilized for driving current in the thermocouple rather than creating a 

potential at different temperatures. The Peltier effect is associated with providing heat to one 

junction while cooling the other [2] (see Figure 3). In quantitative terms, the effect thus produced 

is defined by the Peltier coefficient. The ratio of Current (I) to the heating rate (q) determines the 

Peltier coefficient (𝜋), which is defined as: 𝜋 =
𝐼

𝑞
 [2]. 
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1.2.3 Thermoelectric Figure of Merit 

The thermoelectric properties exhibited by a material can be illustrated by employing 

Seebeck and Peltier effect. However, they are not capable of drawing comparison between the 

two materials conjoined to form a thermocouple. Thermal and electrical conductivity are not 

addressed by thermoelectric coefficients and are significant in determining the distinct 

characteristics of a certain material. When a substance exhibits a high thermoelectric efficiency, 

it has high Seebeck coefficient, high electrical conductivity and low thermal conductivity [3]. 

The relationship is thus expressed by using thermoelectric figure of merit ZT: 

 
ZT = (

S2σ

k
) T Equation1 

Here, S represents the Seebeck coefficient, σ represents the electrical conductivity, κ 

represents the thermal conductivity, and T refers to the temperature. S2σ is defined as 

thermoelectric power. 

Figure 3. The Peltier effect. 



 

7 

The charge carriers (κe) flowing through the lattice and the vibrations of the lattice (κl) 

contribute to the thermal conductivity of the material, which is given as (κ=κe+κl).     

When the concentration of charge carriers equalizes metals, the electronic thermal conductivity 

component exhibits more contribution to the net thermal conductivity κ. In regular thermoelectric 

materials, Ke contributes to 1/3 of the net thermal conductivity [2]. When the electrical 

conductivity of a bulk material is increased, the thermal conduction is also increased, and it is 

designated by Wiedemann-Franz law 𝜅 = 𝐿𝜎𝑇 [6], here κ (κ=κe+κl) represents the total thermal 

conductivity, σ refers to electrical conductivity, L refers to the Lorenz factor, and T designates 

temperature.  

The Lorenz factor exhibits a value of 2.44×10-8 conjoined [7]. This value is derived by using 

fundamental constants; however, the experimental values show slight variation between 

elements. For instance, the element Rubidium has Lorenz factor of 2.42×10-8 conjoined, whereas 

sodium has the L value 2.12×10-8 WΩ/K2 [7]. However, the independent increase in electrical 

conductivity not associated with thermal conductivity is prohibited by Wiedemann-Franz law for 

bulk materials. Due to this issue, drawing the figure of merit ZT becomes a problematic task.  

 

 

Figure 4. The ZT of Bi2Te3 as function of carrier concentration, where α, σ, κ represent the Seebeck 

coefficient, electrical conductivity, and thermal conductivity, respectively. The α2σ value 

designates the power factor, and ZT represents the thermoelectric figure-of-merit [2] . 
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 Figure 4 depicts the optimized figure of merit ZT as a function of carrier concentration of 

Bi2Te3 [2]. The maximum possible values for the figure of merit ZT lie between 1018 to 1021 cm -

3 carrier concentration. The stated values are the same as for sufficiently doped semiconductor. 

Materials exhibiting these values can be potential candidates for thermoelectric devices [2]. 

As the constituents of ZT are quite conflicting in nature, there has been slow 

advancement regarding thermoelectric devices. The suitable materials available to be utilized as 

thermoelectric surfaces are composed of bismuth telluride alloys, which exhibit a figure-of- 

merit  ZT≈1.0 [3]. Thermoelectric coolers exhibiting a ZT value of approximately 1  illustrate a 

Carnot efficient of about 10% [8], where 90%  of the energy remains unutilized. Keeping into 

consideration that a household refrigerator is operated at a Carnot efficient of approximately 

45%, the improvement in thermoelectric materials is inevitable if they are to transform into 

viable choices. Thus, the goal in this work is to obtain higher ZT values using different materials 

such as new bulk and two-dimensional materials. 

Chapter 2:  Background 

 

2.1 Thermoelectric Properties of three-dimensional Materials 

Most conducting materials exhibit thermoelectric effects, although such materials may 

not be regarded as real thermoelectric materials until their ZT value is more than 0.5. The 

temperature range at which the figure-of-merit is optimized classifies thermoelectric materials 

into three categories: low, moderate, and high. Low temperature materials are capable of 

operating up to 450 K, intermediate temperature materials are capable of operating between 450 

and 850 K, and high temperature materials are capable of operating up to 1300 K [2]. This work 

focused on find low to high temperature thermoelectric materials that can be used for clean, 

long-lasting, and environmentally friendly energy generation and refrigeration. Bismuth telluride 
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alloys are currently the most effective low-temperature available thermoelectric materials. These 

alloys have maintained their position for the past two decades[1]. However, this study is focused 

on three-dimensional metal oxides and quaternary Heusler alloys to improve the performance of 

the thermoelectric properties at elevated temperatures. 

2.1.1 The thermoelectric properties of metal oxides 

The thermoelectric characteristics of many materials have been extensively explored 

during the last few decades. However, the majority of these materials have several 

disadvantages, including low antioxidation in air, scarcity of resources, high processing costs, 

and toxicity, such as Bi2Te3 and PdTe [9][10]. Oxides, on the other hand, have the potential to 

overcome these issues due to their outstanding thermal and chemical stability, abundance, low-

cost manufacturing, and nontoxicity [11],[12]. Cobalt oxides like (NaCo2O4 and Ca3Co4O9), 

transparent conductivity oxides like (In2O3), perovskite oxides like (SrTiO3 and CaMnO3), CdO, 

and ZnO are all considered potential thermoelectric materials. For example, CdO has a very high 

electrical conductivity [13] and it outperforms more than other n-type oxides at high 

temperatures with a ZT value of 0.34 at 1000 K [14]. Furthermore, Sc-doped ZnCdO, namely, 

Zn0.9Cd0.1Sc0.01O1.03 has a ZT value of 0.3 at 1173 K [12]. 

2.1.2 Thermoelectric properties of Heusler alloys 

Heusler alloys have recently gained substantial interest as potential candidates for 

spintronics and thermoelectric applications. Heusler alloys are classified into four categories: full 

Heusler alloys (FHA), half-Heusler alloys (HHA), quaternary Heusler alloys (QHAs), and 

inverse Heusler alloys. The FHAs have the chemical formula (X2YZ) and are composed of four 

interpenetrating cubic lattices in which X and Y are transition metals and Z is an sp element 

(main group element). When Y has a lower valence number than X, the corresponding alloy has 
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the space group 𝐹𝑚3𝑚(𝑛𝑜. 225) and crystallizes in the L21 structure[15].  Meanwhile, they have 

the so-called XA crystal structure when the valence number of the X element is smaller than that 

of the Y element, which are referred to as inverse Heusler alloys with the space group 𝐹43𝑚 

[16]. However, the HHAs possess the chemical composition (XYZ), which consists of three 

interpenetrating cubic lattices and one empty lattice. They have C1b crystal structure and 𝐹43𝑚 

space group [17]. QHAs, on the other hand, possess the chemical formula XX′YZ, a LiMgPdSb-

type crystal structure, and a space group of 43𝑚  (#216) [18].  QHAs have garnered considerable 

interest owing to their unusual electrical, magnetic, and thermoelectric characteristics. Previous 

studies predicted power factor values of 2.3μW/mk2 and 0.83μW/mk2 for FeRhCrSi and 

FeRhCrGe QHAs, respectively[19]. Another study predicted a high ZT value of  0.8 for  

CrVNbZn QHAs in  the temperature range of  between 360K to 750K [20]. Additionally, some 

studies showed that some quaternary Heusler alloys showed a perfect spin-polarization of 100% 

and half-metallic behavior such as FeMnScAl, FeMnScGa, and FeMnScIn QHAs [21], which 

make them promising materials for spintronic application, spin injector, spin-valve application, 

and magnetic tunnel junction. This work is focused on some similar quaternary Heusler alloys 

which are presented in chapters 5, 6, and 7.  

2.2 Thermoelectric Properties of two-dimensional Materials 

The unusual physical and chemical features of two-dimensional monolayer materials 

have prompted considerable interest in recent years[22]. Due to the varied scattering mechanisms 

for phonons, low-dimensional materials may perform better thermoelectrically than their bulk 

counterparts [23], [24]. The study of low-dimensional thermoelectric materials response has 

become a prominent issue in the scientific world. For instance, graphene, a two-dimensional 

(2D) carbon material with exceptional features such as high charge carrier mobility, mechanical 
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strength, thermal conductivity, and chemical inertia, has been extensively utilized in a variety of 

relevant applications [25], [26], [27]. In the case of graphene, its functioning has been severely 

restricted since it possesses zero band gap. As a result, substantial research in nanoscience and 

nanotechnology has been conducted on the opening of the graphene band gap and the searching 

for novel 2D materials[28], [29], [30].  

2.2.1 Thermoelectric properties of two-dimensional chalcogenide monolayers 

Recently, two-dimensional (2D) chalcogenides such as GeSe, GeS, SnSe, and SnS have 

attracted considerable interest due to the similarity of their crystal structure and electrical 

characteristics to phosphorene[31]. Since one of its bulk equivalents, the intriguing prospect of 

studying their prospective use in the thermoelectric area has been frequently highlighted. The 

SnSe single crystal has an inherently low thermal conductivity of less than 0.25 W.m-1K-1 at 800 

K[32] and a ZT of 1.7 [33]. Furthermore, some studies have established that the chalcogenides 

monolayers of GeSe and SnSe are suitable candidates for thermoelectric applications. The lattice 

thermal conductivity of GeSe monolayer was relatively higher than that of SnSe monolayer at 

room temperature. Thus, the ZT value of GeSe (ZT=1.99) monolayer was reported a little lower 

than SnSe (ZT=2.63)  monolayer [34],[35]. The 2D chalcogenides have motivated scientists to 

investigate their thermoelectric properties. This work also is focused on chalcogenide monolayer 

materials such as InTe monolayer. 
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Chapter 3: Calculation Methodology  

 

3.1 Quantum theory 

Electrons are crucial for heat and electrical transmission in materials. Without quantum 

theory, it is difficult to study the behavior of electrons in a material. This chapter discusses the 

applications of quantum theory, as well as the connection between quantum mechanics and the 

Boltzmann transport theory. 

3.1.1 Schrödinger equation 

The wave function is a concept in quantum mechanics that explains the quantum states of 

a system of particles. The probability of a particle being at a particular position in space and time 

is described by the wave function of that particle. The solution of the Schrödinger equation is 

required to determine the wave function of a system. The time-dependent Schrödinger equation 

of  a many-body system can be expressed as: 

 iħ
∂Φ(r,R,t)

∂t
= −

ħ2

2𝜇
∇2Φ(r, R, t) + VΦ(r, R, t), Equation2 

 

Here ħ, Φ, μ, and V are the Plank constant, wavefunction, reduce mass, and potential, 

respectively. This can be reduced to a time-independent Schrödinger equation as follows: 

ĤΦ(r, R) = EΦ(r, R) Equation3 

 

Here 𝐻̂ represents to the Hamiltonian operator and 𝐸 refers to the energy. The Hamiltonian 

operator is given as 𝐻̂ = 𝑇̂𝑒 + 𝑇̂𝑁 + 𝑉̂𝑒𝑒 + 𝑉̂𝑒𝑁 + 𝑉̂𝑁𝑁, where 𝑇̂𝑒and  𝑇̂𝑁 are the kinetic energy of 

an electron and the nuclei, respectively, and  𝑉̂𝑒𝑒 , 𝑉̂𝑒𝑁, 𝑎𝑛𝑑 𝑉̂𝑁𝑁 are the potential energy of 

electron-electron, electron- nucleus, and nucleus-nucleus interactions, respectively. The 𝑇̂𝑒and  

𝑇̂𝑁  are given as: 
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𝑇𝑒 = ∑  

𝑁

𝑙=1

ħ2

2𝑚𝑖
(

∂2

∂𝑥𝑖
2 +

∂2

∂𝑦𝑖
2 +

∂2

∂𝑧𝑖
2) Equation4 

 

𝑇𝑁 = ∑  𝑁
𝐼=1

ħ2

2𝑀𝐼
(

∂2

∂𝑥𝐼
2 +

∂2

∂𝑦𝐼
2 +

∂2

∂𝑧𝐼
2),  Equation5 

  

Here i and I index are the electron and nuclei number, respectively;  𝑚𝑖 and 𝑀𝐼  are the mass 

of the electron and nucleus, respectively. Moreover, the 𝑉̂𝑒𝑒 , 𝑉̂𝑒𝑁, 𝑎𝑛𝑑 𝑉̂𝑁𝑁 are expressed as: 

𝑉𝑒𝑒 =
1

2
∑  𝑁

𝑖 ∑  𝑁
𝑗

𝑒2

|𝑟𝑖−𝑟𝑗|
=

1

2
∑  𝑖>𝑗

𝑒2

𝑟𝑖𝑗
  Equation6   

 

𝑉𝑒𝑁 = − ∑  𝑀
𝑙 ∑  𝑁

𝑖
𝑍𝐼𝑒2

|𝑅𝐼−𝑟𝑖|
= − ∑  𝑀

𝐼 ∑  𝑁
𝑖

𝑍𝑙𝑒2

𝑟𝐼𝑖
  Equation7 

 

𝑉𝑁𝑁 =
1

2
∑  𝑁

𝑖 ∑  𝑁
𝑗

𝑒2

|𝑟𝑖−𝑟𝑗|
=

1

2
∑  𝑖>𝑗

𝑒2

𝑟𝑖𝑗
  Equation8 

 

Where e, and 𝑍 correspond to the electron charge, and charge of the nucleus, respectively. The 

Hamiltonian operator equation is a complicated equation with several components that cannot be 

solved precisely. However, it is only applicable to basic issues such as the hydrogen atom. The 

application of various approximations is therefore required in order to solve this problem. The 

next section will cover certain approximations to simplify the Schrödinger equation. 

3.1.2 Born-Oppenheimer Approximation 

 The Born-Oppenheimer assumption assumes that nuclei remain static due to the fact that 

the mass of a proton is four orders of magnitude more than the mass of an electron. If nuclei are 

assumed static, the problem may be simplified to the electronic component, which theoretically 

implies disregarding kinetic energy of nuclei and potential energy of the nucleus-nucleus 

interaction due to the large mass of nuclei in their denominators. The many-body problem can be 
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reduced to a many-electron problem using the Born-Oppenheimer approximation, and the 

Hamiltonian can be reduced as: 

𝐻̂𝑒 = 𝑇̂𝑒 + 𝑉̂𝑒𝑒 + 𝑉̂𝑒𝑁  Equation9 

 

where  𝐻̂𝑒 is the Hamiltonian of the electronic part. Thus, the total energy of ground state (E0) 

can be written as 𝐸0 = ⟨Ψ0|𝐻𝑒|Ψ0⟩ + 𝑉𝑁𝑁, where Ψ0 represents the wavefunction of the 

electronic ground state. This equation remains difficult to solve for a system with a large 

number of particles due to the presence of a large number of electrons. So, two approximation 

techniques are utilized to address this problem. The first is Hartree-Fock theory, while the 

second is density functional theory. 

3.1.3 Hartree and Hartree-Fock Approximations 

 Hartree found the first approximation for converting the many-body to a one-body 

problem by taking the system wavefunction as the product of the electronic wavefunctions. 

Therefore, the wavefunction of the many-body system is represented in its general form as: 

𝜓(𝑟1, … , 𝑟𝑁 , 𝑆1, … , 𝑆𝑁), here 𝑟⃗ and S represent to the position and the spin of electron, 

respectively. Consider a two-body system for simplicity, where the entire wavefunction system is 

expressed as: 

Ψ(𝑥⃗1, 𝑥⃗2) = 𝜓1(𝑥⃗1)|𝑆1⟩𝜓2(𝑥⃗2)|𝑆2⟩,   Equation10 

 

This equation, however, is a symmetric wavefunction, which fails the Pauli exclusion principle 

for electrons supposed to be fermions. This failure was corrected in the development of the 

Hartree-Fock approximation, which addressed the problem by representing the wave function as 

a combination of Hartree products: 
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Ψ(𝑥⃗1, 𝑥⃗2) =
1

√2
{𝜓1(𝑥⃗1)|𝑆1⟩𝜓2(𝑥⃗2)|𝑆2⟩

− 𝜓1(𝑥⃗2)|𝑆2⟩𝜓2(𝑥⃗1)|𝑆1⟩} 
Equation11 

 

Ψ(𝑥⃗1, 𝑥⃗2) =
1

√2
|
𝜓1(𝑥⃗1)|𝑆1⟩ 𝜓2(𝑥⃗1)|𝑆1⟩

𝜓1(𝑥⃗2)|𝑆2⟩ 𝜓2(𝑥⃗2)|𝑆2⟩
| Equation12 

 

ΨWhen the two-particle system is extended to a many-body system, the wavefunction 

becomes: 

Ψ(𝑥⃗1, 𝑥⃗2)

=
1

√𝑁!
||

𝜓1(𝑥⃗1)|𝑆1⟩ 𝜓2(𝑥⃗2)|𝑆2⟩ … 𝜓1(𝑥⃗𝑁)|𝑆𝑁⟩

𝜓1(𝑥⃗2)|𝑆2⟩ 𝜓2(𝑥⃗2)|𝑆2⟩ … 𝜓2(𝑥⃗𝑁)|𝑆𝑁⟩

⋮ ⋮ ⋮
𝜓𝑁(𝑥⃗1)|𝑆1⟩ 𝜓𝑁(𝑥⃗2)|𝑆2⟩ … 𝜓𝑁(𝑥⃗𝑁)|𝑆𝑁⟩

|| 
Equation13 

 

ΨEvery one of these wave functions is obtained by solving the Schrödinger equation as 

follows: 

(−
ħ2

2𝑚
∇𝑖

2 + 𝑉) 𝜓𝑖(𝑟) = 𝐸𝑖𝜓𝑖(𝑟) Equation14 

 

Here 𝑉 represents to the effective potential, which encompasses the electron-electron (𝑉𝑒𝑒(𝑟) =

−
𝑍𝑒2

|𝑟|
), exchange (𝑉𝑥(𝑟) = −𝑒2 ∑  𝑗,𝑖≠𝑗 ∫

𝜓𝑖(𝑟2)∗𝜓𝑖(𝑟2)

|𝑟1−𝑟2|
𝑑𝑟2)  potentials and electron-ion (𝑉𝑒𝑁(𝑟) =

𝑒2 ∑  𝑖≠𝑗 ∫
|𝜓𝑖(𝑟2)|2

|𝑟1−𝑟2|
𝑑𝑟2). For atoms and molecules, the Hartree-Fock approximation is helpful. It 

is, however, computationally costly, and less precise for materials with many electrons. 

3.1.4 Density Functional Theory (DFT) 

According to the basics of quantum mechanics, the wavefunction (Ψ) comprises all  the 

information about the system such as energy, momentum, particle density and position [36]. The 

Ψ can be calculated by inserting a potential ν(r) into the Schrödinger equation, and then solving 



 

16 

for the Ψ. This is alike for both single-and many-body system: the only difference is the choice 

of the potential ν(r) and the complexity it can create. For a single-body system, the Schrödinger 

equation is expressed as [37]: 

[−
ħ2∇2

2𝑚
+ 𝑣(𝐫)] Ψ(𝐫) = 𝜀Ψ(𝐫) Equation15 

 

Here  ħ, 𝑚, 𝑣(𝐫), 𝜀 and Ψ refer to Planck’s constant, the mass of particle, potential, energy, and 

wave function, respectively. In many- body system, the Schrödinger equation is demonstrated 

as[36]: 

[∑  𝑁
𝑖 (−

ħ2∇2

2𝑚
+ 𝑣(𝐫𝑖)) + ∑𝑈(𝐫𝑖, 𝐫𝑗)] Ψ(𝐫1, 𝐫2 … , 𝐫𝑁) =

𝐸Ψ(𝐫1, 𝐫2 … , 𝐫𝑁),  

Equation16 

 

where  𝑁 and 𝑈(𝐫𝑖, 𝐫𝑗) refer to the number of electrons and the electron-electron interaction. All 

observables can be obtained by obtaining the expectation value of an operation and utilizing the 

wave function provided by the Schrödinger equation.  

In the case of many- body Schrödinger equation, the addition of electron-electron 

interactions makes it more difficult and time consuming to solve. Computational power today is 

unable to solve the Schrödinger equation for many- body system with more than a few hundred 

electrons [37]. Another approach is to use density functional theory to reduce the many- body 

system issue to a single- body system by removing all electron-electron interactions. To make 

this possible, the Hohenberg-Kohn (HK) [38] theorem and the Kohn-Sham (KS) [39] scheme are 

used. 

According to the Hohenberg-Kohn theorem, the non-degenerate ground-state energy is a 

function of the ground-state charge density (n0(r)). Since the wave function includes all of the 
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information about a system, every ground-state operation is a functional of the ground-state 

density: 

𝑂0[𝑛0] = ⟨Ψ0[𝑛0]|𝑂̂0|Ψ0[𝑛0]⟩  Equation17 

 

Here 𝑂0  refers to the general observable and 𝑂̂0 represents to the operator that utilized to get 𝑂0. 

The first Hohenberg-Kohn theorem is represented by Equation 17. A more particular observation 

seems to be the ground-state energy of a potential system ν: 

𝐸𝑣,0 = 𝐸𝑣[𝑛0] = ⟨Ψ0[𝑛0]|𝐻̂|Ψ0[𝑛0]⟩  Equation18 

 

From this equation, the expectation value of the Hamiltonian with respect to the ground-state 

wavefunction 𝛹0 is used to calculate the ground-state energy E0. The 𝛹0  must not only recreate 

the density of the ground state, but it must reduce the energy as follows:  

𝐸𝑣,0 = 𝑚𝑖𝑛
Ψ→𝑛0

 ⟨Ψ0[𝑛0]|𝐻̂|Ψ0[𝑛0]⟩  Equation19 

 

The energy operation refers to the Hamiltonian (𝐻̂): 𝐻̂ = 𝑇̂ + 𝑈̂ + 𝑉̂ 

𝐸𝑣,0 = 𝑚𝑖𝑛
Ψ→𝑛0

 ⟨Ψ0[𝑛0]|𝑇̂ + 𝑈̂ + 𝑉̂|Ψ0[𝑛0]⟩  Equation20 

 

The 𝑇̂ and 𝑈̂ are the kinetic energy and the electron-electron interaction, respectively, which are 

independent of the potential 𝑉̂. Consequently, just the potential with regard to the particle density 

has to be specified. This leads to simplify equations 19 and 20: 

𝐸𝑣,0 = 𝑚𝑖𝑛
Ψ→𝑚0

 ⟨Ψ0[𝑛0]|𝑇̂ + 𝑈̂|Ψ0[𝑛0]⟩ + ∫ 𝑑3𝑟𝑛(𝐫)𝑣(𝐫)  Equation21 
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The right side of equation 15 is divided into two sections by the variational principle, which 

distinguishes the independence of the potential energy from the kinetic energy and electron-

electron interactions. 

The Hohenberg-Kohn theorem further asserts that computing the expectation values of the 

Hamiltonian with respect to  Ψ other than the Ψ0 always yields values greater than the ground 

state energy. This means that when the energy is determined using the trial density n′, where n0 ≠ 

n′, a value less than the energy of ground state E0 is not attainable. Equation 16 expresses this 

principle, which is referred as the second Hohenberg-Kohn theorem. 

𝐸𝑣[𝑛0] ≤ 𝐸𝑣[𝑛′]   Equation22 

 

Due to the fact that the wavefunction and hence all observables are functionals of particle 

density, the Hohenberg-Kohn theorem gives a means to bypass the many-body Schrödinger 

equation. Even with this simplifying assumption, the electron-electron interaction issue remains. 

Walter Kohn and Lu Jeu Sham suggested an approach that simplifies the computation of desired 

observables further by translating the original interacting system onto a non-interacting system 

while retaining the electron density. This enables a systematic mapping of the many-body issue 

including U to the single-body problem omitting U [39]. The energy functional for a non-

interacting system appears to be as follows: 

𝐸𝑆[𝑛] = ⟨Ψ|𝑇̂𝑆 + 𝑉̂𝑆|Ψ⟩   Equation23 

 

Here; 

𝑇̂𝑆 + 𝑉̂𝑆 = 𝑇̂ + 𝑈̂ + 𝑉̂   Equation24 
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TS represents to the kinetic energy of a non-interacting system and VS refers to the external 

effective potential, which is known as the Kohn-Sham potential. The external effective potential 

is given as: 𝑣𝑆 = 𝑣 + 𝑣𝐻 + 𝑣𝑋𝐶 , where 𝑣 is the many-body potential, 𝑣𝐻 is the Hartree potential 

that defines the electron-electron Coulomb repulsion, and 𝑣𝑋𝐶  is exchange-correlation potential, 

which expresses the relationship between the exchange-correlation energy and the charge 

density. As a result, for the single-body system, the Schrödinger equation can be written as:  

[−
ħ2∇2

2𝑚
+ 𝑣𝑆(𝑟)] Φ(𝑟) = 𝜀Φ(𝑟)  Equation25 

 

Here, Φ(𝑟) is the Kohn-Sham wavefunction that depicts the electronic states of a fictional non-

interacting system. The Hohenberg-Kohn theorem avoids solving the Schrödinger equation by 

minimizing the functional E[n], but the Kohn-Sham theorem solves a modified, non-interacting 

Schrödinger equation. Within DFT method, the charge density of the non-interacting system, 

determined with the single-body system, reproduces the charge density of the interacting system 

as follows: 

𝑛(𝑟) ≡ 𝑛𝑆(𝑟) = ∑  

𝑁

𝑖

𝑓𝑖|Φ𝑖|
2 Equation26 

 

where fi refers to the occupation of the ith orbital. This assumption enables DFT to be a highly 

effective method for computing binding energies in chemistry and electronic structure in physics. 

 The ground-state ionic structure, band structure, and electronic density-of-states are all 

determined in this research using density functional theory. The first step in calculating the 

electronic structure is to find the crystal structure with the minimum energy. The Hohenberg-

Kohn theorem demonstrates the necessity of attaining the minimal energy structure; the structure 

that reduces energy Ev,0 corresponds to the structure that gives the ground-state charge density n0. 
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The ground state electronic structure is computed using the n0 of the minimal energy structure. 

After the minimal energy lattice parameters are determined, the electronic structure may be 

calculated using a converged self-consistent charge density. The band structure determines the 

energy as a function of the band number n and the wave vector k, E. (n, k). Vibrational energies, 

carrier density, and group velocity are parameters that can be extrapolated from band structure 

data. The band structure is analyzed in this research to determine the difference between the 

highest valence and lowest conduction bands (band gap). The estimated density-of-states (DOS) 

value indicates the amount of charge carriers contained inside a particular volume throughout the 

infinitesimal energy range 𝐸 + ∂𝐸. 

 Several density functional codes include implementations of the Hohenberg-Kohn 

theorem and the Kohn-Sham equations. The Vienna Ab-initio Simulation Package, often known 

as VASP (pseudopotential scheme), and WIEN2K (full-electron scheme), are two of the most 

widely used. In this study, VASP [40][41] and WIEN2K [39] codes are utilized to calculate the 

electronic structures of the investigated systems. VASP and WIEN2K are versatile codes for "ab-

initio quantum-mechanical molecular dynamics simulations" that use plane wave basis sets, 

pseudopotentials, and full potentials, respectively. In addition, they are capable of incorporating 

the projector-augmented technique (PAW)[42]. The computations in this work used the PAW 

approach with Perdew, Burke, and Ernzerhof (PBE) generalized-gradient approximation 

(GGA)[43].  

3.2 Boltzmann Transport Theory 

The Boltzmann transport theory gives a simple approach for computing the 

thermoelectric transport coefficients. The theory explains how a distribution function f(n,k) 

evolves under the influence of an external electric field E and a temperature gradient T. The 



 

21 

chance of detecting an electron in band n with a wave vector k is given by this distribution 

function f(n,k). The Boltzmann equation is expressed as [44]: 

− (
∂𝑓0(𝑛, 𝑘⃗⃗)

∂𝜀(𝑛, 𝑘⃗⃗)
) 𝑣⃗(𝑛, 𝑘⃗⃗) [

𝜀(𝑛, 𝑘⃗⃗)

𝑇
∇𝑇 + 𝑒𝐸⃗⃗ − ∇∝]

= − (
∂𝑔(𝑛, 𝑘⃗⃗)

∂𝑡
)

𝑆𝐶

 

Equation27 

 

Here ∂𝑓0(𝑛, 𝑘⃗⃗) , 𝜀(𝑛, 𝑘⃗⃗), 𝑣⃗,  T, e, E, and µ represent to the equilibrium distribution function, the 

electron energy in band (n) with wave vector 𝑘⃗⃗, the electron velocity in band (n) with wave 

vector 𝑘⃗⃗, the gradient temperature, the electron charge, the external electric field, and the 

chemical potential, respectively. The 𝑔(𝑛, 𝑘⃗⃗) means the  𝑓(𝑛, 𝑘) − 𝑓′(𝑛, 𝑘).  The constant 

relaxation time approximation (RTA) is used to further simplify the Boltzmann equation. The 

relaxation time is considered to be position-and velocity-independent in this approximation. The 

relaxation time is the time required for an electron distribution to go from a nonequilibrium 

condition to an equilibrium Fermi distribution. The Boltzmann transport equation can be 

expressed within the RTA as [44]: 

− (
∂𝑓0(𝑛, 𝑘⃗⃗)

∂𝜀(𝑛, 𝑘⃗⃗)
) 𝑣⃗(𝑛, 𝑘⃗⃗) [

𝜀(𝑛, 𝑘⃗⃗)

𝑇
∇𝑇 + 𝑒𝐸⃗⃗ − ∇∝] = −

𝑔(𝑛, 𝑘⃗⃗)

𝜏
 Equation28 

 

In this instance, the RTA has been substituted for the right side. Due to the fact that 𝑔(𝑛, 𝑘⃗⃗)= 

𝑓(𝑛, 𝑘) − 𝑓′(𝑛, 𝑘), it can be solved for 𝑓(𝑛, 𝑘). Boltzmann equation terms can be derived using  

the data of band structure 𝜀(𝑛, 𝑘⃗⃗), where the velocity v(n,k) can be expressed as: 

𝑣⃗(𝑛, 𝑘⃗⃗) =
1

ħ
(

∂𝜀(𝑛, 𝑘⃗⃗)

∂𝑘⃗⃗
) Equation29 
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Once the nonequilibrium distribution function f(n,k) is defined, the thermoelectric parameters 

can be computed using the Onsager relations for electrical current density(𝐽) and heat current 

density(𝐽𝑄), which can be expressed as: 

𝐽 = −
16𝜋𝑒√2𝑚

3ℎ3
∫ 𝐸3/2𝜏(𝐸)

∂𝑓0

∂𝐸
(

𝐸−∝

𝑇
∇𝑇 + ∇∝ +𝑒𝐸0) 𝑑𝐸 Equation30 

 

𝐽𝑄 = −
16𝜋√2𝑚

3ℎ3
∫ 𝐸3/2(𝐸−

∝)𝜏(𝐸)
∂𝑓0

∂𝐸
(

𝐸−∝

𝑇
∇𝑇 + ∇∝ +𝑒𝐸0) 𝑑𝐸 

Equation31 

 

And the Onsager relations can be written as [7]: 

  

𝑗 = 𝜎𝐸0 − 𝜎𝑆∇𝑇 Equation32 

 

𝑗 = 𝜎𝑆𝑇𝐸0 − 𝜅∇𝑇 Equation33 

 

here σ, S, E0, 𝜅 and ∇T are the electric conductivity, Seebeck coefficient, external electric field, 

thermal conductivity, and temperature gradient, respectively. The thermoelectric parameters such 

as Seebeck coefficient (S), electrical conductivity (σ) and thermal conductivity (𝜅) can be 

calculated by [7]: 

𝑆 = −
𝜋2𝑘𝐵

2

3𝑒

∂

∂𝐸
ln [𝐸1/2𝜏(𝐸)]

𝐸=𝛼
 Equation34 

 

𝜎 =
𝑛𝑒2𝜏(𝐸𝑓)

𝑚
 Equation35 

 

𝜅 =
𝜋2𝑘𝐵

2

3𝑒2
𝜎𝑇 Equation36 
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Moreover, the electric current that is influenced by an electric field, can be given by: 

𝑗𝑖 = 𝜎𝑖𝑗𝐸𝑗 + 𝜎𝑖𝑗𝑘𝐸𝑗𝐵𝑘 + 𝑣𝑖𝑗∇𝑗𝑇 Equation37 

 

𝑗𝑖 = 𝜎𝑖𝑗𝐸𝑗 + 𝜎𝑖𝑗𝑘𝐸𝑗𝐵𝑘 + 𝑣𝑖𝑗∇𝑗𝑇 Equation38 

 

𝜎𝑖𝑗 and 𝜎𝑖𝑗𝑘 represent to conductivity tensors, and E, B, 𝑣𝑖𝑗and ∇𝑗𝑇 refer to the external electric 

field, magnetic field, group velocity and temperature gradient, respectively. The group velocity 

(𝑣𝛼(𝑖, 𝑘⃗⃗) =
∂𝜀(𝑖,𝑘⃗⃗)

ħ ∂𝑘𝛼
) and inverse mass tensor (𝑀𝛽𝑥

−1(𝑖, 𝑘⃗⃗) =
∂2𝜀(𝑖,𝑘⃗⃗)

ħ2 ∂𝑘𝛽 ∂𝑘𝛼
) are two parameters of the 

conductivity tensor that directly employ the band structure data obtained from a DFT 

computation.  

𝜎𝛼𝛽(𝑖, 𝑘⃗⃗) = 𝑒2𝜏𝑣𝛼(𝑖, 𝑘⃗⃗)𝑣𝛽(𝑖, 𝑘⃗⃗) Equation39 

 

𝜎𝛼𝛽𝛾(𝑖, 𝑘⃗⃗) = 𝑒3𝜏2𝜁𝛾𝑢𝑣𝑣𝛼(𝑖, 𝑘⃗⃗)𝑣𝛽(𝑖, 𝑘⃗⃗)𝑀𝛽𝑢
−1 Equation40 

 

𝜏 and 𝜁𝛾𝑢𝑣 are the relaxation time within RTA and the Levi-Civita symbol [45], respectively. If 

any of these parameters 𝛾𝑢𝑣 are equal, the 𝜁𝛾𝑢𝑣equals zero otherwise equals ±1 based on the 

permutation direction. Following that, the transport tensors are derived using the conductivity 

distributions 𝑓𝜇(𝑇, 𝜀) generated by the Boltzmann transport equation[46]: 

𝜎𝛼𝛽(𝑇; ∝) =
1

Ω
∫ 𝜎𝛼𝛽(𝜀) [−

∂𝑓𝛼(𝑇; 𝜀)

∂𝜀
] 𝑑𝜀 Equation41 

 

𝑣𝛼𝛽(𝑇; ∝) =
1

𝑒𝑇Ω
∫ 𝜎𝛼𝛽(𝜀)(𝑒−∝) [−

∂𝑓𝛼(𝑇; 𝜀)

∂𝜀
] 𝑑𝜀 Equation42 

 

𝜅𝛼𝛽
elec(𝑇; ∝) =

1

𝑒2𝑇Ω
∫ 𝜎𝛼𝛽(𝜀)(𝑒−∝)2 [−

∂𝑓𝛼(𝑇; 𝜀)

∂𝜀
] 𝑑𝜀 Equation43 
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𝜎𝛼𝛽𝛾(𝑇; ∞) =
1

Ω
∫ 𝜎𝛼𝛽𝛾(𝜀) [−

∂𝑓𝛼(𝑇; 𝜀)

∂𝜀
] 𝑑𝜀 Equation44 

 

𝑆𝑖𝑗 = 𝐸𝑖(∇𝑗𝑇)
−1

= (𝜎−1)𝛼𝑖𝑣𝛼𝑗 Equation45 

 

here 𝜅elec, Ω, and 𝑓𝛼  are the electronic part of thermal conductivity, volume element, and 

distribution function. 
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Chapter 4: Investigations of the electronic, dynamical, and thermoelectric properties of Cd1-

xZnxO alloys 

 

1. Introduction 

The increasing demand for energy resources due to the industrial leap and the limitation of 

fossil fuel resources as well as their environmental concerns leads to the needs of alternative 

resources. These resources should be renewable and environmentally friendly. One of these 

alternative resources is generated using thermoelectric (TE) devices that could convert thermal 

energy directly into electrical energy or vice versa by Seebeck and Peltier effects, respectively 

[47],[48]. The efficiency of these TE materials is measured by the figure of merit: 

𝑍𝑇 =  𝑆2𝜎𝑇/(𝜅𝑒 + 𝜅𝐿) Equation46 

 

where S, σ, T, κe and κL refer to the Seebeck coefficient, electrical conductivity, absolute 

temperature, electronic thermal conductivity, and lattice thermal conductivity, respectively. 

High  ZT values  require high values of Seebeck coefficient and electrical conductivity, and 

low thermal (electronic and lattice) conductivity [49]. Unfortunately, it is a difficult task to 

meet all of these parameters in one material. They are interdependent since a high Seebeck 

coefficient requires low carrier concentrations that leads to low electrical conductivity. This 

behavior can be explained by the mathematical formulae that relate the Seebeck coefficient 

and the electrical conductivity to the carrier concentration as follows [50],[51]: 

𝑆 = (
8𝜋

2
3𝑘𝐵

2  (𝑟 +
3
2)

35 3⁄  𝑒ℎ2
)(

𝑚∗

𝑛2/3
)𝑇 

Equation47 

 

𝜎 = 𝑛𝑒𝜇 Equation48 
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Here S, σ, kB, r, h, m*, n, e, and μ refer to the Seebeck coefficient, electrical conductivity, 

Boltzmann constant, scattering parameter, Planck’s constant, effective mass, carrier 

concentration, electron charge, and carriers’ mobility, respectively. Hence, the Seebeck 

coefficient, S, requires a low carrier concentration, n, while the electrical conductivity, is directly 

proportional n. However, the high electrical conductivity, σ, corresponds to a high electronic 

thermal conductivity, 𝜅𝑒 , according to Wiedemann-Franz law (𝜅𝑒  = 𝐿𝜎𝑇 ), where 𝐿 is the 

Lorentz number [52]. Therefore, one has to search for some techniques that provide the required 

good parameters, which lead to a high ZT value. Among these techniques are alloying with other 

elements, lowering the dimensionality and creating vacancies. Such techniques lead to an 

enhancement in the phonon scattering and a reduction in the lattice thermal conductivity [53] . In 

addition, n- and p-type doping could enhance the Seebeck coefficient and electrical conductivity 

[54].   

  In the past few decades, the thermoelectric properties have been intensively investigated 

for different materials. However, most of these materials have many problems, such as poor 

antioxidation in air, low abundance of resources, and high-cost processing and toxicity such as 

Bi2Te3 and PdTe [9], [10]. On the other hand, oxides could overcome these problems due to their 

excellent thermal and chemical stability, abundancy and low-cost processing and nontoxicity 

[48], [55]. Cobalt oxides such as NaCo2O4 and Ca3Co4O9, transparent conductivity oxides (TCOs) 

including In2O3, perovskite oxides such as SrTiO3 and CaMnO3, CdO and ZnO are considered to 

be promising TE materials [50],[53],[54].  

Cadmium oxide (CdO) has a simple cubic rock-salt structure with a lattice parameter of 

4.77 Å [14]. It is characterized as an n-type semiconducting material [56], [57] with a direct band 

gap of 2.28 eV [9] and an indirect band gap of 0.84 eV, and high carrier mobility [58]. In 
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addition, CdO could be a wurtzite structure with a lattice parameter of a= 3.60 Å and c/a= 1.55 Å 

[59]. Moreover, CdO possesses a low phonon thermal conductivity due to its low Debye 

temperature (𝜃𝐷 ~255K) [58]. Furthermore, the nonstoichiometric structure of CdO exhibits an 

excellent electrical conductivity [60]. At a high temperature, some investigations reported an 

excellent TE performance of CdO as compared to other n-type oxides with ZT value of 0.34 at 

1000 K [13]. The ZT value could be enhanced to 0.45 by doping CdO with a 3% concentration of 

Zn at 1000K [13]. The choice of this doping element is due to the similarity of its ionic radius 

(0.074 nm) with that of Cd (0.095 nm) to fit in CdO matrix without causing any dislocations in 

the crystal [51]. In addition, other dopants such as Ba could enhance the ZT value to 0.47 at 

about 1000 K in Cd0.99Ba0.01O alloy, which is higher than other n-type oxides such as 

SrTi0.8Nb0.2O3 (~ 0.35  at 1000K ), Ca0.96Gd0.04MnO3 (~ 0.24  at 973 K), Zn0.98Al0.02O 

(~ 0.24  at 1273 K ) and In1.98Co0.02O3 (~ 0.26  at 1073 K ) [9], [58], [14].  

Zinc oxide (ZnO) is also an n-type semiconductor with a direct wide band gap of 3.37 eV 

[61], [62]. It could be crystallized in wurtzite, zincblende, and rock-salt structures [63], [64]. 

However, the most stable structure is the wurtzite structure [64]. In addition, it has a high 

melting temperature of  2000 K, a high Seebeck coefficient and a good chemical stability [65]. 

These properties make ZnO oxides very promising for TE applications. Ohtaki et al. reported  a 

good ZT ~ 0.47 at 1000 K and 0.65 at 1247 K for Zn0.96Al0.02Ga0.02O [66]. Jantrasee et al. 

reported a ZT ~ 0.28 for ZnAl2O4 at 670 K [67], whereas Ohtaki et al. reported a  ZT value of 0.2 

at 1000 K for Zn0.98 Al0.02O [65]. Moreover, Han et al. investigated TE properties of Sc-doped 

ZnCdO and reported a ZT value of 0.3 at 1173 K for Zn0.9Cd0.1Sc0.01O1.03 [55].  

Motivated by the above-mentioned properties of oxide materials, we present the 

structural, dynamical, electronic, and thermoelectric properties of Cd1-xZnxO (x=0.0 - 1.0; with 
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an increment of 0.125) alloys in the wurtzite and rock-salt structures. The rest of the paper is 

organized as follows: section 2 contains the computational details, section 3 presents the results 

and discussion, and the main concluding points are summarized in section 4.  

2. Computational methodology 

The calculations are performed using density functional theory. The structural, atomic 

optimization and phonon investigation are performed using the projector augmented wave 

(PAW) method with (VASP) code [68]. Methfessel-Paxton smearing method is used  with 0.2 

eV smearing width to identify the partial occupancies of each wave function [39]. The chosen 

plane-wave cut-off energy is 520 eV with a tolerance of the total energy convergence of 10-7eV. 

These optimized parameters are then utilized to present total energy calculations based on full-

potential linearized augmented plane wave (FP-LAPW) method with WIEN2k code [69]. The 

Perdew–Burke–Ernzerhof Generalized Gradient Approximation (GGA-PBE)[70] was 

implemented for the exchange-correlation potential for the case of the energetics and structural 

optimization. However, the Generalized Gradient Approximation within the modified Becker-

Johnson approximation (GGA-mbj) [71] functional was utilized to obtain the electronic 

structures. The cut-off parameter is chosen value to be Kmax × RMT=8.5, where Kmax and RMT are 

the largest k vector in plane wave expansion and the smallest atomic muffin tin radius, 

respectively. The RMT values were selected to be 2.4, 2.2, and 1.5 for Cd, Zn, and O, 

respectively. Phonon calculations were  performed using phonopy package [72] with 4×4×4 

supercell in the rock-salt configuration and 4×4×2 supercell in the wurtzite configuration. The 

thermoelectric parameters including the Seebeck coefficient, electronic thermal conductivity, and 

power factor are examined by utilizing Boltzmann transport theory with the BoltzTrap code [46] 

under constant relaxation time.   
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3. Results and discussion 

3.1 Structural properties 

Cadmium oxide binary alloy crystalizes in rock-salt structure with 𝐹𝑚3̅𝑚 (#225) space 

group, while ZnO has a wurtzite structure with P63mc (#186) space group (see Table I). The 

calculations of CdO in the rock-salt configuration are performed using a unit cell of two 

inequivalent atoms (one atom of each element; Cd and O), whereas the wurtzite configuration of 

ZnO binary alloy has a unit cell of four atoms (two atoms of each element; Zn and O), see 

Figures. 5 (a) and (b). However, the Cd1-xZnxO ternary alloys are investigated using the rock-salt 

configuration for concentrations less than 0.5 and wurtzite configuration for concentrations 

greater than 0.5. For the case of x= 0.5, both structures were considered. These ternary alloys 

were investigated using a 2×2×2 supercell of 16 atoms in the rock-salt configuration (Figure 5 

(c)) and a 2×2×1 supercell of 16 atoms for the case of the wurtzite configuration (see Figure 5 

(d)). The space groups of these alloys vary due the change of symmetry upon alloying, see Table 

1. The lattice parameter of CdO in the rock-salt configuration is  4.78 Å, which is a good 

agreement with the experiment value (see Table I) [58]. However, the lattice parameters of the 

wurtzite configuration of ZnO are a=3.28 Å and c/a = 1.61, which are in a good agreement with 

the experiment values (see Table I) [73]. The structural parameters of the Cd1-xZnxO ternary 

alloys are in agreement with previous calculations [74], [75]. The lattice parameters of Cd1-

xZnxO ternary alloys in the rock-salt configuration are found to decrease as Zn concentration 

increases, whereas the wurtzite configuration shows an increase in the lattice parameter (see 

Table 1).   
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Figure 5. The unit cell of (a) CdO and (b) ZnO binary alloys. (c) The crystal structure of the 2×2×2 

and (d) 2×2×1 supercell of the rock-salt and wurtzite phases. 
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Table 1. The structural parameters and space groups of Cd1-xZnxO (x = 0.0 – 1.0) 

Structures NaCl WZ                                                           Space group 

a(Å) a(Å) c/a(Å) 

CdO 4.78 a         Fm-3m(#225) 

 4.79 b    

 4.77 c    

Zn0.125Cd0.875O 4.73 a   P4/mmm (#123) 

 4.59 b    

Zn0.25Cd0.75O 4.72 a   Pm-3m (#221) 

 4.55 b    

Zn0.375Cd0.625O 4.61a   Pmmm (#47) 

 4.50 b    

Zn0.5Cd0.5O 4.54a   P4/mmm (#123) 

 4.46 b    

ZnO  3.28 a 1.61 a  P63mc (#186) 

  3.28 b 1.60 b   

  3.24 c 1.60 c   

Zn0.875Cd0.125O  3.33 a 1.60 a  Cm (#8) 

  3.28 b 1.59 b   

Zn0.75Cd0.25O  3.35 a 1.62 a  Pm (#6) 

  3.33 b  1.59 b    

Zn0.625Cd0.375O  3.41 a 1.62 a  Pm (#6) 

  3.37 b  1.59 b   

Zn0.5Cd0.5O  3.44 a 1.65 a  P3m1 (#156) 

  3.42 b 1.59 b   
a This work. b Theory, Ref [74], [75],c Exp, Ref [14], [29]. 

 

3.2 The Dynamic properties 

This subsection presents the phonon dispersions relations of Cd1-xZnxO alloys in the rock-

salt and wurtzite structures to investigate the dynamical stability of these alloys. The phonon 

dispersion curves (PDCs) of these alloys were obtained by using phonopy package as 

implemented in VASP code [72]. The PDCs of the binary alloys along the high symmetry path in 

the irreducible Brillouin zone are presented in Figure 6.  The number of phonon branches in the 

case of CdO binary alloy are six (3N, where N=2 is the number of atoms in the unit cell) with 

three acoustic and three optical branches. However, the PDC of ZnO binary alloy shows twelve 

phonon branches (three acoustic and nine optical) due to the presence of four atoms in the 
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primitive unit cell. These results are in agreement with previous calculations [76]. The supercells 

of Cd1-xZnxO ternary alloys contain sixteen atoms in their structures that lead to 48 phonon 

branches (3N), see Figure7 . From this figure, one can see that most of these alloys show positive 

frequencies. This behavior indicates the mechanical stability of these alloys. However, the Zn 

concentrations of x= 0.125 and x=0.25 exhibit negative frequencies that indicates the instability 

of these alloys in their rock salt structure.  The ternary alloy with Zn concentration of x=0.5 is 

found to be more stable in the wurtzite than the rock-salt configuration, which shows a small 

negative frequency between the Γ and X high symmetry points, see Figure 7. 

 

 

Figure 6. The phonon dispersion curves of (a) CdO and (b) ZnO binary 
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Figure 7. The phonon dispersion curves of, Cd1-xZnxO (x=0.125, 0.25, 0.375, 0.5) in its rock-salt 

phase (first row).and Cd1-xZnxO (x=0.5, 0.625, 0.75, 0.875) in its wurtzite configuration (second 

row). 

 

3.3 The electronic properties 

The electronic properties (the band structure and the density of states) were investigated for 

the stable structures of Cd1-xZnxO alloys. The rock-salt structure was adopted for x=0.0 and 

0.375 concentrations, whereas the alloys with x= 0.5, 0.625, 0.75, 0.875, and 1.0 were 

investigated with the wurtzite structure. The band structures and total density of states of these 

alloys are presented in Figures. 8 and 9. Using the GGA-PBE functional, the rock-salt 

configuration of CdO shows a negative and indirect band gap of -0.501 eV between the highest 

valence band and the lowest conduction band at L and Γ high symmetry points, respectively (see 

Figure 8). However, the wurtzite configuration of ZnO exhibits a direct band gap of 0.73 eV at 

the Γ high symmetry point (see Figure 8). The calculated band gaps are in agreement with the 

previous calculations of -0.51 eV [74]and 0.75 eV [77] for CdO and ZnO alloys, respectively. 

However, they are underestimated as compared to the experimental values of 2.2 eV and 3.3 eV 

for CdO [78], and ZnO [79] respectively. The Calculations using the GGA-mbj functional, 
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however, shows a better agreement with the experimental values with 1.19 eV and 2.670 eV for 

CdO and ZnO, respectively (see Figure 8). For the case of Cd1-xZnxO ternary alloys the rock-salt 

structure was adopted for the concentration of x = 0.375, while the wurtzite configuration was 

assumed for x = 0.625, 0.75, and 0.875. The ternary alloy at the concentration of x=0.375 in the 

rock-salt structure exhibits a semi metallic behavior with a negative and indirect band gap of -

0.074 eV, which increases to 1.62 eV using the GGA-mbj functional (see Figure. 9). However, 

the Cd1-xZnxO (x = 0.5, 0.625, 0.75, and 0.875) ternary alloys in the wurtzite structure exhibit a 

semiconducting behavior with narrow direct band gaps of 0.045, 0.178 eV, 0.332 eV and 0.526 

eV at the Γ high symmetry point, respectively (see Figure 10). These band gaps are significantly 

increased to 1.94 eV, 2.10 eV, 2.37 eV and 2.52 eV at x = 0.5, 0.625, 0.75, and 0.875, 

respectively using the GGA-mbj functional (see Figure 10). Figure 6 shows that the band gap 

values increase upon increasing the Zn concentration. The band gap values for the stable 

structures of binary and ternary alloys are listed in Table 2. 

The projected density of states (PDOS) of these alloys are presented in (Figures 11 and 12). 

Figure 11 shows a strong p-d hybridization of the most contributed O-p and Cd-d orbitals and a 

weak hybridization of Cd-s and O-p orbitals in the valence band in the case of CdO alloy. This is 

in agreement with previous calculations by Zhang et al  [80] and Feng et al [80]. The valence 

bands of this Cd0.625Zn0.375O alloy in the rock-salt configuration are mainly contributed by Zn-d, 

Cd-d, and O-p (see Figure 11). For the case of ZnO, the most significant contribution in the 

valence band comes from the Zn-d orbitals. The peak near the Fermi level exhibits a weak 

hybridization between the Zn-s and Zn-d states. These results are in a good agreement with other 

previous calculations [77], [75].  In the case of the wurtzite configuration the valence band of 

these alloys have three main regions, where the first region is mainly contributed by d-orbital of 
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Cd, followed by a second region of Zn-d orbital with a small contribution of different orbitals. 

The third region is a mixture of different orbitals (see Figure 12). The Fermi level is set to the 

zero point in all figures of TDOS and PDOS. 

  

 
Figure 8. The electronic band structure and total density of states (DOS) of (a) CdO and (b) ZnO 

binary alloys using GGA-PBE (solid line) and GGA-mbj (dotted line) functionals. 

 

Figure 9. The electronic band structure and total density of states (DOS) of Cd1-xZnxO (x= 0.375) 

in its rock-salt configuration. The blue colored band indicate the GGA-PBE functional and red 

colored band indicate the GGA-mbj functional. 
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Figure 10. The electronic band structure and total density of states (DOS) of Cd1-xZnxO (x= (a) 

0.5, (b) 0.625, (c) 0.75, (d) 0.875) in the wurtzite configuration using GGA-PBE (solid line) and 

GGA-mbj (dotted line) functionals. 

 

 
Figure 11. The projected density of states (PDOS) of Cd1-xZnxO (x=0.0, 0.375) in its rock-salt 

configuration using GGA-PBE functional (left column) and GGA-mbj functional (right column). 

The Fermi level set at zero point. 
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Figure 12. The projected density of states (PDOS) of ZnO and Cd1-xZnxO (x=0.5, 0.625, 0.75, 

0.875, 1) in its wurtzite configuration using GGA-PBE functional (left column) and GGA-mbj 

functional (right column). The Fermi level set at zero point. 
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Table 2. The band gaps energy Eg (eV) for the stable structures of Cd1-xZnxO (x = 0.0 – 1.0) alloys. 

Structures Eg (eV) 

Present work Other methods 

GGA-PBE GGA-mbj GGA-PBE Experiment 

CdO -0.501 1.19 -0.51[74] 2.2 [78] 

Zn0.375Cd0.625O -0.074 1.62  ---------- ---------- 

ZnO 0.73  2.670 0.75 [77] 3.3 [79] 

Zn0.875Cd0.125O 0.526 2.52 ---------- ---------- 

Zn0.75Cd0.25O 0.332 2.37 ---------- ---------- 

Zn0.625Cd0.375O 0.178 2.10 ---------- ---------- 

Zn0.5Cd0.5O 0.045 1.94 ---------- ---------- 

 

3.4 Thermoelectric properties:   

This subsection introduces the thermoelectric properties of Cd1-xZnxO alloys in the rock-

salt and wurtzite structures. The Boltzmann transport theory is used to calculate the 

thermoelectric properties of the Seebeck coefficient (S), electrical conductivity (σ/τ), electronic 

thermal conductivity (𝜅𝑒/τ) and power factor (PF) per relaxation time. Based on this theory, the 

Seebeck coefficient, electrical conductivity and electronic thermal conductivity has the following 

forms [81]: 

𝑆𝛼𝛽(𝑇; 𝜇) =
1

𝑒𝑇𝛺𝜎𝛼𝛽(𝑇; 𝜇)
∫  𝜎‾𝛼𝛽(𝜀)(𝜀

− 𝜇) [−
𝜕𝑓0(𝑇; 𝜀)

𝜕𝜀
] 𝑑𝜀 

Equation49 

 

𝜎𝛼𝛽(𝑇, 𝜇) =
1

𝛺
∫  𝜎‾𝛼𝛽(𝜀) [−

𝜕𝑓0(𝑇, 𝜀, 𝜇)

𝜕𝜀
] 𝑑𝜀 Equation50 

 

𝑘𝛼𝛽(𝑇; 𝜇) =
1

𝑒2𝑇𝛺
∫  𝜎‾𝛼𝛽(𝜀)(𝜀 − 𝜇)2 [−

𝜕𝑓0(𝑇; 𝜀)

𝜕𝜀
] 𝑑𝜀 Equation51 
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where α and β are tensor indices; μ, Ω, 𝑒, 𝜀 and 𝑓0 are the chemical potential, unit cell 

volume electron charge, band energy, and the Fermi-Dirac distribution function, respectively.  

 Here, these calculations of S2σ/τ, σ/τ and 𝜅𝑒/τ  are based on fixed relaxation time. Figures 13, 

and 14 present the calculated S, S2σ/τ and σ/τ, values of Cd1-xZnxO alloys as a function of the 

chemical potential at 300 K and 1200 K for the rock-salt and wurtzite structures. Figure 13 

presents the Seebeck coefficient, power factor, and electrical conductivity of Cd1-xZnxO (x=0.0, 

0.375) in their stable rock-salt structures. This figure shows that the Seebeck coefficient of CdO 

binary alloy exhibits an n-type behavior, which is in a good agreement with the reported 

experimental result [82], whereas the Cd0.625Zn0.375O ternary alloy possesses a p-type behavior. 

However, the power factor is found to be higher for CdO binary alloy than that of Cd0.625Zn0.375O 

ternary alloy at 1200 K. In this phase, the electrical conductivity shows higher values in the p-

type than the n-type doping levels. It is also noticed that the electrical conductivity exhibits high 

values for CdO binary alloy than those of Cd0.625Zn0.375O ternary alloy. Figure 14 presents the 

Seebeck coefficient, power factor, and electrical conductivity of the Cd1-xZnxO (x= 0.50, 0.625, 

0.75, 875, 1.0) in their stable wurtzite phase. From this figure, one can see that these alloys show 

a p-type behavior. It is also clear that the Seebeck coefficient has higher values at 1200 K than 

300 K. In addition, the power factor per relaxation time (S2σ/τ) shows the higher values at 1200 

K. From this figure, the electrical conductivity exhibits higher values in the p-type than the n-

type doping levels. It is also noticed that the electrical conductivity is obtained to be lower for 

the ternary alloys. The electronic thermal conductivity 𝜅𝑒/τ values of the binary and ternary 

alloys are presented in Figures 15 and 16. The electronic thermal conductivity values are found 

to be lower in the case of Cd1-xZnxO ternary alloys than those of CdO and ZnO. From the 

aforementioned results it is clear that the general trend of all Cd1-xZnxO structures is to have 
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higher values of the power factor per relaxation time (S2σ/τ) at higher temperatures, which 

indicates a higher efficiency. This behavior suggests these oxide materials as promising 

candidates for high-temperature thermoelectric applications. 

 

 
Figure 13. The Seebeck coefficient (S), power factor (S2σ/τ) electrical and conductivity (σ/τ) as a 

function of the chemical potential at 300 K and 1200 K of Cd1-xZnxO (x=0.0, 0.375) in its rock-

salt structure using the GGA-mbj functional. 
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Figure 14. The Seebeck coefficient (S), power factor (S2σ/τ) and electrical conductivity (σ/τ) as a 

function of the chemical potential at 300 K and 1200 K of Cd1-xZnxO (x=0.5, 0.625, 0.75, 0.875, 

and 1.0) alloys in the wurtzite structure using the GGA-mbj functional. 
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Figure 15. The electronic thermal conductivity (κe) as a function of energy at 300 K, and 1200 K 

of Cd1-xZnxO (x=0.0, 0.375) in its rock-salt configuration. 

 

 

Figure 16. The electronic thermal conductivity (κe) as a function of the chemical potential at 

temperatures 300 K and 1200 K of ZnO and Cd1-xZnxO (x=0.5, 0.625, 0.75, 0.875, 1.0) in its 

wurtzite configuration. 

 

4. Summary 

 The structural, dynamical, electronic, and thermoelectric properties of Cd1-xZnxO alloys 

were investigated using density functional theory in the rock-salt and wurtzite structures. The 

alloys were found to be semiconductors using the GGA-mbj functional for all concentrations. 

The band gap values were found to increase as a function of Zn concentration for both rock-slat 

and wurtzite structures. The thermoelectric properties were calculated using the Boltzmann 

transport formalism within the constant relaxation time approximation. The Seebeck coefficient 
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results show that CdO and ZnO have n-type and p-type behaviors, respectively, while all ternary 

alloys exhibit a p-type behavior. However, the power factor values increase as the temperature 

increases. The highest power factor values are obtained for the case of CdO (36.33×1011Wm-1k-

2s-1) binary alloy in the rock-salt structure, while the ZnO (21.75 ×1011Wm-1k-2s-1) binary 

exhibits the highest power factor values in the wurtzite structure. The power factor values of 

alloys are found to be higher in the wurtzite structure, which are in the range 7.84×1011-

15.71×1011Wm-1k-2s-1 at 1200 K. Therefore, the thermoelectric properties of Cd1-xZnxO alloys 

indicate higher efficiency at higher temperatures, which is promising for high temperature 

applications.   
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Chapter 5: investigations of the electronic, magnetic, and thermoelectric properties of VTiRhZ 

(Z= Al, Ga, In) Quaternary Heusler Alloys 

 

5.1 Introduction 

Recently, Heusler alloys have received a considerable attention as promising candidates 

in spintronics and thermoelectric applications. There are four categories of Heusler alloys that 

include full Heusler alloys (FHA), Half-Heusler alloys (HHA), Quaternary-Heusler alloys 

(QHAs) and Inverse Heusler alloys. The FHAs have the chemical formula (X2YZ) with four 

interpenetrating cubic lattices, where X and Y are transitional metals (Y could be a rare-earth 

atom) and Z is an s-p element (main group element). Here, X atoms occupy the 8c (1/4, 1/4, 1/4) 

Wyckoff position with Td symmetry, whereas the Y and Z atoms occupy 4a (0, 0, 0) and 4b (1/2, 

1/2, 1/2) Wyckoff positions, respectively, with the Oh symmetry [15] . When the valence 

numbers of Y are less than X, the resulting alloy has a space group of 𝐹𝑚3𝑚(𝑛𝑜. 225) and it 

crystallizes in the L21 structure [15]. Nonetheless, they have the so-called XA crystal structure 

when the valence number of X element is less than that of Y, which are known as the inverse 

Heusler alloys with the space group 𝐹43𝑚 [16], [83]. Here, the X element occupy 4a (0, 0, 0) 

and 4c (1/4, 1/4, 1/4) Wyckoff positions, whereas the Y and Z elements occupy 4a (0, 0, 0) and 

4b (1/2, 1/2, 1/2) Wyckoff positions, respectively. The HHAs, however, have the chemical 

composition (XYZ) forming three interpenetrating cubic lattices and one vacant lattice. They 

have a space group of 𝐹43𝑚 with the C1b crystal structure [17]. On the other hand, QHAs have 

the XX′YZ chemical formula with Y-type or LiMgPdSb-type crystal structure and a space group 

of 𝐹43𝑚  (#216) [18].  

Heusler alloys could be metals, semiconductors, spin gapless semiconductors, or half-

metallic materials. Most of these alloys demonstrate half-metallic electronic properties. These 

half-metallic materials (HMMs) have a unique electronic structure where one spin channel show 
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a metallic behavior, whereas the other spin channel is semiconducting.  This behavior of HMMs 

leads to an excellent spin-polarization (100%) near the Fermi energy, which maximizes the 

efficiency of magneto-electronic devices, such as giant magnetoresistance and tunneling 

magnetoresistance [84]. In 1983, the half-metallic behavior of Heusler alloys such as NiMnSb 

was predicted by Groot et al. [85]. From then on, a lot of HMMs based on Heusler alloys have 

been investigated using first-principal calculations, where several of them have become 

candidate materials for applications of spintronic and thermoelectric devices [18], [86], [87]. 

Recently, QHAs have received a good deal of interest due to their novel electronic, magnetic, 

and thermoelectric properties [88], [89], [90], [91]. In addition, the electronic devices depending 

on the QHAs are anticipated to have lower-power dissipation [92]. Although some QHAs such 

as NiFeMnGa, NiCoMnGa and ZrFeVZ (Z = Al, Ga, In) compounds [93] have shown excellent 

half-metallic behaviors, others such as CuCoMnGa exhibited a metallic behavior [94]. Using the 

plane-wave pseudopotential method, Li et al. predicted the half-metallicity of NbX′CrAl (X′=Co, 

Rh) quaternary Heusler alloys [95]. They also found that NbRhCrAl alloy became more robust 

against the lattice thermal expansion as the temperature increase [95]. Haleoot and Hamad have 

performed theoretical investigation of CoFeCuZ (Z = Al, As, Ga, In, Pb, Sb, Si, Sn) QHAs  [17]. 

They found that CoFeCuPb alloy exhibits a half-metallic ferromagnetic structure with a spin-

minority band gap of 0.303 eV and a total magnetic moment of 4.00 μB  [17]. However, the other 

alloys were found to be either metallic for Z = (Al, As) or nearly half-metallic for Z = (Ga, In, 

Sb, Si, Sn) [17].  Bainsla et al. have reported that the CoFeMnGe QHA has a cubic structure of 

Y-type, and there is no phase transition at higher temperatures up to the melting temperature 

(1400 K) [96]. In addition, several investigations predicted very interesting thermoelectric 

properties such as tunable lattice thermal conductivity, large Seebeck coefficient, and high 
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thermoelectric functioning for QHAs [89], [97], [98], [99], [100]. The thermoelectric efficiency 

of these QHAs can be inferred by the dimensionless figure of merit  (𝑍𝑇 =
𝑆2𝜎𝑇

𝜅𝑒+𝜅𝐿
), where S is the 

Seebeck coefficient, 𝜎 is the electrical conductivity, T is absolute temperature and 𝜅𝑒 and 𝜅𝐿 

refer to the electronic and lattice thermal conductivities, respectively [101], [102]. The optimal 

thermoelectric material (TE) should have large values of S, and 𝜎, that lead to the large power 

factor PF= 𝑆2𝜎, and small values of 𝜅𝑒 and 𝜅𝐿. Recently, Mushtag et al. [103] have performed a 

theoretical study of two new semiconducting QHAs CoCuZrGe and CoCuZrSn by using FP-

LAPW technique. They predicted Seebeck coefficient values of 26.2 μV/K and 28 μV/K for 

CoCuZrGe and CoCuZrSn alloys, respectively with a p‐type semiconducting behavior. 

Furthermore, the PF of CoCuZrGe and CoCuZrSn were found to be 1.55 × 1012 WK−2m−1s−1 and 

1.38 × 1012 WK−2m−1s−1, respectively [103]. Moreover, Berri has performed theoretical 

investigation of CoCrScZ (Z=Al, Si, Ge, and Ga) Quaternary Heusler Alloys. He found that the 

CoCrScSi, CoCrScGe, CoCrScAl, and CoCrScGa QHAs exhibit a high ZT values of 0.15, 0.12, 

0.77, and 0.83, respectively [104].The investigations of these QHAs also contribute to expanding 

the database of HMMs with optimal spin polarization (100%) and good thermoelectric 

properties.  

In this work, the VTiRhZ (Z = Al, Ga, In) QHAs are investigated using first-principal 

calculations. The investigations include the structural, dynamical, mechanical, electronic, 

magnetic, and thermoelectric properties of VTiRhZ QHAs. The paper is arranged as follows: 

section 2 presents the computational details, section 3 includes the results and discussion, and 

section 4 summarizes the main conclusions. 
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5.2 Computational methodology 

The calculations are based on density functional theory (DFT). The structural 

optimizations were performed using the projector augmented wave (PAW) method as 

implemented in Vienna ab initio simulation package (VASP) [41]. In these calculations, the 

plane-waves were expanded up to a cut-off energy of 520 eV with a total energy tolerance of 10-8 

eV. For the formation energy calculations, the Brillouin zone integration was established with 22 

× 22 × 22 k-point mesh for unit-cell structures. The phonon calculation are obtained 

using phonopy package as implemented in VASP code [105] with 4 × 4 × 4 supercell structures. 

These optimized parameters are then used to perform total energy calculations based on full-

potential linearized augmented plane wave (FP-LAPW) method as implemented in WIEN2k 

code [71]. The exchange-correlation potential is treated by using Perdew–Burke–Ernzerhof 

Generalized Gradient Approximation (GGA-PBE) [43]. The wavefunctions in the interstitial 

region were described by plane waves with a cut-off value Kmax × RMT=8.5, where RMT is the 

smallest atomic muffin tin radius and Kmax is the largest k vectors in plane wave expansion. The 

RMT are chosen to be 2.4, 2.2, 2.0, and 1.9 atomic units (a.u.) for V, Ti, Rh, and Z atoms, 

respectively. The maximum angular momentum (ᶩmax) inside the muffin-tin spheres was set to be 

10 and the Fourier expansion of the charge density (Gmax) was truncated at 12 (Ryd)-1.  In the 

self-consistent calculations, the total energy and charge density convergence tolerances were set 

to 10-4 Ry and 10-4 eV, respectively and the force tolerance was set up equal to 1 mRy/a. u. The 

thermoelectric parameters including the Seebeck coefficient, electrical conductivities, electronic 

thermal conductivity and power factor were calculated using Boltzmann transport theory, as 

implemented in the BoltzTrap code [106]. These TE properties are based on DFT calculations 



 

48 

with a high dense mesh of 5.0 × 104 k-points, which is equivalent to a 36 × 36 × 36 k-mesh. The 

TE calculations were performed within the constant relaxation time approximation.  

5.3 Results and Discussions 

This section presents the structural, dynamical, mechanical, electronic, magnetic, and 

thermoelectric properties of VTiRhZ (Z = Al, Ga, In) alloys. 

5.3.1 Structural properties  

The chemical formula of VTiRhZ (Z = Al, Ga, In) QHAs is XX′YZ with 1:1:1:1 

stoichiometry, where X, X′, and Y are transition metals and Z is an s-p element. The QHAs 

possess a face-centered cubic LiMgPdSn (Y-type) crystal structure with a space group 𝐹43𝑚 

(no. 216).  In this type, the QHAs have three possible atomic configurations identified as 

LiMgPdSn (Y-type) crystal structures, see Table 3 and Figure. 17. The ground state 

configuration of each QHAs is identified by the standard energy minimization techniques, where 

the type-1 structure was found to be the most preferred structure, see Table 4. These results are 

in agreement with those of similar alloys such as CoFeMnZ (Z=Al, Ga, Si, Ge) [92].  

 

 
Figure 17. The conventional cells of VTiRhZ (Z=Al, Ga, In) quaternary Heusler 

alloys in the three types of configurations. 
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Table 3. The Wyckoff positions 4a (0,0,0), 4c (1/4,1/4,1/4), 4b (1/2,1/2,1/2), 4d (3/4,3/4,3/4) of 

the atoms in VTiRhZ, (Z= Al, Ga, In) quaternary Heusler alloys for three types of configurations. 

 

Table 4. The total energy in eV of VTiRhZ (Z=Al, Ga, In) in the three types of configurations. 

 

The thermodynamic stability of these alloys is examined by the formation energy using 

the following equation [17]: 

𝐸𝑓𝑜𝑟𝑚  =  𝐸𝑡𝑜𝑡 − (𝐸𝑋
𝑏𝑢𝑙𝑘 + 𝐸𝑋′

𝑏𝑢𝑙𝑘 + 𝐸𝑌
𝑏𝑢𝑙𝑘 + 𝐸𝑍

𝑏𝑢𝑙𝑘) Equation52 

 

Here Etot refers the total energy of the QHAs per formula unit, whereas  𝐸𝑋
𝑏𝑢𝑙𝑘, 𝐸𝑋′

𝑏𝑢𝑙𝑘, 𝐸𝑌
𝑏𝑢𝑙𝑘and 

𝐸𝑍
𝑏𝑢𝑙𝑘 refer to the total energies per atom in the alloys. The formation energy values of these 

alloys are presented in Table 5. All energies are found to be negative, which indicates the 

thermodynamic stability of VTiRhZ (Z= Al, Ga, In) QHAs in their type-I configuration. The 

optimized lattice parameter for each alloy is presented in Table 5.  

5.3.2 Dynamical properties 

This subsection presents the phonon calculations and dispersions relations to provide a 

better understanding of the dynamic stability of the investigated systems. The phonon dispersion 

curves (PDCs) of these alloys are obtained using phonopy package as implemented in VASP 

code [105]. The PDCs are depicted along the high symmetry k-path (W→L→Γ→X→W) in the 

first Brillouin zone, see Figure. 18(a, b, c). These curves show only positive frequencies without 

any imaginary (negative) frequencies for the three alloys, which confirms their dynamic stability 

Y-type 4a 4c 4b 4d 

I V Ti Rh Z 

II V Rh Ti Z 

III Rh V Ti Z 

Alloys  Type-I Type-II Type-III 

VTiRhAl -30.102  -28.673  -29.316  

VTiRhGa -29.059  -27.945  -28.360  

VTiRhIn -27.820  -26.736  -26.996  
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in the type-I configuration. The unit cell contains four atoms (N=4), which leads to twelve 

phonon branches (3N), three acoustic and nine optical branches at the lower and higher 

frequencies, respectively, see Figure 18. The three acoustic branches are composed of one 

longitudinal (LA) and two transverse (TA) modes. This figure shows that VTiRhAl, VTiRhGa, 

VTiRhIn alloys exhibit no phonon band gaps between acoustic and optical branches. This 

property is advantageous for the high power factor and low thermal conductivity [107].  

 

 
Figure 18. The phonon dispersion curves of (a) VTiRhAl, (b) VTiRhGa, (c) VTiRhIn quaternary 

Heusler alloys. 

 

 

5.3.3 Mechanical properties 

In this subsection, the elastic constants Cij are calculated to provide a critical information 

about mechanical properties of the VTiRhZ QHAs. The cubic structure possesses three 

independent elastic constants, namely, C11, C12, and C44, which refer to the longitudinal 

compression, transverse expansion, and share modulus predictor, respectively. There are three 

conditions of the Born and Huang criteria that should be satisfied to indicate the mechanical 

stability of the cubic structure given as [108]:  

𝐶44 > 0 , (𝐶11 − 𝐶12)/2 > 0, (𝐶11 + 2𝐶12)/3 > 0 Equation53 
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According to these criteria, VTiRhZ alloys are mechanically stable in the type-I structure, see 

Table 5. Moreover, other mechanical parameters such as the bulk modulus (B), Voigt-Reuss 

shear modulus (G), Young’s modulus (E), anisotropy factor (A), Poisson’s ratios (ѵ), Pugh’s 

ratio (B/G) and Cauchy pressure (CP) can be investigated by using the independent elastic 

constants [109], [110], [111], [112]. The calculated values of these mechanical parameters are 

presented in Table 5.  

The bulk modulus (B) measures the resistance of a material to compressions and is 

defined as follows: 

𝐵 =
(𝐶11 + 2𝐶12)

3
 Equation54 

 

The lowest B value of 152.1 GPa was predicted for the case of VTiRhIn alloy, due to its higher 

lattice parameter, than those of VTiRhAl (168.2GPa) and VTiRhGa (171.4 GPa) alloys, see 

Table 5. These results are close to previous ab initio investigations of Ti2RhSi (166.19 GPa), and 

Ti2RhGe (153.02 GPa) QHAs [113]. The shear modulus (G) gives information about the change 

of the shape due to an applied force, which is defined as the average of Voigt’s shear (𝐺𝑉) and 

Reuss’s shear (𝐺𝑅) moduli as follows: 

𝐺 =
(𝐺𝑉 + 𝐺𝑅)

2
 Equation55 

 

where: 

𝐺𝑉 =
𝐶11 −  𝐶12 + 3𝐶44

5
  Equation56 

 

𝐺𝑅 =
(5𝐶44(𝐶11 −  𝐶12))

4𝐶44 + 3(𝐶11 −  𝐶12)
   Equation57 
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The largest G value of 93.6 GPa was obtained for VTiRhAl alloy. In addition, Young’s modulus 

(E) provides a measure of the stiffness of a material, which is expressed in terms of G and B as 

follows: 

𝐸 =
9𝐺𝐵

3𝐵 + 𝐺
 Equation58 

 

The highest E value was obtained for the case of VTiRhAl alloy, which indicates that it is the 

stiffest as compared to VTiRhGa and VTiRhIn alloys, see Table 5.  

Poisson’s ratio (ѵ) provides a measure of the compressibility of the material, which is 

expressed as follows: 

ѵ =
3𝐵 − 2𝐺

2(3𝐵 + 𝐺)
 Equation59 

 

Poisson’s ratio usually ranges between 0.25 to 0.5 [114]. Materials with more than 0.26 are 

considered as the ductile, whereas those with values less than 0.26 [103] are brittle. In this work, 

the values of Poisson’s ratio are 0.27, 0.28, and 0.29 for VTiRhAl, VTiRhGa and VTiRhIn, 

respectively, which indicate that these QHAs are stable and ductile. The results are comparable 

to previous calculations of similar structures such as CoCuZrSn (ѵ = 0.38) and CoCuMnSn (ѵ = 

0.28) [103].  

Another important quantity for the measure of stability is Cauchy pressure, which is defined as 

follows: 

𝐶𝑝 = 𝐶12 − 𝐶44  Equation60 

 

The material is considered to be ductile if its Cauchy pressure value is positive, otherwise it is 

brittle [115]. The Cauchy pressure of VTiRhZ (Z=Al, Ga, In) alloys are found to be positive 

values, which proves that these alloys are ductile in nature. In addition, the B/G calculation also 
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gives information about ductility and brittleness of materials. While ductile materials possess 

B/G > 1.75, brittle materials have B/G < 1.75 [116]. The values of B/G for VTiRhAl, VTiRhGa 

and VTiRhIn alloys are 1.76, 1.99 and 2.15, respectively, which further confirms the ductile 

nature of VTiRhZ alloys.  

The elastic anisotropy factor is another important quantity, which is defined as follows: 

𝐴 =
2𝐶44

𝐶11− 𝐶12
  Equation61 

 

Isotropic materials have an anisotropy factor A=1, whereas, anisotropic materials exhibit A 

values more or less than unity [117]. Accordingly, VTiRhZ alloys are considered to be 

anisotropic since the anisotropy factor values are less than unity, see Table 5. This is 

consistent with previous calculations of the anisotropy factor for CoFeCrGe (0.62) and 

CoFeTiGe(0.76) QHAs[91]. 

The melting temperature of materials identifies the  heat resistance of the material, which 

can be computed with following equation [115], [118]: 

𝑇𝑚𝑒𝑙𝑡 = [553K + (
5.91K

𝐺𝑃𝑎
) C11] ± 300K  Equation62 

 

From this equation, the melting temperature values of VTiRhAl, VTiRhGa, and VTiRhIn are 

found to be 2312 K, 2268 K and 2028 K, respectively. These high melting temperatures indicate 

the stability of these alloys within an error of  ±300K. The melting temperature was found to 

decrease by increasing the atomic number of Z atoms.    
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Table 5. The formation energy Eform (eV), optimized lattice constant a (Å), elastic constant Cij 

(GPa), bulk modulus B (GPa), Young’s modulus E (GPa), isotropic shear modulus G (GPa), 

Poisson’s ratios ѵ, anisotropy factor A, Cauchy pressure Cp (GPa), Pugh’s ratio B/G, and melting 

temperature Tmelt (K) for the stable type-I structure of VTiRhZ alloys. 

 

5.3.4 Electronic properties  

This subsection introduces the electronic structure of VTiRhZ (Z= Al, Ga, In) quaternary 

Heusler alloys. Figure 19(a, b, c) presents the band structures and total density of states (TDOS) 

of VTiRhZ (Z= Al, Ga, In) alloys in their stable configuration (type-I) along the high symmetry 

k-path. This figure shows that VTiRhAl alloy has a semiconducting behavior in both majority 

and minority spin channels with band gap values (0.04 and 0.62 eV), respectively. Both 

VTiRhGa and VTiRhIn possess a half metallic behavior (metallic majority spin channel and a 

semiconducting minority spin channel). The minority spin band gaps of VTiRhGa and VTiRhIn 

alloys are found to be indirect from the conduction band maximum (CBM) at the L high 

symmetry point to the valence band minimum (VBM) at the Γ high symmetry point with 0.52 

and 0.19 eV, respectively. It is obvious that the band gap in the minority spin channel decreases 

by increasing the atomic number of the Z atom (Al, Ga, and In), see Table 6. Moreover, the flat 

energy levels are presented in the Γ -X symmetry line of the conduction bands. In addition, there 

is the extremely dispersive bands in other directions. These two properties could be a feature to 

increase the Seebeck coefficient value and power factor [119].  From Figure. 19 (a), one can that 

the valence band in the majority channel is exactly located at the Fermi level, which indicates 

that this alloy is classified as spin-gapless semiconductor materials. However, VTiRhGa and 

Alloys 𝐸𝑓𝑜𝑟𝑚 a  C11 C12 C44 B E G ѵ A Cp B/G Tmelt 

VTiRhAl -2.37 6.16 297.8 103.5 86.4 168.2 236.1 93.6 0.27 0.89 211.4 1.76 2312 

VTiRhGa -2.16 6.15 290.3 112.0 75.4 171.4 215.3 83.8 0.28 0.84 214.9 1.99 2268 

VTiRhIn -1.28 6.38 249.7 103.4 61.9 152.1 178.7 68.7 0.29 0.84 187.8 2.15 2028 
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VTiRhIn alloys show a shift in of the valence bands above the Fermi level at the high symmetry 

point. This indicates the half- metallic behavior of these two alloys, which are very close to be 

spin-gapless semiconductor materials. These results are in agreement with previous ab initio 

investigations of  (PtVScAl, PtVYAl, and PtVYGa) QHAs [120]. The projected density of states 

(PDOS) is presented in Figures. 20 (a, b, c). From these figures, the valence band of these alloys 

have two main regions. The first region between -4 eV to -2 eV exhibits the main contribution of 

Rh-d orbital and small contributions of d- and p- orbitals of Ti and Z (Z= Al, Ga, In) atoms in 

both the majority and minority spin channels. However, the second region is between -2 eV to 

the Fermi level shows a mixture of different orbitals in majority spin channel, whereas the 

minority spin channel is mainly contributed by d-orbital of V atom. In the conduction band for 

these alloys, the most significant contribution comes from atoms of V, Ti, and Rh-d orbitals.  

 

 
Figure 19. The electronic band structures and total density of states (TDOS) of (a) VTiRhAl, (b) 

VTiRhGa, (c) VTiRhIn. The solid and dotted lines represent the majority and minority spin 

channels, respectively. 
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Figure 20. The projected density of state (PDOS) of (a) VTiRhAl, (b) VTiRhGa, (c) VTiRhIn for 

the majority and minority spin channels. 

 

 

 The spin polarization at the Fermi level is a key quantity that measures the half 

metallicity of structures, which can be calculated using the following equation [121]: 

𝑃 =
ρmajority(Ef)−ρminority(Ef)

ρmajority(Ef)+ρminority(Ef)
× 100  Equation63 

 

where 𝜌majority (𝐸𝑓) and 𝜌minority(𝐸𝑓) correspond to the majority and minority spin density of 

states at the Fermi level 𝐸𝑓 ,  respectively [121]. The spin polarization value of 100% is a perfect 

half-metallicity due to a zero density of states at the Fermi level 𝐸𝑓 in either majority or minority 

spin channels. The spin polarization values of the alloys are listed in Table 6.  A perfect spin 

polarization of 100% was obtained for both VTiRhGa and VTiRhIn alloys, which corresponds to 

a half-metallic behavior.  
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5.3.5 Magnetic properties 

In this subsection, the magnetic properties are calculated for the dynamically stable 

VTiRhZ (Z= Al, Ga, In) QHAs. In general, half-metallic materials have integer values of 

magnetic moments (M) based on the slater-Pauling equation[122], [123]: 

𝑀𝑡𝑜𝑡 = 𝑁↑ − 𝑁↓ = (𝑍𝑡𝑜𝑡 − 𝑁↓) − 𝑁↓ = 𝑍𝑡𝑜𝑡 − 2𝑁↓ Equation64 

 

where, 𝑀𝑡𝑜𝑡, 𝑁↑, 𝑁↓, and Ztot are the total magnetic moment, the majority spin valence electrons, 

the minority spin valence electrons, and the total valence electron number, respectively. For the 

cases of VTiRhAl, VTiRhGa, and VTiRhIn, the total magnetic moment was found to be 3μB, 

which is in agreement with those of similar alloys such as PtZrTiAl and PdZrTiAl [124].  These 

values can be calculated using the Slater-Pauling rule using the valence electron configurations 

of V (3d34s2), Ti (3d24s2), Rh (4d85s1) and Z = (Al(3s23p1), Ga (4s24p1), and In (5s25p1). 

Therefore, the total valence electron number for VTiRhAl, VTiRhGa, and VTiRhIn is Ztot = 21. 

Using the TDOS at the Fermi level (𝐸𝑓), the valence electrons have 12 and 9 in the majority and 

minority spin channels, respectively. Thus, the total magnetic moment of VTiRhAl QHA is 

Mtot = N↑ − N↓ = 12 − 9 = 3𝜇𝐵, which satisfy the Slater-Pauling rule Mtot = Nmajority −

N↓ = (Ztot − N↓) − N↓ = Ztot − 2N↓ = Ztot − 18. The local magnetic moments of V, Ti, Rh in 

the cases of VTiRhAl, VTiRhGa, VTiRhIn alloys are ferromagnetically coupled, where the V 

atoms show the highest magnetic moments of 2.19, 2.21, and 2.25 𝜇𝐵, respectively. The values 

of the total and local magnetic moments per atom are presented in Table 6. 

The linear relation between Curie temperature (TC) and total magnetic moments is 

considered to be one of the methods that has been adopted to estimate the Curie  temperature by 

using the following equation [17], [115], [125], [126]: 

𝑇𝐶 = 23 + 181 𝑀𝑡𝑜𝑡 Equation65 
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The value of Curie temperature for VTiRhZ alloys is found to be 566 K, which is higher than 

room temperature. Thus, these QHAs are appropriate for spintronics applications. 

 

Table 6. The calculated band gap values Eg(eV), spin polarization (P%), total magnetic moment 

Mtotal (μB), and local magnetic moment per atom (V, Ti, Rh, Z) for VTiRhZ (Z= Al, Ga, In) 

alloys. 

 

5.3.6 Thermoelectric properties   

 This subsection presents the thermoelectric properties of VTiRhZ quaternary Heusler 

alloys. The Boltzmann transport theory is applied to calculate the transport properties of the 

Seebeck coefficient (S), electrical conductivity (𝜎/𝜏), and power factor per relaxation time 

(S2σ/τ). The solution of the Boltzmann transport equation has the following form [81]: 

𝝏𝒇
𝒌⃗⃗⃗

𝝏𝒕
= −𝒗𝒌⃗⃗⃗

⃗⃗ ⃗⃗⃗ ⋅
𝝏𝒇

𝒌⃗⃗⃗

𝝏𝒓⃗⃗
−

𝒆

ħ
(𝑬⃗⃗⃗ +

𝟏

𝒄
𝒗𝒌⃗⃗⃗
⃗⃗ ⃗⃗⃗ × 𝑯⃗⃗⃗⃗) ⋅

𝝏𝒇
𝒌⃗⃗⃗

𝝏𝒌⃗⃗⃗
+

𝝏𝒇
𝒌⃗⃗⃗

𝝏𝒕
|𝒔𝒄𝒂𝒕𝒕  Equation66 

 

where 𝑘⃗⃗ and 𝑣𝑘⃗⃗⃗⃗⃗⃗⃗ are the wave vector and the group velocity, respectively. 𝑓𝑘⃗⃗ refers to the 

occupation of the quantum state (the distribution function). Based on this solution,  𝑓𝑘⃗⃗ is based 

on the applied electric (𝐸⃗⃗) and magnetic (𝐻⃗⃗⃗) fields. The Seebeck coefficient and electrical 

conductivity are given as[101][20]: 

𝑆𝛼𝛽(𝑇, 𝜇) =
1

𝑒𝑇𝛺𝜎𝛼𝛽(𝑇,𝜇)
∫  𝜎‾𝛼𝛽(𝜀)(𝜀 − 𝜇) [−

𝜕𝑓0(𝑇,𝜀,𝜇)

𝜕𝜀
] 𝑑𝜀    Equation67 

 

𝜎𝛼𝛽(𝑇, 𝜇) =
1

𝛺
∫  𝜎‾𝛼𝛽(𝜀) [−

𝜕𝑓0(𝑇,𝜀,𝜇)

𝜕𝜀
] 𝑑𝜀    Equation68 

  

Alloys Eg (eV) P Mtota

l (μB) 

MV(μB

) 

MTi(μB

) 

MRh(μB

) 

MZ(μB

) 

Interstitial(μB

) Spin

↑ 

Spin

↓ 

VTiRhAl 0.04 0.62 0 3.00 2.192 0.255 0.126 0.002 0.425 

VTiRhG

a 

----- 0.52 10

0 

3.00 2.213 0.287 0.121 -0.019 0.398 

VTiRhIn ----- 0.19 10

0 

3.00 2.251 0.253 0.092 -0.010 0.414 
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where α and β are tensor indices and μ, Ω, and 𝑓0 are the chemical potential, unit cell volume and 

the Fermi-Dirac distribution function, respectively.  

The thermoelectric properties of VTiRhZ alloys are investigated for the minority spin channel 

only. This is attributed to the fact that this channel exhibits a semiconducting behavior with a 

narrow band gap in addition to flat energy states along the Γ -X symmetry line in the conduction 

band. Narrow band gap semiconductors are believed to exhibit promising thermoelectric 

properties [127], [128], [129]. The Seebeck coefficient is plotted as a function of the chemical 

potential at 300 K and 800 K, see Figures. 21 (a) and (b). The Seebeck coefficient gives 

maximum values near the Fermi level, which decrease as the temperatures increases. At each 

temperature, the highest and lowest values of the Seebeck coefficient are obtained for VTiRhAl 

and VTiRhIn alloys, respectively. In The electrical conductivity per relaxation time (𝜎/𝜏) is 

plotted as a function of the chemical potential in Figures. 21 (c) and 5 (d) at 300K and 800K, 

respectively, which vanishes around the Fermi-level as a typical behavior of semiconductors. In 

addition, the n-type doping reveals higher values of 𝜎/𝜏 than the p-type for the investigated 

QHAs. The values of the power factor as a function of the chemical potential at 300 K and 800 K 

are also presented in Figure. 21 (e) and (f). Unlike the Seebeck coefficient, the PF values are 

found to be higher at 800K than 300K. From this figure, one can notice that the highest and 

lowest PF values at 800 K are 8.2 × 1011 W.m-1 K-2 s-1 and 14 × 1011 W.m-1 K-2 s-1 for VTiRhAl 

and VTiRhIn QHAs, respectively. These predicted values are higher than that obtained in a 

previous study for CoNbMnAl quaternary Heusler alloy of 6.9 × 1011 Wm-1 K-2 s-1 [123]. 
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Figure 21. (a) and (b) the Seebeck coefficient (S), (c) and (d) electrical conductivity per relaxation 

time (σ/τ), and (e) and (f) power factor PF per relaxation time (S2σ/τ) as a function of the chemical 

potential at temperatures of 300K, and 800K for VTiRhZ (Z= Al, Ga, In). 

 

 The Seebeck coefficient is depicted as a function of the carrier concentration (n) for 

VTiRhZ QHAs at 300 K and 800 K see Figures. 22 (a and b). The n is selected between (1017 to 

1020 cm-3) for both electronic carrier concentration (n-type) and the hole carrier concentration (p-
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type). From figures 22 (a and b), one can notice that the S values for VTiRhZ QHAs decrease as 

a function of n. In addition, the values of S increase as the temperature increases, in agreement 

with a previous study of ZrNiPb half-Heusler alloy [130]. The electrical conductivity per 

relaxation time (𝜎/𝜏) as function of the carrier concentration (n) for VTiRhZ QHAs at 300 K and 

800 K is shown in Figures. 22 (c and d).  The 𝜎/𝜏 values are found to increase by increasing n, 

whereas they decrease by increasing the temperature. These results are in agreement with 

previous ab initio investigations of  KScX(X=Sn and Pb) and KYX(Si and Ge) half-Heusler 

alloys[131].    

 

 
Figure 22. (a) and (b) the Seebeck coefficient (S), and (c) and (d) electrical conductivity per 

relaxation time (σ/τ) as a function of the carrier concentration (n) at temperatures of 300K, and 

800K for VTiRhZ (Z=Al, Ga, In). The positive and negative values of n represent the holes and 

electron concentrations. 
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The lattice thermal conductivity (κl) is an essential quantity to obtain the figure of merit 

(ZT) for these investigated QHAs. Slack’s formula is considered to be one of the methods that 

has been successfully used for similar materials[132], [133], [134], [135], [136]to calculate the κl 

value using the following equation [137]: 

𝜅𝑙 = 𝐴
𝑀̅Θ𝐷

3 𝑉1/3

𝛾2𝑛2/3𝑇
    Equation69 

 

Here A is constant that is given by (
2.43×10−6

1−
0.514

𝛾
+

0.228

𝛾2

) [137], and  𝑀̅, 𝛩𝐷 , V,  𝛾,  n and T refer to the 

average atomic mass, Debye temperature, volume per atom, Grüneisen parameter, number of 

atoms in the primitive unit cell, and temperature, respectively. Based on the elastic constant 

calculations, the Debye temperature and Grüneisen parameter are calculated by using the 

following equations [137]: 

Θ𝐷 =
ℎ

𝑘𝐵
(

3𝑛

4𝜋Ω
)

1/3

𝑣𝑚,    Equation70 

 

𝑣𝑚 = [
1

3
(

2

𝑣𝑡
3 +

1

𝑣𝑙
3)]

−1/3

    Equation71 

 

𝑣𝑙 = √
3𝐵+4𝐺

3𝜌
    Equation72 

 

𝑣𝑡 = √
𝐺

𝜌
 Equation73 

 

𝛾 =
9 − 12(𝑣𝑡/𝑣𝑙)2

2 + 4(𝑣𝑡/𝑣𝑙)2
 Equation74 
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The parameters h, kB, Ω, 𝜌 ,  𝑣𝑚, 𝑣𝑙 and  𝑣𝑡 refer to the Planck constant, Boltzmann constant, cell 

volume, density, average, transverse, and longitudinal sound velocities, respectively. The Debye 

temperature 𝛩𝐷 ,  average, transverse, longitudinal sound velocities, density and Grüneisen 

parameter  𝛾 are listed in Table 7. The Debye temperature of VTiRhAl (514.11K) is found to be 

higher than those of VTiRhGa (447.5K) and VTiRhIn (382.8K), which indicates that the lattice 

thermal conductivity is higher for VTiRhAl than those of VTiRhGa and VTiRhIn alloys. From 

this table, one can notice that the Debye temperature decreases by increasing the atomic number 

of the Z atom (Al, Ga, In). These results are in agreement with other previous calculations of 

Co2MnZ (Z=Al, Ga, In) [118]. The lattice thermal conductivity was calculated using the 

aforementioned parameters, see Figure. 23. From this figure, it is obvious that VTiRhAl has 

higher values of lattice thermal conductivity than those of VTiRhGa and VTiRhIn alloys. The 

electronic thermal conductivity 𝜅𝑒 and figure of merit ZT values are plotted as a function of the 

chemical potential at 300 K and 800 K, see Figure. 24. The electronic thermal conductivities of 

the investigated QHAs were found to be higher at 800K than 300K. The n-type exhibits higher 

𝜅𝑒values than p-type in both temperatures, see Figures. 24 (a) and (b). The ZT values of VTiRhZ 

(Z=Al, Ga, In) are found to be higher at 300K than 800K, which is opposite to the behavior of 

the lattice thermal and electronic conductivities (Figures.23 and Figures.24 (a) and (b)). There 

are two peaks of ZT values for each system. At 300K, the VTiRhAl and VTiRhGa exhibit p-type 

behavior with ZT values of 0.96, and 0.88, respectively, while VTiRhIn shows both p- and n-type 

behaviors with ZT values of 0.54 and 0.64, respectively, see Figure. 24 (c). However, all 

structures exhibit both p- and n-type behaviors at 800K. At this temperature, the two peaks of 

VTiRhAl show the highest ZT value of 0.85 and 0.69 in p-type and n-type, respectively, see 

Figure. 24 (d). These results of ZT values are higher than other similar previous calculations of 



 

64 

0.65 eV and 0.71 eV for CoFeTiGe and CoFeCrGe QHAs, respectively [91]. Therefore, VTiRhZ 

(Z=Al, Ga, In) QHAs are good candidates for further theoretical and experimental investigations 

in low dimensional and doped systems that may provide higher ZT values for promising TE 

applications. 

 

 

 
Figure 23. The lattice thermal conductivity (κl) as a function of the temperature for VTiRhZ (Z=Al, 

Ga, In) alloys. 

 

Table 7. The Debye temperature ΘD (K), average sound velocities 𝒗𝒎 (m/s), transverse sound 

velocities 𝒗𝒕 (m/s), longitudinal sound velocities 𝒗𝒍 (m/s), density ρ (kg/m3), and Grüneisen 

parameter γ. 

Alloys  𝛩𝐷 𝑣𝑚 𝑣𝑡 𝑣𝑙 𝜌 𝛾 

VTiRhAl 514.1 4226 3802 6687 6475 1.63 

VTiRhGa 447.5 3674 3296 6010 7714 1.77 

VTiRhIn 382.8 3257 2916 5449 8087 1.82 
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Figure 24. (a) and (b) The electronic thermal conductivity (κe) and (c) and (d) figure of merit (ZT) 

as a function of the chemical potential at 300K and 800K for VTiRhZ (Z=Al, Ga, In) alloys. 

 

 

5.4 Summary  

The structural, dynamical, mechanical, electronic, magnetic, and thermoelectric properties of 

VTiRhZ (Z = Al, Ga, In) alloys are investigated using DFT calculations. These alloys are found 

to be stable in the type-I structure. The GGA-PBE calculations predict a half metallic 

ferromagnetic behavior for VTiRhZ (Z =Ga, In) alloys with band gaps of 0.52, and 0.19, 

respectively. However, VTiRhAl shows a ferromagnetic behavior with a semiconducting 

structure in both spin channels. The VTiRhZ (Z= Ga, In) alloys possess a total magnetic moment 

of 3μB and a spin polarization of 100%, which suggest them as prominent candidates for spin-

injection.  Using the semi-classical Boltzmann transport theory within the constant relaxation 

time approximation, VTiRhZ (Z=Al, Ga, In) alloys show good thermoelectric properties. The 

highest value of the power factor per relaxation time is 14×1011 Wm-1 K-2 s-1 for VTiRhAl. In 

addition, VTiRhAl, VTiRhGa, and VTiRhIn alloys show high figure of merit values of 0.96, 

0.88 and 0.64, respectively at the room temperature. Thus, these alloys can find significant 

applications as thermoelectric materials at moderate temperatures. 
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Chapter 6: investigations of the electronic, magnetic, and thermoelectric properties of VTiRhZ 

(Z= Si, Ge, Sn) Quaternary Heusler Alloys 

 

6.1 Introduction 

The thermoelectric (TE) energy is considered to be one of the essential renewable 

resources, which can provide a solution to many environmental and energy issues. 

Thermoelectric devices consist of p- and n-type semiconductors that are connected thermally in 

parallel and electrically in series. They can be used to convert the thermal power into electrical 

power or vice versa based on Seebeck and Peltier effects, respectively [138].  The TE energy 

conversion efficiency 𝜂 can be given as[139]: 

𝜂 =
Δ𝑇

𝑇ℎ

√1 + 𝑍T − 1

√1 + 𝑍T +
𝑇𝑐

𝑇ℎ

 Equation75 

 

where Δ𝑇 refers to the difference between the hot (Th) and cold (Tc) side temperatures (Δ𝑇 =Th - 

Tc) and ZT refers to the figure of merit, which is expressed as [140]: 

𝑍𝑇 = (
𝑆2𝜎𝑇

𝜅𝑒+𝜅𝐿
),  Equation76 

 

Here, S, 𝜎, and T refer to the Seebeck coefficient, electrical conductivity and absolute 

temperature; 𝜅𝑒 and 𝜅𝐿 represent the electronic and lattice thermal conductivities, respectively. 

A good TE device should have a high Seebeck coefficient and electrical conductivity and low 

thermal conductivity. However, it is a tedious task to meet all these properties in one material as 

they are interdependent parameters. The Seebeck coefficient decreases, while the electrical 

conductivity increases as a function of the carrier concentration based on the following 

mathematical formulae [50]: 

𝑆 = (
8𝜋

2
3𝑘𝐵

2  (𝑟+
3

2
)

35 3⁄  𝑒ℎ2 )(
𝑚∗

𝑛2/3)𝑇  Equation78 
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𝜎 = 𝑛𝑒𝜇  Equation79 

 

where, kB, r, h, m*, n, e, and μ refer to the Boltzmann constant, scattering parameter, Planck’s 

constant, effective mass, carrier concentration, electron charge, and carriers’ mobility, 

respectively. However, based on Wiedemann-Franz law (𝜅𝑒  = 𝐿𝜎𝑇 ), the high electrical 

conductivity leads to a high electronic thermal conductivity [52], [141]. There are several 

methods that provide the requisite good parameters, which lead to a high figure of merit (ZT) 

value. Among these methods, the doping material with selected heavy atoms can reduce the 

lattice thermal conductivity and keep the electronic thermal conductivity low with a high value 

of the Seebeck coefficient [142].  

So far, the TE properties have been extremely studied for various materials, such as 

PbTe, Bi2Te3, and Mg2Si [9], [10]. In addition, a huge effort of research has been emphasized on 

Heusler alloys owing to their unique properties such as electronic, magnetic, thermal and 

thermoelectric properties [88]. Heusler alloys can be divided into four categories. The first two 

categories are the full and inverse Heusler alloys, which have the same chemical formula of 

X2YZ. When the valence number of Y atom is less than that of X, the alloy is recognized as a 

full Heusler alloy (FHA). Otherwise, the opposite situation leads to the category of inverse 

Heusler alloys. The other two categories are Half-Heusler alloys (HHAs) and quaternary-Heusler 

alloys (QHAs) with the chemical formulae XYZ and XX′YZ, respectively. Here the X, X′, and Y 

are transition metal atoms, while Z is a main group element.  

Among these alloys, quaternary-Heusler alloys have recently received a great deal of 

attention due to their promising thermoelectric and spintronic properties [94], [92]. For example, 

Haleoot and Hamad predicted a figure of merit (ZT) value of 0.71 and 0.65 for CoFeCrGe and 
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CoFeTiGe, respectively [91]. Moreover, previous calculations of CoRhMnAs and CoRuMnAs 

alloys reported high Seebeck coefficients of 53.44 μV/K and 44.3 μV/K with ZT values of 0.50 

and 0.28, respectively [143]. In addition, promising Seebeck coefficient and power factor values 

of  539.2 μV/K and 7×1010 Wm-1K-2s-1, respectively were predicted for ZnFeTiSi QHA at 300K 

[101]. Furthermore, density functional theory predicted a half-metallic ferromagnetic structure of 

CoFeMnZ (Z=Al, Ga, Si, Ge) QHAs with high Curie temperatures [92]. Half-metallic 

ferromagnetism with total magnetic moment of 3μB and perfect spin-polarization of 100% were 

also predicted for FeMnScZ (Z=Al, Ga, In) QHAs [21].  

The prime aim of this work is to present three new QHAs, namely, VTiRhSi, VTiRhGe, 

and VTiRhSn. Computational investigations using first-principal calculations were performed to 

investigate the structural, electronic, magnetic, and thermoelectric properties of these QHAs. In 

addition, the thermodynamic, dynamical, and mechanical properties are investigated to provide 

the plausible feasibility of experimental synthesis for the three new QHAs. These QHAs are 

found to be promising candidates for spintronic and thermoelectric applications. Their interesting 

magnetic and thermoelectric properties indicate promising applications in spin injection using 

the spin-polarized thermoelectric current. To the best of our knowledge, there are no available 

studies on these QHAs.  

The rest of the paper is organized as follows: the computational details are given in 

section 2. The results and discussions are presented in section 3, and finally, section 4 contains 

the conclusion. 

6.2 Computational methodology 

The calculations are performed using density functional theory (DFT) as implemented in 

VASP code [41]. The cut-off energy and total energy tolerance were chosen as 520 eV and 10-8 



 

69 

eV, respectively. The formation energy was calculated using a 22 × 22 × 22 Γ- centered k-point 

mesh for unit-cell structures. The study of dynamical stability was obtained with phonopy 

package [105] based on VASP code with 4 × 4 × 4 supercell structures and a 4 × 4 × 4 Γ- 

centered k-point mesh. Then, the optimized structural parameters obtained by VASP code [18] 

were utilized to calculate the total energy within the full-potential linearized augmented plane 

wave (FP-LAPW) method as implemented in WIEN2k code [71]. The exchange-correlation 

potential was treated using the generalized gradient approximation of Perdew–Burke–Ernzerhof 

(GGA-PBE) [43]. The wavefunctions in the interstitial region were defined with a cut-off value 

of Kmax × RMT=8.5, where RMT is the smallest atomic muffin tin radius and Kmax is the largest 

reciprocal lattice vector of the plane wave expansion. The values of RMT are picked to be 2.4, 2.2, 

2.0, and 1.7 atomic units (a.u.) for V, Ti, Rh, and Z (Z=Si, Ge, Sn) atoms, respectively. The total 

energy, charge density convergence tolerances and force tolerance were chosen to be 10-4 Ry, 10-

4 e and 1 mRy/a. u, respectively. The transport coefficients, including the Seebeck coefficient, 

electrical conductivities, electronic thermal conductivity, and power factor were calculated using 

Boltzmann transport theory, as implemented in the BoltzTrap code [46]. These TE properties are 

based on DFT calculations with a high dense mesh of 50000 k-points, which is equivalent to a 36 

× 36 × 36 Γ- centered k-mesh. The TE calculations were performed using the constant relaxation 

time approximation, which is set to 0.5× 10−15𝑠. This value was used in similar calculations of 

FeRhCrSi and FeRhCrGe QHAs [19]. 

6.3 Results and discussions 

This section presents the structural, thermodynamic, dynamical, mechanical, electronic, 

magnetic, and thermoelectric properties of quaternary VTiRhZ (Z=Si, Ge, Sn) Heusler alloys.  
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6.3.1 Structural properties  

The stoichiometry of VTiRhZ (Z = Si, Ge, Sn) QHAs is 1:1:1:1 with XX′YZ chemical 

formula, where X, X′, and Y are transition metal elements and Z is a main group element that 

contains s-p orbitals. The QHAs are identified to crystallize in the LiMgPdSn (Y-type) face-

centered cubic structure with a space group 𝐹43𝑚 (no. 216).  This type of structure has three 

atomic configurations, which are namely Y-type-I, Y-type-II, and Y-type-III, see Figure.25. The 

Wyckoff positions of the element in the three types are 4a (0,0,0), 4c (¼, ¼, ¼), 4b (½, ½, ½) 

and 4d (¾, ¾, ¾), see Table8. Based on total energy calculations, Y-type-I configuration was 

found to be the most favored crystal structure, see Table 9.  

 

 
Figure 25. The conventional cells of VTiRhZ (Z=Si, Ge, Sn) quaternary Heusler alloys in the three 

types of configurations (Y-type-I, Y-type-II, and Y-type-III). 

 

Table 8. The Wyckoff positions 4a, 4c, 4b, 4d of the atoms in VTiRhZ (Z= Si, Ge, Sn) quaternary 

Heusler alloys for three types of configurations. 

 

 

    Y  4a 

(0.0.0)  

4c  

(¼, ¼, ¼) 

4b  

(½, ½, ½) 

4d 

 (¾, ¾, ¾)   

Type-I V Ti Rh Z 

Type-II V Rh Ti Z 

Type-III Rh V Ti Z 
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Table 9. The total energy in eV of VTiRhZ (Z= Si, Ge, Sn) QHAs in the three types of 

configurations. 

 

 

 

 

The formation energy (𝐸𝑓𝑜𝑟𝑚) is calculated to identify the thermodynamic stability of 

these QHAs using the following formula [17]: 

𝐸𝑓𝑜𝑟𝑚  =  𝐸𝑡𝑜𝑡 − (𝐸𝑉
𝑏𝑢𝑙𝑘 + 𝐸𝑇𝑖

𝑏𝑢𝑙𝑘 + 𝐸𝑅ℎ
𝑏𝑢𝑙𝑘 + 𝐸𝑍=𝑆𝑖,𝐺𝑒,𝑆𝑛

𝑏𝑢𝑙𝑘 ),  Equation80 

 

where Etot corresponds to the equilibrium total energy per formula unit of VTiRhSi, VTiRhGe, 

VTiRhSn alloys and 𝐸V
𝑏𝑢𝑙𝑘 , 𝐸Ti

𝑏𝑢𝑙𝑘, 𝐸Rh
𝑏𝑢𝑙𝑘, 𝐸𝑍=Si,Ge,Sn

𝑏𝑢𝑙𝑘  are the equilibrium total energies per atom 

in their individual bulk structures. The formation energy values are found to be negative, which 

indicate that VTiRhZ (Z= Si, Ge, Sn) QHAs are thermodynamically stable, see Table 10. 

Moreover, Table 10 presents the optimized lattice parameter for each alloy. From this table, it is 

clear that the lattice parameters are increasing by increasing the atomic number of Z (Z=Si, Ge, 

Sn) atom. The lattice parameter values are found to be close with experimental result [144] as 

shown in Table 10. 

6.3.2 Dynamical phonon properties 

This subsection is devoted to confirming the structural stability of the energetically stable Y-

type-I configuration of VTiRhZ alloys obtained in section 3.1. The phonon dispersion curves 

(PDCs) provide another measure of the dynamical stability of the studied systems. From Figure. 

26, it is obvious that these VTiRhZ alloys have positive frequencies (no imaginary modes), 

thereby emphasizing that VTiRhZ alloys are dynamically stable. As the primitive unit cell 

consists of four atoms (N=4), there are twelve vibrational modes (3N), where three of them are 

Alloys  Y-type-I Y-type-II Y-type-III 

VTiRhSi -31.698  -30.808  -30.994  

VTiRhGe -30.305  -29.644  -29.672  

VTiRhSn -29.259  -28.241  -28.543  
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acoustic and nine optical modes at the lower and higher frequencies, respectively. One of the 

three acoustic modes is longitudinal acoustic (LA), while the other two are transverse acoustic 

(TA). However, the nine optical modes are composed of three longitudinal optical (LO) and six 

transverse optical (TO) modes. Similar results of PDCs were reported in a previous calculations 

for CoFeCrGe and CoFeTiGe quaternary-Heusler alloys [91]. 

 

 
Figure 26. The phonon dispersion curves of (a) VTiRhSi, (b) VTiRhGe, (c) VTiRhSn quaternary 

Heusler alloys. 

 

 

6.3.3 Mechanical properties 

The mechanical properties are investigated to provide more information about the 

mechanical stability of the alloys. The structure of VTiRhZ alloys is cubic, which means that 

these alloys have only three independent elastic constants, namely the longitudinal compression 

(C11), transverse expansion (C12), and share modulus predictor (C44). In general, any material is 

mechanically stable if it fulfils the conditions of  Born and Huang criteria, which are given as  

[108]: 

𝐶44 > 0 , (𝐶11 − 𝐶12)/2 > 0,  𝐵 > 0, 𝐶12 < 𝐵 < 𝐶11  Equation81 
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From Table 10, one can see that Born and Huang criteria are satisfied for VTiRhZ alloys, which 

indicates their mechanical stability.  

Additionally, from these three independent elastic constants, various mechanical 

parameters can be calculated such as the bulk modulus (B), Voigt(𝐺𝑉) -Reuss(𝐺𝑅) shear 

modulus (G), Young’s modulus (E), Cauchy pressure (Cp), Pugh’s ratio (B/G), and anisotropy 

factor (A), which can be expressed as follows [109]: 

𝐵 =
(𝐶11+2𝐶12)

3
  Equation82 

 

𝐺 =
(𝐺𝑉 + 𝐺𝑅)

2
 Equation83 

 

𝐺𝑉 =
𝐶11− 𝐶12+3𝐶44

5
   Equation84 

 

𝐺𝑅 =
(5𝐶44(𝐶11− 𝐶12))

4𝐶44+3(𝐶11− 𝐶12)
  Equation85 

 

𝐸 =
9𝐺𝐵

3𝐵+𝐺
  Equation86 

 

𝐶𝑝 = 𝐶12 − 𝐶44  Equation87 

 

𝐴 =
2𝐶44

𝐶11− 𝐶12
  Equation88 

 

The calculated mechanical parameters for VTiRhZ alloys are listed in Table 10. The values of 

Young’s modulus, E, are 188.5, 165.7, and 160.7 GPa for VTiRhSi, VTiRhGe, and VTiRhSn, 

respectively. The results indicate that VTiRhSi is stiffer than VTiRhGe and VTiRhSn alloys. The 

bulk and shear moduli are calculated to obtain Pugh’s ratio. Both Pugh’s ratio (B/G) and Cauchy 

pressure (Cp) are utilized to describe the ductility and brittleness of materials. If B/G is more 
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(less) than 1.75, the materials are ductile (brittle) in nature [116]. In addition, if the Cp value is 

positive (negative), the material is considered to be ductile (brittle) in nature [115]. The values of 

B/G ratio are 2.7, 2.9 and 2.6 for VTiRhSi, VTiRhGe, and VTiRhSn, respectively. In addition, 

the Cauchy pressure (Cp) values are 68.5, 67.0 and 50.4 GPa for VTiRhSi, VTiRhGe, and 

VTiRhSn, respectively. The values of B/G ratio are found to be higher than 1.75 and Cp values 

are positive, which indicate the ductile nature of these alloys. These results are consistent with 

similar QHAs such as CoFeYGe (Y=Ti, Cr) [91]. The value of the anisotropy factor (A) is a 

measure of the anisotropy of the material. Materials with A=1 are considered isotropic, while 

those with A values less or more than 1 are anisotropic [117]. Our calculations predict an 

anisotropy factor less than unity, which indicates that VTiRhZ (Z=Si, Ge, Sn) alloys are 

anisotropic materials, see Table 10.  

Another important quantity is the melting temperature, which gives information about  

the heat resistance of the material, which can be calculated using the following equation [115], 

[118], [145]: 

𝑇𝑚𝑒𝑙𝑡 = [553K + (
5.91K

𝐺𝑃𝑎
) C11] ± 300K Equation89 

 

The melting points of VTiRhSi, VTiRhGe, and VTiRhSn alloys are found to be 2296 K, 2169 K 

and 2053 K, respectively. The high values of the melting temperature, 𝑇𝑚𝑒𝑙𝑡, indicate the 

mechanical stability of these QHAs within an error of  ±300K. The calculations show that a 

lower longitudinal compression (C11) of the alloys corresponds to a lower melting point value 

(see Table 10), which are comparable to those of CoFeCrGe (2584K) and CoFeTiGe (2484K) 

[91].   
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6.3.4 Electronic and magnetic properties  

This subsection presents the band structure, total density of states (TDOS), projected 

density of states (PDOS) and magnetic properties of VTiRhZ (Z= Si, Ge, Sn) quaternary Heusler 

alloys. Figure 27 presents the band structure and TDOS of VTiRhZ (Z= Si, Ge, Sn) alloys. The 

calculations predict a half-metallic behavior for the cases of VTiRhSi, VTiRhGe, and VTiRhSn 

alloys. In these structures the majority spin channel exhibits a semiconducting behavior with 

band gap values of 0.42, 0.25, and 0.12eV along the Γ -X symmetry line, respectively, whereas 

the minority spin channel exhibits a metallic behavior. These results are in a good agreement 

with previous ab initio investigations of CoFeCuZ (Z=Al, As, Ga, In, Pb, Sb, Si, Sn) quaternary 

Heusler alloys [5]. Moreover, the presence of flat energy levels in the conduction bands along Γ -

X symmetry line and the highly dispersive bands along other directions could be a signature of a 

high Seebeck coefficient and thermoelectric properties [33].   

 

 
Figure 27. The electronic band structures and total density of states (TDOS) of (a) VTiRhSi, (b) 

VTiRhGe, (c) VTiRhSn. The solid and dotted lines represent the majority and minority spin 

channels, respectively. 
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Table 10. The formation energy Eform (eV), optimized lattice constant a (Å), elastic constants Cij 

(GPa), bulk modulus B (GPa), isotropic shear modulus G (GPa), Young’s modulus E (GPa), 

Pugh’s ratio B/G, Cauchy pressure Cp (GPa), anisotropy factor A, and melting temperature Tmelt 

(K) for the stable Y-type-I structure of VTiRhZ alloys.   

Physical 

parameter 

VTiRhSi  VTiRhGe VTiRhSn 

𝐸𝑓𝑜𝑟𝑚(eV) -2.28  -1.82 -1.18 

a (Å) 6.04 

5.8(a 

 6.13 6.35 

 

C11 (GPa) 295.0  273.5 253.9 

C12 (GPa) 131.7  121.0 103.1 

C44 (GPa) 63.2  54.0 52.7 

B (GPa) 190.2  176.8 158.4 

G (GPa) 70.6  61.7 60.4 

E (GPa) 188.5  165.7 160.7 

B/G 2.7  2.9 2.6 

CP (GPa) 68.5  67.0 50.4 

A 0.77  0.70 0.69 

Tmelt (K) 2296  2169 2053 
a)Ref. [144] Exp. 

 

Figure 28 presents the projected density of states (PDOS) of VTiRhZ alloys. This figure 

shows that the lower region of valence bands from -4 eV to -2 eV is formed mostly by Ti, V, and 

Rh d orbitals in both the majority and minority spin channels. However, the main contribution in 

the upper region of the valence bands from -2 eV to the Fermi level 0 eV comes from V d orbital 

in the majority spin channel, while the main contribution in the minority spin channel comes 

from the strongly hybridized V, Ti and Rh d orbitals. On the other hand, the density of states in 

the conduction bands of these alloys is a mixture of different orbitals in both the majority and 

minority spin channels.  
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Figure 28. The projected density of state (PDOS) of (a) VTiRhSi, (b) VTiRhGe, (c) VTiRhSn for 

the majority (↑) and minority (↓) spin channels. 

 

 The spin polarization can be measured using the following formula [121]: 

𝑃 =
ρ↑(Ef) − ρ↓ (Ef)

ρ↑(Ef) + ρ↓ (Ef)
× 100 Equation90 

 

where ρ↑ (Ef) and ρ↓ (Ef) correspond to the majority and minority spin density of states at the 

Fermi level 𝐸𝑓 ,  respectively [121]. From Table 11, one can see that VTiRhSi, VTiRhGe and 

VTiRhSn alloys have a perfect spin-polarization of 100%, which corresponds to a half-metallic 

behavior. A similar high spin-polarization value is reported for CoFeMnGe QHAs [96]. 

The total and local magnetic moments for VTiRhZ alloys are presented in Table 11. The 

integer values of the total magnetic moments of QHAs are found to obey the Slater-Pauling 

equation for half-metallic materials [122]. [123]: 

𝑀𝑡𝑜𝑡 = (𝑍𝑡𝑜𝑡 − 20) μB  Equation91 
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where, 𝑀𝑡𝑜𝑡 refers to the total magnetic moment and 𝑍𝑡𝑜𝑡 is the number of the total valence 

electrons ( 𝑍𝑡𝑜𝑡 = 22 for the three alloys). This table shows that VTiRhZ (Z=Si, Ge, Sn) alloys 

exhibit integer values of 2μB, which confirm the half-metallic behavior of these QHAs. Thus, 

these QHAs are promising for future spintronic applications [146] . However, the Ti atoms show 

local magnetic moments of 0.03𝜇𝐵, -0.03 𝜇𝐵, and -0.11𝜇𝐵 in the cases of VTiRhSi, VTiRhGe, 

and VTiRhSn alloys, respectively. The coupling between the local magnetic moments of Ti 

atoms with those of V and Rh atoms is ferromagnetic in the case of VTiRhSi alloy, while it is 

antiferromagnetic for VTiRhGe and VTiRhSn alloys. The main contribution of the magnetic 

moment is attributed to V atoms in VTiRhSi, VTiRhGe, and VTiRhSn with local magnetic 

moments of 1.57, 1.66, and 1.74 𝜇𝐵, respectively. 

The linear relation between Curie temperature (TC) and total magnetic moments is 

considered to be one of the methods that has been adopted to estimate the Curie  temperature by 

using the following equation  [17], [115], [125], [126]: 

𝑇𝐶 = 23 + 181 𝑀𝑡𝑜𝑡   Equation92 

 

The value of Curie temperature for VTiRhZ alloys is found to be 385 K, which equals that of 

Co2TiSi alloy in a previous calculation [147]. 

 

Table 11. The calculated band gap values Eg(eV), spin-polarization P (%), total magnetic moment 

Mtotal (μB), local magnetic moments per atom Mi (μB) (i = V, Ti, Rh, Z) for VTiRhZ (Z= Si, Ge, 

Sn) alloys. 

 

 

Alloys Eg (eV) P% Mtotal(μB) MV(μB) MTi(μB) MRh(μB) MZ(μB) 

Spin↑ Spin↓ 

VTiRhSi 0.42 ----- 100 2.00 1.57 0.03 0.12 -0.01 

VTiRhGe 0.25 ----- 100 2.00 1.66 -0.03 0.11 -0.03 

VTiRhSn 0.12 ----- 100 2.00 1.74 -0.11 0.11 -0.02 
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6.3.5 Thermoelectric properties 

This subsection presents the thermoelectric properties of VTiRhZ quaternary Heusler 

alloys. These alloys were found to be very interesting for thermoelectric applications as they 

exhibit narrow band gaps of 0.42, 0.25, and 0.12 eV in the majority spin channel (see section 

3.4). A narrow band gap semiconductor is believed to show a good thermoelectric 

performance[127]. The semiclassical Boltzmann transport theory within the constant relaxation 

time approximation is utilized to investigate the transport coefficients  of VTiRhZ alloys as 

implemented in BoltzTraP package [148]. The Seebeck coefficient (S), electrical conductivity 

(σ), and electronic thermal conductivity (κe) are calculated using the following equations [101]: 

𝑆𝛼𝛽(𝑇; 𝜇) =
1

𝑒𝑇𝛺𝜎𝛼𝛽(𝑇; 𝜇)
∫  𝜎‾𝛼𝛽(𝜀)(𝜀

− 𝜇) [−
𝜕𝑓0(𝑇; 𝜀)

𝜕𝜀
] 𝑑𝜀 

Equation93 

 

𝜎𝛼𝛽(𝑇, 𝜇) =
1

𝛺
∫  𝜎‾𝛼𝛽(𝜀) [−

𝜕𝑓0(𝑇, 𝜀, 𝜇)

𝜕𝜀
] 𝑑𝜀 Equation94 

 

𝑘𝛼𝛽(𝑇; 𝜇) =
1

𝑒2𝑇𝛺
∫  𝜎‾𝛼𝛽(𝜀)(𝜀 − 𝜇)2 [−

𝜕𝑓0(𝑇; 𝜀)

𝜕𝜀
] 𝑑𝜀 Equation95 

Here α and β are tensor indices; μ, Ω, and 𝑓0 are the chemical potential, unit cell volume and the 

Fermi-Dirac distribution function, respectively. In these calculations, the relaxation time was set 

to  τ~ 0.5 × 10−15𝑠, which was also used for similar systems such as FeRhCrSi and FeRhCrGe 

QHAs [19]. Here, the two-current model was used to compute the total Seebeck coefficient and 

electrical conductivity of the majority and minority spin channels, which is given as [149]: 

𝑆 =
𝑆↑ 𝜎↑ + 𝑆↓ 𝜎↓

𝜎↑ + 𝜎↓
 Equation96 
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where 𝑆↑ (𝑆↓) and 𝜎↑ (𝜎↓) refer to the Seebeck coefficient and electrical conductivity for the 

majority (minority) spin channels, respectively.  

The total Seebeck coefficient (S) as a function of the chemical potential at 300 K and 800 

K is presented in Figures. 29(a, b). From this figure, one can notice that the total Seebeck 

coefficient values increase as the temperatures increases. The maximum values of S are obtained 

at 800 K with values of 42.8 μV/K and -52.5 μV/K for the p-type VTiRhSn and n-type VTiRhSi 

alloys, respectively. Figures 29 (c, d) present the electrical conductivity (𝜎) as a function of the 

chemical potential at 300 K and 800 K. The values of the n-type electrical conductivity, 𝜎, are 

found to be higher than those of the p-type.  In addition, the effect of temperature on 𝜎 values are 

found to be marginal. Moreover, Figures. 29 (e, f) show that κe has a similar behavior to 𝜎 (n-

type κe values are higher than those of the p-type). This is ascribed to the direct relation between 

the electrical conductivity and electronic thermal conductivity (κe), which is estimated by 

Wiedemann-Franz equation (𝜅𝑒  = 𝐿𝜎𝑇 ). However, κe values are found to increase by increasing 

the temperature. The power factor (PF) is depicted in Figures. 29(g, h), where the values are 

found to increase by raising the temperature. The maximum PF values are found to be 16.1×1011, 

9.2×1011 and 5.4×1011 Wm-1K-2 at 800 K for VTiRhSi, VTiRhGe, and VTiRhSn alloys, 

respectively. The PF values of  VTiRhSi, VTiRhGe alloys are found to be higher than that of 

CoNbMnAl QHA (6.9 × 1011 Wm-1 K-2 s-1) [123]. 

To find the figure of merit (ZT) of the studied alloys, the lattice thermal conductivity (κl) 

was calculated using Slack’s formula, which is one of the reliable techniques to compute  κl  

value as follows [132]: 

𝜅𝑙 = 𝐴
𝑀̅Θ𝐷

3 𝑉1/3

𝛾2𝑛2/3𝑇
 Equation97 
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Here A =
2.43×10−6

1−
0.514

𝛾
+

0.228

𝛾2

 [137], and  𝑀̅, 𝛩𝐷 , V,  𝛾,  n and T are  the average atomic mass, Debye 

temperature, volume per atom, Grüneisen parameter, number of atoms in the primitive unit cell, 

and temperature, respectively. Based on the elastic constant calculations, the Debye temperature 

and the Grüneisen parameter are calculated using the following equations [137], [150]: 

Θ𝐷 =
ℎ

𝑘𝐵
(

3𝑛𝜌𝑁𝐴

4𝜋𝑀
)

1/3

𝑣𝑚 Equation98 

 

𝑣𝑚 = [
1

3
(

2

𝑣𝑡
3 +

1

𝑣𝑙
3)]

−1/3

 Equation99 

 

𝑣𝑙 = √
3𝐵+4𝐺

3𝜌
   Equation100 

 

𝑣𝑡 = √
𝐺

𝜌
   Equation101 

 

𝛾 =
9 − 12(𝑣𝑡/𝑣𝑙)2

2 + 4(𝑣𝑡/𝑣𝑙)2
 Equation102 

The parameters h, 𝜌, 𝑁𝐴, kB, and M refer to the Planck constant, density, Avogadro’s number, 

Boltzmann constant, molecular weight, respectively, while 𝑣𝑚, 𝑣𝑙 and  𝑣𝑡 refer to the average, 

transverse, and longitudinal sound velocities, respectively. The Debye temperature of VTiRhZ 

(Z=Si, Ge, Sn) alloys are found to be 445.1 K, 384.2 K and 357.3 K, respectively, see Table 

12. From this table, one can see that the Debye temperature decreases by decreasing the 

average sound velocities, in agreement with previous calculations of Co2MnAl, Co2MnGa, 

and Co2MnIn [118].  
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Table 12. The Debye temperature 𝜣𝑫 (K), average sound velocity 𝒗𝒎 (m/s), transverse sound 

velocity 𝒗𝒕 (m/s), longitudinal sound velocity 𝒗𝒍 (m/s), density ρ (kg/m3), and Grüneisen 

parameter γ for VTiRhZ (Z= Si, Ge, Sn) QHAs. 

Alloys  𝛩𝐷 𝑣𝑚 𝑣𝑡 𝑣𝑙 𝜌 𝛾 

VTiRhSi 445.1 3586 3196 6415 6910 2.06 

VTiRhGe 384.2 3140 2795 5728 7895 2.13 

VTiRhSn 357.3 3028 2700 5372 8281 1.99 
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Figure 29. (a, b) the Seebeck coefficient (S), (c, d) electrical conductivity (σ), (e, f) electronic 

thermal conductivity (𝜿𝒆) and (g, h) power factor PF (S2σ) as a function of the chemical potential 

at temperatures of (300K, 800K) for VTiRhZ QHAs. 

 

 

The lattice thermal conductivity (𝜅𝑙) was computed by utilizing the aforementioned 

parameters, see Figure. 30 (a). This figure shows that the lattice thermal conductivity of VTiRhZ 

alloys decreases as a function of temperature. The values of the lattice thermal conductivity at 

300 K (800 K) are 2.77 (1.04), 2.06 (0.77) and 2.40 (0.90) Wm-1K-1 for VTiRhSi, VTiRhGe, and 

VTiRhSn, respectively. These values are less than those of similar structures such as CoFeCrGe 
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(11.01 W m-1  K-1) and CoFeTiGe (12.26 W m-1 K-1) at 300K [91]. The figure of merit ZT values 

are plotted as a function of the chemical potential at 300 and 800 K, see Figures. 30(b, c). This 

figure shows that VTiRhZ alloys exhibit higher ZT values at 800 K. The highest n-type ZT 

values of 1.13 and 0.62 were predicted for VTiRhSi and VTiRhGe, respectively, while VTiRhSn 

shows the highest p-type ZT value of 0.92 at 800 K. These values of ZT are higher than other 

similar previous computations of  0.45 eV and 0.41 eV at 800 K for FeRhCrSi and FeRhCrGe 

QHAs, respectively [19].  

 
Figure 30. (a) the lattice thermal conductivity (𝜿𝑳) as a function of the temperature for VTiRhZ 

alloys, and (b, c) the figure of merit (ZT) as a function of the chemical potential at (300K, 800K) 

for VTiRhZ alloys. 

 

 

6.4 Summary 

The structural, thermodynamic, dynamical, mechanical, electronic, magnetic, and 

thermoelectric properties of VTiRhZ (Z=Si, Ge, and Sn) quaternary Heusler alloys are 

investigated using DFT calculations. Based on total energy calculations, the most stable 

configuration for these QHAs was found to be the Y-Type-I structure. These VTiRhSi, 

VTiRhGe, and VTiRhSn alloys are found to exhibit a half metallic behavior with band gaps of 

0.42, 0.25, and 0.12eV for, respectively. They show a ferromagnetic behavior with an integer 

total magnetic moment of 2μB and a spin polarization of 100%. This half-metallic ferromagnetic 

behavior suggests them as prominent candidates for spintronic applications. Calculations using 

the semi-classical Boltzmann transport theory within the constant relaxation time approximation 

show that VTiRhZ (Z=Si, Ge, and Sn) QHAs possess good thermoelectric properties. The 
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maximum values of the power factor are 16.18×1011, 9.2×1011 and 5.4×1011 Wm-1K-2 for of 

VTiRhSi, VTiRhGe, and VTiRhSn QHAs, respectively, at 800 K. The calculations predict the 

highest ZT values of 1.13 and 0.62 for n-type VTiRhSi and VTiRhGe, respectively, whereas 

VTiRhSn exhibits the highest p-type ZT value of 0.92 at 800 K. Thus, these alloys are also 

promising for potential thermoelectric applications at high temperatures. 
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Chapter 7: Investigations of Zr-based Quaternary Heusler Alloys for spintronic and 

thermoelectric applications 

 

7.1 Introduction 

With the growing need to address the energy shortage and reducing pollution, it is critical 

to seek for new energy resources that are progressive, clean, and environmentally friendly. The 

thermoelectric materials are one of the alternatives to conventional materials, which can directly 

convert heat into electricity[151]. The efficiency of thermoelectric materials is often measured in 

terms of the dimensionless figure of merit (ZT), which can be represented as[141]: 

𝑍𝑇 =
𝑆2𝜎𝑇

𝜅𝑒 + 𝜅𝐿
 Equation103 

 

where S, 𝜎 , T, 𝜅𝑒 , and 𝜅𝐿  refer to the Seebeck coefficient, electrical conductivity, absolute 

temperature, electronic conductivity, and lattice thermal conductivity, respectively. To improve 

the efficiency of thermoelectric materials, the ZT value should be high enough. The high ZT 

materials require a high-power factor (PF=  𝑆2𝜎 ) as well as a low thermal conductivity. 

However, meeting all of these parameters in one material is a challenging undertaking because a 

high S demands a low carrier concentration, which results in low 𝜎 [102][50]. Moreover, the 

high 𝜎 correlates to high 𝜅𝑒, based on the Wiedemann-Franz law (𝜅𝑒 = 𝐿𝜎𝑇), where L refers to 

the Lorentz constant [52]. Finding the optimal balance between these parameters is essential to 

have a satisfactory thermoelectric response of materials. Many thermoelectric materials have 

been studied for their ability to operate at different temperatures. Exceptionally, the Heusler 

alloys have attracted significant attention for its potential use in different applications such as 

solar cell devices, fuel cells and thermoelectric devices. These Heusler alloys comprise of full 

Heusler alloys (FHAs), half Heusler alloys (HHAs) and quaternary Heusler alloys (QHAs). The 

three FHAs, HHAs, and QHAs groups have the chemical formulas of X2YZ, XYZ, and XX′YZ, 



 

87 

respectively, where X, X′, and Y are the transition metal atoms and Z represents a main group 

element. 

Among these alloys, the QHAs with narrow band gap energies exhibit a variety of unique 

physical features, including a high Curie temperature, high melting point, high Seebeck 

coefficient and integral magnetic moments[[100],[152],[153],[154]]. The QHAs can be 

crystallized in the LiMgPdSn (Y-type) structure with a space group 𝐹43𝑚 (no. 216). Recently, 

QHAs have attracted attention due to their interesting electronic, magnetic and thermoelectric 

properties such as CoZrMnX (X =Al, Ga, Ge, and In) [155], CoFeCrAs [156], FeRhCrX(X=Si 

and Ge) [19] and CoNbMnX(X=Al, and Si)[123]. According to Fu et al. the ZT value of p-type 

FeNb0.88Hf0.12Sb and FeNb0.86Hf0.14Sb alloys are found to be 1.5 at 1200 K. Another theoretical 

study of CoFeCrGe and CoFeTiGe predicted ZT values of 0.71 and 0.65, respectively [91]. 

Based on prior computations, the Seebeck coefficient values of CoRhMnAs and CoRuMnAs 

alloys were reported to be 53.44 μV/K (0.50) and 44.3 μV/K (0.28), respectively [143]. 

Moreover, a previous calculation of CoFeMnGe alloy stated that this alloy possesses a face-

center cubic structure and exhibits no phase transition beyond the melting point (1400K)[157]. In 

addition, FeMnScX(X=Al, Ga, and In) QHAs were predicted to have a total magnetic moment of 

3 μB as well as a prefect spin polarization of 100% [21]. The QHAs are suggested to be the most 

attractive choices for thermoelectric applications due to their abundance and favorable 

thermoelectric properties. 

The primary goal of this study is to provide two novel QHAs, namely ZrTiRhGe and 

ZrTiRhSn. First-principal simulations are used to study the structural, electronic, 

thermodynamic, mechanical, and thermoelectric properties of these two QHAs. The semi-

classical Boltzmann theory is performed to study the transport coefficients (S, 𝜎, 𝜅𝑒and PF), 
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while the Slack model is used to compute the 𝜅𝐿 value. As far as we know, there have been no 

studies undertaken on these two novel QHAs. The remainder of the paper is arranged as follows: 

Section 2 contains the computational methodology. Section 3 provides the results and 

discussions. Finally, the conclusion is delivered in section 4.  

7.2 Computational methodology 

 The Vienna ab initio simulation code (VASP) with projector augmented wave technique 

is used in these calculations [41]. The cutoff energy is chosen to be 500 eV, while the total 

energy tolerance is set as 10-8 eV. To compute the formation energy for the structure, we used a 

20 × 20×20 k-point mesh. The results of the investigations of dynamical stability are achieved 

using the phonopy package [105], which is based on VASP code, and used a supercell structure 

of  4×4×4 with a k-point mesh of 4×4×4. The optimized structural parameters obtained by VASP 

code are  then utilized to calculated the total energy by using the full-potential linearized 

augmented plane wave (FP-LAPW) technique as performed in the WIEN2K code [71]. The 

Perdew-Burke-Ernzerhof(PBE) of generalized gradient approximation (GGA) is used to address 

the exchange- correlation potential [43]. The total energy is selected as 10-4Ry and force 

tolerance is set to be 1mRy/a.u. The electronic transport parameters (S, 𝜎, 𝜅𝑒 and PF) of 

ZrTiRhZ (Z=Ge and Sn) QHAs are calculated using the BoltzTrap code [46]. The S, 𝜎, 𝜅𝑒 

parameters can be calculated as follows [101][20]: 

𝑆𝛼𝛽(𝑇; 𝜇) =
1

𝑒𝑇𝛺𝜎𝛼𝛽(𝑇; 𝜇)
∫  𝜎‾𝛼𝛽(𝜀)(𝜀

− 𝜇) [−
𝜕𝑓0(𝑇; 𝜀)

𝜕𝜀
] 𝑑𝜀 

Equation104 

 

𝜎𝛼𝛽(𝑇, 𝜇) =
1

𝛺
∫  𝜎‾𝛼𝛽(𝜀) [−

𝜕𝑓0(𝑇, 𝜀, 𝜇)

𝜕𝜀
] 𝑑𝜀 Equation105 
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𝑘𝛼𝛽(𝑇; 𝜇) =
1

𝑒2𝑇𝛺
∫  𝜎‾𝛼𝛽(𝜀)(𝜀 − 𝜇)2 [−

𝜕𝑓0(𝑇; 𝜀)

𝜕𝜀
] 𝑑𝜀 Equation106 

 

where α and β are tensor indices; Ω, 𝑓0, 𝑒, and μ refer to unit cell volume, the Fermi-Dirac 

distribution function, electronic charge, and the chemical potential, respectively. These electronic 

transport coefficients are calculated by using a k-point mesh of 36×36×36 and carried out by 

utilizing the constant relaxation time approximation(τ) of 0.5×10-15s. This τ value was utilized in 

similar computations[[100], [19], [158]]. 

To calculate the 𝜅𝐿, we used the Slack model which is given as [[132], [133], [137]]:  

𝜅𝑙 = 𝐴
𝑀̅Θ𝐷

3 𝑉1/3

𝛾2𝑛2/3𝑇
 Equation107 

 

Here A, 𝑀̅, 𝛩𝐷 , V,  𝛾,  n and T represent the anisotropy constant (A =
2.43×10−6

1−
0.514

𝛾
+

0.228

𝛾2

 ) [137], average 

atomic mass, acoustic-mode Debye temperature, volume per atom, Grüneisen parameter, number 

of atoms in the primitive unit cell, and absolute temperature, respectively. We employ the PBE 

functional by using VASP code to calculate the elastic constant of ZrTiRhZ (Z=Ge and Sn) 

QHAs to obtain the 𝛩𝐷 and 𝛾 parameters. The 𝛩𝐷 and 𝛾 parameters are found using the 

following equations[137] [158]: 

Θ𝐷 =
ℎ

𝑘𝐵
(

3𝑛𝜌𝑁𝐴

4𝜋𝑀
)

1/3

𝑣𝑚 Equation108 

 

𝛾 =
9 − 12(𝑣𝑡/𝑣𝑙)2

2 + 4(𝑣𝑡/𝑣𝑙)2
 Equation109 
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The parameters h, 𝜌, 𝑁𝐴, kB, and M refer to the Planck constant, density, Avogadro’s number, 

Boltzmann constant, molecular weight, respectively, while 𝑣𝑚, 𝑣𝑙 and  𝑣𝑡 refer to the average, 

transverse, and longitudinal sound velocities, respectively, given by Ref. [158]: 

𝑣𝑚 = [
1

3
(

2

𝑣𝑡
3 +

1

𝑣𝑙
3)]

−1/3

 Equation110 

 

𝑣𝑙 = √
3𝐵+4𝐺

3𝜌
   Equation111 

 

𝑣𝑡 = √
𝐺

𝜌
   Equation112 

 

After finding the 𝛩𝐷 and 𝛾 parameters, these finding can be used to plug into Equation (5) to 

obtain the 𝜅𝑙. 

7.3 Results and discussion 

In this section, the structural, phonon, elastic, thermodynamic, electronic, magnetic, and 

thermoelectric properties are investigated for ZrTiRhZ (Z=Ge, Sn) quaternary Heusler alloys. 

7.3.1 Structural properties 

The crystal structure of the QHAs is a face-centered cubic Y-type structure (LiMgPdSn) 

and these alloys have the space group of 𝐹43𝑚 (no. 216). Based on the symmetry, there are 

three types of the lattice structure in QHAs, namely Y-Type-I, Y-Type-II, Y-Type-III. The site 

occupations for ZrTiRhZ (Z=Ge and Sn) QHAs are calculated using the same method as the 

previous investigations [[91], [158], [17]] which are exhibited in Table 13 and Figure 31. 

Standard energy minimization approaches were used to determine the ground state structures, 

where Type-III structure was found to be the most stable structure for these two alloys, see Table 

14.  
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Figure 31. The conventional cells in the three types of structures (type-I, type-II, and type-III) of 

ZrTiRhZ (Z=Ge, Sn) quaternary Heusler alloys. 

 

Table 13. The Wyckoff positions 4a (0,0,0), 4c (1/4,1/4,1/4), 4b (1/2.1/2,1/2), 4d (3/4,3/4,3/4) of 

the atoms in ZrTiRhZ quaternary Heusler alloys for three types of structures. 

Y-Type 4a (0,0,0) 4c (1/4,1/4,1/4)  4b (1/2,1/2,1/2) 4d (3/4,3/4,3/4) 

Type (I) Zr Ti Rh Z (Ge and Sn) 

Type (II) Zr Rh Ti Z (Ge and Sn) 

Type (III) Rh Zr Ti Z (Ge and Sn) 

 

The formation energy of these two alloys is used to investigate their thermodynamic 

stability using the following equation: 

𝐸𝑓𝑜𝑟𝑚  =  𝐸𝑡𝑜𝑡 − (𝐸𝑍𝑟
𝑏𝑢𝑙𝑘 + 𝐸𝑇𝑖

𝑏𝑢𝑙𝑘 + 𝐸𝑅ℎ
𝑏𝑢𝑙𝑘 + 𝐸𝑍= 𝐺𝑒,𝑆𝑛

𝑏𝑢𝑙𝑘 )   Equation113 

 

Here Etot refers to the total energy per formula unit of ZrTiRhGe, ZrTiRhSn alloys and 

𝐸Zr
𝑏𝑢𝑙𝑘, 𝐸Ti

𝑏𝑢𝑙𝑘, 𝐸Rh
𝑏𝑢𝑙𝑘, 𝐸𝑍= Ge,Sn

𝑏𝑢𝑙𝑘  are the equilibrium total energies per atom in their individual bulk 

structures. The results show that ZrTiRhZ QHAs are thermodynamically stable since all of 

energies are negative in their type-III structure, see Table 14. The lattice parameters of 

ZrTiRhGe, ZrTiRhSn alloys were found to be 6.43 Å and 6.64 Å. These results are in agreement 

with previous theoretical calculations of VTiRhGe (6.13 Å) and VTiRhSn (6.35 Å)[100]. These 

results show that the lattice parameter increase as the atomic number of Z (Z=Ge and Sn) 

increases.  
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Table 14. The total and formation energies in eV of ZrTiRhZ quaternary Heusler alloys in the three 

types of structures. 

 Y-Type-(I) Y-Type-(II) Y-Type-(III) 

ZrTiRhGe    

Total energy (eV) -29.47 -30.02 -30.11 

Formation energy (eV) -1.67 -1.66 -2.13 

ZrTiRhSn    

Total energy (eV) -28.40 -28.75 -29.24 

Formation energy (eV) -1.58 -1.57 -2.04 

 

7.3.2 Phonon calculations  

This subsection presents the phonon dispersion curves (PDCs), partial density of states 

(PDOS) of phonon and the group velocity of ZrTiRhZ (Z=Ge, Sn) in their stable Y-type-III 

structure, see Figure 32. The PDCs are important in understanding the dynamical stability of 

structures [159][160]. The four atoms of these two QHAs in their unit cell produce three acoustic 

and nine optical branches, resulting in a total of twelve phonon branches. The three acoustic 

branches have two transversal (TA1 and TA2) and one longitudinal (LA) branches. Both 

ZrTiRhGe and ZrTiRhSn QHAs exhibit no imaginary (negative) frequency in their PDCs. Thus, 

the positive phonon frequency in the PDCs reveal that these two QHAs are mechanical stability, 

see Figures. 32 (a) and (d). The PDOS of phonon in Figures 32 (b) and (e), which show that the 

low- frequency region is dominated by Rh , Zr, and Z (Z=Ge and Sn) atoms, whereas the Ti atom 

exhibits a higher contribution in the high frequency region of ZrTiRhZ alloys. The group 

velocity of these two QHAs is shown in Figures 32 (c) and (f). From these figures, one can 

notice that the group velocity values in the low-energy region (acoustic branches) are greater 

than those of the high-energy region (optical branches).  Based on the relation between the lattice 

thermal conductivity and the group velocity ( 𝜅𝑙 ∝ 𝑣𝑔), the contribution of low-energy region to 

the 𝜅𝑙 should be greater than that of high-energy region. 
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7.3.3 Elastic properties 

The elastic constants are critical quantities that can explain the material properties. These 

constants are inextricably linked to a variety of fundamental solid-state phenomena, including 

interatomic bonding, and phonon spectra. Additionally, they can describe the thermodynamic 

properties of materials such as the specific heat, Debye temperature, and thermal expansion. 

Most significantly, understanding these constants are necessary for a wide variety of applications 

using the mechanical properties[161].  

Due to the cubic symmetry of ZrTiRhZ (Z=Ge, Sn) QHAs, there are three independent 

elastic parameters, namely C11, C22, and C44. Based on these parameters, the mechanical stability 

of these two QHAs in their stable structure are investigated. The following formula define the 

Born and Huang mechanical stability criteria for cubic crystals of materials[108]:   

  𝐶44 > 0 , (𝐶11 − 𝐶12) > 0,  (𝐶11 + 2𝐶12) > 0, and 𝐶12 < 𝐵 < 𝐶11 Equation 114 

According to the aforementioned formula, the material is considered to be mechanically stable if 

these conditions are fulfilled by its elastic constants [162]. The calculated C11, C22, and C44 

elastic constants are listed in Table 15, which show that both ZrTiRhGe and ZrTiRhSn QHAs are 

mechanically stable.  

High bulk, Shear and Young’s moduli indicate that the materials are strong enough to 

resist volume deforming or direct compressing when influenced by external stress. The bulk 

(Shear) modulus values of ZrTiRhGe and ZrTiRhSn alloys are found to be 142.3 (58.5) GPa and 

135.7 (48.4) GPa, respectively, see Table 15. From these results, the bulk and Shear moduli of 

ZrTiRhGe alloy are higher than those of ZrTiRhSn, which means that ZrTiRhGe alloy is a stiff 

material. The Pugh’s ratio (B/G) values of  ZrTiRhGe and ZrTiRhSn alloys are 2.42 and 2.80, 

respectively, which are more than the standard value (B/G > 1.75 [116]), see Table 15. These 
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results indicate that these materials have a ductile nature behavior, which are in good agreement 

with other previous calculations [91][163]. In addition, Cauchy pressure (Cp) is calculated as 

Cp=C12-C44. When the material has a positive (negative) Cp value, it means that it has a metallic 

(covalent) bonding. The Cp values of the two QHAs are found to be positive, which means that 

these alloys have a metallic bonding, see Table 15. Moreover, the anisotropy (A) of these QHAs 

are calculated by using the cubic symmetry formula:  A=2C44/(C11- C12). The material is 

considered to be isotropic if its A value equals 1, otherwise it is anisotropic. The calculated A of 

ZrTiRhGe and ZrTiRhSn alloys are found to be 0.87 and 0.76, respectively, see Table 15, which 

means that both alloys are anisotropic.  

Melting temperature (Tm) is another essential parameter, which can be obtained from the elastic 

constant C11. The Tm can be calculated as [145][118]: 𝑇𝑚𝑒𝑙𝑡 = [553 𝐾 + (
5.91 𝐾

𝐺𝑃𝑎
) 𝐶11] ± 300 𝐾. 

The Tm values are 1794±300 𝐾 and 1871±300 𝐾 for ZrTiRhGe and ZrTiRhSn QHAs, 

respectively, see Table 15. From this table, one can notice that the Tm values increase with 

increasing C11. 
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Figure 32. The phonon dispersion curves (PDCs), partial density of states (PDOS) of phonon and 

the group velocity of ((a)-(c)) ZrTiRhGe and ((d)-(f)) ZrTiRhSn quaternary Heusler alloys. 

 

Table 15. The elastic constants Cij (GPa), bulk modulus B (GPa), isotropic shear modulus G (GPa), 

Young’s modulus E (GPa), Pugh’s ratio B/G, Cauchy pressure Cp (GPa), anisotropy factor A, and 

melting temperature Tmelt (K) for the stable Y-type-III structure of ZrTiRhZ quaternary Heusler 

alloys. 

Physical parameter ZrTiRhGe VTiRhSn 

C11 (GPa) 210.1 223.1 

C12 (GPa) 106.4 86.8 

C44 (GPa) 45.4 52.3 

B (GPa) 142.3 135.7 

G (GPa) 58.5  48.4 

E (GPa) 153.6 130.4  

B/G 2.42 2.80 

CP (GPa) 61 43.5 

A 0.87 0.76 

Tmelt ±300(K)  1794 1871 
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7.3.4 Thermodynamic properties 

The thermodynamic properties can provide detailed information about the materials 

behavior when subjected to extreme condition such as high temperatures. Here, we calculated the 

acoustic-mode Debye temperature (𝛩𝐷), and Grüneisen parameter (𝛾) of ZrTiRhZ (Z=Ge, Sn) in 

their stable structure by using elastic constants, see Table 16. Moreover, the heat capacity (Cv) of 

ZrTiRhZ (Z=Ge, Sn) QHAs in their stable structure is calculated by using the quasi-harmonic 

Debye model [72], in the temperature range (0-800K), see Figure 33. 

 Generally, a higher 𝛩𝐷 value refers to a higher thermal conductivity[161]. The 𝛩𝐷 values 

of ZrTiRhGe and ZrTiRhSn are estimated to be 325.7 K and 338.2 K. These results are smaller 

than the similar QHAs investigated previously[158][161]. Another parameter is 𝛾, which is a 

dimensionless parameter that determines the thermal state of material and the presence of 

convection. The 𝛾 values are found to be 2.13 and 1.87 for ZrTiRhGe and ZrTiRhSn, 

respectively. The Cv parameter can provides information about the phase transition and lattice 

vibrations. It is also useful in determining the nature and increase of atomic vibration owing to 

heat absorption. Figure 33 show that Cv (at about 300K) has the same behavior for both 

ZrTiRhGe and ZrTiRhSn QHAs. which increases until reaching a constant value known as the 

Dulong-Petit limit. These results are in agreement with previous calculations of TiVFeX(X=Al, 

Si, and Ge)[164]. Additionally, Table 16 presents the average ( 𝑣𝑚), transverse (𝑣𝑡), and 

longitudinal (𝑣𝑙  ) sound velocities and density (𝜌) of both ZrTiRhGe and ZrTiRhSn QHAs. The 

present finding can be used to anticipate future experiments.  
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Table 16. The Debye temperature 𝜣𝑫 (K), average sound velocity 𝒗𝒎 (m/s), transverse sound 

velocity 𝒗𝒕 (m/s), longitudinal sound velocity 𝒗𝒍 (m/s), density ρ (kg/m3), and Grüneisen 

parameter γ for ZrTiRhZ quaternary Heusler alloys. 

 

 

Figure 33. The heat capacity as a function of temperature for ZrTiRhZ (Z=Ge, Sn) quaternary 

Heusler alloys. 

7.3.5 Electronic and magnetic properties  

 The predicted band structures and total density states (TODS) of ZrTiRhZ(Z=Ge, Sn) for 

majority and minority- spin channels in the stable Y-type-III structure are plotted in Figure 34. 

Figures 34 (a) and (c) show that the majority-spin channels in both alloys exhibit a metallic 

behavior, whereas the minority-spin channel is semiconducting with indirect band gaps, where 

the conduction band maximum is located between Γ and X points, while the valence band 

minimum is at Γ point. Therefore, these alloys are considered to be half-metallic, in agreement 

with similar ZrTiCrX(X=Al, Ga, and In) alloys [165]. The electronic structure and the energy 

Physical parameter ZrTiRhGe VTiRhSn 

𝛩𝐷 325.7 338.2 

𝑣𝑚 2797 2994 

𝑣𝑡 2489 2677 

𝑣𝑙 5147 5115 

𝜌 7810 8176 

𝛾 2.13 1.87 
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band gap in minority-spin channel are presented in Table 17. Figures. 34(b) and (d) depict the 

computed TDOS of these two QHAs, which can help to provide a better understanding of the 

electronic properties. From these figures, one can see that there is an absence of the electronic 

states at the Fermi level in the minority-spin channel unlike the case of the majority-spin channel 

for both alloys. Thus, these two alloys exhibit excellent spin polarization of 100%, which is 

calculated as:  

𝑃 =
𝑁↑(𝐸𝑓)−𝑁↓(𝐸𝑓)

𝑁↑(𝐸𝑓)+𝑁↓(𝐸𝑓)
 𝑋 100   Equation115 

 

Here 𝑁↑(𝐸𝑓) and 𝑁↓(𝐸𝑓) are TDOS of the majority and minority-spin density at the Fermi 

energy (𝐸𝑓), respectively. These results confirm that these two alloys are a half-metallic 

behavior, which can be promising for the spintronic applications.  

Table 17 presents the total and local magnetic moment of ZrTiRhZ (Z=Ge, Sn) in the 

stable Y-type-III structure. The total magnetic moment value was found to be 3 𝜇𝐵. These two 

alloys have 21 valence electrons and their total magnetic moment of 3 𝜇𝐵, which obey the Slater-

Pauling equation as follows: 

𝑀𝑡𝑜𝑡 = (𝑍𝑡𝑜𝑡 − 21) μB   Equation116 

 

Here 𝑀𝑡𝑜𝑡  is the total magnetic moment and  𝑍𝑡𝑜𝑡 refers to the number of the total valence 

electrons. The values of local magnetic moment of Zr, Ti, Rh, Ge and Sn were found to be 

ferromagnetically coupled. In addition, the Ti atom in two ZrTiRhGe and ZrTiRhSn alloys 

exhibits the highest local magnetic moment of 1.59 μB and 1.58 μB, see Table 17.  

One of the approaches for estimating the Curie temperature is to use the linear 

relationship between Curie temperature and total magnetic moments, as shown in the following 

equation [[125],[115],[126]]:  
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𝑇𝐶 = 23 + 181𝑀𝑡𝑜𝑡   Equation117 

 

 The ZrTiRhZ(Z=Ge, Sn) in the stable Y-type-III structure have a Curie temperature of 

566K, which is greater than the ambient temperature. As a result, these two alloys are suitable 

for spintronic devices. 

Table 17. The band gap values Eg(eV), spin-polarization P (%), total magnetic moment Mtotal (μB), 

local magnetic moments per atom Mi (μB) (i = Zr, Ti, Rh, Z) and the electronic structure of 

ZrTiRhZ (Z= Ge, Sn) quaternary Heusler alloys. 

Alloys Eg P% Mtotal 

(μB) 

MZr  

(μB) 

MTi 

(μB) 

MRh 

(μB) 

MZ 

(μB) 

Electronic 

structure 

ZrTiRhGe 0.98 

(Minority) 

100 3.00 0.40 1.59 0.18 0.01 Half-metallic  

ZrTiRhSn 0.99 

(Minority) 

100 3.00 0.39 1.58 0.16 0.004 Half-metallic  
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Figure 34. The electronic band structures and total density of states (TDOS) of ((a), (b)) ZrTiRhGe, 

and ((c), (d)) ZrTiRhSn quaternary Heusler alloys. The solid and dotted lines correspond to the 

majority and minority spin channels, respectively. 

 

 

7.3.6 Thermoelectric properties 

This subsection discusses the thermoelectric properties of ZrTiRhZ (Z=Ge, Sn) in their 

stable structure. The total S and 𝜎 of the majority and minority- spin channels were calculated 

using the two-current theory, which are represented as [149]: 𝑆 =
𝑆↑ 𝜎↑+𝑆↓ 𝜎↓

𝜎↑+𝜎↓
 , here 

𝑆↑ (𝑆↓) and 𝜎↑ (𝜎↓) describe the Seebeck coefficient and electrical conductivity for the majority 

(minority) spin channels, respectively.  

Figures 35 (a) and (b) show the total S as a function of the chemical potential at T=300K 

and 800K. These figures show that the total S values increase at a higher temperature. Around 

Fermi level, the ZrTiRhGe alloy has the highest S values at two the temperatures. The total 𝜎 as 
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a function of the chemical potential at 300K and 800K is depicted in Figures 35 (c) and (d). 

From these figures, one can notice that the total 𝜎 values of the n-type are observed to be greater 

than that of the p-type. Additionally, it is revealed that temperature has a minor influence on the 

total 𝜎 values. Figures 35 (e) and (f) illustrate the power factor (PF) as a function of the chemical 

potential at (T=300K and 800K). As noticed in these figures, the values of the PF increase with 

increasing temperatures. The ZrTiRhGe alloy exhibited the highest PF values of 33.8×1011 Wm-

1K-2, and 27.7×1011 Wm-1K-2 for the p and n-types, respectively at 800K, which are higher than 

those of VTiRhSi (16.18×1011 Wm-1K-2), VTiRhGe(9.2×1011 Wm-1K-2), VTiRhSn(5.4×1011 Wm-

1K-2)and CoNbMnAl(6.95×1011 Wm-1K-2 ) [100][123].  

As seen in Figures 36 (a) and (b), the 𝜅𝑒 values behave similar to the 𝜎 values, which 

means that 𝜅𝑒 in n-type has higher values than the case of the p-type. This behavior can be 

related to the direct relationship between the 𝜎 and 𝜅𝑒 as calculated using the Wiedemann-Franz 

equation (𝜅𝑒  = 𝐿𝜎𝑇 ). However, the 𝜅𝑒 values are found to be higher for the higher temperature. 

The 𝜅𝑙 of ZrTiRhZ (Z=Ge, Sn) is plotted as a function of different temperatures in Figure 36 (c). 

From this figure, the 𝜅𝑙 values are found to decrease as the temperature. The 𝜅𝑙 values fof 

ZrTiRhGe alloy are found to be 2.32 W/mK and 0.87 W/mK at 300K and 800K, respectively. 

However, the 𝜅𝑙 values of ZrTiRhSn are 3.06 W/mK and 1.14 W/mK at 300K and 800K, 

respectively. These values are lower than those of comparable structures such as CoFeTiGe 

(𝜅𝑙=12.26 W/mK)[91]. 

Finally, the ZT values of ZrTiRhZ (Z=Ge, Sn) are calculated as a function of the 

chemical potential at two different temperatures (300K and 800K), see Figure 37 (a) and (b). 

Both QHAs alloys have higher values of ZT at 800K than those at 300K. The highest values of 

ZT at 300K (800K) are 0.81(2.92) for ZrTiRhGe alloy, while the lowest values of ZT at 300K 



 

102 

(800K) are 0.37 (0.51) are predicted for ZrTiRhSn alloy. These results are higher than that 

obtained for CoFeTiGe QHAs (ZT=0.57) in previous ab initio calculation [91]. From these 

results, we can predict that these two QHAs are promising materials for high-temperature 

thermoelectric devices.  

 

 
Figure 35. ((a), (b)) the Seebeck coefficient (S), ((c),(d)) electrical conductivity (σ), and ((e),(f)) 

power factor PF (S2σ) as a function of the chemical potential at temperatures of 300K and 800K 

for ZrTiRhZ quaternary Heusler alloys. 
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Figure 36. (a), (b) electronic thermal conductivity (κe) as a function of the chemical potential at 

300K and 800K and (c) the lattice thermal conductivity (κL) as a function of the temperature for 

ZrTiRhZ quaternary Heusler alloys. 
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Figure 37. The figure of merit (ZT) as a function of the chemical potential at 300K and 800K for 

ZrTiRhZ quaternary Heusler alloys. 

 

 

7.4 Summary  

  DFT calculations are performed to study the structural, dynamic, elastic, thermodynamic, 

electronic, magnetic, thermoelectric properties of ZrTiRhZ (Z=Ge, Sn) QHAs. These QHAs 

alloys are found to be stable in Type-III structure. The formation energies for these QHAs were 

calculated to confirm the stability and capability of experimental realization. The phonon 

dispersion curves (PDCs) show only positive frequencies, which mean that these alloys are 

dynamical stability. In addition, they are mechanically stability based on the Born and Huang 

criteria. The electronic structure of these two alloys shows a semiconductor behavior of 0.98 and 

0.99 in minority-spin channel for ZrTiRhGe and ZrTiRhSn alloys, respectively. The ZrTiRhSn 

and ZrTiRhGe alloys have ZT values of 0.51 and 2.92 at 800K, respectively. These two new 

ZrTiRhZ (Z=Ge, Sn) QHAs can be a promising candidate for high-temperature thermoelectric 

devices.  
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Chapter 8: Anharmonic effects on lattice dynamics and thermal transport of two-dimensional 

InTe Monolayer  

 

8.1 Introduction  

Lattice vibrations are considered to be one of the frontier research topics in materials 

science owing to  their success in predicting the dynamic, thermodynamic and thermoelectric 

properties of crystalline solids [166],[167]. The fundamentals of harmonic approximation (HA) 

have been very successful in the last few decades for predicting the thermodynamic properties. 

This method utilizes the second-derivative of the Born-Oppenheimer (BO) energy surface with 

the assumptions of relatively small atomic displacements [168]. The HA was sufficient for 

explaining the phonon dispersion curves, elastic properties, and lattice vibrations, but it fails to 

illustrate the anharmonic aspects such as the thermal expansion and the lattice thermal 

conductivity in crystalline solids [169].  

The anharmonic effects are introduced by the cubic and the higher-order terms of the BO 

surface energy. These terms describe the phonon-phonon scattering, the relationship between 

phonon dispersion and finite temperature, the lifetimes of phonons [170],[171] as well as the 

lattice thermal conductivity [170]. The anharmonic effects could be implemented using the 

density functional perturbation theory (DFPT) [169] and finite-displacement method [172], 

where cubic and higher order terms in finite-displacement method can be extracted from the 

force-displacement data. However, this method turns to be computationally expensive when the 

anharmonic order is increased due to the increase in range of adjacent atomic interactions 

[173],[174]. In contrary, the anharmonic self-energies are considered as small perturbations in 

the DFTP method. This method is found to be valid only in the presence of small self-energies 

and it is unlikely to produce reliable results for variously anharmonic systems. Because of the 
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imaginary frequencies of harmonic phonons, the DFPT fails in the high-temperature phase of 

ferroelectric materials [[175],[176],[177],[178]].  

To surmount this constraint, the anharmonic effects can be treated using the 

nonperturbative ab initio molecular dynamic (AIMD) methods [179],[180]. However, the 

drawback of these methods is due to the fact that most of them are based on Newton’s equation 

of motion, which cannot account for the zero-point vibrations. Therefore, these methods cannot 

be used at low temperatures. One type of AIMD methods is the temperature-dependent effective 

potential (TDEP) method [181],[182], which optimizes the effective harmonic force constants at 

finite temperatures. This method is efficient at elevated temperatures because it permits 

anharmonic terms to affect the phonon eigenvectors and the internal coordinate system. 

Although the TDEP works properly at finite temperatures, it fails in considering the zero-point 

vibrations at low temperatures. An alternative method of such AIMD methods is the self-

consistent phonon (SCP) theory, which includes the anharmonic effects by incorporating the 

quantum effect of phonons in a nonperturbative approach [[183],[184],[185]]. The development 

of the effective implementation of SCP theory was achieved by employing force constants of 

higher order harmonics that are derived by the application of compressive sensing lattice 

dynamics (CSLD) approach [186].  

The two-dimensional group III-VI monolayers have acquired a significant attention due 

to their promising thermoelectric properties at high temperatures [[187],[188],[189]]. For 

example, Mishra, at.al. predicted figure of merit (ZT) values of 1.01, 0.97, 0.90 for BSe, BS, 

BTe monolayers, respectively[190]. Moreover, a promising ZT value of 0.85 at 1100 K was 

predicted for GeTe hexagonal structure monolayer[191]. In addition, the transport properties of 

InTe two-dimensional monolayer were investigated using semiclassical Boltzmann Transport 
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Equation (BTE) [192]. In this study, Çınar et al predicted a lattice thermal conductivity and a ZT 

value of  0.31WK-1m-1 and 3.94, respectively, at 1000K [192]. These values are promising for 

thermoelectric applications at high temperatures. However, lack of knowledge regarding the 

anharmonicity of lattice and its impact on the phonon dispersion curves and 𝜅𝑙 values might lead 

to misleading information about the thermoelectric properties. The influence of lattice 

anharmonicity and finite temperature on thermal transport as well as the 𝜅𝑙 of the InTe 

monolayer has not been addressed yet, which is the motivation of the current work. We utilized 

an effective computational method based on SCP theory [[193],[194],[195]] to compute the 

temperature-dependent phonon frequencies and 𝜅𝑙  within a supercell by utilizing the interatomic 

force constants (IFCs). 

The paper is arranged as follows: a brief information about the methodology is presented 

in section 2. Section 3 presents the computational methods. The results and discussions of the 

temperature dependence of the anharmonic phonon, lattice dynamics, and thermodynamic 

parameters are presented in section 4 and conclusion is presented in section 5.  

8.2 Methodology   

8.2.1 Potential energy expansion: 

The Hamiltonian defines the dynamic of interacting nuclear system under the Born-

Oppenheimer approximation, which is given as H=T+U, where T and U refer to kinetic and 

potential energies of the system, respectively. The potential energy (U) of the system can be 

expanded in Taylor series with regard to the atomic displacements (u) as follows 

[[170],[193],[196]]: 

𝑈 = 𝑈0 + 𝑈2 + 𝑈3 + 𝑈4 + ⋯  Equation118 

 



 

108 

𝑈𝑛 =
1

𝑛!
∑  ⟨ℓ,𝑘,𝜇} Φ𝜇1…𝜇𝑛

(ℓ1𝜅1; … ; ℓ𝑛𝜅𝑛) ×

𝑢𝜇1
(ℓ1𝜅1) ⋯ 𝑢𝜇𝑛

(ℓ𝑛𝜅𝑛)  
Equation119 

 

Here, 𝑈𝑛, 𝑢𝜇(ℓ𝑘), and Φ𝜇1…𝜇𝑛
(ℓ1𝜅1; … ; ℓ𝑛𝜅𝑛) are the nth-order contribution to the potential 

energy, the atomic displacement of the atom 𝑘 in the ℓth cell along the 𝜇 direction, and is the 

nth-order interatomic force constant (IFC), respectively. The linear term 𝑈1 is neglected from Eq. 

(1) owing to the zero atomic forces at equilibrium. Only the quadratic term 𝑈2 is considered in 

the HA, whereas cubic, quartic, and higher-order terms are omitted. As a result, the Hamiltonian 

𝑈0 = 𝑇 +  𝑈2 can be expressed in terms of the harmonic phonon frequency ω.  The dynamical 

matrix can be constructed to calculate the ω as [193]: 

𝐷𝜇𝑣(𝜅𝜅′; 𝒒) =
1

√𝑀𝑘𝑀𝑘′
∑  ℓ′ Φ𝜇𝑣(ℓ𝜅; ℓ′𝜅′)𝑒𝑖𝑞⋅𝑟(ℓ′)  Equation120 

 

Here, 𝑀𝑘  refers to the mass of atom 𝜅,  Φ𝜇𝑣(ℓ𝜅; ℓ′𝜅′) represents the harmonic interatomic force 

constant, and 𝑟(ℓ′) represents the primitive translation vector of the lattice. The Harmonic 

phonon frequency can be determined by diagonalizing the dynamical matrix, which is given as 

[193],[72]: 

𝐷(𝑞)𝑒𝑞𝑗 = 𝜔𝑞𝑗
2 𝑒𝑞𝑗  Equation121 

 

Here the 𝑞 and  𝑗 represent the wave vector and the phonon modes index, respectively, and the 

ω𝑞𝑗 and 𝑒𝑞𝑗 are the phonon frequency and polarization vector of the phonon mode qj, 

respectively.   

8.2.2 Anharmonic self-energy and self-consistent theory 

The anharmonic contribution to the energy must be considered to explain the intrinsic 

scattering processes of phonon and the dependence of phonon frequency on temperature. The 
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anharmonic terms can be treated as a perturbation 𝐻′ if they are small in comparison to the 

harmonic terms (𝐻0 = 𝑇 + 𝑈0 + 𝑈2), which can be written as [[171],[193],[183]]: 

𝐻 = 𝐻0 + 𝐻′ ≈ 𝐻0 + 𝑈3 + 𝑈4  Equation122 

 

The higher-order terms  (n>4) are eliminated because of their negligible contribution as 

compared to the cubic- and quartic-order terms. Nonetheless, nonperturbative treatment is 

required while drawing comparison between anharmonic and harmonic terms. The SCP theory 

defines a nonperturbative technique for dealing with anharmonic renormalization of phonon 

frequencies [[197],[193],[183]]. The Hamiltonian in Eq. (5) is modified to get the SCP equation 

as: 

𝐻 = ℋ0 + (𝐻0 − ℋ0 + 𝑈3 + 𝑈4) = ℋ0 + ℋ′  Equation123 

 

where ℋ0 is the effective harmonic Hamiltonian ( ℋ0 =
1

2
∑  𝑞 ħΩ𝑞𝒜𝑞𝒜𝑞

†
) and Ω𝑞 is phonon 

frequency after renormalization, 𝒜𝑞 is the displacement operator, ħ refers to the Planck constant, 

and 𝑞 represents crystal momentum vector. The calculation of free energy system can be 

performed as the cumulative expansion of the term ℋ′. In addition, the principle of variation can 

be implemented using the first-order of SCP theory [171],[195]. The SCP equation can therefore 

be obtained as follows: 

Ω𝑞
2 = 𝜔𝑞

2 + 2Ω𝑞𝐼𝑞  Equation124 

 

𝐼𝑞 = ∑  𝑞1

ħΦ(𝑞;−𝑞;𝑞1;−𝑞1)

4Ω𝑞Ω𝑞1

[2n( Ω𝑞1)+1]

2
  Equation125 

 

Here, 𝜔𝑞 , 𝑎𝑛𝑑 Φ(𝑞; −𝑞; 𝑞1; −𝑞1)  represent to the harmonic phonon frequency and the fourth-

order IFC, and  𝑛̃𝑞1
=

1

𝑒

ħΩ𝑞1
𝑘𝐵 𝑇 −1

  represents Bose–Einstein (BE) distribution function, kB represents 
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Boltzmann constant and T represents absolute temperature. The anharmonic phonon frequencies 

Ω𝑞 can be found by using equations. (7) and (8).  

8.2.3 Lattice thermal conductivity 

The lattice thermal conductivity, 𝜅𝑙, plays a significant role in improving the figure of 

merit ZT in thermoelectric materials. It can be calculated using the Boltzmann transport equation 

within the relaxation time approximation (RTA) [171],[198] as follows: 

𝜅𝑙
BTE =

ħ2

𝑁𝑞𝑉𝑘B𝑇2
∑  

𝑞

𝜔𝑞
2𝑣𝑞 ⊗ 𝑣𝑞𝑛𝑞(𝑛𝑞 + 1)𝜏𝑞 Equation126 

 

Here, 𝑣𝑞 =
∂𝜔𝑞

∂𝑞
, is the group velocity,  𝑛𝑞 is distribution function of BE,  𝜏𝑞 is lifetime of quasi-

particle accompanying phonon frequency, and 𝑉 is volume of the unit cell.  The anharmonic 

effects are treated perturbatively. However, within the SCP theory the 𝜅𝑙  can be written 

as[171],[193]: 

𝜅̃𝑙
𝑆𝐶𝑃+𝐵𝑇𝐸 =

ħ2

𝑁𝑞𝑉𝑘B𝑇2
∑  

𝑞

Ω𝑞
2𝑣̅𝑞 ⊗ 𝑣̃𝑞𝑛̃𝑞(𝑛̃𝑞 + 1)𝜏̃𝑞 Equation127 

 

𝑣𝑞 =
∂Ω𝑞

∂𝑞
 Equation128 

 

𝑛̃q =  𝑛𝑞(Ω𝑞)  Equation129 

 

𝑣𝑞 and 𝑛̃q are the terms illustrating the renormalized phonon frequency Ω𝑞, and 𝜏̃𝑞 represents the 

renormalized lifetime illustrating the three-phonon scattering processes. 
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8.3 Computational methodology 

The calculations are performed using the density functional theory (DFT) as implemented 

in VASP package [41]. The Perdew-Burke-Ernzerhof (PBE) approximation with generalized 

gradient approximation (GGA) was used to treat the exchange correlation functional [40]. In 

these computations, the plane waves were expanded up to cut-off energy of 520 eV with a total 

energy tolerance of 10-6 eV. A k-point mesh of 20 × 20 × 1 is used with the van der Waals 

interactions included [199]. Along the z-direction, a 25 Å vacuum is included to avoid 

interactions between adjacent layers. These optimized parameters are then utilized for the 

electronic band structure calculations.  

The IFCs were extracted using a 5 × 5 × 1 supercell of InTe monolayer with 100 atoms. 

The finite-displacement method was utilized to extract the harmonic IFCs. Each atom is 

displaced from its equilibrium location by 0.01Å, which considers all potential nearest-neighbor 

interactions. The calculations were performed up to the nineth nearest neighboring atomic 

interaction for the cubic IFCs. The cubic interaction force constants were obtained by employing 

the ordinary least squares (OLS) fitting technique with the harmonic interaction force constants, 

as applied in the ALAMODE package[[193],[171],[200]], after the atomic forces on each of the 

displaced configurations were computed. The CSLD method [186] is used to extract the fourth-

order IFCs. This method is based on machine learning programs that have been addressed and 

applied in references [171],[193]. A 5× 5 ×1 supercell of InTe monolayer was used to perform 

the AIMD calculations at room temperature for 14000 MD steps with a 1.5 fs time step. fifty 

equally spaced atomic structures were obtained from the trajectory of AIMD models. 

Afterwards, all of the atoms in each of the atomic structures were randomly displaced by 0.1 Å. 

The atomic forces for these structures were then estimated through density functional theory 
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calculations. These computed atomic forces were then utilized to obtain the fourth-order of 

interaction force constants depending on the least absolute shrinkage and selection operator 

(LASSO) method [170] as follows: 

Φ̃ = arg 𝑚𝑖𝑛Φ  ∥∥𝐴Φ − ℱDFT∥∥2
2 + 𝛼 ∥ Φ ∥1,  Equation130 

 

where, Φ = [Φ1, Φ2, … , Φ𝑀]T is a vector composed of M linearly independent IFCs,  ℱDFT and  

𝐴 refer to the vector of atomic forces and the matrix of atomic displacements, respectively. The 

ideal value of the hyperparameter 𝛼 is obtained by using the cross-validation (CV) method. The 

harmonic term of interaction force constants is fixed to the values determined by the OLS 

approach, where the anharmonic term of interaction force constants is optimized by the LASSO 

regression step. After solving Eqs. (7) and (8), the predicted fourth-order IFCs were utilized to 

derive the anharmonic phonon frequency(Ω𝑞). Thermodynamic parameters are calculated with 

Ω𝑞 in this case. The specific heat capacity (Cv) is computed using the following formula: 

𝐶𝑉 =
𝑘B

𝑁𝑞
∑  𝑞,𝑗 (

ħΩ𝑞𝑗

2𝑘B𝑇
)

2

cosec ℎ2 (
ħΩ𝑞𝑗

2𝑘B𝑇
)  Equation131 

 

Here, 𝑁𝑞 is the number of q-points. 

8.4 Results and discussions 

8.4.1 Structural and electronic properties 

The two-dimensional InTe monolayer possesses a hexagonal crystal configuration with a 

space group 𝑃6𝑚2 (no. 187) containing four atoms in the primitive cell, as shown in Figure 38. 

The optimized lattice constant for this monolayer is found to be 4.39 Å, which is in agreement 

with previous ab initio investigations [201],[202], see Table 18. The vertical distance between 

telluride atoms (dTe-Te), the distance between indium and telluride atoms (dIn−Te), and the vertical 
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distance between indium atoms (dIn−In) of InTe monolayer are also presented in Table18. These 

results are comparable to other previous calculations [201],[202]. Figure 39 presents the 

electronic band structure along the high symmetry k-path and the Brillouin zone used in these 

calculations. Figure 39 (a) shows that InTe monolayer has an indirect band gap of 1.32 eV. The 

valence band maximum is found to be between K and Γ high- symmetry points, whereas the 

conduction band minimum is located at the Γ high- symmetry point. The calculated band gap 

value (1.32 eV) is found to be in agreement with previous theoretical investigations of 1.34eV  

[192], 1.32eV [202] and 1.29eV [203]. Moreover, the Figure 39 (b) presents the Brillouin zone 

with labeled high-symmetry points. 

 
Figure 38. Crystal structure of InTe monolayer: (a) top view, the primitive unit cell is indicated 

in yellow, where a1=a2. (b) side view. 

 

 

Table 18. The lattice constants (a), the distance between telluride atoms (dTe-Te), the distance 

between Indium and telluride atoms (dIn−Te), and the distance between Indium atoms (dIn−In) for 

the InTe monolayer. 

InTe monolayer a(Å) dTe-Te (Å) dIn-Te (Å) dIn-In(Å) 

This work  4.39 5.65 2.90 2.82 

Previous 

calculations 

4.38[201][202] 5.57[201], 

5.59[202] 

2.88[201], 

2.88[202] 

2.81[201], 

2.82[202]  
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Figure 39. (a)Electronic band structure for InTe monolayer along the high-symmetry points in the 

first Brillouin zone (Γ–M–K–Γ) (b) The Brillouin zone with labeled high-symmetry points. 

 

8.4.2 Anharmonic force constants using LASSO  

The SCP calculations were performed using the harmonic and fourth-order IFCs. The 

fourth-order IFCs were determined using the LASSO technique. For these calculations, 60 

displacement-force data sets were set employing AIMD. The four-fold cross-validation (CV) 

technique was used to examine the predictive accuracy of LASSO regression [204]. Figure 40(a) 

presents the relative error of the atomic forces as the hyperparameter (α) function. From this 

figure, one can see that the difference between the training and CV errors is negligible at large α. 

In addition, the CV error decreases by decreasing α and reaches to its minimum value of 

1.31×10-6. The value of α is represented by the dotted vertical line in the figure, which is selected 

as an estimate of the fourth-order IFCs to provide the optimal accuracy for the data sets. The 

number of non-zero fourth-order IFCs is presented in Figure. 40(b). With the optimal α value, 

the total number of non-zero fourth-order IFCs is found to be 4104, which is about 84% of the 

total number of fourth-order IFCs.  
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Figure 40. (a) Relative errors in the atomic forces and (b) the number of non-zero quartic IFCs 

with the hyperparameter (α). The dotted vertical line refers to the value of hyperparameter (α). 

 

8.4.3 SCF at finite temperature 

This subsection presents the phonon dispersion relation and total density of states (TDOS) of 

InTe monolayer with the Harmonic and SCF methods, see Figure 41. The calculations of the 

anharmonic frequencies were obtained using a 5 × 5 × 1 q-point grid. Through the SCP 

calculations, the dielectric constants and Born effective charges were used to account for the 

non-analytic correction. The unit cell of InTe monolayer has four atoms, which gives twelve 

phonon modes with three acoustic modes at lower frequencies, and nine optical modes at the 

higher frequencies, see Figure 41(a). The three acoustic modes consist of two in-plane 

(longitudinal (LA), and transverse (TA)), and one out-of-plane (flexural acoustic (FA)) modes. 

Near the Γ point, the LA and TA modes are linear, but the FA mode is flexural, which is 

comparable to other 2D monolayer materials such as ZrS2 [170], graphene [205] InY (Y= Se, Sn, 

and Te) [201] and phosphorene [206]. This flexural characteristic is common in two-dimensional 

structures [207]. These HA findings are in a good agreement with previous theoretical results 

[201]. The inclusion of the fourth order IFCs in the SCP technique leads to an increase in 

acoustic and optical modes of InTe monolayer. The HA phonon frequency of the low-energy 
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optical mode at M point is 48.54 cm-1, which increases to 50.23 cm-1 when the fourth order IFCs 

is included in the SCP method at 0 K. The phonon frequency reaches 50.71 cm-1 at room 

temperature as shown in Table 19 due to the temperature-dependent factor Iq that is included in 

the SCP calculations, see equations (7) and (8). Figure 41(b) presents the phonon TDOS as a 

function of frequency. In general, the contribution of the individual atomic masses to the lattice 

vibrations in a compound is crucial. The heavier atom contributes more to the phonon frequency 

of low-energy acoustic mode, and the lighter atom contributes more to the phonon frequency of 

the high-energy optical mode [208]. As seen in Figure 41 (b), there are two peaks one in the 

phonon frequency of low-energy acoustic mode and another in the phonon frequency of high-

energy optical mode, which belong to the heavier atom of Te and the lighter atom of In, 

respectively.  

 

Table 19. Phonon frequencies (cm-1) of the low-energy optical modes for InTe monolayer 

investigated utilizing different methods. 

Phonon branches HA SCP (at 0 K) SCP (at 300 K) 

4 48.54 50.23 50.71 

6 91.34 92.15 92.22 
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Figure 41. (a) Phonon dispersion relation and (b) the phonon DOS for the InTe monolayer obtained 

with the harmonic and SCP lattice dynamics. 

 

 

8.4.4 Thermodynamic parameters 

This subsection presents the specific heat capacity (Cv), mean-square displacement 

(MSD), total vibrational free energy (Etotal), phonon mode-dependent Grüneisen parameter (γqj), 

cumulative phonon group velocities (𝑣𝑔), and phonon lifetime (τ) of InTe monolayer. The Cv is a 

significant thermodynamic variable that contributes directly to the 𝜅𝑙  (𝜅𝑙 ∝ 𝐶𝑣). Figure 42(a) 

depicts the change in Cv with temperature using the SCP method. This figure shows low Cv 

values at low temperatures, which indicates a lower contribution to the 𝜅𝑙. A similar behavior 

was reported for BaZrS3 chalcogenide perovskite [209]. The MSD of atoms in a system is an 

essential parameter that indicates their divergence from the equilibrium position. The average 

mean-square displacement tensor of atom k is calculated as follows [170]: 
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⟨𝑢𝜇
2(𝑘)⟩ =

ħ

𝑀𝑘𝑁𝑞
∑  𝑞,𝑗

1

Ω𝑞𝑗
|𝑒𝜇(𝑘; 𝑞𝑗)|

2
(𝑛̃𝑞𝑗

+
1

2
)  Equation132 

 

Here, 𝑀𝑘, and 𝑒𝜇(𝑘; 𝑞𝑗) refer to the atomic mass of atom k, and the corresponding atomic 

polarization. Figure 42(b) shows that the MSD value increases with temperature, which can be 

attributed to the enhanced heating impact at higher temperatures. This increase in MSD of 

thermal vibrations leads to a reduction in the thermal transport. The MSD value of In atom is 

found to be higher than that of Te atom due to the inverse proportionately between the mass and 

atomic displacement as shown in equation 13. This behavior can be more prominent when the 

temperature increases. In Figure 42 (c), the effect of the SCP correction on the free energy (ETotal 

= EQHA + ESCP)  is found to be insignificant at low temperatures (below 200 K), while it becomes 

more pronounced at higher temperatures. For example, the SCP correction energy, decreases 

from -2.2×10-4 eV at room temperature K to -1.9×10-3 eV at 800K. This reduction of the total 

vibrational free energy upon applying the SCP correction means that the system is more stable 

when the quartic anharmonicity is considered. This observation emphasizes the significance of 

anharmonic frequency renormalization in terms of thermal properties. 

 

 
Figure 42. (a) The specific heat capacity (Cv) and (b) the MSD for the In and Te atoms, and (c) 

free energies within the QHA and SCP correction for the InTe monolayer with the temperature. 
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 Another significant parameter that evaluates the anharmonicity of the structure is the γqj. 

Using cubic IFCs, this parameter is calculated as [170]: 

𝛾𝑞𝑗 = −
∂(log 𝜔𝑞𝑗)

∂(log V)
 Equation133 

 

where V refers to the volume. From equation 14, a positive value of γqj means that the frequency 

of the phonon mode decreases as a function of volume. Figure 43 (a) shows the computed γqj of 

InTe monolayer as a function of phonon frequency. For the harmonic lattice dynamics, γqj has 

negative and positive values in the low-energy region (acoustic phonon modes), while it has a 

positive value in the high-energy region (optical phonon modes). This trend of γqj in the case of 

InTe monolayer is similar to those of other systems such as Cu2O [210]. For the SCP, the value 

of γqj has a negative value in the low-frequency region and a positive value in the high-frequency 

region. This implies that phonon anharmonicity is greater in the case of acoustic phonon modes. 

According to the continuum theory [211],[210], this nature has a strong influence on the 𝜅𝑙  via 

phonon lifetime (𝜏)  as 𝜏𝑞𝑗
−1 ∝ 𝛾𝑞𝑗

2   [170]. Figure 43 (b) shows the 𝑣𝑔 of InTe monolayer as a 

function of phonon frequency. The 𝑣𝑔 values in the low-energy region are found to be greater 

than those of the high-energy region. As a result of the relation 𝜅𝑙 ∝ 𝑣𝑔, the contribution of low-

energy region to the 𝜅𝑙 should be greater than that of high-energy region. Another important 

variable is the phonon lifetime (𝜏), which is proportional to the 𝜅𝑙 according to 𝜅𝑙 ∝ 𝜏 

[171],[198]. Figure 43 (c) presents 𝜏 of InTe monolayer as a function of frequency at room 

temperature. From this figure, one can notice that the acoustic modes exhibit a longer phonon 

lifetime than that of the optical modes owing to the ratio of low phonon–phonon scattering. This 

indicates that the acoustic modes have a large impact in transporting most of the heat in InTe 

monolayer. This also plays a substantial contribution to the 𝜅𝑙. The average value of τ is found to 
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be 13.49 ps using SCP approach, while it is found to be 1.76 ps by using the harmonic approach. 

This can be attributed to the three-phonon scattering processes contained in the SCP lattice 

dynamics [170]. 

 
Figure 43. (a) Grüneisen parameter, (b) the cumulative phonon group velocity, and (c) the phonon 

lifetime of InTe monolayer with phonon frequency achieved with the harmonic and SCP lattice 

dynamics. 

 

 

8.4.5 Lattice thermal conductivity 

Figure 44 presents the lattice thermal conductivity (𝜅𝑙) spectrum and cumulative 𝜅𝑙 with 

phonon frequency of InTe monolayer at room temperature using the BTE and SCP + BTE 

approaches. The spectrum of thermal conductivity in Figure 44 (a) shows that there are two 

peaks of phonons below 70 cm-1. These two peaks are located in the acoustic and low energy of 

optical modes. Figure 44 (b) presents the cumulative 𝜅𝑙 as a function of phonon frequency. This 

figure shows that the contributions of phonons to the total thermal conductivity are about 91% 

and 97% using BTE and SCP + BTE approaches, respectively with frequencies lower than 70 

cm-1. However, the effect of higher frequency phonons (greater than 70 cm-1) is almost 

negligible. This indicates that the acoustic and low energy optical modes of InTe monolayer play 

a significant role in the 𝜅𝑙 value. This finding is in agreement with similar structures such as 
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InSe, GaSe and GaS monolayers[212] as well as silicon and germanium two-dimensional 

systems [213].  

 

 
Figure 44. (a) lattice thermal conductivity (κl) spectrum and (b) cumulative κl as with the phonon 

frequency of InTe monolayer at room temperature K achieved with the BTE and SCP + BTE 

approaches. 

 

Figure 45 depicts the contribution of several phonon branches to the 𝜅𝑙 values. The 

acoustic phonon modes (1 to 3 modes) and low energy optical modes (4 and 5 modes) have more 

contributions to the 𝜅𝑙 value than those of higher optical modes from 6 to 12 in both BTE and 

SCP + BTE approaches. Figure 46 presents the temperature dependence of κl value estimated by 

the standard BTE and SCP + BTE techniques of InTe monolayer. The 𝜅𝑙 computations were 

performed using a 100 ×100×1 q- points grid. The 𝜅𝑙 value is found to decrease as a function of 

temperature. in conformity with the conventional relationship ( 𝜅𝑙 ∝
1

𝑇
). In the case of the BTE 

method, the average 𝜅𝑙 value of InTe monolayer at room temperature was found to be 0.30 Wm−1 

K−1. This results is in agreement with a previous theoretical value of 0.31 Wm−1 K−1 using the 

same BTE approach [192]. The computed 𝜅𝑙 values using the SCP + BTE approach are found to 
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be significantly higher (91%) than those found using the standard BTE approach. At room 

temperature, the value of average 𝜅𝑙 is found to be 3.58 Wm−1 K−1 by using the SCP + BTE 

approach, which is larger than that of the experimental value of InSe (about 1.6 Wm−1 K−1)[214]. 

These difference in the 𝜅𝑙 values come from the difference in their phonon lifetime values. The 

higher τ values lead to the higher 𝜅𝑙 values, see equations (9) and (10). The SCP+BTE approach 

with the higher τ values also show higher 𝜅𝑙 values. These findings are consistent with previous   

anharmonic lattice dynamics calculations of SrTiO3 [193], Ba8Ga16Ge30[194], Ba8Si46 [215] and 

SCF3 [216] using the SCP + BTE technique, where the computed findings were in agreement 

with the experimental results.  

The SCP + BTE technique is considered to be more reliable than the standard BTE 

approach to estimate the 𝜅𝑙  value, which leads to a more accurate prediction of the 

thermoelectric figure of merit and power efficiency.  This can be related to the fact that the 

standard BTE method ignores the temperature reliance of phonon frequency and eigenvector. 

Therefore, it is unable to estimate the 𝜅𝑙 value of high-temperature phase transitions due to the 

imaginary modes within the HA.  
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Figure 45. The total lattice thermal conductivity (κl), contribution of the phonon branches to κl for 

InTe monolayer at room temperature K achieved with the BTE and SCP + BTE approaches. 

 

 

 
Figure 46. lattice thermal conductivity (κl) with temperature for the InTe monolayer achieved with 

the BTE and SCP + BTE approaches. 
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8.5 Summary  

The InTe lattice dynamical properties are calculated within the SCP +BTE theory. In 

these calculations, the CSLD technique is used to find the higher-order harmonic IFCs. The 

Nonperturbative SCP approach is used to obtain the temperature-dependent phonon frequencies 

renormalized with the quartic anharmonicity. The phonon dispersion curves using the SCP 

approach are slightly higher than those of the Harmonic approach. In addition, the cumulative κl 

values demonstrated that the most contribution of heat transfer is due to acoustic modes and low 

energy optical modes. Using the SCP + BTE approach, the 𝜅𝑙 values are found to be higher than 

those obtained using the standard BTE approach. The SCP + BTE approach is believed to be 

more valid and accurate than the standard BTE approach in predicting the   𝜅𝑙  value. This is due 

to the fact that the standard BTE approach eliminates the temperature reliance of phonon 

frequency and eigenvector. These results provide important insights into the effect of phonon 

anharmonicity on the lattice dynamics, thermodynamic properties and 𝜅𝑙  value of the two- 

dimensional InTe monolayer, which play a key role in determining the thermoelectric properties. 
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Chapter 8: Conclusion 

  

Calculations based on density functional theory (DFT) were undertaken to study the 

structural, dynamical, mechanical, electronic, and thermoelectric properties of Cd1-xZnxO alloys, 

VTiRhZ (Al, Ga, In, Si, Ge, Sn), ZrTiRhZ (Ge, Sn) quaternary Heusler alloys and two-

dimensional monolayer InTe. Furthermore, the thermoelectric properties were evaluated utilizing 

the semi-classical Boltzmann transport theory. For the investigation of Cd1-xZnxO alloys, we 

found that the Cd1-xZnxO alloys display semiconducting performance with direct and indirect 

band gaps in their wurtzite and rock-salt structures, respectively, according to the hybrid GGA-

mbj functional. For all structures of Cd1-xZnxO alloys, the maximum Seebeck coefficient and 

power factor values were obtained at 1200 K. 

 For the investigation of VTiRhZ and ZrTiRhZ quaternary Heusler alloys, we found that 

all alloys were estimated to be half-metallic ferromagnets and an excellent spin polarization of 

100%. However, the spin polarization of VTiRhAl alloy was exhibited zero. In addition, the total 

magnetic moment of alloys was shown integer value of 2 μB and 3μB. The finding of spin 

polarization and the total magnetic moment makes these alloys to be promising materials for 

spintronic applications. The figure-of-merit values of VTiRhZ and ZrTiRhZ quaternary Heusler 

alloys were arranged between 0.51 and 2.92 which can be favorable materials for future 

thermoelectric applications.  

Moreover, we investigate the influence of the lattice anharmonicity on the lattice thermal 

conductivity of InTe monolayer. The thermodynamic parameters are calculated by using the self-

consistent phonon (SCP) theory. The 𝜅𝑙  value of the InTe monolayer is obtained to be 0.30 

Wm−1 K−1 by using the standard Boltzmann transport equation (BTE) approach, while it is 3.58 

Wm−1 K−1 by using SCP + BTE approach. These results confirm the importance of the 



 

126 

anharmonic effects on the 𝜅𝑙 value, where it was found to be significantly higher (91%) using the 

SCP + BTE approach than that obtained using the standard BTE approach.  
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Appendix  

 

Appendix A: Description of Research for Popular Publication 

The unquenchable global quest for more dependable and secure energy sources has 

resulted in a dramatic increase in social and political instability. Many nations are strengthening 

their research and development efforts in order to produce a more sustainable energy option. 

Such efforts are designed at mitigating the environmental effects of the global climate change, 

which is growing increasingly alarming as a result of fossil fuel burning. Around 90% of the 

world's power is generated by thermal energy from fossil fuel burning. Production facilities 

normally function at 30-40% efficiency, dissipating approximately fifteen terawatts of energy to 

the environment as heat. Waste heat can be converted into usable power using thermoelectric 

generators. The quantity of heat generated by many industrial and residential operations, as well 

as automobile exhaust, might be converted to energy using thermoelectric devices. 

Thermoelectric devices could create electrical currents in the presence of heat gradients, making 

them potential power sources. Thermoelectric devices are solid-state devices that have no 

moving parts and are quiet, dependable, and scalable, making them suitable for small-scale 

electricity production. Electrical and thermal connections connect two dissimilar types of 

semiconductor materials in series and parallel to form a thermoelectric device. Based on this 

definition of thermoelectric devices, it is critical to identify thermoelectric materials with a high 

degree of efficiency. 

In this research, we are seeking new materials with optimal properties (structural, 

electronic, magnetic, and thermoelectric) for spintronic and thermoelectric applications to 

provide them to the world. Metal oxides are among the studied material, which are found to be 

very promising thermoelectric materials at elevated temperature because of their high melting 
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point and chemical stability at increased temperatures. Other investigated materials are the 

quaternary Heusler alloys, which exhibit unusual features such as high thermoelectric efficiency 

and half-metallic behaviors. These unusual features make them to be promising for 

thermoelectric and spintronic applications. The last investigated material belongs to the group of 

two-dimensional chalcogenides. This group has gained considerable interest in nano-photonics 

and nano-electronics, due to its superior optical, electrical, mechanical, and thermoelectric 

properties. 
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Appendix B: Executive Summary of Newly Created Intellectual Property 

As a result of this findings of the studies, newly created intellectual property should be 

considered as follows:  

1. Thermoelectric properties of the rock-salt and wurtzite of ZnxCd1-xO alloys. 

2. Thermoelectric properties of different quaternary Heusler alloys such as VTiRhZ (Z=Al, 

Ga, In, Si, Ge, Sn) and ZrTiRhZ (Z=Ge, Sn). 

3.  Anharmonic effects on lattice dynamics and thermal transport of two-dimensional InTe 

Monolayer. 
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Appendix C: Potential Patent and Commercialization Aspects of Listed Intellectual Property 

Items 

 C.1 Patentability of Intellectual Property (Could Each Item be Patented)  

1. Thermoelectric properties of rock-salt and wurtzite of ZnxCd1-xO alloys and different 

quaternary Heusler alloys, namely, VTiRhZ(Z=Al, Ga, In, Si, Ge, Sn) and 

ZrTiRhZ(Z=Ge, Sn) were studied by using density functional theory. These results could 

not be patented. 

2. Anharmonic effects on lattice dynamics and thermal transport of two-dimensional InTe 

monolayer were also studied by using density functional theory. These investigations 

could not be patented. 

C.2 Commercialization Prospects (Should Each Item Be Patented)  

N/A  

C.3 Possible Prior Disclosure of IP 

1. The findings of the studies have been published in preeminent peer-reviewed journals 

(see Appendix G). 
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Appendix D: Broader Impact of Research  

D.1 Applicability of Research Methods to Other Problems 

The findings of this study demonstrated that the rock-salt and wurtzite of ZnxCd1-xO 

alloys, quaternary Heusler alloys such as VTiRhZ (Z=Al, Ga, In, Si, Ge, Sn) and ZrTiRhZ 

(Z=Ge, Sn), as well as the two-dimensional InTe monolayer, may be employed as thermoelectric 

devices to convert thermal energy into electricity. Additionally, this quaternary Heusler alloys 

showed a perfect spin-polarization of 100% and half-metallic behavior, which make them to be 

promising materials for spintronic application, spin injector, spin-valve application, and 

magnetic tunnel junction.  

D.2 Impact of Research Results on U.S. and Global Society 

This proposed study in this dissertation can be contributed to the progress of alternative 

sources of energy such as thermoelectric and spintronic devices. The thermoelectric devices 

could be designed by two dissimilar semiconductor materials, which can convert thermal energy 

to power energy. This source of renewable power has the potential to minimize the dependency 

of our society on fossil fuels. This can benefit the environment and the economy, in addition to 

securing the energy demands of the society even when fossil fuels run out. This source can be 

used in a variety of fields, including power production, refrigeration, air conditioning, and 

biomedical equipments. 

D.3 Impact of research results on the environment 

One of the drawbacks of fossil fuels, as the primary source energy, is pollution. 

Therefore, researchers worldwide are seeking for other sources of power to help reduce this 

reliance. This study focuses on developing new materials with optimal magnetic and 
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thermoelectric properties for spintronic and thermoelectric applications. These applications are 

environmentally friendly because they do not emit gas emissions or poisonous liquids. 
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Appendix E: Microsoft Project for Ph.D Micro-EP Degree Plan 
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Appendix F: Identification of all software used in research and dissertation generation Computer 

#1: Personal Laptop 

 Model Number: 15-cs0061c1  

Serial Number: 5cd82545JD 

Owner: Hind Alqurashi 

Computer #2: Personal Laptop 

 Model Number: A1278  

Serial Number: C02H6023DV13 

Owner: Hind Alqurashi 

Computer #3: 

 Model Number: N/A  

Serial Number: N/A  

Owner: Prof. Bothina Hamad-Manasreh 

Software #1:  

Name: Ubuntu  

license: downloaded by Hind Alqurashi  

Software #2: 

 Name: XMGRACE  

license: downloaded by Hind Alqurashi  

Software #3: 

 Name: VESTA 

 Free license: downloaded by Hind Alqurashi 

Software #4:  
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Name: Mendeley 

Free license: downloaded by Hind Alqurashi 

Software #5:  

Name: Adobe Illustrator  

Purchased by: Hind Alqurashi 

Software #6: 

 Name: XCrySden 

 Free license: downloaded by Hind Alqurashi 

Software #7: 

 Name: VM VirtualBox  

 Free license: downloaded by Hind Alqurashi 

 

 

 

 

 

 

 

 

 

 

 

 



 

156 

Appendix G: All publications published, submitted, and planned Publications 

Publications published  

 

Part of Chapter 8 was originally published as: 

1. Alqurashi H, Pandit A, Hamad B (2022) Anharmonic effects on lattice dynamics and thermal 

transport of two-dimensional InTe Monolayer. https://doi.org/10.1016/j.mseb.2022.115823 

Part of Chapter 7 was originally published as: 

2. Alqurashi H, Haleoot R, Hamad B (2022) First-principles investigations of Zr-based 

Quaternary Heusler Alloys for spintronic and thermoelectric applications. Computational 

materials scinces. https://doi.org/10.1016/j.commatsci.2022.111477 

3. Sanjay E, Alqurashi H, Hamad B (2022) Lattice Dynamics, Mechanical Properties, Electronic 

Structure and Magnetic Properties of Equiatomic Quaternary Heusler Alloys CrTiCoZ (Z =Al,Si) 

using first principles calculations. https://doi.org/10.3390/ma15093128 

Part of Chapter 6 was originally published as: 

4. Alqurashi H, Haleoot R, Hamad B (2021) First-principles investigations of the electronic, 

magnetic and thermoelectric properties of VTiRhZ (Z= Al, Ga, In) Quaternary Heusler alloys. 

Mater Chem Phys 125685. https://doi.org/10.1016/J.MATCHEMPHYS.2021.125685. 

Part of Chapter 5 was originally published as: 

5. Alqurashi H, Hamad B (2021) Magnetic structure, mechanical stability and thermoelectric 

properties of VTiRhZ (Z = Si, Ge, Sn) quaternary Heusler alloys: first-principles calculations. 

Appl Phys A Mater Sci Process 127:1–11. https://doi.org/10.1007/S00339-021-04949-

0/FIGURES/6. 

Part of Chapter 4 was originally published as: 
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https://doi.org/10.1016/j.commatsci.2022.111477
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