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CHAPTER ONE 

1 Problem Background  

Diet-related chronic diseases are on the rise in the United States. Today, nearly 117 million people, thus 

about 50% of American Adults have one or more chronic diseases [1, 2]. Many of these diseases are 

preventable as they are related to poor quality dietary patterns of consumers [3-6].  Currently, the estimated 

health care cost of obesity-related illness is at a staggering $190.2 billion annually [7]. Looking forward, 

researchers stipulate that if consumer dietary patterns continue to go unchecked and the current trends 

persist, the medical cost of obesity related illness could rise by $48 to $66 billion in the United States by 

2030 [8]. Therefore, it is important to take pre-emptive actions to develop levers to reduce and control these 

conditions.  

Currently, there are several technology-based tools to help consumers record or monitor their dietary intake 

at set intervals. These tools include scanner-and-sensor based technologies [9, 10], web/computer-based 

technologies such as the Automated Self-Administered 24-hour dietary recall (ASA24) [11] or mobile 

technologies such as MyPlate [12]; or Lose It! [13]. While these tools allow consumers to track their diet, 

they require users to record the time and type of food usually after purchase. Besides, these tools do not 

satisfy the increasing consumer quest of consumers to know the environmental sustainability of their diets.    

Therefore, consumers need an easy-to-use tool grounded on the best science to provide decision support 

for real-time exploration of different food choices to improve health and environmental impact at the time 

of purchase, because when these tools or the information are deployed at the point of decision making, there 

is a higher chance of influencing consumer behavior [14]. 

Many interventions aiming to increase the consumption of healthier foods have been tested and 

implemented in recent years. Among the existing interventions and strategies, methods  targeted at 

consumers’ perception, instead of those that limit consumers’ choices, seem to have a greater impact on 

improving the effectiveness of healthy diet campaigns [15]. These methods are often associated with the 

term “nudge”, which refers to changing people’s behavior without the constraint of options [16]. Because 

the environment in which individuals make choices can be altered and influence the way the decision-

making processes occur, nudging focuses on enabling and changing behaviors and decisions that are 

beneficial for society (e.g., public health) rather than delivering information or changing the society’s values 

system. For example, a school cafeteria in New England (North America) asked their students—before they 

ordered their meals— whether they would have fruit or juice with their lunch, and the intervention resulted 

in 70% of students consuming one of those in opposition to 40% in the control group [17]. An intervention 

in a buffet restaurant in Denmark changed the sequencing design of its service combining and separating 
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fruits and vegetables. The change resulted in an increase of self-served fruits and vegetables while reducing 

the total calorie intake [18]. Gonçalves, Coelho [14] demonstrated how a social norm nudge, a message 

conveying fruit and vegetable purchasing norms positioned at strategic places in a Portuguese supermarket, 

affected the purchasing habits of consumers categorized as less healthy and healthy. The study measured 

1,636 customers over three months. The results demonstrate that the nudge intervention positively affected 

the purchasing habit of consumers categorized as less healthy while those with healthy habits were slightly 

negatively affected.  

With the ongoing sustainability-nutrition dilemma, the information used for implementing food choice 

nudge is essential. Research shows a poor understanding by consumers on the dynamic relationship between 

the dietary choice, the food ecosystem, and other interrelated systems [19-21]. This is because information 

which may be effective in improving consumer food choices, such as nutrition information, is complex and 

difficult to convey in a clear, actionable manner. Although consumers in the US [22] and Europe are 

knowledgeable about climate change [23, 24], they remain uninformed about the broader environmental 

impacts of their food choices [25, 26]. Therefore, simple, graphic, and easily understandable messaging 

will be critical to delivering a digital platform that promotes healthy and sustainable choice and supports 

chronic disease prevention. 

1.1 Main objective  

This project aims to use these identified opportunities to enhance the capacity of policymaker and consumer 

to make decisions about food production, supply and consumption based on nutritional quality, contribution 

to health, and environmental sustainability. 

1.1.1 Specific objective  

The overall objective of the project is to enhance the capacity of policymakers and consumers to make 

decision about food production, supply, and consumption by simultaneously considering nutrition quality, 

contribution to health and environmental sustainability.  This will be achieved through the following 

specific objectives:  

(a) Specific objective 1: To assess and articulate sustainable consumer dietary patterns and their 

correlation with human health, the environment and the socio-economic dimension of sustainability. 

(b) Specific objective 2: To multi-objectively model the risk to health and environmental impact under 

stringent mitigation policies.  

(c) Specific objective 3: To develop a sustainable healthy food choice platform that provides consumers 

numerical and pictorial data on nutritional quality, contribution to healthy living, environmental impact, 

and cost.  
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1.2 Justification 

Consumers' decisions on their food choices have been implicated in the rise of preventable chronic diseases 

with significant implication on both consumer health and national cost for treatment [27]. This is further 

complicated by increasing consumer desire for a sustainable diet [28]. However, current platforms offer 

one or the other, thus environmental enthusiasts may focus on sustainability at the expense of their health 

[1]. Providing a digital platform that leverages the benefits of both worlds is a great opportunity to enhance 

consumer health while meeting their sustainability goals. The current literature sufficiently supports the 

effectiveness of using informational and nudging techniques to reorient consumer behavior towards 

sustainable food consumption [29-31].  Therefore, implementing nudges using a novel digital technology 

based on the assumption that, by guiding people towards small, subtle adjustments in their daily dietary 

routines, we can cumulatively achieve considerable positive health and environmental impacts. The 

proposed platform, F-COD will: 

(a) Draw practical attention to the nutritional implications of diet choices and how it contributes to 

healthy living at the point of food choice/decision making.  

(b) Provide consumers environmental impact information of chosen foods (ecosystem quality and 

human health impact) 

(c) Provide an interactive avenue for environmental-nutrition trade-off analysis and comparison of 

different choices to enable consumers make informed decision. 

This technology presents an opportunity to integrate the present consumer food data and streams to drive 

consumer food choices towards sustainability and health. The technology will act as an intelligence hub 

between data, dynamic models and decision making, unlocking the true potential of consumer food 

expenditure data, improving  
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CHAPTER TWO  

2 Transitioning to sustainable healthy diets: A model-based and conceptual system 

thinking approach to optimized sustainable diet concept in the United States 

Prince Agyemang1, Ebenezer M. Kwofie1,4* and Jamie Baum2,3 
1Department of Biological and Agricultural Engineering, University of Arkansas, 203 Engineering Hall, 

Fayetteville, AR 72701, U.S.A. 
2Department of Food Science, University of Arkansas, 2650 N. Young Ave. 

Fayetteville, Arkansas 72704 
3Center for Human Nutrition, University of Arkansas System Division of Agriculture, 1371 W. Altheimer 

Dr., Fayetteville, Arkansas 72704 
4Bioresource Engineering Department, McGill University, 21111, Lakeshore Rd., Ste-Anne-de-Bellevue, 

QC, H9X 3V9, Canada 

 * Correspondence:  

Corresponding Author: Ebenezer M. Kwofie 

ebenezer.kwofie@mcgill.ca; Tel.: +1-514-398-7776 

Keywords: sustainable diet concepts; decision-making; system thinking; optimized diets; plant-

based diet patterns  

Abstract 

Food production and consumption are essential in human existence, yet they are implicated in the high 

occurrences of preventable chronic diseases and environmental degradation.  Although healthy food may 

not necessarily be sustainable and vice versa, there is an opportunity to make our food both healthy and 

sustainable.  Attempts have been made to conceptualize how sustainable healthy food may be produced and 

consumed; however, available data suggest a rise in the prevalence of health-related and negative 

environmental consequences of our food supply.  Thus, the transition from conceptual frameworks to 

implementing these concepts has not always been effective.  This paper explores the relative environmental 

and health risks associated with highly consumed food groups and develops a methodological workflow 

for evaluating the sustainability of diet concepts in the context of different health, socio-economic and 

environmental indicators. In addition, we apply the multi-criteria decision-making techniques (an integrated 

Analytic Hierarchy Process- Technique for order preference by similarity to ideal solution (AHP-TOPSIS) 

model) to examine the health and environmental impact of selected sustainable healthy diet concepts 

implemented in the United States.  The principal findings indicate that adopting plant-based diet patterns 

would benefit the environment and the population's health.  However, the up-scale, broad adoption and 

implementation of these concepts are hindered by critical bottlenecks.  Hence we propose potential 
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modification strategies through a conceptual system thinking approach to deliver optimized sustainable diet 

concepts to aid in the realization of the anticipated benefits of adoption/implementation.  

1 Introduction 

In the last 50 years, global diets have been increasingly viewed as not healthy or environmentally 

sustainable.  Instead, they are perceived to contribute to environmental degradation, natural resource 

depletion (for example climate change, biodiversity loss, increased freshwater consumption), and poor 

health [1].  

Today, in the United States, over 78 million people are estimated to be obese, with the presence of 

associated chronic diseases such as coronary heart disease, stroke, and type 2 diabetes [2].  These diseases 

are responsible for seven out of ten deaths in the United States, killing more than 1.7 million Americans 

each year.  In addition, about 18.2 million adults have coronary artery diseases [3], while nearly 37 million 

Americans have diabetes, with nearly 90-95% of this attributed to type 2 diabetes [4]. The high prevalence 

of obesity-related chronic diseases has been inexplicably linked with consumers' food choices and diet 

patterns. 

From an environmental sustainability perspective, at the global level, our present diet pattern is responsible 

for over 70% of global freshwater withdrawals, occupies nearly 40% of arable land on the earth, and 

contributes over 30% of anthropogenic greenhouse gas emissions (GHGE) [5].  As a result, it is the single 

greatest cause of eutrophication in water bodies (approximate 78% contribution), loss of biodiversity, and 

air pollution through increased atmospheric fine particulate matter[6].   

Acknowledging the existence of these challenges has led to the development of diverse views and concepts 

regarding sustainable healthy diets as an approach to tackling the trilemma existing between diets, human 

health, and environmental degradation.  The term sustainable healthy diets encompass two dimensions, 

namely environmental sustainability and healthiness of the diet.   This concept simultaneously integrates 

the environmental cost of food production and consumption with nutrient requirements in a socio-cultural 

and economic context within safe planetary boundaries [7].  In other words, a sustainable healthy diet aims 

to provide a diet that promotes optimal growth and development and supports the physical, mental, and 

social wellbeing of all people at different life stages for the present, without compromising the capacity of 

the future generation [8].  

Achieving a sustainable healthy diet in conjunction with the Sustainable Development Goals number 3 

(Good health and wellbeing) and 12 (Responsible consumption and production) has resulted in the 

proliferation of several concepts to guide local, regional, and government agencies.  Broadly, in the United 
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States, the U.S Department of Agriculture, in collaboration with other stakeholders and international 

organizations, has made and continues to make massive investments across varying visions of the future to 

achieve sustainable and healthy diets for all Americans.  Prominent among several concepts proposed are 

climate-smart agriculture, precision farming, Diet Guidelines for Americans, the Mediterranean diet, and 

the Eat Lancet Commissions diet recommendation of the Planetary Health Diet framework.  Additionally, 

other diet patterns, sustainable agricultural production schemes,  and global food initiatives have been 

fostered with varying resource consumption while improving human health and minimizing environmental 

impact [9].  These concepts were formulated on the premise that a simple shift in diet behavior or pattern 

can lead to potential reductions in environment-health impact.   

The research to date has confirmed the ramifications of sustainable diet concepts on either the health of 

people or one or more environmental indicators.  This is exemplified by the work undertaken by Reinhardt, 

Boehm [10], where the authors expanded on the sustainability outcomes of U.S. diet patterns with a specific 

focus on environmental indicators such as land use,  water consumption, energy use, and fertilizer use.  

Likewise, Mekonnen and Fulton [11] analyzed the consumptive water reductions for vegetarian, vegan and 

Healthy U.S diet styles.  A cohort study by Orlich, Singh [12] investigated the association of vegetarian 

diet and mortality, concluding that it is associated with reductions in all causes of mortality.  Other studies 

have also reported on the socio-economic aspects sustainable diet concepts. Springmann, Clark [13], 

reported that the adoption of flexitarian diets concept with less amount of meat and dairy reduced cost by 

14%, while pescatarian diets increased cost by 2% in high income countries such as the US, UK and 

Australia. In the same study, the authors associate vegan diet concept as the most affordable as it reduced 

food cast by up to one third, with the vegetarian diet close to second among other diet concepts.  In this 

regard high energy dense foods which can lead to health problems for people tend to be cheaper than highly 

nutritious foods such as fish and vegetables [14]. Collectively, these studies indicate a relationship between 

different diet concepts and reduction in either health impact of people or environmental impact. Despite the 

relative abundance of these sustainability concepts, herein lies a conundrum.  The transition from 

conceptual frameworks to implementing these concepts has not always been effective.  

Therefore, in the present work, we apply indicators covering human health, environmental sustainability, 

and socio-economic dimensions of sustainable food systems to evaluate the implementation pathways of 

sustainable healthy diet concepts implemented in the United States of America.  The result of the evaluation 

is input into an integrated Analytical Hierarchy Process-Technique for order preference by similarity to 

ideal solution (AHP-TOPSIS) decision-making framework to determine which: (1) indicator/ criteria is of 

high priority to consumers (2)  diet pattern concept has the highest nutrient adequacy and maximizes the 

potential of the prevention of diet-related chronic disease such as cardiovascular disease, obesity, and 
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diabetes, and (3) diet pattern concept has the minimum environmental footprint based on different 

descriptors.  Although some regionally oriented healthy diet concepts have different socio-cultural 

connotations and may not be considered as typical American diets, we leverage on the premise of their 

successful adoption in different parts of the world and their capacity to address nutritional inadequacy and 

environmental sustainability issues.  In addition, their improved health outcomes reported in many 

epidemiological, cohort, and life cycle assessment studies address environmental concerns serve as the 

premise to conduct the AHP-TOPSIS analysis.  The entire structure of the paper is as follows: Section two 

describes a rigorous four-step methodology for selecting a sustainable diet pattern and presents a workflow 

for implementing the AHP-TOPSIS decision model.  The third and fourth sections discuss the study's 

significant findings by providing a brief overview of the historical diet-health-environment trilemma, 

highlighting the relative environmental and health risk of taking additional servings per day of 15 highly 

consumed food groups.  The remaining part of the paper identifies barriers to implementing top-ranked diet 

concepts and provides modification strategies to selected case studies on different diet concepts.  

2 Method 

2.1 Methodological framework  

It is evident that the sustainable (environmental) health diet trilemma that we are currently facing is due to 

the choice of the population under the influence of diverse factors such as increased income and 

urbanization.  However, critical stakeholders have adopted and recommended many sustainable diet 

concepts due to the negative impact of people’s choices on their health and the environment.  Thus, to 

assess these diet concepts' efficiency and relative performance, this study adopts a methodological 

workflow to filter, evaluate, and seemingly predict the optimal effectiveness of implementing diverse 

sustainable and healthy diet concepts.  Figure 1 presents the methodological framework adopted for 

determining optimal sustainable diets in the United States.  In the first stage of the methodological 

framework, we highlight current diet choices' health and environmental impacts and present a historical 

trends of different impact categories such as GHGE, and overweight.  Next, we identify several sustainable 

diet concepts and develop rigorous inclusion and exclusion criteria to determine which of them apply to the 

geographical region of focus.  Next, we develop a metric to assess their current performance. The metric 

covers health, environment and socio-economic dimensions of sustainability. Finally, their performance 

results are input into an integrated AHP-TOPSIS framework to identify the concepts which could maximize 

the health, environmental gains and socio-economic gains. The AHP-TOPSIS relies on weights, which was 

computed taking into consideration expert opinions on the relative importance of the criteria used.  
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Figure 1: Conceptual framework for determining the performance of sustainable diet concepts in the 

United States. 

2.2 Construction of an evaluation assessment index  

According to Lancet Commission on Planetary Health, a shift in diet changes to a more sustainable diet can 

improve people's health and planetary health. For example, Lancet Commission analyzed healthy diets and 

determined that a shift towards such that’s can prevent approximately 19-24% of total deaths that are diet 

related. Additionally, a shift to healthy diets  was projected to decrease the prevented GHGE from the 

present baseline impact of 196% to 49-96% [7]. Several other investigations into sustainable diet concepts 

have identified their correlation with improved health (including reducing mortality, diabetes, hypertension, 

heart diseases) in large American cohorts.  Regarding the environmental impact, the literature shows that 

changing from a traditional Western diet to alternative diet patterns can reduce environmental footprint [15, 

16].  Therefore, to evaluate the impact of sustainable healthy diet concepts, we assembled a set of metrics 

that captures environmental sustainability, healthy diet benefits and economics.  Table 1 presents a 

summary of the description of the metric and their respective objective in the context of sustainability.  

 

 

 



9 

 

Table 1:  Metrics for evaluating sustainable diet concepts  

Sustainability 

Dimenstion  

Sustainability 

Metric  

Description  Objective Ref.  

Health  Risk to diabetes  Measures the risk of diet concepts 

that affect the body’s ability to 

produce insulin in cohort studies.   

Minimized [39] 

Prevention of 

coronary heart 

diseases  

Measures the diet concept’s risk in 

relation to coronary heart diseases in 

cohort/epidemiological studies.  

Minimized [40] 

Risk to mortality  Estimates the association of 

mortality to diet factors   

Minimized [41] 

Risk to obesity  Measures the association of different 

diet concept intake to the prevalence 

of obesity 

Minimized 

 Total cancer  Measures the risk reduction to cancer 

from the consumption of different 

diet patterns 

Minimized  [42] 

Environment   GHGE 

reduction, (kg 

CO2eq/capita/ye

ar) 

It is an adjusted indicator that 

includes CO2, N2O, and CH4 

Minimized [43] 

Agricultural 

Land use 

reduction (m2 

/capita/year) 

Measures the aggregated land use of 

the different types of agricultural 

production e.g. Pasture, cropping 

Minimized [44] 

Water 

consumption 

(L/capita/day) 

Measures the amount of groundwater 

evapotranspired by crops or 

incorporated into the product during 

growth and processing.  

Minimized [11] 

Energy 

consumptions  

Measures the amount of energy 

consumed during agricultural 

product of sustainable diets.   

Minimized [45] 
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Socioeconomic Average cost of 

a healthy diet, 

€/day 

Measures the cost of adherence to 

diet patterns per day 

Minimized [46] 

 Socio-economic 

savings to 

society  

Measures the savings through health 

and environmental improvements of 

consuming sustainable diets 

Maximized  

 

2.3 Criteria for inclusion of implementation case studies  

2.3.1 Eligibility criteria 

Before evaluating the sustainable diet concepts, we developed rigorous four-step inclusion and exclusion 

criteria for observational and epidemiological trials that have studied the association between diet patterns 

on either health or the environment.  In the first step, we searched the literature to identify diet patterns and 

studies on health, and environmental assessment, which focused on U.S. only.  Next, we set a minimum 

threshold of five studies that have reported implementing the initially sampled diet pattern.  This step 

ensured substantial historical evidence of its effectiveness against real environmental and health pressures.  

Later, a cut-off criterion that considered the sample size, population demography, and duration of the 

implementation case studies was applied.  In each sub-inclusion/exclusion criteria, a threshold of 5000 

participants, including women and children was set.  A four-year study period and monitoring were used to 

eliminate studies that did not meet the above requirement.  The overall cut-off contribution for each sub-

criterion was set at 60%.  Aside from this, we checked the availability of data on environmental impact 

assessment and health risk results associated with each diet.  

2.3.2 Data grid  

The data used in analyzing the health and environmental burden of American diet shifts and lifestyles was 

obtained from FAOSTAT, “Our World in Data”, and “World bank” [17, 18].  In addition, we constructed 

a new database using the available literature on health impact and environmental impact assessment of 

different diet patterns.  Data on the literature used, including the publication year, study country, primary 

health, environmental and socio-economic outcomes, are shown in the supplementary sheet. Where no data 

was available during the assessment, proxies from high-income countries such as Canada, Sweden, and the 

United Kingdom were adopted. Additional data for assessing and analysing the effectiveness of the different 

diet concepts were from the work of Clark, Springmann [19].  
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2.4 Multi-criteria decision-making method  

According to Johnston, Fanzo [20], a  sustainable diet promotes environmental and economic stability 

through low impact and affordable foods while simultaneously improving the population's health by 

providing adequate nutrition and reducing the risk of diseases.  A systematic methodological evaluation of 

current sustainable healthy diet patterns and their effectiveness in addressing regional and global objectives 

in the health and environmental context is required to realize these objectives.  This is partly because of the 

complex interactions between health, environment, and socio-economic drivers such as consumer demands.  

Therefore, sustainable decision-making should integrate Multi-criteria Decision-Making (MCDM) tools to 

ensure healthy diets delivered from a sustainable food system is achieved for nearly 10 billion people by 

2050.  Table 2 summarizes MCDM and their respective methods.   

Table 2: Categories for classifying Multi-criteria Decision Making methodologies (Extracted from [47]) 

Categories  Methodology 

Multi-Attribute Utility and 

value theory  

Analytic Hierarchy Process (AHP)/ Analytical Network Process 

(ANP); Fuzzy set methodology; Grey relational method 

The multi-objective 

mathematical programming  

Constrain programming; Linear programming; Goal programming  

Non-classical method  Fuzzy set methodology  

Elementary aggregation method  Weighted sum method; Weighted product method  

Complex aggregation method  Analyse and Synthesis Parameters under Information Deficiency 

(ASPID)  

Distance-to-target approach Technique for order preference by similarity to ideal solution 

(TOPSIS); Grey Relational Analysis; Data Enveloping Analysis  

Direct ranking (High 

dependence on decision-maker) 

Stepwise expert judgment; Delphi; Scoring method   

Outranking method  Elimination and choice translating reality (ELECTRE I, I.S., II, III,) ; 

Preference ranking organization method for enrichment evaluation 

(PROMETHEE I, II)  

 

2.4.1 Overview of MCDM method employed in this study  

MCDM methods have been widely applied to different sectors, including social, economic, industrial, 

biological systems, and renewable energy systems [21].  Contrary to the single criteria decision-making 

approach, MCDM employs a multi-attribute/criteria approach to obtain an integrated result for the decision-
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maker.  It is important to mention that not all MCDM methods are the same; while some incorporate certain 

features, others disregard and are limited in different perspectives.  More often than not, the choice of 

technique is dependent on the availability of data, knowledge of the method, the context of the problem, 

and the software to implement the method.  One of the most well-known, highly adopted, and simplest 

subjective and objective MCDM methods in food system evaluation include Analytical Hierarchy Process 

(AHP) and technique for order preference by similarity to ideal solution (TOPSIS). AHP provides a 

straightforward and flexible model to address problems.  When there are multiple conflicting criteria, it 

becomes expedient to adopt such a method to achieve a consensus. 

2.4.2 Relative weight determination using Analytical Hierarchy Process 

In general, MCDM requires an evaluation of m criteria against n alternatives, as presented in Equation 1.  

𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎  𝐶1    𝐶2  … … . 𝐶𝑚 

(𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑤1     𝑤2 … … . … 𝑤𝑛) 

𝑋 =  
𝐴1

⋮
𝐴𝑛

              (

𝑥11 ⋯ 𝑥1𝑛

⋮ ⋱ ⋮
𝑥𝑚1 ⋯ 𝑥𝑚𝑛

)

𝑚×𝑛

           (1) 

Where 𝐴𝑖 are the alternative sustainable diet concepts,  𝑥𝑖𝑗 is the performance of  j-th criteria of the i-th 

alternative sustainable diet concept and 𝑤𝑗 is the weight of criteria.  This weight is obtained by employing 

the A.H.P. method.  Saaty and Ramanujam first introduced the A.H.P. method in a seminar work to provide 

a comprehensive evaluation model of different criteria relevance in problems.  The technique uses a pair-

wise comparison model that first defines the objective of the decision problem, decomposes to other criteria 

and sub-criteria, depending on its complexity, and determines unique weights for each criterion [21, 22].   

2.4.3 Ranking of sustainable diet concepts using technique for order preference by similarity to 

ideal solution (TOPSIS). 

With an 𝐴𝑖 number of alternatives, the ranking to obtain the optimal sustainable diet concept is achieved 

using the TOPSIS model.  TOPSIS is a practical and valuable method for ranking and selecting several 

possible alternatives through measuring Euclidean distances.  It is based on the concept that the chosen 

alternative should have the shortest distance from the positive ideal solution (P.I.S.) in a geometric sense.   

2.4.4 Premises for the AHP-TOPSIS modeling of sustainable diet concepts  

As mentioned earlier, not all MCDM methods incorporate certain features.  The AHP method cannot 

capture uncertainties and determine alternative ratings in decision-making.  This weakness is complemented 
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by TOPSIS, making the use of an integrated AHP-TOPSIS technique a more robust approach to decision 

making.    

Assuming we have m number of criteria, the AHP model can be implemented as follows:  

Step 1: This involves developing a hierarchy structure that describes the goal, alternatives, criteria, and 

sub-criteria for the comprehensive evaluation.   

Step 2: Here we construct a pair-wise comparison for the criteria and alternatives concerning the decision-

making objective.  Table 3 shows the relative pair-wise comparison connotations that express each 

criterion's importance based on the decision makers' discretion.  

Table 3: Definition of the intensity of qualitative and quantitative score for criteria weight determination  

Intensity of 

weight  

Definition Explanation  

1 Equal importance  This implies that two criteria have equal importance to the 

objectives.  

3 moderate importance of one 

over another 

The judgment slightly favor one over the other 

5 strong importance The judgment strongly favor one over the other 

7 Extreme importance The judgment is very strongly favored one over the other 

9 Absolute importance The judgment is of absolute importance over the other 

 

It is important to mention an instance where intensity adjusted weights such as 2,4,6 and 8 can express 

intermediate importance between criteria.  The matrix was constructed in accordance with the 

recommendations of [23] to extract a decision matrix.  

Step 3: The second step is repeated for each criterion, and then the priority of alternatives is acquired by 

accumulating the weights.  Next, a statistical technique, arithmetic mean method is adopted to construct a 

vector  𝑊 = [𝑊1, 𝑊2, … 𝑊𝑁] that represents the weight of each criterion in a pair-wise comparison matrix 

M presented in Equation 1.  Each element in column j of matrix M is divided by the sum of entries in the j 

column.  This step generates a new matrix called the Normalized matrix (Anorm).  It is important to highlight 

other statistical techniques such as the characteristic root method, and the least square method can be 

employed to estimate the weights. 
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M =  [
C1 C1⁄ ⋯ C1 CN⁄

⋮ ⋱ ⋮
CN C1⁄ ⋯ CN CN⁄

]          (2) 

Step 4:  The comparison matrix (Equation 1) obtained in step 3 is subjected to a consistency check to 

validate the results' soundness.  A consistency ratio of 10% or 0.1 was set.  This involves determining the 

maximum eigenvalues and consistency index by using Equations.  (2) and (3), respectively.  One advantage 

of the consistency ratio is that it eliminates the problem of disagreements in individual judgments.  

𝜆𝑚𝑎𝑥 = 1/𝑛 ∑
𝑖𝑡ℎ𝑒𝑛𝑡𝑟𝑦 𝑖𝑛 𝐴𝑊𝑇

𝑖𝑡ℎ 𝑒𝑛𝑡𝑟𝑦 𝑖𝑛 𝑊𝑇

𝑛

𝑖=1
                                 (3) 

Where: 𝜆𝑚𝑎𝑥 = maximum Eigen value  

 n = number of attributes  

 A = pair-wise comparison matrix  

W = The estimate of the decision-makers weight 

Nevertheless, the consistency is checked by comparing the Consistency Index (CI) to the Random Index 

(R.I.) for the appropriate value of n, used in decision-making [21].  If (CI/RI) < 0.10, the degree of 

consistency is satisfactory, but if (CI/RI) > 0.10, serious inconsistencies may exist, and the results produced 

by AHP may not be meaningful.  

𝐶𝐼 =
𝜆𝑚𝑎𝑥 − 𝑛 

𝑛 − 1
                                                    (4)    

Figure 2 presents the hierarchical decomposition of the decision-making problem. It summarizes the 

overall objective: to determine an optimal sustainable diet pattern, the criteria, and sub-criteria used to 

evaluate the sustainable diet concepts. 
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Figure 2: Hierarchical breakdown for assessing the performance of diet concepts. 

 

Assuming we have n number of alternative sustainable diet concepts, the TOPSIS ranking for the 

alternatives can be achieved through the following:   

Step 5: Construct the normalized decision matrix  

In this step, the different attributes’ dimensions are transformed into a non-dimensional attribute to allow 

comparison across the attributes.  Using the method represented in Eq. (3), the matrix (𝑥𝑖𝑗)
𝑚×𝑛

 is 

normalized to 𝑅 = (𝑟𝑖𝑗)
𝑚×𝑛

which takes the form shown below 

 

         𝑟𝑖𝑗 =
𝑥𝑖𝑗

√∑ 𝑥𝑖𝑗
2𝑚

𝑗=1

           𝑖 = 1,2, … . , 𝑚; 𝑗 = 1,2, … , 𝑛         (5) 

        𝑅 =  (

𝑟11 ⋯ 𝑟1𝑛

⋮ ⋱ ⋮
𝑟𝑚1 ⋯ 𝑟𝑚𝑛

) 
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Step 6: Construct the weighted normalized decision matrix 

With the normalized decision matrix (R) computed from the previous step, the weighted matrix W from 

the A.H.P. method is integrated into the R. This results in a matrix calculated by multiplying each column 

of R with its associated weighted matrix W represented in Eq. (4).  

𝑉𝑖𝑗 = 𝑤𝑗 × 𝑟𝑖𝑗    𝑤ℎ𝑒𝑟𝑒 𝑖 = 1, 2, … . , 𝑛                                    (6)      

This computation results in a new matrix V, which is represented below  

 

𝑉 = [

𝑣11 ⋯ 𝑣1𝑛

⋮ ⋱ ⋮
𝑣𝑚1 ⋯ 𝑣𝑚𝑛

] = [

𝑤1𝑟11 ⋯ 𝑤𝑛𝑟1𝑛

⋮ ⋱ ⋮
𝑤1𝑟𝑚1 ⋯ 𝑤𝑛𝑟𝑚𝑛

]   

Step 7: Determine the ideal and negative ideal solutions 

In this process, two artificial alternatives 𝐴+ (the ideal positive alternative) and 𝐴−  (the ideal negative 

alternative) are defined as: 

𝐴+ = {𝑣1
+, 𝑣2

+, … . . , 𝑣𝑛
+} = {(𝑚𝑎𝑥𝑗𝑣𝑖𝑗|𝑖 ∈ 𝐼′), (𝑚𝑖𝑛𝑗𝑣𝑖𝑗|𝑖 ∈ 𝐼′′) }  

𝑖 = 1,2, … . . , 𝑚; 𝑗 = 1,2, … , 𝑛. 

𝐴− = {𝑣1
−, 𝑣2

−, … . . , 𝑣𝑛
−} = {(𝑚𝑖𝑛𝑗𝑣𝑖𝑗|𝑖 ∈ 𝐼′), (𝑚𝑎𝑥𝑗𝑣𝑖𝑗|𝑖 ∈ 𝐼′′) }  

𝑖 = 1,2, … . . , 𝑚; 𝑗 = 1,2, … , 𝑛. 

Where 𝐼′ is related to benefit attributes, and 𝐼′′ is related to cost attributes  

Step 8: Achieve the remoteness of all choices from 𝐴+ and 𝐴−  

In the process, the separation measurement is done by calculating the distance between each alternative in 

V and the ideal vector A+ using the Euclidean distance, which is given as Eq. (5) and Eq. (6)  

𝐷𝑖
+ = √∑(𝑣𝑖𝑗 − 𝑣𝑗

+)
2

𝑛

𝑗=1

        𝑖 = 1,2, … . . , 𝑚                                (7) 

𝐷𝑖
− = √∑(𝑣𝑖𝑗 − 𝑣𝑗

−)
2

𝑛

𝑗=1

        𝑖 = 1,2, … . , 𝑚                                  (8) 
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Where 𝐷𝑖
+  and 𝐷𝑖

−  are the Euclidean distance from the ideal best and ideal worst, respectively. At the end 

of this, two quantities, namely 𝐷𝑖
− and 𝐷𝑖

+for each alternative has been counted, representing the distance 

between each alternative and both (the ideal and the negative ideal). 

Step 9: Determine the relative closeness to the ideal solution using Eq. (9). 

𝐶𝐶𝑖
∗ =

𝐷𝑖
−

𝐷𝑖
− + 𝐷𝑖

+         (9)   

𝑖 = 1,2, … . , 𝑚                               

 

Where 𝐶𝐶𝑖
∗ Is the performance score.   

Step 10: Rank the alternatives according to relative closeness to the ideal solution.  All alternatives 

(sustainable diet patterns) are based on the performance score in this step.  Figure 3 presents the continuous 

workflow of the integrated AHP-TOPSIS framework that is adopted to evaluate sustainable diet concepts. 

Step 1 to 9 presented above provide an elaboration of the components of the workflow. 

 

Figure 3: An integrated AHP-TOPSIS from selecting optimal diet concepts in the United States 
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3 Results  

3.1  Historical interactions between the diet, health, and environmental trilemma  

This section explores how United States diet shifts and lifestyles have rapidly worsened the health-

environmental burden in the country.  Figure 4 presents historical trends of the relationship between food 

demands in different geographic regions against United States.  From Figures 4a and 4b, we observe that 

over the last 60 years, there has been a relative proportional increase in per capita calorie supply and a 

consistent increase in demand for animal-based protein across the globe.  For the case of calorie demand 

per capita, the increase has been most significant in United States, Asia, South America, and Africa.  We 

observe that the per-capita rate of increase has been 19.56% and 17.94% for United States and Asia, 

respectively.  For instance, the calorie demand has increased by 53.96%, 31.66%, 30%, and 27.84 % in 

Asia, Africa, South America, and United States.  However, the relative rate of increase on an annual basis 

within that same time frame is 17.94%, 12.35%, 1.66%, and 19.56%, respectively.  This indicates that 

despite the significant increase in demand in Asia, Africa, and South America, the annual increase in 

consumption in America is more significant.  Interestingly, in the 21st century, while other regions continue 

to experience an increase in demand for calories, United States has experienced a sudden plateau. 

Similarly, we observe that the demand for protein (animal-based foods) has followed a similar pattern.  

Demand in Asia, South America, Africa, and United States is approximately 63.5%, 36.9%,31.27%, and 

28% respectively.  However, we observed 58.06%, 42.79%, and 40.57% annual increases in protein demand 

in Asia, South America, and United States, respectively.  It is interesting to note that the demands in Europe 

have consistently decreased between 1990 and 2013.  Likewise, United States has consistently experienced 

an increase in demand since 1960, but in the last decade has suddenly plateaued. 
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Figure 4: Relative proportional demand in animal-based protein and calorie be capital per day. (A) 

Estimated daily calorie supply per capita across all regions from 1961 to 2013. (B) Daily animal protein 

demand in each region from 1961 to 2013 

Previous studies by many researchers such as  [24], [25], and [26] have established a relationship between 

diet-related diseases such as diabetes and heart diseases and obesity and the consistent shift in diet towards 

an increased reliance on high calorie, animal-based, highly processed foods and sugar-sweetened beverages.  

As a result, the prevalence of overweight in adults has increased worldwide. Figure 5 illustrates regional 

increase in overweight among adults and children and the percentage of total death associated with non-

communicable diseases. In the United States, overweight predominance has risen from 41.00% to 67.90% 

between 1975 and 2015, representing the single most significant increase globally.  On the contrary, Asia 

has experienced a relatively lower increase from 17.00% to 32.26%.  Also, in developing regions such as 

Africa, we observe a moderate rise from 10.51% to 28.89%.  In Europe, we observe 39.20% to 58.64%.  

The increase in the prevalence of overweight consequently influences the global burden of disease and 

death associated with diet, which has significantly increased from 60.80% in 2000 to 73.63% in 2019.  

Within this same timeframe,  the United States has been responsible for nearly 17.80% to 14.51% of such 

incidence.   
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Figure 5: The prevalence of health-related implications of a consistent intake of unhealthy food over 

time.( A) Percentage prevalence of overweight in adults from 1975 to 2016. (B) Percentage prevalence of 

overweight in children under 5 years from 2000 to 2020. (C) Percentage total cost of death due to non-

communicable diseases from 2000 to 2019 

 

Aside from the health impact, the consequences of diet choices extend to impact our environment (Figure 

6). This is evidenced in Figures 6a and 6b where we observe a relative proportion of agricultural land use 

and its corresponding GHGE.  Globally, our arable land use for crop production has increased by more than 

11.36%.  Interestingly, we observe a continuous decrease in land use in Europe, and Oceania, probably due 

to technology 4.0 into agricultural production, which results in a steady reduction in GHGE from these 

regions.  Notwithstanding, we see a consistent rise in the United State.  In general, greenhouse gas emissions 

from agricultural production have increased since 1961.  It has been the largest in developing countries 



21 

 

such as Asia (378% increase since 1961) and Africa (263% increase since 1961). The United States has 

experienced nearly about 120% increase within that same timeframe.   

 

Figure 6: Relative proportional increase/decrease of agricultural land use and GHGE. (A) Relative 

proportional increase/decrease of land use from 1960 to 2016. (B) Relative proportional increase in GHGE 

from 1961 to 2019 

3.2 Relevant environmental and health risk of highly consumed food group 

Customarily, we decide every day on what to eat, considering the taste, nutritional benefits, safety, and, 

perhaps more recently, the environmental friendliness of the food.  Recent evidence suggests that nearly 

40% of the world's annual mortality is attributed to diet-related diseases such as stroke, coronary heart 

disease, type 2 diabetes, total cancer, and many others [27, 28].  Lozano, Naghavi [29] identified that nine 

out of the top fifteen risk factors for the consistent annual increase in global mortality were associated with 

diet choices.  This implies that the choice of food and its corresponding quantity we take in is a significant 

determinant of our health and the sustainability of our environment.  Our diets today pose a high risk to ill-

health and threaten the achievability of sustainable development goals.  

This section explores the relative environmental and health risks associated with 15 highly consumed food 

groups.  The health outcomes considered include type 2 diabetes, stroke, coronary heart disease, total 

cancer, and mortality.  In contrast, the environmental concerns include GHGE, land use, eutrophication 

potential, acidification potential, and water consumption.  Figure 7 presents the relative risk to diseases and 

the environmental impact of 15 food groups.  The data used was obtained from [29].  
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Figure 7: Relative Risk to diseases and environmental impact of 15 highly consumed food groups. (A) 

Relative risk to disease for different food groups. (B) Relative risk to environmental damage for different 

food groups. (C) Relative average risk to disease and environmental impact for different food foods. 

 

It is essential to mention that if the relative risk is greater than 1, then the consumption of an additional 

serving of such food group poses an increased risk to disease.  Likewise, relative risk less than 1 is correlated 

to a lower or decreased disease risk.  From Figure 7, we observe that the additional consumption of 

vegetables, wholes, fruits, legumes, and fish are associated with reducing diseases risk to coronary heart 

disease, diabetes, total cancer, stroke, and total mortality.  In addition, there are correlated to a lower 

environmental impact.  Conversely, red meat and unprocessed meat consumption are associated with 

increased risk and environmental impact.  This implies shifting diet behaviors towards food groups with 

lower environmental and health risks has the potency to reduce the diet-health and environmental 
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implications.  The following section describes the methodology developed to select and evaluate sustainable 

diet concepts.   

3.3 Selected Sustainable diet concepts  

Table 4 presents the results after applying the inclusion-exclusion criteria described in section 3.  Diet 

patterns with (−) signs imply limited implementation cases and available data to support the claims of 

lower environmental footprint and health-related issues in the United States.  Although there is literature to 

confirm these diet recommendations as sustainable diet concepts, there was little evidence from clinical or 

epidemiological studies and life cycle assessment or environmental impact modeling or input-output 

analysis on the impact of adopting these sustainable diets.  In addition, the majority of results the authors 

found were focused on European countries, which is outside the scope of this study.  Also, the authors 

discovered that many of the sustainable diet concept analyses were conducted in high-income countries 

with well-established diet guidelines.  

Table 4:  Selected sustainable diet concepts after the four-step inclusion/exclusion criteria  

S/N Sustainable Diet concept Step1  Step 2  Step 3  Step 4 Status 

1 The Mediterranean diet pattern  √ √ √ √ * 

2 Healthy planetary diet (EAT-Lancet 

pattern)   

×    - 

3 Healthy vegetarian Diet pattern √ √ √ √ * 

4 Atlantic diet pattern √ √ √ × - 

5 Diet Approach to Stop Hypertension 

(DASH diet) 

√ √ √ √ * 

6 Pesco-vegetarian √ √ √ √ * 

7 The healthy Nordic diet pattern  √ √ √ × - 

8 Paleolithic diet √ √ √ × - 

9 Tradition Persian Medicine diet  √ ×   - 

10 Vegan diet  √ √ √ √ * 

11 The healthy U.S Style Diet pattern  √ √ √ √ * 

12 Chinese diet pattern   √ √ √ × - 

13 Western diet concept √ √ √ × - 

14 Spanish diet pattern √ √ √ × - 
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15 Provegetarian food pattern  √ √ √ √ * 

16 Pescatarian diet  √ √ √ √ * 

17 Flexiterian diet  √ √ √ √ * 

(Where S/N refers to Serial Number,  * refers to a selected diet concept , - refers to rejected diet concept 

after comparing against the inclusion and exclusion criteria) 

It is important to mention that other diet patterns have proportional magnitude variations in the quantity of 

animal and plant-based foods.  Typical examples of diet patterns identified from the literature include meat 

partially replaced by plant-based food, meat partially replaced by mixed foods, meat + dairy partially 

replaced by plant-based foods [30, 31].  However, because of the high degree of variations and the absence 

of extensive literature on such diet concepts, they were excluded from the variety of sustainable diet patterns 

used in this study.  

3.4 Overview of diet concepts  

From Section 3.3, we observe that nine different sustainable diet patterns have been selected.  Therefore, 

this section provides a high-level overview of the respective diet patterns and their corresponding food 

groups.  

3.4.1 The Mediterranean diet pattern 

Global interest in this diet pattern began in the early 1960s when it was observed that seven countries near 

the Mediterranean Sea had a lower incidence of chronic disease.  The diet is often associated with countries 

bordering the Mediterranean Sea, including Spain, France, Italy, Greece, Turkey, Northern Africa, Middle 

Eastern, and Balkan countries.  This diet pattern has been described as (i) daily consumption of unrefined 

cereals and cereal products, vegetables, fruit, olive oil, dairy products, and red or white wine; (ii) weekly 

consumption of potatoes, fish, olives, pulses, and nuts and eggs and sweets and monthly consumption of 

red meat [32].  

3.4.2 Healthy vegetarian diet pattern 

This diet pattern is devoid of any food product that contains meat or fish.  In addition, diets containing 

poultry, seafood, and f lesh of any animal are strictly prohibited.  

3.4.3 Diet Approach to Stop Hypertension (DASH diet) 

This diet concept was introduced to control the risk of hypertension.  The essential ingredients peculiar to 

this diet includes fruit, vegetables, and low-fat dairy products, including whole grains, poultry, fish, nuts, 

legumes, and limiting the intake of low-fat dairy products, red meat, sweets, and sugar-containing 
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beverages.  The DASH diet provides higher potassium, calcium, magnesium, and protein while lowering 

total fat, saturated fat, and diet cholesterol [33].  An excellent quantitative description of the design of this 

diet concept is presented by [34].   

3.4.4 Pescatarian diet  

This diet includes fish, dairy, and eggs but avoids all meats 

3.4.5 Vegan diet  

This sustainable diet concept does not contain any animal product.  Instead, they are substituted by calcium-

rich soy and extra portions of pulses.  Protein sources for this diet design are similar to vegetarian.  In 

addition, however, vegetable consumption is increased.  A detailed description of this diet and the 

corresponding quantitative servings in proportion and key-related nutrients is presented by [35].  

3.4.6 The healthy U.S style diet pattern  

The healthy U.S diet style is recommended under the Diet Guidelines for Americans. This sustainable diet 

concept emphasizes consuming fruits, vegetables, whole grains, low- and fat-free dairy, healthy fat, lean 

meats, and poultry to reduce the risk to chronic diseases and meet daily nutrient needs. A detailed 

description of the diet recommendation and permissible quantity for different age groups in America is 

presented in 2020-2025 U.S.D.A Diet guidance [36]. 

3.4.7 Flexitarian diet concept 

This sustainable diet concept can be regarded as a semi-vegetarian diet or perhaps a more plant-forward 

diet. Thus, the diet concept is less strict than a 100% vegetarian diet.   The diet emphasizes incorporating 

plant-based foods and beverages, including eggs, meat, and dairy, into one’s diet.  However, it encourages 

a lower consumption quantity for meat and other dairy products [37].  

3.4.8 Pro vegetarian food pattern  

Pro vegetarian diet pattern has a preference for plant-derived foods but not the exclusion of animal foods. 

Its diet composition is similar to the vegetarian, howbeit the proportional intake of meat, vegetables and 

other food groups vary. 
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3.5 Results of assessment  

3.5.1 Weight of criteria 

Figure 8 represents the weights reflecting the relative importance of the evaluation criteria obtained from 

implementing the A.H.P. framework. One advantage of the technique is that it allows both qualitative and 

quantitative evaluation of criteria based on a preference scale.    

 

Figure 8: Weights of importance of criteria adopted to evaluate sustainable diet concepts. 

Figure 8 shows that the risk of mortality (priority weight of = 0.18), coronary heart diseases (priority weight 

of 0.15), and diabetes was of a high priority compared to other environmental and socio-economic 

indicators.  A possible explanation for these results may be attributed to the fact that health impacts have 

individual implications with selective socio-economic repercussions.  Thus, participants in the survey could 

relate intimately/were familiar with these indicators compared to others.  Another possible explanation is 

that the participants may have direct or personal experiences with the implication of these indicators, hence 

giving them a high priority. Nonetheless, we observe that the environmental indicators have a relatively 

lower weight; thus 0.11 and 0.0561 for GHGE and water consumption. The results may be explained by 

the fact that the implications of environmental indicators are collective while those of health are at an 

individual level. To ascertain the validity of the results of the A.H.P framework, we conducted a consistency 
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test. As a result, the final consistency index (CI) and consistency ratio were 0.14 and 0.091, respectively.  

Since the C.R. < 0.1, it indicates that the reliability of the responses from the participants could be 

maintained.  The indicator matrix obtained from the survey and the eigenvalue of each criterion is reported 

in the supplementary documents.  

3.5.2 Health and Environmental impact evaluation results  

Over the last half-century, multiple cohort studies have compared the health outcomes and environmental 

impact of different diet patterns such as Mediterranean, vegetarian, and vegan diets among individuals who 

consume them.  A large portion of these studies has consistently observed a reduced risk of diabetes, heart 

diseases, hypertension, and total mortality compared to individuals on western or omnivorous diet patterns.  

In general, strict adherence to sustainable diet concepts offers significant health benefits.  In addition, most 

studies have demonstrated that adopting healthier diets have some varying increased environmental 

sustainability. Figure 9 illustrates the relative reduction in health, socio-economic and environmental 

indicators by shifting current diet patterns to sustainable patterns.  

 

Figure 9: Relative reduction/increase in health and environmental impact of different dietary concepts. 

It is observed from Figure 9 that a shift to sustainable diet concepts such as Vegetarian and Vegan diet 

would reduce the total GHGE, land use, water consumption, and energy use by (75.00% , 81.40%), (74.98% 

, 74.00%), (10.00% , 70.00%) and (86.00% , 87.00%) respectively.  Furthermore, we observe a relative 

closeness in results due to the similar due to similar product composition that exists between the two diet 



28 

 

concepts.  Likewise, for health risk reduction, we observe that adherence to the Vegetarian and Vegan diet 

reduces the risk to diabetes, total mortality, heart diseases, obesity, and total cancer by (17.80% ,19.30%), 

(25.00% , 10.00%), (12.30%  , 15.10%), (26.00% , 12.00%), and (10.40% , 11.70%) respectively.  Shifting 

to other diet concepts such as the Mediterranean diet and the healthy US-style diet, we observe a relatively 

lower reduction compared to other diet concepts. 

One of the surprising findings of the study was, adopting the U.S. diet style results in an average overall 

lower GHGE impact of 2% (reduction), water consumption of 14% (reduction), and an increase in energy 

consumption of 17% compared to other diet concepts.  These results corroborate strongly with the studies 

of [38], who found a relative increase in GHGE from U.S. diet style.              

It is important to mention that the results presented here are average values Life Cycle Assessment (L.C.A) 

studies on the selected diet concepts in the United States.  The data collected for each diet pattern are 

isocaloric (equivalent in total calories). 

3.5.3 Ranking from TOPSIS  

Using the results obtained in sections 3.5.1 and 3.5.2, we ranked the diet concepts using the integrated AHP-

TOPSIS decision model.  From Figure 10, the Vegetarian, Vegan, and Provegetarian diets ranked first, 

second, and third, with a performance score of 0.553, 0.519, and 0.507, respectively. This is somewhat 

surprising as the vegan diet appears to have a better environmental impact reduction as compared to the 

vegetarian diet concept (see section 3.5.2). On the contrary, the vegetarian diet has higher health impact 

reductions for some indicators as compared to the vegan diet concept. From a socioeconomic perspective, 

the vegetarian diet concept has a slightly higher reduction than the vegan diet. However, the model adopted 

for the evaluation takes into consideration the criteria weights presented in section 3.5.1. To wit, we observe 

from Figure 8 that higher weights were allocated to health indicators as compared to environmental and 

socio-economic indicators. Consequently, influencing the overall performance score and ranking of 

vegetarian and vegan diet concepts. 



29 

 

 

Figure 10: Ranking of dietary concepts using the TOPSIS framework. 

The results imply that adopting and national-wide implementation of different vegetarian diet concepts can 

substantially reduce diets' environmental and health impacts. Our results corroborate strongly with previous 

research of [8], [9], and  [15], who illustrated that the adoption of diets higher in plant-based than animal-

based foods against the national Healthy US-style diet pattern would benefit the environment and the 

population's health.  Furthermore, the results further reinforce previous research on the impact of diet on 

the environment and suggest that Vegetarian, Vegan, and Provegeterian diet pattern has the most 

sustainable impact on U.S. diet style.  Despite these benefits, several bottlenecks and challenges exist that 

hinder the successful adoption of these concepts in America.  The following section explores different 

challenges, provides recommendations, and proposes a dynamic methodological framework to ensure a 

sustainable food system. 
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3.6 Barriers in adoption and recommendations  

So far, we have assessed which health, environmental and socio-economic factors are relevant to 

consumers, evaluated nine distinct sustainable diet concepts using sustainability metrics, and ranked these 

concepts to identify the optimal diet concept.  Nonetheless, several challenges hinder the adoption and 

implementation of these sustainable diet concept.  This section identifies the bottlenecks in implementing 

different sustainable diet concepts and presents recommendations to rebuild a resilient and sustainable food 

system. Table 5 summarizes the challenges associated with adopting candidate sustainable diet concepts.  

Table 5: Bottleneck to implementing Sustainable diet concepts  

S/N Diet pattern Bottleneck/Critical challenges in adoption  Recommendation  

1 Vegetarian 

▪ Risk of sub-optimal nutrients, including iron.  

 

▪ The iron source for most vegetarians is non-

haem which has a lower bioavailability.  

 

▪ Consumer perception of vegetarian diet being 

expensive, not enjoyable, and inconvenient.   

 

▪ Reluctance in most consumers to try novel foods 

which they are unfamiliar with   

 

▪ Perceived nutritional need of meat (mostly as a 

source of protein), which is not provided.   

 

▪ Perceived difficulty in preparing plant-based 

food. 

Early familiarization 

during childhood   

 

Informative, easy to 

read, and 

straightforward labeling 

on food products to 

alleviate food neophobia 

(Clean labeling). 

2 Vegan 

▪ The Diet concept is regarded as inconvenient 

since its products are challenging to prepare.  

Also, ingredients for preparing meals are most 

often unavailable in stores.  

 

Less processing of 

plant-based meat 

alternative with the 

intention of mimicking 

animal meat.  (Reduced 
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▪ The perception that plant-based food does not 

taste better than animal-based food.  

 

▪ Meat consumption is highly ingrained in the 

culture of many hence the willingness to stop is 

difficult.  

 

▪ Consumer perception that plant-based milk 

substitutes have a similar environmental 

footprint as that of animals. 

 

▪ A general lack of awareness of the 

environmental burden of animal meat production 

and consumption. 

preservatives and 

sodium) 

 

Proper communication 

of diet benefits   

3 Pescatarian Fear of the presence of heavy metals in food.   

4 
Mediterranean 

diet 

▪ Increase price of food items in the Mediterranean 

diet.  

 

▪ It promotes diet diversity, while diet 

recommendations suggest the consumption of 

healthier foods.  

 

▪ Socio-economic inequalities in domains such as 

diet variety, access to organic foods, and food 

purchasing behavior.  

 

▪ The vague idea of the overall diet framework.  

 

▪ Improper definition of the Mediterranean diet as 

different organizations and individual authors 

have presented a variety of diets labeled the 

Mediterranean. 

Careful examination of 

the effectiveness of 

relying on a diet 

pyramid versus 

promoting the health 

full aspects of individual 

foods that are included 

in the pyramid is needed 

 

Development of 

interventions to promote 

the diet  
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5 

Healthy U.S. 

style 

guidelines 

▪ Limited access to supermarkets and grocery 

stores.  

▪ Low-income 

 

6 DASH diet 

▪ Poor availability, quality and cost of healthy and 

fresh food components within the diet.  

 

▪ Family influences and tension among family 

members’ willingness to adopt a healthy diet.  

 

▪ Lack of familiarity with the DASH diet menu 

options.  

 

▪ The potential cost of preparing the recipes 

presented in the DASH diet was high. 

 

▪ Unfamiliarity with some of the menus found in 

the DASH diet appeared distracting.  

Interventions to promote 

the DASH diet yet 

reflect the customer, 

economic and food 

available concern  

 

Optimized DASH diet 

with familiar recipes 

that conform the DASH 

diet pattern.  

 

Effective 

communication of 

DASH diet health 

information.  

 

From Table 5, it is clear that widening the adoption of the sustainable diet concept presents a challenge, 

thus the need to understand the synergies in socio-economic, demographic, health, and environmental 

priorities. Sustainable diet concepts interact with consumer preference and wide array of social, economic 

and environmental systems, thus presenting a complex interaction driven by multiple factors. More 

importantly, a lack of information flow between the different actors and their respective systems exacerbate 

these shortcomings. Additional, knowledge on the trade-offs at varying Spatio-temporal scales is required; 

thus, we propose a conceptual system thinking approach for effective implementation of  need. Figure 11 

presents the conceptual framework that illustrates a holistic representation of sustainable diet concepts and 

their interconnections between actors, bottlenecks, components and different sub-systems. The elements in 

conceptual framework interact dynamically to give rise to predictable health, environmental and socio-

economic impacts. The framework argues for a better and holistic integration of bottlenecks such as lack 

of knowledge and feedback across the interactions between the different components of the system and 

actors. Also, the framework argues for transparent sharing of information among actors to develop an 

optimized sustainable diet.    
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Figure 11: A system thinking approach to address the challenges of scaling up sustainable diet concepts to 

an optimized diet concept 

Application of system thinking and related tools can be found in different fields such energy, financial 

sectors and policy making. Increasingly, these different fields recognize the necessity of system thinking 

approaches to addressing today’s interconnected challenges. Thus the authors argue that the adoption of 

system thinking and related tools can help all actors of sustainable diet concepts to better plan for future 

interventions and wide adoption among consumers. Furthermore, policies can be enacted to introduce 

sustainable diet concepts to the population at an early childhood stage. It could be integrated into 

curriculums during early childhood education. Multi-sectoral efforts and campaigns from public 

organizations, local authorities, government, and non-governmental institutions to raise public awareness 

on the enormous benefits of sustainable diets will be paramount. Therefore, the proposed system thinking 

approach seeks to navigate stakeholders in implementation sustainable diet concepts toward a more 

comprehensive and broader picture by considering all interconnected factors to achieve a systemic change.  

3.7 Limitations of the study  

The novel framework also suggests that optimized sustainable diet concepts that take into consideration 

multiple conflicting objectives as well their trade-offs have the potential to address the diet- health-



34 

 

environment trilemma. One major limitation of this study is that the authors observed a moderate variability 

in life cycle assessment results despite considering similar diet concepts.  These may be attributed to the 

choice of parameters, the definition of system boundaries, the decision of function units, and the uncertainty 

evaluation adopted during the assessment.  More disturbingly, most of these life cycle assessment studies 

do not account for the type of agroecology which may improve the environmental outcomes. 

4 Conclusion 

The present study set out to evaluate the effectiveness of the implementation of sustainable healthy diet 

concepts in the United States. The study also examined the relationship between sustainable diet concepts 

and key factors that lead to improvement in human health, reductions in environmental damage and socio-

economic benefits. Additionally, the AHP framework applied by the authors, provided an opportunity to 

curate expert opinions on which environmental-health-socio-economic indicators were of outermost 

relevance when considering resource allocation to optimize the adoption of sustainable diet concepts.  The 

findings indicate that health indicators such as risk to mortality and cardiovascular disease are highly 

prioritized compared to other socio-economic, and environmental indicators. Through the application of 

mathematical modeling (AHP-TOPSIS) and a set of environmental, health and socio-economic indicators, 

vegetarian, vegan and provegetarian diet concepts ranked first, second and third respectively. The findings 

provide additional evidence that sustainable diet concepts which constitute more plant-based than animal-

based foods are more beneficial to the environmental and population’s health as compared to the national 

Healthy US-style diet concept which has an average overall lower GHGE impact of 2% (reduction), water 

consumption of 14% (reduction), and an increase in energy consumption of 17% compared to other diet 

concepts.  However, the implementation and wider adoption of sustainable diet concepts is hindered by 

intrinsic socio-economic, cultural and behavioral barriers. These include a lack of understanding, limited 

access to food ingredients, and unfamiliarity with sustainable diet menus. Hence, the study proposed a novel 

conceptual system thinking framework to sustainable diet concepts, which takes into consideration these 

bottlenecks prior to implementation sustainable diets on larger scale. The proposed can potentially optimize 

sustainable diet acceptance by consumers and offset different health, environmental and socio-economic 

impacts. The novel framework shows the complex interactions and dynamics between diet concepts, social 

cultural challenges, food environment, key stakeholders and multiple subsystems. Taken together, it 

provides a holistic representation of optimizing sustainable diet initiatives and adoption among consumers. 

It would be interesting to assess the effectiveness of the conceptual system thinking approach through a 

practical application of system dynamic models, then translate the results through an intervention case 

study.  
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Abstract  

Various critical and invariant drivers can exacerbate the food system's multiple health, nutrition, and 

environmental burdens. Food choices are among the drivers shifting negatively to affect human health and 

environmental sustainability.  In the United States, consumer food choices due to their dietary patterns are 

often unhealthy and sustainable, with average consumption patterns exceeding the daily recommendations 

of food such as red and processed and below recommendations for foods such as fruits and pulses. In this 

study, we conduct a multi-model assessment of the combined effects of health and environmental mitigation 

efforts on different critical and invariant drivers within the food system and their repercussions on the 

health-environment-diet trilemma. This is achieved by developing an end-end modeling framework that 

facilitates the test and application of machine learning for predictions at the policy level. The environmental 

drivers include Greenhouse gas emissions (GHGE), land use, energy consumption, and surface temperature 

change. Likewise, the health drivers include the prevalence of obesity and overweight, life expectancy and 

percentage of death due to diet-related diseases. The results suggest that substituting meat and beef 

production with a more resource-efficient agricultural product such as peas could reduce anticipated GHGE 

emission impact by 5-7% while reducing health impacts by 19-41% for the short-term goal of 2030. The 

machine learning pipeline was deployed to develop a novel decision support system: Food System-Rapid 

Overview Assessment using Scenarios (FS-ROAS).  This decision support allows exploration of plausible 

stylized scenarios of the future food system in the United States under mid-medium- and long-term 

strategies. It is readily available online and can be accessed on any digital device. 

Keywords:  decision support system, critical drivers, sustainability, food choices 

 

 



40 

 

1 Introduction  

According to the International Labor Organization, the agricultural sector employs more people than any 

other economy. Moreover, the agricultural sector, characterized by crop and livestock production, interacts 

with complex biological and climatic systems at varying spatio-temporal levels, overlayed by social and 

economic systems. These factors interact with consumer preference and a wide array of social norms [1]. 

Thuswise, human health and planetary safety are influenced by complex interacting ecosystems, land, labor, 

markets, food consumption, and diverse value chains referred to as the food system [2]. Within the food 

system, humans are the main drivers of change, much of which is attributed to commercial and mechanized 

farming and consumption patterns which have resulted in a decline in terrestrial vertebrates, invertebrates, 

marine species, and wildlife [3]. Additionally, soil and terrestrial nutrients are depleting, and excess nutrient 

runoff has become the leading cause of freshwater and marine eutrophication [4]. Ultimately, food 

production and consumption are significant contributors to climate change, responsible for nearly 30% of 

the global anthropogenic GHGE  [5].  

Additionally, the current global and regional consumption patterns are responsible for the prevalence of 

non-communicable diseases. A review of recent policy documents indicate that 38% of the global 

population are obese, 11.8% are overweight, and nearly 40% of global death are associated with unhealthy 

consumption patterns [6]. More disturbingly, obesity alone has a global economic impact of around $2 

trillion annually, approximately 2.8% of global GDP [7, 8]. In the United States, it was estimated to be as 

high as $344 billion as of 2018, equivalent to 20% of total annual spending. Health impacts are the single 

most significant hidden cost within the US food system, with Americans paying an estimated $3.8 trillion 

per year in health-related costs [9]. Other diseases such as hypertension, cancer, and diabetes account for 

an estimated $604 billion in expenditure annually in the United States [10]. According to the United States 

Department of Agriculture, the agriculture sector accounted for 11.2% of total GHGE, with gases such as 

carbon dioxide from on-farm energy use, methane and nitrous oxide from livestock grazing and manure 

accounting for the continuous rise in surface temperatures [11]. In another report, the agricultural value 

chain consumed about 1.872 trillion of Btu of energy in 2016, representing about 1.9% of the total US 

primary energy consumption [12]. 

Studies over the past two decades have analyzed the components of the food system with the assumption 

that an improvement in the efficiency of each component can lead to whole system improvement. Thus, 

neglecting a comprehensive and holistic understanding of what happens in the whole system. Besides this, 

recent trends in Machine learning (ML) and big data have led to a proliferation of studies that leverage the 

vast available data to provide new insights into the dynamics of environmental and nutrition indicators for 

food system sustainability. Conventional modeling of the dynamics between environment and nutrition is 
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resource-intensive and requires considerable human effort. ML  models have the potential to comprehend 

the complex interactions among the driving factors that influence health, environment, and diet-related 

issues. Hamrani, Akbarzadeh [13] explored GHGE from agricultural production by exploiting three 

categories of ML algorithms. The LSTM model performed best with the highest R coefficient of 0.87 and 

the lowest mean squared error of 30.3 mg.m-2hr-1. Zhang, Di [14] attempted to use ML algorithms to predict 

field-level annual crop planting using historical cropland data. The models adopted were highly correlated 

(R2>0.9) to the crop acreage estimates from the USDA. National Agricultural Statistics Service. Research 

on this subject has augmented mechanistic models such as the Cellular Automato Markov Chain Model 

with Artificial Neural Network to incorporate several driving forces that highly impact land use and fertility 

in agricultural production [15].  

If we now turn to the impact of the food system on human health,  Menichetti, Ravandi [16] modeled US 

food supply of ultra-processed foods and demonstrated that an individual's increased reliance on such foods 

correlated to a higher risk of metabolic syndrome, diabetes, and elevated blood pressure. More recently, 

literature has investigated the influence of consumer choices and behaviors. Côté, Osseni [17] applied nine 

classification ML algorithms to predict vegetable and fruit consumption using a large array of features that 

captured the individual and environmental information related to diet habits. Dunstan, Aguirre [18] 

implemented three ML algorithms to predict the prevalence of obesity at the national level using purchase 

data. Nonetheless, most studies in this field have only focused on predicting one element or driver of the 

health-environment-diet trilemma, neglecting other elements/components of the food system 

In this study, we conduct a multi-model assessment on the combined effects of health and environmental 

mitigation efforts on different critical and invariant drivers within the food system and their repercussions 

on the health-environment-diet trilemma. This is achieved by developing an end-end modeling framework 

that facilitates the test and application of ML for predictions at the policy level. The environmental drivers 

include GHGE, land use, energy consumption, and surface temperature change. Likewise, the health drivers 

include the prevalence of obesity and overweight, life expectancy, and percentage of death due to diet-

related diseases. The results are translated into a decision support system that allows policymakers to 

explore diverse intervention scenarios and programs to build resilience in future food systems. As a case 

study, the authors deployed the ML framework to predict environmental and health drivers using US food 

production and consumption data. The results suggest that substituting meat and beef production with a 

more resource-efficient agricultural product such as peas could reduce anticipated GHGE emission impact 

by 5-7% while reducing health impacts by 19-41% for the short-term goal of 2030. However, these high-

impact reductions can be achieved depending on the kind of substitution. The overall structure of the study 

takes the form of four sections. Section 2 is concerned with the methodology employed for this study. 
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Section three analyses and presents the findings of this research focusing on two key themes. The final 

section draws together the key findings and a brief critique of the findings 

2 Method  

2.1 Methodological framework  

To explore the interconnectedness between the health-environment-diet dimension of the US food system, 

the authors propose a crucial framework in modeling the progress of sustainable initiatives that could reduce 

anticipated impacts (Figure 1). The method framework presented in Figure 1 consists of three main steps:  

the first focuses on gathering the necessary raw data for the modeling study. This includes obtaining data 

on environmental impact indicators such as land use, GHGE, energy consumption, and surface temperature 

change associated with agricultural production in the United States. Similarly, health-related impact data 

were collected, including the prevalence of obesity, overweight, and life expectancy. The data was collected 

on 13 food groups described in section 2.2. Next, food production and consumption data were gathered and 

correlated to health and environmental impact. It is important to mention that missing data is a common 

problem that appears in a real-world context and may compromise the performance of most models. 

Therefore, data imputing techniques were adopted to generate missing environmental, health, food 

production, and consumption data. The methodological approach's second step leverages nine ML 

configurations to predict health and environmental indicators. The ML model configuration defined a set 

of input features, feature engineering and selection process, hyperparameter optimization, ML algorithm 

testing, and deploying the ML model to create a web-based decision support system for policymakers and 

other stakeholders. A nested multi-output cross-validation step was included in determining the 

hyperparameters of ML algorithms. Similarly, multi-output regression models were adopted for fitting and 

prediction purposes. This step facilitated the elimination of information leakage during the forecasting step. 

After that, statistical coefficients were adopted to compare the best ML model configuration for each short-

term and long-term forecasting. Finally, the practical significance of the performance difference between 

the ML models was tested. Further investigation was conducted to explore the potential of deploying the   

ML pipeline developed here into an online application that can support policy decision-making. This was 

achieved through a flask web framework built with the Scikit-learn library. 
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Figure 12: Method framework adopted to implement the project.
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2.2 Data   

2.2.1 Data grid  

The dataset used in this study was sourced from the FAO Stats, World Bank Databank, and Our World in 

Data. The dataset ranged from 1961 to 2020. The dataset employed was segregated into three levels of the 

US food value chain—the first consists of crop and livestock production data, represented by the 

agricultural production index that consists of the food and livestock production index. The agricultural 

production index shows the relative level of aggregated volume of agricultural production for each year in 

comparison with a base period of 2014 to 2016 [19]. The second level captures food supply data 

representing the number of primary commodities and the number of processed commodities potentially 

available for human consumption in terms of caloric value (kcal/capita/day). In addition, the food supply 

data was adjusted to account for the total quantity of foods produced in the country and the number of 

imports and adjusted for changes in stock since the reference year [20]. Additional adjustments were made 

to consider part-time presence or absence, such as temporary migrants, tourists, and refugees. The data 

comprised vegetal products, sugar and sweeteners, vegetable oils, spices, eggs, milk, cereals, starchy roots, 

pulses, fruits, milk, and fish. Also, losses within the value chain which consisted of cereals, starchy food, 

and fruit, were reported in 1000 tons. Similarly, the amount fed to livestock, including cereals, starchy food, 

pulses, meat, and fish, was reported at 1000 tons. The final set of the data captured the environmental impact 

indicators of GHGE (kg CO2eq), energy consumption for agricultural production (kg of oil equivalent per 

capita), land area (sq. km), and surface temperature change. Similarly, the health data consist of the shared 

cause of death due to non-communicable diseases, including the prevalence of overweight and obesity and 

life expectancy. A total of 32 attributes were used in the modeling study. 

2.2.2 Experiment environment   

All experiments on ML algorithms and end-to-end pipeline framework described in this study were 

implemented using python programing language and Scikit-learn library.  

2.3 Risk indicators  

This section describes the health and environmental indicators of interest to this study. Table 1 briefly 

describes the different indicators adopted for the study. 
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Table 6:  Description of the health and environmental impact risk indicators.  

 Risk indicators  Description/definition  Ref  

 Environment    

1 Greenhouse gas 

emission  

Refers to the emissions from direct on-farm agricultural energy use, 

which consist of carbon dioxide, nitrous oxide, and methane gas 

associated with fuel burning and electricity used in agriculture (kt of 

CO2 equivalent) 

[21-23] 

 

2 Land use  Agricultural land refers to the share of arable land area, under 

permanent crops and permanent pastures (measured in 1000 sq.km).  

3 Energy 

consumption 

This refers to the energy used for agricultural production (measure in 

kg of oil equivalent per capita) 

4 Surface 

Temperature 

change.  

Refers to a country's mean surface temperature change due to 

agricultural production (measured in ℃ ) 

 Health   

5 Prevalence of 

overweight 

Prevalence of overweight among adults, BMI and GreaterEqual; 25 

(age-standardized estimate) (%) - Sex:Both sexes 

6 Prevalence of 

obesity  

Prevalence of obesity among adults, BMI and GreaterEqual; 30 (crude 

estimate) (%) - Sex: Both sexes 

7 Percentage 

cause of death  

Deaths - Non-communicable diseases - Sex: Both - Age: All Ages 

(Number) 

8 Life expectancy  It captures the mortality along the entire life course. It describes a 

population's average age of death (measured in years). 

 

2.4 Policy effort indicators  

A range of economic, environmental, biophysical, and health policies have been explored in the literature 

to reach sustainable development goals by 2030 and reach regional food sufficiency across the globe by 

2050. Aside from this, several food system transformation initiatives have been implemented across a multi-

sectorial level to meet the Paris Agreement on climate change [24]. Among these efforts, evidence suggests 

that promoting a sustainable diet has been a key entry point to achieving a co-benefit of improving the 

population's health and reducing environmental emissions from the food system. Sustainable diets 

encourage the consumption of plant-based foods while advocating for a reduction in animal-based foods 

with specific attention to red meat and processed meat. According to (ref), a shift toward sustainable diets 

has demonstrated a lower risk of all-cause mortality by 8%. Likewise, (ref) reported a reduction of up to 

24% and 9% in GHGE and land use due to adopting sustainable diet concepts such as vegan, vegetarian, 

and pescatarian diets in the United States. In this regard, policy efforts and recommendations have 

suggested reducing government subsidies for animal-sourced products since they are associated with higher 

GHGE [25]. Other authors [26, 27] have also recommended the removal of subsidies associated with 

animal-sourced products and a translation of investments to plant-sourced foods. [28, 29] suggested market-
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based and regulatory policies as an effective approach to endorse vegetarian diets while condemning 

animal-sourced products.  

However, food systems differ in size and structure from one country to another and between rural and urban 

areas especially in countries with substantial populations. For example, over 70% of the world's extremely 

poor rear animals are an important source of income and diet [30].  Additionally, the context of political 

setting and policy network vary from country to country with growing influence from different 

stakeholders.  Aside from this, policymakers leverage several existing policy instruments, which are either 

regulatory, resource-focused, or viewed as a continuum of authoritative force. Thus, considering different 

factors, making a context-specific recommendation allows policymakers to explore diverse mitigation 

strategies while promoting healthy and sustainable food consumption within their regions. 

2.5 ML workflow  

This section presents an end-to-end ML workflow for the prediction of environmental  

2.5.1 Preprocessing and missing data 

The dataset consisted of a total 1398 datapoint with 8.38% missing data points, of which 70.08% were 

attributed to the predictors. Missing data for the continuous features variables were estimated using the 

information and relationship between non-missing variables. To eliminate any degree of bias or 

misinformed analysis, missing feature values were imputed using five mechanisms; then, we tested the 

performance metrics using a linear regression algorithm. The data imputers adopted include K-Nearest 

Neighbor (KNN) imputer, mean/median imputer, iterative imputation, expectation-maximization (EM 

Algorithm), and soft imputer approach. The KNN imputer algorithm imputes missing values in the dataset 

using values of observations for the neighboring data points. It identifies the neighboring data points by 

measuring the distance and the missing values. For a given environmental or health predictor y, the distance 

between samples i and j can be defined as  

𝑑(𝑦𝑖 , 𝑦𝑗) =  
|𝑦𝑖 − 𝑦𝑗|

𝑅𝑦
            (1.1)  

Where Ry is the range of the predictor. Several distance measures such as the Minkwoski, Manhattan, 

Cosine and Jaccard can be adopted. However, the Euclidean distance has been reported to give a higher 

efficiency and productivity compared to other techniques [31]. This is represented in Eq. 2  

𝐷𝑖𝑠𝑡𝑥𝑦 = √∑(𝑥𝑖𝑘 − 𝑥𝑗𝑘)
2

𝑚

𝑘=1

          (1.2) 
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Where 𝐷𝑖𝑠𝑡𝑥𝑦 is the Euclidean distance, k is the number of attributes of the dataset from 𝑗 = 1,2,3, … 𝑘, k 

dimensions, 𝑥𝑖𝑘 values for j-attributed containing missing data and 𝑥𝑗𝑘 is the value of 𝑗-attributes containing 

complete data. The value of the 𝑘 points that have a minimum distance is chosen then the weighted mean 

estimate given by  

𝑋𝑘 =
∑ 𝑤𝑗𝑣𝑗

𝑗
𝑗=1

∑ 𝑤𝑗
𝑗
𝑗=1

          (1.3) 

Where 𝑤𝑗 is the nearest observed neighbors, of which the weighted value is given by Eq. 3 and 𝑣𝑗 are 

complete values containing missing data.  

𝑤𝑗 =
1

𝐷𝑖𝑠𝑡𝑥𝑦
        (1.4) 

The EM algorithm is an iterative method for dealing with missing data by a two-step process: the estimate 

(E-step) and maximize step (M-step) until convergence is approached. The E-step computes the expected 

value of  I(θ; x, y) given the observed data x  and the current parameter estimate θold. Mathematically, this 

step can be defined as  

𝑄(𝜃; 𝜃𝑜𝑙𝑑) = [𝑙(𝜃; 𝑥, 𝑦)|𝑥, 𝜃𝑜𝑙𝑑]         (2.1) 

= ∫𝑙(𝜃; 𝑥, 𝑦)𝑝(𝑦|𝑥, 𝜃𝑜𝑙𝑑) 𝑑𝑦       (2.2) 

Where 𝑝(𝑦|𝑥, 𝜃𝑜𝑙𝑑) is the conditional density of y given the observed data, 𝑥, assuming 𝜃 = 𝜃𝑜𝑙𝑑. The M-

step maximized over 𝜃 the expectation computed in Eq. 2, thus  

𝜃𝑛𝑒𝑤= 𝑚𝑎𝑥𝜃
𝑄(𝜃; 𝜃𝑜𝑙𝑑)       (2.3) 

Where 𝜃𝑜𝑙𝑑 is set to 𝜃𝑛𝑒𝑤.   

Similar to the KNN imputer algorithm, the iterative imputer generates multiple copies of the data set and 

integrates to obtain the optimal values. Each feature is imputed sequentially, allowing prior imputed values 

to be used as inputs for the subsequent model in predicting features. This approach is implemented through 

the Multivariate Imputation by Chain Equations technique in the fancyimpute Scikit-learn library [32], 

where initial values can be either mean, median or constant. The prediction of missing data points starts 

from the variable with the fewest missing values using  RidgeCV or Bayesian-Ridge regression model [33].  
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2.5.2 Feature selection using information gain 

Generally, feature selection algorithms attempt to identify and remove irrelevant and redundant features 

from the training dataset by generating an optimal subset of features. Consequently, reducing the 

computational time for the learning models and enabling the models to operate faster and more effectively. 

The performance of a feature selection technique is often evaluated using ML models. In this study, three 

feature selection techniques were tested and compared:  filter, wrapper, and embedded methods.  

The filter method selects relevant features with high correlation to the target variables by employing 

correlation matrixes such as Pearson's R, Spearman's rho, and Kendell's tau. Equations 4 to 8 present a 

general and representative evaluation of the correlation matrixes adopted when employing the filter method. 

For a given set of two features a and b:  

Correlation coefficient:  

𝑟(𝑎, 𝑏) =  
𝑐𝑜𝑣(𝑎,𝑏)

√𝑉𝑎𝑟(𝑎)√𝑉𝑎𝑟(𝑏)
   (3)    

Where  𝑐𝑜𝑣(𝑎, 𝑏) is the covariance of a and b and 𝑉𝑎𝑟(. ) is the variance.   

Pearson correlation coefficient:  

𝑟(𝑎, 𝑏) =  
∑ 𝑎𝑖𝑏𝑖 − ∑ 𝑎𝑖 ∑ 𝑏𝑖

√𝑁 ∑ 𝑎𝑖
2 − (∑ 𝑎𝑖

2)
2

√𝑁 ∑ 𝑏𝑖
2 − (∑ 𝑏𝑖

2)
2

     (4)    

Symmetric uncertainty (SU):  

𝑆𝑈(𝑎; 𝑏) =  
2𝐼(𝑎; 𝑏)

𝐻(𝑎) + 𝐻(𝑏)
       (5) 

Where 𝐻(. ) is the entropy of a feature  

Mutual information:  

𝐼(𝑎; 𝑏) = ∑ ∑ 𝑝(𝑎𝑏)𝑙𝑜𝑔
2𝐼(𝑎; 𝑏)

𝑝(𝑎) + 𝑝(𝑏)
        (6) 

Where 𝑝(. ) is the probability density function. 

Information distance  

𝑑(𝑎; 𝑏) =  
𝐻(𝑎|𝑏) + 𝐻(𝑏|𝑎)

2
       (7) 
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Where 𝐻(𝑎|𝑏) is conditional entropy of a given b.   

Euclidean distance:  

𝑑(𝑎, 𝑏) =  √(𝑎𝑖 − 𝑏𝑖)2       (8) 

Although there are other methods, such as the Laplacian and Fisher scores, this study adopted the above. 

The wrapper method employs an iterative approach to evaluate the performance of different subsets of the 

input. It ultimately selects the high-ranked variables that result in the best ML model performance. Otchere, 

Ganat [34]reported that it outperforms the filter method; however, it is computationally expensive and 

easily prone to overfit.  Similar to the filter method, there are several wrapper methods. The forward 

selection, backward elimination, and exhaustive and recursive feature elimination methods were employed 

according to the recommendations of [35]. The backward elimination evaluates the performance of all input 

features and eliminates the worse using their respective p-value. The best-performing input features are 

then used in the model training process until a predetermined number of features are exhausted. The 

recursive elimination conducts a rigorous iterative search by creating models with the inputs and evaluating 

their respective performance. In the process the worst performing features are removed and the remaining 

features are continuous used to create models. Finally, the features are ranked in order of their elimination. 

Similarly, the embedded method employs an iterative feature selection and model training approach. This 

results in a model emphasizing features contributing to the model training process. A typical example of 

the embedded technique is LASSO regularization, one of the most widely adopted methods that penalize 

features based on a predefined threshold. In the LASSO regularization method, if a feature is irrelevant, its 

penalized to 0 and removed, thus leaving important features for model training. Other regularization 

techniques include RIDGE.   

2.5.3 Cross-validation strategy  

The dataset used in this study can be described as data-poor; thus, cross-validation is pertinent to determine 

the effectiveness of the ML algorithm implemented. It is important to mention that since there were several 

environmental and health risk targets, a multi-output cross-validation approach was adopted for the study. 

Additionally, the multi-output cross-validation allows optimizing the model's performance and estimating 

the model's optimal hyperparameters and coefficients. It enables ML models to overcome the challenge of 

overfitting during the training step. Thus, the dataset was divided into three independent set:  a training set, 

a validation set, and a test set used to estimate the performance of the optimized ML models. For the 

validation dataset, a nested cross-validation approach required the data to be split twice in a nested leave 

three years out; cross-validation was applied (Figure 1). Thus, in the outer loop, data for three years was 
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held out, while an   𝑛 − 3 year of validation data was subjected to the inner cross-validation loop. ML 

model hyperparameters and coefficients were estimated within the inner cross-validation (𝑛 −

4 𝑦𝑒𝑎𝑟𝑠 𝑜𝑓 𝑑𝑎𝑡𝑎) and then employed to predict the environmental and health impact indicators held in the 

outer loop. The outer loop presented an opportunity to evaluate the generalized performance of the full 

modeling procedure prior to implementation on the test dataset.  The whole procedure above was repeated 

for all model configurations. The study also compared the performance of nested cross-validation to naively 

using a single layer of non-nested cross-validation. Table 1 presents the pseudo algorithm for nested and 

non-nested cross-validation methods as applied to this study  

 Nested vs non-nested cross-validation Algorithm 1 

1: procedure GetCrossValidationAccuracy 

2: 𝑐𝑣𝑖𝑛𝑛𝑒𝑟 ← 𝐾𝑓𝑜𝑙𝑑 (𝑠ℎ𝑢𝑓𝑓𝑙𝑒 , 𝑛𝑠𝑝𝑙𝑖𝑡 = 5)  

𝑐𝑣𝑜𝑢𝑡𝑒𝑟 ← 𝐾𝑓𝑜𝑙𝑑 (𝑠ℎ𝑢𝑓𝑓𝑙𝑒 , 𝑛𝑠𝑝𝑙𝑖𝑡 = 3)  

3: 𝑦𝑡𝑟𝑎𝑖𝑛 ← 𝑙𝑎𝑏𝑙𝑒𝑠 

4: 𝑦𝑡𝑟𝑎𝑖𝑛 ← 𝑙𝑎𝑏𝑙𝑒𝑠  

5: 𝑋𝑓𝑒𝑎𝑟𝑢𝑟𝑒𝑠 ← 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑜𝑓 𝑋𝑡𝑟𝑎𝑖𝑛 

6: 𝑐𝑙𝑓 ← 𝐺𝑟𝑖𝑑𝑆𝑒𝑎𝑟𝑐ℎ𝐶𝑉(𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟 = 𝑋𝐺𝐵, 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟, 𝑐𝑣 =  𝑐𝑣𝑖𝑛𝑛𝑒𝑟) 

7: 𝑐𝑙𝑓. 𝑓𝑖𝑡(𝑥𝑡𝑟𝑎𝑖𝑛, 𝑦𝑡𝑟𝑎𝑖𝑛) 

8:  𝑛𝑜𝑛 − 𝑛𝑒𝑠𝑡𝑒𝑑 𝑠𝑐𝑜𝑟𝑒 ← 𝑐𝑙𝑓. 𝑏𝑒𝑠𝑡_𝑠𝑐𝑜𝑟𝑒_ 

9: Nested score ← 𝑐𝑟𝑜𝑠𝑠_𝑣𝑎𝑙(𝑐𝑙𝑓, 𝑥𝑡𝑟𝑎𝑖𝑛, 𝑦𝑡𝑟𝑎𝑖𝑛, 𝑐𝑣 =  𝑐𝑣𝑜𝑢𝑡𝑒𝑟) 

 

2.5.4 ML algorithms  

Since the data employed in this study is a continuous dataset, the study employed six standard machine 

learning regression algorithms, namely:  Random Forest (RF), Multi-layer Perceptron (MLP), Support 

Vector Regression (SVR), KNN, Logistic regression (LR), Bi-clustering and Ada boost techniques, extreme 

gradient boosting (XGB) and decision Tree. In addition, the SVR with linear and radial base function 

kernels (SVR lin and SVR. rbf) were implemented in this study. Finally, each model's pipeline and 

hyperparameters were designed, implemented, and estimated using the sci-kit learn. Table 2 presents a brief 

overview of the different models employed and their respective hyperparameters estimated from the study.  

Table 7: Summary of ML models and their respective hyperparameters adopted in this study 

S/N Algorithm Description  Hyperparameters 

1 LASSO Linear regressor that performs 

variable selection and regularization 

Alpha = 0 , fit_intercept = True,  

max_iteriation = 1000;  tol=0.1 
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2 RF. Ensembled regressor that averages 

the output of multiple regression 

trees 

ccp_alpha= 0.01, max_depth = 2 

3 SVR  It leverages kernels, sparse 

solutions, and vector control of 

margins around several support 

vectors to estimate continuous 

multivariate functions 

C=2, cache_size=, 100, coef0= 0 , 

degree= 3, epsilon= 0.3,  gamma = 

'auto', kernel='rbf' 

4 Ridge It  is a least square error function 

with an L2 regularization term 

(alpha) which addresses issues of 

multicollinearity in during modeling  

 alpha=10, tol= 0.01, solver="saga",  

 alpha=10,tol=0.01, solver="saga", 

max_iter= 1500, 

5 Adaboost Ensemble of shallow trees in a 

sequence where each new tree 

minimizes the residuals of the 

previous tree 

Learning rate = 0.01, loss = 2 , 

n_estimators = 70 

6 MLP Artificial neural network that uses a 

nonlinear weighted combination of 

the features to predict the target 

variable  

 

7 XGB It is an ensemble learning algorithm 

that builds models consisting of 

multiple decision trees 

alpha = 0.8, ccp_alpha =0.001, 

learning_rate =0.1, max_depth= 2, 

min_samples_leaf= 3, Loss= 

'squared_error', min 

impurity_decrease = 0 

8 KNN Its is a non-parametric algorithm that 

intuitively approximates the 

association between variables by 

averaging the observations around 

their neighborhood 

leaf size=10, n_neighbors=4 

P=1 

9 Multi-output 

nested cross-

validation 

It is a technique for overcoming 

biases during hyper-

parameterization under diverse 

model selection 

k-inner loop=5, k-outer loop= 3 

for n = 8 

 

2.6 Statistical validation 

2.6.1 Model evaluation and selections  

Five statistical indices were employed to evaluate the model prediction accuracy compared to the observed 

data. The statistics extracted a comparison between the observed dataset and the predictions of the different 

models adopted to estimate the environmental and health risk indicators. These statistics include the 
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coefficient of determination (R2, Eq. 9), Root mean squared error (RMSE, Eq. 10), normalized Root, mean 

absolute error (MAE, Eq. (11)), and Root mean square error (RMAE, Eq. (12))[36]. 

𝑅2 =  
[∑ (𝑋𝑖 − �̅� )(𝑌𝑖 − �̅� )𝑛

𝑖=1 ]2

∑ (𝑋𝑖 − �̅� )2𝑛
𝑖=1  ∑ (𝑌𝑖 − �̅� )2𝑛

𝑖=1

  (9) 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑(𝑌𝑖 − 𝑋𝑖  )2

𝑛

𝑖=1

  (10) 

𝑀𝐴𝐸 =  
𝟏

𝒏
∑|𝑌𝑖 − 𝑋𝑖|

𝑛

𝑖=1

  (11) 

𝑅𝑀𝐴𝐸 =  √
𝟏

𝒏
∑|𝑌𝑖 − 𝑋𝑖|

𝑛

𝑖=1

           (12) 

 

Where 𝑋𝑖 and 𝑌𝑖 are the observations and estimation values at the ith time step, respectively. �̅� and �̅� are 

the average value of simulations and estimations, respectively, and n is the number of samples. However, 

to ensure linearity in discussing the performance of the different models and case studies, we introduce a 

new parameter called the α–parameter. This is represented in equation 13.  

Table 8: Statistical coefficients used to access the quality of the estimations 

S/N Statistical coefficient  Symbol  Objective 

1 Root mean squared error RMSE. Minimized 

2 Root mean absolute error RMAE. Minimized 

3 R-Squared R 2 Maximized 

4 Mean absolute error MAE. Minimized 

Equation (13) has been formulated considering the individual objectives of the different statistical 

coefficients, as illustrated in Table 1. Since R-Squared is to be maximized and all should have a value less 

than 1, we subtract the obtained value from one such that the objective will be to minimize alpha, and 

models with smaller α are considered of better quality 

∝ −𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 = 𝑅𝑀𝑆𝐸 + 𝑁𝑅𝑀𝑆𝐸 + (1 − 𝑅2) + 𝑀𝐴𝐸 (13) 
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3 Results  

3.1 Performance of data imputation techniques  

Missing data problems are common challenges every domain deals with data. In such instances, data can 

be handled by different techniques depending on how much data is missing and, more importantly, analyzed 

to ensure it provides a suitable solution. Figure 2 compares the performance for missing data imputation 

using mean/median imputer, KNN imputer, and iterative imputer. The predicted dataset from the above 

imputation techniques was fit the linear regression model, and an RMSE and R2 value were computed for 

each approach.  The results illustrate that the iterative imputer performed better than other algorithms with 

an RMSE value of 5.33, while the KNN imputer performed worst with an RMSE value of 6.2. Hence the 

iterative imputer algorithm was adopted in the ML pipeline for the modeling exercise. 

 

Figure 13:  Performance comparison of different data imputation techniques ((a) median imputer, (b) 

mean imputer, (c) KNN imputer, and (d) iterative imputer) 

(a) (b)  

(c)   (d)  
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3.2 Feature extraction  

Feature selection is often associated with obtaining a subset of original data, improving a model's prediction 

performance. Table 4 presents the results of comparing three categories of feature selection techniques 

against using all features available and testing the performance of the SVR model. It is important to 

highlight that the performance testing of the subsets generated from the different feature extraction 

techniques was estimated with default hyperparameter values. The objective of adopting this approach was 

to explore the influence of different feature subsets generated by different feature engineering techniques, 

ultimately influencing the proposed end-to-end ML framework.   

From Table 4, it can be observed that the model performance reduces with different data subsets of features.  

Apparently, the wrapper techniques for feature selection have a greater model performance than all other 

methods, with R2 values ranging between 0.759 to 0.917. However, they are computationally expensive. 

The results corroborate strongly with the work of Rao, Shi [35], who reported on the high performance of 

the filter method compared to other feature engineering techniques.. In comparing the different feature 

extraction methods, forward elimination with a subset of 12 features obtained the highest R2 value of 0.917, 

while the ridge selection technique obtained the worst R2 of 0.341. Likewise, the Pearson correlation 

method with a subset of 16 features obtained the best RMSE value of 0.167, while the ridge model resulted 

in the worst RSME of 0.723. For the case of the Pearson correlation, a threshold of -0.5 was set to extract 

features with a more significant correlation. Similarly, a threshold value of -0.2 was set for the spearman 

correlation method. Thus, all features with a correlation lower than this threshold were removed in the 

training process.  Value closers to +1 demonstrated a strong positive relationship for the two correlation 

methods employed, while the corollary can be described for values closer to -1.  Figure 3 presents a sample 

of the feature extraction from the respective methods and their corresponding measure values.  In Figure 

3(f) features with correlation values within the epsilon (±0.03) neighborhood of 0 showed little or no 

relationship.  A typical of such relationship was observed for (Cereals-LSF and Fruits-LS), (Meat-LSF and 

Startcy Rts-LSF), and (Meat-LSF and Eggs-FS) when implementing the Spearman correlation method. 

Nonetheless, features with values closer to +1 demonstrated a strong positive correlation. The ANOVA F-

value presented in Figure 3a measured the relationship between the features and the target values.  It is 

important to highlight that creation of subsets is inexhaustive; however, the set in Table 4 was developed 

for brevity. Overall, the generated feature subsets did not significantly outperform the conventional 

approach of using the entire feature set in building the ML pipeline. However, the conventional approach's 

R2 (0.921) and RMSE (0.177)  values when deployed through the SVR algorithm outperformed all feature 

extraction techniques. 
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Table 9: Comparison of different feature selection methods  

Subset 

# 

Feature selection algorithm  Selected Subset  Model training performance using 

SVR Algorithm  

R2 RMSE. 

1 Convention approach  Using all features  0.921 0.177 

Filters    

2 Spearman Correlation 

coefficient  

20 features  0.597 0.527 

3 Pearson correlation 16 features  0.627 0.162 

4 Mutual information  16 features  0.895 0.282 

5 Chi-squared  20 features  0.661 0.582 

 Anova approach     

              Wrappers 

6 Forward elimination 15 features  0.913 0.281 

 12 features  0.917 0.216 

7 Backward elimination 16 features  0.759 0.321 

 13 features  0.898 0.271 

8 Recursive elimination 15 features  0.904 0.236 

  10 features 0.879 0.235 

Embedded method    

9 LASSO  19 features 0.422 0.654 

10 Ridge  19 features 0.341 0.723 

11 Tree  18 features 0.641 1.215 
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(a)  (b)  

(c)  
(d)  

(e)  

Figure 14:  Comparison of feature selection methods ((a)Feature importance using the ANOVA F-value, (b) 

Using the chi-squared method, (c) Feature importance using Tree method, (d) Using the Mutual information 

method (e) Using the recursive feature selection method, (f) Using the Pearson correlation method) 

 

 

(f)  
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3.3 Nested and non-nested cross-validation  

Figure 4 presents the generalized performance estimated with and without using the multi-output nested 

cross-validation procedure for all ML algorithms employed in this study. From Figure 3, we can observe 

that the generalization performance estimated using the nested cross-validation is lower than non-nested. 

The average accuracy observed for non-nested and nested cross-validation across all models was 0.884 and 

0.879, respectively.  Similarly, the largest difference of 0.322 was observed between the non-nested and 

nested using MLP algorithm, while the lowest difference was observed for the KNN algorithm.  The non-

nested frequently results in an optimistic result, resulting in a biased model selection. A possible reason for 

this observation is that the tunning process automatically selects the model with the highest inner cross-

validation score, hence an error being propagated into the general performance of the model. Additionally, 

a relatively larger number of hyperparameters and a probable larger standard deviation from inner cross-

validation can result in an overestimation of the performance, which consequently influences the full ML 

pipeline. 

Table 10:  Accuracy of different algorithms 

S/N Algorithm Non-nested  Nested  Difference  

1 LASSO 0.882 0.879 0.003 

2 RF  0.894 0.890 0.004 

3 SVR  0.915 0.907 0.08 

4 Ridge 0.902 0.886 0.016 

5 MLP. 0.446 

 

0.124 

 

0.322 

6 XGB 0.924 0.912 0.012 

7 KNN 0.726 0.746 -0.020 

8 AdaBoost  0.931 0.920 0.011 

Average  0.884 0.879 0.014 
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Figure 4: Nested and non-nested cross-validation of ML confifure using diet-health dataset 
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3.4 Performance of forecasting  

3.4.1 Prediction performance  

Table 6 presents a statistical performance of the different ML models applied in different end-to-end 

frameworks. To ensure collinearity in comparing the performance of the respective models, the  

∝ −𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 value was computed for each sustainability dimension, and then an average value was 

determined. From Table 6, we can observe that the SVR, KNN, and the Ridge models ranked first and 

second with an ∝𝐻  of 4.304, 5.732, and 6.163, respectively, when predicting health risk. Similarly, from 

an environmental impact point of view, RF, XGB, and AdaBoost models ranked first, second, and third, 

respectively, with ∝𝐸 of 2.863, 2.93 and 3.218, respectively. Approximately 70% of all models performed 

well as when predicting environmental risk compared to health risk indicators. Figures 5 and 6 illustrate 

the fitting of the observed test dataset against the model prediction. For brevity, six model representations 

are provided.  

Table 11: Model performance during predictions  

S/N Health risk (Average metric) Environmental impacts (Average metric) 

 R2 RMSE  MAE RMAE ∝𝐻 R2 RMSE  MAE RMAE ∝𝐸 

LASSO 0.801 3.256 3.015 1.736 8.206 0.825 5.763 3.712 1.927 11.577 

RF 0.781 4.211 3.679 1.918 10.027 0.9 1.147 0.75 0.866 2.863 

SVR  0.858 1.272 1.618 1.272 4.304 0.827 6.059 3.819 1.954 12.005 

Ridge  0.843 2.546 2.034 1.426 6.163 0.865 1.846 1.11 1.054 4.145 

XGB  0.786 4.062 3.346 1.829 9.451 0.89 1.221 0.739 0.86 2.93 

Adaboost  0.823 3.129 2.438 1.562 7.306 0.842 1.668 0.611 0.781 3.218 

KNN 0.85 2.56 1.713 1.309 5.732 0.86 1.944 1.096 1.046 4.226 

MLP  0.801 3.256 3.015 1.736 8.206 0.825 5.763 3.712 1.927 11.577 
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Figure 16:  Model forecast performance and forecasting for health risk (Life expectancy) 
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Figure 6: Model forecast performance and forecasting for health risk and GHGE. 
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3.5 Implications on short-term policy on the diet-health-environmental trilemma (2030) 

So far, this study has developed an end-to-end ML pipeline that consists of data imputation, feature 

selection, cross-validation, training, and prediction of environmental and health implications of diet patterns 

in the United States.  This section leverages the best model discussed in section 3.4 to explore the future 

health and environmental impact of food choices in the United States through two different lenses, thus 

short- and long-term scenarios. Scenarios are powerful tools that provide snapshots of unforeseen paths in 

the future. It is worth noting that the term scenarios used in this context emphasize projections, forecasts, 

and predictions into the future using logical plots and narratives governed by the present data and ML 

models. The scenarios constructed are around critical issues that provoke actions to shape the future of the 

US food system. Three dominant critical drivers, namely food and livestock production, consumer 

demand/supply, and food loss/waste along the value chain, will be key in addressing food choices' health 

and environmental burdens.   The paragraphs below present the respective scenarios and their potential 

implications. It highlights key policy implications.  

3.5.1 Scenario 1:  Wide adoption of sustainable diets such as vegan and vegetarian diet concepts  

In this scenario, the US food system sustainably provides more healthy diets.  Consumers are gradually 

shifting towards greater consumption of pulses, approximately 25% more than the current by 2030 and 

reaching 62% by 2050. Similarly, food losses along the value chain are reduced by 32% at the end of 2030 

and 71% by 2050, with the wide adoption of circular economy concepts. Government agencies and other 

non-governmental agencies embark on several campaigns to promote the consumption of vegetables and 

raise taxes while reducing cattle production subsidies. Overall, a 20% annual subsidy for cattle production 

is achieved at the end of 2030, which subsequently rises to 45% by 2050.  

3.5.2 Scenario 2  

The US population becomes very familiar with sustainable diet concepts in this scenario. Campaigns by 

government agencies and other healthy diet organizations have gained momentum within the country. 

Subsequently, meat consumption is reduced by a staggering 27% by 2030 and 42% by 2050. Due to the 

massive campaigns and public education on sustainable healthy diets, pulses and vegetable consumption 

will increase by 29% and 32%, respectively, at the end of 2030.  By 2050, the next generation of consumers 

will adopt a strict vegetarian, and vegan diet as pulse consumption increases to 52%, while vegetable 

consumption rises to 82%.  The government continues to remove subsidies on livestock production and 

reinvents them in producing sustainable health plant-sourced food products—sugars and sweeteners 

consumption has also reduced drastically. The circular economy becomes the US population's culture, 

resulting in over 36% of food waste and loss of value by 2030 and approximately 58% reuse by 2050.  
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Figures 7 and 8 present snapshots and logical plots of the narratives governing the scenarios considering 

human health and environmental drivers.  

 

Figure 7: Snapshot of the health and environmental implications in the context of scenario one compared 

to the business-as-usual approach. 
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Figure 8: Snapshot of scenario two's health and environmental implications compared to the business-as-

usual approach. 

From the snapshots of the two-stylized scenarios, encouraging the adoption of vegetarian diet concepts in 

scenario one results in an almost 19% reduction in the prevalence of overweight by 2030.  Similarly, obesity 

prevalence can be minimized by almost 32% by addressing the environmental dilemma through the 
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business-as-usual approach. This reduction is almost 41% from the model's prediction at the end of 2022; 

despite the health benefits and potential increase in life expectancy postulated by this scenario, the 

environmental impact, such as agricultural land, increases but is not very significant (0.04% increase).  This 

observation can be attributed to potential technological farming practices such as vertical farms and 

aquaponic, which maximize land for greater production. Interestingly, the surface temperature reduces by 

12%. In the second stylized scenario, for a short-term object, overweight reductions (5%), obesity 

prevalence reductions of 11%, and a 1% increase in life expectancy can be achieved. Howbeit, from an 

environmental perspective, 6% reductions in GHGE and 42% reductions in surface temperature can be 

achieved.  Despite these potential reductions, the percentage of deaths due to non-communicable diseases 

increase, while there is no significant change in agricultural land use. Aside from these scenarios presented, 

many intermediate scenarios can be developed with a broad range of possibilities but bounded by the 

variables adopted in this study and the critical driving forces. To provide policymakers and food system 

analysts the opportunity to explore countless scenarios which can guide different decisions regarding food 

production, supply, and losses within the US food value chain and their respective influence on the health-

diet-environment trilemma, the next section presents a novel decision support system.   

3.6 Development of decision support system 

Scenarios can be powerful tools to explore the implications of different decisions in potential futures. 

Pairing scenarios with critical drivers such as GHGE, life expectancy, and prevalence of obesity and 

overweight provide an opportunity for several images of the future of US diet patterns.  As such, this section 

captures the deployment and development of a decision support system using the ML algorithms presented 

in this study to enable stakeholders/policymakers to explore diverse scenarios.  The novel decision support 

system- Food System-Rapid Overview Assessment using Scenarios (FS-ROAS) provides an opportunity 

to pursue food system transformation with diverse environmental and health implications. It allows short-, 

medium- and long-term exploration of diverse scenarios with high connectivity to food and livestock 

production, consumer supply, and food loss or waste within the US food system. For a short-term 

exploration of different scenarios and potential health and environment, FS-ROAS allows exploration to 

2030, while the mid-term and long-term allow exploration to 2040 and 2050, respectively. The above 

timelines were selected because as time horizons expand from months to years to decades, forecasts of 

human decisions become untrustworthy.  This is due to the intrinsic indeterminism of complex dynamic 

systems interconnecting with our food system and a poor understanding of human interaction with diverse 

ecological systems.  
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4 Conclusion  

Our choices today have the potential to shape tomorrow's world, thus allowing an endless list of possible 

future outcomes. However, this study has shown that health and environmental targets can be achieved 

under stringent policy mitigation strategies. For example, substituting 15% of meat consumption with 

pulses and vegetables results in 19% to 25% reductions in GHGE in the context of the two-stylized 

scenarios presented in this study. Additionally, surface temperature reductions as high as 12% can be 

achieved under similar conditions. ML algorithms were deployed using a flask framework to develop  FS-

ROAS. FS-ROAS presents an opportunity to explore intermediate scenarios that could materialize within 

the US food system.  It is transparent, easily assessable, and can be used on any digital device. The results 

suggest that substituting meat and beef production with a more resource-efficient agricultural product such 

as peas could reduce anticipated GHGE emission impact by 5-7% while reducing health impacts by 19-

41% for the short-term goal of 2030. This novel decision support system assists our understanding of 

choices' potential health and environmental implications.  
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CHAPTER FOUR  

4 A food system sustainability compass: A case of a Dashboard for Improving 
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Abstract  

Consumers choose what to eat considering the taste, nutrition, safety, and, perhaps more recently, the 

environmental friendliness of the food. Recent evidence suggests that nearly 20% of the total annual 

mortality in the United States is attributed to unhealthy food choices. Also,  unhealthy food choices are a 

significant threat to environmental sustainability. Previous studies have typically implemented either 

nutritional and health nudges or environmental labels to influence consumer decision-making. However, 

very few studies have simultaneously assessed consumer food choices considering both dimensions. Here, 

we present a Dashboard for Improving Sustainable Healthy (DISH) food choices, an intuitive and 

transparent toolbox that simultaneously maps out environmental footprints, nutritional, and health 

implications of food products. The results on the DISH simulator are based on an integration of 

environmental life cycle assessment and nutrient and health profiling. Furthermore, this study examined 

the influence of a novel score, the Environmental-Nutritional Score (EnN score), and its associated nudges 

on consumer choices when applied to two fast foods. A sensitivity analysis revealed the robustness of the 

EnN Score with variations between 0.75% and 1.31% when comparing the two products. The EnN score 

for the food products was 2 and 3 with associated nudge interventions of "Don't eat too often" to "This food 

is encouraged." The results of data collected from 112 correspondents suggest that, with the EnN score, less 

cognitive processing was required to make healthy and sustainable decisions. Statistical inspection of the 

results suggested that factors such as DISH modules, nudges, awareness, and diet patterns considerably 

influenced healthful food choices (sig<0.001).  41.9% of participants purchased foods with 'higher EnN 

score ratings' for the food categories. Also, 64.3% of participants rated the DISH simulator 4-star and 5-

star, strongly suggesting the effectiveness of the concept during the purchasing decision. The data support 

the idea that EnN scores and corresponding nudge interventions could be extended to the American 
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community's fast foods. It also suggests the need to re-align how environmental-nutrition messages are 

reinforced among consumers to stimulate purchasing decisions.               

Keywords: EnN score, sustainability, nudging, simulator, environmental footprint,  

5 Introduction  

In the United States (U.S.), over 78 million people are estimated to be obese, associated with chronic diet-

related diseases such as coronary heart disease, stroke, type 2 diabetes, and colorectal cancer [1, 2]. These 

diseases are responsible for seven out of ten deaths in the U.S., killing more than 1.7 million Americans 

annually [3, 4]. The high prevalence of obesity-related chronic diseases has been linked with consumers' 

food choices and unhealthy dietary patterns [5-8]. Aside from this, nearly 117 million people, thus about 

50% of American adults, have one or more chronic diseases [4, 9]. Many of these diseases are preventable 

as they are related to unhealthy dietary patterns [10-13].  Currently, obesity-related illness estimated health 

care cost is a staggering $190.2 billion annually in the U.S [14]. Looking forward, researchers stipulate that 

if consumer dietary patterns continue to go unchecked and the current trends persist, the medical cost and 

its associated economic loss in productivity of obesity-related illness could rise by $48 to $66 billion and 

as high as $580 billion in the U.S. by 2030 [15]. Hence, it is essential to take pre-emptive actions to develop 

levers to reduce and control these conditions.  

At the environmental level, our food choices contribute to 48-79% of water and land resource consumption 

at the household level [16]. Furthermore, consumer food expenditure has been identified as a pivotal 

contributor to environmental concerns such as climate change [5]. Recent studies have also mapped out the 

environmental impacts of consumer food choices, demonstrating that a simple shift to low-carbon food 

choices could reduce greenhouse gas emissions (GHGEs) from the food system. Weber and Matthews [17] 

leveraged the Consumer Expenditure Data (CEX) reported by the U.S. Bureau of Labor Statistics to 

estimate the GHGEs from U.S. households. Although this was at the national level, subsequent studies by 

Jones and Kammen [18] observed individual consumer behavior through the CEX and estimated GHGEs 

from individual foods. Boehm, Wilde [19] linked the U.S. household food expenditure data from the 

National Household Food Acquisition and Purchase Survey (FoodAPS) to the Economic Input-Output Life 

Cycle model to establish a correlation between GHGE's different household socio-demographics. However, 

these studies failed to link consumer choices to their health, as health and environmental concerns pose a 

significant challenge to consumer quality evaluation of food. 

Other researchers have developed digital solutions such as online household carbon footprint calculators to 

reduce emissions regarding consumer lifestyle choices [20]. However, one fundamental limitation is that 

this platform does not provide an educational component for consumers to understand the impact of their 
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food choice on climate change and other environmental burdens such as eutrophication. There are several 

technology-based tools to help consumers record or monitor their dietary intake at set intervals. These tools 

include scanner-and-sensor-based technologies [21, 22], web/computer-based technologies such as the 

Automated Self-Administered 24-hour dietary recall (ASA24) [23], or mobile technologies such as MyPlate 

[24]; or Lose It! [25]. While these tools allow consumers to track their diet, they require users to record the 

time and type of food, usually after purchase. These tools do not satisfy the increasing consumer desire to 

understand how their food choices impact environmental sustainability. Above all, a recent consumer report 

by International Food Information Council 2021 Food & Health Survey (IFIC 2021) revealed that almost 

60% of consumers recognize the need for food products they purchase or consume to be produced in an 

environmentally sustainable way, thus an increase from 54% in 2019. However, there is not a tool available 

to provide consumers the capability to assess the impact of their food expenditure on GHGEs and evaluate 

the nutritional implications and economic cost of their food choices. Therefore, this presents an opportunity 

to provide consumers with an easy-to-use tool grounded on the best science to provide decision support for 

real-time exploration of different food choices to improve health and environmental impact at the time of 

purchase because when these tools or the information are deployed at the point of decision-making, there 

is a higher chance of influencing consumer behavior [26]. 

In recent years, many interventions, including behavioral, lifestyle, economic measures, and legal 

regulations, have been tested and promoted to increase consumer consumption of healthier foods. Among 

the existing interventions and strategies, methods targeting consumer perception, instead of those limiting 

consumers’ choices, seem to have a more significant impact on improving the effectiveness of healthy diet 

campaigns [27]. These methods are often associated with the term “nudge,” which refers to changing 

people’s behavior without the constraint of options [28]. Because the environment in which individuals 

make choices can be altered and influence the decision-making processes, nudging focuses on enabling and 

changing behaviors and decisions that are beneficial for society (e.g., public health) rather than delivering 

information or changing society’s values system. For example, a school cafeteria in New England (North 

America) asked their students—before they ordered their meals—whether they would have fruit or juice 

with their lunch, and the intervention resulted in 70% of students consuming one of those options in 

opposition to 40% in the control group [29]. An intervention at a buffet restaurant in Denmark changed the 

sequencing design of its service, combining and separating fruits and vegetables. The change increased 

self-served fruits and vegetables while reducing the total calorie intake [30]. Gonçalves, Coelho [26] 

demonstrated how a social norm nudge, a message conveying fruit and vegetable purchasing norms 

positioned strategically in a Portuguese supermarket, affected consumers' purchasing habits categorized as 

less healthy and healthy. The study measured 1,636 customers over three months. The results demonstrate 
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that the nudge intervention positively affected the purchasing habit of consumers categorized as less 

healthy, while those with healthy habits were slightly negatively affected.  

With the ongoing challenges related to sustainability and nutrition, the information used for implementing 

a food choice nudge is essential. Research shows a poor understanding by consumers of the dynamic 

relationship between dietary choice, the food ecosystem, and other interrelated systems [6, 31, 32]. This is 

because the information which may be effective in improving consumer food choices, such as nutrition 

information, is complex and difficult to convey in a clear and actionable manner. Although consumers in 

the U.S. [33] and Europe are knowledgeable about climate change [34, 35], they remain uninformed about 

the broader environmental impacts of their food choices [36, 37]. Therefore, simple, graphic, and easily 

understandable messaging will be critical to delivering a digital platform that promotes healthy and 

sustainable choices and supports chronic disease prevention. 

Therefore, this study presents a digital platform that leverages the benefit of both worlds and is an excellent 

opportunity to enhance consumer health while meeting their sustainability goals. The current literature 

supports the effectiveness of informational and nudging techniques to reorient consumer behavior toward 

sustainable food consumption [38-40].  Therefore, implementing nudges using a novel digital technology 

is based on the assumption that we can cumulatively achieve considerable positive health and 

environmental impacts by guiding people toward small, subtle adjustments in their daily dietary routines. 

We hypothesized that providing information on nutritional and environmental implications of consumer 

food choices will lead to healthy and sustainable food intake that supports chronic disease prevention and 

minimizes diet choices' environmental impact. The proposed digital platform, Food Choices Overview 

Dashboard (DISH): (a) draws practical attention to the nutritional implications of diet choices and how it 

contributes to healthy living at the point of food choice/decision-making. This was achieved by translating 

the assessment of the potential risk components (total energy, total sugars, saturated fat, sodium) of the two 

food products in alignment with the U.S. dietary guidelines using the Health Star rating and Food Compass 

score algorithms. The Health Star Rating algorithm generates a score rating from 0.5 to 5.0 stars, signifying 

least and most healthy, respectively. (b) provides consumers with environmental impact information of 

chosen foods (ecosystem quality and human health impact). This was achieved by conducting a case study's 

environmental life cycle assessment and translating the results into monetary burdens using Ecotax and 

Ecovalue monetization techniques. (c) Provide an interactive avenue for environmental-nutrition trade-off 

analysis and comparison of different choices to enable consumers to make an informed decision. To test 

and validate the effectiveness of DISH, two fast-food menus are compared and tested among 112 

individuals. DISH presents an opportunity to integrate the present consumer food data streams to drive food 

choices toward sustainability and health. The technology acts as an intelligence hub between nutrition and 
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health modelling, environmental life cycle assessment, and decision-making, unlocking the true potential 

of consumer food choices at the point of purchase. The remaining part of the paper proceeds as follows:  

Section two presents the methodology employed in this study. The third section presents the findings of the 

research, focusing on three key themes: (a) an analysis of the results of the life cycle assessment and 

nutrition and health modelling, (b) the development of the decision support system, and (c)  data gathered 

from consumer testing of the DISH.  

6 Method  

6.1 Method framework  

In recent years, the dilemmas between health and environmental impacts have motivated consumer 

purchase of either meat or plant-based alternatives. Aside from this, nudges associated with different food 

products have also stimulated consumers toward certain decisions [41].  This section proposes a method 

framework that integrates health and nutrition profiling, environmental impact quantification, and nudges 

into a decision support system. The method framework adopted for this study consists of five stages (Figure 

1). The first step focuses on calculating the Health Star Rating (HSR) and Food Compass Score (FCS) to 

provide a degree of healthiness and nutritional perspective to promote healthy diet choices among 

consumers. The HSR algorithm consists of five steps: determining the food product category, identifying 

its relevance toward policymaking, the form of product, calculating the baseline and modifying scores, then 

translating these scores to HSR that expands from 1 to 5 stars.  Similarly, the FCS compares food through 

a weighted score around nine food domains ranging from 1(least healthful) to 100 (most healthful). In step 

two, an environmental Life Cycle Assessment (eLCA) is conducted considering a cradle-to-gate perspective 

using the ReCiPe (mid-point and endpoint) impact assessment method and OpenLCA software v1.10. The 

results of the eLCA are translated to monetary equivalence to determine the economic value of the 

environmental releases from the two food products. Then, the results of steps one and two are integrated 

into the Environmental-Nutrition Score (EnN score) using a modified multi-criteria decision modeling 

(MCDM) approach, which will be discussed in detail in section 2.4.3 (Step 3). Figure 1 shows a four-point 

scale with associated nudges is adopted to stimulate consumer choice and preference.  The fourth step 

focuses on developing the decision support system or a simulator using an agile product development cycle. 

Multiple feedback, corrections, and modifications were made based on consumer feedback on the initial 

version of the simulator. Finally, the simulator was tested through a consumer survey to determine its 

influence on consumer purchases for two fast-food products: plant-based burgers and animal-based burgers. 

It is important to highlight that animal-based burgers are made from cattle beef. In contrast, plant-based 

burgers contain major ingredients such as black beans, soy, wheat, rice, and other ingredients highlighted 
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in the Supplementary Document. The survey results were analyzed using the Statistical Package for Social 

Science (SPSS) software 28.0.   
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Figure 17: Method framework adopted for the study 
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6.2 Health and nutrition modeling 

6.2.1 Calculating Health Star rating 

In high-income countries, processed food constitutes about two-thirds of the total dietary intake, which 

implies its substantial influence on the population’s health. As many such recommendations and nutrient 

profile guides have been implemented to improve nutrition literacy, guide consumers, and promote healthier 

diets. Among these is the HSR score; the HSR is a metric adapted to relay the healthiness of a food. This 

metric was adopted because it provided an easy approach to comparing two products with similar 

ingredients and had a graphical approach that consumers readily understood. The HSR of the two food 

products adopted was calculated according to the “Guide for Industry to HSR calculator”[42]. First, 

baseline values were calculated using the American Dietary Recommendation on the calories, saturated fat, 

total sugar, and sodium content per 100g. The four components are considered due to their negative 

association with increased risk of chronic disease. Next, modifications were calculated for Fruits, 

Vegetables, Nuts, Legumes (FVNL%), protein, and fiber. Then, the HSR score was computed by the 

difference between the baseline and modifying points. Finally, the score was converted to the rating system 

based on a predefined scoring matrix and food category (See Eqn 1.0). The HSR ranges from 0.5 to 5.0 

stars: thus, the higher the star rating, the healthier the product.  

𝐹𝑖𝑛𝑎𝑙 𝐻𝑆𝑅 𝑠𝑐𝑜𝑟𝑒 = 𝐻𝑆𝑅 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑝𝑜𝑖𝑛𝑡𝑠 − (V points) − (𝑃 𝑝𝑜𝑖𝑛𝑡𝑠 ) − (𝐹 𝑝𝑜𝑖𝑛𝑡𝑠)        (1) 

Where 𝐻𝑆𝑅 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑝𝑜𝑖𝑛𝑡𝑠 captures the energy, saturated fat, total sugars and sodium,  𝑉 𝑝𝑜𝑖𝑛𝑡𝑠 consist 

of HSR fruits, vegetables, nuts and legumes,  𝑃 𝑝𝑜𝑖𝑛𝑡𝑠  represents the protein content, and 𝐹 𝑝𝑜𝑖𝑛𝑡𝑠 

represents the fiber content of the selected food. 

6.2.2 Calculating Food compass score  

The FCS algorithm utilized nine domains:  Nutrient ratios, vitamins, minerals, food ingredients, additives, 

processing, specific lipids, fiber and protein, and phytochemicals. Each of the nine domains consisted of 

different attributes against which scores were calculated (See Supplementary Document). In total, 54 

attributes constitute the nine domains of the FCS. Next, an average value was calculated to represent each 

domain, then summed to provide a food compass for each food product.  It is important to mention that 

three specific domains:  fiber and protein, lipids, and phytochemicals, were half-weighted. The final 

compass score ranged from 1 to 100 representing least healthful and most healthful, respectively.  The final 

compass score was calculated using Eqn 2.0 presented below  

               𝐹𝐶𝑆 = 100 − (
max 𝑠𝑐𝑜𝑟𝑒 − 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑠𝑐𝑜𝑟𝑒

𝑠𝑐𝑜𝑟𝑒 𝑟𝑎𝑛𝑔𝑒
) × 99          (2)   
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Where the original score is obtained when each domain score is calculated as an average of their respective 

attribute score for the desired product, and then the domain scores are summed. The max score is the 

maximum score a product can obtain across all domains.  

6.3 Environmental Life Cycle Assessment  

The eLCA is an approach adopted to evaluate and quantify the impact of processes, products, and systems, 

considering different inputs and outputs at different life cycle stages. The eLCA adopted for this study was 

according to ISO 14044 standards [43].  The following paragraph provides the general steps adopted to 

complete the eLCA of the two food products. 

6.3.1 Goal and scope   

The goal of the eLCA is to compare the environmental impact per serving of two different burgers available 

in the United States. The first burger comprises beef, while the other consists of major ingredients such as 

black beans and soy plant substitutes. The functional unit adopted for the two products in this study were: 

plant-based burgers (414g) and animal-based burgers (431g) per serving, ready for consumption. In 

addition, 284.6  g of plant-based burger patties and 268 g of animal-based burger patties per serving were 

adopted during the modeling processing. 

6.3.2 System boundary  

Since the proposed simulator, DISH, is postulated to guide consumers' decisions at the point of purchase, a 

cradle-to-consumer approach (cradle-to-gate perspective) was adopted for a ready-to-eat burger. The end 

of life of the two burgers was excluded from the analysis because it was assumed that the end-user was 

immediately consuming the food product. Figure 2 presents the system boundary to produce plant and 

animal-based burgers. 

6.3.3 Life cycle inventory 

This study relied on secondary data from National Agriculture Statistic Service Quick Stats (NASS Quicks 

Stat), Roman L. Hruska U.S. Meat Animal Research Center (USMARC), USDA NASS Agricultural 

Chemical Usage Field Crops Summary Reports, USDA Agricultural Service Report, USDA FoodData 

Central and other published sources. Table SD10 to SD14 of the Supplementary Document provides a 

detailed inventory for the eLCA of cattle feed cultivation, production, slaughter, packaging, and distribution 

to retailers and burger-producing outlets. These processes were modeled after the works of [44], who 

conducted an eLCA on beef production systems in the United States. However, the process was modified 

to include ground beef production, burger pattie, and a full burger ready for consumption after the 

production step. The feed cultivation step constituted an inventory of corn silage, grain, Alfalfa, pasture 

(grass), and utilities. 
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Figure 18: System boundary for beef-burger and plant-protein alternative burger production 
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Similarly, cattle production consisted of supplementary feed, utilities, and feedlots. Additionally, all 

chemicals used in cattle slaughter and conversion to beef were considered. The by-products of the cattle 

slaughtering step to produce beef included: food-grade bones, muscle, blood, edible offal, hide, and Fat C3, 

which received an economical allocation of 12.5% for the cattle slaughtering step. The packaging level 

included packaging materials (cardboard), consumables, utilities, and transportation in the inventory. The 

retail process captured packaging resources (such as paper labels), consumables, land use, waste, utilities, 

and transportation to burger-producing outlets. Runoff, leaching, and operational emissions were described 

for some value stages. The beef-based burger production step was modeled after USDA FoodData Central 

data and other online sources. This consisted of mincing ingredients (such as onions and garlic), mixing, 

forming, and roasting burger patties, roasting buns, and slicing additional ingredients or toppings such as 

tomatoes and onions. 

Likewise, Table SD1 to SD9 consists of the inventory for the plant-based protein-rich alternative, made 

from eighteen different crops with black beans, wheat, soy, cooked brown rice, and corn as the predominant 

ingredients. Cultivation of the raw materials for the predominant ingredient was modeled using data from 

NASS Quicks Stat. After harvesting, corn, wheat, and rice were assumed to be dried to acceptable limits of 

12%, 13%, and 12%, from an initial moisture content of 19.4%, 20%, and 21%, respectively. This 

assumption was made according to the recommendations of USDA agricultural commodity requirements. 

This assumption was applied to the corn silage and corn grain used for cattle production. 

Notwithstanding, Alfalfa, a feed for cattle production, is often dried in open space, while beans are left to 

dry to an acceptable limit before harvesting; hence inventory was not included in the drying step of these 

agricultural commodities. The inventory for plant-rich-protein burger patties was modeled after 

Morningstar Spicy Black bean burger patties published life cycle reports.  All emission factors associated 

with crop cultivation were estimated using the 2019 refinement of the 2006 IPCC Guidelines for 

Greenhouse Gas Intervention Tier 1 model (See Supplementary Document for the equations of this choice 

of method). The energy and electricity needed to achieve the drying limits for each crop were estimated 

using the Iowa State University Research Farm 2015 progress report. The plant-based burger inventory 

consists of crop cultivation, harvesting, processing ingredients (fiber, flavor, oil, legume-based additives, 

and proteins), transportation,  plant-burger pattie production, and full burger production. The recipe adapted 

to produce plant-based and animal burgers were cross-referenced with USDA recommendations. Tables 1 

and 2 summarize the inventory, data types, and sources for the respective life cycle phases adopted in this 

study.  
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Table 12: Summary of inventory data types and sources for a plant-based burger (See SD Tables S1 to S9 

for complete inventory data)  

S/N Life Cycle phase  Process flow  Source 

1 Cultivation Field data,  Fertilizer, Pesticides, Other 

chemicals,  Utilities, Emissions   

NASS Quick STAT  

Pradhan, Shrestha [45] 

IPCC model, 2019 update 

(Tier 2) 

2 Raw material 

production 

Spices, Onion powder, tomato juice and 

ketchup, red bell pepper, and auxiliary 

ingredients.  

Ecoinvent 3.3  

Agribalyse  

3 Harvesting and 

field processing.  

On-farm combine harvesting, drying of corn, 

wheat, and rice, rice processing (milling), 

and transportation to a storage facility.  

Morning Star Farm, USDA 

Iowa State University 

Research Farm Progress 

report 2015.  

4 Packaging and 

Transport  

Folding boxboard carton 

Cardboard  

Ecoinvent 3.3 

5 Burger Pattie 

manufacturing  

Utilities(Electricity, Natural gas, water ), 

wastewater, solid waste 

Morning Star Farm LCA 

report  

6 Packaging of 

Pattie  

Plastic film, Adhesives, WHDPE  Morning Star Farm LCA 

report 

7 Transportation to 

retail  

Transportation to distribution centers and 

retail, distance traveled  

Morning Star Farm LCA 

report 

8 Whole Burger 

production  

Ingredients,  plant-rich-protein pattie   

 

Morning Star Farm LCA 

report, USDA  FoodData 

Center 

 

Table 13:  Inventory data types  and source for animal-based burgers (See SD Table S10 to S14 for 

complete inventory)  

S/N Life Cycle phase  Process flow  Source 

1 Feed Cultivation 

and  

Supplementary 

feed 

 

Field data (corn grains, corn sillage, pasture), 

Fertilizer, Pesticides, Other chemicals,  

Utilities (land area, water consumption, 

energy or fuel), Emissions to the soil, air, and 

water(Nitrous oxide)   

Ecoinvent, BASF, 2010 

NASS Quick Stats, Pradhan, 

Shrestha [45], IPCC model, 

2019 update (Tier 2) 

2 Cattle production Supplementary feed, Primary feed, Utilities 

(water, energy consumption), Feedlot 

operations, calf Transport of feed, emission 

to air, water, and soil (enteric methane), 

excretions during grazing 

IFSM 

BASF 2011  

3 Cattle slaughter 

and chilling  

Chemicals, Disposal of animal by-products, 

transport  

 Ecoinvent  
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4 Packaging and 

transportation 

Packaging resources (Allumion alloy, 

HDPE, Latex), consumables, utilities, 

transportation, emissions, waste  

Ecoinvent 3.3 

5 Ground beef 

production 

Deboning of beef, fresh trimming, and 

grinding 

Ecoinvent  

6 Retail  Packaging, consumables, land uses, utilities, 

transport, air emission, waste  

BASF 2010 

7 Burger Pattie 

manufacturing  

Utilities (electricity, natural gas, water  BASF, 2011, Ecoinvent, U.S. 

Life Cycle Inventory (LCI) 

8 Preparation of 

ground beef Pattie  

Ground beef, ingredients, source of heat, 

electricity  

USDA FoodData Center  

Online resource 

9 Whole Burger 

production  

Ingredients, ground beef-burger pattie 

 

USDA FoodData Center  

 

6.3.4 Life cycle impact assessment  

The eLCA of the two food products was modeled in OpenLCA v1.11.01 working environment using 

Ecoinvent cutoff LCI and Agribalyse database. It is an open-source software developed by Green Delta. 

The environmental impact assessment of the two products relied on ReCiPe 2016 Mid-point (H) and 

Endpoint (H) impact assessment methods. The ReCiPe method presents eLCA results of a modeled product 

system in sixteen mid-point impact categories and twenty-two endpoint impact categories which cover: 

global warming potential, non-renewable energy use, land use, and respiratory inorganics. The endpoint 

results are further aggregated to reflect three areas of protection: human health, ecosystem quality, and 

resource use. In addition, the world 2010 (H) normalization method was applied during the assessment. 

6.3.5 Life cycle monetization(LCM) 

Life cycle monetization is a methodology to determine the economic value of the environmental releases 

on society during eLCA. It provides a single score or weight that conforms to the ISO standard 14040/44 

[46]. Also, the monetization approach captures the trade-offs between the human health, ecosystem, and 

resource scarcity endpoint categories during eLCA. In this study, the eLCA results were monetized using 

the Environmental Prices monetary perspective. However, in the absence of appropriate equivalent 

monetary values for impact categories, proxies from the MMG method and Ecovalue were adopted. It is 

important to mention that the monetary units adopted were presented in 2015€. Hence a conversion was 

performed according to the ISO 14008 guidelines, which provide a monetary evaluation framework of 

environmental impacts. In other words, the monetary values were inflated by the consumer price index and 

then transformed to 2022-$eq by purchasing power parities using the relations presented below:  

𝑋𝑡 = 𝑋𝑏 ×
𝐶𝑃𝐼𝑡

𝐶𝑃𝐼𝑏
              (3) 
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Where 𝑋𝑡 is the currency in the target year, 𝑋𝑏 for the currency in the base year, CPI is the consumer price 

index in the years t and b, respectively.  According to the U.S. Bureau of Labor Statistics, the inflation value 

was 21.98% between 2015 and 2022. Table 3 presents the monetary values per impact category adopted 

for this study. The environmental prices can be based on either environmental price as a weighting factor 

or an external cost; however, the latter is adopted to quantify the external environmental cost. The 

environmental price as an external cost combines the hierarchist and individualistic perspective of the 

ReCiPe mid-point assessment method.  

Table 14: Environmental prices per impact category for LCM  

Impact category Reference unit  €2015 to 2015 $  $2019 to $2022 

Fine particulate matter 

formation 2015 €/kg PM10-eq 39.2000 

 $        57.8097  

Fossil resource scarcity 2019 €/M.J.  0.0105  $          0.0155  

Freshwater ecotoxicity 2015 €/CT Ue-e 0.0361  $          0.0532  

Freshwater eutrophication 2015 €/PO4–e 1.8600  $          2.7430  

Global warming 2015 €/kgCO2–e 0.0570  $          0.0841  

Human carcinogenic toxicity 2015 /kg 1,4 DB-eq. 0.0991  $          0.1461  

Human non-carcinogenic 

toxicity 2015 /kg 1,4 DB-eq. 0.0991 

 $          0.1461  

Ionizing radiation 2015 €/ kg kBq U23 5-e 0.0461  $          0.0680  

Land use 2015 €/m².a 0.0845  $          0.1246  

Marine ecotoxicity 2015 €/kg 1,4 DB-eq. 0.0074  $          0.0109  

Marine eutrophication 2015 €/ kg NO3-e 3.1100  $          4.5864  

Mineral resource scarcity 2019 €/ kg Sb-e 6.6500  $          9.8070  

Ozone formation, Human 

health 2019 €/ kg NOx eq 0.0100 

 $          0.0147  

Ozone formation, Terrestrial 

ecosystems 2019 €/ kg NOx eq 0.0100 

 $          0.0147  

Stratospheric ozone depletion 2015 €/Kg CFC–11–e 30.4000  $        44.8320  

Terrestrial acidification 2015 €/Kg SO2-e 4.9700  $          7.3294  

Terrestrial ecotoxicity 2019 €/kg 1,4 DB-eq 8.6900  $        12.8155  

Water consumption 2015 €/m³ 0.0010  $          0.0015  

(Note:  water consumption, fossil resource scarcity, and mineral resource scarcity were adapted from the 

EPS and MMG method, respectively, with a baseline year value of 2019) 

6.3.6 Uncertainty analysis at the LCI and Life Cycle Impact Assessment (LCIA) level 

To ascertain the validity of the conclusion of the eLCA, an uncertainty analysis was conducted using Monte 

Carlo Simulation with 1000 iterations using OpenLCA software. This allowed the authors to estimate the 

uncertainty ranges to conclude the respective environmental impacts. Uncertainties associated with the 

inventory data are introduced at the LCI level, and its cumulative effects are translated to product system 
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models during impact assessment. The Monte Carlo Simulation relies on the predefined probability 

distribution of the LCI model. It runs it repeatedly for 1000 iterations to allow statistical analysis of the 

characterized LCIA profiles of the two product systems. In this study, LCI models were assumed to be of 

a lognormal distribution, further validated through statistical analysis of LCIA profiles. The statistical 

analysis was performed using MATLAB functions which measure the variabilities and uncertainties in the 

simulated inventory containing the impact parameters. Maximum likelihood estimation was applied to 

assess the characteristics of the LCIA profiles using nine hypothetical distributions thus normal, lognormal, 

triangular, uniform, Rayleigh, beta, gamma, Weibull, and kernel. Two test statistic parameters, p-value, and 

chi-squared, were adopted to compare the probability density function of each hypothesized distribution of 

the product system models for plant- and animal-based burgers. The simulated dataset for the product 

system during the LCI was assumed to be a lognormal distribution; thus, a test was conducted to check the 

consistency with the hypothesized distribution. The chi-squared statistic is mathematically given as:  

𝜒2 =  ∑ (𝑂𝑏𝑖 − 𝐸𝑖)2/𝐸𝑖
𝑛
𝑖=1    (4) 

Where n is the number of bins,  𝑂𝑏𝑖 is the number of counts in bin i and 𝐸𝑖 is the expected frequency of 

the hypothesized distribution in bin i. It is important to mention that the test statistics implemented in 

MATLAB either reject the null hypothesis at a 95% confidence level or otherwise. 

6.3.7 Limitation and assumption 

The current comparative study relied on several assumptions. First and foremost, it relied on the assumption 

that consumers will directly eat the product at the point of purchase; thus, the packaging for a burger during 

purchasing for consumption was excluded. Additionally, animal-based burgers refer to burgers made from 

beef (cattle). The data adopted to model this burger was obtained from the USDA FNDDS database by 

adopting Cheeseburger (Burger King) ingredients and nutrient composition. Similarly, a plant-based burger 

is a rich-protein alternative made from soy, black beans, and wheat. According to the Morning Star Report, 

wheat used to produce burger pattie was imported from Canada; however, due to the unavailability of data, 

it was modeled after wheat production in the United States using NASS Quick Stats. As a rule of thumb, 

impact results for eLCA are monetized using the same cost perspective in life cycle monetization. However, 

proxies from other methods, such as MMG, were adopted due to the unavailability of scores or weights for 

fossil resources, mineral resources, and ozone formation. 

6.4 Decision-making model: The concept of Entropy 

Several subjective and objective weighting and ranking methods are commonly used in decision-making. 

For example, subjective methods such as the Delphi, pairwise comparison, and the Analytical Hierarchy 

process are often used during weight indexing. Other objective weighting indexes include the entropy 
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method and vertical and horizontal methods. While subjective methods are prone to human disturbance and 

biases, leading to deviations in weights, objective methods eliminate such biases, making their results 

according to the information provided [47].   

6.4.1 Entropy weight method 

The Shannon entropy weight method is an objective weighting method that elicits the weights of criteria 

based on the available data and reflects its degree of dispersion. The method has been extensively studied 

and practically applied across the medical, social, ecological systems, engineering, and many other 

decision-making fields. The entropy weight method was first introduced from thermodynamics to 

information systems by [48]. The uncertainty of signals in communication processes is called ‘‘information 

entropy’’. The lower the information entropy, the higher the weight, and vice versa. It is relevant in 

decision-making because it clarifies the intrinsic information transferred to the decision-maker by 

measuring the contrasts between data sets.   

6.4.2 Matrix of alternative and ist of criteria for Entropy weighting  

The two products, thus plant-based burgers and animal-based burgers, served as the list of alternatives for 

the decision modeling.  Nonetheless, to navigate the decision-making against the alternatives, a list of 

criteria or attributes was generated to capture the alternatives' environmental impact and nutrient and health 

profile. Table 4 presents a brief description of each criterion and its corresponding objective 

Table 15:  Performance characteristics of environmental-nutrition criteria for assessment  

S/N Criteria  Description  Objective  

1 Human health cost  It describes the external environmental impact cost 

associated with the endpoint area of human health 

protection.  

Minimized  

2 Ecosystem cost  It describes the external environmental impact cost 

associated with the endpoint area of ecosystem health 

protection. 

Minimized 

3 Resource scarcity cost  It describes the external environmental impact cost 

associated with the endpoint area of natural resource 

protection. 

Minimized 

4 Health Star rating  It is an indicator used to measure the degree of the 

healthiness of food on a scale of 1 to 5. 

Maximized  

5 Food compass score  It is an indicator used to measure the degree of the 

healthiness of food on a scale of 1 to 100. 

Maximized  
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6.4.3 Integrated health and environmental impact modeling using Entropy and linear 

combinations 

Figure 3 presents a flowchart model of the coupled Entropy-linear combination framework utilized in this 

study to evaluate the environmental-nutritional implication of the two food products.  

 

Figure 19: Flow chart of the Entropy-TOPSIS framework   

The following paragraph presents a systematic description of the steps and formulas involved in 

implementing the framework.  

Step 1:  Compute the normalized decision matrix 

Step 2: Compute the entropy value 

The entropy value hi is computed using Eq. (4) 

ℎ𝑖 = −ℎ0 ∑ 𝑝𝑖𝑗 .

𝑚

𝑗=1

𝑙𝑛𝑝𝑖𝑗 , 𝑖 = 1, … 𝑛,    … … … … (4) 

where h0 is the Entropy constant and is equal to (ln m)-1, and 𝑝𝑖𝑗 .𝑙𝑛𝑝𝑖𝑗 is defined as 0 if 𝑝𝑖𝑗 = 0   

Step 3: Compute the degree of diversification using Eq. (5) 
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𝑑𝑖 = 1 − ℎ𝑖, 𝑖 = 1, … 𝑛        … … … (5) 

Step 4: Computing the objective weight (degree of importance) using Eq. (6) 

𝑤𝑖 =
𝑑𝑖

∑ 𝑑𝑠
𝑛
𝑠=1

, 𝑖 = 1, . . 𝑛   … … (6) 

Step 5: Compute the weighted normalized decision matrix and translate it to a four-point scale using a 

linear combination across   

            ∑ 𝑤𝑗
𝑛
𝑗 = 1  

𝑉 = (𝑣𝑖𝑗) … … … … … (7) 

𝑤ℎ𝑒𝑟𝑒    𝑣𝑖𝑗 = 𝑝𝑖𝑗 . 𝑤𝑗  +⋯… +   𝑝𝑛𝑗𝑤𝑛 

6.5 Development of a decision support system 

Having conducted the eLCA, nutrient profile modeling, and implementing a modified MCDM, the next 

step was to translate the results into a sustainable healthy food choice simulator to navigate/stimulate 

consumers toward healthy and sustainable diet choices at the point of purchase. This was accomplished by 

following the agile product development cycle presented in the following steps.  The first step focused on 

an initial development stage where we mapped out the user experience using flowcharts and designed a 

low-level and high-level fidelity user interface using draw.io and Adobe User Design tools, respectively. 

Next, a working prototype was developed and validated with consumers, food vendors on campus, and 

other key stakeholders involved in the project. The next step focused on iterating and validation. Here, an 

initial beta version of the simulator was released so that key partners could test its user-friendliness and 

usability. In addition, initial data was collected on the user experience and the effectiveness of the simulator 

in communicating the desired information to the consumer.  This feedback led to the development of a 

second version of the simulator. The front-end development was executed using HTML and CSS 

programming languages during this step. Advanced libraries such as React, View, and Angular were also 

used in front-end development. Similarly, the back-end development database was set up using relational 

databases like MySQL. This stores the data in the form of tables. Also, Node.js was used as a server engine 

to run JavaScript or execute back-end codes. Finally, the different patches and modules of the simulator 

were deployed online. This step ensured that API keys, database connections, and online cloud storage keys 

were safely coded or secured. Next, all codes are transferred from a local computer to the server 

(GitHub/Gitlab). Gitlab serves as a repository to host the front-end and back-end development codes. From 

here, we used a hosting service such as Heroku, which connects to GitHub/Gitlab to power the application 

online 
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6.6 Consumer survey  

The consumer survey and testing of the proposed simulator received ethical approval from the Institutional 

review board on an engaging human subject in research. Prior to the survey, all participants were given 

information about the purpose of the survey and were required to select a checkbox to indicate their consent 

as required by federal or state regulations and University of Arkansas policy. All participants who failed to 

give their consent were exempted from the study.   

6.6.1 Questionnaire design  

The questionnaire proceeded by collecting data on the demography of participants, which include:  gender, 

age, level of education, and affiliation. Next, participants were asked about the frequency of consuming 

either an animal-based burger or a plant-based burger, to which six questions were asked at this level. 

Among these questions was a test on the predisposition of consumers' preferences prior to the experiment 

to fully ascertain the simulator's impact. Next, the questionnaire sought to determine the participant's 

smartphone behavior. Questions such as participants' frequency of using digital devices to purchase food 

and their level of comfortability using a five-point Likert-type were administered. Furthermore, participants 

were provided with the opportunity to explore the proposed simulator. After this, participants were asked 

about the ease and usability of the simulator, their understanding of specific indicators presented on the 

simulator, their recollections of results and nudges presented on the simulator, and their level of awareness 

of the environmental and health implications of the two food products using a Likert scale. Finally, the 

purchasing options and their underpinning factors, level of trust and recommendations for improving the 

simulator, and whether implementing it on a larger scale would aid in sustainable decisions were collected. 

Full details of the questionnaire administered are attached in the Supplementary Document, and the survey 

instrument can be viewed at [49].  

6.7 Data analysis  

The data collected from the survey were analyzed using descriptive statistics.  The mean, standard 

deviation, frequency, and percentages were used to analyze the effect of sample size and were generated 

using SPSS version 25. The difference in frequency and continuous variables was analyzed using χ2-square 

statistics, t-test, and analysis of variance. Also, a linear regression model was used to investigate the factors 

that influenced participants' choices of food products at the point of purchase.  

7 Results  

7.1 Environmental impact results  

7.1.1 General LCA results  

The environmental impact assessment for the plant-based and animal-based burgers across 22 endpoint 

impact categories is presented in Table 4. The results show that the plant-based burger has a significantly 
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lower environmental burden than animal burgers across 21 endpoint impact categories. Thus, the 

environmental burden of plant-based burgers ranged from 99.63% to 19.18%, lower than that of animal-

based burgers. It can be observed that impact categories such as human non-carcinogenic, land use, marine 

eutrophication, and stratospheric ozone depletion have lower environmental impacts for a plant-based 

burger when compared to the animal-based burger, corresponding differences ranging between 0.03% to 

1.79%. Furthermore, to establish which impact categories were most relevant to comparing the two food 

products, the impacts were normalized using World Impact (2010)H method. The results illustrated that the 

top six impact categories are fossil resource scarcity, mineral resource scarcity, global warming, fine 

particulate matter, water consumption, and land use.  The normalized scores for these impact categories 

exceeded 5E-5 person equivalence. Normalized scores are comparatively lower for a plant-based burger 

than an animal-based burger, thus illustrating a higher environmental burden. The mid-point impact 

assessment results of the two food products are presented in Supplementary Document Table SD16. 

Table 16: Summary of the mid-point environmental burden for plant-based and animal-based burgers. 

S/

N Impact category Unit Impact result 

 

  

Animal-based 

burger (ABB) 

Plant-based burger 

(PBB) 

1 Fine particulate matter formation DALY 9.32E-03 3.36E-03 

2 Fossil resource scarcity USD2013 1.06E+03 2.14E+03 

3 Freshwater ecotoxicity species.yr 2.04E-06 8.66E-08 

4 Freshwater eutrophication species.yr 3.45E-06 2.66E-07 

5 Global warming, Freshwater ecosystems species.yr 1.18E-09 9.54E-10 

6 Global warming, Human health DALY 1.43E-02 1.16E-02 

7 Global warming, Terrestrial ecosystems species.yr 4.32E-05 3.49E-05 

8 Human carcinogenic toxicity DALY 2.32E-03 9.77E-04 

9 Human non-carcinogenic toxicity DALY 1.59E-01 4.57E-04 

10 Ionizing radiation DALY 1.34E-06 7.38E-07 

11 Land use  species.yr 4.64E-04 1.76E-06 

12 Marine ecotoxicity species.yr 1.18E-07 1.72E-08 

13 Marine eutrophication species.yr 2.54E-08 1.4E-10 

14 Mineral resource scarcity USD2013 7.1E+0 2.76E+0 

15 Ozone formation, Human health DALY 2.3E-05 7.54E-06 

16 Ozone formation, Terrestrial ecosystems species.yr 3.37E-06 1.17E-06 

17 Stratospheric ozone depletion DALY 4E-05 7.18E-07 

18 Terrestrial acidification species.yr 1.09E-05 3.38E-06 

19 Terrestrial ecotoxicity species.yr 1.14E-04 3.82E-08 

20 

Water consumption, Aquatic ecosystems species.yr 1.48E-08 1.02E-09 

21 Water consumption, Human health DALY 5.778E-03 2.27E-03 
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22 Water consumption, Terrestrial 

ecosystem species.yr 3.13E-05 1.37E-05 

 

 

Figure 20: Environmental impact of plant-based and animal-based burgers across 22 impact categories 

(The meaning of the abbreviations used here are provided at the end of the paper). 

7.1.2 Process contribution 

Figure 5  presents the process or value chain environmental burden contribution across the 22 endpoint 

impact categories for plant-based and animal-based burgers.  From Figure 4, feed cultivation is responsible 

for 32.6% to 71.8%  and 52 to 83.85% of the environmental burden across all impact categories for plant 

and animal burgers, respectively. Hence accounting for the highest environmental impact contributor. On 

the contrary, the whole burger preparation process and its ingredients have the most negligible impact, 

corresponding to 0.67% to 10.84% and 0.01% to 3.2% for plant and animal burgers. The cattle production 

value chain contributed to the highest impact, thus 44.76%, 37.56, and 68.02%, for climate change, land 

use, and eutrophication. This is probably due to the enteric methane released during cattle grazing and 

production. Similarly, 55% of land use was associated with cattle production, while 24.55% was attributed 

to burger pattie ingredients. In the contest of plant-based burgers, the cultivation value chain contributed to 

95% of the burden associated with global warming. This observation could probably be due to methane 

emissions from rice farms. While approximately 58% of land use for plant-based burgers was associated 

with cultivation.  Interestingly, both food products' burger pattie manufacturing was associated with lower 
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environmental burdens. Packaging and transport were responsible for a relatively low share of the different 

value chains' environmental burdens. 

7.1.3 Uncertainty analysis of LCIA results  

The uncertainty analysis conducted on the LCIA profiles of each product system was based on a lognormal 

probability distribution. A Monte Carlo Simulation was run with 1000 iterations at a 95% confidence level 

to estimate the uncertainties associated with two eLCA models. Table 5 presents the 95% confidence 

interval for the LCIA mid-point impact categories. The findings indicate that in 95% of the cases, the 

characterized results of the eLCA of the two product systems would fall within the upper (UL) and lower 

limit (LL). As shown in Table 5, the coefficient of variation ranges between 3.45% to 24.35% and 14.17 to 

16.52% for the PBB and ABB, respectively. The CV is a normalized indicator that describes the disparity 

in the impact categories. A closer inspection of Figure 6b shows a more significant uncertainty introduced 

into global warming and water consumption impact scores. Impact scores for other indicators showed a 

lower degree of variance. Similarly, Figure 6a reveals a steady trend in the CV scores and the error bars for 

the impact categories. However, it does suggest a relatively high introduction of uncertainties associated 

with terrestrial ecotoxicity and water consumption. The uncertainty ranges illustrated in the error bars were 

derived from the probability distribution computed for each impact category (Figures 6c and d).  Figures 

6c and d show a lognormal profile for both product systems, which corroborates strongly with the 

hypothesized lognormal distribution at the LCI level. Additionally, the observed consistent trend in CV and 

error bars for the impact category can be attributed to the robustness and ability of the lognormal distribution 

to resist outliers at the LCI level. 

Table 7 presents the best-fitting hypothesized distribution for the LCI for the two product systems. From 

the results in Table 7, we can affirm that the LCI model and data for the two product system exhibit a 

lognormal distribution and other types of distribution, such as kernel, gamma, and normal distributions. 

Howbeit, for animal-based burgers, only lognormal and gamma were accepted. One significant advantage 

of using the pre-calculated distribution in OpenLCA software is that it reduces the computational during 

uncertainty analysis. From Table 7, the lognormal distribution illustrated the best fit with a chi-square of 

11.3090, 9.6781, and a p-value of 0.1256 and 0.1389 for plant-based and animal-based burgers. Thus 

accounting for less dispersion and data variability in the current LCI for the study.  Also, as a rule of thumb, 

a lower CV suggests less uncertainty and higher confidence associated with an impact category. Thus the 

results imply that the environmental profiles developed for ABB and PBB food products are well 

represented by the impact categories and provide a more appropriate premise for impact assessment 

comparison.  The probability density function for all impact categories is presented in the Supplementary 
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Document (See Figures SD4 and SD5 for a plant-based burger and Figures SD 6 and SD 7 for an animal-

based burger).  Figure 7 shows the animal-based burger model's distribution of six impact categories. 
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Figure 21: Environmental impact distribution of the different life cycle phases for (a) beef-burger and 

(b)plant-based burger 

(a)  

(b) 
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Table 17: Uncertainties for characterized LCAI profiles for plant and animal-burger  

  
Mean  Standard 

deviation 

CV LL (5% 

percentile)  

UL (95% 

percentile) 

Impact category Reference 

unit 

PBB ABB  PBB ABB  PBB ABB  Plant  Animal  Plant  Animal  

Fine particulate matter 

formation 

kg PM2.5 eq 1.5E+00 1.7E+02 5.3E-02 2.4E+01 3.45% 14.17% 1.4E+00 1.1E+02 1.7E+00 2.6E+02 

Fossil resource scarcity kg oil eq 2.1E+02 8.6E+03 1.0E+01 1.2E+03 4.80% 14.38% 1.8E+02 5.6E+03 2.5E+02 1.3E+04 

Freshwater ecotoxicity kg 1,4-DCB 4.7E+01 6.3E+03 1.5E+00 9.2E+02 3.21% 14.57% 4.2E+01 4.1E+03 5.1E+01 9.9E+03 

Freshwater eutrophication kg P eq 2.0E-01 1.9E+01 6.3E-03 2.7E+00 3.20% 14.28% 1.8E-01 1.2E+01 2.2E-01 2.9E+01 

Global warming kg CO2 eq 3.8E+03 3.5E+05 9.2E+02 5.0E+04 24.35% 14.19% 1.6E+03 2.2E+05 7.9E+03 5.4E+05 

Human carcinogenic 

toxicity 

kg 1,4-DCB 2.1E+02 3.9E+03 6.4E+00 5.6E+02 3.09% 14.23% 1.9E+02 2.5E+03 2.3E+02 6.1E+03 

Human non-carcinogenic 

toxicity 

kg 1,4-DCB 9.8E+02 2.7E+07 3.3E+01 3.9E+06 3.41% 14.19% 8.7E+02 1.7E+07 1.1E+03 4.2E+07 

Ionizing radiation kBq Co-60 

eq 

2.5E+01 7.1E+02 9.2E-01 1.0E+02 3.71% 14.20% 2.2E+01 4.5E+02 2.8E+01 1.1E+03 

Land use m2a crop eq 1.8E+02 4.7E+05 5.8E+00 6.7E+04 3.17% 14.18% 1.6E+02 2.9E+05 2.0E+02 7.3E+05 

Marine ecotoxicity kg 1,4-DCB 6.6E+01 4.5E+03 2.1E+00 6.4E+02 3.25% 14.28% 5.9E+01 2.8E+03 7.2E+01 6.9E+03 

Marine eutrophication kg N eq 3.4E-02 6.4E+02 1.1E-03 9.1E+01 3.28% 14.19% 3.1E-02 4.0E+02 3.8E-02 9.8E+02 

Mineral resource scarcity kg Cu eq 9.1E+00 2.2E+02 2.9E-01 3.1E+01 3.14% 14.20% 8.2E+00 1.4E+02 1.0E+01 3.3E+02 

Ozone formation, Human 

health 

kg NOx eq 2.9E+00 1.7E+02 1.4E-01 2.5E+01 4.72% 14.21% 2.6E+00 1.1E+02 3.4E+00 2.7E+02 

Ozone formation, 

Terrestrial ecosystems 

kg NOx eq 3.0E+00 1.8E+02 1.4E-01 2.5E+01 4.78% 14.21% 2.7E+00 1.1E+02 3.6E+00 2.7E+02 

Stratospheric ozone 

depletion 

kg CFC11 

eq 

2.9E-04 3.2E+00 1.7E-05 4.5E-01 5.86% 14.19% 2.5E-04 2.0E+00 3.6E-04 4.9E+00 

Terrestrial acidification kg SO2 eq 4.7E+00 1.0E+03 1.6E-01 1.5E+02 3.33% 14.16% 4.2E+00 6.3E+02 5.2E+00 1.6E+03 

Terrestrial ecotoxicity kg 1,4-DCB 2.2E+03 9.2E+06 2.1E+02 1.5E+06 9.20% 16.52% 1.9E+03 5.3E+06 3.8E+03 1.5E+07 

Water consumption m3 1.6E+02 6.0E+03 1.7E+01 9.2E+02 10.89% 15.26% 1.1E+02 3.8E+03 2.2E+02 1.0E+04 
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Figure 22: Uncertainty analysis for animal and  plant-based burger:  a and b:  Uncertainties for characterized LCIA profiles; c and d:  Probability 

distribution of characterized GWP 100 profile (40 bins each) 

(a) 

(b) 

(c) 

(d) 
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Figure 23: Probability profile for the LCAI of the animal-based burger model 
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Table 18: Goodness of fit results for LCIA model 

S/N Hypothesized 

distribution 

Statistics 

(chi-squared) 

P-value 𝐻𝑜 Statistics (chi-

squared) 

P-value  𝐻𝑜 

  Plant-based burger Animal-based burger 

1 Normal  11.9030 0.1038 Accepted  33.4751 8.4940E-6 Rejected  

2 Lognormal  11.3107 0.1256 Accepted  9.6781 0.1389 Accepted  

3 Uniform  Inf  0 Rejected  Inf 0 Rejected  

4 Triangular  Inf  0 Rejected  Inf 0 Rejected  

5 Exponential  23,166 0 Rejected  43,627 0 Rejected  

6 Gamma 11.3183 0.1253 Accepted  12.5116 0.0515 Accepted 

7 Kernel  8.3613 0.4982 Accepted 17,287 0 Rejected  

8 Weibull 92.1244 1.09E-17 Rejected  93.6413 1.15E18 Rejected  

9 Rayleigh 11,094 0 Rejected  1728.7 0 Rejected  

7.2 External environmental monetization  

By adopting the environmental price and MMG monetization methods, Figure 7 presents a translation of 

the endpoint environmental impacts into external cost capturing the different components of protection 

areas per serving of PBB and ABB. A threshold contribution of 1% was set for the external cost associated 

with the impact categories.  Over 99% of the total external cost was associated with resource scarcity; thus, 

mineral resources and fossil resource scarcity. On the one hand, the human health costs of a plant and 

animal-based burger serving were $0.2 and $0.58, respectively. On the other hand, the associated ecosystem 

cost was $0.08 and $0.002, respectively. What is distinctive about external monetization is that it 

simultaneously offers a single monetary evaluation of different product systems. 

 

Figure 24: Life cycle costing for plant-based and animal-based burgers ((a) Mid-point cost (b) Endpoint 

cost ) 
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7.3 Health and nutritional outlook  

7.3.1 Health Star Rating and Food Compass Score 

The HSR system provides convenient and easy guidance for consumers to make informed and healthier 

eating choices. It comprises the HSR algorithm, a graphic representation, and an associated nudge that 

serves as an educational campaign. This section presents the results of implementing the HSR algorithm 

and associated nudges.  The graphical representation was put into effect when developing the decision 

support system (see section 3.5). The HSR algorithm considered the nutritional composition of the two food 

products (See Table 8). Therefore, the first step involves determining the category of food products. Both 

products are not dairy food, hence do not fall in either category one (non-dairy beverage) or three foods 

(oils and spread) but category two products. It is also important to establish that the calculation of the HSR 

of the product had no policy relevance or implications. Also, an initial assumption was made about 

influencing consumer choices at the point of purchase; hence steps two and three of the HSR were satisfied. 

In step four, the estimated HSR baseline points for plant and animal-based burgers were 7 and 19. The high 

value in the baseline score for the animal-based burger is attributed to the high saturated fat content of 11.8g 

per serving. Next, both products' HSR modifying scores of 42% and 38% corresponded to zero HSR protein 

points. With a dietary fiber content of 4.9g and 1g, respectively, an HSR fiber point of 5 and 1 was estimated 

for plant and animal-based burgers. It is important to mention that the higher the fiber points, the greater 

the tendency to obtain a lower HSR score which corresponds to a higher HSR rating of a product. Lastly, 

an HSR final score of 1 and 17 correlated to a 4-star and 1/2-star rating was computed using the category 

two food star rating. With the above HSR rating, a five-point nudge leveraging on a Likert scale was 

developed to which the plant-based burger and animal-based burger were declared “A better, healthier 

choice” and “a less healthy choice.” Similarly, the FCS computed for the animal-based burger was 35, and 

that of the plant-based burger was 62. The associated nudges implemented during the study were “this type 

of food is not encouraged” and “this type of food is encouraged.” The ratings, interpretation color code, 

and associated nudges developed for the HSR and FCS are presented in the Supplementary Document 

Tables SD20 and SD21.   

Table 19: Health and nutritional composition of plant-based burgers and animal-based burgers 

 
  

Plant-based burger  Animal-based burger   

 Nutrient and energy  Unit                    Amount 

1 Energy  kcal  177 261 

2 Protein  g 15.7 13.9 

3 Saturated fat  g 6.3 11.8 

4 Total sugars  g 1.07 4.85 

5 Sodium  mg  569 508 

6 Dietary fiber  g 4.9 1 
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7.4 Integration of environment and nutrition 

So far, the study has presented the environmental impact, life cycle monetization of the respective impacts, 

and health and nutritional modeling of the two food products. This section integrates the scores for the 

environmental monetized cost and health and nutrition profiling of the plant and animal-based burger by 

deploying a coupled entropy-linear combination method.  Figure 9 presents the entropy weights and degree 

of diversification scores for the evaluation index described in section 2.4.  The entropy weight method 

adopted here is based on the evaluation criteria' information, thus supporting the objective evaluation of 

criteria. One advantage of the technique is that it eliminates human interference, avoiding subjective errors 

and human factors introduced when determining the weights of indicators. Figure 9 shows a high degree of 

dispersion between the indicators ranging from 0.68 to 0.95. Ecosystem cost had the highest dispersion, 

while resource scarcity obtained the least. A possible explanation for this might be the high ecosystem cost 

($0.084) associated with the plant-based burger and the relatively low cost associated with the animal-based 

burger ($0.002). The higher the degree of dispersion value, the greater the potential of obtaining more 

information from the indicator weights. In addition, the high degree of dispersion between the criteria 

confirms their appropriateness in evaluating alternative food products. For example, the difference between 

ecosystem cost for plant-based burgers and animal-based was 98.05%, which shows the criterion is 

appropriate for evaluating the two food products. Similar observations were made across all criteria. 

Nonetheless, if a lower difference had been observed, the criteria would have no relevance to qualifying 

the alternatives in the decision-making process.  Subsequently, a higher degree of dispersion is correlated 

to higher weights. This is evident in Figure 9, as it can be seen that the highest weight is allocated to 

ecosystem cost (0.242), while the lowest weight is allocated to resource scarcity cost (0.174).  The results 

imply that ecosystem cost, HSR, and human health cost weighed 0.242, 0.212, and 0.187, thus reflecting 

the importance of the indicators. These results corroborated the current narrative of increased consumer 

awareness and preference for environmentally friendly products. 

The results were later translated into a four-point scale using a linear combination approach to obtain a 

novel Environmental-Nutrition Score (EnN score). The objective of this approach and the development of 

the EnN score was to provide the consumer with an easy label with the potential of persuading or perhaps 

encouraging sustainable food choices. An EnN score of 1.47 and 2.53 was obtained for animal-based and 

plant-based burgers. Equations 8 and 9 present the mathematical relations developed to derive the EnN 

score of the two products. However, to provide more appropriate and easy answer options for consumers, 

the score was transformed to a one-point interval of 2 and 3.  
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Figure 25: Weight index for the environmental-nutrition indicators 

The EnN scores of 2 and 3 were associated with nudges of “This food is slightly healthy and unsustainable’ 

and “this food is moderately health and sustainable” and color code of orange and light green (See 

Supplementary Document Table S20 for the different color codes and their associated nudges).  

𝑊𝑖𝑗 =   𝑤𝑖𝑝𝑖𝑗 + ⋯ +  𝑤𝑛𝑝𝑛𝑗    𝑓𝑜𝑟 𝑖 = 1 … 5 𝑎𝑛𝑑 𝑗 = 1,2.      (8) 

𝐸𝑛𝑁𝑗 =
1

𝑛
  ∑

4. 𝑊𝑖𝑗

𝑊𝑖𝑗 + 𝑊𝑖𝑗
         (9)

𝑖= 5,𝑗= 2

𝑖=1,𝑗=1

 

Where 𝑛 is the number of criteria,  𝑊𝑖𝑗 is the normalized weighted matrix for each 𝑗 alternative. 

To confidently implement the novel EnN score, it was expedient to measure the robustness, strength, and 

stability through a sensitivity analysis. This was achieved by varying the exact value of each criterion by 

±10% and then exploring its influence on the EnN score of the two products.   

Figure 10 presents the sensitivity evaluation of the magnitude of EnN scores, assuming a ±10%  in the 

magnitude of the criteria for developing it. Figure 10a shows variations in the EnN score ranging from 

2.549 to 2.531 and 1.451 to 1.468 for plant-based and animal-based burgers, respectively. Figures 10a,b,c 

and d  reveals a slight rate of change of +0.12%, +0.22%,-0.16%, +0.13% and -0.12%, -0.22%,+0.16%, -

0.13% in EnN score plant-based burger and animal-based burger, respectively. Alternatively, a change in 

the EnN score of 0.69%, 0.73%, 0.75%, 0.76%, and 1.19%, 1.25%, 1.27%, 1.32% between the maximum 

and minimum scores attained for the plant-based burger is reasonably small and insignificant. The results 
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imply that the criteria and the EnN score are insensitive to small variations in criteria magnitudes. It also 

provides further support for the robustness and guaranteed performance of the EnN score when comparing 

the two food products. 

 

Figure 26:  Sensitivity evaluation of the EnN score for plant-based burgers and animal-based burgers 

7.5 Novel decision support system  

The environmental cost assessment and nutrient profile modeling show that plant-based burgers have a 

better overall cost and EnN score than animal-based burgers. However, to influence consumer behavior to 

embrace sustainability, we developed a DISH food choices simulator that can be used at the point of 

(a) 10% variation in criteria with reference 

to plant-based burger  

(b) 10% variation in criteria with reference 

to animal-based burger  

(c )-10% variation in criteria with reference to 

plant-based burger  

(d) -10% variation in criteria with reference 

to animal-based burger  

**Human health cost (HHC), Resource Scarcity Cost (RSC), Ecosystem cost (ESC)  
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purchase. This web-based application allows consumers to select the two products and receive output on 

the nutrient and health profile, life cycle cost, EnN score, and associated nudges that stimulate consumer 

behavior. Figure 10 shows the five-step process of using the simulator.  

 

Figure 27: The five-step process for using the DISH food choice simulator 

From Figure 10, the first step requires the user to access the simulator on this landing page. The page 

contains information on the number of total annual death-diet-related issues, how to use the simulator, who 

can use the simulator, and the potential health and environmental benefits of using the simulator. The 

objective was to present information that could inform the purchasing decision of consumers and guide 

consumers on how to use the simulator. To navigate to the environment of the simulator, the user or 

consumer, a call-to-action button is placed at three different sections of the landing page. Having had access 

to the simulator environment, the user can now select a type of food, confirm, or change the choice, and the 

process to assess the EnN status of the selected in step 3.  Step 4 takes the user directly to the dashboard, 

which shows the results in three domains thus health and nutritional outlook, environmental impact cost, 

and overall sustainability. The user can then select another food and run through the same process.   Figure 

10a and b display the user interface of the DISH food choice simulator. It was designed for easy use and to 

enable rapid utilization and experimentation of the simulator by a consumer with easy access to the internet. 

A documentation module was also included to provide users with information on the scientific principles 

adopted by the creators of the simulator. The simulator was then tested through a consumer survey, 

presented in the next section. DISH draws practical attention to the nutritional implications of diet choices 

and how it contributes to healthy living at the point of food choice/decision-making, provides consumers 

environmental impact information of chosen foods (ecosystem quality and human health impact), and 
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provides an interactive avenue for environmental-nutrition trade-off analysis and comparison of different 

choices to enable consumers make informed decision.



102 

 

                     

Figure 28:  Interface of the DISH food choice  simulator used deployed for consumer testing.
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7.6 Survey data analysis  

During the participant's survey, all questions were answered by individual participants; as such, Harman’s 

one-factor test was used to test possible biases.  The results from this test demonstrate that the most 

influencing factor, the nudges provided, represents 19.84% of the variance. Conversely, the least 

influencing factor is demography accounting for 2.93% of the variance. Additionally, the data from the 

survey were screened to identify outliers and normality of distribution using Cook’s distance value. The 

analysis estimated a minimum, maximum, and mean Cook’s distance values of 0.00, 0.237, and 0.010, 

which were less than one. This indicates the absence of outliers, conformity to distribution, and, more 

importantly, none of the residuals are poorly predicted. Furthermore, the analysis results indicated no 

significant deviation from a normal distribution with kurtosis and skewness values below the acceptable 

threshold of ten and three, respectively [50]. More importantly, a reliability and validity test was employed 

to assess the stability and consistency among the related variables. Finally, a multinomial logistic regression 

was employed to explore the factors influencing participants' choices. 

The survey findings demonstrate that the nudges and the novel EnN score impacted participants' choices. 

Additional factors include: In this section, we present the socio-demographic background of the 

participants, burger consumption frequency, participant smartphone behavior, user experience on the 

simulator, purchasing frequency, and reviews, which will be adopted for future studies. Figure 13 presents 

a summary of the responses collated in the context of the survey questions and participants' exposure to the 

DISH simulator.  Additionally, Figure 14 briefly describes the different factors that influence consumer 

decisions and feedback on their experience with the DISH simulator. 

7.6.1 Reliability and validity of the analysis  

Table 9 presents a reliability and validity test for the survey responses. Table 9 shows factor loading ranging 

between 0.173 to 0.575.  A stringent threshold of 0.3 was set according to the recommendations of 

Tabachnick, Fidell [51]. Additionally, the Table shows that all variables had adequate reliability, with 

Cronbach’s alpha ranging from 0.028 to 0.368. However, a lower alpha value is observed for mobile phone 

usage and demography, thus introducing internal inconsistency. Therefore, all factors with a factor loading 

less the 0.3 were removed to provide a better fit for further analysis.  

Table 20: Reliability and validity test of the survey responses  

S/N Variables  Factor loading  Cronbach’s 

alpha 

Average 

variance  

1 Recollection of nudge (ABB) .305 0.368 19.839 

2 Recollection of nudge (PBB) .304 0.318 15.752 

3 Mobile phone .295 0.213 13.494 

4 Dietary pattern .575 0.098 11.036 
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5 Understanding og EnN Score .354 0.100 9.491 

6 Modules on DISH .509 0.028 8.725 

7 Awareness .354 0.109 7.918 

8 Correct recollection of EnN score (PBB) .505 0.109 5.070 

9 Correct recollection of EnN score (ABB) .565 0.125 3.604 

10 Demography .173 0.060 2.923 

11 Final choices .435 0.075 2.150 

 

7.6.2 Socio-demographic characteristics of participants  

A total of 112 surveys were completed. The findings from the survey revealed that 53.6% of the participants 

were male, 42.9% were white, 29.5% were blacks/ African American, and the rest were either Asian, 

Hispanic, or Arabic. About 1.8% of the participants preferred not to disclose their racial background 

information. Also, many participants were between 18 and 24 years; thus, 53.6% were highly educated 

(46.4% graduate students, 45.5% undergraduate students, and 7.1 % workers from different companies). 

The sample demography characteristics reveal bias, as more whites and blacks/African Americans are 

overrepresented, and not every racial group is proportionally represented. Table SD22 of the Supplementary 

Document presents the socio-demographic characteristics of the survey participants. 

7.6.3 Burger frequency consumption and Smart phone behavior, and familiarity  

52.7% of the participants declared they did not adhere to any dietary pattern, while 30.4 % declared to 

adhere to a dietary pattern. Of the 30.4% that declared to adhere to a dietary pattern, 13.4% were omnivores, 

and 4.5% were flexitarian. Interestingly, 10.7% of the 30.4% of participants who declared to adhere to a 

dietary pattern are slow food eaters, no crustaceans, high protein diet consumers, and individuals who eat 

a single meal a day. Additionally, 21.4% of the participants eat burgers once or twice a week, while 30.4% 

eat burgers twice a month. Furthermore, 83.5% and 66.2% of participants had eaten animal-based or plant-

based burgers before participating in the experiment. Proir to being exposed to the simulator, the initial test 

of participants' intent was conducted. Thus over 87% declared they would purchase animal-based burgers 

on any given day. 

7.6.4 Smartphone usage and behavior  

To determine the participants' digital product habits, the survey revealed that over 27.7% of the participants 

download onto their mobile phones once a month, while 58.9% download once/twice in six months. More 

interestingly, over 38.4% and 25.9% of the participants are either extremely comfortable or somewhat 

comfortable using mobile and web applications to purchase food. Several applications, such as Walmart, 

Target, Chick Fil A, and UberEATS were mentioned as the most frequently used for purchasing food. Aside 

from this, 25.9% use mobile applications to purchase food once or twice a week, while 33.9% use it once 



105 

 

or twice a week. Only 2.7% of the participants use mobile applications daily to purchase food. The data for 

this is shown in Figure 12. 

7.6.5 User experience on the DISH simulator  

This section investigated the participant's experience using the DISH simulator when attempting to 

purchase a burger. First, the user experience of the simulator was measured across five indicators thus the 

user interface, navigation of pages, layout of pages, language used on the page, and information flow. Next, 

participants were asked to rate the simulator on a scale of 1 and 100 against the abovementioned indicators. 

Table 21: Descriptive Statistics of user experience on the DISH simulator  

Questionaire N Minimum Maximum Mean Std. Dev 

Q19_1 User interface  112 9 100 75.76 21.66 

Q19_2 How was your experience navigating the 

simulator? - Navigation of pages 

112 19 100 76.32 24.46 

Q19_3 How was your experience navigating the 

simulator? - Layout of pages 

112 40 100 80.00 18.77 

Q19_4How was your experience navigating the 

simulator? - Language used on the page 

112 5 100 82.51 23.25 

Q19_5 How was your experience navigating the 

simulator? -Information flow on the page  

112 26 100 80.57 18.77 

Next, the participant's understanding of the modules of the DISH simulator was tested. The results indicate 

that 46.4% of participants understood the Nutrition and Health Outlook module, while 60.7% understood 

the simulator's environmental impact cost module. More strikingly, 84.9% of the participants recognized 

the meaning of the EnN score applied in the simulator. Also, 87.5% affirmed that the documentation page 

provided sufficient information about the different modules on the DISH dashboard.  

Following this, the participants were tested to determine their awareness and recollection of the information 

presented on the DISH dashboard prior to making a purchase. To determine this, participants were asked 

to recall the information on the EnN score, the EnN score rating, and their respective nudges interventions 

for both food products. Once again, our results indicate that 78.6% of participants accurately recalled the 

EnN score associated with a plant-based burger. Unfortunately, however, a staggering 74.6% recalled the 

associated nudge wrongly. A possible explanation for this might be the Likert scale used to develop the 

nudges. 

Nonetheless, 81.3% of the participants identified the nudge intervention associated with the plant-based 

burger. In much the same way, 76.8% of participants recalled the EnN score correlated to the plant-based 

burger. However, 63.4% of these participants could describe the corresponding nudge intervention. Despite 

the higher increase in response compared to the plant-based burger, participants' recall of the EnN score 



106 

 

rating associated with the animal-based burger was low (56.3%). The results of the test statistics are 

displayed in Table 10. 

7.6.6 Purchase, simulator trust, and acceptance 

To determine the influence of the simulator and its respective nudges in stimulating consumers toward a 

healthy and sustainable diet choice, the final set of interview questions focused on exploring the purchasing 

decisions of the participants. The results indicate that 58% of participants purchased an animal-based burger 

after the experiment.  Interestingly, 56.9% of participants who would have potentially purchased an animal-

based resorted to purchasing a plant-based burger, and over 83% attributed their decision based on sufficient 

information presented on the simulator. Interestingly, 89.3% of participants referenced the DISH modules 

as having a substantial impact on their final decision. Among participants, 56.9% of participants who 

resorted to purchasing plant-based burgers, and 55.6% attributed the environmental module on DISH as 

influencing the decision.  Likewise, 36.1% attributed the health benefits as influencing their final decision. 

The single most striking result to emerge was some socio-cultural and sensory factors that inexplicable 

predispose individuals toward a particular decision. For example, some participants revealed a strong 

affinity toward meat-based products and, despite their environmental claims, would still go in for such 

products. Other factors, such as taste, flavor, and health-related issues, such as increased estrogen (when 

consuming soy products), were external factors that influenced participants' choices. 

Generally, trust is an important indicator of consumer attitudes and behavior toward using a product. 

Therefore, our study focused on determining the participant's trust and belief in the information presented 

on the DISH simulator. The results revealed that a staggering 86.6% were confident about the information 

presented. In addition, 92% of the participant recommended that the simulator be translated into a web 

application with the addition of more foods. In the model implemented, independent covariates with  

7.6.7 Factors influencing the consumer choices 

A multinomial logistic regression model was applied to ascertain the influence of different factors on final 

consumer choice. The final purchase choice was set as the dependent variable within the multinomial 

model. Variables such as understanding of EnN score, modules of the simulators (an aggregation of a health 

benefit claim, environmental impact claim, and nutritional claim), dietary pattern, smartphone usage, and 

recollection of nudges associated with both products, awareness, and participants racial demography were 

set as the covariates. Independent covariates with a significant chi-square value of <0.001 influenced final 

consumer choices. Table 10 presents the results of the multinomial logistic regression analysis. The results 

demonstrate that the modules of DISH, EnN score, and nudges associated with the two fast-food products 

considerably influence final consumer decisions with a chi-square significant value of <0.001. 
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Figure 29: Percentage responses from the questionnaire administered. 

 

Figure 30: A brief description of the influence and feedback of the DISH simulator on consumer choices 

(values in the Figure are in percentage of responses from participants).  

Table 22:  Likelihood ratio tests 

S/N  -2 Log Likelihood 

of Reduced Model Chi-Square df Sig. 

1 Intercept 83.104 5.942 1 .015 

2 Awareness 94.239 17.077 1 <.001 

3 Modules of DISH 88.877 11.715 1 <.001 

4 Understanding of EnN 

Score 

79.879 2.717 1 .099 

5 Dietary pattern 90.313 13.151 1 <.001 

6 Recollection of nudges 

(PBB) 

84.070 6.908 1 .002 

7 Recollection of nudges 

(ABB) 

87.659 10.497 1 <.001 

8 Correct recollection of 

EnN score (PBB) 

77.767 .605 1 .437 

9 Correct recollection of 

EnN score (ABB) 

77.283 .121 1 .728 
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7.7 Conclusion  

Returning to the initial hypothesis stated at the beginning of this study, it is now possible to state that 

providing appropriate nudges, environmental impact, nutritional, and health implication information can 

significantly influence consumers' purchasing decisions. Other factors, such as novel Environmental-

Nutrition Score of two fast-food products using a simulator, influenced consumer choices but not very 

significantly. The findings indicate that (1) at the level of environmental sustainability, an animal-based 

burger is associated with a higher environmental impact and external environmental cost compared to the 

plant-based burger, and (2) from a health and nutritional perspective, a plant-based burger has significantly 

higher HSR (4-stars), and FCS (62) thus associated with a healthier choice than the animal-based burger 

(1/2-star and an FCS (35), and (3) integrating both dimensions into a single novel EnN score, the plant-

based burger had a higher EnN score (EnN score =3) which correlates to a healthier and more 

environmentally sustainable food compared to the animal-based burger (EnN score =2). Perhaps the most 

obvious finding to emerge from the study is that 64.3% of participants involved in the testing and evaluation 

of the simulator rated the novel DISH simulator either with a 5-star rating or a 4-star rating. Also, the data 

from the consumer survey suggests that 92% of participants recommended that the simulator be translated 

into a mobile application and that more foods should be added. However, the study raised important 

questions about including social-cultural and sensory factors when stimulating consumers toward 

sustainable and healthy decisions. A higher proportion of participants generally trust and accept the 

simulator firmly. Overall, this paper contributes to the recent debate and growing concern of consumers for 

a more sustainable and environmentally friendly product at the point of purchase. It also highlights the 

potential usefulness of translating the results to other fast-food products consumed frequently in America 

and to re-align how environmental-nutrition messages are reinforced among consumers to stimulate 

purchasing decisions. To the best of the authors' knowledge, this is the first study to integrate modeling 

approaches with nudges and digital technology to influence consumer choices at the point of purchase. One 

issue with the current study was the low number of participants. Broader research is needed in collaboration 

with different fast-food service providers in an uncontrolled environment to investigate the impact of DISH 

on their food choices. 

 

7.8 Abbrevaitions and their meaning  

FMPF Fine particulate matter formation 

FRS Fossil resource scarcity 

FEW Freshwater ecotoxicity 

FEW Freshwater eutrophication 
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GWFE Global warming, Freshwater ecosystems 

GEHH Global warming, Human health 

GWTE Global warming, Terrestrial ecosystems 

HCT Human carcinogenic toxicity 

HNCT Human non-carcinogenic toxicity 

I.R. Ionizing radiation 

L.U. Land use 

ME Marine ecotoxicity 

MET Marine eutrophication 

MRS Mineral resource scarcity 

GHGE Greenhouse gas emission  

LCA  Life Cycle Assessment  

HSR Health Star Rating 
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8.1 Inventory for Plant-based burger modeling  

Table SD23:  Feed production (Soybean) 

Category Components  Unit  Amount  Source  

Soy 

cultivation  

seeds (80% germination) lb/acre 40.75 Arkansas Soybean 

Production Handbook 

  Yield  lb/acre 3060 NASS STAT quick 2021 

  Land, (acre planted) acre 3250000 NASS STAT quick 2022 

Fertilizer  Fertilizer (N)  lb/acre 15 NASS STAT quick 2020  

https://uark.qualtrics.com/jfe/form/SV_4Zz7uKsAbbuWbmS
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  Fertilizer (P 2 O 5 )  lb/acre 64 NASS STAT quick 2020  

  Fertilizer (K 2 O)  lb/acre 103 NASS STAT quick 2020  

  Sulfur lb/acre 14 NASS STAT quick 2021 

  Lime  lb/acre 94 Source 2  

Pesticide  Pesticide (Acephate-

103301) 

lb/acre 0.948 NASS STAT quick 2020  

  Herbicide (2,4 D, Dimethy 

Salt )  

lb/acre 0.418 NASS STAT quick 2020  

  Fungicide (Propiconazole) lb/acre 0.027 NASS STAT quick 2020  

Utilities  Electricity for irrigation  MJ/ha  131.68 Source 2  

  Gasoline, all uses MJ/ha  473.5 Source 2  

  Diesel (farm tractor) MJ/ha  1612.06 Source 2  

  Natural gas MJ/ha  159.17 Source 2  

  Lubricant, all uses (road 

and ag) 

   

  Water  (Total for irrigation) Acre-

feet/acre 

1 NASS STAT quick 2018  

Emissions  Emission (Direct N20) kg/ha  2.814 IPCC model (Tier 1), 2019 

update  

  Emission (Indirect N2O) kg/ha  0.660 IPCC model (Tier 1), 2019 

update  

 

Table SD24 Feed production (Wheat cultivation)  

Category Components  Unit  Amount  Source  

Wheat 

cultivation  

seeds  lb/acre 220 USDA  

 
Yield  lb/acre 4014 NASS STAT quick 2016   
Land, (acre planted) acre 220000 NASS STAT quick 2022  

Fertilizer  Fertilizer (N)  lb/acre 82 NASS STAT quick 2019  

  Fertilizer (P 2 O 5 )  lb/acre 39 NASS STAT quick 2019  

  Fertilizer (K 2 O)  lb/acre 23 NASS STAT quick 2019  

  Sulfur lb/acre 11 NASS STAT quick 2019  

  Lime  lb/acre 
  

Pesticide  Pesticide (Methyl-

Parathion) 

lb/acre 0.198 NASS STAT quick 2012  

  Herbicide (MCPA, 2-

Ethylhexyl=30564 )  

lb/acre 0.318 NASS STAT quick 2019  

  Fungicide 

(Propiconazole=122101) 

lb/acre 0.087 NASS STAT quick 2015  

Utilities  Electricity for irrigation  MJ/ha 29836 Source 14 

  Gasoline, all uses MJ/ha  6822 Source 14 

  Diesel (farm tractor) MJ/ha  1290 Source 14 

  Lubricant, all uses (road 

and ag) 
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  Water  (Total for 

irrigation) 

Acre-

feet/acre 

0.5 NASS STAT quick 2018 

Emissions  Emission (Direct N20) kg/ha  3.304 IPCC model (Tier 1), 2019 

update  

  Emission (Indirect N2O) kg/ha  0.770 IPCC model (Tier 1), 2019 

update  

 

Table SD25: Feed production (Black beans)  

Category Components  Unit  Amount  Source  

black beans  seeds  lb/acre 80 
 

  Yield  lb/acre 2470 NASS STAT quick 2016 

  Land, (acre planted) acre 69700 NASS STAT quick 2020 

Fertilizer  Fertilizer (N)  lb/acre 92 NASS STAT quick 2014 

  Fertilizer (P 2 O 5 )  lb/acre 107 NASS STAT quick 2014 

  Fertilizer (K 2 O)  lb/acre 97 NASS STAT quick 2014 

  Sulfur lb/acre 31 NASS STAT quick 2014 

  Lime  lb/acre 
  

Pesticide  Pesticide 

(Bifenthrin=128825) 

lb/acre 0.105 NASS STAT quick 2016 

  Herbicide (Clethodim )  lb/acre 0.114 NASS STAT quick 2016 

  Fungicide 

(Vinclozolin=113201) 

lb/acre 1.042 NASS STAT quick 2016 

Utilities  Electricity for irrigation  MJ/ha  5040 Source 15 

  Gasoline, all uses MJ/ha  
  

  Diesel (farm tractor) MJ/ha  4086 Source 15 

  Lubricant, all uses (road 

and ag) 

   

  Water  (Total for 

irrigation) 

Acre-

feet/acre 

2.3 NASS STAT quick 2018 

Emission  

  

Emission (Direct N20) kg/ha  4.700 IPCC model (Tier 1), 2019 

update  

Emission (Indirect N2O) kg/ha  1.084 IPCC model (Tier 1), 2019 

update  

 

Table SD26:  Feed production (Rice cultivation)  

Category Components  Unit  Amount  Source  

Rice  seeds  lb/acre 120 
 

  Yield  lb/acre 7630 NASS STAT quick 2016 

  Land, (acre planted) acre 1191000 NASS STAT quick 2020 

Fertilizer  Fertiliser (N)  lb/acre 102 NASS STAT quick 2021 

  Fertiliser (P 2 O 5 )  lb/acre 78 NASS STAT quick 2021 

  Fertiliser (K 2 O)  lb/acre 105 NASS STAT quick 2021 

  Sulfur lb/acre 44 NASS STAT quick 2021 
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  Lime  lb/acre 
  

Pesticide  Insecticide (Lambda-

cyhalothrin=128897) 

lb/acre 0.028 NASS STAT quick 2021 

  Herbicide (Glyphosphate 

ISO salt)  

lb/acre 1.034 NASS STAT quick 2021 

  Fungicide 

(Azoxystrobin=113201) 

lb/acre 0.173 NASS STAT quick 2021 

  Other chemical (Sodium 

chlorate)  

lb/acre 5 NASS STAT quick 2013 

Utilities  Electricity for irrigation  kwh 282 Arkansas Rice Production 

manual  

  Gasoline, all uses MJ/ha  
  

  Diesel (farm tractor) Liter 373 
 

  Water  (Total for irrigation) Acre-feet/acre 2.1 NASS STAT quick 2018 

  Lubricant, all uses (road and 

ag) 

   

Emission 

  

Emission (Direct N20) kg/ha  5.765 IPCC model (Tier 1), 2019 

update  

Emission (Indirect N2O) kg/ha  1.324 IPCC model (Tier 1), 2019 

update  

Methane  mg/m2 48.000 
 

 

Table SD27: Feed production (Corn)  

Categor

y 

Components  Unit  Amount  Source  

Corn  Seed  lb/acre 10.000 
 

  Land Use acre 750000 NASS QuickSTAT 2021 

  Yield  bu/acre 195.4 NASS QuickSTAT 2018 

Fertilizer  Fertiliser (N)  lb/acre 54 NASS QuickSTAT 2021 

  Fertiliser (P 2 O 5 )  lb/acre 24 NASS QuickSTAT 2021 

  Fertiliser (K 2 O)  lb/acre 12 NASS QuickSTAT 2021 

  Sulfur lb/acre 10 NASS QuickSTAT 2021 

Pesticide  Insecticide 

(Bfentrhrin=128825) 

lb/acre 8.70E-02 NASS QuickSTAT 2018 

  Herbicide 

(Acetochlor=121601)  

lb/acre 1.38E+00 NASS QuickSTAT 2018 

  Fungicide (Metazachlor = 

125619) 

lb/acre 3.20E-02 NASS QuickSTAT 2016 

  Other chemical (Chopyralid)  lb/acre 2.50E-02 
 

  
    

Utilities  Well water liters 1.15E+03 BASF (2011) 

  Electricity, irrigation MJ 2.60E-01 BASF (1999) 

  Natural Gas, irrigation wells MJ 2.74 BASF (1999) 

  Diesel, irrigation surface 

water, off road and road 

MJ 8.81E-01 BASF (1999) 
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  Gasoline, all  MJ 4.98E-01 BASF (1999) 

  Lubricant, all uses (road and 

ag) 

MJ 6.06E-02 
 

  
    

  Renewables bio-based MJ 5.07E+01 
 

Emisson  Emission (Direct N20) kg/ha  0.889 IPCC model (Tier 1), 2019 

update  

  Emission (Indirect N2O) kg/ha  0.226 IPCC model (Tier 1), 2019 

update  

 

Table SD28:  Harvesting,  during of feed for storage and transportation 

Category Components  Unit  Amoun

t  

Source  

Harvesting  Combine harvesting (Total area for 

the crops) 

m2 
  

 
Drying of (corn) 

   

 
Electricity  kWh/acre 31.811 NASS QuickSTAT 

2015  
Propane  gal/acre 26.027 NASS QuickSTAT 

2015  
Drying of (wheat ) 

   

 
Electricity  kWh/acre 618.156 

 

 
Propane  gal/acre 505.764 

 

 
Drying of (rice) 

   

 
Electricity  kWh/acre 23.76 

 

 
Propane  gal/acre 19.44 

 

 
Transportation from farm to storage 

houses 

   

 

Table SD29:  Packaging and transportation and manufacturing of burger pattie  

Category Components  Unit  Amount  Source  

Packaging  bale loading (Assume for 

negligible) 

   

 
Folding boxboard carton  

   

 
Sacks/Bags  

   

Transportation Transport of all raw material 

from farming to manufacturing 

miles 930 Morning Star 

Farm   
Truck  

   

          

Manufacturing  Production (pounds) pounds  24541935 Morning Star 

Farm  

  Electricity (kwh)  kwh 10461000 Morning Star 

Farm  
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  Electricity Source grid  grid  Morning Star 

Farm  

  Natural gas (MMBTU) MMBTU 58536 Morning Star 

Farm  

  Water Use (gallons) gallons  53888700

0 

Morning Star 

Farm  

  Wastewater discharge (gallons) gallons  45505891 Morning Star 

Farm  

  
    

  
    

  Waste used as animal feed 

(metric tonnes) 

metric tonnes  661 Morning Star 

Farm  

  Waste incinerated (metric tonnes) metric tonnes  125 Morning Star 

Farm  

  Waste recycled (metric tonnes) metric tonnes  435 Morning Star 

Farm  

  Waste to landfill (metric tonnes metric tonnes  1832 Morning Star 

Farm  

  GHG emissions (metric tonnes 

CO2 eq.) 

metric tonnes 

CO2 eq.  

7128 Morning Star 

Farm  

 

Table SD30:  Ingredients for burger patties production 

Category Components  Unit  Amoun

t  

Source  

4 servings  Serving Size 1 Burger Pattie 

(284.6 g) 

   

Other 

ingredients  

Water tablespoon 2 Source 4 

Patty ingredients  onions slices 8 Souce 5 

  cooked black beans (black 

beans, water) 

cup 1 Source 10 

  cooked brown rice (water, 

brown rice) 

cup 2 Source 10 

  corn (flour)) teaspooon 2 Source 6 

  soy protein concentrate cup 2 Source 8 

  tomatoes slices  2 
 

  wheat gluten cup  0.5 Source 11 

  onion powder  teaspoon 0.5 Source 5 

  vegetable oil (corn, canola 

and/or sunflower oil) 

teaspoon 1 Source 3 

  green chiles slices 8 
 

  soy protein isolate  cup 1 
 

  bulgur wheat cups  2 source 10 

  cornstarch table spoon 2 Source 9 
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Contains 2% or 

less of  

green peppers cup 0.25 Source 4 

  red bell peppers cup 0.25 Source 4 

  spices teaspoon  1 Source 4 

  tomato powder cup 0.5 Source 8 

  cilantro cup 0.33 Source 10 

  tomato juice tablespoon  3 Source9 

  salt teaspoon 1 Source 5 

  chipotle pepper (chilli powder) teaspoon 1 Source 4 

  methylcellulose (primary 

binder) 

g 6 Source 9 

  cooked onion and carrot juice 

concentrate (shredded) 

large  1 Source 6 

  jalapeno pepper table spoon 1 Source 7 

  carrageenan table spoon 2 
 

  garlic powder teaspoon 0.5 
 

  natural flavor tablespoon 1 Source 12  

  paprika teaspoon 0.5 Source 4 

  soy sauce powder (soybeans, 

wheat, salt) 

tablespoon 1 Source 11 

  gum arabic 
   

  vinegar g 8 Source 8 

  citric acid g 15 Source 8 

  red pepper (flakes) teaspoon 0.5 
 

  green pepper juice cups  1.5 Source 6 

  turmeric teaspoon 2 
 

  garlic juice (chilli garlic sauce) tablespoon 3 
 

  lime juice tablespoon 1 
 

 

Table SD31: Inventory for packaging and preparation of burger  

Category Components  Unit  Amount  

Packaging  
   

 
# of packages/ case 

 
8 

Spicy Black Bean Burgers, 12 

count, 9.5oz 

Weight of closure  g 2.183 

Primary packaging  Weight of film ( 48-gauge Matte 

PET) 

g 7.72 

  Weight of case  g 167.8 

Secondary packaging   Cardboard  
  

Distribution center  Transport from distribution center to 

retail store 

miles  450 

    

Grilling of buns  hamburger buns, split and toasted hamburger buns 8 
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heat (160 F) 

  

 
Time minutes  1 

Other ingredients (Toppings) Lettuce leaves leaves  8  
Ketchup tablespoon 2.5  
mustard cup 0.5  
onion slices Slices  8  
pickle slices tablespoon 2  
sliced tomato Slices  4  
cooked bacon strips slices  8  
Cheese  Slice  4 

 

8.2 Inventory for the animal-based burger  

Table SD32: Inventory for feed cultivation (Corn silage) 

Material / Resource unit/CB  Amount  Source 

Urea fertilizer (CH4N2O) kg 6.33E-02 BASF (2005) 

Glyphosate kg 1.76E-04 BASF (1997) 

Dimethylamine salt of dicamba kg 5.73E-06 BASF (1999) 

Dimethenamide pesticide  kg 3.65E-05 Ecoinvent 2.2 

Atrazine kg 3.20E-04 Ecoinvent 2.2 

S-metolachlor kg 1.72E-05 BASF (1997) 

Acetochlor kg 1.61E-04 BASF (2011) 

Pyraclostrobin kg 2.99E-06 BASF (2006) 

Well water liters 6.42E+02 BASF (2010) 

Electricity, irrigation MJ 1.45E-01 BASF (2011) 

Natural Gas, irrigation wells MJ 1.53 BASF (1999) 

Diesel, irrigation surface water, off road and 

road 
MJ 4.30E-01 BASF (1999) 

Gasoline, all uses MJ 2.78E-01 BASF (1999) 

Lubricant, all uses (road and ag) MJ 3.39E-02 BASF (1999) 

Land Use m² 1.83  

Renewables bio-based MJ 6.93E+01  

 

Table SD33:  Inventory for feed cultivation (Corn grain) 

Material / Resource unit/CB  Amount  Source 

Urea fertilizer (CH4N2O) kg 8.81E-02 BASF (2005) 

Glyphosate kg 3.14E-04 BASF (1997) 

Dimethylamine salt of dicamba kg 2.25E-05 BASF (1999) 

Dimethenamid kg 1.54E-04 Ecoinvent 2.2 

Atrazine kg 5.73E-04 Ecoinvent 2.2 

S-metalochlor kg 3.07E-05 BASF (1997) 
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Acetochlor kg 2.88E-04 BASF (2011) 

Pyraclostrobin kg 5.36E-06 BASF (2006) 

Well water liters 1.15E+03 BASF (2010) 

Electricity, irrigation MJ 2.60E-01 BASF (2011) 

Natural Gas, irrigation wells MJ 2.74 BASF (1999) 

Diesel, irrigation surface water, off road and 

road 
MJ 8.81E-01 BASF (1999) 

Gasoline, all  MJ 4.98E-01 BASF (1999) 

Lubricant, all uses (road and ag) MJ 6.06E-02 BASF (1999) 

Land Use m² 3.27  

Renewables bio-based MJ 5.07E+01  

 

Table 34: Inventory for animal feed cultivation (Alfalfa) 

Material / Resource unit/CB  Amount  Source 

SSP (20% P2O5)      kg SSP 5.39E-02 BASF (1997) 

Ammonium salt of imazethaphyr kg 3.59E-06 BASF (1996) 

Diesel, irrigation surface water, off road and 

road 
MJ 8.48E-01 BASF (1999) 

Gasoline, all  MJ 5.63E-01 BASF (1999) 

Lubricant, all uses (road and ag) MJ 6.85E-02 BASF (1999) 

Land Use m² 3.69  

Renewables bio-based    MJ 5.49E+01  

 

Table 35: Utilities for feed cultivation  

Material / Resource unit/CB  Amount  Source 

Water Well L 1.46E+03 BASF, 2010 

Electricity, irrigation MJ 3.31E-01 BASF, 2011 

Natural Gas, irrigation wells MJ 3.49 BASF, 1999 

Diesel, irrigation surface water, off road and 

road 
MJ 5.47E-02 BASF, 1999 

Gasoline, all  MJ 1.90E-02 BASF, 1999 

Lubricant, all uses (road and agriculture) MJ 2.31E-03 BASF, 1999 

Land Use† m² 4.28E+01  

Renewables bio-based MJ 2.27E+02  

 

Table SD36:  Emissions from feed cultivation (Calculated using emission models)  

Material / Resource unit/CB  Amount  

N-fertilizer direct N2O kg 2.76E-03 

N-fertilizer, indirect N2O kg 9.51E-04 

N-fertilizer, NH3-emission kg 2.28E-02 

N-fertilizer, NOx-emission kg 4.21E-03 
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N-fertilizer (urea), direct CO2 kg 2.48E-01 

N-fertilizer, water emission kg 7.60E-03 

P-fertilizer, water emissions kg 1.04E-03 

Heavy Metal: Cd kg 1.57E-07 

Heavy Metal: Zn kg 1.12E-04 

Heavy Meta: Pb kg 6.71E-08 

Heavy Metal: Ni kg 1.36E-05 

Heavy Metal: Hg kg 7.75E-08 

COD pesticides kg 3.65E-03 

VOC - silage/hay kg 6.11E-02 

 

Table SD37: Feed inventory (Pasture grass) 

 Flow  Unit Amount  Source  

Pasture 

(grass) 

Urea fertilizer (CH4N2O) kg 1.87E-01 BASF 

(2005) 

Glyphosate kg 2.97E-05 BASF 

(1997) 

Paraquat Dichloride kg 8.74E-05 Ecoinvent 

2.2 

Clopyralid kg 3.79E-06 Ecoinvent 

2.2 

2,4-D kg 1.16E-04 Ecoinvent 

2.2 

Dimethylamine salt of 2,4-D-

Dichlorophenoxyacetic acid 

kg 1.90E-04 
 

  
Ecoinvent 

2.2 

Picloram kg 2.59E-05 Ecoinvent 

2.2 

Carbaryl kg/UB 3.00E-05 BASF, 

2002 

 

Table SD38:  Inventory for supplementary feed for cattle production 

 Material/resources  Unit  Value  Source  

Supplementary 

Feed 

Corn kg 4.56E-03  

Copper Chloride kg 6.15E-05 BASF (1998) 

Dicalcium phosphate kg 1.01E-02 BASF (2003) 

Iodine kg 5.71E-04 BASF (2006) 

Limestone (Calcium Carbonate) kg 3.02E-02 BASF (1997) 

Magnesium oxide kg 1.04E-03 Boustead (1996) 

Molasses kg 2.08E-04 BASF (2000) 

Potassium fertilizer kg 1.64E-03 BASF (1997) 

Sodium chloride kg 8.33E-03 Boustead (1996) 

Sodium Selenite kg 5.95E-07 BASF (2003) 
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Thiamine Mononitrate kg 1.98E-07 BASF (2003) 

Urea kg 1.30E-02 BASF (2005) 

Zinc Sulfate kg 3.11E-04 BASF (2003) 

Utilities 

Livestock waterers liters 1.81E+01 IFSM 

Electricity, pole sheds kwh 1.15E-01 BASF (2011) 

Diesel, road  MJ 1.08 BASF (1999) 

Gasoline, all  MJ 6.64E-01 BASF (1999) 

Land Use Feedlot m² 3.45E-01 IFSM 

Lubricant MJ 4.46E-03 BASF (1999) 

Transport Cows / Calves ton km 5.62E-03 US LCI (2011)[1] 

Air Emission CH4 kg 6.94E-02 IFSM 

 N2O kg 3.51E-03 IFSM 

 NH3 kg 5.00E-02 IFSM 

 

Table SD39: Invenory for cattle slaughter and chilling  

Component Flow  Unit  Amount  Source  

Input  Agricultural spreading, digestive tract  kg  0.103 Ecoinvent   
Disposal, animal byproduct to incineration  kg  0.15 Ecoinvent   
Transport, frieght, lorry (16-32 metric tons) kg.ton  76.44 Ecoinvent  

  
  

Ecoinvent  

  
  

Ecoinvent   
Slaughtering and chilling; of beef, industrial 

production; French production mix, at plant;1 

kg of animal by-products C3 for PAP, for 

processing (POUi)/FR U 

  
Ecoinvent  

Output  Slaughtering and chilling; of beef, industrial 

production; French production mix, at plant;1 

kg of beef carcass, for processing (POUi)/FR U 

kg 1 Ecoinvent  

 
Slaughtering and chilling; of beef, industrial 

production; French production mix, at plant;1 

kg of blood PAP C3, for processing (POUi)/FR 

U 

kg 0.0425 Ecoinvent  

 
Slaughtering and chilling; of beef, industrial 

production; French production mix, at plant;1 

kg of edible offal, for processing (POUi)/FR U 

kg 0.0847 Ecoinvent  

 
Slaughtering and chilling; of beef, industrial 

production; French production mix, at plant;1 

kg of Fat C3, for processing (POUi)/FR U 

kg 0.111 Ecoinvent  

 
Slaughtering and chilling; of beef, industrial 

production; French production mix, at plant;1 

kg of hide, for processing (POUi)/FR U 

kg 0.107 Ecoinvent  

Emissions  Ammonia  kg  13.46 Ecoinvent  

 

file:///F:/FCOD%20manuscript/Inventory.xlsx%23RANGE!_ftn1
file:///F:/FCOD%20manuscript/Inventory.xlsx%23RANGE!B51
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Table SD40: Inventory Fresh ground beef production   

Component Flow  Unit  Amount  Source  

Input  Building hall  m2  4.57E-

07 

Ecoinvent  

 
Deboning of beef quarter  kg  1.00242 Ecoinvent   
Fresh product storage  kg  1 Ecoinvent   
Fresh trimming storage  kg  1.00242 Ecoinvent   
Grinding, forming and 

packaging  

kg  1 Ecoinvent  

 
Occupation, industrial area  m2.a  0.00015 Ecoinvent   
Quarter storage, beef quarter  kg  1.38787 Ecoinvent   
slaughtering and chilling of 

beef  

kg  1.38787 Ecoinvent  

Output  
    

 
Fresh ground beef production  kg  1 

 

 

Table 41: Inventory for packaging of slaughtered cattle  

Component Flow  Unit  Amount  Source  

Packaging for 

slaughter  

Aluminum Alloy kg 2.04E-05 BASF (1996) 

Cardboard, recycled kg 3.05E-03 Ecoinvent 2.2 

Cardboard, virgin kg 1.84E-02 Ecoinvent 2.2 

HDPE kg 4.47E-05 BASF (2007) 

Label, paper kg 4.27E-05 Ecoinvent 2.2 

Latex  2.79E-05 Ecoinvent 2.2 

LDPE kg 1.30E-02 BASF (2005) 

Polypropylene kg 8.07E-05 BASF (1996) 

Wood pallets kg 1.41E-03 Ecoinvent 2.2 

Consumables 

Cotton kg 1.94E-05 BASF (2003) 

HDPE kg 7.18E-07 BASF (2007) 

Iron kg 6.67E-07 BASF (1999) 

Nylon kg 4.48E-07 BASF (2002) 

PVC kg 3.97E-06 BASF (1996) 

Steel kg 8.34E-06 BASF (2010) 

Uniform Laundering l 2.01E-01 BASF (2005) 

Utilities 

Biogas (on site generation & use) MJ 6.14E-03 Ecoinvent 2.2 

Diesel MJ 1.79E-03 BASF (1999) 

Electricity (Purchased) MJ 2.55E-01 BASF (2011) 

Gasoline MJ 7.18E-05 BASF (1999) 

Land footprint of building m² 3.77E-05  

Land footprint of landscaped area 

surrounding building 
m² 1.29E-04  

LPG Butane Propane (liquid) MJ 3.93E-04 Boustead (1996) 

Lubricant Oil MJ 2.33E-04 BASF (1999) 
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Natural Gas MJ 5.84E-02 BASF (1999) 

Municipal water l 5.02 BASF (2010) 

Refrigerant Gas  9.26E-06 Ecoinvent 2.2 

Road m² 1.44E-04  

Water Well l 1.34E-01 BASF (2010) 

Transport 

Cardboard ton.km 1.47E-02 US LCI (2011) 

Cattle  ton.km 2.04E-01 US LCI (2011) 

CO2 ton.km 4.01E-04 US LCI (2011) 

Harvesting to case-ready 
 ton-

km 
2.08E-01 US LCI (2011) 

Plastic ton.km 5.95E-03 US LCI (2011) 

Waste ton.km 9.63E-05 US LCI (2011) 

Average for all other material inputs ton.km 2.55E-03 US LCI (2011) 

Emissions† 

CH4 mg 1.14E-01  

Chloride mg 5.40E+01  

COD mg 3.54E-02  

Landfill kg 9.01E-03 Ecoinvent 2.2 

N2O mg 1.64E-02  

NH3 mg 1.08E-01  

NOX   mg 1.47  

N-total mg 6.38  

Organic Compounds (VOC) including 

Hexane 
mg 1.73E-01  

PO4 as P mg 2.4  

SOX   mg 5.11  

Sulfate mg 4.23E+01  

 

Table SD42: Ingredients for animal burger production 

Component  Flow  
   

4 servings ( 268 g per serving) Conventional  Unit  Source  

Grilling of beef 

(patty)  

Ground Beef  oz 32 USDA  

 
chopped onion tablespoons 2 Source 2  
sour cream cup 0.5 Source 2  
dried parsley flakes teaspoons 4 Source 2  
salt teaspoon 0.5 Source 2  
pepper teaspoon 0.5 Source 2  
dried thyme teaspoon 1 

 

 
preheated gas grill (medium 

heat (160F) 

   

 
Time to grill  minutes  7 to 9 

 

Grilling of buns  hamburger buns, split and 

toasted 

hamburger 

buns 

8 
 

 
heat (160 F) 

   

 
Time minutes  1 
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Other ingredients 

(Toppings) 

Lettuce leaves leaves  8 
 

 
Ketchup tablespoon 2.5 

 

mustard cup 0.5 
 

onion slices Slices  8 
 

pickle slices tablespoon 2 
 

sliced tomato Slices  4 
 

cooked bacon strips slices  4 
 

 
Cheese  Slice  4 

 

 

 

Dressing percentage represents the portion of the live animal weight that transfers to the hot carcass 

weight. 

An average cow of 1200 lb will consume 27 lb of feed , Corn silage is 28.5 lb. per head per day (18.5 lb. 

is water and 10 lb. is silage). Corn silage is 35% dry matter and 65% moisture. 

2.07 lb to 2.24 lb of corn per lb of finished animal. 

The weight of cattle is 1250 lb slaughter weight. Carcas  

Hay wastage was assumed to be 6% to 20% 

8.3 IPCC method for estimating the direct and indirect N2O emissions for agricultural 

production 
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Figure SD31:Open LCA  model for the production of beef burger 
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Figure SD32; OpenLCA model graph for  LCA of plant-burger per serving
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Table SD43: Midpoint environmental impact results for plant-based burger 
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Impact category Reference 

unit 

Result Normalized Result Normalized 

  Plant-based burger Animal-based burger 

Fine particulate matter 

formation 

kg PM2.5 

eq 

5.347165 0.20907415 14.82152 0.579521378 

Fossil resource scarcity kg oil eq 5772.36 5.88780735

1 

3375.956 3.443474969 

Freshwater ecotoxicity kg 1,4-DCB 125.1021 101.958208

2 

2935.161 2392.156055 

Freshwater eutrophication kg P eq 0.396766 0.61101919

1 

5.137697 7.912053015 

Global warming kg CO2 eq 12471.22 1.56139663

4 

15417.12 1.930223951 

Human carcinogenic toxicity kg 1,4-DCB 294.4106 106.282241

5 

697.5562 251.8178041 

Human non-carcinogenic 

toxicity 

kg 1,4-DCB 2001.368 13.4291764

9 

695305.8 4665.501749 

Ionizing radiation kBq Co-60 

eq 

86.91139 0.18077568

4 

156.9028 0.326357782 

Land use m2a crop eq 198.7333 0.03219479

5 

52287.82 8.470627056 

Marine ecotoxicity kg 1,4-DCB 164.0694 158.983271

3 

1120.483 1085.748168 

Marine eutrophication kg N eq 0.082373 0.01787500

4 

14.9434 3.242716866 

Mineral resource scarcity kg Cu eq 11.91794 9.92765E-05 30.75968 0.000256228 

Ozone formation, Human 

health 

kg NOx eq 8.2831 0.40255868

3 

25.32369 1.23073157 

Ozone formation, Terrestrial 

ecosystems 

kg NOx eq 9.093558 0.51196731

2 

26.13362 1.471322764 

Stratospheric ozone depletion kg CFC11 

eq 

0.001353 0.02259617

1 

0.075366 1.258606897 

Terrestrial acidification kg SO2 eq 15.93718 0.38886725

8 

51.33331 1.252532721 
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Terrestrial ecotoxicity kg 1,4-DCB 3346.691 3.22955704

3 

9951642 9603.334912 

Water consumption m3 1108.068 4.15525378

2 

5418.672 20.32001955 
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Table SD44: Environmental impact metrics quantified in the LCA of beef-burger production  

 
Full burger    Burger 

patties  

Retail  Complete 

packaging  

Cattle 

slaughter  

Cattle 

production 

Drying of 

feed 

Feed 

production 

Fine particulate matter 

formation, kg PM2.5 eq 

9.42E-03 3.27E-03 5.30E-02 3.84E-03 5.74E-03 4.72E-02 3.07E-02 1.21E-01 

Fossil resource scarcity, kg 

oil eq 

4.06E-01 3.47E-01 3.35E+00 5.02E-01 5.35E-01 5.48E-01 7.96E+00 1.94E+01 

Freshwater ecotoxicity, kg 

1,4-DCB 

8.97E-02 4.42E-02 1.09E+00 1.41E-01 1.81E-01 1.12E-01 6.96E-02 1.17E+01 

Freshwater eutrophication, 

kg P eq 

1.55E-03 4.33E-04 6.53E-03 7.81E-04 2.25E-02 1.90E-03 1.44E-03 2.59E-02 

Global warming, kg CO2 eq 3.89E+00 2.20E+00 1.84E+01 1.76E+00 2.12E+00 3.56E+01 9.88E+00 5.98E+01 

Human carcinogenic 

toxicity, kg 1,4-DCB 

1.53E-01 1.90E-01 1.34E+01 2.46E-01 5.10E-01 3.17E-01 6.61E-01 1.09E+01 

Human non-carcinogenic 

toxicity, kg 1,4-DCB 

1.03E+00 1.97E-01 7.67E+00 1.46E+00 5.20E-01 3.22E+00 6.46E-01 1.26E+02 

Ionizing radiation, kBq Co-

60 eq 

3.08E+00 1.46E-01 1.71E+00 7.00E-01 3.24E-01 2.54E+00 8.51E-01 3.20E+00 

Land use,  m2a crop eq 4.03E+00 3.47E+00 2.99E+00 5.31E-01 5.78E-02 1.54E+01 3.86E-02 1.01E+00 

Marine ecotoxicity,  kg 1,4-

DCB 

2.12E-01 1.29E-01 3.31E+00 1.90E-01 3.38E-01 3.40E-01 2.77E-01 1.22E+01 

Marine eutrophication, kg N 

eq 

2.07E-03 4.63E-04 3.00E-04 7.07E-05 9.33E-05 3.40E-03 3.08E-05 2.63E-03 

Mineral resource scarcity, kg 

Cu eq 

3.52E-02 6.01E-03 3.71E-01 6.73E-03 1.22E-02 1.64E-01 1.01E-02 2.93E-01 

Ozone formation, Human 

health, kg NOx eq 

9.45E-03 3.96E-03 7.07E-02 5.22E-03 5.09E-03 3.13E-02 3.60E-02 1.71E-01 

Ozone formation, Terrestrial 

ecosystems kg NOx eq 

9.49E-03 3.96E-03 7.16E-02 5.29E-03 5.08E-03 3.10E-02 3.67E-02 1.76E-01 

Stratospheric ozone 

depletion kg CFC11 eq 

7.18E-06 2.29E-06 1.67E-06 6.82E-07 1.48E-06 4.50E-05 2.84E-06 5.03E-06 

Terrestrial acidification kg 

SO2 eq 

2.08E-02 5.96E-03 7.38E-02 5.45E-03 5.64E-03 1.48E-01 4.06E-02 1.58E-01 

Terrestrial ecotoxicity kg 

1,4-DCB 

5.09E-02 0.00E+00 3.31E-01 2.57E+00 2.54E-02 5.09E-02 2.04E-01 2.51E+02 
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Water consumption m3 3.23E-02 1.84E-02 5.50E-02 9.92E-02 1.67E-02 4.53E-02 8.17E-03 1.58E+00 
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Table SD45; Environmental impact metrics quantified in the LCA for plant-based-burger production 

Impact category 

Full 

burger  Retail  

Packaging & 

transport of 

patties  Manufacturing   

Packaging & 

transportation 

Harvesting & 

processing  

Feed 

production 

Fine particulate matter 

formation, kg PM2.5 eq 5.52E-03 8.78E-02 1.73E-03 3.40E-03 9.88E-04 3.26E-02 1.42E-01 

Fossil resource scarcity, kg 

oil eq 6.61E-01 4.07E+00 2.35E-01 1.08E+00 8.26E-02 1.97E+01 7.21E+00 

Freshwater ecotoxicity, kg 

1,4-DCB 2.69E-01 4.59E+00 9.11E-02 3.35E-02 4.15E-02 7.75E-01 7.59E+00 

Freshwater eutrophication, 

kg P eq 1.22E-05 2.20E-02 6.65E-04 3.05E-04 4.21E-04 3.56E-03 3.23E-02 

Global warming, kg CO2 eq 4.01E+00 6.41E-01 5.35E-02 2.41E-01 2.67E-02 1.19E+00 1.31E+02 

Human carcinogenic 

toxicity, kg 1,4-DCB 1.06E+00 1.57E+01 8.72E-02 1.37E-01 5.02E-02 1.44E+00 7.98E+00 

Human non-carcinogenic 

toxicity, kg 1,4-DCB 2.11E+00 3.64E+01 1.17E+00 2.95E-01 4.36E-01 7.98E+00 9.22E+01 

Ionizing radiation, kBq Co-

60 eq 7.53E-03 3.75E+00 3.35E-01 3.73E-01 1.41E-01 2.07E+00 5.88E+00 

Land use,  m2a crop eq 7.71E-02 1.09E+01 3.64E-01 1.93E-02 1.90E-01 1.49E-01 1.59E+01 

Marine ecotoxicity,  kg 1,4-

DCB 4.59E-01 2.73E+00 6.63E-02 2.89E-02 2.89E-02 5.01E-01 1.32E+01 

Marine eutrophication, kg N 

eq 1.99E-05 1.21E-03 2.08E-05 3.72E-05 2.90E-05 4.19E-04 7.33E-03 

Mineral resource scarcity, kg 

Cu eq 8.97E-05 4.06E-01 4.85E-03 2.06E-03 1.97E-03 1.97E-02 4.63E-01 

Ozone formation, Human 

health, kg NOx eq 1.18E-02 2.90E-02 3.09E-03 3.49E-03 1.03E-03 2.08E-02 2.63E-01 

Ozone formation, Terrestrial 

ecosystems kg NOx eq 4.57E-03 3.52E-02 2.98E-03 3.42E-03 9.83E-04 2.26E-02 2.69E-01 

Stratospheric ozone 

depletion kg CFC11 eq 3.97E-08 3.56E-06 5.63E-07 1.09E-06 1.85E-07 3.84E-06 5.70E-05 

Terrestrial acidification kg 

SO2 eq 9.17E-05 1.21E-01 3.80E-03 8.39E-03 1.56E-03 8.18E-02 2.41E-01 



135 

 

Terrestrial ecotoxicity kg 

1,4-DCB 2.54E-02 6.61E+01 6.56E+00 1.73E+00 1.88E+00 5.62E+00 1.72E+02 

Water consumption m3 3.71E-02 8.91E-03 3.71E-04 2.45E-01 1.86E-04 8.17E-03 1.56E+00 
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Figure SD33 
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Figure SD34: Probability distribution for LCIA of plant-based burger model  
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Figure SD35 Probability profile for the LCAI considering the plant-based burger model 
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Figure SD36:  Probability distribution function of LCIA of the animal-based burger LCA model  
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Figure SD37: Probability profile for the LCAI of the animal-based burger model 
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Table SD46:  Health star rating and its associated nudges to influence consumer choices  

S/N Star rating  Associated nudge  

1  1 star  Not a healthy choice  

2 2 stars Less healthy choice 

3 3 stars  Neutral healthy choice  

4 4 stars  More healthier choice 

5 5 stars  Healthier choice 

 

Table SD47 

S/N Food compass 

score range 

Interpretation Color code  Associated nudge  

1 0 to 20 Least healthy  This type of food is not encouraged! 

2 20 to 40  Less healthy   

3 40 to 60 Neutral healthy   

4 60 to 80  More healthy   

5 80 to 100 Most healthy  This type of food is encouraged!! 

 

 

Table SD48: Sustainability score  

S/N Overall sustainability 

Performance score  

EnN score rating  Color code Associated nudge 

1 0 to 0.25  1  This food is unhealthy and 

unsustainable 

2 0.25 to 0.50  2  This food is slightly healthy and 

unsustainable  

3 0.50 to 0.75  3  This food is moderately healthy and 

sustainable  

4 0.75 to 1 4  This food is healthy and sustainable 

 

8.4 Statistical analysis of Survey data  

Table SD49 

Socio-demographic details  

 Frequency Percent Valid Percent 

Cumulative 

Percent 

Valid 18-24 60 53.6 53.6 53.6 

25-30 33 29.5 29.5 83.0 

31-40 8 7.1 7.1 90.2 

above 40 11 9.8 9.8 100.0 
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Total 112 100.0 100.0  

 Frequency Percent Valid Percent 

Cumulative 

Percent 

Valid Female 52 46.4 46.4 46.4 

Male 60 53.6 53.6 100.0 

Total 112 100.0 100.0  

 

 Frequency Percent Valid Percent 

Cumulative 

Percent 

Valid Arabic 2 1.8 1.8 1.8 

Asian 12 10.7 10.7 12.5 

Black/ African American 33 29.5 29.5 42.0 

Hispanic 15 13.4 13.4 55.4 

Prefer not to say 2 1.8 1.8 57.1 

White 48 42.9 42.9 100.0 

 Frequency Percent Valid Percent 

Cumulative 

Percent 

Valid  1 .9 .9 .9 

 Graduate student 52 46.4 46.4 47.3 

Staff/Faculty 8 7.1 7.1 54.5 

Undergraduate student 51 45.5 45.5 100.0 

 

Q8Do you adhere to any dietary pattern? 

 Frequency Percent Valid Percent 

Cumulative 

Percent 

Valid  2 1.8 1.8 1.8 

Maybe 17 15.2 15.2 17.0 

No 59 52.7 52.7 69.6 

Yes 34 30.4 30.4 100.0 

Total 112 100.0 100.0  

 

Q9If yes, which dietary pattern? - Selected Choice 

 Frequency Percent Valid Percent 

Cumulative 

Percent 

Valid  74 66.1 66.1 66.1 

Flexitarian 5 4.5 4.5 70.5 

Omnivore diet 15 13.4 13.4 83.9 

Others, kindly list below 12 10.7 10.7 94.6 

Vegetarian 6 5.4 5.4 100.0 

Total 112 100.0 100.0  
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Q9_5_TEXT If yes, which dietary pattern? - Others, kindly list below - Text 

 Frequency Percent Valid Percent 

Cumulative 

Percent 

Valid  100 89.3 89.3 89.3 

Fasting, I only eat one meal a 

day 

3 2.7 2.7 92.0 

high protien diet 1 .9 .9 92.9 

I think I was confused on the 

previous question. I just try to 

limit dairy products. 

1 .9 .9 93.8 

No crustaceans 2 1.8 1.8 95.5 

No specific pattern 2 1.8 1.8 97.3 

Slow food 3 2.7 2.7 100.0 

Total 112 100.0 100.0  

 

Q10How often do you eat burgers? 

 Frequency Percent Valid Percent 

Cumulative 

Percent 

Valid  1 .9 .9 .9 

Once /twice a week 24 21.4 21.4 22.3 

Once a month 53 47.3 47.3 69.6 

two/three times in a  month 34 30.4 30.4 100.0 

Total 112 100.0 100.0  

 

Q11Have you eaten any animal-based burgers over the last month? 

 Frequency Percent Valid Percent 

Cumulative 

Percent 

Valid  1 .9 .9 .9 

Definitely not 10 8.9 8.9 9.8 

Definitely yes 71 63.4 63.4 73.2 

Might or might not 5 4.5 4.5 77.7 

Probably not 10 8.9 8.9 86.6 

Probably yes 15 13.4 13.4 100.0 

Total 112 100.0 100.0  

 

Q12Have you eaten any plant-based burgers over the last month? 
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 Frequency Percent Valid Percent 

Cumulative 

Percent 

Valid  1 .9 .9 .9 

Definitely not 37 33.0 33.0 33.9 

Definitely yes 19 17.0 17.0 50.9 

Might or might not 5 4.5 4.5 55.4 

Probably not 32 28.6 28.6 83.9 

Probably yes 18 16.1 16.1 100.0 

Total 112 100.0 100.0  

 

Goodness-of-Fit 

 Chi-Square df Sig. 

Pearson 88.863 38 <.001 

Deviance 84.997 38 <.001 
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Figure 38:  A pair plot of participants who choices and different factors based on gender.  
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Figure 39: A pair plot of participants who chose plant-based burger vs animal-based burger against all 

numerical data collected 

 

8.5 Questionnaire Design  

Consumer testing  

Objective: Consumer perception of FCOD burger simulator  

▪ Consumers must see the two different burgers  

▪ Having seen the two types and their health and environmental outcomes, which one would you  
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Hypothesis: We hypothesize that the nudges provided will positively influence consumer choice of 

purchasing.  

Brief background information about the experiment 

Chronological order of the survey  

▪ Sample demographic  

▪ Participants' burger consumption behavior and predisposition  

▪ Participants' smartphone using behavior 

▪ Simulator/Technology testing  

▪ Purchasing testing 

▪ Participants' trust and recommendations 

Demographic  

Objective: The objective is to avoid making assumptions about the participants and provide context 

analysis of different groups' preferences.  

(1) What age group are you in?  

(a) Below 18  (b) 18-24,  (c) 25-30, (d)  31-40,   (e ) above 40. 

(2) How do you describe your gender?  

(a) Male, (b)  female,  (c) non-binary/third gender  (d) Prefer not to say  

(3) Which race do you belong to? 

(a) White  (b) Black/African American  (c) Asian (d) Hispanic (e ) Prefer not to 

say   

(4) Are you affiliated to the University of Arkansas?  

(a) Yes  (b) No  

If No, Kindly state your institution of affiliation ………………….. 

(5) Which college are you affiliated with?  

(a) Dale Bumpers College of Agricultural, Food and Life Sciences 

(b) Fay Jones School of Architecture and Design 

(c) Fulbright College of Arts and Sciences 

(d) Sam M. Walton College of Business 

(e) College of Education and Health Professions, 

(f) College of Engineering 

(g) Others, then kindly list below……………. 

 

(6) Which of the following do you relate to?  

(a) Undergraduate   (b) Graduate  (c) Staff/Faculty 

 

Burger consumption testing  

Objective:  To test the frequency to which participants consume animal and plant-based burger 

https://catalog.uark.edu/undergraduatecatalog/collegesandschools/dalebumperscollegeofagriculturalfoodandlifesciences/
https://catalog.uark.edu/undergraduatecatalog/collegesandschools/fayjonesschoolofarchitecture/
https://catalog.uark.edu/undergraduatecatalog/collegesandschools/jwilliamfulbrightcollegeofartsandsciences/
https://catalog.uark.edu/undergraduatecatalog/collegesandschools/sammwaltoncollegeofbusiness/
https://catalog.uark.edu/undergraduatecatalog/collegesandschools/collegeofeducationandhealthprofessions/
https://catalog.uark.edu/undergraduatecatalog/collegesandschools/collegeofengineering/
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(1) Do you adhere to any dietary patterns?  

(a) Yes         (b) No     (c) Maybe 

(2) If yes, which dietary pattern?  

(a) Flexitarian    (b) Vegetarian    (c) Vegan                       

(d) Omnivore diet      (e ) Others, kindly list below 

(3) How often do you eat burgers?   

(a) Every day,    (b) Once/twice a week,   (c) Once a month 

(4) Have you eaten any animal-based burgers over the last month?  

(a) Definitely not   (b) Probably not  (c) Might or might not              

(d) Probably yes   (e ) Definitely yes  

(5) Have you eaten any plant-based burgers over the last month?  

(a) Definitely not   (b) Probably not  (c) Might or might not                   

(d) Probably yes   (e ) Definitely yes  

(6) On any given which type of burger will you purchase?  

(a) Animal-based burger (made of beef)  (b)Plant-based burger (made of black beans, soy etc) 

 

Participants' smartphone behavior:  

Objective:  To determine consumer digital product habits  

(1) How often do you use mobile applications when purchasing food?  

(a) Every day   (b) Once/twice a week   (c) Once in a month                     

(d) More than once in a month  (e ) Not at all 

(2) How experienced/comfortable are you using an application to purchase food? 

(a) Extremely uncomfortable       (b) Somewhat uncomfortable                           

(c) Neither confrtable nor uncomfortable   (d) Somewhat comfortable                   

(e ) Extremely comfortable  

(3) On average, how often do you download a new application onto your smartphone?  

(a) once a week,   (b) twice a week,   (c) once a month,  

(d) more than once a month 

(4) Can you list any applications you've used in the last month to purchase food?  

 

 

 

 

 

 

Technology testing  
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In the upcoming task, you will explore a Food Choices Overview Dashboard Simulator.  This is a simulator 

designed to guide you to make sustainable food choices at the point of purchase.  Assume that you are 

buying a burger made with two patties of 8oz in total for your lunch.  There are two types of burgers, one 

labeled "animal-based burger" and the second labeled "plant-based burger".  The simulator will attempt to 

guide you in making a sustainable decision by providing a series of indicators peculiar to the two products.  

After exploring both products on the simulator, you will be asked some questions about your experience 

with the simulator.  

Please click on the link below to explore the Food Choices Overview Dashboard Simulator  

FCOD -Burger Simulator  

 

Technology Testing Part 1a:  

Objective:  to test the ease and usability of the technology 

(1) How was your experience navigating the simulator? 

S/N Features  Select from a scale of 1 to 1000 

1 User interfaces  

2 Navigation of pages   

3 Layout of pages   

4 The language used on the page   

5 Explanation of indicators   

6 Information flow on the page  

 

Technology Testing Part 1b:  

Objective:  to test the consumer level of understanding of specific indicators presented on the simulator 

(1) What is the meaning of the term nutritional and health outlook used in the simulator?  

(a) Its a module that combines three health indicators to provide a nutritional and health label for 

food 

(b) It's a module that combines two health indicators to provide a nutrition and health label for 

food. 

(c) It's a module that combines four health indicators to provide a nutrition and health label for 

food. 

(2) What is the term environmental impact cost as used in the simulator?  

(a) It's a module that displays the monetary burden of the environmental impact of food 

(b) Its a module that measures the environmental impact of food. 

(c) It's a module that provides an environmental-nutrition score for food 

(3) What is the term overall sustainability scoring as used in the simulator?  

 

(4) What is the term EnN score as used in the simulator?  

(a) It's a nutritional score 

http://fcodburger.foodresus.com/
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(b) It's an environmental score 

(c) It's an environmental-nutritional score 

(5) Did the documentation panel on the simulator provide sufficient information about the terms used 

and mentioned above? 

(a) Yes   (b) No   (c) Maybe  

 

Technology Testing Part 2:  

Objective:  To test consumer recollection of results represented by the simulator. 

(1) What is the overall sustainability score of the food in the simulator for plant-based burgers?   

(a) 1   (b) 2    (c) 3   (d) 4.  

(2) What was the advisory/nudge associated with the plant-based burger's overall sustainability score 

in the simulator?  

(b) This food is unhealthy and unsustainable 

(c) This food is slightly healthy and unsustainable 

(d) This food is healthy and sustainable 

(e) This food is moderately healthy and sustainable 

(3) What was the rating associated with the plant-based burger's overall sustainability scoring  in the 

simulator?  

(a) Very good   (b)  Good   (c) Average   (d) Poor  

 

(4) For animal-based burgers, what is the overall sustainability score of the food in the simulator?   

(a) 1   (b) 2    (c) 3   (d) 4..  

(5) What was the advisory/nudge associated with the animal-based burger's overall sustainability 

score in the simulator?  

a. This food is unhealthy and unsustainable 

b. This food is slightly healthy and unsustainable 

c. This food is healthy and sustainable 

d. This food is moderately healthy and sustainable 

(6) What was the rating associated with the animal-based burger's overall sustainability score in the 

simulator?  

(a) Very good  

(b) Good  

(c) Average  

(d) Poor  

   

(7) Before this simulator, were you aware of different burgers' environmental costs and health?  

(a) Yes   (b) No   (c) Maybe  

 

Purchasing testing  

Objective: To test which type of burger consumers will purchase  
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(1) Which burger will you buy?  

(a) Plant-based burger    (b) Animal-based burger 

(2) Was the content provided on the simulator sufficient to guide your final decision?  

(a) Yes    (b) No    (c) Somehow  

(3) Which of these factors on the simulator/experiment influenced your final decision to purchase a 

burger?  

(a) Nutritional content claim   

(b) environmental sustainability cost claim   

(c) health and nutritional benefits claim  

(4) Would the cost of both products have influenced your final decision?  

(a) Yes    (b) No    (c) Maybe 

Participants' Trusts and recommendations (Product review)  

Objective: To test the participant's level of trust in the information presented  

(1) Do you trust the information presented on the simulator?  

(a) Definitely not   (b) Probably not  (c) Might or might not              

(d) Probably yes   (e ) Definitely yes  

(2) Would you recommend translating this simulator into a mobile application to guide your 

sustainable decisions in the future?  

(a) Yes    (b) Maybe    (c) No 

(3) Would you recommend that more food should be added to the simulator? 

(a) Yes     (b) Maybe    (c) No 

(4) Have you used any simulator similar to this?  

(a) Definitely not   (b) Probably not  (c) Might or might not              

(d) Probably yes   (e ) Definitely yes  

(5) Which areas do you think the application can improve to give a better user experience?  

Space provided  

(6) Overall, how will you rate this simulator?  

(a) 5    (b) 4   (c) 3   (d) 2    (e) 1 

(7) Do you have any reviews or comments for the researchers involved in this project?  
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9 CONCLUSION 

The main goal of the current project was to enhance the capacity of policymakers and consumers to make 

decisions about food production, supply, and consumption by simultaneously considering nutritional 

quality, contribution to health, and environmental sustainability. This was achieved by (a) assessing  and 

articulate sustainable consumer dietary patterns and their correlation with human health, the environment 

and the socio-economic dimension of sustainability, (b) multi-objectively modeling the risk to health and 

environmental impact under stringent mitigation policies leveraging on machine learning and finally (c) 

developing a sustainable healthy food choice platform that provides consumers numerical and pictorial data 

on nutritional quality, contribution to healthy living, environmental impact, and cost. Through the 

application of mathematical modeling (AHP-TOPSIS) and a set of environmental, health and socio-

economic indicators, the findings of the study suggest that vegetarian, vegan and provegetarian diet 

concepts are more beneficial to the environmental and population’s health as compared to the national 

Healthy US-style diet concept which has an average overall lower GHGE impact of 2% (reduction), water 

consumption of 14% (reduction), and an increase in energy consumption of 17% compared to other diet 

concepts.  However, the implementation and wider adoption of sustainable diet concepts is hindered by 

intrinsic socio-economic, cultural and behavioral barriers. These include a lack of understanding, limited 

access to food ingredients, and unfamiliarity with sustainable diet menu. As such the study proposed an 

optimized diet concepts that leverages on system thinking approach to promote the adoption and 

implementation of such diet concepts among the American population. Evidence from the study also 

suggest that providing appropriate nudges, environmental impact, nutritional, and health implication 

information can significantly influence consumers' purchasing decisions. Other factors, such as novel 

Environmental-Nutrition Score developed on the DISH simulator for the two fast-food products influenced 

consumer choices but not very significantly. The findings indicate that (1) at the level of environmental 

sustainability, an animal-based burger is associated with a higher environmental impact and external 

environmental cost compared to the plant-based burger, and (2) from a health and nutritional perspective, 

a plant-based burger has significantly higher HSR (4-stars), and FCS (62) thus associated with a healthier 

choice than the animal-based burger (1/2-star and an FCS (35), and (3) integrating both dimensions into a 

single novel EnN score, the plant-based burger had a higher EnN score (EnN score =3) which correlates to 

a healthier and more environmentally sustainable food compared to the animal-based burger (EnN score 

=2). Perhaps the most obvious finding to emerge from the study is that 64.3% of participants who explored 

the DISH simulator rated it either with a 5-star rating or a 4-star. Finally, the results of the second object 

suggest that substituting meat and beef production with a more resource-efficient agricultural product such 

as peas could reduce anticipated GHGE emission impact by 5-7% while reducing health impacts by 19-

41% for the short-term goal of 2030. However, these high-impact reductions can be achieved depending on 



153 

 

the kind of substitution.  Future studies can focus on translating the DISH simulator to other fast-food in 

America. The novel FS-ROAS can also be extended to include other countries since similar data for 

different countries do exist.  
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