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Abstract 

 With the rate at which malware spreads in the modern age, it is extremely important that 

cyber security analysts are able to extract relevant information pertaining to new and active 

threats in a timely and effective manner. Having to manually read through articles and blog posts 

on the internet is time consuming and usually involves sifting through much repeated 

information. Knowledge graphs, a structured representation of relationship information, are an 

effective way to visually condense information presented in large amounts of unstructured text 

for human readers. Thusly, they are useful for sifting through the abundance of cyber security 

information that is released through web-based security articles and blogs. This paper presents a 

pipeline for extracting these relationships using supervised deep learning with the recent state-of-

the-art transformer-based neural architectures for sequence processing tasks. To this end, a 

corpus of text from a range of prominent cybersecurity-focused media outlets was manually 

annotated. An algorithm is also presented that keeps potentially redundant relationships from 

being added to an existing knowledge graph, using a cosine-similarity metric on pre-trained word 

embeddings.  
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Chapter 1 - Introduction  

For cyber security analysts, the importance of keeping up to date with information being 

reported in cybersecurity-related news articles, blogs, advisories, forums, and databases cannot 

be overstated, especially with the constant advent of new and increasingly vulnerable 

technologies such as the Internet of Things (IoT). That is because many of them rely on these 

resources as a way to stay informed about things like vulnerabilities that may (and probably will) 

affect their systems, which patches to prioritize, and new threats to look out for. Large public 

repositories like the National Vulnerability Database (NVD) [16] are also updated from 

information extracted from such immediate sources. As such, maximizing the speed at which 

information that can be extracted from these security-related media sources is paramount. 

The data that exists for security analysts to find is also extremely fragmented across the 

web, with different resources often reporting on different aspects of security-related news – all of 

which may be of interest to the analyst at hand. This is why it is more important than ever to be 

able to aggregate all of this information effectively, combining the data that is reported on by 

different sources so that the analyst does not have to spend copious amounts of time pouring over 

all the sources in search of a specific piece of information. It may also be the case that, while 

searching for these specific snippets of information, one may have to take in and mentally filter 

out a significant amount of information that has been repeated between sources.  

In this work, we aim to develop an automated approach to extract cybersecurity 

information from multiple sources and merge them to remove redundancy. Specifically, 

transformer-based encoder models (RoBERTa) are leveraged along with transfer learning to 

generate an information extraction pipeline for cybersecurity concepts consisting of Named 

Entity Recognition (NER), relation extraction, then knowledge graph generation and merging. 



2 
 

Semantic triples are extracted from unstructured cybersecurity text to form knowledge graphs 

that represent the relationships present amongst different classes of entities. A similarity measure 

is then defined for these semantic triples so that unnecessarily repeated information can be 

filtered out from the structure, saving time for analysts. 

Many previous works involving these information extraction tasks are focused on 

feature-based models, which induce significant costs in terms of labor as well as domain 

knowledge. Complex feature engineering is required to describe the different properties of 

entities, domain knowledge, entity context, and linguistic characteristics [15]. There is also a 

lengthy period of trial and error involved with the process, and many feature engineering 

techniques are reliant on lookup tables to identify known entities [17] which are laborious to 

build and maintain because of the rate at which information evolves in the cybersecurity field. 

With the speed at which cyber security-centric information is released by different outlets on the 

web nowadays, manual feature extraction is simply not a viable option since the features may 

need to evolve over time. Only recently, neural network-based approaches have started to see a 

significant surge in the amount of attention received regarding cyber security information 

extraction. Because neural networks are capable of learning useful non-linear combinations of 

features, they allow researchers to sidestep the laborious process of feature generation. However, 

in their vanilla form, deep neural networks are not able to capture the complex dependencies 

involved in interpreting context-sensitive sequential data. This is why a specific class of neural 

architecture referred to as the Recurrent Neural Network (RNN), which is designed to work 

nicely with sequential data such as time series or natural language, has been leveraged 

extensively in related works. Specifically, more specialized versions of the already specialized 

RNN architecture such as the Long Short-Term Memory (LSTM) and Gated Recurrent Unit 



3 
 

(GRU) networks have been used as they address the primary drawbacks of the basic RNN 

architecture.  

Only very recently has a new architecture of neural network been developed to rival the 

performance of architectures like the LSTM network, known as the transformer. It is an encoder-

decoder based model that was originally designed to be used for language translation tasks, but it 

has since shown enormous capability on a wide range of other sequence-to-sequence tasks such 

as text generation [17], text summarization [19], part-of-speech tagging [20], Named Entity 

Recognition (NER) [21], as well as even computer vision focused tasks such as image 

segmentation [18]. This thesis leverages this recent advance for tackling the considered problem. 

This thesis’ contribution is summarized as follows: First, a dataset for NER and relation 

extraction in malware-focused cyber security text from news articles and blogs is assembled and 

manually annotated. Second, transformer-based deep learning models for both the NER and 

relation extraction are trained. Third, an algorithm for selectively adding relationships to the 

generated knowledge graphs so as to prevent repeated information is presented. 

This thesis is organized as follows. Chapter 2 focuses on some background information 

that is relevant to the paper. Chapter 3 discusses related works in the literature. Chapter 4 focuses 

on the results and conclusions for this work. Chapter 4 gives an overview of the data processing 

pipeline. Chapter 5 gives some detail about the evaluation and results of the methods presented. 

Finally, Chapter 6 discusses the conclusions and some potential future work. 
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Chapter 2 - Background 

2.1 - Deep Learning 

In recent years, machine learning has become ubiquitous in research as well as more and 

more pivotal to the way many different disciplines approach problems such as image 

classification, recommendation systems, information retrieval, social network analysis, and so 

on. Among the sea of machine learning algorithms available, deep learning has seen significant 

attention due to its increased practicality. This increased practicality comes from the wide 

amount of easily accessible data as well as significant advancements in different computing 

hardware technologies among recent years. Ever since the mid-2000s when deep learning was 

really beginning to take its foothold in the modern industrial workflow due to this newfound 

computational feasibility, it has been making considerable impacts to a wide array of research 

fields such as Data Science, Computer Vision, and Natural Language Processing (NLP). For 

NLP in particular, many researchers are interested in extracting semantic information from 

unstructured text without having to parse it via methods involving human interaction. This 

domain of research includes many different types of information, though most notably for this 

work, Named Entity Recognition (NER) and relation extraction.  

Before the advent of deep learning, the viability of machine learning algorithms lied 

heavily on the effectiveness of the data representation. If the data is not represented in such a 

way that encodes the necessary information required for the algorithm to learn, then performance 

can suffer greatly. Deep learning algorithms perform this feature extraction in an automated 

fashion, saving a large amount of time and work for researchers. These deep neural networks are 

able to form a layered representation of the feature set where low-level features are extracted by 
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the model in the beginning layers of the network, and higher-level features extracted by the later 

layers.  

2.2 - Supervised Learning 

Supervised learning is a technique used widely within the discipline of machine learning, 

especially deep learning. In the case of deep learning, this technique involves using labelled data 

to train a multi-layered perceptron (MLP) model to generate outputs that correspond with the 

labelled examples. More precisely, given a set of input vectors 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} and a set of 

corresponding output vectors 𝑌 = {𝑦1, 𝑦2, … , 𝑦𝑛} where 𝑦𝑖 is the corresponding correct output for 

input 𝑥𝑖, the model learns to generate some output �̂�𝑖 = 𝑓(𝑥𝑖) such that the value of a chosen 

loss function 𝐿(𝑦𝑖, �̂�𝑖) is minimized. At each step, the network will use some backpropagation 

method, usually gradient descent, to tune its parameters and find an effective local minimum on 

the loss function (ideally the global minimum, but this is often not achievable in practice). 

2.3 – Named Entity Recognition 

Named Entity Recognition (NER) is the process of identifying which pieces of text 

correspond to a given class of entity. For example, in the text “John is the owner of an MX10 

speed bike”, someone may be interested in classifying “John” as a person, and “MX10 speed 

bike” as a vehicle. More formally, if you have some text 𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑛} represented as an 

ordered sequence of tokens, then named entity recognition is the act of identifying which 

contiguous subsequences 𝑠 = {𝑡𝑖, 𝑡𝑖+1, … , 𝑡𝑗}, 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛 actually refer to some concrete 

instance of an entity. This is useful for several reasons, such as identifying the prevalence of 

certain product types mentioned in a dataset. The approaches toward this problem are usually 

divided into two categories: rule-based and machine learning based [1]. In this work, we develop 



6 
 

an annotated corpus for NER and relation extraction in the cybersecurity domain. In addition, a 

machine learning language model is trained for this task that deals specifically with 

cybersecurity-related entity types. 

2.4 - Relation Extraction 

Relation extraction is somewhat of a downstream task from NER, as it typically involves 

taking the entities extracted from the text via NER techniques and determining the relationship 

between them. For example, in the previous example sentence of “John is the owner of an MX10 

speed bike”, where “John” is of entity type person and “MX10 speed bike” is of entity type 

vehicle, it may be of interest to be able to identify the relationship between John and the speed 

bike as being “owns”. The typical human-friendly representation of these relationships is via a 

structure known as the knowledge graph. In this representation, a relation is captured as a 

semantic triple 𝑟 = ( 𝑒1, 𝑝, 𝑒2) where p is the predicate (i.e., relationship), 𝑒1 is the subject entity, 

and 𝑒2 is the object entity. These triples form a directed graph where the subject and object nodes 

are connected by an edge (the predicate). In this work, a dataset and pipeline are developed for 

supervised relation extraction among the entities identified by the NER component. Knowledge 

graphs are then generated from these relations and merged along with a similarity score metric 

between triples to reduce redundancies in the graphs, making it easier for analysts to absorb 

larger amounts of information more rapidly. 

2.5 - Word Embeddings 

 Deep learning models learn to associate inputs in a particular vector space to outputs in 

another vector space. This means that, when training deep learning models on tasks involving 

unstructured text, it is paramount that we can come up with a meaningful vector representation 



7 
 

for each of the different tokens that make up a document. These vectors can then be used in a 

myriad of downstream NLP tasks, such as text categorization [9], parsing [10], information 

retrieval [11], and named entity recognition [12]. 

2.6 - Word2Vec 

 Somewhat surprisingly it turns out that neural networks can be leveraged to solve the 

problem of generating these multi-dimensional vector representations for other downstream deep 

learning tasks. This is significant because having to develop a feature set to effectively represent 

the words manually is non-trivial and requires much time to be spent researching the efficacy of 

different possible features. One such neural network-based method is Word2Vec [13] which 

leverages shallow neural networks consisting of a single hidden layer to generate these vector 

representations.  

There are two main flavors when it comes to the way Word2Vec structures its inputs and 

outputs. The first is a method known as Continuous Bag-of-Words (CBOW), which formulates 

the problem as a many-to-one mapping problem. The idea is that, given a number of surrounding 

context words for a piece of text (the number of which varies by application), we can train the 

network to generate a target word given that context. For example, given the sentence “Neil 

Armstrong walked on the moon”, and a CBOW span length of 5, we would split the sentence up 

into 4-tuples, where the first two elements are the two preceding token encodings and the last 

two are the two following token encodings for a given center token. With a CBOW span length 

of 5, the previous example sentence would be split up into a set of tuples: 

𝑋 = {(𝑥𝑁𝑒𝑖𝑙 , 𝑥𝐴𝑟𝑚𝑠𝑡𝑟𝑜𝑛𝑔, 𝑥𝑜𝑛, 𝑥𝑡ℎ𝑒), (𝑥𝐴𝑟𝑚𝑠𝑡𝑟𝑜𝑛𝑔, 𝑥𝑤𝑎𝑙𝑘𝑒𝑑 , 𝑥𝑡ℎ𝑒 , 𝑥𝑚𝑜𝑜𝑛)} 
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The starting encoding scheme for these word vectors can just be a one-hot encoding, where each 

word in the corpus gets a unique vector component that corresponds to it – so each word will 

have all 0s as every component except at the unique index that identifies it. This means that the 

dimensionality of the encoding will be equivalent to the number of unique words in the corpus. 

The network is then trained to predict whatever word is surrounded by the context. So, for the 

first tuple above which consists of the encodings for “Neil”, “Armstrong”, “on”, and “the”, the 

network is trained to predict that the output for the sum of those context encoding vectors should 

represent “walked”.  

 The second task formulation for this problem is referred to as the skip-gram model. This 

approach is essentially equivalent the CBOW formulation but inverted. That is, instead of 

supplying surrounding context words and trying to predict the middle word, the model is 

supplied the middle word and is trained to predict the surrounding context words. Mikolov et al. 

[13] found in practice that the CBOW formulation trains faster and better represents more 

frequently appearing words while the skip-gram approach works better with smaller datasets and 

is more capable of effectively representing words that appear less frequently. 

 These learned embeddings can be used to calculate the similarity between two pieces of 

text, as both the CBOW and skip-gram formulations leverage the cosine similarity metric in the 

definitions for the conditional probabilities being maximized. For the skip-gram model, the log 

probability is maximized: 

1

𝑇
∑ ∑ log (𝑝(𝑤𝑡+𝑗|𝑤𝑡))

−𝑙≤𝑗≤𝑙,𝑗≠0

𝑇

𝑡=1
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Where 𝑇 is the number of training samples, 𝑙 is the size of the context window, and 𝑝(𝑤𝑡+𝑗|𝑤𝑡) 

represents the conditional probability of predicting one of the surrounding contextual words 

(𝑤𝑡+𝑗) given a center word (𝑤𝑡). This conditional probability is then defined as 

𝑝(𝑤𝑜𝑢𝑡|𝑤𝑖𝑛) =
exp (𝑣𝑤𝑜𝑢𝑡 ∙ 𝑣𝑤𝑖𝑛)

∑ exp (𝑣𝑤 ∙ 𝑣𝑤𝑖𝑛)
𝑊
𝑤=1

 

Where  ∙  represents the vector dot product operation, W is the number of words in the 

vocabulary, and 𝑣 & 𝑣 represent the target and context vector representations of the respective 

words. Since the scoring mechanism used here is the dot product and the one-hot encodings of 

the vectors are all of equal magnitude, maximizing these probabilities results in an output vector 

space where words that encode similar semantic information are pointing in similar directions. 

This means that the encodings can be compared via the cosine similarity metric, defined as the 

normalized dot product between two vectors, to give a value that corresponds to how similar the 

information represented by the words is. This is because the cosine similarity measure between 

two vectors is lowest when they are orthogonal, and highest when they are parallel. 

2.7 – Recurrent Neural Networks 

 Deep learning approaches for problems like NER and relation extraction can be 

somewhat nuanced, because generating features for token representations that accurately encode 

the semantic information desired in something like unstructured text is highly dependent on the 

context of the token. That is to say, the meaning held by a token is highly reliant on the tokens 

that surround it. Because of this, recurrent neural networks (RNNs) were originally viewed as an 

effective architecture for extracting these token representations. This is because RNNs are a type 

of neural architecture that was designed to work on sequential data. Their recurrent nature makes 
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them decently suited for it since each token is passed through the network individually to 

generate some hidden state, and this hidden state is used as an input back into the same network 

along with the vector representing the next token. The result is that the outputs at every point 

should be somewhat “aware” of the information that preceded them. Specifically, RNNs work by 

taking an input as an ordered sequence of vectors 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} and learn to map these 

inputs to a new sequence of “hidden states” 𝐻 = {ℎ1, ℎ2, … , ℎ𝑛} where ℎ𝑖 encodes some 

information about the 𝑖th token, while also considering the context of tokens 𝑥𝑗 , 1 ≤ 𝑗 ≤ 𝑖. 

 

Figure 1: a diagram of the recurrent neural network architecture unrolled over time 

 Figure 1 shows the recurrent nature of the RNN architecture in an unrolled fashion – that 

is, in the diagram above, there is only a single recurrent component, it is just that its output is fed 
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back into itself as input. So, in the diagram, each horizontal arrow represents a forward timestep. 

In practice, if you have 𝑇 timesteps that you plan on backpropagating through, the recurrent 

network is unrolled over time into a standard feedforward network consisting of 𝑇 duplicates of 

the original network. ℎ𝑖 represents the output of the hidden layer at timestep 𝑖, 𝑥𝑖 the input at the 

𝑖th timestep, and 𝑦𝑖 the output at the 𝑖th timestep. 𝑤𝑥 represents the learned weights for the input 

layer, 𝑤ℎ represents the weights that are learned by the hidden layer, and 𝑏ℎ the biases for the 

hidden layer. 𝑤𝑦 and 𝑏𝑦 are the weights and biases learned for the feedforward output layer. The 

initial ℎ0 parameter is usually initialized as all zeros. Biases are needed so that the function 

approximated by the network can be shifted by an arbitrary constant depending on the nature of 

the function being approximated by the network. Assuming activation functions 𝑓ℎ and 𝑓𝑦 for the 

hidden and output layers respectively, then the hidden output can be calculated as  

ℎ𝑖+1 = 𝑓ℎ(𝑤𝑥𝑥𝑖 + 𝑤ℎℎ𝑖 + 𝑏ℎ) 

And the output at the 𝑖th timestep is calculated as  

𝑦𝑖 = 𝑓𝑦(𝑤𝑦 ∙ ℎ𝑖 + 𝑏𝑦) 

Where ∙ is the dot product. The activation functions 𝑓ℎ and 𝑓𝑦 can be any of many that are 

typically used in neural networks, such as the Sigmoid function (
1

1+𝑒−𝑥
), the ReLu function 

(max(0, 𝑥)), or the Tanh function (
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥
). The weights learned by the network are shared 

across the different timesteps. The gradient descent technique used with recurrent neural 

networks is known as Backpropagation through time (BPTT) [23]. The BPTT algorithm works 

by treating the network as visualized in Figure 1, unrolling it through time and minimizing an 

aggregated cost which is calculated as the average of the individual costs for each time step. 
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 While this all sounds good, in practice it has been found that RNNs break down when it 

comes to learning long range dependencies [3] (instances where the meaning of one token is 

highly dependent on the meaning of another token that is many positions removed in the input 

sequence). In particular, these long-range dependencies are hard to learn because of the 

vanishing and exploding gradient problems. These vanishing/exploding gradients typically come 

about when doing backpropagation through time for two main reasons. Firstly, the number of 

timesteps tends to be relatively large. Felix et al. [27] show that even just 10 timesteps are too 

much for a standard RNN to handle effectively. Since backpropagation is done via unrolling the 

network according to the number of timesteps, these unrolled network representations tend to be 

very deep. And since gradients are unstable in deep feedforward networks [24][25], you suffer 

from the exact same problem in RNNs that work over a significant series of timesteps. Another 

aspect of RNN architecture that increases their chances of falling victim to vanishing/exploding 

gradients is that the weights are shared temporally. Since the formulation for the gradient of early 

layers involves a product of the weights of later layers, using these same weights makes it much 

more likely that the product (and thusly, the gradient) will either grow or shrink exponentially.  

2.8 – Long Short-Term Memory Networks 

Long Short-Term Memory (LSTM) networks [26] are a specific type of RNN 

architecture that aims to mitigate this issue via the addition of supplementary “gates” in the 

recurrent cells that attempt to maintain relevant contextual information for longer periods of 

time. Typically there is a forget gate, input gate, and output gate added. The forget gate consists 

of a set of weights that are trained to help decide which information should be prioritized in the 

network’s memory. This means that if its outputs are all high (close to 1), then that is a strong 

indication that the output for the corresponding current input is very dependent on the history of 
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the sequence (i.e., context). Conversely, if the outputs from the forget gate are mostly low, that 

means that the output for the current corresponding input is probably not very dependent on the 

context of preceding items in the sequence. The input gate takes the current input 𝑥𝑖 and the 

previous hidden state ℎ𝑖−1 and creates an encoding (extracts features) for the current input via 

the tanh neuron, then uses the second sigmoid neuron’s output to determine which information 

from the previous cell state should be remembered. If the forget gate’s job is to control which 

information from the past is forgotten, then the input gate’s job is to control which information 

from the present should be remembered. The output gate determines what the hidden state for the 

next timestep should be.   

A specific type of LSTM, known as the bidirectional LSTM, tends to be used for many of 

context-sensitive sequence-to-sequence tasks. They are known as “bidirectional” because they 

will process a sequence of tokens in both the forward and backward directions, allowing context 

to be considered from both directions in the sequence. For things like text tagging, this is 

extremely important because it is often the case that the appropriate tag for some token (say, for 

instance, an entity type) can only be effectively known in relation to the tokens that follow it. For 

instance, if you had the sentence “Apple, the undisputed tech giant, has just unveiled a new tablet 

device” – the only way to possibly know that “Apple” is referring to the company and not the 

fruit is to understand it in the context of the words that follow it – namely the sequence of tokens 

“the undisputed tech giant” tells us that we are not referring to the fruit.   

2.9 – Gated Recurrent Units 

Gated Recurrent Units (GRUs) [29] are an architecture of recursive neural network that 

are conceptually similar to LSTMs but are less expensive to train as they have fewer parameters. 

While they are cheaper, they still achieve comparable results to more expensive LSTM 
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implementations [30][31]. They were also designed to tackle the exploding/vanishing gradient 

problem affecting sequential deep learning models. Just like LSTMs, GRUs have gate units 

within the recurrent cell but they do not maintain separate cells for memory. There is no longer a 

separation between the internal memory state and hidden state such as in the LSTM architecture, 

since GRUs lack the output gate that transforms the final cell memory state into the hidden state 

for the next timestep. This lack of a need for a cell memory state gives GRUs an advantage over 

LSTMs in terms of memory requirements. The model for the GRU is also simpler than that of 

the LSTM, using just two specialized gates versus three. The first gate, the update gate, simply 

helps the network decide what portion of the information from previous timesteps in the hidden 

state, as well as the current timestep’s input, needs to be preserved moving forward. The reset 

gate is very similar to the forget gate of the LSTM model, as it is used by the network to 

determine what portion of previous and current information should be forgotten. 

2.10 - Transformers 

 However, LSTMs and GRUs also have a couple major downfalls – firstly, they are both 

still expensive to train in general. This is because of the sequential nature of the processing – 

both architectures require that the first token be processed so that its information can be encoded 

and used for the encoding of the next token in the sequence. This means that the process is not 

inherently parallelizable. Secondly, while both are still better than a standard RNN at encoding 

long-range dependencies, they are still not perfect at it. This is because LSTMs and GRUs have a 

very limited notion of “attention” built in. This is the idea that, in the context of certain tokens, 

information represented in the memory state for certain previous tokens is more important than 

others. Since LSTMs and GRUs alike need to squash the cell memory state / hidden state down 

to a fixed size, the range of their attention is extremely limited. Transformers mitigate this issue 
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via the notion of “self-attention” and their non-sequential nature [5].  Whereas RNN 

architectures like LSTMs and GRUs are inherently recursive, the transformer architecture is not. 

Instead of processing the text token-by-token by recursively passing its outputs back into itself, 

the transformer architecture supports processing on the sequence as a whole, all at once. This 

makes it parallelizable and therefore less expensive to train than equivalent RNN models. This 

non-recursive property also aids it in overcoming the long-range dependency problem. Since 

transformers process sequential inputs as a whole and not one-by-one, there is no longer the issue 

of having to implement a memory module to encode information about surrounding tokens, as 

their context-sensitive embeddings are all available at once. These are all reasons why the 

transformer architecture is focused on within this work, as it is considered the state-of-the-art 

approach to sequence tagging. 

 

Figure 2: Transformer encoder-decoder structure by Vaswani et al. [5] 
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 In Figure 2, we can see a detailed description of how the transformer encoder-decoder 

architecture is laid out. It begins with the inputs, which are the original tokens in the sequence 

each converted to a unique representation, such as one-hot encodings. These token encodings are 

then passed through an input embedding layer which generates the actual token embeddings, 

which capture things like semantic similarity between tokens that represent similar things or 

ideas. Some common techniques for automatic learning of these embeddings are Word2Vec and 

gloVe. While these word embeddings encode things like semantic similarity well, they still lack 

positional information that could be useful for models performing context-sensitive sequence-to-

sequence tasks. Whereas RNNs and even CNN models are able to make use of the order of the 

sequence in the way they evaluate the inputs, transformers do not – so some positional 

information is injected into the embeddings to capture it. From the original paper [5], these 

positional encodings are calculated as  

𝑃𝐸(𝑝𝑜𝑠,𝑖) =
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where 𝑝𝑜𝑠 is the 0-based positional index, 𝑖 is the individual dimension, and 𝑑𝑚𝑜𝑑𝑒𝑙 is a model 

hyperparameter representing the dimensionality of the inputs and outputs – it is chosen to be 512 

in the base architecture.  This means that each component of the generated positional encoding 

will correspond to a unique sinusoid. The authors propose that these positional embedding are 

meaningful because they allow the model to learn to consider relative positions since for any 
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fixed offset 𝑘, 𝑃𝐸𝑝𝑜𝑠+𝑘 is a linear function of 𝑃𝐸𝑝𝑜𝑠 [5]. These positional encodings are then 

combined with the word embeddings via element-wise addition to create the new position-aware 

word embeddings. The new position-aware embeddings are then passed through to an encoder 

module stack where each encoder consists of a multi-head attention component, feedforward 

component, and two normalization components. Stacking encoders simply means that the output 

of the first encoder is piped forward as the input to the second encoder and so forth. The number 

of encoders 𝑁𝑥 is a variable hyperparameter of the network and is also typically equal to the 

number of decoders.  

2.11 - Self-Attention 

 A key component of the model architecture is the multi-head self-attention mechanism. 

As previously mentioned, the high-level goal of self-attention is to determine which tokens in the 

input sequence carry more relevant information when trying to predict an output for some other 

token. Multi-head attention is just the idea of having multiple layers that perform this attention 

task in parallel. For an input sequence of 𝑁𝑡𝑜𝑘 tokens, the encoder unit takes in a matrix of shape 

𝑁𝑡𝑜𝑘 × 𝑑𝑚𝑜𝑑𝑒𝑙 and each attention head in the multi-head attention portion has output shape 

𝑁𝑡𝑜𝑘 ×
𝑑𝑚𝑜𝑑𝑒𝑙

𝑁ℎ𝑒𝑎𝑑𝑠
 (where 𝑁ℎ𝑒𝑎𝑑𝑠 is the number of attention heads). This is because the output of all 

the individual attention heads will be concatenated across the second axis so that the final output 

of the multi-head attention component will be back to the original input shape it received, 

𝑁𝑡𝑜𝑘 × 𝑑𝑚𝑜𝑑𝑒𝑙.  

 The individual attention layers themselves are concerned with learning three sets of 

weights: 𝑊𝑄, 𝑊𝐾, and 𝑊𝑉. These weights correspond to the query, key, and value vectors (each 

with 𝑑𝑞, 𝑑𝑘, and 𝑑𝑣 components, respectively) learned for each element in the input sequence by 
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the individual attention heads. The idea is that the attention mechanism resembles a sort of 

lookup where you have a query and a set of key-value pairs that you map to an output. The query 

can be thought of as the information being searched for, the key how relevant some information 

is to the query, and the value the actual potential result for the query. This mapping from a query 

and set of key-value pairs to the output comprises the attention function. More formally, this 

mapping is computed as 

Attention(𝑄, 𝐾, 𝑉) = softmax (
𝑄𝐾𝑇

√𝑑𝑘
)𝑉 

Where 𝑄, 𝐾, and 𝑉 are matrices that simply pack up the query, key, and value vectors for each of 

the input embeddings. Thus, their respective dimensions are 𝑁𝑡𝑜𝑘 × 𝑑𝑞, 𝑁𝑡𝑜𝑘 × 𝑑𝑘, and 

𝑁𝑡𝑜𝑘 × 𝑑𝑣. The 𝑄𝐾𝑇 operation generates a new matrix where each row represents the relevance 

of every other value in the sequence for a particular query. This requires that 𝑑𝑞 = 𝑑𝑘. The scalar 

division by √𝑑𝑘 then helps to prevent the individual dot products calculated in 𝑄𝐾𝑇 from 

blowing up as 𝑑𝑘 increases. Passing the result through the softmax function then serves to 

normalize each of the row vectors. Finally, multiplying the result matrix that comes out of 

softmax by 𝑉 gives us a weighted average of the value vectors, signifying which ones have more 

effect on the output. 

 The “Add & Norm” layer that follows the multi-head attention layer and feedforward 

layer in the encoders consists of a residual connection which performs element-wise addition on 

the output of the layer with the input of the layer followed by layer normalization [32]. These 

steps simply comprise some computational strategies designed to improve the convergence time 

of the model. After this first normalization in the encoder the data is passed along through a 
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standard feedforward network consisting of a single hidden layer, using ReLu activation. In the 

base architecture, 2048 neurons are used for the hidden layer, while input and output dimensions 

remain the same (𝑑𝑚𝑜𝑑𝑒𝑙). This output is then normalized again, same as the output from the 

multi-head attention layer.  

 The decoder portion of the architecture (the right portion of Figure 2) is relatively similar 

to the encoder portion, with the addition of a masked multi-head attention layer at the beginning. 

The decoder’s job is to generate the output sequence given the intermediate representation of the 

input that was generated by the encoder portion. This means the decoder also uses the output of 

the encoder as an input – specifically, to its non-masked multi-head attention mechanism (which 

works in the same fashion as the multi-head attention mechanism in the encoder). The decoder is 

autoregressive, meaning that it predicts the output token by token and uses its previous outputs as 

inputs. This autoregressive property means that the decoder is not inherently parallelizable – 

though while doing supervised training, there is a commonly used process for training sequence-

to-sequence models known as “teacher forcing” [33] which allows the decoder to be trained via 

the previous ground truth output for each timestep instead of having to condition itself in an 

autoregressive fashion, which allows for parallelization (though this only applies to the training 

process – generating outputs for general use is still inherently sequential and thusly non-

parallelizable). This autoregressive property is also the reason for the “masking” in the first 

multi-head attention layer in the decoder. Since it is trained to generate the output sequence 

token by token, it needs to learn not to pay attention to future tokens. This masking process is 

exactly that – it prevents the attention mechanism from computing attention scores for future 

tokens in the output sequence. In particular, each of these attention scores for future tokens is 

driven to 0 by the mask. Another caveat of this autoregressive property is that the output 
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sequence must be shifted right by one position, prepending/appending start and end tags to the 

output sequence so that the model has a previous input for the first token (the start tag).  

 After passing through the masked multi-head attention layer and then normalization, this 

output is plugged into another (non-masked) multi-head attention component as the values, and 

the encoder output is plugged in as the queries and keys. This allows the decoder to learn which 

portions of the encoder’s output to be attentive to. Then, after the data passes through this second 

multi-head attention layer in the decoder, it is piped through a linear layer which acts a classifier, 

and then a softmax layer to map this classification to a probability distribution. The token 

associated with the index of the highest probability component of the output is the token being 

predicted by the model.  
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Chapter 3 – Related Work 

3.1 – Overview 

 The topic of information extraction in cybersecurity-related text is certainly not one that 

has not seen its fair share of attention. LSTMs have been used extensively for the detection and 

extraction of cybersecurity concepts in documents - Gasmi et al. [14] showed that LSTMs alone 

can be used effectively extract cybersecurity information from cybersecurity-related text, and 

Jiang et al. [6] showed that bidirectional LSTM networks along with conditional random fields 

could be used to effectively extract cybersecurity-related concepts and entities from a 

cybersecurity-focused document corpus. 

3.2 - Knowledge Graphs in Cybersecurity 

 To build a cybersecurity knowledge graph (CKG), one must first establish an ontology 

that encapsulates the different concepts and relationships that are meant to be analyzed. A 

cybersecurity ontology generally consists of a set of cybersecurity-related classes along with 

their attributes as well as the potential relationships that exist between the classes. Iannacone et 

al. [40] developed the “Situation and Threat Understanding by Correlation Contextual 

Observations” (STUCCO) ontology for CKGs which incorporates data from a myriad of both 

structured and unstructured data resources so as to represent all the relevant cybersecurity 

concepts within. Syed et al. [41] extended works like STUCCO with the Unified Cybersecurity 

Ontology (UCO) which also encapsulates the core concepts and relationships other important 

cybersecurity resources like Common Vulnerabilities and Exposures (CVE), Common 

Vulnerability Scoring System (CVSS), and others as well as STUCCO. Importantly, it also 

conforms with the STIX [42] ontology, which is a popular community-driven project whose aim 
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is to generate a structured language to represent cybersecurity threats. Cybertwitter [43] uses 

cybersecurity knowledge graphs to reason about cybersecurity-related content on Twitter and 

inform analysts about potential threats in real time. 

3.3 - NER 

 In the NLP domain, approaches to NER tagging problems fall under two main categories: 

machine-learning based and rule-based. Machine-learning based methods are those that concern 

themselves with the statistical relationships amongst the relevant data, while rule-based methods 

typically consist of manually designed dictionary lookups or pattern-matching rules that have to 

be derived by hand from a domain expert. Machine learning approaches typically involved 

techniques such as Perceptrons [51], Support Vector Machines [52], and Hidden Markov Models 

(HMMs) [53], but recently Conditional Random Field (CRF) and neural-based approaches have 

shown the most promise. To this effect, both Gasmi et al. [8] and Jiang et al. [6] show that 

bidirectional LSTMs that feed into a CRF classifiers are a very effective approach to 

cybersecurity-specific NER, beating out the previous state-of-the-art approach which was to just 

use CRFs.  

3.4 - Relation Extraction 

 Models for relation extraction generally approach the problem from two different 

perspectives: binary classification and multi-class classification. A binary classifier takes a 

representation for two entities and its goal is to predict whether or not some specific relation 

holds. In multi-class classification, however, two entity representations go in and the model 

attempts to predict which of many possible relations hold [45]. The quality of generated 

knowledge graphs is entirely dependent on the quality of the semantic triples which make them 
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up. The main problem that many relation extraction systems face is the lack of adequate training 

data. This is because, while at first glance annotating relationships between entities in a corpus 

may seem trivial, it quickly becomes bogged down with vague or ambiguous instances where the 

correct labelling decision is not clear. This is why many group annotation efforts for relation 

extraction end up with a large amount of inner-annotator disagreement [44].  

 In terms of machine learning approaches to the relation extraction task, they fall into 

three categories: supervised, semi-supervised, and unsupervised. Zhao et al. [46] explore kernel-

based methods for supervised relation extraction while Kambhatla et al. [47] investigate feature-

driven methods. Pingle et al. [50] perform relation extraction on cybersecurity text based on the 

UCO ontology by using feed-forward neural networks as classifiers on Word2Vec encodings of 

words. Semi-supervised methods are investigated by Yarowsky [48] and Blum et al. [49]. Blum 

et al. use a technique called co-training, where a small set of labelled data and a large set of 

unlabeled data represented with disjoint feature sets are used in tandem to learn the task. 

Yarowsky [48] trains a classifier on a small set of seed examples, and then uses that semi-trained 

model to label a larger unlabeled dataset – only paying heed to predictions where the model is 

highly confident. The simple set of steps is then repeated until the convergence criteria is met, 

with the set of labeled seeds growing every iteration and the set of unlabeled entries conversely 

shrinking. On the unsupervised side of the spectrum, Elsahar et al. [49] use state-of-the-art 

clustering algorithms to perform relation clustering without the need for any labelled data. 
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Chapter 4 - Pipeline 

4.1 – High-level Overview 

Our method aims to generate optimized knowledge graphs from malware-focused cyber 

security news articles and blog posts. The text used to train the model were taken from articles 

from various media outlets reporting on prominent malware strains. These were found by simply 

taking the names of popular malware then searching for them on Google News, extracting text 

from various articles located on the first five pages of the results. Lengthier articles containing 

more relevant information for the scope of this approach were prioritized so as to have enough 

labelled entries. Since having to read all the text from the articles would be tedious and time-

consuming, relationships between cyber security-related entities are extracted. The fact that 

many of these malware articles contain repeated information is an issue, so an algorithm for 

preventing relationships representing already-seen information from being inserted into 

knowledge graphs is used to reduce their size. Thus, knowledge graphs can be generated for 

multiple articles and merged, with the output not being cluttered by repeated information.  
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Figure 3: High level pipeline architecture 

Figure 3 shows the high-level information flow for the pipeline presented in this paper. 

First, a corpus of text consisting of articles from multiple high-profile media sources such as 

cybersecurity-related news articles and blogs is assembled. This manually annotated corpus is 

used to train the separate NER and relation extraction models. Once the models have been 

trained, unstructured text can be passed into the NER component to have entities extracted. The 

NER component uses transfer learning because it allows us to exploit the rich model weights 

learned on a similar task with much more training data, since the manually labelled corpus 

created for this work is limited in size. As the model was trained on a similar task, these weights 

can then just be fine-tuned to our needs, which decreases convergence time as compared to 

starting with random weights. The eventual set of identified cyber-security entity tags consists of 

the following: MALWARE, MALWTYPE (malware type), SOFTWARE, SOFTWTYPE 

(software type), VULNERABILITY, ATTACKTYPE, DEVICE, DATA, and VERSION. Since 

transfer learning is leveraged on a pre-trained model with rich learned weights at the start, other 
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non-domain specific entity tags such as LOC (location), PER (person), GPE (geopolitical entity), 

etc. are also present in the training corpus. Specifically, the pre-trained model is trained to 

recognize all of the entity tags present in the OntoNotes [34] NER dataset. Once these entities 

are tagged in the input text, the relation extraction component attempts to identify the 

relationships between them.  

The four relation classes trained to predict are IS_MALWTYPE, EXPOSES, INFECTS, 

and VULNERABLE_TO. The focus of the IS_MALWTYPE relation class is to help users 

identify what high-level classification of the malware falls under. Is it a worm, a piece of 

ransomware, spyware, or a keylogger? Each of these groups, while broad in scope, may be useful 

when first encountering a new strain of malware to gauge its general capabilities.  The 

EXPOSES class is meant to label relationships that involve some type of data being accessed by 

a specific malware. The INFECTS relation class represents a connection between a malware and 

software or device entity, but the name should not be taken too literally. If a piece of malware 

“infects” some software in this context, that only means that it uses that software as part of its 

attack vector. And if a piece of malware “infects” a device entity, that simply means that the 

malware functions on that device. Finally, VULNERABLE_TO is named pretty literally – it is 

meant to be a relationship between a software entity and a vulnerability entity that shows the 

software is vulnerable to that specific vulnerability. On top of being the least frequently 

occurring relations in the training data, the INFECTS and VULNERABLE_TO relation classes 

are also the only classes who are capable of consisting of variable entity types. A relation like 

IS_MALWTYPE is always between a MALWARE subject entity and a MALWTYPE object 

entity, which is likely easier for the model to understand. On the other hand, a relation class like 

INFECTS is sometimes binds a MALWARE subject and SOFTWARE object but also 
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sometimes binds a MALWARE subject with a DEVICE object. In hindsight, these separate 

relations are probably better served as separate relation classes. 

After these relationships are extracted, they are converted into semantic triples to form 

knowledge graphs and then relations are aggregated, with common information being filtered out 

via word embedding similarity scores. The dataset was annotated using Prodigy [52], and the 

NER & relation extraction pipelines were implemented using the spaCy [53] and Thinc libraries 

[54]. 

4.2 - NER Pipeline  

 The NER component of the pipeline consists of two main pieces – a RoBERTa encoder 

mechanism that feeds into a transition-based incremental parser model for the actual entity span 

tagging. In this context, the model being transition-based means that the objective task is to learn 

to map a sequence of tokens to a sequence of transitions in a state machine. In this work, a shift-

reduce parser architecture is used for the entity tagging, following Lample et al. [37]. Figure 4 

gives a walkthrough of the objective task from the model’s perspective. It shows an example of 

shift-reduction parsing on an input sentence of “Fake AV is a trojan.” The algorithm uses an 

input stack as well as a buffer to represent its internal state. The buffer begins loaded with the 

words in the sequence, and the overall goal is to iteratively remove these words from the buffer 

while following the correct transition actions that lead to the output containing the correct 

labelled spans. The SHIFT transition moves the first item in the input buffer directly to the 

internal stack. The OUT transition, on the other hand, moves the first item in the input buffer 

directly into the output sequence.  REDUCE is a parameterized transition, taking the predicted 

entity class as input. The REDUCE transition pops and concatenates all the items on the internal 

stack into a single span representation with the correct label and moves that to the output.  
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Transition Output Stack Buffer 

 [ ] [ ] [Fake, AV, is, a, trojan] 

SHIFT [ ] [Fake] [AV, is, a, trojan] 

SHIFT [ ] [Fake, AV] [is, a, trojan] 

REDUCE(MALWARE) [(Fake AV)-MALWARE] [ ] [is, a, trojan] 

OUT [(Fake AV)-MALWARE, is] [ ] [a, trojan] 

OUT [(Fake AV)-MALWARE, is, a] [ ] [trojan] 

SHIFT [(Fake AV)-MALWARE, is, a] [trojan] [ ] 

REDUCE(MALWTYPE) [(Fake AV)-MALWARE, is, a, (trojan)-MALWTYPE] [ ] [ ] 

Figure 4: Step-by-step example of shift-reduction parsing on an input sentence of “Fake AV is a 

trojan” 

The pipeline follows the popular “Embed, Encode, Reduce, Predict” framework proposed 

by Honnibal [36]. Figure 5 visualizes the process. The first step, “embed”, entails embedding 

words in the input sequence into meaningful vector representations. These representations, 

however, are not yet contextually aware, which is where the “encode” step comes in. Given a 

sequence of these non-context-sensitive word embedding vectors, the goal is then to create a 

matrix that encodes the contextual relationships of the different words. In such a matrix, each 

row vector corresponds to the contextual meaning of a particular token to the whole sequence. 

This may sound familiar, and that is because this is the general notion of attention. Traditionally, 

pretrained word embeddings and attention-based Bi-LSTM/GRU models to achieve the first two 

steps. The transformer-based encoder architecture (RoBERTa), however, solves both problems 

in one with its multi-head attention mechanism. We just use the outputs from the augmented 

transformer encoder stack as the results for the encode step. The third step, “reduce”, consists of 

taking these matrices produced in the “encode” step and reducing them to a single vector to be 

used in downstream prediction tasks. In this case it is done by taking the RoBERTa-encoded 

token vectors and concatenating them into one large vector, then passing the large vector through 

a feed-forward network to get a smaller vector representation of the state. This resultant state 

vector is then finally used for the transition-based classification task. In figure 5 below, the 

RoBERTa encoder component composes the encode and embed steps, while the reduce step is 



29 
 

handled by the first feedforward network and the predict step is handled by the second 

feedforward network along with the softmax layer to map the outputs to a probability 

distribution.  

Figure 5: Embed, Encode, Reduce, Predict framework process outlined (Feedforward 

Network graphic from [56]) 
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4.3 - Relation Extraction Pipeline 

  The relation extraction component of the pipeline 

is directly downstream from the NER component. In this 

work, the goal is to extract relationships between entities 

that convey some sort of potentially useful information to 

someone seeking information about a strain of malware. 

For instance, it is useful to know that a given piece of 

malware is grouped under a specific type (ransomware, 

botnet, keylogger, etc.) or if it exploits a certain non-

malicious piece of software. Since relation extraction in 

this context only considers relations between specific 

entity classes and not general tokens, the NER component 

is used to determine which candidates to check for 

relations. In particular, the RoBERTa-generated token 

vectors that belong to an entity span are used to generate 

the relation input representations. For entities consisting of 

multiple tokens, their representation is pooled by taking 

the average of the constituent token vectors. To represent 

the relations between entities, the entity representations are 

simply concatenated. So, if we have entities 𝐸1 and 𝐸2 

with corresponding representations 𝑒1 = 〈𝑥1, 𝑥2, … , 𝑥𝑛〉 

and 𝐸2 = 〈𝑦1, 𝑦2, … , 𝑦𝑛〉 then we represent the potential relation candidate as 𝑟𝐸1,𝐸2 = 𝑒1⊕ 𝑒2 =

〈𝑥1, 𝑥2, … , 𝑥𝑛, 𝑦1, 𝑦2, … , 𝑦𝑛〉. However, since relations are directional (i.e., A infects B is not the 

Figure 6: High-level overview of 

relation extraction model 

Concatenate 
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same as B infects A) a representation for both directions should be captured. Thus, for each pair 

of entities 𝐸𝑖 and 𝐸𝑗 in an input span of text, relationship candidates 𝑟𝐸𝑖,𝐸𝑗 and 𝑟𝐸𝑗,𝐸𝑖 are both 

generated and passed forward to the classification layer, which is a standard feedforward neural 

network with a softmax output. The classification layer takes these candidate relation instances 

and maps them to a probability distribution concerning the relevant relation classes: 

IS_MALWTYPE, VULNERABLE_TO, EXPOSES, and INFECTS. The predicted class with the 

highest probability is selected, but only if that probability is greater than 0.5. It is worth noting 

that unlike the original BERT and RoBERTa models, the input texts it can process can have a 

maximum token length of 300. Any token sequences longer than that are batched into sequences 

of size 300 and treated independently. 

4.4 - Knowledge Graph Merging 

 After the relations have been extracted, they are stored in the knowledge graph data 

structure. Conceptually, these knowledge graphs are simply a data structure consisting of 

semantic relation triples (subject-relationship-object triples). Nodes are entities, and edges are 

relationships. Knowledge graphs exist as directed graphs, where if there are two nodes 𝑢 and 𝑣 

and an edge 𝑒 from 𝑢 → 𝑣, it means that the entity represented 𝑢 is related to 𝑣 by the 

relationship 𝑒. In other words, the semantic relation triple (𝑢, 𝑒, 𝑣) exists inside the knowledge 

graph. Implementation-wise, the knowledge graph used in this work consists of three mappings 

implemented as hashtables: a map from entity plaintext (lowercase) to the corresponding Span 

data structure that represents the entity span (contains information like token start and end 

indices, word vector representations, etc.), a bidirectional map from spans to numerical IDs 

(meaning that for any key-value pair (𝑘𝑖, 𝑣𝑖) in the mapping there exists another key-value pair 

(𝑘𝑗 , 𝑣𝑗) where 𝑘𝑗 = 𝑣𝑖 and 𝑣𝑗 = 𝑘𝑖), and finally a nested adjacency map where the keys are 
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subject entity spans that map to new hashtables. Those inner hashtables consist of relation-entity 

list pairs, allowing constant-time lookup for any query of a specific type of relation on a subject 

entity. While this structure can be good for querying as it allows constant-time lookup of both 

subject entities and relationships, it should be noted that it is not optimal in terms of memory 

performance/locality and the nested mappings in particular will probably suffer in terms of cache 

performance. 

 When adding relations to a knowledge graph, pre-trained gloVe word embeddings are 

utilized to eliminate redundant information via the cosine similarity measure. Recall that word 

embeddings are designed to project your word representations onto a vector space where 

representations for similar words lie near each other. By “similar”, what we really mean is that 

two words have a tendency to be associated with common words. For instance, we can tell the 

words “laptop” and “desktop” are similar not based on knowledge of their meaning, but by the 

fact that in the training data both “laptop” and “desktop” had a strong tendency to be near words 

such as “typing”, “websurfing”, “computer”, etc. Exploiting this property for the tokens in the 

entity spans allows us to remove relations that might mean the same thing but use different 

phraseology. The algorithm for adding these relations is shown in Algorithm 1. 
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A cutoff total relation similarity score of 0.8 seems to work well in practice. This seems a 

bit high, but this is because all relations between entities will consist of at least one entity who is 

referred to by a proper noun. Since relations will always contain an entity type of either 

MALWARE or SOFTWARE, and these entities only match to the names of malware (Zeus, 

Mirai, Emotet, WannaCry, etc.) and software (Outlook, Chrome, Discord, Spotify, etc.), it is 

almost always the case that any relation that would qualify as redundant would have an entity 

whose lowercase text is an exact match with one that has already been seen. It is also somewhat 

necessary as software/malware whose name has not been seen before will most likely not have 
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pre-trained embeddings present in the embedding table). This does carry the caveat that some 

software that is occasionally referred to with the creator’s name attached (for instance “Google 

Chrome” vs. “Chrome”) will not have an exact match although the two spans may refer to the 

same piece of software; however, in practice it seems that software of this criterion (Photoshop 

& Adobe Photoshop, Excel & Microsoft Excel, etc.) tends to be popular enough that both the 

software names and creator names are present in the pre-trained embedding table so it is sort of a 

non-issue. The total similarity of two relations is comprised of the average similarity scores 

between the individual entity spans. If we define the relation triplets as 𝑟𝑒𝑙𝐴,𝐵 = (𝐴, 𝑟𝑐𝑖 , 𝐵) where 

𝐴 is the subject entity span, 𝐵 is the object entity span, and 𝑟𝑐𝑖 is the relation class that binds the 

entities, then the relationship between another relation 𝑟𝑒𝑙𝐶,𝐷 = (𝐶, 𝑟𝑐𝑗 , 𝐷) is computed as: 

relation_similarity(𝑟𝑒𝑙𝐴,𝐵, 𝑟𝑒𝑙𝐶,𝐷) =
ent_similarity(𝐴, 𝐶) + ent_similarity(𝐵, 𝐷)

2
 

ent_similarity(𝑋, 𝑌) =

{
 

 
 1 if 𝑋𝑙𝑜𝑤𝑒𝑟𝑐𝑎𝑠𝑒 = 𝑌𝑙𝑜𝑤𝑒𝑟𝑐𝑎𝑠𝑒
∑𝑥𝑖 ∙ ∑ 𝑦𝑗

√∑𝑥𝑖
2√∑𝑦𝑗

2

 otherwise  

where 𝑥𝑖 and 𝑦𝑖 are the individual token vectors that may make up a multi-token entity span. 

This driving of the similarity to 1 for spans that have the same lowercase plaintext drives the 

average similarity up relatively high for potentially non-redundant relation candidates, so even if 

the other entity pair in the compared relations scores low in terms of similarity, it will still have a 

score of at least 0.5 (because the result of 
1+𝑥

2
 with 0 ≤ 𝑥 ≤ 1 is bound between [0.5,1]). This is 

why a lower relation score of say, 0.6 or 0.7 – which some might consider more reasonable at 

first glance – is not used. 
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Chapter 5 – Evaluation Results 

5.1 - Dataset 

 For the NER component of the pipeline, a total of 2,324 new cyber security entity 

examples were labelled using the Prodigy annotation tool. This set of new cybersecurity entities 

consists of the MALWARE, MALWTYPE, SOFTWARE, SOFTWTYPE, ATTACKTYPE, 

DEVICE, DATA, VULNERABILITY, and VERSION entity classes. The text samples were 

selected from news articles concerning different types of specific malware that was breaking at 

the time. These text samples were gathered by extracting top news articles under the “News” 

section of Google search for prolific malware strains such as Zeus, Emotet, Mirai, etc. The 

articles themselves were split into chunks, typically dictated by the paragraph separations in the 

original publication. This is to compensate for the 128-token span that the transformer 

component of the NER pipeline can process. Since transfer learning was leveraged with a pre-

trained transformer model, it was imperative that the labelled dataset not exclude labels for the 

classes the original model was trained to detect. If not, the model risks lower performance as 

well as the fact that it will begin to “forget” the original labels it was trained to predict. 

Preserving the previous labelling functionality is cheap (simply pre-annotate the corpus using the 

pre-trained model) and allows for more information to be extracted in the future – such as 

relation types that involve non-cybersecurity specific entities. The entities are processed using 

the BILOU (Beginning, Inside and Last tokens of multi-token chunks, Unit-length chunks and 

Outside) tagging scheme, where every individual token is given a specific tag, with special 

“beginning” (B-TAG), “inside” (I-TAG), and “last” (L-TAG) entity tags reserved for handling 

multi-token entity spans and a “unary” (U-TAG) tag for single-token entity spans. Tokens which 

are not part of an entity span simply receive the label “O” for “outside”. Take the sentence 
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“Microsoft Office 365 is vulnerable to buffer overflow attacks from the virus”. With this tagging 

scheme it would be labelled as: (Microsoft (B-SOFTWARE), Office (I-SOFTWARE), 365 (L-

SOFTWARE), is (O), vulnerable (O), to (O), buffer (B-ATTACKTYPE), overflow (L-

ATTACKTYPE), attacks (O), from (O), the (O), virus (U-MALWTYPE)).  

Entity Class Count 

MALWARE 571 

MALWTYPE 368 

DEVICE 342 

SOFTWARE 302 

SOFTWTYPE 277 

DATA 257 

VULNERABILITY 98 

ATTACKTYPE 80 

VERSION 29 

 

Table 1: Counts for different entity types in labelled corpus 

 The relation extraction data has considerably less training examples than the NER data. 

In total, there are 670 relation examples across four relationship classes. These relations were 

labelled on the same text that was used for training the NER component, since the entities need 

to be identified for labelling the relationships anyway. This is why there are significantly less 

training instances in comparison – because relation instances are considerably less common in 

article text than entities themselves. This is to be expected, seeing as that every relation will 

involve at least two entities but there are plenty of instances of multiple entities that do not form 

a relation. The four relation classes, IS_MALWTYPE, EXPOSES, INFECTS, and 

VULNERABLE_TO, were chosen because there seemed to be a decent balance between their 

utility to a potential analyst and their frequency in malware article text. 
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Relation Class Count 

IS_MALWTYPE 225 

EXPOSES 176 

INFECTS 172 

VULNERABLE_TO 97 

 

Table 2: Counts for different entity types in labelled corpus 

5.2 – NER Results 

Metric Score 

F-Score 81.85% 

Precision 78.42% 

Recall 85.59% 

Table 3: Scoring metrics and results for NER evaluation 

 The NER component of the pipeline achieved decent results, especially for such a limited 

training dataset, with a final F-score of 82% on the test set. The formulation for precision, recall, 

and F-score for the NER component are as follows (only exact matches considered correct, 

partially correctly predicted entity spans are given no credit): 

Precision =
# of correctly predicted entities

# of predicted entities
 

Recall =
# of correctly predicted entities

# of actual entities in data
 

F-Score = 2 ∙
Precision ∙ Recall

Precision + Recall
 

The train-validation-test split for the custom-annotated NER corpus was 70% - 20% - 10%.  

During training, the corpus data was shuffled and processed as minibatches of size 128. Adaptive 

moment estimation (Adam) [38] optimization was used when performing gradient descent along 
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with L2 regularization with a term of 0.01 to lower the model complexity and reduce overfitting. 

An initial learning rate of 5e-5 was used, and the model took 225 epochs to converge. 

 

 

 

Figure 7: Separate text sequences labelled by the NER component 

 Figure 7 shows some pieces of example text after being processed by the NER 

component. Since transfer learning was leveraged in the training of the model, it still detects and 

identifies the general, non-cybersecurity related entities that it was initially trained on such as 

ORG, DATE, GPE, etc. This extra functionality could be leveraged later on to extract even more 

meaningful relations from the text, concerning relations that are not limited to occurring between 

two cybersecurity-related entity classes. When annotating, it was decided that entity mentions 

who do not necessarily correspond to a concrete entity should also be labelled as to maximize the 

amount of potential information extracted. For example, in the third snippet from Figure 7, we 

can see that the model labelled the “private data” span as DATA. While this span does not refer 
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to a specific instance of a kind of data (password, banking pin, medical records, etc.) it still 

conveys some level of information to the reader. Just knowing the malware exposes some level 

of private data may be useful to an analyst – at the very least, it is more useful than no relation at 

all. 

5.3 - Relation Extraction Results 

Metric Score 

F-Score 61.68% 

Precision 63.46% 

Recall 60% 

Table 4: Scoring metrics and results for relation extraction evaluation 

 The relation extraction portion of the pipeline does not achieve great performance, 

though for the limited data it was trained on it is still significant. After ten separate training 

sessions, the best model achieved an F-score of  62%. Again, the train-validation-test split was 

70% - 20% - 10%, and the model took 112 training epochs to converge. Adam optimization was 

used for stochastic gradient descent with an L2 regularization term of 0.01 and a learning rate of 

5e-5. The transformer portion of this component had some hyperparameters modified from the 

transformer component in the NER component – namely the span length that the transformer 

attends to at a time. Instead of having a maximum token length of 128, it was increased to 300. 

This is to allow for longer distances between entity spans that might be related. The formulation 

of precision, recall, and F-score in the context of the relation extraction are the same as in the 

NER component, only considering predicted relations instead of entity classes. 

 Figure 8A shows relations extracted from ten articles revolving around the new ZuoRAT 

malware. While there are a number of relations that are not quite correct, there is still a 
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significant amount of useful, correct information extracted. At first glance, we can see there is a 

disconnected component of the knowledge graph consisting of one relation: “MIPS INFECTS 

distributed denial-of-service attacks” – this is essentially nonsense, as MIPS is an instruction set 

architecture for processors, and distributed denial-of-service attacks are certainly not computing 

entities which a malware could potentially infect. Local Area Networks (LANs) are probably 

also not vulnerable to Domain Name Systems (DNSs) as indicated by the graph either. Many of 

the incorrect relation labelings involve the VULNERABLE_TO class, which is reasonable 

because this class ended up being pretty underrepresented in the training data. These relations 

also tend to be a lot more nuanced to infer from the text, compared to something like 

IS_MALWTYPE. Typically, a MALWTYPE entity is mentioned in close proximity to the name 

of the actual malware, many times even directly adjacent as these entities are often used as 

descriptors when introducing the malware (i.e., “The new ZCryptor ransomware…”, “Dubbed 

CloudExe, this new botnet…”). In general, the IS_MALWTYPE and EXPOSES relation classes 

seemed to be more easily inferable from the raw text than the others (less variation in the 

sentence structures, etc.) and the model also seems to perform a bit better on them. Some of the 

relations can also be somewhat vague – as in, they do not provide much specific information or 

even provide information that is very obvious. For instance, take the relations from Figure 8A 

which read “ZuoRAT INFECTS systems” or “ZuoRAT EXPOSES other info”. While true, these 

relations do not offer much in terms of useful information because they are either too vague to be 

useful or trivially obvious.  

 There are also a number of useful relations extracted as well. From the graph we can see 

that ZuoRAT is a remote access trojan (RAT), and this is true. Coincidentally, the malware type 

happens to be a part of the name, however the model is ignorant to this fact when predicting and 
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it thusly has no effect.  We can also see that ZuoRAT infects small office/home office (SOHO) 

routers, along with another similar malware that was mentioned called VPNFilter. Even broader 

than that, ZuoRAT infects Internet of Things (IoT) devices along with the Mirai malware strain. 

Specifically, the graph indicates that ZuoRAT infects a specific type of router, the JCG-Q20. We 

can also see that the malware exposes the following information: routing tables, HTTP traffic, 

DNS information, IP addresses, and some sort of credentials. The reason the “DNS” entity does 

not contain the specifier “traffic” is because the unstructured text it was extracted from was of 

the form “…DNS and HTTP traffic…”. Had the text instead looked like “…DNS traffic and 

HTTP traffic…” each entity would contain the specifier. 
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Figure 8A: Relations extracted from 10 articles about the ZuoRAT malware strain (redundancies 

filtered out) 
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Figure 8B: Relations extracted from ZuoRAT articles (redundancies not filtered out) 

 

5.4 - Knowledge Graph Merging Results 

 The relational similarity measure seems to be relatively effective at reducing clutter in 

aggregated knowledge graphs, with experimentation even showing that redundant information is 

pretty plentiful in single articles, let alone collections of articles speaking on the same malware. 

The knowledge graphs from Figures 8A & 8B, generated from ten separate news articles 

concerning the ZuoRAT malware, showed a reduction of 27% in the number of relation triples 
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after using the filtering technique. Below are some images of generated knowledge graphs for 

two recent articles on the Emotet malware: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9A: Knowledge graph for 

article X concerning recent malware 

Emotet generated without redundancy 

removal 
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Figure 9B: Knowledge 

graph also for article X, 

this time generated with 

redundancies filtered out 

Figure 9C: Knowledge 

graph for another article, 

Y, concerning recent 

malware Emotet generated 

without redundancy 

filtering 
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Figure 9D: Knowledge 

graph for article Y generated 

with redundancy filtering 

Figure 9E: knowledge graph 

for merged articles X & Y 

used in Figures 9A & 9C 

without redundancy 

removals 
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 Figures 9A-9F above show a demonstrations of generated knowledge graphs and the 

results of redundancy removals when creating/merging them. In the end, we see a reduction of 

40% in the number of relations in the final merged knowledge graph when using redundancy 

filtering versus without it. Something that might stick out about these smaller knowledge graphs 

is that they contain a central node from which all other nodes are immediately adjacent. This is 

not so unusual, as these are both generated from articles that talk specifically about the re-

outbreak of the Emotet malware in June of 2022, and the vast majority of relations are centered 

around specific malware (i.e., they will contain an entity of type MALWARE as either the 

subject or object). This is the case for many articles pertaining to a single piece of malware (of 

which, most of the training corpora consisted of). We can also see that different SOFTWARE 

entity spans that refer to the same piece of software in the same relation do not break the 

similarity mechanism (assuming they have pre-trained embeddings) as the relation “Emotet 

Figure 9F: knowledge 

graph for merged articles 

X & Y used in Figures 

9A & 9C with 

redundancy removals 
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INFECTS Google Chrome” was never added since “Emotet INFECTS Chrome” was present in 

the other article. In hindsight, it may have been more reasonable to label “Google” as an 

organization and only “Chrome” as the software, which would mitigate this potential for 

misinterpretation. The first article also contained a relation “Emotet EXPOSES payment card 

information” while the second contained the relation “Emotet EXPOSES credit card 

information” which was filtered out due to the fact that, while phrased differently, they convey 

the same information. 

 It is a common trend as well that articles themselves contain repeated information, so the 

application of the relation merging algorithm is also useful when looking at single instances of a 

document. For example, article X refers to the Emotet malware as both a “trojan” as well as a 

“banking trojan”. The addition of the fact that it is a banking trojan does not differ enough to be 

relevant, but we can see that in the second article the malware was described (and labelled as) an 

“advanced, self-propagating and modular trojan”. This conveys enough difference in meaning to 

be ruled as semantically different from a “banking trojan”. This is desirable, as a “banking 

trojan” does not indicate that the trojan itself is modular or, more importantly, self-propagating – 

so this is information you would probably want to know and not have filtered out. Another thing 

to notice is that, while “Emotet EXPOSES credit card information” and “Emotet 

IS_MALWTYPE credit card stealer” seem to represent the same information (that Emotet wants 

your credit card information) but are not filtered out. This is because relations are only 

considered for redundancy against each other if they are of the same relation class.  
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Chapter 6 – Conclusion and Future Work 

Transformer-based neural architectures prove to be a relatively effective way to train 

domain-specific NER and relation extraction language models. They are able to achieve useful 

results on complex sequence prediction tasks with a fairly insignificant amount of training data 

from which to learn, while still using less complex supervised techniques. After running 

unstructured text through a transformer-powered information extraction pipeline, pre-trained 

static word vectors generated via the gloVe technique are also shown to be reliable when it 

comes to removing redundant information from knowledge graphs.  

 In the future, work can be done to expand the entity types to encompass more 

cybersecurity-related concepts such as files, software components, protocols, etc. though this 

expanded entity set would undoubtedly require a larger and more robust text corpus for labelling 

if using the supervised training techniques used in this paper. Even with close to one thousand 

paragraphs of real article text, some of the entity types such as ATTACKTYPE and VERSION 

still did not have enough labelled instances for the model to learn to tag them effectively. 

Expanding the training corpus to a wider range of text material such as tweets or NIST NVD 

entries may also compensate for the lack of certain entity types – for example NIST NVD entries 

tend to contain many instances of version numbers. 

 Unsupervised or semi-supervised relation extraction techniques could also be leveraged 

to lessen the annotator’s burden. Since annotating things like entity spans and relations are 

somewhat complex compared to a number of other annotation tasks (for example, image 

classification labelling) this is paramount. Livio et al. [39] have proposed non-fully-supervised 

training techniques (both semi-supervised and unsupervised) for general relation extraction – if 

applied successfully to this domain-specific task they could streamline the process greatly.  
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The redundancy filtering technique could also be expanded upon. In this work, static 

word vectors which are not context sensitive are used to measure similarity between relations. 

While this yields usable results, it may be possible to improve the effectiveness by using learned 

context-sensitive embeddings. For instance, if you have a “charging bank” device entity, and a 

“bank credentials” data entity, the static word embedding for “bank” in both instances would be 

exactly the same even though they refer to entirely different things. 
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