
University of Arkansas, Fayetteville University of Arkansas, Fayetteville

ScholarWorks@UARK ScholarWorks@UARK

Graduate Theses and Dissertations

8-2022

Effective Knowledge Graph Aggregation for Malware-Related Effective Knowledge Graph Aggregation for Malware-Related

Cybersecurity Text Cybersecurity Text

Phillip Ryan Boudreau
University of Arkansas, Fayetteville

Follow this and additional works at: https://scholarworks.uark.edu/etd

 Part of the Information Security Commons, and the Programming Languages and Compilers

Commons

Citation Citation
Boudreau, P. R. (2022). Effective Knowledge Graph Aggregation for Malware-Related Cybersecurity Text.
Graduate Theses and Dissertations Retrieved from https://scholarworks.uark.edu/etd/4604

This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion
in Graduate Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more
information, please contact scholar@uark.edu, uarepos@uark.edu.

https://scholarworks.uark.edu/
https://scholarworks.uark.edu/etd
https://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F4604&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=scholarworks.uark.edu%2Fetd%2F4604&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=scholarworks.uark.edu%2Fetd%2F4604&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=scholarworks.uark.edu%2Fetd%2F4604&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/etd/4604?utm_source=scholarworks.uark.edu%2Fetd%2F4604&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu,%20uarepos@uark.edu

Effective Knowledge Graph Aggregation for Malware-Related Cybersecurity Text

A thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science in Computer Science

by

Phillip Boudreau

University of Arkansas

Bachelor of Science in Computer Science, 2020

August 2022

University of Arkansas

This thesis is approved for recommendation to the Graduate Council.

Qinghua Li, Ph.D.

Committee Chair

____________________________ ____________________________

Brajendra Panda, Ph.D. Dale Thompson, Ph.D.

Committee Member Committee Member

2

Abstract

 With the rate at which malware spreads in the modern age, it is extremely important that

cyber security analysts are able to extract relevant information pertaining to new and active

threats in a timely and effective manner. Having to manually read through articles and blog posts

on the internet is time consuming and usually involves sifting through much repeated

information. Knowledge graphs, a structured representation of relationship information, are an

effective way to visually condense information presented in large amounts of unstructured text

for human readers. Thusly, they are useful for sifting through the abundance of cyber security

information that is released through web-based security articles and blogs. This paper presents a

pipeline for extracting these relationships using supervised deep learning with the recent state-of-

the-art transformer-based neural architectures for sequence processing tasks. To this end, a

corpus of text from a range of prominent cybersecurity-focused media outlets was manually

annotated. An algorithm is also presented that keeps potentially redundant relationships from

being added to an existing knowledge graph, using a cosine-similarity metric on pre-trained word

embeddings.

3

Acknowledgements

I would like to thank my advisor, Dr. Qinghua Li, for providing me with the guidance needed to

see this project through.

I would also like to show my appreciation to all the committee members, who have given up

their time to help finalize this work.

Lastly, I would like to thank my family, especially my parents, for providing support and

encouragement throughout the investigation of this topic.

This work is supported in part by the National Science Foundation under Award #1751255.

4

Table of Contents

Chapter 1 - Introduction..1

Chapter 2 - Background..4

2.1 – Deep Learning..4

2.2 – Supervised Learning...5

2.3 – Named Entity Recognition...5

2.4 – Relation Extraction...6

2.5 – Word Embeddings..6

2.6 – Word2Vec...7

2.7 – Recurrent Neural Networks..9

2.8 – Long Short-Term Memory Networks...12

2.9 – Gated Recurrent Units...13

2.10 – Transformers...14

2.11 – Self-Attention..17

Chapter 3 – Related Work..21

3.1 – Overview...21

3.2 – Knowledge Graphs in Cyber Security..21

3.3 – NER..22

3.4 – Relation Extraction...22

Chapter 4 - Pipeline...24

4.1 – High-level Overview..24

4.2 – NER Pipeline..27

4.3 – Relation Extraction Pipeline...30

5

4.4 – Knowledge Graph Merging..31

Chapter 5 – Evaluation Results..35

5.1 – Dataset...35

5.2 – NER results...37

5.3 – Relation Extraction Results..39

5.4 – Knowledge Graph Merging Results...43

Chapter 6 – Conclusion and Future Work...49

Bibliography..51

6

List of Figures

Figure 1: a diagram of the recurrent neural network architecture unrolled over

time..10

Figure 2: Transformer encoder-decoder structure, image sourced from [5].................................15

Figure 3: High level overview of workflow pipeline..25

Figure 4: Step-by-step example of shift-reduction parsing on an input sentence of “Fake

AV is a trojan”...28

Figure 5: Embed, Encode, Reduce, Predict framework process outline.......................................29

Figure 6: High-level overview of relation extraction process...30

Figure 7: Separate text sequences labelled by the NER component...38

Figure 8A: Relations extracted from 10 articles about the ZuoRAT malware strain

(redundancies filtered out)..42

Figure 8B: Relations extracted from ZuoRAT articles (redundancies not filtered

out..43

Figure 9A: Knowledge graph for article X concerning recent malware Emotet generated

without redundancy removal...44

Figure 9B: Knowledge graph also for article X, this time generated with redundancies filtered

out..45

Figure 9C: Knowledge graph for another article, Y, concerning recent malware Emotet

generated without redundancy filtering...45

Figure 9D: Knowledge graph for article Y generated with redundancy

filtering..46

Figure 9E: Knowledge graph for merged articles X & Y used in Figures 11A & 11C without

redundancy removals...46

Figure 9F: Knowledge graph for merged articles X & Y used in Figures 11A & 11C with

redundancy filtering...47

7

List of Tables

Table 1: Counts for different entity types in labelled corpus..36

Table 2: Counts for different entity types in labelled corpus..37

Table 3: Scoring metrics and results for NER evaluation...37

Table 4: Scoring metrics and results for relation extraction evaluation..39

1

Chapter 1 - Introduction

For cyber security analysts, the importance of keeping up to date with information being

reported in cybersecurity-related news articles, blogs, advisories, forums, and databases cannot

be overstated, especially with the constant advent of new and increasingly vulnerable

technologies such as the Internet of Things (IoT). That is because many of them rely on these

resources as a way to stay informed about things like vulnerabilities that may (and probably will)

affect their systems, which patches to prioritize, and new threats to look out for. Large public

repositories like the National Vulnerability Database (NVD) [16] are also updated from

information extracted from such immediate sources. As such, maximizing the speed at which

information that can be extracted from these security-related media sources is paramount.

The data that exists for security analysts to find is also extremely fragmented across the

web, with different resources often reporting on different aspects of security-related news – all of

which may be of interest to the analyst at hand. This is why it is more important than ever to be

able to aggregate all of this information effectively, combining the data that is reported on by

different sources so that the analyst does not have to spend copious amounts of time pouring over

all the sources in search of a specific piece of information. It may also be the case that, while

searching for these specific snippets of information, one may have to take in and mentally filter

out a significant amount of information that has been repeated between sources.

In this work, we aim to develop an automated approach to extract cybersecurity

information from multiple sources and merge them to remove redundancy. Specifically,

transformer-based encoder models (RoBERTa) are leveraged along with transfer learning to

generate an information extraction pipeline for cybersecurity concepts consisting of Named

Entity Recognition (NER), relation extraction, then knowledge graph generation and merging.

2

Semantic triples are extracted from unstructured cybersecurity text to form knowledge graphs

that represent the relationships present amongst different classes of entities. A similarity measure

is then defined for these semantic triples so that unnecessarily repeated information can be

filtered out from the structure, saving time for analysts.

Many previous works involving these information extraction tasks are focused on

feature-based models, which induce significant costs in terms of labor as well as domain

knowledge. Complex feature engineering is required to describe the different properties of

entities, domain knowledge, entity context, and linguistic characteristics [15]. There is also a

lengthy period of trial and error involved with the process, and many feature engineering

techniques are reliant on lookup tables to identify known entities [17] which are laborious to

build and maintain because of the rate at which information evolves in the cybersecurity field.

With the speed at which cyber security-centric information is released by different outlets on the

web nowadays, manual feature extraction is simply not a viable option since the features may

need to evolve over time. Only recently, neural network-based approaches have started to see a

significant surge in the amount of attention received regarding cyber security information

extraction. Because neural networks are capable of learning useful non-linear combinations of

features, they allow researchers to sidestep the laborious process of feature generation. However,

in their vanilla form, deep neural networks are not able to capture the complex dependencies

involved in interpreting context-sensitive sequential data. This is why a specific class of neural

architecture referred to as the Recurrent Neural Network (RNN), which is designed to work

nicely with sequential data such as time series or natural language, has been leveraged

extensively in related works. Specifically, more specialized versions of the already specialized

RNN architecture such as the Long Short-Term Memory (LSTM) and Gated Recurrent Unit

3

(GRU) networks have been used as they address the primary drawbacks of the basic RNN

architecture.

Only very recently has a new architecture of neural network been developed to rival the

performance of architectures like the LSTM network, known as the transformer. It is an encoder-

decoder based model that was originally designed to be used for language translation tasks, but it

has since shown enormous capability on a wide range of other sequence-to-sequence tasks such

as text generation [17], text summarization [19], part-of-speech tagging [20], Named Entity

Recognition (NER) [21], as well as even computer vision focused tasks such as image

segmentation [18]. This thesis leverages this recent advance for tackling the considered problem.

This thesis’ contribution is summarized as follows: First, a dataset for NER and relation

extraction in malware-focused cyber security text from news articles and blogs is assembled and

manually annotated. Second, transformer-based deep learning models for both the NER and

relation extraction are trained. Third, an algorithm for selectively adding relationships to the

generated knowledge graphs so as to prevent repeated information is presented.

This thesis is organized as follows. Chapter 2 focuses on some background information

that is relevant to the paper. Chapter 3 discusses related works in the literature. Chapter 4 focuses

on the results and conclusions for this work. Chapter 4 gives an overview of the data processing

pipeline. Chapter 5 gives some detail about the evaluation and results of the methods presented.

Finally, Chapter 6 discusses the conclusions and some potential future work.

4

Chapter 2 - Background

2.1 - Deep Learning

In recent years, machine learning has become ubiquitous in research as well as more and

more pivotal to the way many different disciplines approach problems such as image

classification, recommendation systems, information retrieval, social network analysis, and so

on. Among the sea of machine learning algorithms available, deep learning has seen significant

attention due to its increased practicality. This increased practicality comes from the wide

amount of easily accessible data as well as significant advancements in different computing

hardware technologies among recent years. Ever since the mid-2000s when deep learning was

really beginning to take its foothold in the modern industrial workflow due to this newfound

computational feasibility, it has been making considerable impacts to a wide array of research

fields such as Data Science, Computer Vision, and Natural Language Processing (NLP). For

NLP in particular, many researchers are interested in extracting semantic information from

unstructured text without having to parse it via methods involving human interaction. This

domain of research includes many different types of information, though most notably for this

work, Named Entity Recognition (NER) and relation extraction.

Before the advent of deep learning, the viability of machine learning algorithms lied

heavily on the effectiveness of the data representation. If the data is not represented in such a

way that encodes the necessary information required for the algorithm to learn, then performance

can suffer greatly. Deep learning algorithms perform this feature extraction in an automated

fashion, saving a large amount of time and work for researchers. These deep neural networks are

able to form a layered representation of the feature set where low-level features are extracted by

5

the model in the beginning layers of the network, and higher-level features extracted by the later

layers.

2.2 - Supervised Learning

Supervised learning is a technique used widely within the discipline of machine learning,

especially deep learning. In the case of deep learning, this technique involves using labelled data

to train a multi-layered perceptron (MLP) model to generate outputs that correspond with the

labelled examples. More precisely, given a set of input vectors 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} and a set of

corresponding output vectors 𝑌 = {𝑦1, 𝑦2, … , 𝑦𝑛} where 𝑦𝑖 is the corresponding correct output for

input 𝑥𝑖, the model learns to generate some output �̂�𝑖 = 𝑓(𝑥𝑖) such that the value of a chosen

loss function 𝐿(𝑦𝑖, �̂�𝑖) is minimized. At each step, the network will use some backpropagation

method, usually gradient descent, to tune its parameters and find an effective local minimum on

the loss function (ideally the global minimum, but this is often not achievable in practice).

2.3 – Named Entity Recognition

Named Entity Recognition (NER) is the process of identifying which pieces of text

correspond to a given class of entity. For example, in the text “John is the owner of an MX10

speed bike”, someone may be interested in classifying “John” as a person, and “MX10 speed

bike” as a vehicle. More formally, if you have some text 𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑛} represented as an

ordered sequence of tokens, then named entity recognition is the act of identifying which

contiguous subsequences 𝑠 = {𝑡𝑖, 𝑡𝑖+1, … , 𝑡𝑗}, 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛 actually refer to some concrete

instance of an entity. This is useful for several reasons, such as identifying the prevalence of

certain product types mentioned in a dataset. The approaches toward this problem are usually

divided into two categories: rule-based and machine learning based [1]. In this work, we develop

6

an annotated corpus for NER and relation extraction in the cybersecurity domain. In addition, a

machine learning language model is trained for this task that deals specifically with

cybersecurity-related entity types.

2.4 - Relation Extraction

Relation extraction is somewhat of a downstream task from NER, as it typically involves

taking the entities extracted from the text via NER techniques and determining the relationship

between them. For example, in the previous example sentence of “John is the owner of an MX10

speed bike”, where “John” is of entity type person and “MX10 speed bike” is of entity type

vehicle, it may be of interest to be able to identify the relationship between John and the speed

bike as being “owns”. The typical human-friendly representation of these relationships is via a

structure known as the knowledge graph. In this representation, a relation is captured as a

semantic triple 𝑟 = (𝑒1, 𝑝, 𝑒2) where p is the predicate (i.e., relationship), 𝑒1 is the subject entity,

and 𝑒2 is the object entity. These triples form a directed graph where the subject and object nodes

are connected by an edge (the predicate). In this work, a dataset and pipeline are developed for

supervised relation extraction among the entities identified by the NER component. Knowledge

graphs are then generated from these relations and merged along with a similarity score metric

between triples to reduce redundancies in the graphs, making it easier for analysts to absorb

larger amounts of information more rapidly.

2.5 - Word Embeddings

 Deep learning models learn to associate inputs in a particular vector space to outputs in

another vector space. This means that, when training deep learning models on tasks involving

unstructured text, it is paramount that we can come up with a meaningful vector representation

7

for each of the different tokens that make up a document. These vectors can then be used in a

myriad of downstream NLP tasks, such as text categorization [9], parsing [10], information

retrieval [11], and named entity recognition [12].

2.6 - Word2Vec

 Somewhat surprisingly it turns out that neural networks can be leveraged to solve the

problem of generating these multi-dimensional vector representations for other downstream deep

learning tasks. This is significant because having to develop a feature set to effectively represent

the words manually is non-trivial and requires much time to be spent researching the efficacy of

different possible features. One such neural network-based method is Word2Vec [13] which

leverages shallow neural networks consisting of a single hidden layer to generate these vector

representations.

There are two main flavors when it comes to the way Word2Vec structures its inputs and

outputs. The first is a method known as Continuous Bag-of-Words (CBOW), which formulates

the problem as a many-to-one mapping problem. The idea is that, given a number of surrounding

context words for a piece of text (the number of which varies by application), we can train the

network to generate a target word given that context. For example, given the sentence “Neil

Armstrong walked on the moon”, and a CBOW span length of 5, we would split the sentence up

into 4-tuples, where the first two elements are the two preceding token encodings and the last

two are the two following token encodings for a given center token. With a CBOW span length

of 5, the previous example sentence would be split up into a set of tuples:

𝑋 = {(𝑥𝑁𝑒𝑖𝑙 , 𝑥𝐴𝑟𝑚𝑠𝑡𝑟𝑜𝑛𝑔, 𝑥𝑜𝑛, 𝑥𝑡ℎ𝑒), (𝑥𝐴𝑟𝑚𝑠𝑡𝑟𝑜𝑛𝑔, 𝑥𝑤𝑎𝑙𝑘𝑒𝑑 , 𝑥𝑡ℎ𝑒 , 𝑥𝑚𝑜𝑜𝑛)}

8

The starting encoding scheme for these word vectors can just be a one-hot encoding, where each

word in the corpus gets a unique vector component that corresponds to it – so each word will

have all 0s as every component except at the unique index that identifies it. This means that the

dimensionality of the encoding will be equivalent to the number of unique words in the corpus.

The network is then trained to predict whatever word is surrounded by the context. So, for the

first tuple above which consists of the encodings for “Neil”, “Armstrong”, “on”, and “the”, the

network is trained to predict that the output for the sum of those context encoding vectors should

represent “walked”.

 The second task formulation for this problem is referred to as the skip-gram model. This

approach is essentially equivalent the CBOW formulation but inverted. That is, instead of

supplying surrounding context words and trying to predict the middle word, the model is

supplied the middle word and is trained to predict the surrounding context words. Mikolov et al.

[13] found in practice that the CBOW formulation trains faster and better represents more

frequently appearing words while the skip-gram approach works better with smaller datasets and

is more capable of effectively representing words that appear less frequently.

 These learned embeddings can be used to calculate the similarity between two pieces of

text, as both the CBOW and skip-gram formulations leverage the cosine similarity metric in the

definitions for the conditional probabilities being maximized. For the skip-gram model, the log

probability is maximized:

1

𝑇
∑ ∑ log (𝑝(𝑤𝑡+𝑗|𝑤𝑡))

−𝑙≤𝑗≤𝑙,𝑗≠0

𝑇

𝑡=1

9

Where 𝑇 is the number of training samples, 𝑙 is the size of the context window, and 𝑝(𝑤𝑡+𝑗|𝑤𝑡)

represents the conditional probability of predicting one of the surrounding contextual words

(𝑤𝑡+𝑗) given a center word (𝑤𝑡). This conditional probability is then defined as

𝑝(𝑤𝑜𝑢𝑡|𝑤𝑖𝑛) =
exp (𝑣𝑤𝑜𝑢𝑡 ∙ 𝑣𝑤𝑖𝑛)

∑ exp (𝑣𝑤 ∙ 𝑣𝑤𝑖𝑛)
𝑊
𝑤=1

Where ∙ represents the vector dot product operation, W is the number of words in the

vocabulary, and 𝑣 & 𝑣 represent the target and context vector representations of the respective

words. Since the scoring mechanism used here is the dot product and the one-hot encodings of

the vectors are all of equal magnitude, maximizing these probabilities results in an output vector

space where words that encode similar semantic information are pointing in similar directions.

This means that the encodings can be compared via the cosine similarity metric, defined as the

normalized dot product between two vectors, to give a value that corresponds to how similar the

information represented by the words is. This is because the cosine similarity measure between

two vectors is lowest when they are orthogonal, and highest when they are parallel.

2.7 – Recurrent Neural Networks

 Deep learning approaches for problems like NER and relation extraction can be

somewhat nuanced, because generating features for token representations that accurately encode

the semantic information desired in something like unstructured text is highly dependent on the

context of the token. That is to say, the meaning held by a token is highly reliant on the tokens

that surround it. Because of this, recurrent neural networks (RNNs) were originally viewed as an

effective architecture for extracting these token representations. This is because RNNs are a type

of neural architecture that was designed to work on sequential data. Their recurrent nature makes

10

them decently suited for it since each token is passed through the network individually to

generate some hidden state, and this hidden state is used as an input back into the same network

along with the vector representing the next token. The result is that the outputs at every point

should be somewhat “aware” of the information that preceded them. Specifically, RNNs work by

taking an input as an ordered sequence of vectors 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} and learn to map these

inputs to a new sequence of “hidden states” 𝐻 = {ℎ1, ℎ2, … , ℎ𝑛} where ℎ𝑖 encodes some

information about the 𝑖th token, while also considering the context of tokens 𝑥𝑗 , 1 ≤ 𝑗 ≤ 𝑖.

Figure 1: a diagram of the recurrent neural network architecture unrolled over time

 Figure 1 shows the recurrent nature of the RNN architecture in an unrolled fashion – that

is, in the diagram above, there is only a single recurrent component, it is just that its output is fed

11

back into itself as input. So, in the diagram, each horizontal arrow represents a forward timestep.

In practice, if you have 𝑇 timesteps that you plan on backpropagating through, the recurrent

network is unrolled over time into a standard feedforward network consisting of 𝑇 duplicates of

the original network. ℎ𝑖 represents the output of the hidden layer at timestep 𝑖, 𝑥𝑖 the input at the

𝑖th timestep, and 𝑦𝑖 the output at the 𝑖th timestep. 𝑤𝑥 represents the learned weights for the input

layer, 𝑤ℎ represents the weights that are learned by the hidden layer, and 𝑏ℎ the biases for the

hidden layer. 𝑤𝑦 and 𝑏𝑦 are the weights and biases learned for the feedforward output layer. The

initial ℎ0 parameter is usually initialized as all zeros. Biases are needed so that the function

approximated by the network can be shifted by an arbitrary constant depending on the nature of

the function being approximated by the network. Assuming activation functions 𝑓ℎ and 𝑓𝑦 for the

hidden and output layers respectively, then the hidden output can be calculated as

ℎ𝑖+1 = 𝑓ℎ(𝑤𝑥𝑥𝑖 + 𝑤ℎℎ𝑖 + 𝑏ℎ)

And the output at the 𝑖th timestep is calculated as

𝑦𝑖 = 𝑓𝑦(𝑤𝑦 ∙ ℎ𝑖 + 𝑏𝑦)

Where ∙ is the dot product. The activation functions 𝑓ℎ and 𝑓𝑦 can be any of many that are

typically used in neural networks, such as the Sigmoid function (
1

1+𝑒−𝑥
), the ReLu function

(max(0, 𝑥)), or the Tanh function (
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥
). The weights learned by the network are shared

across the different timesteps. The gradient descent technique used with recurrent neural

networks is known as Backpropagation through time (BPTT) [23]. The BPTT algorithm works

by treating the network as visualized in Figure 1, unrolling it through time and minimizing an

aggregated cost which is calculated as the average of the individual costs for each time step.

12

 While this all sounds good, in practice it has been found that RNNs break down when it

comes to learning long range dependencies [3] (instances where the meaning of one token is

highly dependent on the meaning of another token that is many positions removed in the input

sequence). In particular, these long-range dependencies are hard to learn because of the

vanishing and exploding gradient problems. These vanishing/exploding gradients typically come

about when doing backpropagation through time for two main reasons. Firstly, the number of

timesteps tends to be relatively large. Felix et al. [27] show that even just 10 timesteps are too

much for a standard RNN to handle effectively. Since backpropagation is done via unrolling the

network according to the number of timesteps, these unrolled network representations tend to be

very deep. And since gradients are unstable in deep feedforward networks [24][25], you suffer

from the exact same problem in RNNs that work over a significant series of timesteps. Another

aspect of RNN architecture that increases their chances of falling victim to vanishing/exploding

gradients is that the weights are shared temporally. Since the formulation for the gradient of early

layers involves a product of the weights of later layers, using these same weights makes it much

more likely that the product (and thusly, the gradient) will either grow or shrink exponentially.

2.8 – Long Short-Term Memory Networks

Long Short-Term Memory (LSTM) networks [26] are a specific type of RNN

architecture that aims to mitigate this issue via the addition of supplementary “gates” in the

recurrent cells that attempt to maintain relevant contextual information for longer periods of

time. Typically there is a forget gate, input gate, and output gate added. The forget gate consists

of a set of weights that are trained to help decide which information should be prioritized in the

network’s memory. This means that if its outputs are all high (close to 1), then that is a strong

indication that the output for the corresponding current input is very dependent on the history of

13

the sequence (i.e., context). Conversely, if the outputs from the forget gate are mostly low, that

means that the output for the current corresponding input is probably not very dependent on the

context of preceding items in the sequence. The input gate takes the current input 𝑥𝑖 and the

previous hidden state ℎ𝑖−1 and creates an encoding (extracts features) for the current input via

the tanh neuron, then uses the second sigmoid neuron’s output to determine which information

from the previous cell state should be remembered. If the forget gate’s job is to control which

information from the past is forgotten, then the input gate’s job is to control which information

from the present should be remembered. The output gate determines what the hidden state for the

next timestep should be.

A specific type of LSTM, known as the bidirectional LSTM, tends to be used for many of

context-sensitive sequence-to-sequence tasks. They are known as “bidirectional” because they

will process a sequence of tokens in both the forward and backward directions, allowing context

to be considered from both directions in the sequence. For things like text tagging, this is

extremely important because it is often the case that the appropriate tag for some token (say, for

instance, an entity type) can only be effectively known in relation to the tokens that follow it. For

instance, if you had the sentence “Apple, the undisputed tech giant, has just unveiled a new tablet

device” – the only way to possibly know that “Apple” is referring to the company and not the

fruit is to understand it in the context of the words that follow it – namely the sequence of tokens

“the undisputed tech giant” tells us that we are not referring to the fruit.

2.9 – Gated Recurrent Units

Gated Recurrent Units (GRUs) [29] are an architecture of recursive neural network that

are conceptually similar to LSTMs but are less expensive to train as they have fewer parameters.

While they are cheaper, they still achieve comparable results to more expensive LSTM

14

implementations [30][31]. They were also designed to tackle the exploding/vanishing gradient

problem affecting sequential deep learning models. Just like LSTMs, GRUs have gate units

within the recurrent cell but they do not maintain separate cells for memory. There is no longer a

separation between the internal memory state and hidden state such as in the LSTM architecture,

since GRUs lack the output gate that transforms the final cell memory state into the hidden state

for the next timestep. This lack of a need for a cell memory state gives GRUs an advantage over

LSTMs in terms of memory requirements. The model for the GRU is also simpler than that of

the LSTM, using just two specialized gates versus three. The first gate, the update gate, simply

helps the network decide what portion of the information from previous timesteps in the hidden

state, as well as the current timestep’s input, needs to be preserved moving forward. The reset

gate is very similar to the forget gate of the LSTM model, as it is used by the network to

determine what portion of previous and current information should be forgotten.

2.10 - Transformers

 However, LSTMs and GRUs also have a couple major downfalls – firstly, they are both

still expensive to train in general. This is because of the sequential nature of the processing –

both architectures require that the first token be processed so that its information can be encoded

and used for the encoding of the next token in the sequence. This means that the process is not

inherently parallelizable. Secondly, while both are still better than a standard RNN at encoding

long-range dependencies, they are still not perfect at it. This is because LSTMs and GRUs have a

very limited notion of “attention” built in. This is the idea that, in the context of certain tokens,

information represented in the memory state for certain previous tokens is more important than

others. Since LSTMs and GRUs alike need to squash the cell memory state / hidden state down

to a fixed size, the range of their attention is extremely limited. Transformers mitigate this issue

15

via the notion of “self-attention” and their non-sequential nature [5]. Whereas RNN

architectures like LSTMs and GRUs are inherently recursive, the transformer architecture is not.

Instead of processing the text token-by-token by recursively passing its outputs back into itself,

the transformer architecture supports processing on the sequence as a whole, all at once. This

makes it parallelizable and therefore less expensive to train than equivalent RNN models. This

non-recursive property also aids it in overcoming the long-range dependency problem. Since

transformers process sequential inputs as a whole and not one-by-one, there is no longer the issue

of having to implement a memory module to encode information about surrounding tokens, as

their context-sensitive embeddings are all available at once. These are all reasons why the

transformer architecture is focused on within this work, as it is considered the state-of-the-art

approach to sequence tagging.

Figure 2: Transformer encoder-decoder structure by Vaswani et al. [5]

16

 In Figure 2, we can see a detailed description of how the transformer encoder-decoder

architecture is laid out. It begins with the inputs, which are the original tokens in the sequence

each converted to a unique representation, such as one-hot encodings. These token encodings are

then passed through an input embedding layer which generates the actual token embeddings,

which capture things like semantic similarity between tokens that represent similar things or

ideas. Some common techniques for automatic learning of these embeddings are Word2Vec and

gloVe. While these word embeddings encode things like semantic similarity well, they still lack

positional information that could be useful for models performing context-sensitive sequence-to-

sequence tasks. Whereas RNNs and even CNN models are able to make use of the order of the

sequence in the way they evaluate the inputs, transformers do not – so some positional

information is injected into the embeddings to capture it. From the original paper [5], these

positional encodings are calculated as

𝑃𝐸(𝑝𝑜𝑠,𝑖) =

{

 sin

(

 𝑝𝑜𝑠

10000
(

⌊
𝑖
2
⌋

𝑑𝑚𝑜𝑑𝑒𝑙
)

)

 if 𝑖 is even

cos

(

 𝑝𝑜𝑠

10000
(

⌊
𝑖
2
⌋

𝑑𝑚𝑜𝑑𝑒𝑙
)

)

 if 𝑖 is odd

where 𝑝𝑜𝑠 is the 0-based positional index, 𝑖 is the individual dimension, and 𝑑𝑚𝑜𝑑𝑒𝑙 is a model

hyperparameter representing the dimensionality of the inputs and outputs – it is chosen to be 512

in the base architecture. This means that each component of the generated positional encoding

will correspond to a unique sinusoid. The authors propose that these positional embedding are

meaningful because they allow the model to learn to consider relative positions since for any

17

fixed offset 𝑘, 𝑃𝐸𝑝𝑜𝑠+𝑘 is a linear function of 𝑃𝐸𝑝𝑜𝑠 [5]. These positional encodings are then

combined with the word embeddings via element-wise addition to create the new position-aware

word embeddings. The new position-aware embeddings are then passed through to an encoder

module stack where each encoder consists of a multi-head attention component, feedforward

component, and two normalization components. Stacking encoders simply means that the output

of the first encoder is piped forward as the input to the second encoder and so forth. The number

of encoders 𝑁𝑥 is a variable hyperparameter of the network and is also typically equal to the

number of decoders.

2.11 - Self-Attention

 A key component of the model architecture is the multi-head self-attention mechanism.

As previously mentioned, the high-level goal of self-attention is to determine which tokens in the

input sequence carry more relevant information when trying to predict an output for some other

token. Multi-head attention is just the idea of having multiple layers that perform this attention

task in parallel. For an input sequence of 𝑁𝑡𝑜𝑘 tokens, the encoder unit takes in a matrix of shape

𝑁𝑡𝑜𝑘 × 𝑑𝑚𝑜𝑑𝑒𝑙 and each attention head in the multi-head attention portion has output shape

𝑁𝑡𝑜𝑘 ×
𝑑𝑚𝑜𝑑𝑒𝑙

𝑁ℎ𝑒𝑎𝑑𝑠
 (where 𝑁ℎ𝑒𝑎𝑑𝑠 is the number of attention heads). This is because the output of all

the individual attention heads will be concatenated across the second axis so that the final output

of the multi-head attention component will be back to the original input shape it received,

𝑁𝑡𝑜𝑘 × 𝑑𝑚𝑜𝑑𝑒𝑙.

 The individual attention layers themselves are concerned with learning three sets of

weights: 𝑊𝑄, 𝑊𝐾, and 𝑊𝑉. These weights correspond to the query, key, and value vectors (each

with 𝑑𝑞, 𝑑𝑘, and 𝑑𝑣 components, respectively) learned for each element in the input sequence by

18

the individual attention heads. The idea is that the attention mechanism resembles a sort of

lookup where you have a query and a set of key-value pairs that you map to an output. The query

can be thought of as the information being searched for, the key how relevant some information

is to the query, and the value the actual potential result for the query. This mapping from a query

and set of key-value pairs to the output comprises the attention function. More formally, this

mapping is computed as

Attention(𝑄, 𝐾, 𝑉) = softmax (
𝑄𝐾𝑇

√𝑑𝑘
)𝑉

Where 𝑄, 𝐾, and 𝑉 are matrices that simply pack up the query, key, and value vectors for each of

the input embeddings. Thus, their respective dimensions are 𝑁𝑡𝑜𝑘 × 𝑑𝑞, 𝑁𝑡𝑜𝑘 × 𝑑𝑘, and

𝑁𝑡𝑜𝑘 × 𝑑𝑣. The 𝑄𝐾𝑇 operation generates a new matrix where each row represents the relevance

of every other value in the sequence for a particular query. This requires that 𝑑𝑞 = 𝑑𝑘. The scalar

division by √𝑑𝑘 then helps to prevent the individual dot products calculated in 𝑄𝐾𝑇 from

blowing up as 𝑑𝑘 increases. Passing the result through the softmax function then serves to

normalize each of the row vectors. Finally, multiplying the result matrix that comes out of

softmax by 𝑉 gives us a weighted average of the value vectors, signifying which ones have more

effect on the output.

 The “Add & Norm” layer that follows the multi-head attention layer and feedforward

layer in the encoders consists of a residual connection which performs element-wise addition on

the output of the layer with the input of the layer followed by layer normalization [32]. These

steps simply comprise some computational strategies designed to improve the convergence time

of the model. After this first normalization in the encoder the data is passed along through a

19

standard feedforward network consisting of a single hidden layer, using ReLu activation. In the

base architecture, 2048 neurons are used for the hidden layer, while input and output dimensions

remain the same (𝑑𝑚𝑜𝑑𝑒𝑙). This output is then normalized again, same as the output from the

multi-head attention layer.

 The decoder portion of the architecture (the right portion of Figure 2) is relatively similar

to the encoder portion, with the addition of a masked multi-head attention layer at the beginning.

The decoder’s job is to generate the output sequence given the intermediate representation of the

input that was generated by the encoder portion. This means the decoder also uses the output of

the encoder as an input – specifically, to its non-masked multi-head attention mechanism (which

works in the same fashion as the multi-head attention mechanism in the encoder). The decoder is

autoregressive, meaning that it predicts the output token by token and uses its previous outputs as

inputs. This autoregressive property means that the decoder is not inherently parallelizable –

though while doing supervised training, there is a commonly used process for training sequence-

to-sequence models known as “teacher forcing” [33] which allows the decoder to be trained via

the previous ground truth output for each timestep instead of having to condition itself in an

autoregressive fashion, which allows for parallelization (though this only applies to the training

process – generating outputs for general use is still inherently sequential and thusly non-

parallelizable). This autoregressive property is also the reason for the “masking” in the first

multi-head attention layer in the decoder. Since it is trained to generate the output sequence

token by token, it needs to learn not to pay attention to future tokens. This masking process is

exactly that – it prevents the attention mechanism from computing attention scores for future

tokens in the output sequence. In particular, each of these attention scores for future tokens is

driven to 0 by the mask. Another caveat of this autoregressive property is that the output

20

sequence must be shifted right by one position, prepending/appending start and end tags to the

output sequence so that the model has a previous input for the first token (the start tag).

 After passing through the masked multi-head attention layer and then normalization, this

output is plugged into another (non-masked) multi-head attention component as the values, and

the encoder output is plugged in as the queries and keys. This allows the decoder to learn which

portions of the encoder’s output to be attentive to. Then, after the data passes through this second

multi-head attention layer in the decoder, it is piped through a linear layer which acts a classifier,

and then a softmax layer to map this classification to a probability distribution. The token

associated with the index of the highest probability component of the output is the token being

predicted by the model.

21

Chapter 3 – Related Work

3.1 – Overview

 The topic of information extraction in cybersecurity-related text is certainly not one that

has not seen its fair share of attention. LSTMs have been used extensively for the detection and

extraction of cybersecurity concepts in documents - Gasmi et al. [14] showed that LSTMs alone

can be used effectively extract cybersecurity information from cybersecurity-related text, and

Jiang et al. [6] showed that bidirectional LSTM networks along with conditional random fields

could be used to effectively extract cybersecurity-related concepts and entities from a

cybersecurity-focused document corpus.

3.2 - Knowledge Graphs in Cybersecurity

 To build a cybersecurity knowledge graph (CKG), one must first establish an ontology

that encapsulates the different concepts and relationships that are meant to be analyzed. A

cybersecurity ontology generally consists of a set of cybersecurity-related classes along with

their attributes as well as the potential relationships that exist between the classes. Iannacone et

al. [40] developed the “Situation and Threat Understanding by Correlation Contextual

Observations” (STUCCO) ontology for CKGs which incorporates data from a myriad of both

structured and unstructured data resources so as to represent all the relevant cybersecurity

concepts within. Syed et al. [41] extended works like STUCCO with the Unified Cybersecurity

Ontology (UCO) which also encapsulates the core concepts and relationships other important

cybersecurity resources like Common Vulnerabilities and Exposures (CVE), Common

Vulnerability Scoring System (CVSS), and others as well as STUCCO. Importantly, it also

conforms with the STIX [42] ontology, which is a popular community-driven project whose aim

22

is to generate a structured language to represent cybersecurity threats. Cybertwitter [43] uses

cybersecurity knowledge graphs to reason about cybersecurity-related content on Twitter and

inform analysts about potential threats in real time.

3.3 - NER

 In the NLP domain, approaches to NER tagging problems fall under two main categories:

machine-learning based and rule-based. Machine-learning based methods are those that concern

themselves with the statistical relationships amongst the relevant data, while rule-based methods

typically consist of manually designed dictionary lookups or pattern-matching rules that have to

be derived by hand from a domain expert. Machine learning approaches typically involved

techniques such as Perceptrons [51], Support Vector Machines [52], and Hidden Markov Models

(HMMs) [53], but recently Conditional Random Field (CRF) and neural-based approaches have

shown the most promise. To this effect, both Gasmi et al. [8] and Jiang et al. [6] show that

bidirectional LSTMs that feed into a CRF classifiers are a very effective approach to

cybersecurity-specific NER, beating out the previous state-of-the-art approach which was to just

use CRFs.

3.4 - Relation Extraction

 Models for relation extraction generally approach the problem from two different

perspectives: binary classification and multi-class classification. A binary classifier takes a

representation for two entities and its goal is to predict whether or not some specific relation

holds. In multi-class classification, however, two entity representations go in and the model

attempts to predict which of many possible relations hold [45]. The quality of generated

knowledge graphs is entirely dependent on the quality of the semantic triples which make them

23

up. The main problem that many relation extraction systems face is the lack of adequate training

data. This is because, while at first glance annotating relationships between entities in a corpus

may seem trivial, it quickly becomes bogged down with vague or ambiguous instances where the

correct labelling decision is not clear. This is why many group annotation efforts for relation

extraction end up with a large amount of inner-annotator disagreement [44].

 In terms of machine learning approaches to the relation extraction task, they fall into

three categories: supervised, semi-supervised, and unsupervised. Zhao et al. [46] explore kernel-

based methods for supervised relation extraction while Kambhatla et al. [47] investigate feature-

driven methods. Pingle et al. [50] perform relation extraction on cybersecurity text based on the

UCO ontology by using feed-forward neural networks as classifiers on Word2Vec encodings of

words. Semi-supervised methods are investigated by Yarowsky [48] and Blum et al. [49]. Blum

et al. use a technique called co-training, where a small set of labelled data and a large set of

unlabeled data represented with disjoint feature sets are used in tandem to learn the task.

Yarowsky [48] trains a classifier on a small set of seed examples, and then uses that semi-trained

model to label a larger unlabeled dataset – only paying heed to predictions where the model is

highly confident. The simple set of steps is then repeated until the convergence criteria is met,

with the set of labeled seeds growing every iteration and the set of unlabeled entries conversely

shrinking. On the unsupervised side of the spectrum, Elsahar et al. [49] use state-of-the-art

clustering algorithms to perform relation clustering without the need for any labelled data.

24

Chapter 4 - Pipeline

4.1 – High-level Overview

Our method aims to generate optimized knowledge graphs from malware-focused cyber

security news articles and blog posts. The text used to train the model were taken from articles

from various media outlets reporting on prominent malware strains. These were found by simply

taking the names of popular malware then searching for them on Google News, extracting text

from various articles located on the first five pages of the results. Lengthier articles containing

more relevant information for the scope of this approach were prioritized so as to have enough

labelled entries. Since having to read all the text from the articles would be tedious and time-

consuming, relationships between cyber security-related entities are extracted. The fact that

many of these malware articles contain repeated information is an issue, so an algorithm for

preventing relationships representing already-seen information from being inserted into

knowledge graphs is used to reduce their size. Thus, knowledge graphs can be generated for

multiple articles and merged, with the output not being cluttered by repeated information.

25

Figure 3: High level pipeline architecture

Figure 3 shows the high-level information flow for the pipeline presented in this paper.

First, a corpus of text consisting of articles from multiple high-profile media sources such as

cybersecurity-related news articles and blogs is assembled. This manually annotated corpus is

used to train the separate NER and relation extraction models. Once the models have been

trained, unstructured text can be passed into the NER component to have entities extracted. The

NER component uses transfer learning because it allows us to exploit the rich model weights

learned on a similar task with much more training data, since the manually labelled corpus

created for this work is limited in size. As the model was trained on a similar task, these weights

can then just be fine-tuned to our needs, which decreases convergence time as compared to

starting with random weights. The eventual set of identified cyber-security entity tags consists of

the following: MALWARE, MALWTYPE (malware type), SOFTWARE, SOFTWTYPE

(software type), VULNERABILITY, ATTACKTYPE, DEVICE, DATA, and VERSION. Since

transfer learning is leveraged on a pre-trained model with rich learned weights at the start, other

26

non-domain specific entity tags such as LOC (location), PER (person), GPE (geopolitical entity),

etc. are also present in the training corpus. Specifically, the pre-trained model is trained to

recognize all of the entity tags present in the OntoNotes [34] NER dataset. Once these entities

are tagged in the input text, the relation extraction component attempts to identify the

relationships between them.

The four relation classes trained to predict are IS_MALWTYPE, EXPOSES, INFECTS,

and VULNERABLE_TO. The focus of the IS_MALWTYPE relation class is to help users

identify what high-level classification of the malware falls under. Is it a worm, a piece of

ransomware, spyware, or a keylogger? Each of these groups, while broad in scope, may be useful

when first encountering a new strain of malware to gauge its general capabilities. The

EXPOSES class is meant to label relationships that involve some type of data being accessed by

a specific malware. The INFECTS relation class represents a connection between a malware and

software or device entity, but the name should not be taken too literally. If a piece of malware

“infects” some software in this context, that only means that it uses that software as part of its

attack vector. And if a piece of malware “infects” a device entity, that simply means that the

malware functions on that device. Finally, VULNERABLE_TO is named pretty literally – it is

meant to be a relationship between a software entity and a vulnerability entity that shows the

software is vulnerable to that specific vulnerability. On top of being the least frequently

occurring relations in the training data, the INFECTS and VULNERABLE_TO relation classes

are also the only classes who are capable of consisting of variable entity types. A relation like

IS_MALWTYPE is always between a MALWARE subject entity and a MALWTYPE object

entity, which is likely easier for the model to understand. On the other hand, a relation class like

INFECTS is sometimes binds a MALWARE subject and SOFTWARE object but also

27

sometimes binds a MALWARE subject with a DEVICE object. In hindsight, these separate

relations are probably better served as separate relation classes.

After these relationships are extracted, they are converted into semantic triples to form

knowledge graphs and then relations are aggregated, with common information being filtered out

via word embedding similarity scores. The dataset was annotated using Prodigy [52], and the

NER & relation extraction pipelines were implemented using the spaCy [53] and Thinc libraries

[54].

4.2 - NER Pipeline

 The NER component of the pipeline consists of two main pieces – a RoBERTa encoder

mechanism that feeds into a transition-based incremental parser model for the actual entity span

tagging. In this context, the model being transition-based means that the objective task is to learn

to map a sequence of tokens to a sequence of transitions in a state machine. In this work, a shift-

reduce parser architecture is used for the entity tagging, following Lample et al. [37]. Figure 4

gives a walkthrough of the objective task from the model’s perspective. It shows an example of

shift-reduction parsing on an input sentence of “Fake AV is a trojan.” The algorithm uses an

input stack as well as a buffer to represent its internal state. The buffer begins loaded with the

words in the sequence, and the overall goal is to iteratively remove these words from the buffer

while following the correct transition actions that lead to the output containing the correct

labelled spans. The SHIFT transition moves the first item in the input buffer directly to the

internal stack. The OUT transition, on the other hand, moves the first item in the input buffer

directly into the output sequence. REDUCE is a parameterized transition, taking the predicted

entity class as input. The REDUCE transition pops and concatenates all the items on the internal

stack into a single span representation with the correct label and moves that to the output.

28

Transition Output Stack Buffer

 [] [] [Fake, AV, is, a, trojan]

SHIFT [] [Fake] [AV, is, a, trojan]

SHIFT [] [Fake, AV] [is, a, trojan]

REDUCE(MALWARE) [(Fake AV)-MALWARE] [] [is, a, trojan]

OUT [(Fake AV)-MALWARE, is] [] [a, trojan]

OUT [(Fake AV)-MALWARE, is, a] [] [trojan]

SHIFT [(Fake AV)-MALWARE, is, a] [trojan] []

REDUCE(MALWTYPE) [(Fake AV)-MALWARE, is, a, (trojan)-MALWTYPE] [] []

Figure 4: Step-by-step example of shift-reduction parsing on an input sentence of “Fake AV is a

trojan”

The pipeline follows the popular “Embed, Encode, Reduce, Predict” framework proposed

by Honnibal [36]. Figure 5 visualizes the process. The first step, “embed”, entails embedding

words in the input sequence into meaningful vector representations. These representations,

however, are not yet contextually aware, which is where the “encode” step comes in. Given a

sequence of these non-context-sensitive word embedding vectors, the goal is then to create a

matrix that encodes the contextual relationships of the different words. In such a matrix, each

row vector corresponds to the contextual meaning of a particular token to the whole sequence.

This may sound familiar, and that is because this is the general notion of attention. Traditionally,

pretrained word embeddings and attention-based Bi-LSTM/GRU models to achieve the first two

steps. The transformer-based encoder architecture (RoBERTa), however, solves both problems

in one with its multi-head attention mechanism. We just use the outputs from the augmented

transformer encoder stack as the results for the encode step. The third step, “reduce”, consists of

taking these matrices produced in the “encode” step and reducing them to a single vector to be

used in downstream prediction tasks. In this case it is done by taking the RoBERTa-encoded

token vectors and concatenating them into one large vector, then passing the large vector through

a feed-forward network to get a smaller vector representation of the state. This resultant state

vector is then finally used for the transition-based classification task. In figure 5 below, the

RoBERTa encoder component composes the encode and embed steps, while the reduce step is

29

handled by the first feedforward network and the predict step is handled by the second

feedforward network along with the softmax layer to map the outputs to a probability

distribution.

Figure 5: Embed, Encode, Reduce, Predict framework process outlined (Feedforward

Network graphic from [56])

30

4.3 - Relation Extraction Pipeline

 The relation extraction component of the pipeline

is directly downstream from the NER component. In this

work, the goal is to extract relationships between entities

that convey some sort of potentially useful information to

someone seeking information about a strain of malware.

For instance, it is useful to know that a given piece of

malware is grouped under a specific type (ransomware,

botnet, keylogger, etc.) or if it exploits a certain non-

malicious piece of software. Since relation extraction in

this context only considers relations between specific

entity classes and not general tokens, the NER component

is used to determine which candidates to check for

relations. In particular, the RoBERTa-generated token

vectors that belong to an entity span are used to generate

the relation input representations. For entities consisting of

multiple tokens, their representation is pooled by taking

the average of the constituent token vectors. To represent

the relations between entities, the entity representations are

simply concatenated. So, if we have entities 𝐸1 and 𝐸2

with corresponding representations 𝑒1 = 〈𝑥1, 𝑥2, … , 𝑥𝑛〉

and 𝐸2 = 〈𝑦1, 𝑦2, … , 𝑦𝑛〉 then we represent the potential relation candidate as 𝑟𝐸1,𝐸2 = 𝑒1⊕ 𝑒2 =

〈𝑥1, 𝑥2, … , 𝑥𝑛, 𝑦1, 𝑦2, … , 𝑦𝑛〉. However, since relations are directional (i.e., A infects B is not the

Figure 6: High-level overview of

relation extraction model

Concatenate

31

same as B infects A) a representation for both directions should be captured. Thus, for each pair

of entities 𝐸𝑖 and 𝐸𝑗 in an input span of text, relationship candidates 𝑟𝐸𝑖,𝐸𝑗 and 𝑟𝐸𝑗,𝐸𝑖 are both

generated and passed forward to the classification layer, which is a standard feedforward neural

network with a softmax output. The classification layer takes these candidate relation instances

and maps them to a probability distribution concerning the relevant relation classes:

IS_MALWTYPE, VULNERABLE_TO, EXPOSES, and INFECTS. The predicted class with the

highest probability is selected, but only if that probability is greater than 0.5. It is worth noting

that unlike the original BERT and RoBERTa models, the input texts it can process can have a

maximum token length of 300. Any token sequences longer than that are batched into sequences

of size 300 and treated independently.

4.4 - Knowledge Graph Merging

 After the relations have been extracted, they are stored in the knowledge graph data

structure. Conceptually, these knowledge graphs are simply a data structure consisting of

semantic relation triples (subject-relationship-object triples). Nodes are entities, and edges are

relationships. Knowledge graphs exist as directed graphs, where if there are two nodes 𝑢 and 𝑣

and an edge 𝑒 from 𝑢 → 𝑣, it means that the entity represented 𝑢 is related to 𝑣 by the

relationship 𝑒. In other words, the semantic relation triple (𝑢, 𝑒, 𝑣) exists inside the knowledge

graph. Implementation-wise, the knowledge graph used in this work consists of three mappings

implemented as hashtables: a map from entity plaintext (lowercase) to the corresponding Span

data structure that represents the entity span (contains information like token start and end

indices, word vector representations, etc.), a bidirectional map from spans to numerical IDs

(meaning that for any key-value pair (𝑘𝑖, 𝑣𝑖) in the mapping there exists another key-value pair

(𝑘𝑗 , 𝑣𝑗) where 𝑘𝑗 = 𝑣𝑖 and 𝑣𝑗 = 𝑘𝑖), and finally a nested adjacency map where the keys are

32

subject entity spans that map to new hashtables. Those inner hashtables consist of relation-entity

list pairs, allowing constant-time lookup for any query of a specific type of relation on a subject

entity. While this structure can be good for querying as it allows constant-time lookup of both

subject entities and relationships, it should be noted that it is not optimal in terms of memory

performance/locality and the nested mappings in particular will probably suffer in terms of cache

performance.

 When adding relations to a knowledge graph, pre-trained gloVe word embeddings are

utilized to eliminate redundant information via the cosine similarity measure. Recall that word

embeddings are designed to project your word representations onto a vector space where

representations for similar words lie near each other. By “similar”, what we really mean is that

two words have a tendency to be associated with common words. For instance, we can tell the

words “laptop” and “desktop” are similar not based on knowledge of their meaning, but by the

fact that in the training data both “laptop” and “desktop” had a strong tendency to be near words

such as “typing”, “websurfing”, “computer”, etc. Exploiting this property for the tokens in the

entity spans allows us to remove relations that might mean the same thing but use different

phraseology. The algorithm for adding these relations is shown in Algorithm 1.

33

A cutoff total relation similarity score of 0.8 seems to work well in practice. This seems a

bit high, but this is because all relations between entities will consist of at least one entity who is

referred to by a proper noun. Since relations will always contain an entity type of either

MALWARE or SOFTWARE, and these entities only match to the names of malware (Zeus,

Mirai, Emotet, WannaCry, etc.) and software (Outlook, Chrome, Discord, Spotify, etc.), it is

almost always the case that any relation that would qualify as redundant would have an entity

whose lowercase text is an exact match with one that has already been seen. It is also somewhat

necessary as software/malware whose name has not been seen before will most likely not have

34

pre-trained embeddings present in the embedding table). This does carry the caveat that some

software that is occasionally referred to with the creator’s name attached (for instance “Google

Chrome” vs. “Chrome”) will not have an exact match although the two spans may refer to the

same piece of software; however, in practice it seems that software of this criterion (Photoshop

& Adobe Photoshop, Excel & Microsoft Excel, etc.) tends to be popular enough that both the

software names and creator names are present in the pre-trained embedding table so it is sort of a

non-issue. The total similarity of two relations is comprised of the average similarity scores

between the individual entity spans. If we define the relation triplets as 𝑟𝑒𝑙𝐴,𝐵 = (𝐴, 𝑟𝑐𝑖 , 𝐵) where

𝐴 is the subject entity span, 𝐵 is the object entity span, and 𝑟𝑐𝑖 is the relation class that binds the

entities, then the relationship between another relation 𝑟𝑒𝑙𝐶,𝐷 = (𝐶, 𝑟𝑐𝑗 , 𝐷) is computed as:

relation_similarity(𝑟𝑒𝑙𝐴,𝐵, 𝑟𝑒𝑙𝐶,𝐷) =
ent_similarity(𝐴, 𝐶) + ent_similarity(𝐵, 𝐷)

2

ent_similarity(𝑋, 𝑌) =

{

 1 if 𝑋𝑙𝑜𝑤𝑒𝑟𝑐𝑎𝑠𝑒 = 𝑌𝑙𝑜𝑤𝑒𝑟𝑐𝑎𝑠𝑒
∑𝑥𝑖 ∙ ∑ 𝑦𝑗

√∑𝑥𝑖
2√∑𝑦𝑗

2

 otherwise

where 𝑥𝑖 and 𝑦𝑖 are the individual token vectors that may make up a multi-token entity span.

This driving of the similarity to 1 for spans that have the same lowercase plaintext drives the

average similarity up relatively high for potentially non-redundant relation candidates, so even if

the other entity pair in the compared relations scores low in terms of similarity, it will still have a

score of at least 0.5 (because the result of
1+𝑥

2
 with 0 ≤ 𝑥 ≤ 1 is bound between [0.5,1]). This is

why a lower relation score of say, 0.6 or 0.7 – which some might consider more reasonable at

first glance – is not used.

35

Chapter 5 – Evaluation Results

5.1 - Dataset

 For the NER component of the pipeline, a total of 2,324 new cyber security entity

examples were labelled using the Prodigy annotation tool. This set of new cybersecurity entities

consists of the MALWARE, MALWTYPE, SOFTWARE, SOFTWTYPE, ATTACKTYPE,

DEVICE, DATA, VULNERABILITY, and VERSION entity classes. The text samples were

selected from news articles concerning different types of specific malware that was breaking at

the time. These text samples were gathered by extracting top news articles under the “News”

section of Google search for prolific malware strains such as Zeus, Emotet, Mirai, etc. The

articles themselves were split into chunks, typically dictated by the paragraph separations in the

original publication. This is to compensate for the 128-token span that the transformer

component of the NER pipeline can process. Since transfer learning was leveraged with a pre-

trained transformer model, it was imperative that the labelled dataset not exclude labels for the

classes the original model was trained to detect. If not, the model risks lower performance as

well as the fact that it will begin to “forget” the original labels it was trained to predict.

Preserving the previous labelling functionality is cheap (simply pre-annotate the corpus using the

pre-trained model) and allows for more information to be extracted in the future – such as

relation types that involve non-cybersecurity specific entities. The entities are processed using

the BILOU (Beginning, Inside and Last tokens of multi-token chunks, Unit-length chunks and

Outside) tagging scheme, where every individual token is given a specific tag, with special

“beginning” (B-TAG), “inside” (I-TAG), and “last” (L-TAG) entity tags reserved for handling

multi-token entity spans and a “unary” (U-TAG) tag for single-token entity spans. Tokens which

are not part of an entity span simply receive the label “O” for “outside”. Take the sentence

36

“Microsoft Office 365 is vulnerable to buffer overflow attacks from the virus”. With this tagging

scheme it would be labelled as: (Microsoft (B-SOFTWARE), Office (I-SOFTWARE), 365 (L-

SOFTWARE), is (O), vulnerable (O), to (O), buffer (B-ATTACKTYPE), overflow (L-

ATTACKTYPE), attacks (O), from (O), the (O), virus (U-MALWTYPE)).

Entity Class Count

MALWARE 571

MALWTYPE 368

DEVICE 342

SOFTWARE 302

SOFTWTYPE 277

DATA 257

VULNERABILITY 98

ATTACKTYPE 80

VERSION 29

Table 1: Counts for different entity types in labelled corpus

 The relation extraction data has considerably less training examples than the NER data.

In total, there are 670 relation examples across four relationship classes. These relations were

labelled on the same text that was used for training the NER component, since the entities need

to be identified for labelling the relationships anyway. This is why there are significantly less

training instances in comparison – because relation instances are considerably less common in

article text than entities themselves. This is to be expected, seeing as that every relation will

involve at least two entities but there are plenty of instances of multiple entities that do not form

a relation. The four relation classes, IS_MALWTYPE, EXPOSES, INFECTS, and

VULNERABLE_TO, were chosen because there seemed to be a decent balance between their

utility to a potential analyst and their frequency in malware article text.

37

Relation Class Count

IS_MALWTYPE 225

EXPOSES 176

INFECTS 172

VULNERABLE_TO 97

Table 2: Counts for different entity types in labelled corpus

5.2 – NER Results

Metric Score

F-Score 81.85%

Precision 78.42%

Recall 85.59%

Table 3: Scoring metrics and results for NER evaluation

 The NER component of the pipeline achieved decent results, especially for such a limited

training dataset, with a final F-score of 82% on the test set. The formulation for precision, recall,

and F-score for the NER component are as follows (only exact matches considered correct,

partially correctly predicted entity spans are given no credit):

Precision =
of correctly predicted entities

of predicted entities

Recall =
of correctly predicted entities

of actual entities in data

F-Score = 2 ∙
Precision ∙ Recall

Precision + Recall

The train-validation-test split for the custom-annotated NER corpus was 70% - 20% - 10%.

During training, the corpus data was shuffled and processed as minibatches of size 128. Adaptive

moment estimation (Adam) [38] optimization was used when performing gradient descent along

38

with L2 regularization with a term of 0.01 to lower the model complexity and reduce overfitting.

An initial learning rate of 5e-5 was used, and the model took 225 epochs to converge.

Figure 7: Separate text sequences labelled by the NER component

 Figure 7 shows some pieces of example text after being processed by the NER

component. Since transfer learning was leveraged in the training of the model, it still detects and

identifies the general, non-cybersecurity related entities that it was initially trained on such as

ORG, DATE, GPE, etc. This extra functionality could be leveraged later on to extract even more

meaningful relations from the text, concerning relations that are not limited to occurring between

two cybersecurity-related entity classes. When annotating, it was decided that entity mentions

who do not necessarily correspond to a concrete entity should also be labelled as to maximize the

amount of potential information extracted. For example, in the third snippet from Figure 7, we

can see that the model labelled the “private data” span as DATA. While this span does not refer

39

to a specific instance of a kind of data (password, banking pin, medical records, etc.) it still

conveys some level of information to the reader. Just knowing the malware exposes some level

of private data may be useful to an analyst – at the very least, it is more useful than no relation at

all.

5.3 - Relation Extraction Results

Metric Score

F-Score 61.68%

Precision 63.46%

Recall 60%

Table 4: Scoring metrics and results for relation extraction evaluation

 The relation extraction portion of the pipeline does not achieve great performance,

though for the limited data it was trained on it is still significant. After ten separate training

sessions, the best model achieved an F-score of 62%. Again, the train-validation-test split was

70% - 20% - 10%, and the model took 112 training epochs to converge. Adam optimization was

used for stochastic gradient descent with an L2 regularization term of 0.01 and a learning rate of

5e-5. The transformer portion of this component had some hyperparameters modified from the

transformer component in the NER component – namely the span length that the transformer

attends to at a time. Instead of having a maximum token length of 128, it was increased to 300.

This is to allow for longer distances between entity spans that might be related. The formulation

of precision, recall, and F-score in the context of the relation extraction are the same as in the

NER component, only considering predicted relations instead of entity classes.

 Figure 8A shows relations extracted from ten articles revolving around the new ZuoRAT

malware. While there are a number of relations that are not quite correct, there is still a

40

significant amount of useful, correct information extracted. At first glance, we can see there is a

disconnected component of the knowledge graph consisting of one relation: “MIPS INFECTS

distributed denial-of-service attacks” – this is essentially nonsense, as MIPS is an instruction set

architecture for processors, and distributed denial-of-service attacks are certainly not computing

entities which a malware could potentially infect. Local Area Networks (LANs) are probably

also not vulnerable to Domain Name Systems (DNSs) as indicated by the graph either. Many of

the incorrect relation labelings involve the VULNERABLE_TO class, which is reasonable

because this class ended up being pretty underrepresented in the training data. These relations

also tend to be a lot more nuanced to infer from the text, compared to something like

IS_MALWTYPE. Typically, a MALWTYPE entity is mentioned in close proximity to the name

of the actual malware, many times even directly adjacent as these entities are often used as

descriptors when introducing the malware (i.e., “The new ZCryptor ransomware…”, “Dubbed

CloudExe, this new botnet…”). In general, the IS_MALWTYPE and EXPOSES relation classes

seemed to be more easily inferable from the raw text than the others (less variation in the

sentence structures, etc.) and the model also seems to perform a bit better on them. Some of the

relations can also be somewhat vague – as in, they do not provide much specific information or

even provide information that is very obvious. For instance, take the relations from Figure 8A

which read “ZuoRAT INFECTS systems” or “ZuoRAT EXPOSES other info”. While true, these

relations do not offer much in terms of useful information because they are either too vague to be

useful or trivially obvious.

 There are also a number of useful relations extracted as well. From the graph we can see

that ZuoRAT is a remote access trojan (RAT), and this is true. Coincidentally, the malware type

happens to be a part of the name, however the model is ignorant to this fact when predicting and

41

it thusly has no effect. We can also see that ZuoRAT infects small office/home office (SOHO)

routers, along with another similar malware that was mentioned called VPNFilter. Even broader

than that, ZuoRAT infects Internet of Things (IoT) devices along with the Mirai malware strain.

Specifically, the graph indicates that ZuoRAT infects a specific type of router, the JCG-Q20. We

can also see that the malware exposes the following information: routing tables, HTTP traffic,

DNS information, IP addresses, and some sort of credentials. The reason the “DNS” entity does

not contain the specifier “traffic” is because the unstructured text it was extracted from was of

the form “…DNS and HTTP traffic…”. Had the text instead looked like “…DNS traffic and

HTTP traffic…” each entity would contain the specifier.

42

Figure 8A: Relations extracted from 10 articles about the ZuoRAT malware strain (redundancies

filtered out)

43

Figure 8B: Relations extracted from ZuoRAT articles (redundancies not filtered out)

5.4 - Knowledge Graph Merging Results

 The relational similarity measure seems to be relatively effective at reducing clutter in

aggregated knowledge graphs, with experimentation even showing that redundant information is

pretty plentiful in single articles, let alone collections of articles speaking on the same malware.

The knowledge graphs from Figures 8A & 8B, generated from ten separate news articles

concerning the ZuoRAT malware, showed a reduction of 27% in the number of relation triples

44

after using the filtering technique. Below are some images of generated knowledge graphs for

two recent articles on the Emotet malware:

Figure 9A: Knowledge graph for

article X concerning recent malware

Emotet generated without redundancy

removal

45

Figure 9B: Knowledge

graph also for article X,

this time generated with

redundancies filtered out

Figure 9C: Knowledge

graph for another article,

Y, concerning recent

malware Emotet generated

without redundancy

filtering

46

Figure 9D: Knowledge

graph for article Y generated

with redundancy filtering

Figure 9E: knowledge graph

for merged articles X & Y

used in Figures 9A & 9C

without redundancy

removals

47

 Figures 9A-9F above show a demonstrations of generated knowledge graphs and the

results of redundancy removals when creating/merging them. In the end, we see a reduction of

40% in the number of relations in the final merged knowledge graph when using redundancy

filtering versus without it. Something that might stick out about these smaller knowledge graphs

is that they contain a central node from which all other nodes are immediately adjacent. This is

not so unusual, as these are both generated from articles that talk specifically about the re-

outbreak of the Emotet malware in June of 2022, and the vast majority of relations are centered

around specific malware (i.e., they will contain an entity of type MALWARE as either the

subject or object). This is the case for many articles pertaining to a single piece of malware (of

which, most of the training corpora consisted of). We can also see that different SOFTWARE

entity spans that refer to the same piece of software in the same relation do not break the

similarity mechanism (assuming they have pre-trained embeddings) as the relation “Emotet

Figure 9F: knowledge

graph for merged articles

X & Y used in Figures

9A & 9C with

redundancy removals

48

INFECTS Google Chrome” was never added since “Emotet INFECTS Chrome” was present in

the other article. In hindsight, it may have been more reasonable to label “Google” as an

organization and only “Chrome” as the software, which would mitigate this potential for

misinterpretation. The first article also contained a relation “Emotet EXPOSES payment card

information” while the second contained the relation “Emotet EXPOSES credit card

information” which was filtered out due to the fact that, while phrased differently, they convey

the same information.

 It is a common trend as well that articles themselves contain repeated information, so the

application of the relation merging algorithm is also useful when looking at single instances of a

document. For example, article X refers to the Emotet malware as both a “trojan” as well as a

“banking trojan”. The addition of the fact that it is a banking trojan does not differ enough to be

relevant, but we can see that in the second article the malware was described (and labelled as) an

“advanced, self-propagating and modular trojan”. This conveys enough difference in meaning to

be ruled as semantically different from a “banking trojan”. This is desirable, as a “banking

trojan” does not indicate that the trojan itself is modular or, more importantly, self-propagating –

so this is information you would probably want to know and not have filtered out. Another thing

to notice is that, while “Emotet EXPOSES credit card information” and “Emotet

IS_MALWTYPE credit card stealer” seem to represent the same information (that Emotet wants

your credit card information) but are not filtered out. This is because relations are only

considered for redundancy against each other if they are of the same relation class.

49

Chapter 6 – Conclusion and Future Work

Transformer-based neural architectures prove to be a relatively effective way to train

domain-specific NER and relation extraction language models. They are able to achieve useful

results on complex sequence prediction tasks with a fairly insignificant amount of training data

from which to learn, while still using less complex supervised techniques. After running

unstructured text through a transformer-powered information extraction pipeline, pre-trained

static word vectors generated via the gloVe technique are also shown to be reliable when it

comes to removing redundant information from knowledge graphs.

 In the future, work can be done to expand the entity types to encompass more

cybersecurity-related concepts such as files, software components, protocols, etc. though this

expanded entity set would undoubtedly require a larger and more robust text corpus for labelling

if using the supervised training techniques used in this paper. Even with close to one thousand

paragraphs of real article text, some of the entity types such as ATTACKTYPE and VERSION

still did not have enough labelled instances for the model to learn to tag them effectively.

Expanding the training corpus to a wider range of text material such as tweets or NIST NVD

entries may also compensate for the lack of certain entity types – for example NIST NVD entries

tend to contain many instances of version numbers.

 Unsupervised or semi-supervised relation extraction techniques could also be leveraged

to lessen the annotator’s burden. Since annotating things like entity spans and relations are

somewhat complex compared to a number of other annotation tasks (for example, image

classification labelling) this is paramount. Livio et al. [39] have proposed non-fully-supervised

training techniques (both semi-supervised and unsupervised) for general relation extraction – if

applied successfully to this domain-specific task they could streamline the process greatly.

50

The redundancy filtering technique could also be expanded upon. In this work, static

word vectors which are not context sensitive are used to measure similarity between relations.

While this yields usable results, it may be possible to improve the effectiveness by using learned

context-sensitive embeddings. For instance, if you have a “charging bank” device entity, and a

“bank credentials” data entity, the static word embedding for “bank” in both instances would be

exactly the same even though they refer to entirely different things.

51

Bibliography

[1] Chiticariu, L., Li, Y., & Reiss, F. (2013, October). Rule-based information extraction is dead!

long live rule-based information extraction systems!. In Proceedings of the 2013 conference on

empirical methods in natural language processing (pp. 827-832).

[2] Soomro, P. D., Kumar, S., Shaikh, A. A., & Raj, H. (2017). Bio-NER: biomedical named

entity recognition using rule-based and statistical learners. International Journal of Advanced

Computer Science and Applications, 8(12).

[3] Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies with

gradient descent is difficult. IEEE transactions on neural networks, 5(2), 157-166.

[4] Schuster, M., & Paliwal, K. K. (1997). Bidirectional recurrent neural networks. IEEE

transactions on Signal Processing, 45(11), 2673-2681.

[5] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... &

Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing

systems, 30.

[6] Ma, P., Jiang, B., Lu, Z., Li, N., & Jiang, Z. (2020). Cybersecurity named entity recognition

using bidirectional long short-term memory with conditional random fields. Tsinghua Science

and Technology, 26(3), 259-265.

[7] Gasmi, H., Laval, J., & Bouras, A. (2019). Information extraction of cybersecurity concepts:

an LSTM approach. Applied Sciences, 9(19), 3945.

[8] Gasmi, H., Bouras, A., & Laval, J. (2018). LSTM recurrent neural networks for cybersecurity

named entity recognition. ICSEA, 11, 2018.

[9] Sebastiani, F. (2002). Machine learning in automated text categorization. ACM computing

surveys (CSUR), 34(1), 1-47.

[10] Socher, R., Bauer, J., Manning, C. D., & Ng, A. Y. (2013, August). Parsing with

compositional vector grammars. In Proceedings of the 51st Annual Meeting of the Association

for Computational Linguistics (Volume 1: Long Papers) (pp. 455-465).

[11] Ganguly, D., Roy, D., Mitra, M., & Jones, G. J. (2015, August). Word embedding based

generalized language model for information retrieval. In Proceedings of the 38th international

ACM SIGIR conference on research and development in information retrieval (pp. 795-798).

[12] Turian, J., Ratinov, L., & Bengio, Y. (2010, July). Word representations: a simple and

general method for semi-supervised learning. In Proceedings of the 48th annual meeting of the

association for computational linguistics (pp. 384-394).

[13] Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word

representations in vector space. arXiv preprint arXiv:1301.3781.

[14] Gasmi, H., Laval, J., & Bouras, A. (2019, October). Cold-start cybersecurity ontology

population using information extraction with LSTM. In 2019 International Conference on Cyber

Security for Emerging Technologies (CSET) (pp. 1-6). IEEE.

52

[15] Gasmi, H., Laval, J., & Bouras, A. (2019). Information extraction of cybersecurity concepts:

an LSTM approach. Applied Sciences, 9(19), 3945.

[16] National Vulnerability Database. Available online: https://nvd.nist.gov/ (accessed on 24

July 2019).

[17] Nguyen, T.H.; Grishman, R. Event detection and domain adaptation with convolutional

neural networks.In Proceedings of the 53rd Annual Meeting of the Association for

Computational Linguistics and the 7th International Joint Conference on Natural Language

Processing, Beijing, China, 26–31 July 2015; Volume 2, pp. 365–371.

[18] Gong, L., Crego, J. M., & Senellart, J. (2019, November). Enhanced transformer model for

data-to-text generation. In Proceedings of the 3rd Workshop on Neural Generation and

Translation (pp. 148-156).

[19] Gao, Y., Zhou, M., & Metaxas, D. N. (2021, September). UTNet: a hybrid transformer

architecture for medical image segmentation. In International Conference on Medical Image

Computing and Computer-Assisted Intervention (pp. 61-71). Springer, Cham.

[20] Maksutov, A. A., Zamyatovskiy, V. I., Morozov, V. O., & Dmitriev, S. O. (2021, January).

The Transformer Neural Network Architecture for Part-of-Speech Tagging. In 2021 IEEE

Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus)

(pp. 536-540). IEEE.

[21] Yan, H., Deng, B., Li, X., & Qiu, X. (2019). TENER: adapting transformer encoder for

named entity recognition. arXiv preprint arXiv:1911.04474.

[22] Maryam M. Najafabadi, Flavio Villanustre, Taghi M. Khoshgoftaar, Naeem Seliya, Randall

Wald, and Edin Muharemagic. 2015. Deep learning applications and challenges in big data

analytics. Journal of Big Data 2, 1 (2015), 1–21

[23] Mozer, M. C. (1995). "A Focused Backpropagation Algorithm for Temporal Pattern

Recognition". In Chauvin, Y.; Rumelhart, D. (eds.). Backpropagation: Theory, architectures, and

applications. ResearchGate. Hillsdale, NJ: Lawrence Erlbaum Associates. pp. 137–169.

Retrieved 2017-08-21.

[24] Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies with

gradient descent is difficult. IEEE transactions on neural networks, 5(2), 157-166.

[25] Nielsen, M. A. (2015). Neural networks and deep learning (Vol. 25). San Francisco, CA,

USA: Determination press.

[26] Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation,

9(8), 1735-1780.

[27] Gers, F. A., Schmidhuber, J., & Cummins, F. (2000). Learning to forget: Continual

prediction with LSTM. Neural computation, 12(10), 2451-2471.

[28] J., R. T. J. (2021, September 10). LSTMs explained: A complete, technically accurate,

conceptual guide with keras. Medium. Retrieved June 26, 2022, from

https://medium.com/analytics-vidhya/lstms-explained-a-complete-technically-accurate-

conceptual-guide-with-keras-2a650327e8f2

53

[29] Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated

recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555.

[30] Shewalkar, A. (2019). Performance evaluation of deep neural networks applied to speech

recognition: RNN, LSTM and GRU. Journal of Artificial Intelligence and Soft Computing

Research, 9(4), 235-245.

[31] Fu, R., Zhang, Z., & Li, L. (2016, November). Using LSTM and GRU neural network

methods for traffic flow prediction. In 2016 31st Youth Academic Annual Conference of

Chinese Association of Automation (YAC) (pp. 324-328). IEEE.

[32] Ba, J. L., Kiros, J. R., & Hinton, G. E. (2016). Layer normalization. arXiv preprint

arXiv:1607.06450.

[33] Williams, R. J., & Zipser, D. (1989). A learning algorithm for continually running fully

recurrent neural networks. Neural computation, 1(2), 270-280.

[34] Hovy, E., Marcus, M., Palmer, M., Ramshaw, L., & Weischedel, R. (2006, June).

OntoNotes: the 90% solution. In Proceedings of the human language technology conference of

the NAACL, Companion Volume: Short Papers (pp. 57-60).

[35] George A. Miller (1995). WordNet: A Lexical Database for English. Communications of the

ACM Vol. 38, No. 11: 39-41.

[36] Matthew Honnibal. Embed, encode, attend, predict: The new deep learning formula for

state-of-the-art NLP models. Blog, Explosion, November, 10, 2016.

[37] Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., & Dyer, C. (2016). Neural

architectures for named entity recognition. arXiv preprint arXiv:1603.01360.

[38] Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980.

[39] Soares, L. B., FitzGerald, N., Ling, J., & Kwiatkowski, T. (2019). Matching the blanks:

Distributional similarity for relation learning. arXiv preprint arXiv:1906.03158.

[40] Iannacone, M., Bohn, S., Nakamura, G., Gerth, J., Huffer, K., Bridges, R., ... & Goodall, J.

(2015, April). Developing an ontology for cyber security knowledge graphs. In Proceedings of

the 10th Annual Cyber and Information Security Research Conference (pp. 1-4).

[41] Syed, Z., Padia, A., Finin, T., Mathews, L., & Joshi, A. (2016, March). UCO: A unified

cybersecurity ontology. In Workshops at the thirtieth AAAI conference on artificial intelligence.

[42] Barnum, S. (2012). Standardizing cyber threat intelligence information with the structured

threat information expression (stix). Mitre Corporation, 11, 1-22.

[43] Mittal, S., Das, P. K., Mulwad, V., Joshi, A., & Finin, T. (2016, August). Cybertwitter:

Using twitter to generate alerts for cybersecurity threats and vulnerabilities. In 2016 IEEE/ACM

International Conference on Advances in Social Networks Analysis and Mining (ASONAM)

(pp. 860-867). IEEE.

54

[44] Pawar, S., Palshikar, G. K., & Bhattacharyya, P. (2017). Relation extraction: A survey.

arXiv preprint arXiv:1712.05191.

[45] Bach, N., & Badaskar, S. (2007). A review of relation extraction. Literature review for

Language and Statistics II, 2, 1-15.

[46] Shubin Zhao and Ralph Grishman. Extracting relations with integrated information using

kernel methods. In ACL, 2005.

[47] Kambhatla, N. (2004, July). Combining lexical, syntactic, and semantic features with

maximum entropy models for information extraction. In Proceedings of the ACL interactive

poster and demonstration sessions (pp. 178-181).

[48] Yarowsky, D. (1995, June). Unsupervised word sense disambiguation rivaling supervised

methods. In 33rd annual meeting of the association for computational linguistics (pp. 189-196).

[49] Blum, A., & Mitchell, T. (1998, July). Combining labeled and unlabeled data with co-

training. In Proceedings of the eleventh annual conference on Computational learning theory (pp.

92-100).

[50] Pingle, A., Piplai, A., Mittal, S., Joshi, A., Holt, J., & Zak, R. (2019, August). Relext:

Relation extraction using deep learning approaches for cybersecurity knowledge graph

improvement. In Proceedings of the 2019 IEEE/ACM International Conference on Advances in

Social Networks Analysis and Mining (pp. 879-886).

[51] Carreras, X., Màrquez, L., & Padró, L. (2003). Learning a perceptron-based named entity

chunker via online recognition feedback. In Proceedings of the seventh conference on Natural

language learning at HLT-NAACL 2003 (pp. 156-159).

[52] Montani, I., & Honnibal, M. (2018). Prodigy: A new annotation tool for radically efficient

machine teaching. Artificial Intelligence to appear.

[53] Honnibal, M., & Montani, I. (2017). spaCy 3: Industrial-strength Natural Language

Processing toolkit, 2017

[54] Honnibal, M., Montani, I., Van Landeghem, S., Boyd, A., DuJardin, J. (2021). Thinc 8.0.0.

[55] Smagulova, K., & James, A. P. (2020). Overview of long short-term memory neural

networks. In Deep Learning Classifiers with Memristive Networks (pp. 139-153). Springer,

Cham.

[56] Tzafestas, Spyros & Blekas, Konstantinos. (2000). Hybrid Soft Computing Systems: A

Critical Survey with Engineering Applications.

	Effective Knowledge Graph Aggregation for Malware-Related Cybersecurity Text
	Citation

	tmp.1668199322.pdf.VgrIF

