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Abstract

In the first chapter of this dissertation we give a brief introduction to Markov chain Monte

Carlo methods (MCMC) and their application in Bayesian inference. In particular, we discuss

the Metropolis-Hastings and conjugate Gibbs algorithms and explore the computational

underpinnings of these methods. The second chapter discusses how to incorporate spatial

autocorrelation in linear a regression model with an emphasis on the computational framework

for estimating the spatial correlation patterns.

The third chapter starts with an overview of Gaussian mixture models (GMMs). However,

because in the GMM framework the observations are assumed to be independent, GMMs

are less effective when the mixture data exhibits spatial autocorrelation. To improve the

performance of GMMs on spatially-correlated mixture data, chapter three describes a spatially

correlated model that uses Gaussian process priors to account for the autocorrelation in the

classifications. However, the inclusion of spatially correlated Gaussian processes results in

a computational burden which is resolved by applying a Pòlya-gamma data augmentation

scheme that results in improved fit of the GMM in spatially correlated mixtures. Chapter

three then compares the performance of the GMM and spatial GMM models on simulated

data with and without spatial autocorrelation in the class labels. Both qualitative and

quantitative model evaluation results support our assumption that the spatial GMM performs

better when observation are spatially-autocorrelated.

Chapter four applies the spatial Gaussian mixture model from chapter three to data obtained

from ongoing work that aims to improve the accuracy in breast cancer margin assessment

using THz imaging technology. In particular, the Bayesian estimate of uncertainty in the

posterior probability from the spatial GMM shows promise in addressing the primary clinical

question of determining the cancerous tumor margins.
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Chapter 1

The Markov Chain Monte Carlo Algorithm for Bayesian Inference

1.1 Markov chain Monte Carlo

Markov chain Monte Carlo (MCMC) is one of the most popular techniques to generate

samples from a posterior distribution in Bayesian inference. MCMC combines two important

properties: The Markov property that allows us to sample from a distribution that is known up

to a constant and Monte Carlo simulation that allows to make inference about a distribution

by using random samples from the distribution (Brooks et al., 2011, p.5-7). This chapter

reviews the Bayesian framework for fitting models using MCMC in detail.

1.1.1 Monte Carlo simulation

1.1.1.1 History

The idea of Monte Carlo simulation came from Stanislaw Ulam, a member of a group of

scientists who were working on developing the atomic bomb during World War 2. While

working on this project, Ulam was trying to calculate the probability of winning in a solitaire

card game (Brooks et al., 2011, p.50). Having tried and failed to obtain an analytic solution

using combinatorics, Ulam came up with the idea of simulating many games and estimating

the probability of winning as a proportion of won games among all simulated games. With

the help from his colleague John Von Neumann who had access to the first computer ENIAC,

their simulations were successful and was named after the famous casino of Monte Carlo by

fellow team member Nicholas Metropolis (Brooks et al., 2011, p.3).

1.1.1.2 Definition

Due to its popularity in the scientific world, Monte Carlo simulation may have slightly

different definitions that depend on the discipline one studies. According to Brooks et al.

(2011, p.6-7), Monte Carlo simulation can be defined as a method of estimating the value of an
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unknown quantity g(θ) by simulating independently and identically distributed (iid) samples

θ(1), . . . , θ(N) from the distribution [θ] of θ and using the simulated samples to estimate the

expectation of g(θ) as

E{g(θ)} = 1
N

N∑
i=1

g(θ(i)). (1.1)

In practice, the unknown quantity g(θ) may be any real-valued function of the parameter θ.

For example, g(θ) = θ corresponds to the mean and g(θ) = 1{θ ≤ a}, defined as

g(θ) =


1 if θ ≤ a

0 otherwise,

corresponds to the left tail probability P (θ ≤ a).

1.1.1.3 Consistency of Monte Carlo estimates

By using the strong law of large numbers, it can be shown that Monte Carlo estimates are

consistent. Suppose θ(1), . . . , θ(N) iid∼ [θ ] are iid samples from the distribution [θ], then the

strong law of large number states that

Ê(g(θ)) = 1
N

N∑
i=1

g(θ(i)) a.s→
∫
g(θ)[θ]dθ = E{g(θ)}, (1.2)

where a.s→ means almost sure convergence. The finite sum 1
N

∑N
i=1 g(θ(i)) denotes the sample

mean and E{g(θ)} population mean while the notation [·] and [·|·] represents the probability

density and conditional probability density, respectively. The almost sure convergence defined

in Equation 1.2 means that

P

(
lim
N→∞

1
N

N∑
i=1

g(θ(i)) = E{g(θ)}
)

= 1,

2



which guarantees that Monte Carlo estimates are consistent. In other words, as the number

of Monte Carlo samples goes to infinity, the Monte Carlo estimate converges to the true

value.

1.1.1.4 Common applications of Monte Carlo methods

Since its discovery, Monte Carlo simulation has gained popularity in the scientific world

by allowing researchers to make inference about unknown characteristics of a process and

evaluate arbitrary definite integrals (Brooks et al., 2011, p.49). Monte Carlo simulations,

often called Monte Carlo integration, (Equation 1.2), can be used to estimate definite integrals

such as the expected value of a continuous random variable or the expected value of function

of a random variable such as E(log(θ)).

Suppose we want to integrate a function g(x) on a given interval [a,b] of real numbers. Using

the Monte Carlo formula, we write the integral
∫ b
a g(x)dx as an expectation with respect to a

uniform density [x|a, b] = 1
b−a defined on the interval [a,b]. Note that the advantage of using

a uniform density is to make the calculation easy, but it does not mean that there not other

choices that may be more efficient. Now the integral of the arbitrary function g(x) can be

calculated as

E[x|a,b][g(x)] = (b− a)
∫ b

a
g(x) 1

b− a
dx (1.3)

≈ b− a

N

N∑
i=1

g(X(i)), (1.4)

where X(i) for i = 1, 2, . . . , N are iid samples from the uniform distribition [x|a, b].

Now consider g(x) to be a standard normal density ( 1√
2πe

− x2
2 ) and we want to integrate

g(x) on the interval [−2, 2]. Then, the integral of the standard normal density g(x) can be

estimated by Monte Carlo integration as follows:

3



Table 1.1: Monte Carlo integral

iter = 10^2 iter = 10^3 iter = 10^4 iter = 10^4
MC estimate 0.893022 0.941987 0.954098 0.953614
True value 0.9545 0.9545 0.9545 0.9545
Estimation Error -0.061478 -0.012513 -0.000402 -0.000886

E[x| a,b][g(x)] = 4
N

N∑
i=1

g(X(i)),

which can be easily evaluated where a simple (but potentially inefficient) way to generate

these samples is to sample from the unconstrained distribution and throw away samples that

don’t satisfy the constraint.

To study the consistency of the Monte Carlo estimates, we evaluate the integral using different

numbers of Monte Carlo samples to understand how Monte Carlo estimate converges to the

true value as the number of Monte Carlo samples increases. The results in Table 1.1 and

Figure 1.1 show that the estimate of the integral gets closer to the true value of the integral

as the number of Monte Carlo samples gets larger. Therefore, these results demonstrate

empirically that Monte Carlo simulation is a technique to consistently estimate arbitrary

definite integrals.

1.1.2 The Markov chain

Let θ(t) denotes a random process for θ at time t, and S = {s1, s2, . . .} a (potentially infinite)

set of possible values θ(t) can take on. The element of S are called states of the process, while

the set S itself is called state space. The random process θ(t) is called a (first order) Markov

process if the transition probability of moving from one state to an other depends only on

the current state of the process. In other words,

[θ(t+1) = s| θ(t) = st, θ
(t−1) = st−1, . . . , θ

(0) = so] = [θ(t+1) = s| θ(t) = st].

4



Figure 1.1: This figure illustrates the consistency of a Monte Carlo estimate where the Monte
Carlo estimation error decreases with the number of Monte Carlo iterations.
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A sequence of random elements θ(1), θ(2), . . . resulting from a Markov process is called a

Markov chain.

1.1.3 Markov chain Monte Carlo

Consider a d-dimensional vector of a random variables, θ = (θ1, . . . , θd)′, and suppose we

wish to estimate g(θ) using Monte Carlo simulation for some function g(·). To do so, one

can draw iid samples θ(1), . . . , θ(N) from the posterior distribution [θ|X] of θ given some

data X, and estimate g(θ) using the iid samples from [θ|X]. However, if the posterior

distribution [θ|X] is not a distribution that can be easily sampled from, iid Monte Carlo

samples θ(1), . . . , θ(N) cannot be obtained to characterize the unknown quantity g(θ). In the

case of an intractable posterior distribution, Monte Carlo simulation becomes impractical.

To overcome this sampling obstacle, Monte Carlo sampling is combined with a Markov chain

designed in a such way that the limiting distribution of the samples is the target posterior

distribution we want to sample from. Thus, although the generated samples are not iid

samples from the target distribution, the distribution of the correlated samples converges in

distribution to the target posterior distribution.

It is essential to note that not every Markov chain is useful for Bayesian inference. The

Markov chain θ(1),θ(2), . . . used in MCMC for Bayesian inference must converge to a unique

stationary distribution no matter what the starting point is, and that unique stationary

distribution must be the target posterior distribution (Brooks et al., 2011, p.51). A Markov

satisfying these two conditions is commonly called an ergodic Markov chain. Metropolis et al.

(1953) proved that a random walk is an examples of an ergodic Markov chain.

MCMC allows for sampling from an intractable posterior distribution [θ|X] by constructing a

Markov chain θ(1), . . . ,θ(N) whose stationary distribution is the target posterior distribution

[θ|X] we want to sample from (Brooks et al., 2011, p.8). Then, statistical inferences about

the model parameter θ using the Markov chain samples θ(1), . . . ,θ(N) are made with Monte

Carlo estimates. Hence, a combination a Markov chain to generate samples with Monte Carlo

6



simulations results in MCMC estimates of the parameter θ of interest.

1.2 Markov chain Monte Carlo for Bayesian inference

The main application of MCMC methods in Bayesian inference is to estimate model parameters.

Bayesian model parameters are assumed to be random variables with probability distributions

determined by combining prior knowledge about the parameters with information from the

observed data. After the conditional distributions of each parameter is established, MCMC

algorithms are then used to draw samples from the conditional distributions and these samples

are used to make statistical inference about the model parameters.

1.2.1 An example on Bayesian inference and MCMC

This example aims to give an overview of Bayesian inference and explain the role played by

MCMC in Bayesian modeling. As a senior in college at the College of Science and Technology,

Rwanda, I worked at an internship involving a survey on health insurance coverage in my

native village of Nyagishubi, Kamonyi district, Rwanda. The goal was to estimate the

proportion of households with no health insurance (HNHI), so that the local authorities could

assess the impact of a mutual health insurance system (MHIS) introduced by the Government

to help low income households.

Including my family, I visited 55 random households from my village and found that only

6 among them did not have heath insurance. At that time I had no idea about Bayesian

inference, so I reported my results using a point estimate of proportion of (HNHI) in the

whole village as p̂ = 6/57 ≈ 10.5% with a 95% confidence interval of

p̂± 1.96
√
p̂(1 − p̂)

57 = 0.105 ± 0.0796

This results means that we are 95% confident that the true proportion (the proportion

obtained by surveying the whole village) of HNHI is between 0.105 ± 0.0796. Such statistical

7



inference where parameters are treated as unknown, but with a fixed value, is commonly called

frequentist reference. However, in Bayesian inference parameters are modeled as random

variables through probability distributions. Now, let’s solve the same problem using Bayesian

inference:

1.2.1.1 The Prior Distribution

First, we identify parameters to be estimated, which in this case is the proportion of HNHI

and suggest valid prior probability distributions for this proportion. For instance, as a native

of the village, I had some guesses on what the proportion (HNHI) might be before the survey

started; we call this the prior probability distribution.

Suppose my best guess about the distribution of the proportion of (HNHI) is a beta distribu-

tion, Beta(α = 1, β = 4) that has density

[p |α = 1, β = 4] = 4p(1 − p)3

with the expected value

E(p) = α

α + β
= 1

5

and variance

V ar(p) = αβ

(α + β)2(α + β + 1) ≈ 0.027

.

In other words, I believe that the expected proportion of the household with no insurance is

20% with ≈ 2.7% variance.

1.2.1.2 The Likelihood Function and Posterior Distribution

After the survey started, my prior belief gets updated based on the observed data from the

survey. The survey data is characterized by three main parameters, which are all known from

8



the survey:

• n: the number of households interviewed, commonly called the sample size;

• s: the number of households found to be with no insurance, generally called number of

successes;

• p: the proportion of the households with no insurance, known as probability of success.

According to the characteristics of the data at hand, we can conclude that the data follows a

binomial distribution s|p ∼ Bin(n, p), with p ∼ Beta(α = 1, β = 4).

Lastly, given the observed data we update the prior distribution to get the posterior distribu-

tion [θ| .] using the following Bayes’ rule

[θ|X] = [X|θ][θ]
[X] ∝ [X|θ][θ]. (1.5)

Finally, a Bayesian model for our data can be estimated. For convenience, we denote the

unknown parameter p by θ. The prior distribution [θ] ∝ 1
B(α,β)θ

α−1(1 − θ)β−1, the likelihood

function: y| θ =
(
n
s

)
θs(1 − θ)n−s, and the Posterior distribution: [θ| y] ∝ θα+s−1(1 − θ)β+n−s−1.

Notice that our posterior distribution is proportional to a parametric distribution Beta(α+

s, β + n− s), which given the data n = 57, s = 6, with α = 1 and β = 4 becomes Beta(7, 55).

This posterior results means that after combining my prior knowledge with the data from

56 households, we found that expected proportion of HNHI is 11.3% with variance 0.15%.

Figure 1.2 summarizes the Bayesian inference for the mutual insurance data. The top row

of Figure 1.2 shows how the probability of the observed number of successes is maximized

in the empirical probability mass function of the binomial distribution using the frequentist

point estimate. The lower row of Figure 1.2 compares how the prior distribution of the

estimated proportion is updated in the posterior distribution and shows how the posterior

distribution is narrower because observing data reduces uncertainty about the distribution of

the parameter.

9



Figure 1.2: The top figure shows the probability mass function of the HNHI data using the
frequentist point estimate. The bottom figures shows how the prior distribution is updated
by the data to construct the posterior distribution.

10



For this simple example, one might ask why do we need MCMC even when we can sample

directly from the posterior? Knowing the parametric form of the posterior distribution allows

us to calculate some quantities defined earlier as g(θ) analytically without using MCMC. For

example, in the posterior beta distribution we can calculate the posterior mean and variance

of our parameter p. However, there are much more functions g(·), such as the posterior

median, the posterior probability that HNHI is less than ten percent p(θ ≤ 0.10), or the

expected value of the log percentage of HNHI E(log(θ)) that are not available in their closed

form and can be estimated through Monte Carlo methods.

For the examples above, the estimates of the functional g(θ) can be estimated using Monte

Carlo techniques without using a Markov Chain because the parametric form of the posterior

distribution. Because of this, one can use Monte Carlo simulation by sampling iid samples

θ(1), θ(2), . . . , θ(N) from Beta(7, 55) and estimate g(θ) using Equation 1.1. Here we are

comparing the observed proportion 6/57 ≈ 10.5% to the posterior mean, and show how

Monte Carlo simulation can be used to estimate p(θ ≤ 0.10). Recall that the posterior mean

of a parameter is obtained by taking the average across all the posterior samples. To obtain

posterior samples in our case, we sampled 10000 random samples from the analytic posterior

distribution Beta(7, 55). Then, we calculated the posterior mean by taking the average across

all the 10000 posterior samples. The value of posterior mean, estimate of the proportion of

the HNHI is presented in Figure 1.3. The posterior probability that the HNHI is less than

ten percent is simply the proportion of posterior samples that are less than 0.1, which in our

case is 0.4118

1.2.2 The Bayesian vs Frequentist approach

In the frequentist approach, model parameters are often estimated using Maximum likelihood.

Given the data, the maximum likelihood estimate (MLE) is a fixed value considered the most

likely to produce the observed data and depends only on the observed data. On the other

hand, in Bayesian approach, model parameters are not assumed to have fixed values; but

11



Figure 1.3: This figure visualize the posterior distribution with the estimated proportion of
HNHI using maximum likelihood as a red line.

to be random variables with some probability distributions known as posterior distribution.

In addition, the Bayesian estimates do not solely depend on the observed data, but also on

prior knowledge about the distribution of the parameter.

For example, Suppose we want to build a model to predict the proportion of HNHI in any

village in Rwanda using the data observed in Nyarubaka sector. The MLE is the value p̂

that is most likely to generate the observed data. In other word, it is the value of p that

maximizes the likelihood function L or the logarithm of the likelihood function in Equation

1.6

12



L(p |y) =
57∏
i=1

[yi | p] = ps(1 − p)n−s (1.6)

l(p |y) =log(L(p |y)) = s log(p) + (n− s) log(1 − p).

The MLE for p is then the value of p for which the first derivative of l(p |y) is zero

dl
dp

= s

p
− n− s

1 − p
= 0

=⇒ p̂mle = s

n
= 6

57 .

Notice that the MLE depends only on the observed data. Consequently, when the data is

small the MLE is potentially biased due to potentially large sampling errors for small sample

sizes. On the other hand, when fitting a model in Bayesian inference with a small amount

of observed data, including prior information in the model can improve our estimates if the

information contained in the prior is relevant to the problem we are solving. However, when

one has no prior knowledge about the properties of the data a vague or non-informative

prior can be assigned. In the case of a non-informative prior, Bayesian predictions and MLE

prediction are very similar because they both depend only on the data.

Figure 1.4 summarizes and compares the MLE and Bayesian estimate of the proportion of

HNHI using our observed data. The 95% credible interval for p is given by (0.04148219,

0.1923124) which means that given the observed data, the proportion of HNHI has 95%

posterior probability of of being between 0.04148219 and 0.1923124. A major advantage of

Bayesian inference is that the credible intervals are naturally derived through the estimation

process and allow for natural interpretation of the uncertainty of an estimate as a probability.

For this example, we can see that MLE and Bayesian estimate are close but not identical.

This is mainly because of the small sample size and the non-negligible effect of the prior

13



Figure 1.4: This figure compare Maximum likelihood estimate (Frequentist method) and
Bayesian estimate

distribution on the posterior distribution. In practice, as the amount of data increases the

MLE and Bayesian estimate generally converge to the same value.

1.3 A connection between Bayes Theorem and MCMC

Calculation of the posterior distribution analytically generally requires conjugate priors. For

the HNHI example, we chose a Beta distribution for the prior distribution because the Beta

distribution is conjugate to the binomial data likelihood, which resulted in a parametric

posterior distribution Beta(α = 7, β = 55). However, if a conjugate update is not possible

and the posterior distribution is intractable, then MCMC can be used to sample from the
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posterior using the Bayes’ rule.

When using Bayes’ rule, the marginal likelihood of the data

[X] =
∫

θ
[X|θ][θ] dθ (1.7)

in the denominator of Equation 1.5 is generally intractable and therefore very challenging

to evaluate directly. However, taking a closer look at the marginal likelihood [X], it is a

function of the the parameter of interest θ and is a normalizing constant that results in

the posterior distribution integrating to one. Thus, if we can sample from the posterior

distribution proportional to the normalizing constant, we can avoid calculating the intractable

integral. Fortunately, we can actually sample from a distribution known up to a constant

using MCMC methods. Therefore, MCMC enables implementation of Bayesian inference

without having to calculate the intractable integral 1.7. As a result, we can use MCMC to

estimate the posterior distribution using MCMC samples.

1.3.1 An example where Monte Carlo is not possible without a Markov chain

Assume instead of a Beta prior we have a prior of the form [θ] = π
2sin(πθ), for θ ∈ [0, 1]. First,

we need to check if this is a proper prior; in other words, does this distribution integrate to

one, which is demonstrated below

∫ 1

0

π

2 sin(πθ)dθ = π

2π (−cos(πθ))1
0 = 1

2(−cos(π) + cos(0)) = 1.

Thus, given a prior for θ to be [θ] = π
2sin(θπ) for θ ∈ [0, 1], the posterior distribution of θ

given the binomial data is

[θ| s, n] ∝ θs(1 − θ)n−ssin(θπ).
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Notice that in this case the posterior distribution in not a known parametric distribution

as it was with a Beta prior, because the prior [θ] = π
2sin(θπ) is not conjugate to a binomial

likelihood. As a result, the posterior distribution is intractable. However, model parameters

can be estimated using MCMC.

1.4 The most popular MCMC algorithms

The first MCMC algorithm was introduced by Metropolis et al. (1953), a year after the

second computer MANIAC was built. This group of scientists was involved in a study that

required evaluating an integral in hundreds of dimensions, which was impossible to do using

standard Monte Carlo or numerical integration techniques (Brooks et al., 2011, p.3). Instead

of calculating the integral, they realized that they can learn about the equilibrium of a system

by simulating its dynamics using samples from a Markov chain with the same equilibrium

distribution. Therefore, these scientists designed a Markov chain in which the states of

parameters are updated by making a symmetric random walk update to the current state

with proposed steps accepted with probability proportional to the likelihood ratios until the

system attain its equilibrium.

The random walk proposal distribution introduced in Metropolis et al. (1953) can be described

as follows:

θ⋆ = θ(t) + et,

with θ(t) being the state of the parameter of interest θ at the random walk iteration t, while

the random variable et iid∼ U(−1, 1) defines random walk steps. To construct a Markov Chain

using a symmetric random walk we start at a random initial position θ(0) and at each iteration

t propose a new position θ∗ from the current position θ(t) and accept to move to θ∗ with

probability

α(θ∗, θ) = min

{
1, [θ∗|X]

[θ(t)|X]

}
.
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If the proposal θ∗ is accepted, set θ(t+1) = θ∗, otherwise θ(t+1) = θ(t). Any simulation algorithm

following this structure that uses a symmetric random walk is called a Metropolis algorithm

(Brooks et al., 2011, p.3).

Hastings (1970) generalized the Metropolis algorithm to be more flexible by allowing asym-

metric proposal distributions. To correct for asymmetry in the proposal distribution, Hastings

(1970) defines the acceptance probability as follows:

α(θ∗, θt) = min

1, [θ∗|X]
[θ(t)|X] ×

Hastings ratio︷ ︸︸ ︷
[θ(t)| θ∗]
[θ∗ |θ(t)]︸ ︷︷ ︸

Metropolis-Hastings ratio

 , (1.8)

where [θ∗ | θ(t)] denotes the proposal density generating candidates values θ∗ given θ(t). A

Markov chain simulation algorithm following this scheme is commonly known as Metropolis-

Hastings (Brooks et al., 2011, p.3). The difference between Metropolis-Hastings and Metropolis

algorithms resides in the definition of their acceptance probability, which is due to the a

difference in proposal distributions. The acceptance probability in Metropolis algorithm does

not include the Hastings ratio

[θ(t)| θ∗]
[θ∗| θ(t)]

because the proposal distribution is symmetric, making [θ(t)| θ∗] = [θ∗| θ(t)], and hence,
[θ(t)| θ∗]
[θ∗| θ(t)] = 1.

In 1984, a new MCMC method known as Gibbs Sampling (GS) was introduced. Even though

the idea of Gibbs sampling was previously mentioned Hastings (1970), the main idea of

Gibbs sampling and the name Gibbs sampling was first published in (Geman and Geman,

1984). A few years after its first publication, the application of Gibbs sampling in image

segmentation and spatial statistics got the attention of many researchers. Gelfand and Smith
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(1990) introduced a paper that made the MCMC methods popular in statistics community

(Brooks et al., 2011, p.49). Since then, with much more powerful computers, MCMC methods

have become one of the most important tools in applied statistics, especially in Bayesian

inference.

1.5 Gibbs sampling

Suppose we have a d-dimensional parameter θ = (θ1, . . . , θd)′ and data X. At the tth iteration

of Gibbs sampling, a new value of each parameter θ(t+1)
j , j = 1, . . . , d is sampled conditional

on the current values of the other parameters. As a result, at each iteration t of GS, the

algorithm performs d steps to sample from all the conditional distributions

[θ(t+1)
j | θ

(t)
−j, X],

where

θ
(t)
−j = (θ(t)

1 , . . . , θ
(t)
j−1, θ

(t)
j+1, . . . , θ

(t)
d )′

represents the current value of all the components of θ except θj.

1.5.1 Gibbs sampling versus Metropolis-Hastings

There are several algorithms to generate sample using MCMC, but GS and MH are the

most popular MCMC algorithms. Both MH and GS enables sampling from the posterior

distribution up to a normalizing constant, making it possible to estimate parameters in

Bayesian models. However, one algorithm may be more computationally advantageous than

the other depending on the type of problem we are solving.

Gibbs sampling is applied when all the full conditional posterior distributions are known in

their closed form. Knowing the analytic form provides a computational advantage because we
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can sample directly from the full conditional distribution leading to a 100% acceptance rate.

Moreover, the GS algorithm allows breaking up a high dimensional joint posterior distribution

into multiple single updates, making the sampling process simpler when sampling from a

high dimensional posterior distribution. As a result, with respect to effective sample size per

second, GS is commonly more efficient than MH when sampling from a high dimensional

posterior distribution. In practice, however, we frequently deal with cases involving intractable

posterior distributions where Gibbs sampling is not possible and one is required to apply MH

or make other transformations, including data augmentation, to enable GS.

The main advantage of MH over GS in Bayesian inference is that the MH MCMC algorithm

does not require the posterior distribution in closed form. In other words, a MH algorithm

is always possible regardless of the form of the posterior distribution, which makes the MH

algorithm very useful. Instead of proposing a new value for model parameter θ from the full

conditional distribution, at each tth iteration of MH, a new candidate θ∗ can be proposed

from a proposal distribution centered at the current state θ(t). Therefore, it is not necessary

to have the posterior distribution in closed form to perform MCMC sampling using MH.

1.6 Improving computational efficiency in MH MCMC

The proposal distribution enables repeated updating of the current state of the Markov chain

until the chain converges to the posterior distribution we want to sample from. Therefore, the

cost of convergence in MH algorithm depends on the behavior of the proposal distribution.

Consider two Markov chains {θ
(t)
1 } and {θ

(t)
2 } with the same stationary distribution [θ|X].

The Markov chain {θ
(t)
1 } is said to be better (or more efficient) than {θ

(t)
2 } if {θ

(t)
1 } converges

faster to [θ|X] than {θ
(t)
2 } (Brooks et al., 2011, p.94). Therefore, we can think of the efficiency

of a MH MCMC algorithm for MCMC in terms of computation cost. Hence, the faster the

MH algorithm converges and explores the stationary distribution, the more efficient is.

The speed of convergence of the MH algorithm is generally controlled by the choice of the

19



proposal distribution, especially the tuning parameter for random walk proposals. For random

walk proposals, a too small tuning parameter causes the Markov chain to move slowly with

high acceptance rates, while a too large tuning parameter results in many rejected proposals

and a Markov chain that gets stuck but also tends to make large jumps when proposals are

accepted.

1.6.1 Optimal tuning in MH MCMC

Suppose we wish to use MCMC methods to sample from an intractable posterior [θ|X]. A

common MCMC algorithm to sample from the posterior [θ|X] is the MH algorithm with a

symmetric random-walk proposal

θ∗ = θ(t) + e(t),

where e(t) comes from a symmetric distribution such as e(t) iid∼ N(0,Σ). In this case, Σ is

called a tuning parameter or proposal scaling parameter.

Choosing the optimal tuning value, which is the value of Σ that minimizes the converges cost

of the MH algorithm, is challenging (Brooks et al., 2011, p.93). In fact, using trial-and-error

guesses requires the user to try many possible values in the tuning parameter space to find

values that tune the algorithm well. Even though we know that too small and too large

values are not good, it leaves us with a wide window of choices. Therefore, depending on

the complexity of the model, especially in high dimensions, choosing the right tuning values

manually may be very difficult.

1.6.1.1 Adaptive Metropolis-Hastings

Adaptive MH (A-MH) algorithm allows us to automatically improve proposal scaling during

the run of the algorithm and, therefore, saves us from going through a challenging trial

and error to choose the proposal tuning value manually (Brooks et al., 2011, p.94). In
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addition, with powerful computers available now, automatic tuning can be less challenging

than choosing the proposal scaling value among many other values manually.

Note, however, that the adaptation of the tuning parameter may result in a non-stationary

Markov chain if the A-MH algorithm is not designed carefully. In addition to non-stationary

issue, the adaptation may make the A-MH algorithm slow compared to a non-adaptive MH

algorithm. In other words, with the right tuning value the non-adaptive MH algorithm would

be faster than the A-MH, because at each iteration (or block of iterations) of the A-MH

algorithm additional computations for parameter update are performed. In practice however,

the computational cost of the adaptive step is typically small.

The main feature that distinguishes A-MH from the usual MH algorithm is that in the A-MH

the proposal scaling parameters changes through the Markov Chain while in the non-adaptive

MH algorithm the scaling parameter remains constant over the run of the algorithm (Brooks

et al., 2011, p.94). Moreover, the A-MH algorithm involves control variables to ensure that

as the number of iterations t → ∞, the proposal covariance matrix converges to produce an

optimal tuning and the Markov chain {θ(t)} converges to the target posterior distribution

(Rosenthal, 2009).

To avoid too large or too small proposal variances, an efficient A-MH algorithm involves a

scaling parameter λ > 0 to scale the optimal proposal covariance matrix (several parameters)

or standard deviation (one parameter) to obtain the desired acceptance rate. After a batch

of l MCMC samples, l being a positive constant integer, a batch acceptance ratio α̂θ(t) is

estimated and compared to a predetermined target optimal MH acceptance ratio that ranges

from 0.234 for high dimensional proposals to 0.44 for univariate proposals (Rosenthal, 2009).

If α̂θi
< α∗, then the scaling factor λ should be decreased to ensure that the value of the

covaiance matrix gets smaller, which increases sampling acceptance ratio. If α̂θi
> α∗, then

the scaling factor λ should be increased to ensure that the value of the covariance matrix

gets increases, which reduces the sampling acceptance ratio.
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To control the amount of change in the covariance matrix at each batch k of size l, k ∈ {t}, a

positive integer γk, often called adaptation scaling factor is defined to ensure that the proposal

scaling parameter converges. The sequence of adaptation scaling factors {γk} ∈ (0,+∞)N is

designed to be a non-increasing sequence whose role is to ensure that the amount of change

in the proposal covariance matrix vanishes as t → ∞ and thus, limk→∞ γk = 0 (Andrieu and

Thom, 2008).

The two main adaptation steps described, which are the scaling of the covariance matrix by

λk and the vanishing adaptation controlled by γk can be implemented using algorithm 1.

Algorithm 1: Batch adaptive Metropolis-Hastings

Model parameter: θ = (θ1, . . . , θd)′ At each iteration t; propose θ∗ ∼ N(θ(t), λ(k)Σ(k));

if the proposal is accepted then

set θ(t+1) = θ∗;

else

θ(t+1) = θ(t);

end

After each batch of ℓ iterations, Update

Σ(k+1) =γ(k+1)


1
l

l∑
j=1

(
θ(kj) − µ(k)

)′ (
θ(kj) − µ(k)

)
︸ ︷︷ ︸

Batch Empirical Covariance matrix

−Σ(k)


The d-dimensional vector of parameter values at the jth, j = 1, . . . , l step in the current

kth batch is θ(kj) and µ(k) the mean of the current batch. An efficient A-MH algorithm is

designed to ensure that the amount of adaptation defined by:

Σ(k+1) = γ(k+1)


1
l

l∑
j=1

(
θ(kj) − µ(k)

)′ (
θ(kj) − µ(k)

)
︸ ︷︷ ︸

Batch Empirical Covariance matrix

−Σ(k)
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diminish to zero as t → ∞ (Andrieu and Thom, 2008). As a result, the probability that the

sequence {Σ(k+1)} converges to {Σ(k)} as t → ∞ is one. In other words,

lim
k→∞

P (|Σ(k+1) − Σ(k)| < ϵ) = 1

for any ϵ > 0. Therefore, according to Brooks et al. (2011, p.104), the algorithm presented

above guarantees not only convergence of the proposal scaling parameter, but also produces

an ergodic Markov chain that converges to the target posterior distribution [θ |X].

Note that there are several algorithm to implement A-MH. Some algorithms use batch updates

while in others the updates are done at each iteration. Andrieu and Thom (2008) and Brooks

et al. (2011, p.103) argue that some A-MH algorithms are more efficient than others. For

more possible designs of A-MH algorithm, see (Andrieu and Thom, 2008).

1.6.2 Common computational issues in MH MCMC

One of the most common numerical computation errors occur when the support of the

proposal and the target distribution are different. In this section we discuss solutions to

common numerical computational errors that mostly occur. One common computational

challenge is when when the support of the target posterior distribution is different from that

of the common symmetric proposals, namely normal and uniform distributions. Another

computational challenge we discuss is evaluation of the log-likelihood and prior distributions

on a log scale to prevent numeric underflow or overflow when evaluating the expression for

the acceptance probability in the MH algorithm.

1.6.2.1 The proposal and the posterior distributions have different supports

Every time a proposal in a MH algorithm is outside the support of the conditional posterior

distribution for the parameter of interest, the conditional posterior evaluated at this new

sample returns a numerical error. For example, consider sampling from a joint distribution
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involving the variance parameter in linear regression using a symmetric Gaussian proposal

distribution. The support of the of the proposal is (−∞,+∞), while the support of the

variance parameter is (0,∞). As a result, the posterior density becomes undefined whenever

a negative value is proposed for the variance parameter. In what follows I detail commonly

used algorithms for such common situations.

One way to solve this problem is to force the algorithm to stay at the current state whenever

a new proposal is outside the support of the target posterior distribution. For example, in

the case of a Gaussian proposal and a positive support posterior distribution, this may look

like the following.

Algorithm 2: Discarding negative proposals

At each iteration t;

Propose θ∗ ∼ N(θ(t), σ2);

if θ∗ < 0 then

θ(t) = θ(t−1);

else

θ(t) =


θ∗ with probability a(θ⋆|θ(t−1));

θ(t−1) with probability 1 − a(θ⋆|θ(t−1));

end

As a result, all the negative values are not eligible as new candidates which resolves the

computation error without violating the detailed balance for the MCMC. However, not

considering negative proposals (for this example), or more generally proposals outside the

support of the posterior distribution, makes the algorithm mix slowly. When the posterior

distribution of θ has significant probability mass near the boundary of its support, this type

of proposal could cause issues.

Two techniques to improve sampling efficiency compared to simply discarding invalid proposals

when the proposal and the posterior distribution have different supports are reflective proposals
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and truncated proposals. A reflective proposal is when we wish to use a symmetric proposal

with support (−∞,∞), while the support of the posterior distribution is either positive

(−∞, 0) or negative (0,∞). Reflective proposals can work for bounded supports in general,

but the description of these algorithms is slightly more convoluted. Rather than discard

proposals outside the support of the posterior, reflective proposals avoid proposing negative

values by reflecting each proposal back into its range of support.

For example, to sample from a distribution with positive support using a Gaussian proposal,

we can set the reflective sampling condition as follows:

Algorithm 3: Reflective proposal

At each iteration t;

Propose θ∗ ∼ N(θ(t), σ2);

if θ∗ < 0 then

θ∗ = −θ∗;

else

θ∗ = θ∗;

end

The second technique uses truncated normal proposals with the same support as the posterior

distribution. A truncated proposal restricts the domain of the proposal distribution to

the support of the posterior distribution, allowing only draws that are in the range of the

target/posterior distribution.

Note that the Metropolis algorithm would not be appropriate for a truncated normal proposal.

Because truncated normal distributions are generally not symmetric, a random walk with a

truncated proposal is not reversible. A Markov chain θ(1), θ(2), . . . , is said to be reversible

or in detailed balanced if its proposal distribution is reversible with respect to its initial

distribution Brooks et al. (2011, p.6). A proposal distribution is reversible with respect to its

initial distribution if the probability of moving from θ(t) to θ(t+1), equals the probability of
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Table 1.2: Effective Sample Size

non-truncated reflective truncated
3539.892 7198.778 6015.516

moving backwards from θ(t+1) to θ(t) for all t Brooks et al. (2011, p.6). Therefore, in order to

use a truncated normal as a proposal distribution we should consider the Metropolis-Hastings

algorithm in Equation 1.8, which includes a correction factor, the Hasting ratio, to correct

for the asymmetry in the proposal distribution.As a result, asymmetric proposals can be used

in MH algorithm provided that the Hastings ratio is calculated at each MCMC iteration to

insure that the chain is detailed balance.

For example, suppose we want to sample from a exponential distribution with mean parameter

λ = 1/5. Even though using MCMC may not be the most efficient method to sample from this

distribution, this is example can be useful in demonstrating the effects of the different proposal

distributions for distributions with bounded support. We chose a exponential distribution to

assess the performance of each of the three approaches we suggested to improve computational

efficiency when the posterior distribution and the proposal distribution have different supports,

because the exponential samples have positive support which is different from the normal

proposal distribution support. In addition, the density function that we target has significant

mass near zero. The autocorrelation functions illustrated in Figure 1.5 and effective sample

sizes presented in Table 1.2 show a significant difference in both autocorrelation as a function

of lags between MCMC iterations and effective samples sizes for each of the three algorithms.

The algorithm using a reflective normal proposal outperforms the other algorithms, while the

algorithm that discards invalid proposals performs worst, with a very high autocorrelation

due to the rejection step and a much lower effective sample size.
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Figure 1.5: Autocorrelation function associated with different type of proposals in MH when
the posterior and proposal have different supports sampling from an exponential density.

1.6.2.2 Resolving numeric over/underflow

Consider a d-dimensional vector of model parameters θ = (θ1, . . . , θd)′, and assume we observe

data x = (x1, x2, . . . , xn)′, where xi iid∼ [xi| θ] for i in 1, . . . , n. The likelihood function is

defined as a joint distribution obtained by multiplying probabilities for each observation given

the model parameters as follows:

[x|θ] =
n∏
i=1

[xi|θ] (1.9)

As a result, the likelihood function can be a product of small probability values that often

result in a very small decimal number that approaches 0 as n → ∞. These infinitesimal

numbers are often rounded to zero in the floating point system commonly used to represent

numbers in a modern computers, causing numerical computational errors whenever we divide

or multiply by these numbers. In practice, dividing or multiplying by small values can result

in computational errors. These errors occur very often when implementing MH MCMC
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because the denominator in the acceptance rate is a product involving the likelihood, which

can result in the denominator being numerically zero.

For example, consider fitting a linear regression model

y = β0 + β1x1 + . . . ,+βpxp + ϵ

with ϵi iid∼ N(0, σ2), and parameter vector θ = (β0, β1, . . . βp, σ
2)′ using MH MCMC to sample

from the posterior distribution. The posterior distribution for θ is [θ | x] ∝ [x | β, σ2][β][σ2],

where [x | β, σ2] is the likelihood and [β] and [σ2] are the priors on β and σ2, respectively.

Then, with a symmetric proposal distribution, the MH acceptance ratio is defined as

α(θ∗, θ(t)) = [θ∗ | x]
[θ(t) | x]

= [x | θ∗][θ∗]
[x | θ(t)][θ(t)]

, (1.10)

where θ∗ and θ(t) are the proposed and the current states of θ at the tth iteration respectively.

Therefore, because the denominator in Equation 1.10 is a product involving the likelihood,

numeric computation errors can arise when the acceptance ratio is evaluated directly. As

shown in Equation 1.11, working with logarithms enables us to write the likelihood in Equation

1.9 as a sum (or a difference) instead of a product, which resolves the numeric over/under

flow issue.

log[x|θ] = log

(
n∏
i=1

[xi|θ]
)

=
n∑
i=1

log[xi|θ]. (1.11)

As a result, the MH acceptance ratio in Equation 1.10 can alternatively be written in a more

computationally stable format on the log scale as
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α(θ∗, θ(t)) = exp
(
log[x | θ∗][θ∗] − log[x | θ(t)][θ(t)]

)
(1.12)

= exp
(
log[x | θ∗] + log[θ∗] − log[x | θ(t)] − log[θ(t)]

)
= exp

(
n∑
i=1

log[xi|θ∗] + log[θ∗] −
n∑
i=1

log[xi|θ(t)] − log[θ(t)]
)
,

where the product of likelihood terms that was causing all the issues in Equation 1.10 is now

replaced by a sum of log likelihoods which is much more computationally stable.

1.7 Bayesian inference for linear regression

Here we discuss Bayesian inference for linear regression using a Gibbs sampling algorithm.

We first define a linear regression model by defining model parameters. Then, we discuss the

choice of priors, and finally show how to calculate full conditional posteriors distribution to

enable the implementation of the Gibbs sampling.

Consider a linear regression model

yi = x′
iβ + ϵi, (1.13)

where x′
i is a row vector of p covariate values associated with observation yi (i ∈ 1, . . . , n), β

is a p-dimensional vector of regression coefficients, and ϵi ∼ N(0, σ2) is independently and

identically distributed random error. Instead of modeling each individual observation yi, one

can also define the model for the entire vector of n observations y = (y1, . . . , yn)′ in matrix

notation as

y = Xβ + ϵ, (1.14)
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where ϵ ∼ N(0, σ2I), and X is a matrix of covariates with ith row x′
i.

The linear regression models defined Equations 1.13 and 1.14 can alternatively be specified

assuming that the observations {yi}ni=1 are independent and identically distributed random

values from a univariate Gaussian distribution with mean x′
iβ and variance σ2 which gives

yi ∼ N(x′
iβ, σ

2). (1.15)

Equivalently, the vector of observations y = (y1, . . . , yn)′ can be modeled as a random vector

from a multivariate Gaussian distribution with mean Xβ and covariance matrix σ2I where

y ∼ N(Xβ, σ2I). (1.16)

To fit a linear regression in Bayesian framework, one should first assume a likelihood for the

data and choose priors for the parameters β and σ2. In developing a Gibbs sampler, one

calculates the conditional posterior distributions for the model parameters for use in fitting

the model with an MCMC algorithm. From the linear regression model defined in Equation

1.15, we can assume that the observations {yi}ni=1 are independent random variables arising

from a univariate Gaussian distribution with mean x′
iβ and variance σ2, and therefore have

the density

[yi |x′
i,β, σ

2] ∝ (σ2)−1/2 exp
{

− 1
2σ2 (yi − x′

iβ)′(yi − x′
iβ)

}
.

The likelihood function is therefore defined as

L(β, σ2; {yi}ni=1) =
n∏
i=1

[yi |x′
i,β, σ

2]

=[y |X,β, σ2I]

As a result, the vector of all observation y follows a multivariate Gaussian distribution with
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density

[y|β, σ2] ∝ (σ2)−n/2 exp
{

−1
2(y −Xβ)′(σ2I)−1(y −Xβ)

}
, (1.17)

where Xβ represents the mean of the process and σ2I the covariance matrix.

1.7.1 Prior distributions

There are several choices for prior distributions for linear regression model parameters

β = (β1, β2, . . . , βp)′ and σ2, but for computational efficiency, conjugate priors are often

preferred. With a conjugate prior, the conditional posterior distribution will generally be

in the same parametric family as the prior distribution. In other words, conjugate priors

allows us to obtain full conditionals in a closed-form making sampling from the posterior

joint distribution more computationally efficient.

The choice of a conjugate prior depends on the distribution of the data. For example, with

count data from discrete distributions such as Bernoulli, binomial, and negative binomial, a

conjugate prior for the parameter describing the probability of success is be a beta distribution,

which results in a beta conditional posterior distribution. When modeling count data from a

Poisson distribution, a conjugate prior for the expected rate of occurrence would be a gamma

distribution, which enables conjugate posterior updates using a gamma conditional posterior

distribution. In the same way, it can be shown that prior distributions including Gamma,

Inverse Gamma, Gaussian, or non-informative priors are possible choice of conjugate priors

(for different parameters) for a normal likelihood in linear regression (Gelman, 2003).

The prior knowledge we have about model parameters, σ2 and β in linear regression can

aid in identifying good parameterizations for conjugate priors. Consider the ordinary least

square (OLS) estimate of β, β̂ = (X′X)−1X′y and its generalized least square (GLS),

β̂ = (X′Ω̂
−1

X)−1X′Ω̂
−1

y obtained by generalizing the covariance matrix σ2I to any positive
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definitive matrix Ω. In both cases, we can see that β̂ is expressed as a linear combination of

the random variable y. Because β can be estimated as linear combination of a multivariate

Gaussian random variable, it also follows a multivariate Gaussian distribution. Therefore,

to obtain a full conditional posterior distribution for β, it is appropriate to assign β a

multivariate normal prior, β ∼ N(µβ,Σβ) with density

[β|µβ,Σβ] = (2π)−p/2 |Σβ|−1/2 exp
{

−1
2 (β − µβ)′ Σβ

−1 (β − µβ)
}
,

where µβ, is a prior mean vector and Σβ a prior covariance matrix.

On the other hand, a normal prior would not be a good choice as a prior for σ2 because

the support of the normal distribution includes negative values invalid for σ2. Therefore,

one reasonable choice for a conjugate prior for σ2 is an Inverse-gamma prior [σ2|α, β] ∼

Inverse-Gamma(α, β) with shape parameter and scale parameters α > 0 and β > 0 respec-

tively. The Inverse-gamma prior density

[σ2|α, β] = βα

Γ(α)
(
σ2
)−α−1

exp
{

− β

σ2

}

∝
(
σ2
)−α−1

exp
{

− β

σ2

}
,

leads to an Inverse-gamma conditional posterior distribution for σ2.

1.7.2 Posterior distributions

Given the observed data y from a normal distribution, the conditional posterior distribution

for β can is derived using Bayes’ theorem as
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[β | y,X, σ2] =
[y | X, σ2,β] × [β | µβ,Σβ]

[y] (1.18)

∝ [y | X, σ2,β] × [β | µβ,Σβ]

∝ exp
{

−1
2
[
(β − µβ)′Σβ

−1 (β − µβ) + (y − Xβ)′ (σ2I)−1 (y − Xβ)
]}

∝ exp
{
β′Σ−1

β β − 2µ′
βΣ−1

β β + µ′
βΣ−1µβ + y′(σ2I)−1y − 2β′X′(σ2I)−1y + β′X′(σ2I)Xβ

}
∝ exp

{
β′
[
X′(σ2I)−1X + Σ−1

β

]
β − 2β′

[
X′(σ2I)−1y + Σ−1

β µβ

]}
∝ exp

{
β′
[
X′(σ2I)−1X + Σ−1

β

]
β − 2β′

[
X′(σ2I)−1y + Σ−1

β µβ

]}
∝ N

(
A−1b,A−1

)
,

with

A =Σ−1
β + X′(σ2I)−1X,

=Σ−1
β + (σ2)−1X′X

and

b = Σ−1
β µβ + X′(σ2I)−1y. (1.19)

Thus, the posterior distribution for regression coefficients β is a multivariate Gaussian

distribution with mean A−1b and covariance A−1.

The conditional posterior distribution of σ2 can also be calculated analytically using Bayes’

theorem as we did for β. Considering an Inverse-gamma prior on σ2 with parameters α and

β, the full conditional posterior distribution for σ2 is

33



[σ2| y,X,β] ∝ [y|X,β] × [σ2|α, β)] (1.20)

= (2π)−n/2 |σ2I|−1/2 exp
{

− 1
2σ2 (y − Xβ)′ (y − Xβ)

}(
σ2
)−α−1

e− β

σ2

∝
(
σ2
)−n/2 (

σ2
)−α−1

exp
{

− 1
2σ2

[
(y − Xβ)′ (y − Xβ) + β

]}
=
(
σ2
)−( n

2 +α)−1
exp

{
−(y − Xβ)′(y − Xβ) + β

2σ2

}

∝ Inv-gamma(αn, βn),

where

αn =n2 + α and

βn =1
2(y − Xβ)′(y − Xβ) + β,

which shows that σ2 has an Inverse-gamma conditional posterior distribution.
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Chapter 2

Bayesian Hierarchical Spatial Linear Regression

In this chapter we review common statistical models for spatial data and discuss how to

fit these models in Bayesian framework. Then, we will highlight common computational

challenges in fitting spatial models using MCMC methods. Finally, we discuss proposed

solutions to improve computational efficiency in spatial models, especially for large data sets.

2.1 Overview of spatial regression models

To better understand spatial linear models, we first start with the linear model. Recall that

we can define a linear regression model for each individual observation as

yi = x′
iβ + ϵi, (2.1)

ϵi ∼ N(0, σ2). This is equivalent to writing the linear model as

yi ∼ N(x′
iβ, σ

2). (2.2)

.

One can also specify the model for the entire vector of n observations y = (y1, . . . , yn)′ jointly

in matrix notation as

y = Xβ + ϵ, (2.3)

where ϵ ∼ N(0, σ2I), which is equivalent to the model statement

y ∼ N(Xβ, σ2I). (2.4)
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Under all these form of the linear regression model in Equations 2.1, 2.2, 2.3, and 2.4, the

values of the intercept and slopes in β are assumed to be “fixed” across all individuals and

only the covariates, which are fixed and known, change for each individual observations. In

the statistical literature, a linear regression model in which the vector of parameters β is

fixed across all individuals is commonly called a “fixed effects model” or “fully pooled model”.

Now consider a vector of observations y(s) = (y(s1), . . . , y(sn))′, where y(si) represents the

realization of the process at locations {s1, s2 . . . sn} in a spatial domain D. If we assume that

there exists spatial dependencies between the observed values and their spatial locations, then,

we say that there exists spatial autocorrelation among the observations (Hefley et al., 2016).

In other words, the closer the observations are in space, the more similar their values will be.

The existence of spatial autocorrelation in data makes classical regression methods, such as

ordinary least squares, inappropriate because the assumption of independently distributed

errors would be violated (Ver Hoef et al., 2017). Consequently, when modeling spatial data

the fixed effect linear regression model defined in Equation 1.13 is generalized to include a

spatial random process term as a function of spatial location s to model the unknown spatial

random effect at each spatial location s ∈ D. Hence, a linear regression model accounting for

spatial autocorrelation at the location si can be written as

y(si) = x(si)′β + η(si) + ϵ(si). (2.5)

Considering all the observation locations jointly, Equation 2.5 is equivalent to

y ∼ N(Xβ + η, σ2I), (2.6)

where X is a matrix of covariates at location si with ith row x′(si), η = (η(s1), . . . , η(sn))′

is the spatial random process with η(si) being the realization of the spatially correlated

process at location si, and ϵ(si) ∼ N(0, σ2), is the realization of the independent Gaussian

36



error process. A model for a vector of observation y = (y(s1), . . . , y(sn))′ containing n values

observed at spatial locations {s1, . . . , sn} can be written in matrix notation as

y = Xβ + η + ϵ. (2.7)

The matrix X is an n× p matrix of covariates, where the ith row x′(si) is a p× 1 vector of

covariates at location si, while β are fixed regression coefficients that remain unchanged at all

spatial locations. The random error process ϵ is an n× 1 vector from a multivariate Gaussian

with ϵ ∼ N(0, σ2I). The spatial random process η = (η(s1), . . . , η(sn))′ is an n× 1 random

vector commonly assumed to follow a Gaussian distribution with multivariate normal density

[η|µ,Σ] = (2π)−n/2 |Σ|−1/2 exp
{

−1
2 (η − µ)′ Σ−1 (η − µ)

}
, (2.8)

where Σ is an n× n positive-definite matrix and µ is commonly assumed to be a vector of

zeros.

The Gaussian process representation of spatial autocorrelation has proven to be effective in

modeling spatial dependencies, but this methods has also faced computational drawbacks,

mostly tied to the computation of the inverse and determinant of the n× n dense covariance

matrix, Σ, especially for large spatial datasets (Lichstein et al., 2002). Therefore, in spatial

modeling literature several techniques have been proposed, notably a covariance function

approach and a basis function approach to estimate the covariance matrix Σ (Hefley et al.,

2016).

The i, jth element of covariance matrix Σ is the finite realization of the covariance function

C(si, sj) at locations si and sj . We assume a constant variance so that the covariance function

between locations si and sj is given by C(si, sj) = τ 2R(si, sj) for a variance τ 2. As a result,

η ∼ N(0,Σ) with Σ = τ 2R, where R is a correlation matrix with i, jth element R(si, sj).
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There several parametric correlation functions that are commonly used including the Gaus-

sian, exponential, and the Màtern correlation functions, among others. Deciding on which

correlation function to use in a spatial model depends on the properties of the data, because

some may be more appropriate than other in some cases (Hefley et al., 2016). Correlation

functions are generally specified as a function of distance between observations. For example,

a Gaussian correlation function is defined as

Rij(dij|ϕ) = e
−dij

ϕ ,

where Rij is the i, jth element of R and dij is the (usually Euclidean) distance between the

ith and jth locations. The parameter ϕ is a range parameter monitoring how the correlation

decreases relative to an increase in distance between two locations (Ver Hoef et al., 2017).

In practice, the spatial random process is modeled using the correlation matrix representation

where

η ∼ N(0, τ 2R),

and the mixed effect model defined in Equation 2.17 can alternatively be written by integrating

out the latent random effect η

y ∼
∫

N(Xβ + η, σ2I) × N(0, τ 2R) dη (2.9)

∼ N(Xβ, σ2I + τ 2R). (2.10)

In modern era of big data, fitting a spatial statistical models that requires inverting and

calculating the determinant of the n× n full rank covariance matrix in equation 2.8 which is

computationally challenging because the computation scales with complexity O(n3). Therefore

statistical models using full rank covariance matrix are not appropriate to fit large spatial
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datasets. In modern spatial data analysis, methods using low-rank or sparse covariance

matrix have been proposed to improve computational efficiency in fitting large spatial data.

In other words, these methods provide faster algorithms to compute the inverse of the n× n

covariance matrix for large n. Here we give brief introduction on the basis function approach

to model spatial autocorrelation and then, discuss a multiresolution basis function approach

to improve computational efficiency in in sampling the spatial random process using sparse

covariance matrices.

2.2 Modeling non-linear relationship and spatial autocorrelation using basis functions

Basis functions are commonly used to model non linear patterns in data by locally fitting the

latent process using smooth low order dimension polynomial (Nychka et al., 2015). There

are several types of basis functions, such as spline basis functions, Fourier basis functions,

Wendland basis functions, and wavelet basis functions that are capable of fitting complicated

data, including accounting for autocorrelation structures in spatial data. Therefore, the

unknown random process η(s) can often be adequately estimated using a basis function

representation. In Figure 2.1 we show an example of cubic B-splines and show that B-splines

are more appropriate than linear fit when the data does not exhibit a linear trend. Figure

2.2 shows how well spline regression model can fits spatial random process.

2.2.1 Basis representation

From Figures 2.1 and 2.2 we can see that the sum of multiple basis functions w1(s), . . . , wm(s)

results in a smooth fit flexible to fit not only non-linear relationship between two random

variable, but also spatial autocorrelation. Therefore, in basis function representation, the

value of the spatial random process η(s) at a location s can be expressed as the average value

of basis functions w1(s), . . . , wm(s) evaluated at location s
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Figure 2.1: This figure displays B-splines (left), compares a B-spline fit to a linear fit when
modeling non-linear relationships (right).

Figure 2.2: This figure shows a 1-dimensional simulated spatial random process (left), displays
the weighted B-splines (center), and shows the fitted B-spline curve (right).
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η(s) =
m∑
j=1

αjwj(s),

where m denotes the number of basis functions and αj is the basis coefficient for the jth

basis function. Equivalently, the basis function model for the the spatial random process can

be represented in matrix notation as

η = Wα,

with W representing an n×m matrix of basis functions, while α is vector of basis coefficients

assumed to follow a multivariate Gaussian distribution centered at zero. As a result, the

spatial linear regression presented in Equation 2.17 can be written as

y = Xβ + Wα + ϵ, (2.11)

which is equivalent to

y ∼ N(Xβ + Wα, σ2I) (2.12)

with α ∼ N(0,Σα).

When modeling spatial random process through basis functions, one can also consider fitting

the model in the integrated form by marginalizing out the random effects α. If one defines

spatial basis over a regular lattice, the random effects α can be modeled using a conditional

autoregressive structure which has covariance function

Σα = (τ 2Q)−1
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where the precision matrix Q is defined as

Q = (D − ϕA), (2.13)

where A is and adjacency matrix with

Aij =


1 if the ith and the jth basis function locations are neighbors

0 Otherwise.

The parameter ϕ is a correlation parameter which, when set to 1, gives an improper intrinsic

conditional autoregressive prior, and D is a diagonal matrix with diagonal elements equal

to the number of neighbors at each location. The parameter τ 2 is the precision that scales

the precision matrix Q and controls the overall variance of the coefficients α. Therefore, the

coefficients for the basis function approximation to the spatial random process with a CAR

precision structure can generalized as

α ∼ N
(
0, (τ 2Q)−1

)
. (2.14)

Using this basis function approach, the spatial observation model in Equation 2.12, often called

a first-order representation, can equivalently be written in the integrated, or second-order,

representation as

y ∼
∫

N(Xβ + Wα, σ2I) × N
(
0, (τ 2Q)−1

)
dα (2.15)

∼ N(Xβ, σ2I + W′(τ 2Q)−1W) (2.16)

The integral in Equation 2.9 and 2.15 is done using Woodbury equation. However, the results
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can also be obtained using some properties of Gaussian random variables. For example,

consider the linear model y = Xβ + Wα + ϵ with ϵ ∼ N(0, σ2I) and define y∗ = Xβ + ϵ

which implies y∗ ∼ N(Xβ, σ2I). Then, given the prior α ∼ N (0, (τ 2Q)−1), the affine

transformation of the coefficient vector is distributed Wα ∼ N(0,W′(τ 2Q)−1W). Therefore,

y = y∗ + Wα ∼ N(Xβ, σ2I + W′(τ 2Q)−1W).

2.3 First-order vs second-order representation

We discussed how the spatial random effect parameter η accounts for lack of fit due to

autocorrelation in the observations not accounted for by the fixed effects and how it can be

modeled as a Gaussian process with η ∼ N(0, τ2R) or approximated using basis functions as

η ≈ Wα. With that in mind, A first-order representation of the spatial linear model

y ∼ N(Xβ + η, σ2I) (2.17)

can be approximated by the first-order representation

y ∼ N(Xβ + Wα, σ2I),

where Wα ≈ η accounts for complexity in the mean structure of the distribution of y due to

spatial autocorrelation. In the integrated form (aka second-order specification) the spatial

random process is modeled in the covariance matrix of the observation distribution, where y

follows a Gaussian distribution

y ∼ N(Xβ, σ2I + W′(τ 2Q)−1W),

or if η = Wα exactly
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y ∼ N(Xβ, σ2I + τ 2R)

When deciding on whether to use the first-order model or the second-order, one should have in

mind that the two models are mathematically similar, but have different practical advantages.

For example, the first-order model is typically easier to understand and interpret in the similar

way the standard deviation is in units of the data and easier to understand than the variance.

In the first-order representation, the components of the model are stated in a more explicit

way (explicitly in the mean structure) than in the second-order (where the variance structure

is implicit). In the first order we can describe explicitly the fixed effects Xβ, the random

effects Wα, and variance of the independent measurements error, ϵ. But in the second-order

representation the random effects are modeled in the covariance of the probability distribution,

and therefore, are described implicitly. In addition, the first-order representation can help to

identify collinearity between fixed effects Xβ and the random processes Wα (Hodges and

Reich, 2010; Hughes and Haran, 2013). In the expression η = Wα, multicollinearity can be

determined using linear algebra to compare the column space of X to the column space of W.

In other words, how collinear are the column vectors in X to the column vectors in W.

For model fitting, there is the issue of Monte Carlo error (MCE) when fitting MCMC models.

Monte Carlo error is the error in approximating the posterior distribution using MCMC

samples (Koehler et al., 2009). For the same number of MCMC samples, the second-order

representation will typically have lower Monte Carlo error, a consequence of the Rao-Blackwell

Theorem, and is often preferred in estimation due to these computational properties. Note

that Monte Carlo error is different from bias in the usual sense. To better understand the

difference between MCE and the bias, consider a parameter θ to be estimated from posterior

samples θ(1), θ(2), . . . , θ(K) obtained through some MCMC methods with
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θ̂ = 1
K

K∑
t=1

θ(t).

For such estimates θ̂, the bias is defined as bias(θ̂) = E(θ̂) − θ, which can be thought of as

how far θ̂ is from the true values θ. However, Monte Carlo error can be represented as

MCE(θ̂) = lim
K→M

1
K

K∑
t=1

θ(t) − lim
K→∞

1
K

K∑
t=1

θ(t), M < ∞,

which is more a difference in how far the estimate of θ̂ from the finite MCMC is to the θ̂ from

the theoretical posterior distribution, not the true parameter θ.

2.3.1 Modeling spatial autocorrelation with multiresolution basis functions

A Multiresolution (MR) basis approach is a technique commonly used to improve com-

putational efficiency in spatial statistical models for large datasets and irregularly spread

observations (Nychka et al., 2015). In the basis function approach where each basis function

w(·) is evaluated to a nonzero number at (almost) all spatial locations in the spatial domain,

the spatial process Wα has a dense covariance matrix (Nychka et al., 2015). Therefore,

both traditional second-order covariance function approaches and first-order representations

using a large number of global basis functions have computational limitations in fitting large

datasets with spatial dependency. The multiresolution approach provides a computation

solution in modeling large multiscale spatial data using compactly supported basis functions

to create sparse precision matrices that enable efficient computation (Nychka et al., 2015).

To create sparse precision matrices at each resolution, compactly supported radial basis

functions are used. Consider a set of radial basis functions {w(·, ·|ϕj)}mj=1 each defined at

each j = 1, . . . , J , resolutions with a corresponding a set of mj grid points {s1,j, . . . , smj ,j} in

the spatial domain D and associated resolution parameter ϕj > 0. The value of the radial

basis function w(·, ·|ϕj) at a spatial location s in D, is defined as a function of distance
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dl,j = ||sl,j − s|| between each of the l = 1, . . . ,mj grid locations sl,j and s using a Wendland

basis function as

w(sl,j, s|ϕj) =


1
3

(
1 − dl,j

ϕj

)6
(

35
(
dl,j

ϕj

)2
+ 18dl,j

ϕj
+ 3

)
if dl,j

ϕj
< 1

0 if dl,j

ϕj
≥ 1,

where ϕj is the scale parameter for resolution j. As a result, the matrix of radial basis vectors

is a sparse matrix for and appropriately chosen set of grid locations {s1,j, . . . , smj ,j} and range

parameter ϕj.

In the MR approach, the mj-dimensional vector of coefficients αj for j = 1, . . . , J are

assigned priors that induce smoothness in the estimated spatial random field. To do this,

the coefficients for the radial basis functions at each resolution are assigned a CAR precision

structure (Equation 2.13) which results in sparse precision matrices at each resolution.

In MR approach presented in Nychka et al. (2015), the data model for each spatial observation

y(s) at location s is defined as

y(s) = x′(s)β + η(s) + ϵ(s), (2.18)

where the spatial process η(s) is a Gaussian process. The Gaussian process is modeled with

a sum of independent processes ηj(s) evaluated a each resolution level j = 1, . . . , J as

η(s) =
J∑
j=1

ηj(s).

Each of the resolution level random processes ηj(s) are approximated with mj basis functions

represented by the row vector w′
j(s) = (w(s1,j, s|ϕj), . . . , w(smj ,j, s|ϕj) evaluated at the jth

resolution gridpoints {s1,j, . . . , smj ,j}. Therefore, the spatial random effect at the location

s is defined as the linear combination of the basis functions and coefficient vector αj =
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(α1,j, . . . , αmj ,j)′ where

ηj(s) =
mj∑
l=1

w(sl,j, s|ϕj)αl,j = w′
j(s)αj.

Defining Wj to be a matrix of basis functions evaluated at each observation location for

resolution j in 1, . . . , J , a multiresolution approximation of the spatial process can be given

in matrix notation as

η =
J∑
j=1

Wjαj . (2.19)

where

αj ∼ N
(
0, (τ 2

j Qj)−1
)

In addition to the solution for large spatial dataset, the MR approach can also be used to

improve computational efficiency when modeling observation that are irregularly spread over

a spatial domain D (Nychka et al., 2015). In MR models, radial basis functions are defined on

a grid with increasing resolution, which enables us to model the spatial process with a large

number of basis functions relative to the number of observation at each resolution level. The

spatial process for the observations in finer spatial scales is fitted with more basis functions,

while in coarser scales the spatial process is estimated with fewer basis functions (Nychka

et al., 2015). Therefore, the data is fitted with appropriate number of basis function, which

prevents overwriting and improve computation due to the high degree of sparsity in the basis

functions at a fine spatial scale.
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2.4 Bayesian spatial linear regression

Following the same process of fitting a Bayesian linear regression from Section 1.7, we

can easily fit spatial linear regression models in Bayesian framework. First, we define the

distribution of the data and then, identify all the parameters to be estimated and specify

their priors, and finally calculate posterior distributions.

Starting with the spatial linear regression model specified first-order, the model in Equation

2.18 shows that the observation vector y = (y(s1), y(s2), . . . , y(sn))′ follows a multivariate

normal distribution with mean Xβ + η or Xβ + Wα and covariance σ2I. Therefore, the

density function for a vector of spatially correlated observations (using the mean structure

Wα) can be written as

[y|X,W, σ2,β,α] (2π)−n/2 |σ2I|−1/2 exp
{

−1
2 (y − Xβ − Wα)′ (σ2I)−1 (y − Xβ − Wα)

}
,

(2.20)

from which we can see that the distribution for spatial linear regression observations is very

similar the that in linear regression except that in spatial linear regression the mean of the

process Xβ is shifted by η or Wα.

In addition to β and σ2 in the linear regression model, in spatial linear regression models

we have more parameters to be estimated. Common additional parameters are the high-

dimensional random variable η and its precision parameter τ 2 and any correlation function

parameters ϕ. Note that when modeling spatial autocorrelation through basis function with

η = Wα, we specify the prior on α instead of η.

When a spatial model is specified in the first-order representation, conjugate priors can be

assigned to each of the parameters β, σ2 η or α, τ 2, and correlation function parameters

ϕ independently. Because we have already used Inverse Gamma and Gaussian conjugate
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priors for σ2 and β for a regression model, these parameters are assigned similar priors in the

spatial linear regression. Moreover, we have shown that the latent spatial random parameter

η follows a multivariate Gaussian distribution η ∼ N(0, τ 2R) when modeled as a Gaussian

process or η = Wα with α ∼ N (0, (τ 2Q)−1) when modeled through basis functions. In both

cases, the parameter are estimated from the multivariate Gaussian data y, which ensures that

assigning Gaussian prior either η or α leads to Gaussian conjugate posterior distributions.

Knowing that η follows a Gaussian distribution and τ 2 depends only on the distribution

of η, then assigning an Inverse Gamma prior for τ 2 with τ 2 ∼ Inverse-Gamma(a, b) gives a

conjugate Inverse Gamma posterior.

The full conditional posterior distributions for each parameter in a spatial linear regression

specified in first-order representation can be calculated analytically using Bayesian theorem

as we did in linear regression. The full conditionals for β and σ2 in this spatial model are

almost the same as the ones in linear regression where the mean of y, which is Xβ in linear

regression, is shifted by η. Following Bayes’ theorem as we did for linear regression, it can be

shown from Equation 1.18 that the full conditional for β is given by

β| y,X,η ∼ N(Xβ + η, σ2I) × N(µβ,Σβ)

∼ N
(
A−1b,A−1

)

with

A = Σ−1
β + (σ2)−1X′X, and

b = Σ−1
β µβ + X′(σ2I)−1(y − η),
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Following the example in Equation 1.20, the full conditional for σ2 can be calculated as

σ2| β,y,X,η ∼ N(Xβ + η, σ2I) × Inv-Ga(α, β)

∼ Inv-Ga(αn, βn),

with

αn =n2 + α and

βn =1
2(y − Xβ − η)′(y − Xβ − η) + β,

Using Bayes’ theorem, the full conditional for η is proportional to a product of two Gaussian

densities and the full conditional for τ 2 proportional to a product of a Gaussian and a Inverse

Gamma density. Following the example in Equation 1.18 the full conditional for η is a

Gaussian distribution given by

η| y,X,β ∼ N(Xβ + η, σ2I) × N(0, τ 2R)

∼ N(A−1b,A−1),

with

A =
(
τ 2R

)−1
+ X′(σ2I)−1X

and

b = X′(σ2I)−1(y − Xβ).

The full conditional posterior distribution for τ 2 can be deduced from Equation 1.20 as
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follows:

τ 2| η ∼ N(0, τ 2R) × Inverse-Gamma(a, b)

∼ Inverse-Gamma(an, bn)

with

an = n

2 + a and

bn = 1
2η′R−1η + b,

In the basis function representation, the full conditional distributions for all the model

parameters can also be found in their closed forms. Full conditionals for β and σ2 can be

obtained by substituting η with Wα in their full conditional from the previous model, while

those for α and τ 2 and can calculated as follows:

[α|y,X, σ2, τ 2] ∝ [y| β,X, σ2] × [α| Q, τ 2] ∼ N(A−1b,A−1)

with

A =
(
τ 2Q + W′(σ2I)−1W

)

and

b = W′(σ2I)−1(y − Xβ).

The full conditional for τ 2 can be obtained by assigning a Gamma (shape, rate parameteriza-
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tion) prior τ 2|a, b ∼ Gamma(a, b), with density

[τ 2|a, b] ∝
(
τ 2
)a−1

e−bτ2
,

Note that because the distribution of τ 2 does not depend on the data y, but only on α and

Q, the full conditional posterior for τ 2 is conditioned only on α and Q.

[τ 2| α,Q] ∝ [α|τ 2,Q] × [τ 2|a, b]

∝ Gamma(an, bn)

where

an = n

2 + a and

bn = 1
2α′Qα + b,

On the other hand, if the model is defined in the second-order representation by integrating

out the spatial latent parameter η, full conditionals for σ2 and τ 2 cannot be computed

analytically. Given that the covariance matrix in this integrated model y ∼ N(Xβ, τ 2R +σ2I)

or y ∼ N(Xβ,W′(τ 2Q)−1W + σ2I) depends on both σ2 and τ 2, updating the covariance

matrix requires that σ2 and τ 2 be updated at each MCMC iteration. Therefore, Metropolis-

Hastings algorithm must be used to sample from the joint posterior distribution

[τ 2, σ2| y, X,β] ∝ [τ 2| a, b] × [σ2|α, β] × [y| X,β, τ 2, σ2]
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to adequately update the covariance matrix. Joint updates are performed to improve

computation because the covariance matrix inverse and determinant only have to be calculated

once per MCMC iteration.
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Chapter 3

Extending the Gaussian Mixture Model to Account for Spatial Autocorrelation

3.1 Introduction

GMMs have many applications, including image segmentation where pixels in each image

are assumed to follow a specific distribution with unknown class labels. GMMs assume

independence of observations even when there are often spatial patterns in the data. When

modeling mixture data that exhibits spatial autocorrelation, GMMs becomes less effective

because of the lack of accounting for spatial autocorrelation (Bi et al., 2018). However, the

inclusion of spatial autocorrelation in GMM models is rarely done due to a large computational

burden imposed by fitting a spatial process that follows a distribution that is not conjugate

with the class labels. The specific contribution of this chapter is the development of a

model framework that enables efficient computation of a Bayesian posterior distribution for

spatially correlated GMMs. In particular, we apply the Pòlya-gamma data augmentation

methods developed in Polson et al. (2012) and Linderman et al. (2015) to a setting where the

multinomial indicator random variables (i.e., class labels) being augmented are themselves

latent random variables to be estimated in the model.

3.2 Gaussian mixture models

A random variable y is said to have a mixture probability distribution if the distribution

of the observation y can be constructed as a finite mixture of distributions. In the mixture

distribution, the individual mixture component distributions may be of different types

such as normal and gamma distributions, or they may have the same type of distributions

with different parameters, such as normal distributions with different mean and variance

parameters. A common type of mixture distribution is a Gaussian mixture model (GMM),

where observations are distributed into a finite number of clusters with cluster having a

normal distribution with unknown mean and variance.
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Figure 3.1: This figure illustrates a three component Gaussian mixture distribution. The
graphs in the first row of Figure 3.1 display densities of a 3-component Gaussian mixture
in one dimension, while the graphs in the second row illustrate the 3-component mixture in
2-dimension.

Figure 3.1 illustrates a graphical example of a Gaussian mixture distribution with three

components. The top left graph in Figure 3.1 show that the density of the mixture component

has three peaks suggesting that the data contains three clusters. The graph in the top right

corner displays the density for each of the three clusters and specifically shows us the center of

each cluster. The bottom left graph in Figure 3.1 shows that the region around the point with

Cartesian coordinates (−10, 0) has the highest density, while the area around the (−5, 15) is

a low density region. The graph at the bottom right of the Figure displays the clustering of

each mixture component on the 40 × 40 grid.

GMMs have many applications in data analysis, including clustering and image segmentation

(Farnoosh R, 2008). Image segmentation is a process of dividing an image into distinct

regions based on some characteristics (Farnoosh R, 2008). For example, in medical imaging,
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segmentation is over tissue types. Therefore, we can use a Gaussian mixture model to

distinguish among tissue types given sensor data.

Consider a vector of n observations y = (y1, . . . , yn)′ from a mixture of J Gaussian distribu-

tions with mean µj and variance σ2
j , for j = 1, . . . , J . To assign each observation yi to its

appropriate mixture component, we define an indicator variable zi = (zi1, . . . , ziJ)′ where all

the zijs are zero except for a single zij which is equal to one such that for each observation yi

the nonzero value of zij for j ∈ {1, 2, . . . , J} determines which of the J mixture components

the observation yi comes from. An explicit representation of a such Gaussian mixture model

can be summarized as

yi | {µj}Jj=1, {σ2
j}Jj=1, zi ∼



N (µ1, σ
2
1) if zi1 = 1

...

N (µJ , σ2
J) if ziJ = 1.

The likelihood function for a mixture of Gaussian distributions is given by

[y | {µj}Jj=1, {σ2
j}Jj=1, z] =

n∏
i=1

[yi|µ1, σ
2
1]I{zi1=1} × [yi|µ2, σ

2
2]I{zi2=1} × · · · × [yi|µJ , σ2

J ]I{ziJ =1}[zi]

(3.1)

=
n∏
i=1

J∏
j=1

[yi|µj, σ2
j ]I{zij=1}[zi], (3.2)

which can be written by integrating out the indicators as
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[y | {µj}Jj=1, {σ2
j}Jj=1, ] =

n∏
i=1

∫ J∏
j=1

[yi | µj, σ2
j ]I{zij=1}[zi] dzi

=
n∏
i=1

[yi |µ1, σ
2
1]π1 +

n∏
i=1

[yi |µ2, σ
2
2]π2 + . . .+

n∏
i=1

[yi |µJ , σ2
J ]πJ

=
n∏
i=1

J∑
j=1

πj[yi |µj, σ2
j ],

where

[yi |µj, σ2
j ] ∝ (2πσ2

j )−1/2 exp
(

− 1
2σ2

j

(yi − µj)2
)

is the density of a normal distribution and Pr(zij = 1) = E(I{zij = 1}) = πj is assumed to

be constant across observations where 0 ≤ πj ≤ 1 for j = 1, . . . , J and ∑J
j=1 πj = 1.

3.2.1 Supervised GMM Model

A Gaussian mixture model is said to be supervised if the data is labeled with known indicator

values zi. When fitting a supervised GMM, the parameters to be estimated are the Gaussian

distribution parameters µj and σ2
j for j = 1, . . . , J , because the labels are known from the

observation process. In practice, supervised GMMs are not typically used but this discussion

serves as an introduction into the modeling framework.

To obtain full condition distributions in standard (and conjugate) forms, each µj is assigned

an independent and identically distributed normal prior

µj |µ0, σ
2
0 ∼ N(µ0, σ

2
0)

with density

[µj|σ2
0] ∝ (σ2

0)−1/2 exp
(

− 1
2σ2

0
(µj − µ0)2

)
,
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and each σ2
j is assigned an independent and identically distributed inverse Gamma prior

σ2
j |α, β ∼ InvGamma(α, β)

with density

[σ2
j |α, β] ∝

(
σ2
j

)−α−1
exp

(
− β

σ2
j

)
.

Combining the likelihood and priors, the posterior distribution over unknown parameters is

[{µj}Jj=1, {σ2
j}Jj=1 | y, z] =

n∏
i=1

J∏
j=1

[yi|µj, σ2
j ]I{zij=1}[µj][σ2

j ]

=
n∏
i=1

J∏
j=1

[yi|µj, σ2
j ]I{zij=1}

n∏
i=1

J∏
j=1

[µj][σ2
j ].

To fit the model using MCMC, the full conditional posterior distribution for µj is derived

from the joint posterior distribution as:

[µj | .] ∝
n∏
i=1

[yi|µj, σ2
j ]I{zij=1}[µj]

∝
n∏
i=1

(
(σ2

j )−1/2 exp
(

− 1
2σ2

j

(yi − µj)2
))I{zij=1}

× (σ2
0)−1/2 exp

(
− 1

2σ2
0

(µj − µ0)2
)

∼ N(bja−1
j , a−1

j ), (3.3)

where

aj = 1
σ2
µ

+ nj
σ2
j

bj =
µµj

σ2
µ

+
∑n
i yiI{zij = 1}

σ2
j

58



with nj = ∑n
i=1 I{zij = 1}. In the same way, we can compute the conditional posterior for

σ2
j , which is

[σ2
j | .] ∝

n∏
i=1

[yi|µj, σ2
j ]I{zij=1}[σ2

j ]

∝
n∏
i=1

(
(σ2

j )−1/2 exp
(

− 1
2σ2

j

(yi − µj)2
))I{zij=1}

×
(
σ2
j

)−α−1
exp

(
− β

σ2
j

)

∼ Inverse-Gamma(αj, βj) (3.4)

with

αj = nj
2 + α and βj = β + 1

2

n∑
i=1

(yi − µj)2 I{zij = 1}

Combining these full conditional distributions, an algorithm for a Gibbs Sampler for the

supervised GMM can be described as first initializing the model parameters µj and σ2
j , for

j = 1, . . . , J and then iterating between updating these parameters by sampling from the

distributions

µj ∼ N(bja−1
j , a−1

j )

σ2
j ∼ Inverse-Gamma(αj, βj).

3.2.2 Unsupervised Gaussian mixture model

An obvious extension of the supervised GMM is the unsupervised GMM where the cluster

labels are unknown random variables to be estimated from the data using Bayesian inference.

This is the typical situation in practice and from here on, every GMM model follows the

59



unsupervised framework. Given the Gaussian mixture likelihood function defined in Equation

3.1, the unsupervised GMM is defined as

yi | zi, {µ}Jj=1, {σ2}Jj=1 ∼
J∏
j=1

(
N(yi;µj, σ2

j )
)I{zij=1}

, with zi ∼ Multinomial(π).

After defining the model, the conditional posterior distributions need to be found to enable

fitting using MCMC. Conditional on the now unknown indicator variables z, the conditional

posterior distributions of µj and σ2
j for j = 1, . . . , J are the same as the supervised model

(Equations 3.3 and 3.4). Then, the conditional posterior distribution for the indicator random

variable zi is given by

[zi | {µj}Jj=1, {σ2
j}Jj=1, yi] ∝ [yi|µ1, σ

2
1]I{zi1=1} × [yi|µ2, σ

2
2]I{zi2=1} × . . .× [yi|µJ , σ2

J ]I{ziJ =1}[zi]

∝
J∏
j=1

[yi |µj, σ2
j ]I{zij=1}π

I{zij=1}
j

∝
J∏
j=1

(
[yi |µj, σ2

j ]πj
)I{zij=1}

∼ Multinom(π̃i),

where the probability vector π̃i = (π̃i1, . . . , π̃iJ)′ has components

π̃ij =
[yi |µj, σ2

j ]πj∑J
j=1[yi |µj, σ2

j ]πj
. (3.5)

The probability π̃ij defined in Equation 3.5 is often computationally unstable when calculated

directly and to prevent numeric underflow this can be evaluated on the log scale. For example,

if the densities in the numerator and denominator of the equation above are highly unlikely

(like in the initial stages of the MCMC model), then the ratio in Equation 3.5 becomes

approximately 0
0 and due to numeric underflow, can result in computation errors. Therefore,
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to avoid this computational issue, it is common to evaluate π̃ij on the log scale.

However, taking the log of a fraction of the form A
A+B does not give the sum of the densities

on the log scale. Instead, log
(

A
A+B

)
yields log(A) − log(A + B) because the logarithm

doesn’t distribute across the sum. Therefore, we use the following technique to calculate the

probability component π̃ij in the full conditional distribution for π̃.

To calculate the components of π̃i, the log sum of exponentials method is used. The log sum

of exponentials method expresses the probability ratio [y|θi]∑K

k=1[y|θk]
as

[y|θi]∑K
k=1[y|θk]

=
(∑K

k=1[y|θk]
[y|θi]

)−1

=
(

exp
(

log
(∑K

k=1[y|θk]
[y|θi]

)))−1

=
(

exp
(

log
(

K∑
k=1

[y|θk]
)

− log[y|θi]
))−1

=
(

exp
(

log
(

K∑
k=1

exp (log ([y|θk]))
)

− log[y|θi]
))−1

.

Then, letting Ai = maxk ̸=i log[y|θk], we can use the identity

log
(

K∑
k=1

exp (xk)
)

= max
k

(xk) + log
(

K∑
k=1

exp
(
xk − max

k
(xk)

))

to get

[y|θi]∑K
k=1[y|θk]

=
(

exp
(
Ai + log

(
K∑
k=1

exp (log[y|θk] − Ai)
)

− log[y|θi]
))−1

, (3.6)

which is a more computationally stable representation.

As a result, the expression in Equation 3.5 can equivalently be written on the logarithmic

scale from Equation 3.6 as
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π̃ij =
exp

(
log(πj) + log[yi|µj, σ2

j ]
)

exp
(
Ai + log

(∑J
j=1 exp

(
log(πj) + log[yi|µj, σ2

j ] − Ai
))) ,

where

Ai = max
j∈{1,...,J}

(log(πj) + log[yi|µj, σ2
j ]).

Therefore, to fit the GMM we follow the Gibbs Sampling scheme illustrated below:

Initialize

µj ∼ N(0, 10),

σ2
j ∼ Inverse-Gamma(1, 1),

Sample

µj ∼ N(bja−1
j , a−1

j ) (3.7)

σ2
j ∼ Inverse-Gamma(αnj

, βnj
)

Calculate π̃ij =
[yi |µj, σ2

j ]πj∑J
j=1[yi |µj, σ2

j ]πj
,

Update zi, with zi ∼ Multinomial(π̃i).

Note that parameters bj and aj are in Equation 3.7 are defined at the end of Equation 3.3,

while parameters αj and βj can are defined at the end of Equation 3.4. Recall also that πj for

j = 1, . . . , J = 3 in Equation 3.7 are the mixture component weights with the same value 1
J
.

3.3 The spatial Gaussian mixture model

Both supervised and unsupervised GMMs have several applications in clustering and classi-

fication processes, but they are less efficient when the data exhibit spatial autocorrelation
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because there is information in the location of the observation that the GMMs are not using.

For instance, applications of GMM for image segmentation can be challenging due to the

lack of accounting of spatial autocorrelation. Therefore, in addition to the supervised and

unsupervised GMM models, a spatial GMM may be considered when the observation values

are spatially correlated due to the indicator variables zi being spatially correlated.

To introduce the spatial GMM, a change of notation from the GMM previously introduced is

needed. Let s ∈ D be a spatial location index in a spatial domain D and let S = {s1, . . . , sn}

be the set of observation locations. Then, the observation y(s) is an observation at location

s with an unknown indication function z(s). To account for spatial autocorrelation in the

spatially correlated indicator z(s) = (z1(s), . . . , zJ(s))′ with all but one zj(s) equal to 0 and

one zj(s) equal to one such that

z(s) ∼ Multi(π(η(s))),

where π(·) is a function mapping from RJ−1 to the J-dimensional simplex ∆J and η(s) =

(η1(s), . . . , ηJ−1(s))′ is a J − 1 dimensional vector of latent random variables indexed by

spatial location s. The spatial random variables ηj = (ηj(s1), . . . , ηj(sn))′ are assumed to

come from from a Gaussian distribution

ηj ∼ N
(
0, (τ 2

j Q(ϕj))−1
)
, (3.8)

where the precision matrix (τ 2
j Q(ϕj)) is defined to represent a graphical structure over the

spatial domain known as a conditional autoregressive (CAR) process.

In the joint distribution definition of the CAR model in Equation 3.8, the CAR precision

matrix is defined as
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Q(ϕj) = (D − ϕjA), (3.9)

where A denotes the adjacent matrix with ijth element

Aij =


1 if locations si and sj are neighbors

0 otherwise.

The parameter ϕj is a correlation parameter which, when set to 1, gives an improper intrinsic

conditional autoregressive prior and D is a diagonal matrix with diagonal elements equal to

the number of neighbors at each location (i.e., the row sums of the matrix A are the diagonal

of D). The parameter τ 2
j is a global precision that scales the precision matrix Qj according to

the jth mixture component and determines the overall variability in the random process ηj.

3.3.1 The canonical link function

The random variable ηj(s) is a parameter describing the distribution of jth component of

z(s) and therefore, is conditionally dependent on the latent label z(s) via the link function

π(·). Letting π(η(s)) = (π1(η(s)), . . . , πJ(η(s)))′ be the J dimensional simplex vector output

from the function π(·) mapping RJ−1 to the J-dimensional simplex ∆J , the latent indicator

variable z(s) is distributed according to a multinomial distribution where

z(s)|π(η(s)) ∝
J∏
j=1

πj(η(s))I{zj(s)=1},

where, for j = 1, . . . , J − 1,

πj(η(s)) = eηj(s)

1 +∑J−1
j=1 e

ηj(s) (3.10)
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and

πJ(η(s)) = 1
1 +∑J−1

j=1 e
ηj(s) (3.11)

Hence, the full conditional distribution for z(s) is given by

[z(s) | ·] ∝
J∏
j=1

[y(s) |µj, σ2
j ]I{zj(s)=1}

J∏
j=1

πj(η(s))I{zj(s)=1}

∝
J∏
j=1

(
[y(s) |µj, σ2

j ]πj(η(s))
)I{zj(s)=1}

∼ Multinomial(π̃(s))

with

π̃j(s) =
[y(s) |µj, σ2

j ]πj(η(s))∑J
j=1[y(s) |µj, σ2

j ]πj(η(s))
(3.12)

=


[y(s) |µj ,σ

2
j ]eηj (s)∑J−1

j=1 [y(s) |µj ,σ2
j ]eηj (s)+[y(s) |µJ ,σ

2
J ]

if j = 1, . . . , J − 1

[y(s) |µJ ,σ
2
J ]∑J−1

j=1 [y(s) |µj ,σ2
j ]eηj (s)+[y(s) |µJ ,σ

2
J ]

if j = J,

(3.13)

which is both easy to calculate on a log scale using the log sum of exponentials trick and is

easy to sample from.

Now consider the random processes ηj for j = 1, . . . , J − 1. The full conditional posterior

distribution for ηj depends on the indicators z and can be calculated using Bayes’ theorem

for j = 1, . . . , J − 1 as
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[ηj|z] ∝
n∏
i=1

[z(si)|π(η(si))][ηj].

The conditional posterior distribution [ηj|z] is a product of multinomial distributions and a

multivariate Gaussian density, which does not have a known standard form. Therefore, it

is not possible to sample ηj using conjugate Gibbs sampling updates in this representation.

Instead, other MCMC sampling techniques, most commonly, Metropolis-Hastings, that do

not require the knowledge of the full conditionals can be used.

However, in the case of a high dimensional random variable such as ηj, the Metropolis-

Hastings algorithm becomes computationally inefficient because of its low acceptance rate and

poor exploration of the posterior distribution due to high autocorrelation in the MCMC chain.

One alternative sampling technique described in Murray et al. (2010) is the elliptical slice

sampler, but we explore a different option that has better computational efficiency. To improve

computational efficiency in our MCMC sampler we propose the following data augmentation

scheme in the next section that enables us to compute full conditional distribution [ηj|z]

for the random process ηj analytically and hence, makes conjugate Gibbs sampling for ηj

possible.

3.4 Data augmentation in Bayesian modeling

In Bayesian inference, data augmentation is commonly used as an alternative technique

to improve computational efficiency when one has to sample from an intractable posterior

distribution. Intractability of posterior distributions, which generally occurs when there

are not conjugate priors for the available likelihood, results in a lack of posterior conjugate

update for some or all the model parameters (Albert and Chib, 1993). Consequently, full

conditional posterior distributions cannot be obtained in a closed-form, making it impossible

to apply Gibbs sampling updates, which is especially computationally challenging for sampling
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high-dimensional parameters. Therefore, in the case of intractable posteriors, it is common to

sample from the joint posterior using Metropolis-Hasting algorithm, which is computationally

challenging for high-dimensional parameter spaces. In a data augmentation scheme, a new

random variable from a known distribution is introduced in the data so that the augmented

likelihood enables calculation of the full conditionals in analytic form (Albert and Chib,

1993). As a result, parameters are easily sampled from their full conditional posterior through

conjugate Gibbs sampling.

Given data, y = (y1, . . . , yn)′ from a distribution with density [y | θ] and parameters θ =

(θ1, . . . θd)′ with prior [θ], we aim to sample from the posterior distribution [θ|y]. If [θ] is not

a conjugate for the likelihood [y|θ], Then, [θ|y] ∝ [y|θ][θ], will be generally intractable. In a

data augmentation scheme, a new random variable ω with a known distribution [ω] that is

easy to evaluate and sample from is introduced alongside the data y, such that the posterior

distribution obtained from the augmented likelihood [θ|y,ω] ∝ [y,ω|θ][θ|ω] is available in

closed form for the parameter of interest θ. Alternatively, the marginal full conditionals for

each of the j = 1, . . . , J , θjs with likelihoods [θj|ω,y] ∝ [y,ω|θ][θj|ω] are easy to sample

from.

For example, the data augmentation scheme introduced in Albert and Chib (1993) implements

Gibbs sampling in a probit regression by using multivariate normal distributions. Given

a multinomial observation vector yi = (yi,1, . . . , yi,J)′ with yi,j equal to 0 for all j except

one element which equals one, Albert and Chib (1993) define the probit regression model

πi,j = P (yi,j = 1) = probit(x′
i,jβ) = Φ(x′

i,jβ), where πi,j defines the probabilities that

observation yi belong to category j for j = 1, . . . , J , Φ is the cumulative distribution function

(CDF) of a standard normal distribution, x′
i,j is a row-vector of dimension p that contains

the covariates for observation i and category j, and β are regression coefficients of dimension

p that are assigned a multivariate Gaussian prior distribution. With this model linking

multinomial observations yi to the covariates, it is not possible to obtain the full conditional
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posterior for the regression coefficient parameters β in a closed and known form. Therefore,

independent random variables, zi,j, i = 1, . . . , n, j = 1, . . . , J − 1, defined by zi,j = x′
i,jβ + ϵi,j

are introduced for each yij , with ϵi = (ϵi,1, . . . , ϵi,J−1)′ ∼ N(0,Σ) for a J−1×J−1 covariance

matrix Σ. Using a matrix representation where the J − 1 × p matrix X i = (xi,1, . . . ,xi,J−1)′,

we can write zi = (zi,1, . . . , zi,J−1)′ = Xiβ+ϵi so that the augmented variable zi ∼ N(Xiβ,Σ).

Defining the augmented likelihood of yi given the introduced latent variable zi gives



yij = 1 if zi,j > 0 and zi,j = max
j

(zi,j), for j = 1, . . . , J − 1

yiJ = 1 if zi,j < 0 ∀j

yij = 0 otherwise.

(3.14)

Under the augmented model, the joint posterior of β and z = (z′
1, . . . , z′

n)′ given y =

(y′
1, . . . ,y′

n)′ is given by

[β, z|y] ∝
N∏
i=1


J−1∑
j=1

Pr(yi,j = 1)I{zi,j > 0 and zi,j = max
j

(zi,j)}+

Pr(yi,J = 1)I{zi,j < 0 ∀j}

×

[zi|β,Σ][β][Σ].

Under the data augmentation framework, the full conditional distribution for zi is proportional

to a constrained normal distribution where the direction of the constraint is determined by

the observation vector and the latent random variable can be sampled by repeatedly sampling

from the unconstrained distribution until the constraint is met. The full conditional for β

given the data y and the augmented random variable z is
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[β|z,y] ∝ N(β|µβ,Σβ) ×
N∏
i=1

N(zi|Xiβ,Σ),

which is proportional to a Gaussian distribution. Finally, conjugate update methods can be

used for updating the augmented variable covariance matrix Σ.

3.4.1 Pòlya-gamma data augmentation

For models with independent observations after accounting for the fixed effects, the data aug-

mentation scheme developed by Albert and Chib (1993) can be used to improve computational

efficiency for fitting multinomial regression models using MCMC. However, when the obser-

vations exhibit correlation, the computational scheme from Albert and Chib (1993) becomes

prohibitive due to the challenges of meeting the constraints imposed on the simulation of the

augmented random variables. For the goal of developing a GMM that explicitly accounts for

spatial autocorrelation, the constraints imposed by the method from Albert and Chib (1993)

form too strong of a computation burden and other methods of data augmentation must be

explored to enable efficient computation.

Pòlya-gamma data augmentation (PDA) is a special type of data augmentation designed to

improve computational efficiency in Bayesian logistic models (Polson et al., 2013). In logistic

regression, the data follow a binomial distribution and this is not conjugate with the regression

coefficients β. As a result, the full conditional distribution for β is not available in an analytic

form. For low-dimensional parameters, like most regression models, this lack of analytic

conjugacy does not typically present much of a challenge. However, for high-dimensional

parameters, which are common when accounting for spatial autocorrelation, the posterior

distribution and full conditionals are analytically intractable and not easy to sample from.

Therefore, when the data distribution belongs to a family of distributions, including the

binomial and multinomial distributions, with a common likelihood function proportional to

the form
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[ψ|y] = (eψ)a
(1 + eψ)b , (3.15)

PDA can be used to improve computational efficiency in making Bayesian inference for model

parameters (Polson et al., 2013). Note that in common example of logistic regression, the

parameter ψi can be thought of as the fixed effect x′
iβ.

3.4.1.1 Binomial and multinomial likelihood functions

Consider a discrete random variable z with two possible outcomes z = 1 with probability

π and z = 0 with probability 1 − π. Such random variable is said to follow a Bernoulli

distribution with probability distribution

[z|π] = πz(1 − π)1−z.

A random variable z determining the number of successes in m independent Bernoulli trials,

is called a binomial random variable, where z ∈ {0, 1, 2, . . . ,m} with probability density

[z|π] =
(
m

x

)
πz(1 − π)m−z.

Therefore, if the data at hand comes from a binomial distribution, then the likelihood function

for n observations z = (z1, . . . , zn)′ is given by

[z|π] =
n∏
i=1

mi!
zi!(mi − zi)!

πzi(1 − π)mi−zi , (3.16)

where mi is the number of trials in observation i = 1, . . . , n and

Moreover, if the data consists of a vector of counts zi = (zi,1, . . . , zi,J)′ determining the number

of times each of the J possible outcomes was observed, with probability π = (π1, . . . , πJ)′
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where πj denotes the probability for the jth outcome, then we say that zi follows a multinomial

distribution with likelihood function

[zi|πi] = Mi!∏J
j=1 zi,j!

π
zi,1
1 · · · πzi,J

J , (3.17)

where Mi = ∑J
j=1 zi,j is the total counts.

3.4.1.2 Multinomial regression

Let zi = (zi,1, . . . , yz,J)′ be a J-dimensional vector of counts where Mi = ∑J
j=1 zi,j is the total

count and πi = (πi,1, . . . , πi,J)′ is a vector of probabilities that change with observation where∑J
j=1 πi,j = 1. Then, the likelihood of zi is given by

[zi|Mi,πi] = Mi!∏J
j=1 yi,j!

π
yi,1
i1 · · · πyi,J

iJ . (3.18)

The canonical multinomial regression model uses a soft-max link function where the J-

dimensional probabilities in the J dimensional simplex ∆J are modeled in RJ−1 with J − 1

random variables. Assigning latent variables ηi = (ηi,1, . . . , ηi,J−1)′ for each observation zi,

the softmax (multi-logit) link function to model the probability πi,j is

πij =


eηi,j

1+
∑J−1

j=1 e
ηi,j

if j = 1, . . . , J − 1

1
1+
∑J−1

j=1 e
ηi,j

if j = J,

where this can be interpreted in an RJ dimensional space with ηi,J ≡ 0 and is of the form in

Equation 3.15 and is therefore amenable to Pòlya-gamma data augmentation. Multinomial
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regression assumes that given an N × q-dimensional design matrix X for j = 1, . . . , J − 1,

the latent parameter ηi,j ≡ x′
iβj where x′

i is the ith row of X. After assigning each βj,

j = 1, . . . , J − 1 a Gaussian prior N(µβ,Σβ), the posterior distribution is

[β|y] ∝
N∏
i=1

[yi|β]
J−1∏
j=1

[βj].

The difficulty in evaluating the above posterior is that the distribution is not available in

closed form and sampling requires a Metropolis-Hastings update or some other non-conjugate

sampler. One of the solutions to this difficulty is Pòlya-gamma data augmentation.

3.4.1.3 Pòlya-gamma Regression

The key idea that enables efficient Bayesian sampling of spatially-correlated multinomial

observations is Pòlya-gamma augmentation for multinomial regression by rewriting the

multinomial likelihood as a product of conditional binomials (Linderman et al., 2015).

For each of these binomial random variables, the likelihood is augmented with a Pòlya-

gamma random variable which results in an augmented likelihood proportional to a Gaussian

distribution (Polson et al., 2013) that enables conjugate updates with spatial processes that

have a Gaussian prior distributions.

To make the Pòlya-gamma augmentation scheme concrete, first notice that if π = 1
1+e−η then

the binomial likelihood defined in Equation 3.16 can be written in the form of the likelihood

defined in Equation 3.15, as
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[z|π] = M !
z!(M − z)!π

z(1 − π)M−z

∝ πz(1 − π)M−z

∝
( 1

1 + e−η

)z ( e−η

1 + e−η

)M (
e−η

1 + e−η

)−z

∝
(

e−η

1 + e−η

)M
× e−ηz

∝
(

1
eη(1 + e−η)

)M
× e−ηz

∝ (eη)z
(1 + eη)M ,

from which the integral identity fundamental for the Pòlya-gamma data augmentation is

defined as

[z, ω | η] = (eη)a
(1 + eη)b = 2−bekη

∫ ∞

0
e− ωη2

2 [ω]dω, (3.19)

where [ω] denotes a probability density with ω ∼ PG(b, 0) of a Pòlya-gamma random variable

ω, with k = a− b/2 (Polson et al., 2013). Under the binomial model, the parameter a = z

and b = M .

Next, Linderman et al. (2015) show that the integral identity defined in Equation 3.19 for the

binomial likelihood holds for multinomial data. To show this, the multinomial distribution in

(3.18) is re-written as a recursive product of J − 1 conditional binomial distributions using

stick-breaking transformation as follows:

73



[z|π] = Multinomial (M,π)

=
J−1∏
j=1

Binomial
(
zj
∣∣∣M̃j, π̃j

)

=
J−1∏
j=1

(
M̃j

zj

)
π̃
zj

j (1 − π̃j)M̃j−zj

where

M̃j =


M if j = 1

M −∑
k<j zk if 1 < j ≤ J − 1

is the remaining proportion of the total count remaining prior to each stick-breaking step

and the transformed (conditional) probabilities π̃j are recursively defined by

π̃j =


π1 if j = 1

πj

1−
∑

k<j
πk

if 1 < j ≤ J − 1.

To link the Pòlya-gamma augmentation representation to the latent variables, the stick-

breaking transformation πSB (η) maps the J − 1 dimensional vector η = (η1, . . . , ηJ−1)′ over

RJ−1 to the J-dimensional unit simplex by

πSB (ηj) = eηj∏
k≤j 1 + eηj

.
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Finally, it can be shown from the fundamental identity in equation 3.19 that the multinomial

likelihood with J − 1 Pòlya-gamma random variables ωj ∼ PG(bj, 0) results in an augmented

multinomial likelihood proportional the Gaussian distribution

[z,ω|η] ∝
J−1∏
j=1

eκ(zj)ηje−ωjη
2
j /2 ∝ N(η|Ω−1κ(z),Ω−1), (3.20)

where Ω is a diagonal matrix such that Ω = diag(ω) where ω = (ω1, . . . , ωJ−1)′ and

κ(zj) =
(
zj − M̃j/2

)
where κ(z) = (κ(z1), . . . , κ(zJ−1))′ (Linderman et al., 2015).

3.4.1.4 Full conditionals in Pòlya-gamma regression

To perform regression on a sample of n observations of a multinomial vector zi given a

N × p design matrix X of covariates, we assume that the latent random variable ηi,j = x′
iβj

where x′
i is the ith row of the design matrix and the regression coefficients are assigned the

prior βj ∼ N(µβ,Σβ). Given Pòlya-gamma random variables ωi = (ωi,1, . . . , ωi,J−1)′, for

j = 1, . . . , J − 1, the full conditional distribution for βj is

βj|z,ω ∝
N∏
i=1

N
(
βj|Ω−1

i κ (zi) ,Ω−1
i

)
N
(
βj|µβj

,Σβj

)
∝ N

(
βj|µ̃j, Σ̃j

)

where Ωi = diag(ωi) and

µ̃j = Σ̃j

(
Σβ

−1µβ +
N∑
i=1

x′
iκ (zi)

)
, and

Σ̃j =
(

Σβ
−1 +

N∑
i=1

x′
iΩixi

)−1

.
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The full conditional distribution for each ωi,j can be derived using the exponential tilting

property of the Pòlya-gamma distribution. If M̃i,j = 0, then ωi,j|z,β ≡ 0. Otherwise, for

M̃i,j > 0, we have

ωi,j|z,β ∝ e− 1
2ωi,jx′

iβj [ωi,j]∫∞
0 e− 1

2ωi,jx′
iβj [ωi,j] dωi,j

which is PG
(
M̃i,j, ηi,j

)
and is easy to sample from Windle et al. (2014).

3.5 The spatial Gaussian mixture model with Pòlya-gamma data augmentation

Recall that in the spatial GMM the full conditional distribution of η

[η|z] ∝
n∏
i=1

[zi|η1, . . . ,ηJ−1][ηj],

is not available in closed form. The PDA enables us to efficiently sample ηj using a conjugate

update within the MCMC algorithm that improves computational efficiency. In the spatial

GMM we aim to show that augmenting the spatial correlated multinomial indicators zi

with Pòlya-gamma random variables ωi results in an augmented likelihood proportional to a

Gaussian distribution, which enables conjugate update for the spatial latent parameter ηj.

First, we apply stick-breaking technique to write the likelihood function for the spatially

correlated indicators zi under data augmentation as
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[zi|ηj] =
J−1∏
j=1

(
M̃i,j

zij

)
π̃
nj

i,j(1 − π̃i,j)M̃i,j−nj

∝
J−1∏
j=1

(eηi,j )ai,j

(1 + eηi,j )bi,j
, (3.21)

where π̃i,j = eηi,j

1+eηi,j . It can be shown that the stick-breaking transformation, πSB (ηi) is given

by

πSB (ηi,j) = eηi,j∏
k≤j 1 + eηi,j

, (3.22)

and for compactness, we can write M̃i =
(
M̃i1, M̃i2, · · · , M̃iJ−1

)′
and π̃i = (π̃i1, . . . , π̃iJ−1)′.

Second, we compute the augmented likelihood. Referring to the fundamental identity defined

in equation 3.19, we can write the the augmented multinomial likelihood as follow:

[zi,ωi|ηi] =
J−1∏
j=1

(eηi,j )zij

(1 + eηi,j )M̃i,j

=
J−1∏
j=1

2−M̃i,jeκi,jηi,j

∫ ∞

0
e−ωi,jη

2
i,j/2

[
ωi,j|M̃i,j, 0

]
dωi,j (3.23)

where κ (zij) = zij − M̃i,j/2.

Recall that Pòlya-gamma data augmentation enables us to express the multinomial likelihood

as an infinite convolution over a Pòlya-gamma probability density
[
ωij|M̃ij, 0

]
and a term

e−ωi,jη
2
i,j/2, which is proportional to the kernel of a Gaussian density with precision ωi,j. As

a result, introducing a Pòlya-gamma latent variable, ωij, corresponding to each ηij, the

resulting augmented likelihood is proportional to a Gaussian distribution

[z,ω|η] ∝
N∏
i=1

J−1∏
j=1

eκ(nj)ηi,je−ωi,jη
2
i,j/2 ∝ N(η|Ω−1k(z),Ω−1)

with diagonal precision matrix Ω (Linderman et al., 2015).
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Next, we calculate the joint posterior and full conditionals given the augmented likelihood.

Assuming a Gaussian prior [ηj] with ηj ∼ N
(
0, (τ 2

j Q)−1
)

the joint posterior is given by

[z, {ηj}Jj=1] =
N∏
i=1

J−1∏
j=1

(eηi,j )nj

(1 + eηi,j )M̃i,j

[ηj]

=
N∏
i=1

J−1∏
j=1

[ηij]2−M̃i,jeκi,jηi,j

∫ ∞

0
e−ωi,jη

2
i,j/2

[
ωi,j|M̃i,j, 0

]
dωi,j

=
N∏
i=1

J−1∏
j=1

[ηij][zi, ωi|ηij] dωi,j

=
∫ ∞

0
[z, {ηj}Jj=1,ω] dω, (3.24)

where [z, {ηj}Jj=1,ω] is a joint posterior density over the augmented likelihood. Therefore,

the full conditional for η, which is equivalent to the marginal posterior given the augmented

data [η|z,ω], is is given by

[η|z,ω] ∝
N∏
i=1

J−1∏
j=1

eκ(zi)ηi,je−ωi,jη
2
i,j/2[ηj].

Finally, the full conditional distributions for ηj, ωij, and the hyper parameter τ 2
j can be

computed. The full conditional distribution for ηj is

[ηj|z,ω] ∝
N∏
i=1

N
(
Ω−1
i κ (zi) ,Ω−1

i

)
N
(
0, (τ 2Q)−1

)
∝ N

(
A−1
j bj,A−1

j

)
,

where
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A−1
j =

(
τ 2
j Q + Ω

)−1

bj = kj(z).

By the exponential tilting property of the Pólya-gamma distribution, it can be shown that

the full Conditional for ωij is also a Pòlya-gamma distribution (Polson et al., 2013) such that

ωij ∼ PG
(
M̃i,j, ηi,j

)
. (3.25)

Considering that τ 2
j , j = 1, · · · , J , depends only on ηj and Q, but not on y or z, we update

τ 2
j from the distribution of ηj, where ηj ∼ N

(
0, (τ 2

j Q)−1
)
. Therefore, assigning a Gamma

prior τ 2
j ∼ Gamma(ατ , βτ ) with density

[τ 2
j ] ∝ (ατ )ατ −1 e−βτ τ2

j ,

the full conditional distribution of τ 2
j is
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[τ 2
j | ηj,Q] ∝ [ηj|τ 2

j ,Q] × [τ 2
j |ατ , βτ ]

= (2π)−n/2 |(τ 2
j Q)|1/2 exp

{
−
τ 2
j

2 η′
jQηj

}
×
(
τ 2
j

)ατ −1
e−βτ τ2

j

∝
(
τ 2
j

)n/2 (
τ 2
j

)ατ −1
{

−
τ 2
j

2 η′
jQηj − βτ

}

∝
(
τ 2
j

)( n
2 +ατ )−1

exp
−

[
η′
jQηj + βτ

]
2 τ 2

j


∝ Gamma(αn, βn),

where

αn =n2 + ατ and

βn =1
2η′

jQηj + βτ .

Because the posterior distribution of µj and σ2
j depend only on the the observable data yi,

i = 1, . . . , n, but not on the spatial latent variable η, they are the same in both spatial and

non spatial models. Therefore, to fit the SP-GMM we focus on the spatial variables ηj and

τ 2
j , which can be done using the following Gibbs sampling scheme:
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Initialize:

τ 2
j ∼ Gamma(1, 1),

ηj ∼ N
(
0, (τ 2

0 Q)−1
)
.

Update:

Use Pòlya-gamma data augmentation to sample ηj

[ηj|z,ω] ∝ N
(
A−1
j bj,A−1

j

)
,

A−1
j =

(
τ 2
j Q + Ω

)−1

bj = kj(z).

Use stick-breaking technique to update π̃ij (3.26)

πSB (ηi,j) = eηi,j∏
k≤j 1 + eηi,j

.

Sample τ 2 :

[τ 2
j | ηj,Q] ∝ Gamma(αnj, βnj),

where

αn = nj
2 + ατ and

βn = 1
2η′

jQηj + βτ ,

sampleω :

ωij ∼ PG
(
M̃i,j, ηi,j

)
.
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3.6 Simulation study

To explore the differences between the non-spatial and spatial GMMs, a simulation study was

performed to evaluate the performance of the different modeling frameworks. By simulating

synthetic data from a true generating model, it is possible to use the simulated data to

compare model performance in a context similar to that seen in real-world data. Simulation

studies have several purposes, but in statistical modeling we aim to learn about parameter

inference and model performance. Investigating how parameters are estimated within an

MCMC algorithm is performed by comparing the parameters used to simulate the data to

the posterior distribution of the parameters estimated using MCMC. For evaluating model

performance, the simulation study enables us to explore the model predictions under different

conditions. For example, comparing non-spatial and spatial GMM performance on datasets

simulated with and without spatial autocorrelation.

Our simulation study has two main purposes. We first aim to show that the Non-Spatial

Gaussian Mixture Model (NSP-GMM) performs better than the Spatial Gaussian Mixture

Model (SP-GMM) when the simulated observations are spatially independent. Our second

goal is to emphasize on the fact that if there is spatial autocorrelation among the observations,

the SP-GMM would generally outperform the NSP-GMM. In other words, one can think of

the SP-GMM as an improved version of the NSP-GMM when the observations are spatially

correlated.

To explore the model performance, we first simulated two Gaussian mixture processes, one

with no spatial autocorrelation among observations and another with spatially autocorrelated

observations. Then, we fitted each of the candidate models to each of the simulated processes

and compared the performance of the two models on each data (i.e., we compared the

performance of the NSP-GMM and SP-GMM on the on the non-spatial Gaussian mixture

data and the spatial Gaussian mixture data). In practice, we simulate a vector of observations

from a non-spatial Gaussian mixture distribution and fit both models to the simulated data to
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show that the NSP-GMM outperforms the SP-GMM when there is no spatial autocorrelation

in the data. And then, we simulate a Gaussian mixture with spatially correlated observations

and fit both models to the simulated data to show that the SP-GMM performs better than

the NSP-GMM when the observation are spatially correlated.

3.7 Data simulation and model fitting

In this section we discuss how we simulated data from both the non-spatial and spatial

Gaussian mixture processes.

3.7.1 Simulating a nonspatial Gaussian mixture model

The first simulated data is a three component Gaussian mixture process created on a

120 × 120 grid where the location on the grid is given by the index s and each class label

on the grid is independent of neighboring class labels. The mixture density is a univariate

normal distribution where each class has distinct mean and variance parameters µj and

σ2
j , j = 1, . . . , J = 3 respectively. The values of the data generating mean and variance

parameters used in our simulation were intentionally chosen to ensure the mixture components

overlap because identifying the class labels in data with overlapping mixture densities can

be difficult. Given a vector of class indicator variables z = (z(s1), . . . , z(sn))′, the observed

non-spatial data is simulated from the distribution

y(s) | z(s), {µ}Jj=1, {σ2}Jj=1 ∼
J∏
j=1

N(y(s);µj, σ2
j )I{z(s)=j}

with µ = (−3, 0, 3)′ and σ = (1, 0.5, 1.5)′.

For the nonspatial Gaussian mixture model, the class indicator variables are simulated from

an independent and identically distributed multinomial distribution
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z(s) ∼ Multinom(π),

where π is a probability vector with πj = P (z(s) = j) the probability that the class label

at grid cell s is class j. The simulated data arising from this process are shown in Figure

3.2. The simulated, non-spatial class labels in Figure 3.2 (left) displays three distinct colors

indicating that there three distinct classes in the data. In both maps in Figure 3.2 there is

no visual evidence of any significant clustering among class labels and instead we see that

both class labels and observations are randomly spread across the grid. This lack of spatial

smoothness and coherence is evidence of the lack of spatial autocorrelation and supports the

claim of the assumption of independence among observation values, which is consistent with

the simulated data.

Figure 3.2: The figure shows the non-spatial class labels on the left and the non-spatial
observations on the right.
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3.7.2 Simulating a spatially correlated Gaussian mixture model

Simulating a spatially correlated Gaussian mixture model is a straightforward extension of the

nonspatial Gaussian mixture model. The mixture density is a univariate normal distribution

where each class has distinct mean and variance parameters µj and σ2
j , j = 1, . . . , J = 3

respectively. Like the nonspatial Gaussian mixture model, the values of µ = (−3, 0, 3)′ and

σ = (1, 0.5, 1.5)′, but the spatial data is simulated with additional parameters ϕj = 0.999 and

τ 2
j is simulated with random values from a Gamma(2, 500) distribution. As in the nonspatial

Gaussian mixture model, given a vector of class indicator variables z = (z(s1), . . . , z(sn))′,

the observed data is simulated from the distribution

y(s) | z(s), {µ}Jj=1, {σ2}Jj=1 ∼
J∏
j=1

(N(y(s);µj, σ2
j ))I{z(s)=j}.

The spatially correlated Gaussian mixture model simulation is over a 120×120 grid where the

location on the grid is given by the index s, but now the class labels on the grid are dependent

on the neighboring class labels. The spatial autocorrelation among the observations is induced

by spatially correlated indicator variables z(s). The correlation in the class labels is induced by

modeling the probabilities of each class label with latent variables η(s) = (η1(s), . . . , ηJ−1(s))′

and setting π(s) = πSB(η(s)) as defined in the stick-breaking transformation in Equation

3.22. Each of the j = 1, . . . , J − 1 components ηj = (ηj(s1), . . . , ηj(sN))′ are simulated from

independent multivariate normal distributions ηj ∼ N(0, τ 2
j Q−1(ρj)). The matrix Q(ρj) is

defined as the precision matrix for a first-order conditional autoregressive process over the

grid given a correlation parameter ρj . The simulated data arising from this process are shown

in Figure 3.3 which illustrates a strong degree of spatial smoothness in both simulated classes

and observations. We can see a spatial clustering in the data, where observation of the same

class are more likely to be in the same spatial location. The spatial coherence observed in

both maps is due to the autocorrelation among the observations and class labels.
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Figure 3.3: The figure shows the spatial class labels on the left and the spatial observations
on the right.

3.7.3 Fitting the NSP-GMM and SP-GMM to the simulated datasets

After simulating both non spatial and spatial data, the next step is to fit the NSP-GMM and

the SP-GMM to each of the simulated datasets using the Gibbs sampling algorithms defined

in Equations 3.7 and 3.26, respectively

We performed multiple simulation studies by changing data generating parameter values and

various sample sizes up to 14, 000 observations (e.g., on a 100 by 140 grid) to analyze the

performance of the model under a different settings; however, for simplicity we present the

results of a single simulation here. In the simulations, we used the same prior distributions

µj ∼ N(0, 1002), σ2
j ∼ inverse-Gamma(1, 1), τ 2

j ∼ Gamma(1, 1), and η2
j ∼ N(0, (τ 2

j Q)−1).

With 2000 MCMC iterations our models showed evidence of convergence to the posterior

distribution, simulation results were obtained by running the MCMC for 5000 iterations with

the first 1000 samples discarded as burn-in.
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3.8 Model performance analysis

This section focuses on evaluating the model performance using the simulated data to evaluate

parameter estimation and predictive performance. Because we are fitting our models in

Bayesian framework, parameter inference refers to parameter estimates obtained by using

a Gibbs sampling algorithm while model predictive performance refers to the predictive

accuracy of the models. We start with a visual/qualitative analysis and then quantify model

predictions using numerical scoring metrics.

3.8.1 Qualitative model performance on non-spatial data

In our qualitative analysis we first analyze the performance of our MCMC algorithm using

trace plots of parameters of interest and then compare the maps of predicted classifications to

the map of simulated classifications to assess the predictive ability of the models. Trace plots

are graphs showing MCMC sample values for a given parameter or set of parameters at each

iteration of the Markov chain and provide a visual tool for assessing convergence and mixing

of the MCMC chain. By convergence, we mean convergence of the distribution of the MCMC

estimates to the target stationary distribution, while mixing refers to how well the posterior

samples obtained by MCMC explore the target distribution. For model comparison reasons,

we only discuss trace plots of parameters common between NSP-GMM and SP-GMM (i.e.

the mixture mean and standard deviation). Figure 3.4 illustrates trace plots of the mean

and the standard deviation for both NSP-GMM and SP-GMM fitted on the non spatial data.

This figure shows that the mean (first row) and the standard deviation (second row) for

both both NSP-GMM and SP-GMM mix well and have converged after about 1000 MCMC

iterations. In other words, the chain does not get stuck in a particular region or produce

strongly autocorrelated samples, and there is no evidence the chain has failed to reach its

stationary distribution. We can also see from the same figure that the NSP-GMM converges

faster than the SP-GMM for both parameters, due to the higher geometric complexity of

the SP-GMM posterior distribution. Another important feature to notice in this figure is
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Figure 3.4: This figure compares trace plots for the mean and standard deviation parameters
when the models are fitted to the non spatial data. The top right and top left graphs illustrate
the trace plots of the mean parameter for the NSP-GMM and SP-GMM models. The bottom
right and bottom left graphs compare trace plots of the mixture density standard deviations
for the NSP-GMM (left) and SP-GMM (right) models.

the change colors between the MCMC chains, which means that there is a label switching

happening in model fitting in the sense that each time the model is fitted, the class labels

can be permuted.

Next, we explore the performance of the class predictions visually. First we examine the

maps of posterior mean probability for each class in Figure 3.5. The maps in the first

row of Figure 3.5 illustrates the oracle posterior probabilities for each class (the columns)

given the simulated data, and therefore they serve as validation when evaluation model

performance. The second and the third rows contain the posterior mean probability maps

from the NSP-GMM and the SP-GMM models, respectively. Comparing our posterior mean

probabilities to the true probabilities, we can see that the NSP-GMM predictions are very

similar to the oracle posterior probabilities, especially when comparing class by class column

wise. On the other hand, because of the presence of spatial smoothness in the SP-GMM

maps, the SP-GMM posterior mean probability maps are visually different from the oracle
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probabilities. Therefore, a visual analysis of this figure suggest that the NSP-GMM performs

better than the SP-GMM on the non-spatial data in recovering the true posterior probabilities

of class membership.

The second series of prediction maps in Figure 3.6 visualize posterior standard deviation of

probability for the non spatial data. The first row of this figure, which displays the NSP-GMM

posterior probability standard deviation, shows no spatial structure in the posterior standard

deviation, matching the simulated data. On the other hand, the second row shows the

posterior probability standard deviations from the SP-GMM model where some regions have

higher standard deviation indicating that in some spatial locations the posterior probabilities

are more variable than in other locations. This is because the posterior probability depends not

only on the observation values but also on the probabilities of neighboring observations. For

instance, according to posterior standard deviation scale on the figure legend, the SP-GMM

posterior probabilities seem to have specific regions with high standard deviations (yellow

color) for class 2 indicating model uncertain or flexibility in identifying class 2 observations

in those areas. Thus, the mis-specified SP-GMM is correctly identifying a high degree of

uncertainty in the posterior probabilities.

The top row of Figure 3.7 shows the simulated response (left) and the simulated class

membership (right) for the simulated non-spatial Gaussian mixture data. The bottom row of

Figure 3.7 shows the predicted class membership from the NSP-GMM (left) and SP-GMM

(right) models using the largest posterior mean probability as the classification rule. Both

classification maps are very similar to each other and the simulated classes even though the

underlying posterior mean probability maps are quite different, especially with respect to the

amount of spatial smoothing.

Thus, an interesting question arises "How to best evaluate the model predictions?" Figures 3.5

3.7 can both be used to evaluate the predictive ability of the two candidate models. Figure

3.5 suggests that the NSP-GMM model is greatly outperforming the SP-GMM model in
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Figure 3.5: This figure illustrates probability maps for the non spatial data. The first row
is the non spatial simulated probability maps for each class, the maps in the second and the
third row illustrate the mean of the posterior probability for the NSP-GMM and the SP-GMM
respectively when fitted on the non spatial data.
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Figure 3.6: This figure compares posterior standard deviation of probability for both models
fitted to the non spatial data for each of the classes (columns). The first row shows the
NSP-GMM posterior standard deviation for the each class while the second row is for the
SP-GMM.

terms of predicting the latent posterior probability of class membership. In comparison,

Figure 3.7 suggests there is little difference in predictive ability between the NSP-GMM and

SP-GMM models in terms of predicting class membership. Thus, any quantitative metric

used to evaluate these predictive scores needs to be sensitive to these qualitative differences.

3.8.2 Qualitative model performance on spatial data

In this section, we compare the performance of the NSP-GMM and SP-GMM models to

data simulated using the spatial Gaussian mixture model. After fitting both models to the
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Figure 3.7: This figure compares prediction ability of the SP-GMM and NSP-GMM when
fitted on the simulated non spatial data. On top right, we have the map of the simulated
classes while the top left map is the observed data used to fit the models. The second row
contains predicted classes. The map to the bottom left side illustrates SP-GMM predicted
classes while the bottom right side map illustrates the NSP-GMM predicted classes.
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simulated spatial Gaussian mixture data, the trace plots are shown in Figure 3.8 to visualize

the MCMC performance. Comparing trace plots from the NSP-GMM (left column) to those

given by the SP-GMM (right column) we can see that both the mean and the standard

deviation chains mix well and have converged. However, both the mean and standard

deviation posterior samples in the NSP-GMM are biased because the centers of their chains

deviate significantly from the true data generating parameter. In comparison, the chains for

the mean and standard deviation parameters of the SP-GMM model are centered close to the

simulated parameters, such that the SP-GMM estimates show less bias than the NSP-GMM

estimates. Taking a closer look only at the standard deviations in the second row, we notice

that in the NSP-GMM (left) the parameter estimates for the variances are biased high relative

to the simulated parameters. This overestimation of the NSP-GMMM variance parameters is

due to the fact that in the NSP-GMM model we only have one parameter, σj, for each class

to model both spatial variation and the random error variation whereas in the SP-GMM we

have additional parameters, ηj, to model spatial variation for each class.

Figure 3.8: This figure compares trace plots for the mean and variance parameters when the
models are fitted to spatial data. The top left and top right graphs illustrate the distributions
of the mean parameter for the NSP-GMM and the SP-GMM respectively. The bottom left
and bottom right graphs show the trace plots of the mixture density standard deviations for
the NSP-GMM (left) and the SP-GMM (right) models.
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Figure 3.9 shows the probability of each class (each class is a column) from the simulated

spatial Gaussian mixture model (top row) and the fitted NSP-GMM and SP-GMM posterior

mean probabilities for each class in the middle and bottom rows, respectively. Figure 3.9

enables us to evaluate each model relative to the simulated probability maps (first row) and

then compare posterior mean probability maps between the NSP-GMM (second row) and the

SP-GMM (third row) to see which model performs better on the simulated spatial Gaussian

mixture data. The probability scale at the bottom of each figure shows that the yellow color

on the map correspond to the spatial locations of high probability for each class (1, 2, and

3), while the dark blue color corresponds to the regions of lowest probability. Comparing

the posterior mean probability from each fitted model to the simulated probabilities, we see

more similarity between the SP-GMM posterior mean probability maps and the simulated

probabilities than between the NSP-GMM posterior mean probability and the simulated

probability. Taking a closer look at the NSP-GMM and the SP-GMM posterior mean

probabilities, we observed more spatial smoothness (clusters are more clearer identified with

less static) in the posterior mean SP-GMM probabilities. In addition, we can see that in

the SP-GMM the probabilities are estimated with higher certainty (yellow color = higher

posterior mean probability) than the NSP-GMM.

Posterior probability standard deviation maps shown in Figure 3.10 illustrate variations in

predictive probability for each class for the NSP-GMM (top row) and SP-GMM (bottom row)

for each class (the columns). There are two ways we can interpret these posterior probability

standard deviation maps. First, we can say that areas of high posterior probability standard

deviation indicate that the model is less confident in classifying observations in that area.

Second, we can interpret high posterior probability standard deviation as an indication of

model skepticism in the class labels. The NSP-GMM maps (first row) exhibit very low

standard deviation (high predictive certainty) across the whole region for all three classes. In

the SP-GMM (second row) we can see that spatial location with higher standard deviations

are more likely to be at the boundary between two clusters. This means that the SP-GMM
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Figure 3.9: This figure illustrates probability maps for the spatial data. The first row is the
spatial simulated probability map for each class, while the maps in the second and the third
row illustrate the mean of the posterior probability when the SP-GMM and the NSP-GMM
are fitted on the spatial data respectively.
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is more skeptical in these areas because the posterior mean probability values depends not

only on the observation values but also on the type of neighboring observations, which

improve prediction when the observations are spatially autocorrelated. In addition, because

the mean posterior probability maps for the NSP-GMM show evidence of poorer fit to the

simulated probabilities than the SP-GMM posterior mean probabilities, this is evidence that

the NSP-GMM model produces estimates that are unrealistically overconfident relative to the

SP-GMM model estimates. From these results, we conclude that when fitted on the spatial

Gaussian mixture simulation data, the NSP-GMM is more confident while less accurate

whereas the SP-GMM is more flexible and more accurate because of accounting for spatial

information in the probability estimates.

Figure 3.11 shows the simulated spatial Gaussian mixture model observations (top left),

simulated classes (top right), predicted classes from the NSP-GMM model (bottom left), and

predicted classes from the SP-GMM model (bottom right). Both of the model predictions use

the class with highest posterior mean for the classification rule. The predicted classifications

in Figure 3.11 show that when fitted on simulated spatial Gaussian mixture model data, the

NSP-GMM predicted classes (bottom left) do not have the strong spatial smoothness observed

in the simulated classes (top right). Note that because the posterior mean probabilities in

the NSP-GMM are not spatially correlated (Figure 3.9, middle row), we expect that the

NSP-GMM predicted classes would be less spatially coherent than the SP-GMM predicted

classes. Because the posterior mean probabilities in the SP-GMM are spatially correlated, the

spatial autocorrelation in the probabilities is inherited by the class indicators (s), resulting

in spatially correlated predicted classes. As a result, the SP-GMM predicted classes are

more similar to the simulated Gaussian mixture model classes than the NSP-GMM predicted

classes. As such, the class predictions for the SP-GMM model are visually more similar to

the simulated classes than the NSP-GMM model class predictions. Looking at the overall

classification maps, the SP-GMM provides a more accurate classification on spatial data than

the NSP-GMM.
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Figure 3.10: This figure shows the posterior standard deviation of probability when both models
are fitted to the spatial data. The NSP-GMM posterior probability standard deviation maps
for each class (columns) are presented in the first row and the the SP-GMM maps are in the
second row.
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Figure 3.11: This figure shows the predictive ability of the NSP-GMM and SP-GMM when
fitted on the simulated spatial data. On the top right of this figure we have the map of the
simulated classes while the top left map is the observed data used to fit the models. The
second row contains predicted classes. The map to the bottom left side illustrates NSP-GMM
predicted classes while the bottom right side map illustrates the SP-GMM predicted classes.
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3.8.3 Measuring model performance

The qualitative results for the simulation study with the non-spatial Gaussian mixture model

showed a difference in model performance with respect to the posterior mean probability

maps but did not show a difference in performance for the class label maps. In contrast, the

simulation study for the spatial Gaussian mixture model showed that the SP-GMM model

was performing better for both the posterior mean maps and the class label maps. The

qualitative simulation results show that prediction maps are very important because these

visualizations can quickly show if the models are predicting well and enable interpretation of

what the consequences of the model assumptions are. However, we also need a quantitative

measure to better understand how well a model is performing, especially when we aim to

investigate different model performances. For instance, one may want to know if the model is

80%, 90%, . . ., etc., accurate in distinguishing among different classes, or whether a candidate

model is, for example, 5%, 10%, . . ., etc., more accurate than another model. Therefore, in this

section we discuss common scoring methods to measure predictive accuracy in classification

models and choose the most appropriate for our study.

Common performance evaluation measures in classification and clustering models are often

calculated from a confusion matrix. Such methods include accuracy, precision, sensitivity

and specificity, or even area under the receiver operating curve (ROC) (known as the AUC

score). These scores are calculated from a confusion matrix where the predictions are made

using a classification rule where the i observation is classified as class j, for j = 1, . . . , J if

πij = max(πi).

A common drawback to these scoring methods is that their values are based only on predicted

labels but not on the underlying probability of class membership. In other words, they do

not take into account model certainty or confidence about predicted classifications and are

thus not guaranteed to be well-calibrated probabilistic predictions. To better understand how

confusion matrix scoring methods work and to better discuss some of their drawbacks, we
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consider a simple example of a binary classifier, shown in Table 3.1, with TP, FP, TN, and

FN representing a true positive, false positive, true negative, and false negative, respectively.

Table 3.1: Binary classifier confusion matrix example
True Class

Class 1 Class 2
Predicted Class Class 1 TP FP

Class 2 FN TN

From the confusion matrix in Table 3.1, common confusion matrix based scoring methods

can be defined as

Accuracy = TP + TN

TP + TN + FN + FP
,

Sensitivity = TP

TP + FN
,

Specificity = TN

TN + FP
,

Precision = TP

TP + FP
.

(3.27)

Model evaluation scores based on the confusion matrix may be less effective to measure

model performance for probabilistic predictions. For example assume we are comparing the

performance of two different models. If in our confusion matrix in Table 3.1, the class of the

ith observation is predicted to be Class 1 by the two models, but model one predicts Class 1

with probability πi1 = 0.51 and model two predicts Class 1 with probability πi1 = 0.90, the

two model get the same score for this observation based on the confusion matrix. However, if

the true class is Class 1, a classifier that predicts Class 1 with probability πi1 = 0.51 should

be given less reward than a classifier that predicts Class 1 with probability πi1 = 0.90 because

model two is more confident in the correct decision. On the other hand, if the true class is

Class 2, a model that wrongly classifies the observation as Class 1 with probability πi1 = 0.51
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should receive a lesser penalty than a model that classifies the observation (incorrectly) as

Class 1 with probability πi1 = 0.90 because the first model is less confident in its incorrect

prediction. However, in both cases above, the the two models get the same score in the

confusion matrix scoring methods regardless of the probabilistic degree of confidence in the

decision.

To account for prediction certainty in our model evaluation, propoer scoring rules can be used.

In particular, we use the Brier score (BS), which enables scoring the model predictions not

based on the result from a classification rule but instead using the probabilistic predictions

(Gneiting and Raftery, 2007). The BS strongly rewards confident and correct predictions and

strongly penalizes confident and incorrect predictions by using the predicted probabilities

generated by the model. As such, the BS can take on values between 0 and 1 and can be

calculated similarly to the mean square error with

BS = 1
N

N∑
i=1

(fi − yi)2 , (3.28)

where fi and yi are, respectively, the predicted (probabilistic) forecast and observed values

and N represents the number of observations. Based on the definition in Equation 3.28, the

Brier score can be thought of as the mean squared error between predicted probabilities and

the observed values. The minimum BS of 0 indicates the best performing model (perfectly

calibrated predictions) while the highest value of 1 indicates the worst possible model.

Therefore, the lower the BS the better the model.

Here we present a brief example of the use of the Brier score. If the ith observation is Class 1

and is predicted to be Class 1 with probability 0.90, then the contribution to the BS from

this observation is BSi = (0.90 − 1)2 = 0.01. The resulting BS of 0.01 is close to 0 and

indicates the model is generating good predictions for this observation. On the other hand, if

the ith observation is Class 1 and is predicted to be Class 1 with probability 0.1, then the
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contribution to the BS from this observation is BSi = (0.1 − 1)2 = 0.81. The resulting BS of

0.81 indicates the model performance is poor for this observation and the BS is penalizing

this prediction for being confidently incorrect. In comparison, say a different model predicts

the probability of Class 1 for the two cases above at 0.51 and 0.49. For these predictions,

the observation-level BSs are BSi = (0.51 − 1)2 = 0.2401 and BSi = (0.49 − 1)2 = 0.2601,

respectively. As such, both of these predictions are given reasonable (and similar) scores

because, while one prediction is incorrect, both predictive probabilities express a lack of

confidence about the prediction and thus don’t incur an overly strong penalty. However, if

a classification scoring rule was used, these very similar probabilistic predictions would get

quite different scores for the confusion matrix based scores.

If there is a baseline model, one can use a relative metric, the Brier Skill Score (BSS), to

compare a proposed forecast to a reference forecast. The BSS is defined as

BSS = 1 − BScan
BSref

,

where BScan means Brier score for a candidate model and BSref is the Brier score for a

reference model. The reference model is the one to be improved. For example, the candidate

model in our case is the SP-GMM and the reference model is the NSP-GMM.

The BSS values are in the range of (−∞,∞), but very extreme values are less likely unless a

model is significantly better/worse than the reference model. A negative BSS indicates that

the candidate model performs poorer than the current model, a BSS of 0 indicates that both

model perform equally, and a positive BSS means that the candidate model outperforms the

current model.

The scoring measures comparing the performance of both models (NSP-GMM and SP-GMM)

on the simulated non-spatial data are presented in Tables 3.2 and 3.3. The results in Table

3.2 , especially the BS and AUC scores, show that NSP-GMM model performs better than
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Table 3.2: Measuring model performance on the non spatial data

NSP-GMM SP-GMM
BS 0.027 0.215
AUC 0.993 0.735
ACCURACY 0.951 0.950
Note:
BSS = -7.11463554842951

Table 3.3: Classification sensitivity and precision on the non spatial data

NSP-GMM SP-GMM

class1 class2 class3 class1 class2 class3
PRECISION 0.988 0.899 0.970 0.983 0.903 0.966
SENSITIVITY 0.969 0.964 0.919 0.973 0.953 0.924

SP-GMM model when the data are simulated without spatial autocorrelation among the

class labels. Focusing on the BS and BSS, we can see that the BS of 0.02652319 for the

fitted NSP-GMM is much more closer to zero than the BS of 0.2152261 obtained for the

fitted SP-GMM. In addition to the Brier Scores, a negative score of -7.114636 for the BBS

obtained by taking the NSP-GMM as the reference model compared to the SP-GMM model,

means that when there is no spatial autocorrelation in the data, the NSP-GMM outperforms

the SP-GMM.

The results in Table 3.3 focus on the confusion matrix scores of precision and sensitivity

broken down for each class. Comparing the NSP-GMM and SP-GMM scores in this table by

class, there is no outstanding difference in model performance on the simulated non-spatial

data. Considering the totality of the scores in both Tables 3.2 and 3.3, we realize that all

the non probabilistic scores(precision, sensitivity and accuracy), do not indicate any major

difference in the performance of the NSP-GMM on the non spatial data. On the other hand,

we can see that when considering probabilistic scoring methods (BS, BSS, and AUC), we

can identify the difference in predictive performance between the NSP-GMM and SP-GMM

models fitted to the simulated non-spatial data.
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Table 3.4: Measuring model performance on the spatial data

NSP-GMM SP-GMM
BS 0.0791703 0.0340775
AUC 0.9524643 0.9932855
ACCURACY 0.8525000 0.9639000
Note:
BSS = 0.569566749475794

Table 3.5: Classification sensitivity and precision on spatial data

NSP-GMM SP-GMM

class1 class2 class3 class1 class2 class3
PRECISION 1.000 0.655 0.877 0.990 0.905 0.968
SENSITIVITY 0.774 0.926 0.944 0.984 0.949 0.936

The quantitative model evaluation results on the simulated spatial data are presented in

Tables 3.4 and 3.3. The results in Table 3.4 show a better score for the SP-GMM for all the

scoring methods(BS, AUC, and accuracy). However, the results in Table 3.5 only indicate

clear differences for some of the classes and metrics, for example, the precision of classes 2

and 3 and the sensitivity for class 1 are lower in the NSP-GMM than the SP-GMM model

fits. Table 3.5 displays a BS of 0.07917027 and 0.03407752 for the NSP-GMM and the

SP-GMM, respectively. Because the smaller value of the BS indicates better performance, we

conclude from the BS that when there is spatial autocorrelation in the data, the SP-GMM

performs better than the NSP-GMM. To have a more understanding of how much better the

SP-GMM is relative to the NSP-GMM, we calculated the BSS using the NSP-GMM as the

reference model. The resulting BSS score of 0.5695667 means that when the observations

are spatially correlated, fitting a SP-GMM improves the Brier score by 56.95667 % compared

to the NSP-GMM BS.
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3.9 Conclusion

In this chapter we focused on GMMs, their applications and limitations, and proposed

some solutions to common practical issues in fitting GMMs. GMMs have been useful in

several applications including clustering and image segmentation. In these applications,

the GMMs are fitted under the assumption that each observation is independent from the

other observations. However, this assumption of independence between observations is often

unrealistic in real data, which limits the applications of GMMs and can potentially degrade

their predictive performance.

To extend the applications of the GMMs to spatially-correlated datasets, we proposed a new

version of GMMs, the SP-GMM, that allows us to fit datasets that exhibit spatial autocorre-

lation. Including spatial information in a GMM is conceptually simple, but computationally

intractable because incorporating spatial information in our GMM is done by introducing a

latent spatially correlated parameter. Because the latent parameter is transformed and used

as a probability in a multinomial distribution, it is challenging to update these parameters

within a MCMC framework due to a lack of conjugacy. To overcome these computational

challenges arising due to the lack of posterior conjugate updates for the spatial latent pa-

rameter, we applied Pòlya-Gamma data augmentation methods to enable computationally

efficient MCMC parameter updates.

Our simulation results show, unsurprisingly, that ordinary GMMs (NSP-GMM) performs

better than the SP-GMM when the observation are independent of each other. And, as

expected, when the observations are spatially dependent, the NSP-GMM becomes less effective

because it only has one parameter (σ2) to model both random variations and spatial variations.

On the other hand, the SP-GMM performs better than the NSP-GMM when the observations

are spatially correlated. Therefore, in data with spatially-correlated patterns in class labels,

we expect the SP-GMM model to have improved performance.

The simulation study demonstrated that model evaluations based on the confusion matrix
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alone may be less effective to measure model performance for probabilistic prediction. To

account for model uncertainty in our model evaluation we used proper scoring rules. For model

comparison, we used a relative metric, the Brier Skill score, to compare model performance

of the NSP-GMM to that of the SP-GMM on both the simulated non-spatial data and the

simulated spatial data. The BSS results show that the NSP-GMM fits better the non-spatial

data than the SP-GMM when the simulated data is spatially independent, while the SP-GMM

outperforms the NSP-GMM when the data is spatially dependent. This result is not surprising

and validates our hypothesis that the SP-GMM model will outperform the NSP-GMM in the

presence of spatial autocorrelation.
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Chapter 4

Real-life Application: Analysis of a Breast Tumor THz Image Using a Spatial

Gaussian Mixture Model

According to the National Cancer Institute, breast cancer is the most common cancer in

women worldwide and one of the leading causes of cancer death in women. There are

several treatments for breast cancer depending on its type and stage, but the most common

treatment is surgery (National Cancer Institute). Common surgical techniques for excision

of breast cancer tumor require removal of the tumor and nearby cancer-free margins to

prevent recurrence of the cancer. However, with current surgical techniques, up to 38% of

patients undergo a second surgery because the surgical margins cannot be accurately assessed

in real-time (Unger et al., 2020). Currently, surgical margins of excised breast tumors are

typically analyzed by a pathologist post surgery after the tumor sample is fixed in formalin

solution and embedded in paraffin. The whole procedure of processing and analyzing the

tumor may take several days or even even weeks before the pathological results are reported

(Bowman et al., 2017). The success of the surgical procedure is defined by complete removal

of all the malignant cells and the waiting time to get the pathology results endangers the

life of patients because before the results of the pathology report are available, there is no

conclusive determination on the success of the operation. If a surgery is not successful in

removing all cancerous cells along the margin of a tumor a second surgery is often required.

Unfortunately, Maloney et al. (2018) and the National Cancer Institute report that that

when the pathology results are finally completed, about 15% to 35% of results reveal positive

margins (cancer cells on the outer edge of the tumor) which requires patients to undergo

additional surgeries to avoid recurrences. Therefore, accurate methods of assessing the margin

of cancerous tumors to ensure complete removal of all malignant cells in real or near - real

time can improve breast cancer treatment by reducing additional surgeries.

Over the years, traditional medical imaging methods such as X-ray mammography, ultrasound,
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and magnetic resonance imaging (MRI) have been used to obtain near real time qualitative

results with an estimated sensitivity and specificity between 83% and 95% and 90% and 98%,

respectively, in discriminating between cancerous and non-cancerous human tissues (Maloney

et al., 2018). However, Yu et al. (2019) and Maloney et al. (2018) argue that these traditional

medical imaging methods are less accurate in differentiating between breast tissues than in

other human tissues and, in addition, may cause tissue damage which makes these imaging

techniques risky. Recently, Unger et al. (2020) proposed a real-time breast cancer margin

assessment using fluorescence lifetime imaging and machine learning with sensitivity and

specificity of 93% and 89%, respectively, in breast cancer tissue identification.

One of the emerging imaging technologies proven to make a clear distinction in different

types of human tissues is THz imaging (Bowman et al., 2017). The main advantage of THz

imaging is that it can be used to distinguish between normal and diseased tissues in real

time and does not cause any harm to body tissues (El-Shenawee et al., 2019). The ability of

THz radiation to penetrate deeper in human tissues without resulting in a radiation hazard

makes THz imaging a potentially impactful method for real time tissue discrimination when

compared to traditional imaging techniques (Yu et al., 2019). In addition, THz time-domain

signals generated at a pixel level during a THz scan of breast tumor provide a reliable source

of quantitative data for statistical analysis. Therefore, with appropriate statistical analysis,

THz imaging has the potential to be a reliable technology to discriminate among breast

tumor tissues, potentially increasing the accuracy in assessing the margins of a freshly excised

breast cancer tumor.

4.1 Breast tumor THz image data and modeling methodology

Obtaining sufficient human breast cancer tumor samples is challenging because it requires

placement of the THz imaging system in a surgical setting without an immediate clinical

benefit. Therefore, to collect a sufficient number of samples for reliable data analysis, a mouse

model of breast cancer was used to collect the data. The mouse models used to generate the
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data includes xenograft and transgenic mice fed with a high fat diet to simulate breast cancer

tissues (El-Shenawee et al., 2019).

To discriminate among tissue types, we consider data collected from two sources: THz imaging

and pathology reports. THz scan data is used to train the model while pathology image is

used for classifying the tissue labels which allows for model testing and validation. Each

THz image data consists of a time domain signal generated at each pixel location during the

scan of the tumor, which results in a 3-dimensional array <x, y, t> used to construct a THz

image of the tumor. The x and the y variables define pixel positions in the THz image of

where a signal was received, with the values of the location s = (x, y)′ defining a specific pixel

position in the THz image on a regular lattice D. The variable t, t = 1, . . . , T denotes the

time-point THz pulse received at each pixel position. To simplify the statistical analysis with

the goal of extending a Gaussian mixture model to a spatial domain, only the maximum

of the THz signal/response observed at each pixel is considered. Let ymax(s) = max(y(s))

be the observed maximum THz value at location s, where y(s) = (y1(s), . . . , yT (s))′ is the

full THz response (over all THz frequencies t = 1, . . . , T ) at grid cell s. For notational

simplicity, the indexing of the maximum is dropped and we define y(s) ≡ ymax(s). Therefore,

our training dataset can be thought of as a n × 1 vector y(s) = (y(s1), . . . , y(sn))′ of THz

maximum responses observed at each of the i = 1, 2, . . . , n pixel locations.

The pathology image data is a vector of discrete values from the set {-1, 0, 1, 2, 3, 4}, which

represents each of the tissue labels. The integers -1 and 0 are labels for images background

and gaps in the image and these are assumed to be known values and are therefore dropped

from the data analysis. The integer 1 is used to label cancer tissues, while the integers 2,

3, and 4 are labels for other possible tissue types in the human breast (e.g. fatty tissue,

connective tissue, etc.). Thus, for each of the n observations that correspond to breast tissue,

the observed pathology at grid cell s is defined as z(s). In practice, not all tissue types are

observed in each mouse tumor, and, as such, these unobserved classes are dropped from
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consideration in analyzing a specific tumor if these tissue classes are not present.

As a case study, we consider a single example mouse tumor, shown in Figure 4.1. The sample

in Figure 4.1 is a freshly excised mouse tumor from a mouse fed with a high-fat diet to provide

sufficient fatty tissues for xenograft tumors to simulate human breast tissues. Xenograft

mouse tumors result from implanting cancer cells from a patient into a mouse. The first row

of this figure display freshly excised tumors. Top left image is a photo of the tumor, while

top left image illustrate THz image of the freshly excised tumor. The second row of Figure

4.1 contains images of the after it was embedded in paraffin. The bottom left image in this

figure is a Pathology image obtained by mean of microscopy, while the bottom right image is

a THz image constructed based only on the maximum THz reflections (responses). Notice

that in this figure, there are only two tissue types present, cancer and fat.

Figure 4.2 visualizes the mouse tumor data and provides a pixel-by-pixel visual comparison

between the observed THz image (left) and the validation pathology labels (right). The

pathology image has two classes with cancer tissue identified by a purple color and fat tissues

identified by a yellow color. Even though the clustering in the THz image is not as obvious

as in the pathology, we can at least partially identify in the THz image the two classes that

correspond to the pathology image. The darker green and brighter yellow regions in the

THz image are correlated to the yellow and purple regions in the pathology image. An other

important observation from the first row of Figure 4.2 is that both images have the same

shape which is very important for model evaluation because we perform a pixel-by-pixel

comparison to assess predictive skill of the model. The second row of Figure 4.2 is a density

plot of the observed THz data conditional on the class labels. The density plot displays the

overlap in the observed maximum THz for the different tissue types. The overlapping of

the two conditional densities may result mis-classification of the observations when using

a mixture model. In other words, cells that have observed maximum THz values situated

in the overlapping regions in the density plot have higher probability of being assign the
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Figure 4.1: The first row in this figure shows a photograph (top left) and a THz image (top
right) of the fresh tumor. In the second row, we illustrate the pathology image (bottom left)
and the THz image constructed after creating a formalin-fixed and paraffin-embedded block of
tissues (bottom right).

wrong class. The hypothesis of this work is that the inclusion of spatial autocorrelation in

the Gaussian mixture model will reduce the mis-classification rate in this overlapping region

of conditional THz observations. Consequently, we expect a spatial Gaussian mixture model

to improve classification skill as a result of better fitting the conditional mixture densities

(second row of Figure 4.2) by accounting for spatial autocorrelation in the THz image data of

the breast tumor.

Before we fitted and validated our models, we first cleaned our sample data. The sample THz

scan raw data is a three dimensional array with sizes < 1 : 120, 1 : 140, 1 : 1024 >. Taking
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Figure 4.2: This figure shows the maximum THz response data (training dataset) to the
Pathology data (validation dataset). In the first row we compare the maximum THz response
map to the pathology, while in the second row we present conditional Gaussian mixture
densities given the pathology classification.
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only the maximum THz response observed at time t = 1, . . . , T = 1024 reduces the data

to a 120 × 140 matrix of maximum THz responses. For computational benefits, all pixels

located in the background regions were discard from the sample because these pixels are

not of interest in the modeling process. After removing all the data corresponding to the

background of the image, our sample size reduces from 16800 to 3431, and we fitted both

models NSP-GMM and the SP-GMM to the reduced data presented in Figure 4.2. Note

that for a pixel-by-pixel comparison in model evaluation, we also performed the same data

cleaning to the pathology image to match the THz image as we can see first row of Figure

4.2.

Modeling the THz image data of breast cancer tissue assumes that human breast tissue types,

including cancer tissues, have a differential response to THz scan pulses (El-Shenawee et al.,

2019). From this assumption, we deduce that the maximum response values observed at each

pixel location varies by tissues type. As a result, the maximum pixel values in the breast

tumor THz image data can be thought of as a mixture distribution, where each mixture

component correspond to breast tissue type. Following these assumptions, a Gaussian mixture

model (GMM) is a natural choice for classifying breast tissue types using THz image data.

Moreover, Chavez et al. (2019) demonstrates that tissue types at neighboring grid cells are

more likely to be of the same type than tissue cells widely separated on the grid. Following

this observation gives rise to the assumption that there exists spatial autocorrelation between

tissue types and THz image values. To account for spatial autocorrelation in predicting

for tissue type classes, we model the tissue type indicator variables z(s) with a spatially

autocorrelated latent process. Therefore, we hypothesize that a spatially correlated Gaussian

mixture model (SP-GMM) will exhibit improved classification accuracy and specificity when

compared to the results presented in Khan (2018) who used a GMM model.
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4.1.1 Spatial Gaussian mixture modeling

In a Gaussian mixture model (GMM), an observation is assigned to a specific cluster based

on the probability of that observation being from the cluster. In the THz image data, clusters

are defined by tissue type/tissue region in the THz image. To predict the tissue type at a

pixel location in the THz image we use two versions of GMMs. The first GMM assumes that

pixel values are spatially independent, and it can be stated (in brief) as

y(s) | {µj}Jj=1, {σ2
j}Jj=1, z(s) ∼

J∏
j=1

(
N(y(s) |µj, σ2

j )
)I{z(s)=j}

,

where the class type indicators z(s) are spatially independent multinomial random variables

such that z(s) ∼ Multinomial(π) with π = (π1, . . . , πJ)′ where πj ≥ 0 for all j = 1, . . . , J

and ∑J
j=1 πj = 1. This form of Gaussian mixture model that assumes independence of the

class labels is referred to as NSP-GMM.

The other GMM is (SP-GMM) assumes spatial dependency among pixel labels. To account for

spatial autocorrelation in predicting tissue type classes, we model the class indicator random

variables z(s) at location s with spatially-correlation induced through a set of J-1 latent spatial

processes η1(s), . . . , ηJ−1(s) at location s. For j = 1, . . . , J − 1, ηj = (ηj(s1), . . . , ηj(sn))′ ∼

N(0, (τ 2
j Q(ρj))−1) is a first-order conditional autoregressive spatial process with precision τ 2

j

and precision matrix Q(ρj) given a correlation parameter ρj.

To overcome computational intractability in updating the J − 1 spatial random fields ηj, we

apply the Pòlya-Gamma data augmentation implemented using the stick-breaking technique

described in Equation 3.1. The resulting SP-GMM we fitted to the THz image data can be

written as

y(s) | {µj}Jj=1, {σ2
j}Jj=1, z(s) ∼

J∏
j=1

(
N(y(s) |µj, σ2

j )
)I{z(s)=j}

,
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where z(s) ∼ Multinomial(π(η(s))), with stick-breaking transformation of π(η(s)) having

the jth element

πj (η(s)) = eηj(s)∏
k≤j 1 + eηj(s) .

To fit the NSP-GMM, we implemented the Gibbs sampling algorithm described in Equation

3.7 with prior distribution for the mean and the variance parameters µj ∼ N(0, 1002)′,

σ2
j ∼ inverse-Gamma(1, 1), respectively, for j = 1, . . . , J . To fit the SP-GMM we used the

Gibbs sampling algorithm described in Equation 3.26 with the same mean and variance

priors as above. The additional parameters τ 2
j and ηj were assigned the following priors:

τ 2
j ∼ Gamma(1, 1), and η2

j ∼ N(0, (τ 2
j Q)−1), for j = 1, . . . , J − 1 with Q being the precision

matrix of a first order conditional autoregressive model over the grid with correlation parameter

fixed at 0.999. To fit both the GMM and SP-GMM models, we ran our MCMC for 5000

iterations and discarded the first 1000 as burn-in samples. Excluding the burn-in samples

reduces bias in the parameter estimates because the burn-in samples are less likely to come

from the target posterior distribution. In other words, before the chain has converged, the

MCMC samples are not being sampled from the target distribution and are thus discarded

to remove any effects due to initial conditions.

4.1.2 Evaluation of model performance

In this section, we compare performance of the NSP-GMM and SP-GMM models to the mouse

tumor data (Figure 4.2). After fitting both models to the mouse tumor THz observations, the

trace plots for the mean and standard deviation parameters of the Gaussian mixture models

are shown in Figure 4.3. Comparing the trace plots in Figure 4.3 from the NSP-GMM (left

column) to those given by the SP-GMM (right column), it can be seen that both the mean

and the standard deviation chains mix well and show no evidence of lack of convergence. The

115



Figure 4.3: This figure compares trace plots for the mean and standard deviation parameters
when the models are fitted to the real data. The top right and top left graphs respectively
illustrate the trace plots of the mean parameter for the NSP-GMM and SP-GMM models.
The bottom right and bottom left graphs compare trace plots of the mixture density standard
deviations for the NSP-GMM (left) and SP-GMM (right) models.

MCMC trace plots for the mean and standard deviation parameters for both the NSP-GMM

and the SP-GMM model seem to have the same center, such that there is no evidence of either

model converging to parameters with significantly different values. However, the SP-GMM

seems to have converged faster than the NSP-GMM. This is likely due to the NSP-GMM

model being more prone to label switching than the SP-GMM because the the latent spatial

variable provides a constraint on the exchangability between posterior modes.

Figure 4.4 provides a visual evaluation of the NSP-GMM and SP-GMM models relative to the

pathology image. The observed THz data (top left) and class labels in the pathology image

(top right) show the data used to fit and validate the model, respectively. The posterior mean

probability estimates are shown in the middle row of Figure 4.4 for the NSP-GMM (left) and

SP-GMM (right) models with the scale at the bottom of each representing the posterior mean

probabilities for cancer. The region with high probabilities in the posterior mean probability

map indicate the most likely predicted locations for cancer in the tumor. Comparing the
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Figure 4.4: The first row of this figure displays observed maximum THz map (top left) and the
pathology map (top right). In the second row, we compare posterior mean probability between
the NSP-GMM (middle left) and the SP-GMM (middle right). In the third row, we compare
the NSP-GMM posterior probability standard deviations (bottom left) to those given be the
SP-GMM (bottom right).
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regions of high probabilities between the NSP-GMM and the SP-GMM, we observed more

predictive certainty (high posterior mean probability) for cancer cells in the SP-GMM than

in the NSP-GMM, especially near the boundaries of the cancerous region. Also, we can see

that the regions with high mean posterior probability of being cancer (yellow color) by the

SP-GMM (second row, right) match the purple region in the pathology image (top right)

more closely than those predicted by the NSP-GMM (second row, left). In other words, the

SP-GMM mean posterior probability estimates more closely resemble the pathology classes

than the NSP-GMM posterior mean probabilities. Moreover, the NSP-GMM posterior mean

probability map exhibits more fuzziness, due to a lack of spatial smoothness. The SP-GMM

posterior mean probability map on the other hand, displays strong spatial smoothness that

resemble more the spatial structure in the pathology image than the spatial structures in the

NSP-GMM.

The third row of Figure 4.4 displays the posterior standard deviation of probability of cancer

for the NSP-GMM (left) and SP-GMM (right) models. Comparing the scales of the posterior

probability standard deviations, areas of high standard deviations (yellow color) in both

models generally correspond to regions of tissue boundaries in the pathology image. In other

words, both models are generally less certain about the classification of cells along the margin

of the tumor. However the posterior probability standard deviation scales indicate that there

is a lot more variation in posterior probabilities of the SP-GMM than in the NSP-GMM.

This is because the variation in posterior probabilities in the SP-GMM depends not only

on the observation values but also on the values of their neighboring cells. This means that

the SP-GMM that accounts for spatial information predicts the tissue boundary cells with

less certainty because cells at the tissue boundaries can be either cancer or fat, and, as such,

these boundary regions are much more clearly visible in the SP-GMM posterior probability

standard deviation image. But, despite higher uncertainty, the SP-GMM predictions from

the posterior mean probabilities are more likely to be correct than those from the NSP-GMM

because the SP-GMM leverages the spatial information (i.e., the type of neighboring cells) in
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predicting observation classes). On the other hand, the NSP-GMM has unrealistically low

posterior uncertainty along the tissue type boundaries and this is problematic because the low

uncertainty can lead to highly confident, but incorrect, conclusions which can have adverse

effects in the long term prognosis of the patient. As such, the posterior standard deviations

from the SP-GMM model have much more utility for addressing the clinical question of

whether the surgeon has fully removed the tumor with all of its margins intact.

Figure 4.5 shows the observed maximum THz scan (top left), observed pathology classes

(top right), predicted classes from the NSP-GMM model (bottom left), and predicted classes

from the SP-GMM model (bottom right) where the predicted classes were determined by

using the highest posterior mean probability. The predicted classifications in Figure 3.11

show that when fitted on the mouse tumor data, the NSP-GMM (bottom left) and SP-GMM

(bottom right) predicted classes do not exhibit significant visual differences from one another,

but do have small differences. The predicted class labels from both models have common

patterns observed in the ground truth pathology image, and, from the visualization alone, it

is not clear which model performs better. However, we expect that quantitative evaluation,

especially using probabilistic scores, will provide a more meaningful model evaluation of the

predictive skill of the models.

To better understand the performance of these models in discriminating among Breast tumor

tissue type, we used the quantitative model evaluation metrics presented in Tables 4.1 and

4.2 which show both probabilistic and confusion matrix scoring methods applied to the mouse

tumor data. The scoring methods used to evaluate our models include the Brier score (BS),

Brier Skill score (BSS), area under the receiver operating curve (ROC) (commonly known as

AUC score), sensitivity, accuracy, and precision, and their scores are presented in Table 4.1

and 4.2.

To better understand the meaning of the scores in 4.1 and 4.2, we first discuss the meaning

and interpretation of these scoring methods. The BS, as defined in Equation 3.28, has a
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Figure 4.5: This figure displays the classification results of the NSP-GMM and SP-GMM
models applied to breast tumor tissue types using a THz image. On the top left of this figure
we have the map of the observed maximum THz scan data used to fit the models, while the
top right map is the pathology map used as a validation map. The map at the bottom left
side illustrates NSP-GMM predicted classes, while the bottom right illustrates the SP-GMM
predicted classes.
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Table 4.1: Measuring model performance on the real data

NSP-GMM SP-GMM
BS 0.1141415 0.1105126
AUC 0.9395083 0.9610156
ACCURACY 0.8519382 0.8665112
Note:
bss = 0.0317933452762224

minimum value of zero which indicates the best model, whereas the maximum value BS of 1

indicates the worst model. Therefore, the closer to zero the BS is the better the model. The

BSS is a relative metric used to compare a candidate model to a reference model, where in our

case the candidate model refers to the SP-GMM and the reference model to the NSP-GMM.

A positive value of the BSS indicates that the candidate model is better than the reference.

A positive BSS can also be interpreted as a percent improvement made in predictions by the

candidate model compared to the current model. A BSS of zero means that the models that

are being compared have the same performance on the data under consideration, while a

negative BSS indicates that the candidate model performs poorer that the current model.

The AUC score is an other important scoring method, whose value corresponds to the area

under the ROC curve. Recall that the ROC curve is a graph that displays the performance

of a classifier at all classification thresholds, ∈ (0, 1). The values of the AUC range between

0 and 1 where an AUC score of 0 indicates that the model makes 100% wrong classifications

while an AUC score of 1 indicates that the model has perfect classifications. Therefore, the

closer the AUC is to 1, the better the model. The accuracy is defined as the proportion of all

observations that are correctly classified by the model. Sensitivity is used to measure the

percentage of positive class subjects that are correctly classified as positive by the model.

In the case the mouse tumor data, sensitivity is the proportion of cancer cells in the breast

tumor that are correctly identified as cancer by the model. Precision is generally defined as

the proportion of predicted positive class subjects that are actually positive. In the case of

our mouse tumor data, precision defines the proportion of breast tumor cells predicted to be
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Table 4.2: Classification sensitivity and precision on the real data

NSP-GMM SP-GMM

cancer fat cancer fat
PRECISION 0.953 0.746 0.949 0.773
SENSITIVITY 0.797 0.939 0.826 0.930

cancer by the model that are, in actuality cancer.

The scores in Table 4.1 indicate that the SP-GMM has better scores with respect to BS, AUC,

accuracy, and BSS than the NSP-GMM. The scoring results in Table 4.1 show that precision

for the cancer tissue and sensitivity for fat tissue are almost equal for the NSP-GMM and the

SP-GMM. However, the SP-GMM shows a better performance in precision for the fat tissue

and sensitivity for the cancer tissue sensitivity than the NSP-GMM. Considering scoring

results in both table 4.1 and 4.2, we can conclude that the SP-GMM performs better than

the NSP-GMM in the analysis of breast tumor THz image for tissue classification.

To understand how the SP-GMM improves predictions in breast tumor THz image tissue

discrimination, we calculated the Brier Skill score that compares the SP-GMM BS to the NSP-

GMM BS. Considering the NSP-GMM model as the reference model with BS of 0.1141415

and the SP-GMM as the candidate model with the BS of 0.1105126, the resulting BSS equals

0.03179335. This BSS score indicates that fitting the SP-GMM to the breast tumor THz

image data improves the Brier score by 3.179335% compared to the NSP-GMM. Taking a

close look at the BSS and the AUC scores, we can see that the improvement in the BSS

is almost equal to the one observed in the AUC. This is because both BSS and AUC are

probabilistic scores, although only BS is a proper scoring rule.

4.2 Conclusion

Because of the ability of GMMs in image segmentation, GMMs have great potential in medical

imaging for tissue classification. However, because diseased tissues or tissue of the same type
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tend to be in the same location, and in many cases, diseased cells affect their neighbors more

than distant cells, medical image data are very often spatially-correlated. Therefore, as we

have shown, spatial GMMs can improve predictive skill in medical imaging.

In this study we fitted both the NSP-GMM and SP-GMM to the THz image data of breast

tumor with assumption that pixel value class labels are spatially dependent. To improve

the evaluation of the statistical models, we evaluate and compared model performance very

carefully using multiple metrics. After a qualitative and quantitative analysis of both models,

using both non probabilistic and probabilistic scoring methods, our results show that the

SP-GMM provides improved performance that the NSP-GMM in the analysis of THz image

of breast tumor. Consequently, SP-GMMs show promise in improving predictions and guiding

decision making in the presence of uncertainty. Therefore, these results show that there is

potential to make an impact on cancer treatment using the SP-GMM model.

In the future, more work is needed to apply spatial GMMs to multivariate mixture data. For

example, future THz image data analysis would be further improved by using a multivariate

GMM to fit the full THz scan data where a pixel value is the entire response curve instead of

the maximum of the response values. Thus, rather than using just the maximum THz value,

the entire THz scan should provide more ability to discriminate between tissue types.
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