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   ABSTRACT 

Poultry is a staple protein source for most of the planet. Until recently, antibiotic growth 

promoters (AGPs) were used to prevent illnesses in commercial chicken production. Currently, 

this is not possible due to regulations and consumer concern, but without such a preventative, 

diseases like necrotic enteritis (NE) have reemerged, posing a threat to bird health, and 

ultimately, our food source. Necrotic enteritis is a severe gastrointestinal disease caused by the 

gram-positive pathogen, Clostridium perfringens. Clinical features of this disease are diarrhea, 

intestinal lesions, and death, with a high transmission rate. In a subclinical form, growth 

performance is diminished and is the primary cause of economic loss to producers. Butyrate 

substances have been introduced to replace AGPs. Studies show these substances appear to 

relieve intestinal damage that is caused by NE. The relationship between gut health and gut 

microbiota community structure is well established in human studies. It is expected that animals 

are affected by their gut microbiota composition similarly. It is unclear whether the butyrate 

treatment influences the chicken GI microbiota composition or if such a change would help 

explain the mechanisms that improve intestinal lesions in birds affected by NE. By using 16S 

rRNA High-Throughput Next Generation (HTNG) amplicon gene sequencing, we compared the 

microbial composition of the cecum and ileum of birds from three different groups: T1, 

nonmedicated, unchallenged with C. perfringens (negative control group), T2, nonmedicated, 

challenged with C. perfringens (positive control group), and T6, treated with butyrin (Butyrin 

SR130, Perstorp) in the feed at 0.5kg/metric ton from day 0 to day 14 and at 0.25 kg/metric ton 

from day 14 to 20 (variable dose) and challenged with C. perfringens (Hofacre, et al., 2020).  

The objective of this study was 1) to assess the efficacy using gut microbial communities as a 

novel measure of NE in broiler chickens, and 2) to assess the efficacy of a butyrate treatment for 



 
 

NE in chickens. The results indicated no significant effect on beta diversity of microbial 

community structure among the three treatment groups. The disease challenge in groups T2 and 

T6 was observable and significant, yet the microbial composition and abundance of C. 

perfringens were visually indistinguishable among the three groups of birds. Random Forest 

analysis identified some enriched features in the T1 and T6 groups that were rarely present in the 

T2 group of the ileum and cecum. This thesis explores the potential explanations for the lack of 

microbial diversity between unchallenged birds, and birds intentionally inoculated with a known 

pathogen, as well as a further look into the enriched features identified by Random Forest. These 

features may play a small role in the recovery of NE through tributyrin treatment that additional 

research could explain.   
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1. Introduction  

Decades of advancement in science and technology have been utilized by the agriculture and 

poultry industries to produce more food now than ever before. The birth of the broiler industry in 

the 1920’s consisted of a 16 square-foot, 500-bird capacity barn (Godley et. al., 2020), heated by 

a coal stove, and the management of feeding and watering those birds was conducted by hand.  

Modern poultry producers in the U.S. can adjust their 20,000-bird capacity broiler-house settings 

for temperature, humidity, lighting, and automated feeders and waterers as easily as operating a 

smartphone. In addition, our scientific understanding of heritable traits in the 1970's has allowed 

geneticists to breed quick-growing, large birds, ideal for meat consumption. What is more, we 

can calculate nutritional requirements and formulate diets that optimize feed efficiency and 

animal health for each stage of bird growth. Thanks to advances in veterinary science, we have a 

greater understanding of the diseases threatening our flocks, and until recently had nearly 

unbridled access to antibiotics for the treatment of many of those diseases. These advances have 

led to better animal health and some of the most sustainable management practices of 

conventional livestock production. 

One of the most recent scientific innovations of meaningful application to poultry research and 

industry includes the ability to conduct a microbial census within a targeted biological location. 

These microscopic organisms include bacteria, viruses, and yeasts and vastly outnumber host 

gastric cells. Assessing the composition of the chicken’s gut microbial community may be the 

next diagnostic tool for diagnosing and maintaining overall bird health. Much like improved 

understanding of animal breeding and nutrition propelled the poultry industry forward, the 

effects of 16S rRNA gene sequencing techniques used in microbial research for disease control, 

broiler house-environment maintenance, growth performance, and feed efficiency, among other 
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factors, is likely to maintain this forward progress. Bird health is greatly affected by 

gastrointestinal health, and comprehensively the health of the gut microbiome. To best 

understand innovative microbiota research methods and their application to bird health, a look at 

the gastrointestinal tract of broiler chickens is essential.  

      2. Gastrointestinal Health of Broiler Chickens 

      2.1. Morphology and Physiology of Broiler Gastrointestinal System  

The GI tract of chickens begins at the beak. This is the site of ingestion and passage of food to 

the upper esophagus. The upper esophagus transports food to the crop for storage unless the 

bird’s stomach is empty. If empty, food will bypass the crop, entering the lower esophagus for 

transport to the proventriculus and gizzard. The proventriculus, or glandular stomach, is 

comprised of oxynticopeptic cells which secrete digestive enzymes such as pepsinogen, as well 

as hydrochloric acid, and mucous (Denbow, 2015). These enzymes begin to break down the 

soluble components of the ingested food and moisten it into a soft bolus before transferring it to 

the gizzard. The gizzard functions as the main masticatory organ, collecting grit and smashing 

the bolus apart into tiny particles, increasing its surface area for enzymatic digestion. Once 

broken down physically and the chemical digestion process has sufficiently begun, food particles 

enter the small intestine at the duodenum. Duodenal, jejunal and ileal villi, and microvilli, with 

the help of the pancreas and liver, secrete protein-, fat-, and carbohydrate-specific enzymes for 

further nutrient digestion and the process of nutrient absorption begins. Any remaining small or 

soluble undigested food particles enter one of the two cecal tubes – the main sites of microbial 

fermentation (Svihus et al., 2013). After roughly 24 hours, the remaining undigested food 

particles enter the large intestine, the primary site of water reabsorption. 
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      2.2. Enteric Disease Control without Antibiotics  

Combating enteric disease has historically been challenging for the poultry industry, even more 

so with the recent removal of antibiotics in a consumer-driven and evolving market. In recent 

years, concerns about the overuse of antibiotics in the agricultural industry have grown, followed 

by a reduction in the commercial use of antibiotics and antibiotic growth promoters (AGP). The 

diseases these antibiotics formerly treated and/or prevented remain a threat to bird health in the 

absence of antibiotics. 

 Antibiotics have been used in animal production not only for the treatment of disease but as 

AGP to improve growth rate and feed efficiency (Costa et al., 2017). It is the latter of the two 

uses that has spiked concern due to fear of creating antibiotic-resistant “superbugs”. The threat of 

antibiotic-resistant pathogens also poses other problems to human medicine and our food chain 

(Fasina et al., 2016). Additionally, it has been demonstrated that antibiotics have a significant 

effect on the reduction of commensal gut bacteria, provoking a balance shift and risking 

pathogenic overgrowth (Kogut, 2019). An alternative to antibiotics must be identified, or the 

health of the birds and the efficient reputation of the poultry industry are at risk.  

      2.3. Necrotic Enteritis Etiology 

The global poultry industry currently suffers an estimated USD 2 Billion in economic loss 

(Latorre et al., 2018) each year solely to the severe gastroenteric disease, NE. Necrotic enteritis 

is induced, simply, by disequilibrium of environment and/or diet (Antonissen et al., 2016). The 

definitive organism responsible for NE disease is Clostridium perfringens, a Gram-positive, 

spore-forming, toxin-producing, rod-shaped anaerobe (Shojadoost et al., 2012). This bacterium is 

among the normal microbiota that inhabit the GI tract of chickens and humans, and in almost 

every aspect of a typical farm environment: soil, feces, and chicken litter, but it easily becomes 
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pathogenic under the right conditions (Williams, 2005; Wade et al., 2016). The natural clostridial 

burden varies from bird to bird and the age of the bird positively correlates with the clostridial 

burden (Williams, 2005), nevertheless, most incidences of NE in the poultry industry occur at 

around four weeks of age, before birds reach market size (Riaz et al., 2017). Fasina, 2016, found 

that under normal conditions, a healthy broiler’s small intestine will usually contain around 104 

CFU (colony forming units) of C. perfringens per gram of digesta. The presence of C. 

perfringens alone, however, is not enough to trigger clinical or subclinical NE onset (Shojadoost 

et al., 2012).  

NE is commonly exacerbated by any one or a combination of the following: intercurrent 

coccidiosis infection, high protein diet, the presence or absence of certain bacteria within the 

bird’s environment, and recently, the removal of antibiotic growth promoters which allow the 

proliferation of C. perfringens to exceed normal quantities (Collier et al., 2008). The intensity of 

this disease’s associated microbial infection and C. perfringens various, and in some cases 

unidentified, virulence factors make it a complex disease that is still not well understood in the 

scientific community (Tamirat et al., 2017). Several predisposing factors which put birds at 

greater risk for contracting NE have been identified.  

2.3.1 Predisposing Factors 

i. Coccidiosis as a Predisposing Factor     

A rivaling enteric disease in chickens, coccidiosis, is caused by various species of the protozoa 

Eimeria, commonly E. maxima, E. acervulina, and E. tenella (Shojadoost et al., 2012; López-

Osorio et al., 2020). Each species of Eimeria installs a unique, site-specific, disease challenge, 

varying in the severity of symptoms, creating a coccidiosis infection dichotomy: clinical or 

subclinical. In broilers, a sub-clinical infection caused by E. acervulina or E. maxima tends to be 
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more chronic in nature, causing lesions along the duodenum and jejunum, and E. maxima may 

even cause lesions in the ileum (López-Osorio et al., 2020). E. tenella primarily attacks the ceca, 

causing acute GI distress and tissue damage, characterized by loose, bloody stools (De Gussem, 

2007; López-Osorio et al., 2020). Because of the differences in severity and primary site of 

infection, certain Eimeria species are more likely to invoke the necessary conditions for the onset 

of NE and thus are commonly utilized for experimental induction of NE (Shojadoost et al., 

2012). 

For more than 40 years, ionophores, such as monensin, were used to control coccidiosis.  

Ionophores are natural substances that selectively transport ions across cell membranes that 

control coccidiosis by channeling Na+ into the coccidial sporozoites causing them to burst 

(Chapman et al., 2010). Because live vaccines are in use to protect chicks from coccidiosis, there 

has been a decline in the use of ionophores as a preventative for coccidiosis (Williams, 2005). 

Due to the live pathogens present in the vaccine, however, the use of the ionophore would 

disrupt the vaccine efficacy. 

It has been demonstrated that an intercurrent coccidiosis infection is a leading cause of NE in 

broilers, primarily because the initial infection and damage to the host creates an ideal 

environment for C. perfringens colonization. Coccidiosis is considered a predisposing factor to 

NE in chickens partly due to the host’s inflammatory immune response. Aimed to rid the body of 

coccidia by stimulating mucogenesis in the intestines, the resulting mucous serves as an ideal 

growth medium for C. perfringens, thus promoting the onset of NE (Collier et al., 2008).  The 

birds in that study that were fed Narisin, an ionophore specifically meant to eliminate coccidia, 

exhibited reduced size of epithelial mucous-producing goblet cells and subsequently reduced NE 

lesions and C. perfringens colony forming units (CFUs) (Collier et al., 2008). Another reason 
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coccidiosis predisposes birds to NE is due to damage to intestinal cells and lining, giving rise to 

opportunistic clostridial infections (Williams, 2005). This intestinal damage results in the 

leakage of proteins and growth factors into the intestinal lumen where they are readily utilized by 

C. perfringens for proliferation (Shojadoost et al., 2012; Tamirat, et al., 2017). Although 

coccidiosis is a major predisposing factor, NE can still be induced by certain types of diets and 

other factors.  

ii. Diet as a Predisposing Factor 

Diet type affected the prevalence and severity of NE in broiler chickens in several studies. Diets 

consisting of cereal grains rye, wheat, barley, and oats, resulted in greater disease severity than 

corn-based diets fed to birds (Williams, 2005). It is believed that the addition of non-starch 

polysaccharides favors colonization of C. perfringens because this diet type increases digesta 

viscosity, slowing the passage rate and ultimately decreasing digestibility (Pan & Yu, 2013). 

Wheat and barley diets also contributed to C. perfringens proliferation when compared to corn 

diets in an in vitro digestion trial (Annett et al., 2002). Corn-based diets help prevent the growth 

and proliferation of C. perfringens, but the mechanisms that allow this diet to do so are still not 

greatly understood. It was suggested that enzymatic digestion of corn activates some unknown 

component(s) found within the corn kernel responsible for inhibition of C. perfringens 

proliferation, as found in the in vitro study (Annett et al., 2002). More work on the enzyme 

activation of corn in poultry diets is needed to understand one of the many mechanisms that may 

suppress NE.  

Cereal grain diets are just one nutritional trigger for NE. Diets high in protein, particularly 

fishmeal, are another. High protein diets contribute to the onset of NE by providing C. 

perfringens with the nutrients needed to colonize the gut, increasing mucus secretion and 
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damaging intestinal mucosa, further weakening the bird’s immune system (Xu et al., 2018). The 

added protein in broiler diets creates an amino acid-rich environment, feeding and compensating 

for C. perfringens’s lack of the necessary genes to conduct efficient amino acid biosynthesis 

(Antonissen et al., 2016).  

It is not only an increase in dietary crude protein that predisposes birds to NE. A broiler diet’s 

protein source serves as a better indicator of C. perfringens growth potential than dietary or 

crude protein level alone, and when the protein source is animal-derived, intestinal C. 

perfringens growth is statistically greater (Drew et al., 2004; Wilkie et al., 2005). In trial settings, 

a fishmeal-based diet and vaccination against coccidia, as mentioned previously, are commonly 

used to successfully induce NE in live birds.  

  iii. Stress as a Predisposing Factor 

The temperature within the broiler house has been causally linked to the occurrence of NE and 

disruption of homeostasis in the bird. Both cold and heat stress have been found to correlate with 

increased prevalence of NE and increased C. perfringens counts. It has been suggested that cold 

stress induces immunosuppression and alterations in the microbiota community composition 

which create a convenient avenue for C. perfringens proliferation (Tsiouris et. al., 2015a). Heat 

stress is widely known to inhibit growth performance, by triggering a reduction in feed intake 

causing damage to the bird’s immune system. Heat stress stimulates the activation of the 

hypothalamus-pituitary-adrenal axis and increases the production of glucocorticoids found in 

plasma, leading to cell-mediated and humoral immunosuppression (Tsiouris et al., 2018). It is 

also linked to impaired intestinal morphology, weakening the intestinal barrier function, and 

microbiota community dysfunction - all serious risks to NE outbreak.  
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There is conflicting evidence that heat stress predisposes birds to NE infection and yet, in some 

studies, the incidence of NE outbreak was more prevalent when taking place under colder 

conditions (Tsiouris et al., 2018). What is clear is that when birds are subjected to temperatures 

outside of a comfortable range, the body’s stress signals lead to conditions where C. perfringens 

proliferation and NE are likely to follow. Proper management of the environmental conditions 

within the broiler house may reduce the onset of NE altogether when no other afflictions are 

presented concurrently. 

iv. Dysbiosis as a Predisposing Factor 

Improper diet, management style, exposure to other pathogens, and the onset of their subsequent 

diseases create potentially lethal situations for birds. Underlying the physical manifestation of 

increased morbidity and mortality are interactions between and among the microbes that are only 

beginning to be understood. We know that dysbiosis - the shifting microbial community 

characterized by deterioration of the lumen, pH fluctuations, and other unfavorable effects- 

rapidly supports C. perfringens colonization (Latorre et al., 2018). Seldom referred to in the 

literature, however, is the involvement of other known pathogenic bacteria as catalysts to NE. In 

2018, researchers inoculated birds with a poultry isolate of Salmonella Typhimurium in 

combination with E. maxima to successfully induce a NE challenge model (Latorre et al., 2018). 

Salmonella is from the phylum Proteobacteria which is known for containing several 

opportunistic pathogens including Escherichia, Salmonella, and Campylobacter (Latorre et al., 

2018). The current research suggests that any of these pathogens, and others, can be responsible 

for provoking and escalating C. perfringens growth and NE epidemics. At the least, without 

predisposing factors of diet, stress, intercurrent coccidiosis infection, or bacterial enteric disease, 

NE would not be the drain on animal welfare and economic loss that it has become. 
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Nevertheless, without antibiotics, we will face these issues under our current production and 

management standards.  

      2.4 Growth and Performance Losses During Necrotic Enteritis 

Birds suffering from subclinical NE exhibit losses in performance traits including body weight 

gain (BWG), and enteric inflammation combined with mucosal permeability, or “leaky gut 

syndrome” (Latorre et al., 2018). Leaky gut demolishes the intestinal barrier function, making 

the animal susceptible to internal attack from pathogens and toxins normally inhabiting the 

intestinal lumen (Stewart et al., 2017; Latorre et al., 2018). Stress is one of the most common 

causes of leaky gut disease. Birds under stressful conditions release cortisol and harmful 

endotoxins, such as lipopolysaccharide, which are known to induce inflammatory cytokine 

production (Stewart et al., 2017). A recent study found that fluorescein isothiocyanate dextran 

(FITC-d), a measurement of enteric inflammation and mucosal permeability, leaked into the 

blood circulation in NE diseased birds, while under normal conditions, this signature of leaky gut 

syndrome was not present (Latorre et al., 2018). The result of birds under stress and experiencing 

leaky gut syndrome is reduced food intake which leads to reduced body weight gain. Because of 

the confined housing system and the gastrointestinal involvement of the disease, birds 

experiencing leaky gut because of NE spread the pathogen rapidly to other birds. Leaky gut 

syndrome is often lethal to broilers, so high mortality and morbidity are expected.  

      3.   Gastrointestinal Microbiota of Broiler Chickens    

      3.1 A Brief History of Microbial Research   

Until the early 2000s identifying bacteria and other microscopic organisms present in an 

environment was limited to cell culture (Wei et al., 2013). This process uses growth media and 
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specific induced environmental conditions to encourage the colonization of microbes taken from 

a given sample. Few intestinal microbes flourish on cell culture media (Lan, et al., 2002) and this 

technique cannot capture the interactions between microbial members in a natural community 

environment (Wei et al., 2013; Allali et al., 2017). Because of these limitations, this method of 

identification was replaced as quickly as possible with those more capable of accurately 

depicting the thriving, robust host microbiome as it naturally exists. Microbiota research as it is 

conducted today would not be possible without the use of DNA sequencing.  

The earliest sequencing, “dideoxy sequencing” or “chain termination sequencing”, is attributed 

to Fred Sanger. His methods were used to successfully decipher the protein sequence of insulin 

in the 1950s and later, in the 1960s, RNA sequences (Shendure et al, 2017). Using the now well-

known Sanger sequencing methods, unknown genetic sequences are decoded by replicating the 

unknown sequence and exposing the sequence to DNA polymerase and a radioactive primer thus 

initiating a chain termination sequence. Then, gel electrophoresis is used to illuminate the chain 

termination fragments and the corresponding nucleotide position in the order of the sequence. 

The resulting band pattern across four lanes (one for each of the possible nucleotides) of a 

denaturing polyacrylamide gel reveals the previously unknown genetic sequence using the 

terminated fragments (Shendure et al, 2008). As great a success as Sanger sequencing proved to 

be, we now have access to faster, cheaper, and more reliable cell-sequencing technology, capable 

of providing results in a matter of hours.  

3.1.1 Next Generation Gene Sequencing Techniques to Determine Phylogenetic 

Composition 

The transition to second-generation, or next-generation, sequencing was preceded by molecular 

fingerprinting methods, including the Sanger method, which was more advanced and reliable 
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than basic cell-culture methods but did not provide the same level of diversity analysis that the 

modern method offers (Mohd Shaufi et al., 2015). Microbial profiling is no longer limited to 

low-accuracy, culture-dependent methods, but can now be performed via high-throughput next-

generation sequencing (HT-NGS). This method is universally used for microbial research 

because it offers a faster, cheaper, and more in-depth coverage of the dynamic macrocosm within 

the human gut (Mohd Shaufi et al., 2015). Several sequencing platforms have been developed 

and commonly Illumina’s MiSeq or HiSeq, and Roche’s 454 GS FLX or 454 GS Junior are 

utilized for microbial research (Di Bella et al., 2013; Allali et al, 2017). The next-generation 

sequencing methods performed to determine the phylogenic microbial composition of an 

environment commonly involve targeted enrichment strategies to amplify and “read” specific 

regions of highly conserved bacterial DNA (Di Bella et al., 2013; Morey et al., 2013).  

Deoxyribonucleic acid (DNA), simply, is the collection of nucleic acids that exist in paired 

chains in a living organism in a specific pattern. Certain portions of an organism’s DNA are 

called genes. Genes have been defined as “a union of genomic sequences encoding a coherent set 

of potentially overlapping functional products” (Gerstein et al., 2007). In almost all bacteria and 

some archaea species, the 16S rRNA gene is shared among members and is commonly used to 

identify these organisms. Within the 16S rRNA gene are nine hypervariable sub-regions (V1-9), 

each evolving at their own pace and representing only a small fragment of the 16S genetic 

marker. To identify bacteria and create an image of the host’s microbial community, researchers 

select the sub-region that provides the greatest coverage of microbial DNA in the target location 

of the host, based on known primer availability, fragment length, and region-associated sequence 

quality (Schloss, 2010).  
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It is well documented that there are nine (9) hypervariable regions of the 16S rRNA gene 

encoded by all bacteria and some archaea species that are suitable for amplification alone or in 

combination (Mohd Shaufi et al., 2015), but the different regions do not equally distinguish 

between bacterial species (Di Bella et al.,2013). In fact, due to the variability of sequence 

diversity among the nine hypervariable regions, no single region can distinguish among all 

bacteria (Chakravorty et al., 2007). The V3-V4 hypervariable region of 16S rRNA is the most 

widely used for taxonomic classification of gut microbiota (Darwish et al., 2021), but most 

researchers agree that the combination of V1-V4 regions is reliably accurate and suitable for 

meaningful bacterial classification within the chicken gut, though no universal standard currently 

exists (Kim, et al., 2011; Di Bella et al., 2013; Darwish et al., 2021). Johnson et al, 2019, argue 

that the best sub-region for classifying sequences belonging to the genera Clostridium is the V6-

V9 region, but that study was not focused on classifying members of the chicken microbiota 

specifically. This study also argues the importance of adopting third-generation sequencing 

methods as the standard, which would allow for targeting of the entire hypervariable region of 

the 16S rRNA gene. Using only second-generation sequencing, this method was avoided partly 

because an assembly step was required and because an increase in sequence length increased the 

difficulty of gene assembly and rare taxa identification (Di Bella et al., 2013). Ballou et al., 2016 

points out that the use of V4 sequencing primers provides microbial diversity results comparable 

with those of full-length 16S gene sequencing, which would likely negate the need to perform 

these extra steps. With the prospect of third-generation sequencing, we may see an increase in 

microbiota community compositional studies sequencing the entire hypervariable region (V1-

V9), reducing the PCR and/or sequencing error (Johnson et al., 2019).  
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3.1.2 Data Analysis of 16S rRNA Sequences 

Traditional methods of statistical analysis are not sufficient to conduct microbial ecology studies. 

The nature of the data collected during microbial gene sequencing and the bioinformatic 

processing of the sequences results in an overwhelming amount of raw data, or “metadata”. 

Several software packages such as Mothur and Qiime (often referred to as bioinformatics 

pipelines) have been developed to process the mass amounts of biological data involved in 

microbiota research. The functions of these pipelines include the preparation of sequences 

directly from the sequencing platform (Illumina, Roche), Operational Taxonomic Unit (OTU) 

clustering, analysis of alpha and beta diversity, and data visualization, among others (Nilakanta 

et al., 2014). Not all software programs are created equally, as some programs offer features that 

may provide a cleaner inference of the microbiota due to differences in chimera or contaminant 

extraction, or variability in analysis options (Nilakanta et al., 2014). The differences among 

bioinformatics pipelines and similarly among the sequencing platforms are well documented, but 

it appears that the same biological conclusions can be drawn from chicken-gut samples 

regardless of the sequencing platform and/or the bioinformatics pipeline used (Allali et al., 

2017). Across the literature, the programs Mothur and Qiime have stood out as the highest 

performing and most chosen for chicken GIT microbiota research (Nilakanta et al., 2014).  

      3.2 Broiler Chicken Ileum and Cecum Function as related to Microbial Characterization 

Two sections of the broiler intestinal system, the ileum, and cecum are established in the 

literature as microbial cornucopias. These distinct segments of the GIT are commonly targeted 

for microbial research because of this, and the roles they perform in nutrient digestion and 

absorption (Clavijo & Flórez, 2018). The broiler chicken ileum is responsible for starch 

digestion, glucose, amino acid, lipid, and water absorption, and the reuptake of bile salts 
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(Denbow, 2015; Krogdahl, 1985). In addition to its role in nourishment, the entire small intestine 

is highly involved in immunoregulation, which provides overlap for microbial colonization 

selectivity. The mucus layer covering the intestinal epithelium acts as a barrier to pathogens 

attempting to enter the circulatory system but also serves as a substrate for commensal bacterial 

growth in the gut (Koutsos et al., 2006). The importance of the small intestine and its 

relationship to bird health cannot be overstated. Likewise, the microbial niche that develops in 

the ileum supports the capacity of the ileum to carry out its functions (Denbow, 2015).  

The cecal microbial communities are more diverse in comparison to that of the ileum of 

chickens, and these different populations actively perform different functional roles (Pan & Yu, 

2014). The primary functions of the cecum include fermentation of indigestible solubles to 

produce volatile fatty acids (VFA), converting uric acid to amino acids during reverse peristalsis, 

and absorption of amino acids, water, and electrolytes (Denbow, 2015; Mohd Shaufi et al., 2015; 

Krogdahl, 1985; Svihus et al., 2013). The functional roles of the bacterial communities within 

the ceca are emphasized by the morphology of the ceca itself. Through the transfer of uric acid 

into the ceca from the rectum via reverse peristalsis, digestion of bacterial cellular protein, and 

bacterial uric-acid-catabolism, gut bacteria and the cecum directly contribute to host nitrogen 

metabolism (Sergeant et al., 2014). The digestion of non-starch polysaccharides that takes place 

within the cecum has previously been assessed and the cecum was found to contain a high 

prevalence of species carrying genes coding for oligosaccharide degrading enzymes, specifically 

an abundance of sequences involved in the degradation of xylans (Sergeant et al., 2014). The 

cecal tubes found in the chicken GI tract are unique in functionality and their benefit to bird and 

microbial health.  
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The functions of these GI segments directly impact the composition of the microbial niche they 

harbor and vice versa (Denbow, 2015). The metabolic activities of specific indigenous bacteria 

in different sections of the bird’s gastrointestinal (GI) tract contribute to proper GI function 

(Oakley et al, 2014). Ultimately, analyzing the gut microbiota’s conspecific and heterospecific 

interactions and the biodiversity within gut biomes will provide information about the health of 

the animal and lead to a better understanding of enteric disease treatment and prevention (Mohd 

Shaufi et al., 2015). 

       3.2.1 Microbial Characterization Restrictions   

Articulating a complete list of gut microbiota found in healthy broiler chickens using amplicon 

sequencing of the 16S rRNA gene has not yet been accomplished (Ballou et al., 2016). It is 

difficult to draw strong conclusions about the exact composition of the gut microbiota across 

different studies due to variability in primer selection, choice of GIT section, breed and age of 

the bird, housing conditions, diet, and other aspects of study design (Stanley et al., 2014; Clavijo 

& Flórez, 2018; Borda-Molina et al., 2018; Wei et al., 2013). In most cases, these variables 

elucidate the differences in reported microbiota compositions and must be considered when 

attempting to define a typical ileal or cecal microbial community (Borda-Molina et al., 2018). 

Because age is a significant determinant of microbial diversity, longitudinal studies offer a more 

complete depiction of the developing gut microbiota, though few have been conducted. Those 

that exist indicate that commercial broilers (Ross, Cobb, etc.) reach gut microbial stabilization 

between 14 and 21 days of age (Mohd Shaufi et al., 2015), after 20 days of age (Ijaz et al., 2018), 

or at least by 28 days (Ballou et al., 2016; Lu et al., 2003; Ocejo et al., 2019). As mentioned 

earlier, the choice of sequencing primer - the targeted hypervariable region(s) of the 16S gene - 

greatly affects the phylogenic profiling ability of the sequencing process. For these reasons, it 
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would be ideal that attempts at depicting the typical microbiota of the chicken ileum and cecum 

be based on results of studies conducted using birds from commercial broiler breeds of at least 

28 days of age and primers targeting the V1-V4, V3, V3-V4, or V4 hypervariable regions. 

However, no universal standard - which would easily align study parameters - currently exists, 

muddying comparisons of results across available 16S rRNA amplicon sequencing studies 

(Borda-Molina et al., 2018). Nevertheless, 16S rRNA sequencing has been used successfully to 

create taxonomic profiles of the major genera and some minor bacterial genera of the chicken 

ileum and cecum by several researchers, despite possible variations in study design. It should be 

mentioned that 16S microbial profiling provides a much clearer estimate of the microbial 

members present than ever would have been possible with culture-dependent methods alone 

(Amit-Romach et al., 2004). Currently, some studies employ a metagenomic approach to assess 

the functionality of the present microbes, leading to an even more complete understanding of the 

gut microbiota (Yeoman et al., 2012).  

3.2.2 Typical Ileal Microbiota 

At present, there is no clear depiction of typical intestinal microbiota for healthy chickens, but 

many researchers have attempted to summarize the major and minor bacterial communities of 

the ileum and cecum (Kogut, 2019). Wei et al., 2013, conducted a bacterial census of the chicken 

intestinal microbiota using 16S rRNA sequences found in 3 public databases for nucleotide 

sequences: GenBank, Silva, and Ribosomal Database Project (RDP). Comparatively, a 

longitudinal study conducted by Mohd Shaufi et al., 2015, identified the major microbial 

members of the ileum and cecum at the genus level for different time points of the birds’ 

development using 16S rRNA sequencing. Following suit, Xiao, et al., 2017, characterized the 

microbiota of the duodenum, jejunum, and ileum of 42-day-old broilers using 16S gene 
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sequencing. The mutual conclusions among these studies indicate that at the phyla level, the 

ileum is dominated by Firmicutes, Bacteroidetes, and Proteobacteria, even if the ratios are not 

identical (Wei et al., 2013; Mohd Shaufi et al., 2015; Xiao et al., 2017). Presently, Cuccato et al., 

2021, has demonstrated that Cyanobacteria is an additional prevalent phylum of the chicken 

ileum. It has been reported that between 30 – 76% of the microbial population within the ileum 

of broilers is composed of Lactobacillus spp. of the phylum Firmicutes, demonstrating a 

substantial level of microbial homogeneity (Xiao et al., 2017; Lu et al., 2003; Clavijo & Flórez, 

2018; Wang et al., 2016). Still, fluctuation in individual ileal abundance of Lactobacillus spp. 

over time and between studies is common (Mohd Shaufi et al, 2015). There is also much debate 

about which genus has the second greatest representation in the ileum. The minor genera of the 

ileal microbiota, those that are commonly detected at greater than 1% abundance but generally 

lower in abundance than Lactobacillus (Rychlik, 2020; Wei et al., 2013), typically include 

Clostridium, Enterococcus, (Latorre et al., 2018; Lu et al., 2003; Mohd Shaufi et al., 2015), 

Bacteroides (Xiao et al, 2017; Wei et al. 2013), Ruminococcus, Alistipes (Wei et al., 2013), 

Streptococcus (Lu et al. 2003; Wang et al. 2016), and Escherichia (Wang et al., 2016) at varying 

reported abundances.  

At the species level, Lactobacillus salivarius has been detected repeatedly and appears to be a 

ubiquitous resident of the ileum regardless of diet (Phong et al., 2010), or lumen or mucosal 

sample type (Gong et al., 2007). It is unclear whether this prevalent species is completely 

beneficial or harmful. Its role in the deconjugation of bile salt by L. salivarius and other 

lactobacilli potentially inhibits weight gain in broilers (Guban et al., 2006; Wang, Z. et al., 2012), 

yet in recent years, there is conflicting evidence that dietary supplementation of L. salivarius 

achieves the opposite effect, improving growth performance and promoting gut health 
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(Sureshkumar et al., 2021; Wang et al., 2020; Shokryazdan et al., 2017). Additionally, L. 

salivarius has been shown to inhibit the growth of the pathogenic Salmonella enterica (Zhou et 

al., 2007) and E. coli, (Wang et al., 2020).  In general, Lactobacilli are considered beneficial 

bacteria, commonly used as probiotic treatments in in vivo trials (Phong et al., 2010; 

Sureshkumar et al., 2021; Nakphaichit et al., 2011; Wang, J., et al., 2020). In addition to L. 

salivarius, Lactobacillus aviaries (Gong et al., 2007), Enterococcus cecorum (Bjerrum et al., 

2006), Lactobacillus crispatus (Wang et al., 2016), Lactobacillus reuteri (Wang et al., 2016; Lu 

et al., 2008), and Lactobacillus acidophilus (Lu et al, 2008; Lu et al., 2003) are frequently 

identified bacterial species; stabilizers of the ileal microbiome.  

The digestive functions of the gastrointestinal tract take place under specific environmental 

conditions. Although the ileum generally has a neutral pH (6.3-6.7) (Denbow, 2015), bacteria 

must be able to withstand the low pH in the crop, proventriculus, and gizzard before arriving in 

the ileum. Because of this, the ileum selectively permits the survival of microbes that can 

withstand and benefit from the conditions of the environment inside the GIT, especially lactic 

acid bacteria (LAB) which exhibit strong resistance to bile salt and low pH (Bukhari et al., 

2017). In addition to a low pH and bile salt tolerance, dominant ileal microbes are those that 

competitively adhere to ileal epithelial cells, exhibit cell surface hydrophobicity, and a resistance 

to high phenol concentrations (Reuben et al., 2019). This understanding is in corroboration with 

the previously reported phylogenetic findings listed above, describing LAB as the dominant 

members of the ileal microbiota. So, while there is not a definitive ileal microbial directory, the 

archetypal microbes in a commercial broiler small intestine should display the properties that 

permit survival under the environmental conditions within the host.  
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3.2.3 Typical Cecal Microbiota 

More work has been done to describe the cecal microbiome, as it is typically more diverse and 

hosts a greater concentration of microbes than the ileum, yet the same restrictions regarding 

study design variability and its effect on ileal microbiome characterization persist. In the ceca, 

taxonomic richness and diversity typically increase starting on the day of hatch and foster a 

thriving microbial community by market age (six weeks of age) (Oakley, et al., 2014). The key 

members of the chicken microbiota at first hatch are almost fully replaced by other bacteria by 

market age. This age-related shift usually involves the replacement of most of the aerobic, Gram 

(-) species with anaerobic, Gram (+) species (Ballou et al., 2016). It is uncontested that the 

typical broiler cecum is dominated at this time by Firmicutes and Bacteroidetes followed by 

Proteobacteria and Actinobacteria at the phyla level (Rychlik, 2020; Oakley et al., 2014; Clavijo 

& Flórez, 2018; Mancabelli et al., 2016; Lan et al., 2002).  As in the case of the ileum, there is 

wide variability in the makeup of the cecal microbiota, but a few genera and species are 

commonly sequenced and/or found to be abundant in the cecum across multiple studies. Early 

sequencing efforts indicated that the known genera Clostridium, Eubacterium, and 

Ruminococcus generally represent the bulk of total cloned sequences found in the chicken cecum 

(Zhu et al., 2002; Lu et al., 2003; Bjerrum et al., 2006; Wei et al., 2013), but current work points 

to Bacteroides and Faecalibacterium, in addition to Ruminococcus, Clostridium, and 

Eubacterium as primary genera (Cuccato et al., 2021; Glendinning et al., 2019; Ocejo et al., 

2019; Mohd Shaufi et al., 2015). There is conflict among these studies in ranking the abundances 

of these genera and a unanimous conclusion has not been made. The heightened bacterial density 

and diversity within individual cecal biomes, and even between healthy birds, makes it difficult 

to label any genus, or especially species, as definitively dominant within the cecum. Rather, 
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observable trends in microbial populations highlight the common members. In this aspect, 

Faecalibacterium prausnitzii, Escherichia coli, Escherichia shigella, and Clostridium cluster IV 

and XIV, and strains related to these species, appear to be of interest within the cecum of healthy 

broilers (Mohd Shaufi et al., 2015; Awad et al., 2016; Ijaz et al., 2018; Zhu et al., 2002; Bjerrum 

et al., 2006; Amit-Romach et al., 2004; Gong et al., 2007). F. prausnitzii, and the Clostridium 

clusters IV and XIV are usually described as commensal gut bacteria that contribute to butyrate 

production within the cecum, aiding in epithelial barrier function (Bjerrum et al., 2006; Rinttilä 

& Apajalahti, 2013; De Maesschalck et al., 2015). In contrast, pathogenic E. coli and E. shigella 

are common residents of the broiler cecum, though their numbers decline as the birds age 

(Seidavi et al., 2010). The ability to suppress pathogen growth in the gut is directly related to the 

composition of the adult cecal microbiota (Baba et al., 1991). In the case of enteric diseases, 

there is an expectation that negative microbial shifts that take place either trigger or are a 

response to disease challenges.  

3.3 Microbiota Modulation during Necrotic Enteritis Challenge    

The chicken intestinal microbiota community structure typically shifts during NE outbreak to a 

state known as dysbiosis. This state refers to an overgrowth of pathogenic microbes causing a 

balance shift within the microbial community that is typically not found in a healthy bird. This 

type of shift is associated with environmental changes including pH instability, increased 

mucous production, and reduced intestinal transit time of digesta (Latorre et al., 2018).  The 

microbial communities within the ileum and cecum are commonly examined for fluctuations 

during a NE challenge. Both locations bear a distinct microbial community and significant 

changes in the composition of those communities can lead to different physiological responses 

by the host. When characterizing modulations of the gut microbiota, each shift in the microbial 
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composition is evaluated extensively. Anything from the environment, management style, diet, 

use of feed additives, antibiotics, vaccines, to the breed and age of the bird all affect the intestinal 

microbiota (Mohd Shaufi, et al., 2015).  

3.3.1 Role of Clostridium perfringens during Necrotic Enteritis Dysbiosis 

C. perfringens is naturally found within the digestive tracts of chickens and mammals, but there 

are several previously discussed predisposing conditions that can lead to an increase in the 

abundance of C. perfringens. Under normal conditions, C. perfringens can be found in the GIT 

of healthy chickens, but the population increases to an alarming density during NE infection 

(Fasina et al., 2016). The cecum hosts a higher concentration of C. perfringens in healthy birds, 

but necrotic lesions in infected birds are more obvious in the small intestine (Stanley et al., 

2012). The cecum of birds predisposed to NE and inoculated with C. perfringens has been found 

to harbor about 106.9 CFU/g digesta, while the ileum contained roughly 106.1 CFU/g digesta 

(Craven, 2000). Though not typically considered a beneficial bacterium under normal conditions, 

with limited accessibility to colonization, it is also not usually considered a direct threat to 

animal health.  

In cases where predisposition to NE occurs, as mentioned previously, C. perfringens can quickly 

damage the intestinal tract with a specialized approach. Gross intestinal lesions across the small 

intestine and cecum, a thin, fragile intestinal wall, and flock mortality of at least 1% are typical 

diagnostic factors indicative of NE (Olkowski et al., 2006; Helmboldt & Bryant, 1971). To 

accomplish this, C. perfringens uses its aggressive collection of virulence factors, including more 

than 20 known toxins. These toxins inhibit the host immune response by blocking the 

differentiation of neutrophils, weakening the intestinal barrier function (Takehara et al., 2016). 

Until recently, C. perfringens Type A and C alpha toxin, as well as Type C beta-toxin, were 
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thought to be the primary causative agents of NE. The result of more current work disproves this 

previous impression, and it is widely accepted that a recently discovered NetB toxin is likely 

more responsible for the pathogenesis of NE (Latorre et al., 2018). It is not entirely understood 

how the NetB toxin contributes to NE because the specific receptor has not yet been identified, 

but it is known that this is a pore-forming toxin, which ultimately causes cell lysis (Zaragoza et 

al., 2019).  

C. perfringens rely on more than toxin production to infect and damage a host. Recently, genes 

coding for antimicrobial resistance and collagen adhesion have been identified, enhancing the 

detrimental potency to a bacterium already capable of toxin production (Kiu et al., 2019). The 

gene cnaA is the initial gene in a five-gene sequence collectively referred to as the collagen 

adhesin (CA) locus, a polycistronic operon (Wade et al., 2016). The prevalence of the adhesin-

encoding gene cnaA in NE diseased birds is specifically important because it has also been 

demonstrated that C. perfringens ability to cause NE is strongly positively correlated with its 

ability to bind to collagen, aiding the bacteria in the colonization of the GI tract (Wade et al., 

2016). The ability to adhere to collagen type IV, the dominant collagen type found in the 

basement membrane of the intestines, was inhibited in mutations of the EHE-NE18 strain of C. 

perfringens, in which the cnaA gene was inactivated (Wade et al., 2016).  

Under normal conditions, healthy broilers are virtually immune to the effects of C. perfringens. 

When other diseases like coccidiosis are introduced or when birds are fed an inadequate diet or 

are experiencing elevated levels of stress due to overcrowding, NE becomes a major concern. It 

is then that the ability of C. perfringens to rapidly proliferate and expel its armory of toxins and 

evasion techniques are threatening to the health of the flock. These predisposing conditions – 
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alone or in combination with exposure to elevated levels of C. perfringens – induce dysbiosis, 

with some bacteria being affected similarly across several studies.  

3.3.2 Microbial Modulation by Predisposition  

Typically, increasing C. perfringens alone will not alter the microbial balance significantly, so 

most reports include the microbial modulation as related to different predisposing factors plus 

exposure to C. perfringens. Predisposition involving fishmeal diets and Eimeria exposure have 

been known to affect the microbial composition of the diseased state differently. Wu, et al., 

2014, found that a fishmeal diet has a greater effect on the cecal microbiota than a coccidia 

challenge alone, but when combined the greatest number of OTU abundances are affected. 

Interestingly, Stanley et al., 2014, found that Eimeria, alone or combined with C. perfringens 

challenge, had a greater effect on microbial composition than a fishmeal diet. What is clear is 

that the combination of a fishmeal-based (high protein) diet, and Eimeria and C. perfringens 

challenges significantly alter the microbiota composition of the ceca.  

The microbial community of the cecum is affected by different predisposing factors to NE, both 

with and without C. perfringens challenge and, specifically, the depletion of Lactobacillus 

johnsonii is common (Antonissen et al., 2016; Stanley et al., 2014; Wu et al., 2014). Less 

commonly, the abundance of cecal Lactobacillus increases during the C. perfringens challenge 

(Gharib-Naseri et. al., 2019). In the case of Macdonald, et al., 2017, an increase of L. johnsii was 

observed in response to asymptomatic infection solely induced by Eimeria. When more severe 

cecal lesions were induced, a significant decrease in Lactobacillus reuteri and L. pontis was 

observed (Macdonald et al., 2017). Similarly, there is conflicting evidence about the abundance 

of Ruminococcus spp. in differentially infected chickens. In the ileum of chickens challenged 

with Eimeria, fishmeal, and C. perfringens, an increase of Ruminococcus spp. was observed. (Xu 
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et al., 2018), but when birds were challenged with Eimeria and C. perfringens only, a reduction 

was observed (Bortoluzzi et al, 2019). In contrast, Latorre et al., 2018, reported an increase in 

ileal Ruminococcus in response to Eimeria, C. perfringens, and Salmonella Typhimurium. In the 

cecum, the reduction of Ruminococcus spp. in variably challenged birds is more commonly 

observed, with less opposition (Stanley et al., 2012; Wu et al., 2014; Bortoluzzi et al., 2019; 

Gharib-Neseri et al., 2019). Again, there is not yet a standard expectation for microbiota 

modulation during NE, just as there is not a definitive list of intestinal microbiotas typical of a 

healthy broiler. Following this philosophy, a chosen treatment for NE should not target the 

reduction of any specific microbiota, but rather, provide aid to the already existing characteristics 

and functions of the chicken GIT.  

4. Explored Methods for the Prevention and Treatment of Necrotic Enteritis  

Because NE is the result of compounding predisposing factors rather than a single-sourced 

disease, mitigation of NE through bird and house management is promising. As discussed 

previously, the major predisposing factors to NE are coccidiosis, improper diet, and housing 

conditions, and concurrent pathogen-induced dysbiosis. These factors cause stress on the animal 

and weaken the immune system of young chicks which increases the risk of NE infection 

(Tsiouris, 2016). The proliferation of C. perfringens, once instigated by these predisposing 

factors, is exacerbated by its array of toxins, including α-toxin, NetB, TpeL, and potentially, 

others that have yet to be identified (Alizadeh, et al., 2021). It is these toxins that are responsible 

for the disease NE. Mitigating toxin production during NE is essential to disease prevention and 

animal recovery. Finally, proposed treatments for NE outbreaks include butyrate and pre-and 

probiotic supplementation.  
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      4.1 Preventing Coccidiosis 

Coccidiosis is caused by the protozoa Eimeria, commonly, E. maxima, E. acervulina, and E. 

tenella. An anticoccidial drug, toltrazuril, has been found to reduce necrotic lesions caused by 

coccidiosis in young birds that lead to NE, but this drug should preferentially be administered 

after the onset of coccidiosis has begun to reduce drug resistance (Alnassan et al., 2013). The 

advent of coccidia vaccination offers a prophylactic approach. Anticoccidial vaccines containing 

several strains of Eimeria spp. alleviate the risk of drug resistance during a live-attenuated 

vaccine trial and offer an easy administration procedure via deep litter spray (Bangoura B., et al., 

2014). There is some discrepancy in bird performance after vaccine administration. Some studies 

have shown that anticoccidial vaccines led to low body weight and increased feed conversion 

ratio for young birds, but other studies reported compensatory weight gain and comparable bird 

weight at the end of grow-out (Lee et al., 2011). The negative effects of coccidia vaccines on 

bird performance are not ideal, but they appear to level out as the birds age (Cowieson et al., 

2020). Nevertheless, because of the reported losses in animal performance related to vaccine 

administration, the control of coccidiosis is being further explored. New data supports the use of 

phytochemicals including the thyme and oregano-derived compounds thymol and carvacrol, 

respectively, which reduce inflammation, possess antimicrobial properties against enteric 

pathogens, including Clostridia spp., and stimulate enteric enterocyte production, strengthening 

the mucosal immune barrier function (Broom, 2017; Gholami-Ahangaran et al., 2020). With this 

method, there is concern over potential toxicity, as with any compound, and more work is needed 

to determine a safe dosage of these phytochemicals. These various methods of preventing and 

controlling coccidiosis are currently being studied to rule out the most effective approach. 
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4.2 Prevention through Diet 

Poultry diets known to predispose birds to NE are those that include high protein levels, animal-

derived protein, and cereal grains including rye, oats, wheat, and barley. These cereal grains are 

problematic due to the high non-starch polysaccharide, or complex carbohydrate content which 

increases digesta viscosity and decreases intestinal transit time which aids in C. perfringens 

overgrowth (Dahiya et al., 2006). Interestingly, cereal grains that are less processed are 

beneficial to gizzard function, in turn reducing C. perfringens proliferation. When whole wheat 

is added as a portion of the diet, decreased intestinal counts of C. perfringens and gizzard pH 

have been reported (Dahiya et al., 2006). Feeds containing high levels of animal-derived protein 

sources, primarily fishmeal, are advantageous for C. perfringens proliferation due to the excess 

nutrient supply and pH alteration in the GIT (Moore, 2016). When comparing the occurrence of 

NE in birds fed either a fishmeal or soy protein-based diet, it was found that certain amino acids 

may contribute to the increase in NE. Dietary levels of glycine and to a lesser extent, methionine, 

are higher in fishmeal diets compared to soy, and a positive correlation between glycine 

concentration and C. perfringens colonization in the ileum and cecum has been reported (Dahiya 

et al., 2006). More work is still needed to fully understand the relationship between amino acid 

concentration and NE, but overall removing animal-based protein from the broiler diet is 

effective for managing NE. Instead, feeding corn- and/or soy-based diets that meet the National 

Research Council (NRC, 1994) guidelines for protein concentration are an excellent alternative. 

      4.3 Prevention through Animal Husbandry 

Necrotic enteritis is spread via the fecal-oral route making house management crucial to the 

prevention of this disease. Because birds are housed in close proximity to one another and share 

bedding, feeders, and waterers, the potential for rapid spread skyrockets. The number of birds or 
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the total live weight of birds (kg) in a broiler house at the same time per square meter of the 

usable area is referred to as stocking density (Tsiouris et al., 2015b). In general, as stocking 

density increases, animal performance, welfare, and bird health decline (Tsiouris, 2016). In one 

study where “high stocking density” was represented by 30 birds per square meter and the 

control or “normal stocking density” was represented by 15 birds per square meter, high stocking 

density was reported to significantly increase the occurrence and severity of NE as well as counts 

of C. perfringens in the ceca (Tsiouris et al., 2015b). According to the National Chicken Council, 

whose mission is to influence legislation involving poultry production in the United States, the 

recommended stocking density for broilers between 5.6 and 7.5 pounds at live weight is 8.5 

pounds live weight per square foot of usable space (National Chicken Council, 2020). The 

average live weight at the end of grow-out in the U.S. was 6.46 pounds per bird in 2021 

(National Chicken Council, 2022). The stocking density recommended by the National Chicken 

Council equates to roughly 14 birds per square meter using an average live weight of 6.5 pounds 

and a stocking density of 8.5 pounds live weight per square foot of usable space. Using this 

recommendation for stocking density is one way to avoid the stress associated with 

overcrowding that predisposes birds to NE. Additionally, adequate feeder and watering space per 

bird, house temperature and humidity, lighting procedures, and litter conditions affect bird health 

and immune response and should be major considerations for producers when designing a 

management strategy (Moore, 2016; Tsiouris, 2016).  

      4.4 Prevention through Vaccination 

Diseases threatening human and animal health that arise from pathogens in the Clostridium 

genus are common. Tetanus, botulism, blackleg, gas gangrene, and NE affect animals throughout 

livestock production for animal consumption. Famously, humans receive regular tetanus “shots” 
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containing tetanus toxoid to prevent this gruesome disease. These common toxoid vaccines are 

created by heating or adding formaldehyde to purified bacteria exotoxins, e.g., the tetanus 

neurotoxin (Yadav & Khurana, 2020). The injection of this toxoid stimulates an immune 

response in the host to the inactive toxoid and provides lasting protection, with a recommended 

booster vaccine every 10 years (Hall et al., 2021). Tetanus was once analogous to a death 

sentence for humans, but with the use of toxoid vaccines in the last century, the United States has 

almost completely halted reported cases and successfully reported no deaths associated with 

tetanus in 2018 (Hall et al., 2021).  

Like Clostridium tetani, C. perfringens produce an array of strain-specific toxins which lead to 

several different diseases, but no single strain can produce all the known toxins concurrently 

(Zaragoza et al., 2019). These C. perfringens strains have been classified into seven toxinotypes 

(A-G) based on the toxin(s) they produce: alpha (CPA), beta (CPB), epsilon (ITX), C. 

perfringens enterotoxin (CPE), NE beta-like (NetB) (Zaragoza et al., 2019). It was historically 

thought that the alpha toxin produced by all toxinotypes was the primary virulence factor of NE 

in chickens, but when a CPA deficient mutant strain triggered NE in a challenge setting this was 

disproven (Keyburn et al., 2008). This study suggested that a novel (NetB) toxin produced by 

type G strain C. perfringens is the main antagonist to NE (Keyburn et al., 2008). However, there 

is a strong correlation between the occurrence of NE in broilers and the presence of the type A 

and C strains, which had previously led researchers to believe CPA played a role in the 

pathogenesis of NE (Lovland et al., 2004; Cooper et al., 2009; Zaragoza et al., 2019).  

The development of toxoid vaccines for NE prevention in broiler chickens has been studied 

extensively. Vaccination of hens using the type A (CPA) and C (CPA, CPB) toxoids provided 

partial protection to broiler chicks through maternal antibody transmission in the egg yolk, with 
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the type C toxoid outperforming the type A (Lovland et al., 2004). In broilers, however, maternal 

vaccination provides short-lived antibody protection in progeny which is less helpful to young 

birds at 3-4 weeks of age, when NE typically occurs (Mot et al., 2014). Cooper, et al., 2009 

confirmed that the antibody response to a recombinant CPA toxoid partially protects birds from 

experimental NE, but the role of the alpha-toxin in pathogenesis was not entirely understood. 

Some of the first work investigating the potential for a NetB toxoid vaccine concluded that a 

recombinant NetB (rNetB) toxin could effectively protect broiler chicks from mild NE and that 

the best protection came from birds immunized with cell-free toxoid or bacterin supplemented 

with rNetB (Keyburn et al., 2008). This work also revealed that rNetB toxoid alone was 

insufficient at protecting birds against a more severe challenge. Because the CPA and NetB 

toxoid vaccines had been shown to independently provide partial protection against NE 

challenge, an investigation into the effect of a NetB and CPA combination vaccine took place. 

Again, this combination yielded only complete protection in a subclinical, mild challenge and 

only partial protection was observed during a more severe challenge (Fernandes da Costa et al., 

2016). Additionally, the subcutaneous administration of the vaccine would not be feasible in a 

commercial setting, but more work will need to be conducted to determine a more suitable vector 

(Fernandes da Costa et al., 2016). In summary, vaccine development for NE in chickens is 

challenging due to the complexity of the toxins produced by C. perfringens and because a vector 

of administration suitable for a commercial broiler setting has not yet been tested. A more 

detailed evaluation of the challenges associated with vaccine development is laid out by Mot, D., 

et al., 2016, but this discussion is beyond the scope of this review.  
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      4.5 Treatment through Butyrate Supplementation  

Without access to antibiotics to combat NE, researchers are currently investigating the 

antimicrobial potential of organic acids, including butyric acid-derived compounds. Butyrate, the 

short-chain fatty acid (SCFA) known as butyric acid, is naturally produced through microbial 

fermentation in the GIT of many species and performs several roles in intestinal regulation. 

Primarily, butyrate enhances epithelial cell proliferation which supports intestinal barrier 

function. The intestinal barrier is created and maintained by tight junctions of epithelial cells 

whose function is to prevent leakage of pathogens and non-soluble nutrients outside of the 

intestinal lumen (Baumgart & Dignass, 2002). Sodium butyrate, a butyrate salt, has been shown 

to promote the expression of the tight-junction protein Claudin-1, which is vital to intestinal 

barrier permeability regulation (Wang, H. B. et al., 2012). It has been established that butyric 

acid promotes intestinal epithelial cell growth and relieves irritable bowel disease in humans by 

strengthening the intestinal barrier (Plöger et al., 2012). Butyrate also serves as a nutrient source 

for epithelial cells (Bedford & Gong, 2018), further aiding epithelial cell growth and function. 

Additionally, butyrate is known to reduce inflammation in the intestinal epithelium. This is likely 

the result of reduced pro-inflammatory cytokine expression (IFN-y, TNF-a, IL-1B, IL-16, IL-8) 

and increased expression and signaling of anti-inflammatory cytokines IL-10 and TGF-B, 

(Bedford & Gong, 2018). This points to the interaction between butyrate supplementation and 

the inhibition of the inflammatory pathway NF-kB for alleviating symptoms of human enteric 

diseases (Bedford & Gong, 2018). Because chickens are commonly used as a model for human 

health in research, it is likely that butyrate functions similarly in chickens.  

There are also reported butyrate-induced improvements in animal performance that are important 

to the production of broilers for human consumption and favor its profitability. The performance 
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parameters of average daily gain (ADG), feed efficiency, and quality parameters including fat 

deposition and serum cholesterol have been studied in relation to butyrate supplementation. 

When broiler chickens were fed butyrate derivatives an increase in blood glucose levels, a 

decrease in percent fat deposition in breast muscle, and a reduction in serum cholesterol levels 

were observed, however, no significant differences in growth performance were observed 

(Bedford et al., 2017). In pigs, however, the potential of butyrate derivative supplementation to 

enhance growth performance has been established. The butyrate glyceride, tributyrin, improved 

ADG and decreased fecal scores in weaning-stressed piglets, a time when piglets are prone to 

intestinal tract disorders (Wang, C. et al., 2019). The beneficial effect of butyrate 

supplementation is further demonstrated by the results of experiments using healthy, weaned 

piglets. For instance, Sotira, 2020, found that 0.5% tributyrin in the diet improved feed 

efficiency, increased weight gain and serum glucose while decreasing serum urea, an indicator of 

lean tissue growth. While the performance benefits of butyrate feed additives are obvious in pigs, 

it is possible that too few experiments involving butyrate and butyrate glyceride supplementation 

on broiler chickens have been performed to fully determine the effect on their growth 

performance.  

4.5.1 Challenges of Using Butyrate-Derived Compounds 

Butyrate supplementation is excellent for reducing inflammation, strengthening the intestinal 

barrier function, and serving as an energy source for luminal epithelial cells. Although free 

butyrate is the most effective form of butyric acid in-vitro, in this form it is too quickly absorbed, 

corrosive, and unpalatable to use directly in feed for in-vivo experimentation (Li et al., 2015). 

Encapsulating butyric acid in a lipid matrix increases absorption time, dispersing butyric acid 

into the proximal small intestine, where contact with C. perfringens is more likely and butyrate 
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function is more effective (Hofacre et al., 2020; Bedford & Gong, 2018). These encapsulated 

butyrate salts, such as sodium butyrate, have commonly been used to study the effect of butyrate 

supplementation on the chicken gut, but this method is costly, time-consuming, and most 

importantly, decreases the butyrate concentration (Lum et al., 2018). To combat the challenges 

of using encapsulated butyrate, butyrate has been anchored to glycerides to form derivatives like 

mono-, di-, and tributyrin, which are being explored further (Li et al., 2015). Tributyrin is a 

triacylglycerol ester of butyrate which does not require the same encapsulation process to deliver 

butyrate to the small intestine and is at least equally as effective at improving feed conversion 

rate and body weight gain as sodium butyrate (Lum et al., 2018). Similarly, sodium butyrate, 

when compared to butyrate glycerides, had similar effects on intestinal morphology development 

(Bedford & Gong, 2018). 

4.5.2 Butyrate Antimicrobial Effects 

In addition to the known benefits of butyrate on intestinal health regulation, there is some 

existing evidence that butyrate has potential antimicrobial effects. Butyrate supplementation has 

repeatedly inhibited Salmonella growth in in vitro and in vivo studies targeting the chicken ceca. 

In an in vitro trial, Salmonella Enteritidis growth was inhibited by the short-chain fatty acids, 

propionate, acetate, and butyrate at a pH of 6.0, with a greater emphasis on the effects of 

propionate and butyrate, the concentration of the SCFA, and pH level (Van Immerseel et al., 

2003). When delivered in a wax matrix, sodium butyrate inhibited Salmonella Enteritidis in the 

cecum of broilers (Onrust et al., 2020). Namkung, et al, 2011, found that Salmonella 

Typhimurium and Clostridium perfringens were best inhibited by n-butyric acid, or free butyric 

acid, compared to butyrate derivatives, however C. perfringens required a higher concentration 

of n-butyrate than Salmonella. The mechanisms by which butyrate modulates the intestinal 
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microbiota are not well understood, but it is believed that the pathogen control observed by 

butyrate supplementation is an indirect effect of butyrate’s interaction with the host (Riaz, 2017; 

Guilloteau et al., 2010). Additionally, the pH level, butyrate concentration, mode of delivery, 

release rate, and location, all play a role in the effectiveness of butyrate as an antimicrobial feed 

additive (Guilloteau et al., 2010; Onrust et al., 2020; Namkung et al., 2011; Banasiewicz et al., 

2020).   

      4.6 Treatment through Pre- and Probiotic Supplementation  

Pre- and probiotics have gained much attention as potential replacements for antibiotics in 

poultry and livestock production. Prebiotics are indigestible feed ingredients, commonly non-

starch polysaccharides, which provide a food source to - and stimulate the growth of - beneficial 

gut bacteria, without directly feeding any microbial to the animal (Dahiya et al., 2006; Mora et 

al., 2020). The International Scientific Association for Probiotics and Prebiotics defines a 

prebiotic as “a substrate that is selectively utilized by host microorganisms conferring a health 

benefit” (Froebel et al., 2019). Orally administering prebiotics has been shown to decrease the 

intestinal population of C. perfringens in chickens, as well as promote the growth of lactic acid 

bacteria (LAB) which outcompete pathogenic bacteria in the GIT (Froebel et al., 2019). 

Probiotics, or direct-fed-microbials (DFM), are defined as “live microbial feed supplement 

which beneficially affects the host animal by improving its intestinal balance” (Dahiya et al., 

2006; Fuller, 1989). The intestinal tract of newly hatched chicks is sterile, and colonization of 

gut microbiota from the local environment takes place over time, experiencing shifts in bacterial 

dominance (Dahiya et al., 2006).  The chicken GIT microbial community becomes stable at an 

unconfirmed time point, with fluctuations halting at 3, 14, 21, 25, or 28 days after hatch, in 

various literature (Mohd Shaufi et al., 2015; Awad et al., 2016). Between day-of-hatch and 
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approximately 3-4 weeks of age, birds are most susceptible to NE infection (Zahoor et al., 2018). 

Oral supplementation of beneficial bacteria to young birds could quick-start the colonization of 

normal gut microbiota found in healthy adult birds, and potentially prevent NE through the 

competitive exclusion of pathogens (Dahiya et al., 2006). Additionally, a mixture of prebiotics 

and probiotics referred to as synbiotics provides the GIT with not only the DFM but with an 

immediately available substrate, improving the survival of the DFM (Mora et al., 2020). Few 

studies have been conducted evaluating their use in treating NE in chickens (Mora et al., 2020).  

 4.6.1 Prebiotics for the Treatment of Necrotic Enteritis 

The ideology of using prebiotics in poultry production stems from their ability to enhance the 

morphology within the GIT, as well as improve feed efficiency and growth performance through 

the production of SCFA (including butyrate) by fermentation of the prebiotic substrate (Mora et 

al., 2020). There is little available information about the use of prebiotics as a treatment for NE 

in broilers, and most work studying the effect of prebiotics on C. perfringens was conducted on 

mammals and in vitro techniques (Dahiya et al., 2006). Reduction in the intestinal population of 

C. perfringens has been observed in chickens fed a dextrose-isolated soy protein diet containing 

4 g/kg of short-chain fructooligosaccharides (SCFOS) or mannan-oligosaccharides (MOS) when 

compared to birds fed a corn-based diet without prebiotic supplementation (Biggs et al., 2007). 

The birds in this study were not undergoing a NE challenge, however. More recently, research 

investigating the effect of MOS with yeast culture on growth performance and pathogen 

exclusion concluded that this prebiotic did not significantly reduce counts of C. perfringens in 

the ileum or cecum or have a significant effect on total LAB (Froebel et al., 2019). There is 

debate on whether MOS can be considered a prebiotic by definition because they have not been 

shown to alter intestinal microbiota, although they do enhance animal performance in several 
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animal species (Ducatelle et al., 2015). The role of prebiotics in treating NE in broilers may be 

overshadowed by the more heavily studied use of probiotics for the same goal.  

 4.6.2 Probiotics for the Treatment of Necrotic Enteritis 

More research has been conducted to explore the efficacy of the treatment of NE with probiotics 

than with prebiotics. Lactic acid bacteria (LAB), including Lactobacillus, and Bifidobacterium 

genera, are frequently used as probiotics in humans and animals (Ducatelle et al., 2015). Other 

LAB genera that may help treat NE in chickens include Bacillus, Enterococcus, and 

Saccharomyces (Dahiya et al., 2006; Mora et al., 2020). There is evidence that the LAB probiotic 

containing Lactobacillus salivarius and Pediococcus parvulus decreases the severity of NE 

infection and colony counts of C. perfringens in the chicken small intestine (Layton et al., 2013). 

Lactobacillus salivarus has also been shown to improve body weight gain, feed conversion ratio, 

immune response, intestinal morphology, and increase SCFA production in the small intestine, 

making it a promising candidate for the probiotic treatment of NE and enhanced bird 

performance (Wang, J. et al., 2020; Sureshkumar et al., 2021). Another LAB, Bacillus 

licheniformis, has been shown to prevent dysbiosis in the ileum microbial community in birds 

challenged with C. perfringens and Eimeria (Xu et al., 2018). The birds challenged with NE and 

orally administered B. licheniformis in this study exhibited ileum microbiota communities 

similar to the negative control group, whereas the challenged birds exhibited increased 

Bacteroides and Ruminococcus spp., which can be harmful to the host when the natural 

population is over-represented in the GIT (Xu et al., 2018). An additional LAB, Enterococcus 

faecium, when fed to birds with experimentally induced NE, protected the intestinal barrier from 

severe lesions associated with NE, possibly by modulating cytokine expression and intestinal 

Lactobacillus populations (Wu et al., 2019). In conclusion, several LAB have the potential to 
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replace antibiotics as a treatment for NE in broiler chickens, with different advantages and 

mechanisms of action. Importantly, probiotics in animal production do not appear to pose a 

threat to human health or medicine in the way that antibiotics did, making probiotics a favorable 

choice for NE treatment.  

5. Summary of Literature Review 

The removal of antibiotics from poultry production has highlighted an area in disease control that 

needs improvement. The pathogenesis and treatment of NE in chickens, as well as the 

relationship this disease has with the intestinal microbiota, has historically been difficult to 

understand, and currently, there is still work to be done. By using the most current technology 

for bacterial classification to examine the potential methods of treatment and prevention in 

relation to the chicken intestinal microbiota, we are closer to finding a treatment for NE than 

ever. Equally, by improving the bird environment and management we can take steps to 

effectively prevent and control this disease in the future.  

 

  



38 
 

LITERATURE CITED 

Alizadeh, M., Shojadoost, B., Boodhoo, N., Astill, J., Taha-Abdelaziz, K., Hodgins, D. C., ... & 
Sharif, S. (2021). Necrotic enteritis in chickens: a review of pathogenesis, immune 
responses and prevention, focusing on probiotics and vaccination. Animal Health 
Research Reviews, 22(2), 147-162. 

Allali, I., Arnold, J. W., Roach, J., Cadenas, M. B., Butz, N., Hassan, H. M., ... & Azcarate-Peril, 
M. A. (2017). A comparison of sequencing platforms and bioinformatics pipelines for 
compositional analysis of the gut microbiome. BMC microbiology, 17(1), 1-16. 

Alnassan, A. A., Shehata, A. A., Kotsch, M., Schrödl, W., Krüger, M., Daugschies, A., & 
Bangoura, B. (2013). Efficacy of early treatment with toltrazuril in prevention of 
coccidiosis and necrotic enteritis in chickens. Avian Pathology, 42(5), 482-490. 

Amit-Romach, E., Sklan, D., & Uni, Z. (2004). Microflora ecology of the chicken intestine using 
16S ribosomal DNA primers. Poultry science, 83(7), 1093-1098. 

Annett, C. B., Viste, J. R., Chirino-Trejo, M., Classen, H. L., Middleton, D. M., & Simko, E. 
(2002). Necrotic enteritis: effect of barley, wheat and corn diets on proliferation of 
Clostridium perfringens type A. Avian Pathology, 31(6), 598-601. 

Antonissen, G., Eeckhaut, V., Driessche, K. V., Onrust, L., Haesebrouck, F., Ducatelle, R., … 
Immerseel, F. V. (2016). Microbial shifts associated with necrotic enteritis. Avian 
Pathology, 45(3), 308–312. doi: 10.1080/03079457.2016.1152625 

Awad, W. A., Mann, E., Dzieciol, M., Hess, C., Schmitz-Esser, S., Wagner, M., & Hess, M. 
(2016). Age-related differences in the luminal and mucosa-associated gut microbiome of 
broiler chickens and shifts associated with Campylobacter jejuni infection. Frontiers in 
cellular and infection microbiology, 6, 154. 

Baba, E., Nagaishi, S., Fukata, T., & Arakawa, A. (1991). The role of intestinal microflora on the 
prevention of Salmonella colonization in gnotobiotic chickens. Poultry science, 70(9), 
1902-1907. 

Ballou, A. L., Ali, R. A., Mendoza, M. A., Ellis, J. C., Hassan, H. M., Croom, W. J., & Koci, M. 
D. (2016). Development of the chick microbiome: how early exposure influences future 
microbial diversity. Frontiers in veterinary science, 3, 2. 

Banasiewicz, T., Domagalska, D., Borycka-Kiciak, K., & Rydzewska, G. (2020). Determination 
of butyric acid dosage based on clinical and experimental studies–a literature review. 
Przeglad gastroenterologiczny, 15(2), 119. 

Bangoura, B., Alnassan, A. A., Lendner, M., Shehata, A. A., Krüger, M., & Daugschies, A. 
(2014). Efficacy of an anticoccidial live vaccine in prevention of necrotic enteritis in 
chickens. Experimental parasitology, 145, 125-134. 

Baumgart, D. C., & Dignass, A. U. (2002). Intestinal barrier function. Current Opinion in 
Clinical Nutrition & Metabolic Care, 5(6), 685-694. 



39 
 

Bedford, A., & Gong, J. (2018). Implications of butyrate and its derivatives for gut health and 
animal production. Animal Nutrition, 4(2), 151-159. 

Bedford, A., Yu, H., Squires, E. J., Leeson, S., & Gong, J. (2017a). Effects of supplementation 
level and feeding schedule of butyrate glycerides on the growth performance and carcass 
composition of broiler chickens. Poultry Science, 96(9), 3221-3228. 

Biggs, P., Parsons, C. M., & Fahey, A. G. (2007). The effects of several oligosaccharides on 
growth performance, nutrient digestibilities, and cecal microbial populations in young 
chicks. Poultry science, 86(11), 2327-2336. 

Bjerrum, L., Engberg, R. M., Leser, T. D., Jensen, B. B., Finster, K., & Pedersen, K. (2006). 
Microbial community composition of the ileum and cecum of broiler chickens as 
revealed by molecular and culture-based techniques. Poultry science, 85(7), 1151-1164. 

Borda-Molina, D., Seifert, J., & Camarinha-Silva, A. (2018). Current perspectives of the chicken 
gastrointestinal tract and its microbiome. Computational and structural biotechnology 
journal, 16, 131-139. 

Bortoluzzi, C., Vieira, B. S., Hofacre, C., & Applegate, T. J. (2019). Effect of different challenge 
models to induce necrotic enteritis on the growth performance and intestinal microbiota 
of broiler chickens. Poultry science, 98(7), 2800-2812. 

Broom, L. J. (2017). Necrotic enteritis; current knowledge and diet-related mitigation. World's 
Poultry Science Journal, 73(2), 281-292. 

Bukhari, S. M., Iram, M., Lijie, T., Sunting, M., Mang, H. L., Abbas, G., ... & Li, Y. (2017). 
Coherence and colonization characteristics of recombinant Lactobacillus under simulated 
gastric conditions within chicken GI tract and its impact on chicken growth. Pak. Vet. J, 
37, 381-386. 

Chakravorty, S., Helb, D., Burday, M., Connell, N., & Alland, D. (2007). A detailed analysis of 
16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. Journal of 
microbiological methods, 69(2), 330-339. 

Chapman, H. D., Jeffers, T. K., & Williams, R. B. (2010). Forty years of monensin for the 
control of coccidiosis in poultry. Poultry science, 89(9), 1788-1801. 

Clavijo, V., & Flórez, M. J. V. (2018). The gastrointestinal microbiome and its association with 
the control of pathogens in broiler chicken production: a review. Poultry science, 97(3), 
1006-1021. 

Collier, C., Hofacre, C., Payne, A., Anderson, D., Kaiser, P., Mackie, R., & Gaskins, H. (2008). 
Coccidia-induced mucogenesis promotes the onset of necrotic enteritis by supporting 
Clostridium perfringens growth. Veterinary Immunology and Immunopathology, 122(1-
2), 104-115. doi:10.1016/j.vetimm.2007.10.014 

Cooper, K. K., Trinh, H. T., & Songer, J. G. (2009). Immunization with recombinant alpha toxin 
partially protects broiler chicks against experimental challenge with Clostridium 
perfringens. Veterinary microbiology, 133(1-2), 92-97. 



40 
 

Costa, M. C., Bessegatto, J. A., Alfieri, A. A., Weese, J. S., Filho, J. A. B., & Oba, A. (2017). 
Different antibiotic growth promoters induce specific changes in the cecal microbiota 
membership of broiler chicken. Plos One, 12(2). doi: 10.1371/journal.pone.0171642 

Cowieson, A. J., Livingston, M. L., Nogal, B., Hoang, V., Crespo, R., & Livingston, K. A. 
(2020). Effect of coccidial challenge and vaccination on the performance, veterinary 
postmortem scores, and blood biochemistry of broiler chickens. Poultry Science, 99(8), 
3831-3840. 

Craven, S. E. (2000). Colonization of the intestinal tract by Clostridium perfringens and fecal 
shedding in diet-stressed and unstressed broiler chickens. Poultry Science, 79(6), 843-
849. 

Cuccato, M., Rubiola, S., Giannuzzi, D., Grego, E., Pregel, P., Divari, S., & Cannizzo, F. T. 
(2021). 16S rRNA sequencing analysis of the gut microbiota in broiler chickens 
prophylactically administered with antimicrobial agents. Antibiotics, 10(2), 146. 

Dahiya, J. P., Wilkie, D. C., Van Kessel, A. G., & Drew, M. D. (2006). Potential strategies for 
controlling necrotic enteritis in broiler chickens in post-antibiotic era. Animal Feed 
Science and Technology, 129(1-2), 60-88. 

Darwish, N., Shao, J., Schreier, L. L., & Proszkowiec-Weglarz, M. (2021). Choice of 16S 
ribosomal RNA primers affects the microbiome analysis in chicken ceca. Scientific 
Reports, 11(1), 1-15. 

De Gussem, M. (2007, August). Coccidiosis in poultry: review on diagnosis, control, prevention 
and interaction with overall gut health. In Proceedings of the 16th European Symposium 
on Poultry Nutrition (pp. 253-261). Proceedings of the 16th European Symposium on 
Poultry Nutrition. 

De Maesschalck, C., Eeckhaut, V., Maertens, L., De Lange, L., Marchal, L., Nezer, C., ... & Van 
Immerseel, F. (2015). Effects of xylo-oligosaccharides on broiler chicken performance 
and microbiota. Applied and Environmental Microbiology, 81(17), 5880-5888. 

Denbow, D. M. (2015). Gastrointestinal anatomy and physiology. In Sturkie's avian physiology 
(pp. 337-366). Academic Press. 

Di Bella, J. M., Bao, Y., Gloor, G. B., Burton, J. P., & Reid, G. (2013). High throughput 
sequencing methods and analysis for microbiome research. Journal of microbiological 
methods, 95(3), 401-414. 

Drew, M. D., Syed, N. A., Goldade, B. G., Laarveld, B., & Van Kessel, A. G. (2004). Effects of 
dietary protein source and level on intestinal populations of Clostridium perfringens in 
broiler chickens. Poultry science, 83(3), 414-420. 

Ducatelle, R., Eeckhaut, V., Haesebrouck, F., & Van Immerseel, F. (2015). A review on 
prebiotics and probiotics for the control of dysbiosis: Present status and future 
perspectives. Animal, 9(1), 43-48. doi:10.1017/S1751731114002584 

Fasina, Y. O., Newman, M. M., Stough, J. M., & Liles, M. R. (2016). Effect of Clostridium 
perfringens infection and antibiotic administration on microbiota in the small intestine of 
broiler chickens. Poultry Science, 95(2), 247–260. doi: 10.3382/ps/pev329 



41 
 

Fernandes da Costa, S. P., Mot, D., Geeraerts, S., Bokori-Brown, M., Van Immerseel, F., & 
Titball, R. W. (2016). Variable protection against experimental broiler necrotic enteritis 
after immunization with the C-terminal fragment of Clostridium perfringens alpha-toxin 
and a non-toxic NetB variant. Avian Pathology, 45(3), 381-388. 

Froebel, L. K., Jalukar, S., Lavergne, T. A., Lee, J. T., & Duong, T. (2019). Administration of 
dietary prebiotics improves growth performance and reduces pathogen colonization in 
broiler chickens. Poultry science, 98(12), 6668-6676. 

Fuller, R. (1989). Probiotics in man and animals. The Journal of applied bacteriology, 66(5), 
365-378. 

Gerstein, M. B., Bruce, C., Rozowsky, J. S., Zheng, D., Du, J., Korbel, J. O., ... & Snyder, M. 
(2007). What is a gene, post-ENCODE? History and updated definition. Genome 
research, 17(6), 669-681. 

Gharib-Naseri, K., Kheravii, S. K., Keerqin, C., Morgan, N., Swick, R. A., Choct, M., & Wu, S. 
B. (2019). Two different Clostridium perfringens strains produce different levels of 
necrotic enteritis in broiler chickens. Poultry science, 98(12), 6422-6432. 

Gholami-Ahangaran, M., Ahmadi-Dastgerdi, A., & Karimi-Dehkordi, M. (2020). Thymol and 
carvacrol; as antibiotic alternative in green healthy poultry production. Plant 
Biotechnology Persa, 2(1), 22-25. 

Glendinning, L., Watson, K. A., & Watson, M. (2019). Development of the duodenal, ileal, 
jejunal and caecal microbiota in chickens. Animal microbiome, 1(1), 1-11. 

Godley, A. C., & Hamilton, S. (2020). Different expectations: A comparative history of 
structure, experience, and strategic alliances in the US and UK poultry sectors, 1920–
1990. Strategic Entrepreneurship Journal, 14(1), 89-104. 

Gong, J., Si, W., Forster, R. J., Huang, R., Yu, H., Yin, Y., ... & Han, Y. (2007). 16S rRNA 
gene-based analysis of mucosa-associated bacterial community and phylogeny in the 
chicken gastrointestinal tracts: from crops to ceca. FEMS microbiology ecology, 59(1), 
147-157. 

Guban, J., Korver, D. R., Allison, G. E., & Tannock, G. W. (2006). Relationship of dietary 
antimicrobial drug administration with broiler performance, decreased population levels 
of Lactobacillus salivarius, and reduced bile salt deconjugation in the ileum of broiler 
chickens. Poultry science, 85(12), 2186-2194. 

Guilloteau, P., Martin, L., Eeckhaut, V., Ducatelle, R., Zabielski, R., & Immerseel, F. V. (2010). 
From the gut to the peripheral tissues: The multiple effects of butyrate. Nutrition 
Research Reviews, 23(2), 366-384. doi:10.1017/s0954422410000247 

Hall, E., Wodi, A. P., Hamborsky, J., Morelli, V., & Schillie, S. (2021). Epidemiology and 
Prevention of Vaccine-Preventable Diseases. Washington DC: Public health foundation. 

Helmboldt, C. F., & Bryant, E. S. (1971). The pathology of necrotic enteritis in domestic fowl. 
Avian Diseases, 775-780. 



42 
 

Hofacre, C. L., Mathis, G. F., Lumpkins, B. S., Sygall, R., Vaessen, S., Hofacre, C. S., ... & 
Clanton, E. (2020). Efficacy of Butyric and Valeric Acid Esters in a Necrotic Enteritis 
Challenge Model. Avian Diseases, 64(3), 407-414. 

Ijaz, U. Z., Sivaloganathan, L., McKenna, A., Richmond, A., Kelly, C., Linton, M., ... & 
Gundogdu, O. (2018). Comprehensive longitudinal microbiome analysis of the chicken 
cecum reveals a shift from competitive to environmental drivers and a window of 
opportunity for Campylobacter. Frontiers in microbiology, 2452. 

Johnson, J. S., Spakowicz, D. J., Hong, B. Y., Petersen, L. M., Demkowicz, P., Chen, L., ... & 
Weinstock, G. M. (2019). Evaluation of 16S rRNA gene sequencing for species and 
strain-level microbiome analysis. Nature communications, 10(1), 1-11. 

Keyburn, A. L., Boyce, J. D., Vaz, P., Bannam, T. L., Ford, M. E., Parker, D., ... & Moore, R. J. 
(2008). NetB, a new toxin that is associated with avian necrotic enteritis caused by 
Clostridium perfringens. PLoS pathogens, 4(2), e26. 

Kim, M., Morrison, M., & Yu, Z. (2011). Evaluation of different partial 16S rRNA gene 
sequence regions for phylogenetic analysis of microbiomes. Journal of microbiological 
methods, 84(1), 81-87 

Kiu, R., Brown, J., Bedwell, H., Leclaire, C., Caim, S., Pickard, D., ... & Hall, L. J. (2019). 
Genomic analysis on broiler-associated Clostridium perfringens strains and exploratory 
caecal microbiome investigation reveals key factors linked to poultry necrotic enteritis. 
Animal microbiome, 1(1), 1-14. 

Kogut, M. H. (2019). The effect of microbiome modulation on the intestinal health of poultry. 
Animal feed science and technology, 250, 32-40. 

Koutsos, E. A., & Arias, V. J. (2006). Intestinal ecology: Interactions among the gastrointestinal 
tract, nutrition, and the microflora. Journal of Applied Poultry Research, 15(1), 161-173. 

Krogdahl, Å. (1985). Digestion and absorption of lipids in poultry. The Journal of nutrition, 
115(5), 675-685. 

Lan, P. T. N., Hayashi, H., Sakamoto, M., & Benno, Y. (2002). Phylogenetic analysis of cecal 
microbiota in chicken by the use of 16S rDNA clone libraries. Microbiology and 
immunology, 46(6), 371-382. 

Latorre, J. D., Adhikari, B., Park, S. H., Teague, K. D., Graham, L. E., Mahaffey, B. D., … 
Tellez, G. (2018). Evaluation of the Epithelial Barrier Function and Ileal Microbiome in 
an Established Necrotic Enteritis Challenge Model in Broiler Chickens. Frontiers in 
Veterinary Science, 5. doi: 10.3389/fvets.2018.00199 

Layton, S. L., Hernandez-Velasco, X., Chaitanya, S., Xavier, J., Menconi, A., Latorre, J. D., ... & 
Tellez, G. (2013). The effect of a Lactobacillus-based probiotic for the control of necrotic 
enteritis in broilers. Food and nutrition sciences, 1-7. 

Lee, J. T., Eckert, N. H., Ameiss, K. A., Stevens, S. M., Anderson, P. N., Anderson, S. M., ... & 
Caldwell, D. J. (2011). The effect of dietary protein level on performance characteristics 
of coccidiosis vaccinated and nonvaccinated broilers following mixed-species Eimeria 
challenge. Poultry Science, 90(9), 1916-1925. 



43 
 

Li, J., Hou, Y., Yi, D., Zhang, J., Wang, L., Qiu, H., ... & Gong, J. (2015). Effects of tributyrin 
on intestinal energy status, antioxidative capacity and immune response to 
lipopolysaccharide challenge in broilers. Asian-Australasian Journal of Animal Sciences, 
28(12), 1784. 

López-Osorio, S., Chaparro-Gutiérrez, J. J., & Gómez-Osorio, L. M. (2020). Overview of 
poultry Eimeria life cycle and host-parasite interactions. Frontiers in Veterinary Science, 
7, 384. 

Lovland, A., Kaldhusdal, M., Redhead, K., Skjerve, E., & Lillehaug, A. (2004). Maternal 
vaccination against subclinical necrotic enteritis in broilers. Avian Pathology, 33(1), 81-
90. 

Lu, J., Hofacre, C., Smith, F., & Lee, M. D. (2008). Effects of feed additives on the development 
on the ileal bacterial community of the broiler chicken. Animal, 2(5), 669-676. 

Lu, J., Idris, U., Harmon, B., Hofacre, C., Maurer, J. J., & Lee, M. D. (2003). Diversity and 
succession of the intestinal bacterial community of the maturing broiler chicken. Applied 
and environmental microbiology, 69(11), 6816-6824. 

Lum, J., Sygall, R., & Ros Felip, J. M. (2018). Comparison of tributyrin and coated sodium 
butyrate as sources of butyric acid for improvement of growth performance in Ross 308 
broilers. International Journal of Poultry Science, 17(6), 290-294. 

Macdonald, S. E., Nolan, M. J., Harman, K., Boulton, K., Hume, D. A., Tomley, F. M., ... & 
Blake, D. P. (2017). Effects of Eimeria tenella infection on chicken caecal microbiome 
diversity, exploring variation associated with severity of pathology. PLoS one, 12(9), 
e0184890. 

Mancabelli, L., Ferrario, C., Milani, C., Mangifesta, M., Turroni, F., Duranti, S., ... & Ventura, 
M. (2016). Insights into the biodiversity of the gut microbiota of broiler chickens. 
Environmental microbiology, 18(12), 4727-4738. 

Mohd Shaufi, M. A., Sieo, C. C., Chong, C. W., Gan, H. M., & Ho, Y. W. (2015). Deciphering 
chicken gut microbial dynamics based on high-throughput 16S rRNA metagenomics 
analyses. Gut pathogens, 7(1), 1-12. 

Moore, R. J. (2016). Necrotic enteritis predisposing factors in broiler chickens. Avian Pathology, 
45(3), 275-281. 

Mora, Z. V. D. L., Macías-Rodríguez, M. E., Arratia-Quijada, J., Gonzalez-Torres, Y. S., Nuño, 
K., & Villarruel-López, A. (2020). Clostridium perfringens as foodborne pathogen in 
broiler production: pathophysiology and potential strategies for controlling necrotic 
enteritis. Animals, 10(9), 1718. 

Morey, M., Fernández-Marmiesse, A., Castiñeiras, D., Fraga, J. M., Couce, M. L., & Cocho, J. 
A. (2013). A glimpse into past, present, and future DNA sequencing. Molecular genetics 
and metabolism, 110(1-2), 3-24. 

Mot, D., Timbermont, L., Haesebrouck, F., Ducatelle, R., & Van Immerseel, F. (2014). Progress 
and problems in vaccination against necrotic enteritis in broiler chickens. Avian 
pathology, 43(4), 290-300. 



44 
 

Nakphaichit, M., Thanomwongwattana, S., Phraephaisarn, C., Sakamoto, N., Keawsompong, S., 
Nakayama, J., & Nitisinprasert, S. (2011). The effect of including Lactobacillus reuteri 
KUB-AC5 during post-hatch feeding on the growth and ileum microbiota of broiler 
chickens. Poultry science, 90(12), 2753-2765. 

Namkung, H., Yu, H., Gong, J., & Leeson, S. (2011). Antimicrobial activity of butyrate 
glycerides toward Salmonella Typhimurium and Clostridium perfringens. Poultry 
Science, 90(10), 2217-2222. 

National Chicken Council. (2020, September). National Chicken Council Animal Welfare 
Guidelines and Audit Checklist For Broilers. nationalchickencouncil.org. Retrieved 
March 18, 2022, from https://www.nationalchickencouncil.org/wp-
content/uploads/2021/02/NCC-Animal-Welfare-Guidelines_Broilers_Sept2020.pdf 

National Chicken Council. (2022, February 15). U.S. broiler performance. Retrieved March 18, 
2022, from https://www.nationalchickencouncil.org/about-the-industry/statistics/u-s-
broiler-performance/  

National Research Council. (1994). Nutrient Requirements of Poultry: Ninth Revised Edition, 
1994. Washington, DC: The National Academies Press. 

Nilakanta, H., Drews, K. L., Firrell, S., Foulkes, M. A., & Jablonski, K. A. (2014). A review of 
software for analyzing molecular sequences. BMC Research Notes, 7(1), 1-9. 

Oakley, B. B., Buhr, R. J., Ritz, C. W., Kiepper, B. H., Berrang, M. E., Seal, B. S., & Cox, N. A. 
(2014). Successional changes in the chicken cecal microbiome during 42 days of growth 
are independent of organic acid feed additives. BMC veterinary research, 10(1), 1-8. 

Ocejo, M., Oporto, B., & Hurtado, A. (2019). 16S rRNA amplicon sequencing characterization 
of caecal microbiome composition of broilers and free-range slow-growing chickens 
throughout their productive lifespan. Scientific reports, 9(1), 1-14. 

Olkowski, A. A., Wojnarowicz, C., Chirino-Trejo, M., & Drew, M. D. (2006). Responses of 
broiler chickens orally challenged with Clostridium perfringens isolated from field cases 
of necrotic enteritis. Research in veterinary science, 81(1), 99-108. 

Onrust, L., Baeyen, S., Haesebrouck, F., Ducatelle, R., & Van Immerseel, F. (2020). Effect of in 
feed administration of different butyrate formulations on Salmonella Enteritidis 
colonization and cecal microbiota in broilers. Veterinary Research, 51(1), 1-15. 

Pan, D., & Yu, Z. (2014). Intestinal microbiome of poultry and its interaction with host and diet. 
Gut microbes, 5(1), 108-119. 

Phong, S. F., Shanmugavelu, S., Thayalini, K., Noraini, S., & Wong, H. K. (2010). Detection of 
Lactobacillus, Bacteroides and Clostridium perfringens in the gastrointestinal contents of 
chicken fed different diets by real-time PCR. J. Trop. Agric. Food Sci, 38, 81-87. 

Plöger, S., Stumpff, F., Penner, G. B., Schulzke, J. D., Gäbel, G., Martens, H., ... & Aschenbach, 
J. R. (2012). Microbial butyrate and its role for barrier function in the gastrointestinal 
tract. Annals of the New York academy of sciences, 1258(1), 52-59. 



45 
 

Reuben, R. C., Roy, P. C., Sarkar, S. L., Alam, R. U., & Jahid, I. K. (2019). Isolation, 
characterization, and assessment of lactic acid bacteria toward their selection as poultry 
probiotics. BMC microbiology, 19(1), 1-20. 

Riaz, A., Umar, S., Munir, M. T., & Tariq, M. (2017). Replacements of antibiotics in the control 
of necrotic enteritis: a review. Sci Lett, 5(3), 208-216. 

Rinttilä, T., & Apajalahti, J. (2013). Intestinal microbiota and metabolites—Implications for 
broiler chicken health and performance. Journal of Applied Poultry Research, 22(3), 647-
658. 

Rychlik, I. (2020). Composition and function of chicken gut microbiota. Animals, 10(1), 103. 

Schloss, P. D. (2010). The effects of alignment quality, distance calculation method, sequence 
filtering, and region on the analysis of 16S rRNA gene-based studies. PLoS 
computational biology, 6(7), e1000844. 

Seidavi, A., Mirhosseini, S. Z., Shivazad, M., Chamani, M., Sadeghi, A. A., & Pourseify, R. 
(2010). Detection and investigation of Escherichia coli in contents of duodenum, 
jejunum, ileum and cecum of broilers at different ages by PCR. Asia Pacific Journal of 
Molecular Biology and Biotechnology, 18, 321-326. 

Sergeant, M. J., Constantinidou, C., Cogan, T. A., Bedford, M. R., Penn, C. W., & Pallen, M. J. 
(2014). Extensive microbial and functional diversity within the chicken cecal 
microbiome. PloS one, 9(3), e91941. 

Shendure, J. A., Porreca, G. J., & Church, G. M. (2008). Overview of DNA sequencing 
strategies. Current Protocols in Molecular Biology, 81(1), 7-1. 

Shendure, J., Balasubramanian, S., Church, G. M., Gilbert, W., Rogers, J., Schloss, J. A., & 
Waterston, R. H. (2017). DNA sequencing at 40: past, present and future. Nature, 
550(7676), 345-353. 

Shojadoost, B., Vince, A. R., & Prescott, J. F. (2012). The successful experimental induction of 
necrotic enteritis in chickens by Clostridium perfringens: A critical review. Veterinary 
Research, 43(1), 74. doi:10.1186/1297-9716-43-74 

Shokryazdan, P., Faseleh Jahromi, M., Liang, J. B., Ramasamy, K., Sieo, C. C., & Ho, Y. W. 
(2017). Effects of a Lactobacillus salivarius mixture on performance, intestinal health and 
serum lipids of broiler chickens. PLoS one, 12(5), e0175959. 

Sotira, S., Dell’Anno, M., Caprarulo, V., Hejna, M., Pirrone, F., Callegari, M. L., ... & Rossi, L. 
(2020). Effects of tributyrin supplementation on growth performance, insulin, blood 
metabolites and gut microbiota in weaned piglets. Animals, 10(4), 726. 

Stanley, D., Hughes, R. J., & Moore, R. J. (2014). Microbiota of the chicken gastrointestinal 
tract: influence on health, productivity and disease. Applied microbiology and 
biotechnology, 98(10), 4301-4310. 

Stanley, D., Keyburn, A. L., Denman, S. E., & Moore, R. J. (2012). Changes in the caecal 
microflora of chickens following Clostridium perfringens challenge to induce necrotic 
enteritis. Veterinary microbiology, 159(1-2), 155-162. 



46 
 

Stewart, A. S., Pratt-Phillips, S., & Gonzalez, L. M. (2017). Alterations in intestinal 
permeability: the role of the “leaky gut” in health and disease. Journal of equine 
veterinary science, 52, 10-22. 

 

Sureshkumar, S., Lee, H. C., Jung, S. K., Kim, D., Oh, K. B., Yang, H., ... & Byun, S. J. (2021). 
Inclusion of Lactobacillus salivarius strain revealed a positive effect on improving 
growth performance, fecal microbiota and immunological responses in chicken. Archives 
of Microbiology, 203(2), 847-853. 

Svihus, B., Choct, M., & Classen, H. L. (2013). Function and nutritional roles of the avian caeca: 
a review. World's Poultry Science Journal, 69(2), 249-264. 

Takehara, M., Takagishi, T., Seike, S., Ohtani, K., Kobayashi, K., Miyamoto, K., ... & 
Nagahama, M. (2016). Clostridium perfringens α-toxin impairs innate immunity via 
inhibition of neutrophil differentiation. Scientific reports, 6(1), 1-12. 

Tamirat, B., Tamirat, H., Bassazin, G., Alemayhu, T., & Tadesse, M. (2017). Review on necrotic 
enteritis. British Journal of Poultry Sciences, 6(3), 63-72. 

Tsiouris, V., Georgopoulou, I., Batzios, C., Pappaioannou, N., Ducatelle, R., & Fortomaris, P. 
(2015a). The effect of cold stress on the pathogenesis of necrotic enteritis in broiler 
chicks. Avian Pathology, 44(6), 430-435. 

Tsiouris, V., Georgopoulou, I., Batzios, C., Pappaioannou, N., Ducatelle, R., & Fortomaris, P. 
(2015b). High stocking density as a predisposing factor for necrotic enteritis in broiler 
chicks. Avian Pathology, 44(2), 59-66. 

Tsiouris, V. (2016). Poultry management: a useful tool for the control of necrotic enteritis in 
poultry. Avian Pathology, 45(3), 323-325. 

Tsiouris, V., Georgopoulou, I., Batzios, C., Pappaioannou, N., Ducatelle, R., & Fortomaris, P. 
(2018). Heat stress as a predisposing factor for necrotic enteritis in broiler chicks. Avian 
Pathology, 47(6), 616-624. 

Van Immerseel, F., De Buck, J., Pasmans, F., Velge, P., Bottreau, E., Fievez, V., ... & Ducatelle, 
R. (2003). Invasion of Salmonella enteritidis in avian intestinal epithelial cells in vitro is 
influenced by short-chain fatty acids. International journal of food microbiology, 85(3), 
237-248. 

Wade, B., Keyburn, A. L., Haring, V., Ford, M., Rood, J. I., & Moore, R. J. (2016). The adherent 
abilities of Clostridium perfringens strains are critical for the pathogenesis of avian 
necrotic enteritis. Veterinary microbiology, 197, 53-61. 

Wang, C., Shen, Z., Cao, S., Zhang, Q., Peng, Y., Hong, Q., ... & Hu, C. (2019). Effects of 
tributyrin on growth performance, intestinal microflora and barrier function of weaned 
pigs. Animal Feed Science and Technology, 258, 114311. 

Wang, H. B., Wang, P. Y., Wang, X., Wan, Y. L., & Liu, Y. C. (2012). Butyrate enhances 
intestinal epithelial barrier function via up-regulation of tight junction protein Claudin-1 
transcription. Digestive diseases and sciences, 57(12), 3126-3135. 



47 
 

Wang, J., Fan, H., Han, Y., Wei, J., Zhao, J., & Zhou, Z. (2016). Pyrosequencing of the broiler 
chicken gastrointestinal tract reveals the regional similarity and dissimilarity of microbial 
community. Canadian Journal of Animal Science, 97(2), 302-313. 

Wang, J., Ishfaq, M., Guo, Y., Chen, C., & Li, J. (2020). Assessment of probiotic properties of 
Lactobacillus salivarius isolated from chickens as feed additives. Frontiers in veterinary 
science, 415. 

Wang, Z., Zeng, X., Mo, Y., Smith, K., Guo, Y., & Lin, J. (2012). Identification and 
characterization of a bile salt hydrolase from Lactobacillus salivarius for development of 
novel alternatives to antibiotic growth promoters. Applied and environmental 
microbiology, 78(24), 8795-8802. 

Wei, S., Morrison, M., & Yu, Z. (2013). Bacterial census of poultry intestinal microbiome. 
Poultry science, 92(3), 671-683 

Wilkie, D. C., Van Kessel, A. G., White, L. J., Laarveld, B., & Drew, M. D. (2005). Dietary 
amino acids affect intestinal Clostridium perfringens populations in broiler chickens. 
Canadian Journal of Animal Science, 85(2), 185-193. 

Williams, R. B. (2005). Intercurrent coccidiosis and necrotic enteritis of chickens: rational, 
integrated disease management by maintenance of gut integrity. Avian pathology, 34(3), 
159-180. 

Wu, S. B., Stanley, D., Rodgers, N., Swick, R. A., & Moore, R. J. (2014). Two necrotic enteritis 
predisposing factors, dietary fishmeal and Eimeria infection, induce large changes in the 
caecal microbiota of broiler chickens. Veterinary microbiology, 169(3-4), 188-197. 

Wu, Y., Zhen, W., Geng, Y., Wang, Z., & Guo, Y. (2019). Pretreatment with probiotic 
Enterococcus faecium NCIMB 11181 ameliorates necrotic enteritis-induced intestinal 
barrier injury in broiler chickens. Scientific reports, 9(1), 1-17. 

Xiao, Y., Xiang, Y., Zhou, W., Chen, J., Li, K., & Yang, H. (2017). Microbial community 
mapping in intestinal tract of broiler chicken. Poultry science, 96(5), 1387-1393. 

Xu, S., Lin, Y., Zeng, D., Zhou, M., Zeng, Y., Wang, H., ... & Ni, X. (2018). Bacillus 
licheniformis normalize the ileum microbiota of chickens infected with necrotic enteritis. 
Scientific reports, 8(1), 1-10. 

Yadav, D. K., Yadav, N., & Khurana, S. M. P. (2020). Vaccines: present status and applications. 
In Animal biotechnology (pp. 523-542). Academic Press. 

Yeoman, C. J., Chia, N., Jeraldo, P., Sipos, M., Goldenfeld, N. D., & White, B. A. (2012). The 
microbiome of the chicken gastrointestinal tract. Animal health research reviews, 13(1), 
89-99. 

Zahoor, I., Ghayas, A., & Basheer, A. (2018). Genetics and genomics of susceptibility and 
immune response to necrotic enteritis in chicken: a review. Molecular biology reports, 
45(1), 31-37. 

Zaragoza, N. E., Orellana, C. A., Moonen, G. A., Moutafis, G., & Marcellin, E. (2019). Vaccine 
production to protect animals against pathogenic clostridia. Toxins, 11(9), 525. 



48 
 

 

Zhou, H., Gong, J., Brisbin, J., Yu, H., Sanei, B., Sabour, P., & Sharif, S. (2007). Appropriate 
Chicken Sample Size for Identifying the Composition of Broiler Intestinal Microbiota 
Affected by Dietary Antibiotics, Using the Polymerase Chain Reaction-Denaturing 
Gradient Gel Electrophoresis Technique. Poultry Science, 86(12), 2541–2549. doi: 
10.3382/ps.2007-00267 

Zhu, X. Y., Zhong, T., Pandya, Y., & Joerger, R. D. (2002). 16S rRNA-based analysis of 
microbiota from the cecum of broiler chickens. Applied and environmental microbiology, 
68(1), 124-137. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



49 
 

CHAPTER II. 

 

 

 

 

Intestinal Microbiota Analysis of Broiler Chickens under Necrotic Enteritis Challenge and 

Tributyrin Supplementation 

 

 

 

 

 

  



50 
 

1. Introduction 

The overwhelming human desire to eat chicken led to advancements in animal breeding, 

operations management, and nutrition that revolutionized the poultry industry over a half-century 

period. These practices combined to produce what is now an exceptional resource- and cost-

efficient animal-derived protein production model (Putman et al., 2017; Gerber et al.,2007).  This 

sophisticated system heralded by the poultry industry relies on excellent feed efficiency, low 

mortality, and a plethora of live, healthy birds to meet the dietary needs of billions of hungry 

humans while remaining profitable in the market sector. However, a threat to maintaining this 

efficient status has emerged, potentially changing the management of broiler chickens in the 

future.  

For decades (Gerber et al., 2007), antibiotic growth promoters (AGPs) like the Streptomyces 

virginieae - derived virginiamycin (George et al., 1982), have been used to enhance bird 

performance and control disease outbreaks. After the identification of Enterococcus faecium 

strains showing resistance to the human antibiotic, quinupristin-dalfopristin (Dumonceaux et al., 

2006) and the increasing possibility of creating other dangerous, antibiotic-resistant strains of 

bacteria, the European Union banned the use of non-therapeutic antibiotics in animal production 

in 2006 (Huyghebaert et al., 2011; Caly et al., 2015). Recently, in the United States, the use of 

antibiotics in virtually any livestock industry in any scenario has become a consumer taboo, 

pushing producers to abandon antibiotics altogether (Huyghebaert et al., 2011). The removal of 

antibiotics from poultry production has led to the re-emergence of a serious gastrointestinal 

disease, NE that is catalyzed by the pathogen, Clostridium perfringens (Shojadoost et al., 2012; 

M’sadeq et al., 2015).   
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NE in chickens occurs in two forms, clinical and subclinical, both of which negatively affect 

animal welfare and profitability. The clinical version causes anorexia, erosion of intestinal 

mucosa, diarrhea, and death (M’Sadeq, et al., 2015). Sub-clinical infection poses mild disease 

symptoms and diminishes animal performance, thereby creating an opportunity for economic 

losses (Timbermont et al., 2010). A subclinical infection also poses an increased threat of 

foodborne pathogen transmission to humans due to the increased risk of C. perfringens 

contamination during processing (Immerseel, et al., 2004). Neither form of NE is desirable 

whether you are a chicken producer, a chicken consumer, or a chicken, so eliminating the disease 

burden comes with benefits from all perspectives. Although NE was once easily prevented and 

controlled with antibiotic growth promoters (AGPs) like virginiamycin (George et al., 1982; 

Williams, 2005), lincomycin, or bacitracin (Williams, 2005), these treatments can no longer be 

used as a preventative measure. We must turn our attention to other areas of animal health and 

disease management if we hope to solve the NE puzzle without antibiotics.  

The search for an AGP replacement to combat NE within broiler production is not uncharted 

territory, but so far has yielded no single, definitive solution. Previous reviews (Huyghebaert et 

al., 2011) outlining the potential for different substances to replace AGPs as feed additives, have 

described organic acids, including the short-chain fatty acid (SCFA), butyric acid, as a partial 

solution due to their array of beneficial host effects. Naturally occurring butyrate serves as an 

energy source for epithelial cells in the GIT, helps regulate cell proliferation, maturation, 

apoptosis, and has been shown to reduce inflammatory cytokine production in humans. Because 

of its status as a weak acid (pKa <4.8), butyrate is used as a viable pathogen control tactic in 

food and livestock production, especially against Salmonella (Guilloteau et al., 2010). It has been 

demonstrated that butyrate does not reduce C. perfringens colonization directly but has been 
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shown to reduce the severity and occurrence of necrotic lesions caused by C. perfringens in 

broilers. This is possibly due to butyrate’s improvement of intestinal morphology including 

increased villus height (Timbermont et al., 2010).  

Namkung et. al. found that the most effective configuration of butyrate for inhibiting enteric 

pathogen overload was pure butyric acid. However, butyric acid in its unprotected form is too 

corrosive and unpalatable to use directly in feed (Li et al., 2015). Furthermore, pure butyric acid 

is metabolized before it can reach the microbial communities of the small intestine (Moquet et 

al., 2016). By encapsulating a butyrate salt, sodium butyrate, within a lipid matrix or by 

anchoring butyrate to glycerides (mono-, di-, and tributyrin), researchers can delay the 

absorption of butyrate until it has reached the small intestine and reduce the toxic and 

unpalatable effects of free butyric acid (Li et al., 2015). Any of these chemical compositions of 

butyric acid are commonly considered “butyrate” or “butyrate supplements” within the literature 

(Guilloteau et al., 2010), but for this study, we will refer to the use of tributyrin as the butyrate 

supplement of interest.  

Innovative 16S rRNA gene sequencing has given insight into the microbial populations within 

the body to understand the role of the microbiome in human and animal hosts. The form of 

amplicon gene sequencing used in our lab utilizes PCR primers to target and amplify the V4 

gene region. The resulting amplicons are aligned to a developed gene library database to identify 

the organisms within the gut community (Chakravorty et al., 2007). After identification, 

operational taxonomic units (OTUs) are assigned, offering a certainty of at least 97%. This 

complex procedure is performed in a matter of hours and yields DNA sequences hundreds of 

base pairs (bp) long, in contrast to the earliest DNA sequencing, which took months to years of 

lab work to produce sequences only up to one hundred bp long (Heather & Chain, 2016).  
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Few publications addressing the relationship specifically between butyrate additives and the 

intestinal microbiota of the host animal exist, which narrows further as the host is specified as 

broiler chickens (Guilloteau et al., 2010; Bortoluzzi et al., 2019). To our knowledge, this is the 

first experiment conducted using high-throughput next-generation sequencing (HT-NGS) with 

the intent to illuminate the shift within the broiler chicken’s intestinal microbial communities as 

a response to tributyrin as a treatment for NE (Latorre et al., 2018; Fasina et al., 2016). The 

previously demonstrated beneficial effects of butyrate are indisputable, but to date little is known 

about the effect of tributyrin on the composition of the broiler intestinal biota, and if these effects 

may help explain the ill-understood, underlying mechanisms that make butyric acid supplements 

advantageous for gastrointestinal health.  If our hypothesis is correct, we will see a microbial 

shift within the cecum and ileum which promotes intestinal health after the administration of the 

butyrate treatment during the NE challenge. 

      2.   Materials and Methods  

      2.1 Reader’s Note 

This study was a collaborative effort with the Southern Poultry Research Group (SPRG) in 

which the number of samples used and discussed in this paper is a subset of the samples from 

birds raised as part of a separate target study. The birds used in this study were randomly 

selected from the T1, nonmedicated, unchallenged with C. perfringens (negative control group), 

T2, nonmedicated, challenged with C. perfringens (positive control group), and T6, treated with 

butyrin (Butyrin SR130, Perstorp) in the feed at 0.5kg/metric ton from day 0 to day 14 and at 

0.25 kg/metric ton from day 14 to 42 (variable dose) and challenged with C. perfringens, groups 

as described in Hofacre, et al., 2020. The goal of our study was to examine the intestinal 

microbial communities of commercial-type broilers treated with tributyrin under an induced NE 
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challenge. This study was approved by the Southern Poultry Research Group Institutional 

Animal Care and Use Committee (IACUC). All information regarding animal rearing, including 

animal age, housing, and feeding regimen, as well as experimental design, including treatment 

administration, dosage, and sample collection was obtained via email correspondence with Dr. 

Charles Hofacre of the Southern Poultry Research Group (C. F. Hofacre, personal 

communication, July 7, 2020 – November 22, 2021).  

      2.2 Animal Information, Experimental Design, and Housing 

Three thousand Ross-708, day-of-hatch, male broiler chicks were procured from the Aviagen 

Hatchery in Blairsville, Georgia, and transferred to Sanford House 2 at the Southern Poultry 

Research Group, Inc. in Nicholson, GA. Birds were administered a coccidiosis vaccine (Merck 

Coccivac-B52, lot number 94320070) via spray cabinet at the manufacturer’s recommended 

dosage upon arrival. Only healthy-appearing birds, including those free from physical defects of 

the legs, wings, and beak, active and alert in disposition, and without the presence of respiratory 

disease, were selected for use in this study. The birds were assigned to treatment groups (T1, T2, 

or T6) and placed into pens at fifty birds per pen, with 10 replicate pens per treatment group. The 

housing facility was divided into 10 blocks, with each block containing one replicate of each 

treatment group. Treatments were assigned to pens within blocks using Random Permutation 

Tables (Hofacre, et al., 2020). Each pen was 1.5 × 3.0 meters with a stocking density of 11 birds 

per m2. The solid-sided barn that housed the pens was primarily heated by thermostatically 

controlled gas heaters as needed, and additionally, one heat lamp per pen was available to 

provide supplemental heating as needed. Ventilation and cooling of birds were maintained by 

commercial-type fans. Approximately 10 cm of fresh pine shavings were used as the bedding 

material atop dirt floors and were not replaced or amended throughout the trial. Likewise, feed 
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and water were available ad libitum and provided by one tube feeder and one bell drinker per pen 

(50 bird/pen drinker ratio). Animal care practices conformed to the Guide for the Care and Use 

of Agricultural Animals in Agricultural Research and Teaching (National Research Council, 

2010). This portion of the study was performed by members of the Southern Poultry Research 

Group in Athens, Georgia. 

      2.3 Experimental Ration 

Birds in all groups were fed a common US feedstuff ration consisting of nonmedicated 

commercial-type broiler crumbled starter and pelleted grower and finisher diets that met NRC 

guidelines (National Research Council, 1994). The phasing of the three feed types is as follows: 

Starter (day 0–14), Grower (day 14 – 35), and Finisher (day 35 – 42). Only birds consuming up 

to the Grower ration were used in this study. This ration was used as the base experimental ration 

for birds in each treatment group. Before pelleting, specific treatment additives were mixed with 

the base ration at the SPRG Feed Mill to optimize uniform distribution. The T6 treatment group 

our study is concerned with also included variable doses of a tributyrin-based product that varied 

depending on the feeding phase as follows: Starter (0.5 kg/metric ton Butyrin SR130), and 

Grower/Finisher (0.25 kg/metric ton Butyrin SR130). Pelleting was completed by a California 

Pellet Mill (80° C). At all times after chick arrival, rations were fed ad libitum until termination 

of the study. On feeding phase change days (day 14, 35, and 42), the unconsumed feed was 

removed, weighed, and replaced with the next feeding phase ration, except in the Finisher phase, 

in which feed replacement was unnecessary, as the trial was terminated. Only birds consuming 

feed until day 21 were used in this study. This portion of the study was performed by members 

of the Southern Poultry Research Group in Athens, Georgia. 
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      2.4 Eimeria maxima and C. perfringens Induced Necrotic Enteritis Challenge 

2.4.1 E. maxima challenge 

It is common for broiler chicks in a production setting to receive a coccidia vaccine on the day of 

arrival, so a coccidia vaccine (Merck Coccivac-B52, lot number 94320070) was administered on 

day 0 to all birds, including those in the T1 negative control group. E. maxima, well known for 

causing coccidiosis, a predisposing factor to NE, was introduced to induce an active NE disease 

challenge on birds in the T2 and T6 groups. In addition, an E. maxima challenge was introduced 

to each pen in the T2 and T6 groups on day 14 by spreading twenty (20) mL of a solution 

containing E. maxima (approx. 5,000 oocysts per bird) in the litter around feeders and drinkers of 

each pen. This portion of the study was performed by members of the Southern Poultry Research 

Group in Athens, Georgia. 

            2.4.2 C. perfringens challenge  

Birds in treatment groups T2 and T6 were challenged with C. perfringens strain no. 6 (CP6), on 

days 18 and 19 at a dosage of roughly 1 × 108 CFU per bird. The CP6 strain is a wild type, 

NetB+, TpeL+, fifteen (15) hour culture, established by Hofacre, et al., 1998, in which a fresh 

culture was prepared from a stock culture solution and incubated in a thioglycolate broth 

overnight at 35°C until approximately 107-108 CFU/mL target was achieved (Hofacre, et al., 

2018). The C. perfringens challenge vector was a measured amount of water (~125 ml CP6 to 75 

ml water) per pen. In groups T2 and T6, all feed and water were removed for three hours prior to 

the C. perfringens challenge, after which time birds in each pen were allowed access to the 

measured amount of contaminated water for 30 minutes. Afterward, the uncontaminated feed and 
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water were replaced. This portion of the study was performed by members of the Southern 

Poultry Research Group in Athens, Georgia. 

      2.5 Sample Collection of Ileal and Cecal segments 

On day 21, three birds per pen, selected by the first-to-hand method, (including those used in this 

study) were humanely euthanized by cervical disarticulation, necropsied, lesion scored, and the 

ileum and cecum were harvested. Samples included in this study were taken from birds housed in 

pens representative of the ten (10) block random design. Ileal and cecal segments roughly 5 cm 

in length were harvested from fifteen birds per treatment group by choosing either one or two 

birds at random from each replicate for that treatment. In total, forty-five cecal and forty-five 

ileal samples were utilized in this study. The ileal and cecum samples were placed into 50 ml 

polypropylene conical centrifuge tubes and stored on ice for transfer to the University of 

Arkansas, Fayetteville campus. This portion of the study was performed by members of the 

Southern Poultry Research Group in Athens, Georgia. Upon arrival at the University of 

Arkansas, the tubes were stored at -80°C until DNA extraction was performed. 

      2.6 NE Challenge Confirmation through Intestinal Lesion Scoring  

On day 21, approximately twenty-four (24) hours after target mortality of 15% was reached, 

three (3) birds per pen were humanely euthanized, weighed, necropsied, and examined for gross 

lesions indicative of NE following an established method of lesion score determination (Hofacre, 

1998). Scoring justification is as follows: Lesion score 0 = Normal; Lesion score 1 = Slight 

mucous covering small intestine; Lesion score 2 = Necrotic small intestine mucosa; Lesion score 

3 = Sloughed and bloody small intestine mucosa and contents (Hofacre et al., 1998). This portion 
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of the study was performed by members of the Southern Poultry Research Group in Athens, 

Georgia.  

      2.7 DNA Isolation and Extraction 

Ileal and cecal samples were stored at -80°C until the day of the extraction. Samples remained on 

ice during the content collection and DNA extraction process. Approximately 200 mg of ileal or 

cecal contents were collected from which DNA was extracted using the DNeasy PowerLyzer® 

PowerSoil® DNA Isolation Kit (Qiagen, Germantown, MD, USA) according to the 

manufacturer’s protocol. This process included mechanical, chemical, and thermal cell lysis 

through bead beating, application of an anionic detergent (Sodium Dodecyl Sulfate (SDS)), and 

heating and cooling steps. Additionally, DNA was filtered from organic and inorganic 

contaminants using patented reagents (Inhibitor Removal Technology®), centrifugation, and 

manual separation of supernatant and debris pellet via micropipette. Next, a high-concentration 

salt solution was applied to allow the binding of DNA to a silica-lined Spin Filter and an ethanol 

wash was used to rinse non-DNA particles from the sample. Finally, the isolated and cleansed 

DNA is treated with a buffer solution and centrifuged briefly to remove it from the Spin Filter. 

The concentration and purity of the resulting DNA extract were measured by a NanoDrop One 

spectrophotometer (Thermo Fisher Scientific, Madison, WI, USA) at 260 and 280 nm. For 

uniformity during the downstream sequencing process, each DNA sample was diluted to 

10ng/µL with purified, DNase- and RNase-free water. This portion of the study was performed 

by Taylor McKinney and Robert Story. 

 

 



59 
 

      2.8 Library Preparation and Primer Selection 

The 16S ribosomal RNA gene libraries were constructed following the strategy outlined by 

Kozich, et al., 2013, for the MiSeq Illumina sequencing platform. The V4 hypervariable region 

of the 16S rRNA gene found within the bacterial genome was amplified using universal primers 

U515F and a single-mismatch 806R (F: 5′-GTGCCAGCMGCCGCGGTAA-3′ and R: 5′-

GGACTACHVGGGTWTCTAAT-3′) with attaching Illumina sequencing primer and barcode 

sequence. Pooled amplicons were then sequenced using the High-Throughput Next Generation 

Sequencing (HT-NGS) Illumina Kit. This pair-end sequencing was completed following 

Illumina MiSeq protocols (2 × 250 bp, MiSeq Reagent Kit v2, 500 cycles, 20% PhiX) as 

described in Wang, et al., 2019. In this process, amplicon size was confirmed through gel 

electrophoresis and amplicons were normalized using the SequelPrep Normalization Plate Kit 

(Invitrogen, Carlsbad, CA, USA). After normalization of amplicons, the Agilent Bioanalyzer 

2100 (Agilent, Santa Clara, CA, USA) was used to assess the quality of amplicons and 

quantitative RT-PCR was used to assess amplicon quantity. Quality control measures were taken 

in each MiSeq run, including the use of negative controls from DNA extraction and PCR 

amplification and a positive control mock community DNA (ZymoBIOMICS™ Microbial 

Community Standard (Zymo Research, Irvine, CA, USA)) (Wei et al., 2020). This portion of the 

study was performed by Xiaofan Wang. 

      2.9 16S rRNA Based Microbiota Data Analysis 

Illumina MiSeq fastq sequence reads were imported into the Mothur platform (v1.39.5) and 

analyzed following the MiSeq standard operating procedures to quality filter the sequences, align 

with the references SILVA (version 132) database, and cluster sequences into operation 

taxonomic units (OTUs) (Wei et al., 2020). The OTUs were classified against the Ribosomal 
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Database Project (RDP) database with a 97% identity threshold. Alpha diversity, the microbial 

diversity of the intestinal contents within each treatment group (intrasample variation) (Allaband 

et al., 2019), was evaluated by Shannon index and Observed OTU measures, and tested with 

Kruskal-Wallis. Beta diversity, the distance between subjects or treatment groups (inter-sample 

variation) (Allaband et al., 2019), was analyzed via Bray Curtis and Jaccard distances, visualized 

through Principal Coordinate Analysis. An analysis of similarity (ANOSIM) was performed to 

evaluate the diversity between treatment groups using Mothur (v1.39.5). Through the galaxy 

server, linear discriminant analysis effect size analysis (LEfSe) was used to identify specific taxa 

at the OTU level that were enriched in each treatment group (Segata et. al., 2011) and a linear 

determinate analysis (LDA) was used to visualize the treatment group OTU enrichment. The 

Kruskal-Wallis (alpha) value was set at 0.05 and the LDA threshold score indicating a significant 

difference was set to 2.0. There were no enriched features found in either cecal or ileal samples 

from the LEfSe test, and no subsequent LDA visualization was obtained. This portion of the 

study was performed by Jianmin Chai and Taylor McKinney.  

Random Forest, a complex decision-tree algorithm, was used to identify microbial signatures that 

better differentiate between treatment groups and determine the importance of those signatures. 

A random subset of samples from our study was used to develop the forest of decision trees. To 

determine the accuracy of the forest’s ability to predict correct results, the remaining samples 

that were not used to create the forest are tested within the forest. The result of this test of the 

forest’s accuracy is called the Out-of-Bag error, which gives the probability that any sample 

chosen “out of a bag” will be accurately placed into the predicted treatment group. This machine-

learning technique assigns an importance score (mean decrease accuracy, MDA) to the microbial 

signatures (OTUs) based on the increase in error that would result from removing that trait from 
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predictors. The importance score of each feature was ranked and those with an MDA greater than 

3 were considered highly predictive in this study. Random forest models were used to predict 

taxonomy that classified the ileal and cecal bacterial communities into classes based on the 

treatment method. The boxplots of the selected features were drawn in R (v3.6.0). This portion 

of the study was performed by Jianmin Chai. 

After Random Forest identified OTUs with the highest MDA score, the corresponding DNA 

sequences of those OTUs were fed into the NCBI’s (National Center for Biotechnology 

Information) BLAST (Basic Local Alignment Search Tool) program to best identify the DNA 

sequence with a known organism within the database. The standard nucleotide BLAST (blastn 

suite) program was selected for sequence comparison to the selected database “16S ribosomal 

RNA Sequences (Bacteria and Archaea), and all other parameters were left at default. This 

portion of the study was performed by Taylor McKinney.  

      3.   Results 

3.1 Growth Performance  

The growth performance of birds in our three treatment groups was previously reported in 

Hofacre, C. L., et al., 2020, as part of their original, separate study. The information relevant to 

this project included weight gain, feed conversion ratio, lesion scoring, and mortality rate up to 

day 21. Hofacre, C. L., et al., found that, at 14 days of age, the T6 group had the highest weight 

gain and lowest adjusted feed conversion ratio and the T1 and T2 groups were not different. On 

day 20, the T2 positive challenge control group had the highest lesion scores and the T1 group 

had the lowest lesion scores (Hofacre, C.L., et al., 202). Additionally, birds in the T2 group 

reached a 15% mortality on day 21, prompting the termination of the study. This information 
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was used to verify the success of the NE challenge for further study of the intestinal microbiota 

and its relationship to NE and tributyrin supplementation in our project.  

      3.2 Effect of C. perfringens challenge and Tributyrin treatment on Microbiota                 

Alpha and Beta Diversity 

The microbiota species evenness (Shannon index, Figure 1. a,b) and richness (Observed OTUs, 

Figure 1. c,d) values depicting alpha diversity of the T2 or T6 groups taken from ileal or cecal 

samples were not significantly influenced by the NE challenge or variable-dose butyrin 

supplementation. The richness or number of OTUs observed within the ileum and cecum, 

remained stable regardless of treatment type. Numerically, the T2 group of ileal samples 

exhibited fewer OTU counts than the negative control (T1) and T6 groups. Likewise, the ileal T1 

group numerically exhibited fewer OTU counts than the ileal T6 treatment group. The cecal 

samples numerically showed little difference between the T1 and T2 groups, but the T6 

treatment group exhibited greater OTU counts than both other groups. Beta diversity measures 

Bray Curtis (Figure 2. a,b) and Jaccard (Figure 2. c,d) reveal no significant changes in gut 

community structure and composition among the three treatment groups of the cecal or ileal 

samples after C. perfringens challenge or tributyrin supplementation.  
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Figure 1. Boxplot of alpha diversity indices representing evenness (a,b) and richness (c,d) of the 
microbial communities of the negative control (T1), necrotic enteritis challenge (T2), and 
necrotic enteritis challenge with tributyrin treatment (T6) groups in the ileum (a,c) and cecum 
(b,d) of broiler chickens, tested with Kruskal-Wallis.  
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Figure 2. Principal Coordinate Analysis (PCoA) plot of Braycurtis (a,b) and Jaccard (c,d) Beta 
Diversity measures representing microbial community similarity of the negative control (T1), 
necrotic enteritis challenge (T2), and necrotic enteritis challenge with tributyrin treatment (T6) 
groups in the ileum (a,c) and cecum (b,d) of broiler chickens. Numbers beside plot points 
represent animal identification number.   
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      3.3 Relative Abundance of Ileal and Cecal Phyla  

 In the cecum, Firmicutes account for more than 70 percent of the total abundance of microbial 

species, and in the ileum, this rises to more than 80 percent. Our results, however, showed no 

significant difference (p<0.05, LDA score >2.0) in relative abundance among treatment groups 

for ileal (Figure 3. a) or cecal (Figure 3. b) samples at the phyla level. The relative abundance of 

Firmicutes in the T2 and T6 groups of ileal samples were statistically indistinguishable but 

numerically greater than in the T1 group. An increase in the relative abundance of taxa from the 

Bacteroidetes phyla was observed numerically for the T1 group of ileal samples, however, this 

was not statistically significant. These OTUs include Bacteria, Actinobacteria, and 

Proteobacteria, all commonly found along the ileum segment of the intestinal tract of broiler 

chickens (Wei et al., 2013; Mohd Shaufi et al., 2015; Xiao et al., 2017). The cecal samples from 

our study provided similar results. A numerical decrease in Bacteroidetes was observed in the T2 

group of cecal samples when compared to the T1 and T6 groups, and the remaining OTUs of the 

Bacteria, Actinobacteria, and Proteobacteria phyla were relatively stable and statistically similar 

among treatment groups (p<0.05).  
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Figure 3. Stacked bar charts of relative abundance of ileal (a) and cecal (b) phyla found in the T1 (negative control), T2 (non-
medicated, C. perfringens and E. maxima challenged), and T6 (C. perfringens and E. maxima challenged, tributyrin supplemented) 
groups.
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Figure 4. Stacked bar charts of relative abundance of ileal (a) and cecal (b) genera found in the T1 (negative control), T2 (non-
medicated, C. perfringens and E. maxima challenged), and T6 (C. perfringens and E. maxima challenged, tributyrin supplemented) 
groups. 
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      3.4 Relative Abundance of Ileal and Cecal Genera 

At the genus level, there was no significant difference (p<= 0.05, LDA score >2.0) among the 

three (3) treatment groups of the ileal (Figure 4. a) or cecal (Figure 4. b) segment samples as 

determined by relative abundance measures at the OTU level. Notably, there was considerable 

intra-animal variability within each group of the ileal samples. As expected, the cecal samples 

had an overall greater microbial diversity when compared to the samples taken from the ileum, 

as typically found in broiler intestinal microbiota research (Pan & Yu, 2013). Within each 

treatment group of the ileum, there are several samples that more closely mimic the microbial 

community found in our cecal samples than they do the expected ileal communities of a broiler 

chicken. Numerically, the T1 group of the ileal samples exhibited a greater relative abundance of 

genera Bacteroides on average, when compared to the T2 group. In comparison, the T2 positive 

control group exhibited a greater abundance of Clostridiales genera than the other groups within 

the ileal samples. Another genus of interest in the ileum, Clostridium sensu stricto, is highly 

prevalent in the T1 group, tapers off in abundance in the T2 group, and is out populated in the T6 

treatment group.  

At the genus level, the relative abundance of cecal samples among treatment groups is not 

significantly different (p<0.05). Minor changes in community membership are compared 

numerically. The cecal sample replicates within each treatment group appear to be more uniform 

than the ileal samples when viewed side by side. In all groups of cecal samples, the top four most 

abundant genera, when combined, account for more than 50 percent of microbial abundance. 

These genera in descending order are Bacteroides, Lachnospiriceae, Faecalibacterium, and 

Lactobacillus. In general, the T2 group within the cecal samples showed decreased relative 

abundance of Bacteroides genera but increased relative abundance of Lactobacillus genera 



 

69 
 

compared to the other treatment groups. Statistically, there was no difference in genera among 

treatment groups.  

      3.5 Identification of OTU Enrichment by Random Forest 

The negative control samples in the cecum shared an increased abundance of OTU 175 

Clostridium XIVa (p=0.041), OTU 35 Lachnospiraceae (p=0.043), and OTU 4 Bacteroides 

(p=0.021) with the T6 treatment group according to RF. The DNA sequence corresponding to 

OTU 4 Bacteroides was identified by BLAST as Phocaeicola dorei with 100% identification 

accuracy. In the ileum, the negative control (T1) group shared a decreased abundance of OTU 

385 Lachnospiraceae (p=0.067) with the T6 treatment group, while the NE challenged group 

(T2) exhibited enrichment of this OTU. This decreased abundance was not statistically 

significant. The out-of-bag (OOB) estimate for ileal samples was 90.91% and the OOB for cecal 

samples was 77.78%.  

 

Figure 5. Boxplot of enriched OTUs in the T1 (negative control), T2 (non-medicated, C. 

perfringens and E. maxima challenged), and T6 (C. perfringens and E. maxima challenged, 
tributyrin supplemented) groups of ileal samples as predicted by Random Forest analysis.  

          T1                  T2                 T6 
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Figure 6. Boxplot of enriched OTUs in the T1 (negative control), T2 (non-medicated, C. 

perfringens and E. maxima challenged), and T6 (C. perfringens and E. maxima challenged, 
tributyrin supplemented) groups of cecal samples as predicted by Random Forest analysis. 
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      4. Discussion.          

4.1 Potential Explanations for Lack of Significant Treatment Effect on C. perfringens 

Proliferation 

The community structure and membership of microbial species were statistically 

indistinguishable among treatment groups and therefore not affected by the NE challenge or the 

tributyrin treatment according to the presence-absence-based Jaccard dissimilarity index and the 

abundance-based Bray-Curtis dissimilarity index, which are the gold standard tests of beta 

diversity in microbial ecology research (Schroeder et al., 2018). As a result, the relative 

abundance of C. perfringens, the causative agent of NE in chickens, was not significantly 

different among the three groups. A possible explanation for the lack of a significant effect on 

challenged and treated birds (T6 group) is butyrate’s inability to directly impact microbial 

inhibition. It has been reported that butyrate prevents lesions associated with NE in broilers, but 

no known antimicrobial effect on C. perfringens exists directly (Timbermont et al., 2010). Birds 

in this in vivo study were orally challenged with approximately 4 × 108 CFU of C. perfringens 

three times a day on days 18 and 19 and the butyrate treatment consisted of 330g butyric acid/ton 

and 250g butyric acid/ton for the starter and grower diets, respectively. The necrotic lesion 

alleviating effect of butyrate is likely due to the enhanced epithelial health and proliferation, 

increased mucin production, and other host effects (Guilloteau et al., 2010; Timbermont et al., 

2010). Our finding of no significant difference in the relative abundance of C. perfringens among 

the three treatment groups while simultaneously exhibiting a reduction in lesion score in our 

butyrate treatment group may be due to the known effects of butyrate on necrotic lesion 

reduction without direct inhibition C. perfringens colonization. There have been other reports of 

butyrate-derived treatments successfully inhibiting C. perfringens colonization, however. In an 
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in vitro setting, Namkung, et al., 2011 found that butyric acid derivatives, mono-, di-, and tri-

butyrin, successfully inhibited C. perfringens growth, especially at low levels of aerobic 

inoculation (105 CFU C. perfringens). The inhibitory effects of the butyrate derivatives were less 

pronounced when a higher initial inoculation of C. perfringens (107 CFU) and anaerobic methods 

were used (Namkung, et al., 2011). When broiler cecal contents were also inoculated onto the 

culture media, however, a significant inhibitory effect of C. perfringens using the 50% 

monobutyrin treatment was observed with little dose effect (Namkung et al., 2011). It should 

also be mentioned that in that study tributyrin was not tested alone for C. perfringens inhibition 

and when it was used in combination with other butyrate derivatives, a monobutyrin treatment 

still outperformed tributyrin containing treatments (Namkung, et al., 2011). A stark difference 

between our work and these studies, neither Timbermont (2010) nor Namkung (2011) used 16S 

rRNA gene sequencing techniques to evaluate the approximate C. perfringens populations.  

The finding of no inhibitory effect through butyrate supplementation can be partially supported 

through the literature, but surprisingly, our challenged and untreated birds (T2 group) did not 

exhibit a significant shift in microbial composition, particularly in the relative abundance of C. 

perfringens. The relationship between C. perfringens challenge, NE, and microbial dysbiosis is 

complex. Multiple predisposing factors in various combinations are commonly included in trials 

for induction of NE including Coccidia challenge, high-protein fishmeal diets, and inoculation 

with C. perfringens (Shojadoost et al., 2012). In previous work, birds challenged with C. 

perfringens and fed a high-protein fishmeal-based diet displayed a significant shift in the 

microbial composition within the ceca determined by 16S rRNA gene sequencing (Stanley et al., 

2012). This shift included a displacement of Lactobacillus johnsonii, Lactobacillus ferementum, 

Weisella confusa, and numerous butyrate-producing bacteria in favor of Lactobacillus crispatus, 
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Lactobacillus pontis, Lactobacillus ultunese, Lactobacillus salivarius, Ruminoccocus albus, and 

C. perfringens (Stanley et al., 2012). Also using 16S rRNA gene sequencing, it has been found 

that the ceca of birds challenged with a high-protein fishmeal diet exhibit a significant reduction 

in Lactobacillus johnsonii and Lactobacillus acidophilus, as well as species belonging to the 

Lachnospiraceae family, and increase in Lactobacillus reuteri, and Lactobacillus animalis (Wu 

et al., 2014). Again, 16S rRNA sequencing revealed that birds challenged with C. perfringens, 

coccidia, and a fishmeal diet exhibited an increase in abundance of Lactobacillus and Dorea 

species in the cecum (Lin, Y. et al., 2017). Based on these reports, it is surprising that our C. 

perfringens challenge group did not exhibit a significantly different microbial composition 

compared to our negative control, especially in the ceca samples. The possible explanations for 

this include the C. perfringens vector, the inability of butyrate to directly affect the microbiota, 

or that the NE disease phase had passed by day 21. Other potential explanations including 

sequencing procedure and choice of hypervariable DNA region primer, though plausible, seem 

less likely to have a damaging impact on the results of this study.  

It is widely accepted that a 15-hour culture grown on fluid thioglycolate medium (with dextrose) 

(FTG) is acceptable for inducing a severe NE challenge in broilers (Shojadoost et al., 2012). This 

culture technique will result in 107-109 CFU C. perfringens/mL, which is the normal amount 

accepted for a successful challenge in broilers (Shojadoost et al., 2012). The culture (CP6) used 

in our study exactly matches these recommendations for the successful induction of NE in 

broilers. We can conclude that the C. perfringens culture (CP6) was suitable and thus not 

responsible for the lack of microbial diversity among the treatment groups. A possible error in 

the trial design was the vector of transmission. In the literature, broilers are inoculated with C. 

perfringens successfully through the inclusion of the culture in the diet and fed ad libitum for 3-5 
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consecutive days up until euthanasia (Shojadoost et al., 2012). Our study utilized a water vector 

for C. perfringens transmission and the challenge only took place for two consecutive days 

before target mortality was reached and the trial was terminated. In the literature, it is less 

common for birds to be inoculated with C. perfringens through the water source, but when 

Timbermont (2010) did so, birds were challenged with approximately 4 × 108 CFU three times a 

day for four consecutive days before euthanasia. A critique of our study was the choice of water 

vector over diet vector, the limited exposure time of 30 minutes once daily, and the limited 

number of challenge days.  

The disease NE is not entirely understood and there are possibilities relating to the nature of the 

disease itself that could have led to our findings. NE causes severe gastrointestinal distress and 

death in an acute event and milder symptoms, if any, in a chronic form. It has been reported that 

in an acute setting, chickens have died within thirty minutes after symptoms were first observed, 

and most deaths occurred between 36 and 48 hours after initial exposure to C. perfringens 

contaminated feed (Long et al., 1976). It was also reported in that study that the birds that 

survived the NE disease challenge had normal intestinal findings upon gross examination. In our 

study, birds that died as a result of the challenge were not sampled and those that survived may 

have recovered before the samples were taken. Birds in our study were also sampled on day 21, 

approximately 72 hours after their first exposure to C. perfringens.  

Microbiota research is advanced, widespread, and has grown at an unprecedented rate with the 

advent of Next-Generation Sequencing techniques. The current microbiome epoch is inevitably 

accompanied by challenges. There is not to date an established universal protocol for DNA 

extraction, sequencing, and analysis to outline the diversity and richness within the microbiome 

of a given subject and among others. Variation in results due to the use of different sequencing 
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platforms and bioinformatics pipelines (Allali et al., 2017), alternate sample types (Knudsen et 

al., 2016), and DNA isolation procedures (Fiedorová et al., 2019; Knudsen et al., 2016) provokes 

concern over reproducibility and reliability of findings obtained in microbiome research. Further 

complicating the scientific inferences are issues involving the disparity in the level of sequencing 

depth and coverage (Zaheer et al., 2018), as well as a selection of the target gene region (Rintala 

et al., 2017). We dove into these and other possibilities as an explanation for our findings.  

The first step in 16S rRNA gene sequencing is DNA extraction from the intestinal sample. Great 

care must be taken when handling samples with low microbial DNA contents, such as tissue 

samples, to prevent contamination and decrease the potential for false-positive results 

(Greathouse et al., 2018). Luckily, the ileum and cecum are areas known to harbor robust 

microbial communities, and as such, are less susceptible to bias and contamination during the 

extraction process, but not entirely exempt (Greathouse et al., 2018). Commercially, there are 

several DNA extraction kits available to researchers that are suitable for use with chicken 

intestinal content and fecal samples.  In one of few studies comparing the quality of the 

commercially available DNA extraction kits for their use with fecal samples in terms of DNA 

quality and quantity, performance extracting Gram-positive bacteria, accuracy, and repeatability, 

the DNeasy PowerLyzer® PowerSoil® DNA Isolation Kit performed best overall, although no 

kit was able to perform the best in all categories (Elie et al., 2020). Furthermore, this extraction 

method has been used to characterize the chicken intestinal microbial community in the literature 

previously (Glendinning et al., 2019). The quality of the DNA extract is extremely important to 

downstream sequencing integrity and reliability, and the literature supports our use of the 

DNeasy PowerLyzer® PowerSoil® DNA Isolation Kit. There are additional steps and protocols 

to be considered and filtered for reliable 16S rRNA gene sequencing.  
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It is widely accepted that the target hypervariable region of the 16S rRNA gene has a great 

impact on gut microbiota analysis (Rintala et al., 2017; Johnson et al., 2019; Darwish et al., 

2021). Most researchers agree that the combination of V1-V4 regions is reliably accurate and 

suitable for meaningful bacterial classification within the chicken gut, though no universal 

mandatory standard currently exists (Kim, et al., 2011; Di Bella et al., 2013; Darwish et al., 

2021). It has been found that targeting the V4 region delivers microbial diversity results 

comparable with those of full-length 16S gene sequencing, called shotgun sequencing (Ballou et 

al., 2016; Darwish et al., 2021). Several comparisons of the sequencing platforms available have 

found that Illumina HiSeq, and for smaller projects, the MiSeq systems are highly reliable for 

16S rRNA microbial research and heavily utilized in the research community (Caporaso et al., 

2012; Tremblay et al., 2015). Separately, the bioinformatics pipelines Mothur and Qiime stand 

out in the literature as the most outstanding software packages and are frequently chosen for 

chicken GIT microbiota research, increasing the comparison value of our study to the literature 

(Nilakanta et al., 2014). Based on this information, the gene sequencing and data analysis 

procedures chosen for this study are in line with the most up-to-date standard represented in the 

literature of GIT microbiota research in chickens.  

      4.2 Random Forest Identification of Enriched Features  

There is a possibility that some of the samples used in this study were mislabeled, which may 

have led to the relative abundance of our ileal samples being inconsistent with what has been 

reported in the literature. Although the Bray-Curtis and Jaccard analyses revealed no significant 

treatment effect, the decision tree algorithm, Random Forest, was able to identify a few enriched 

features in the negative control (T1) and butyrate treatment group (T6) as distinct from the 

challenge group (T2). The reliability of the random forest predictions relies on the knowledge 
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that RF can maintain a consistent prediction accuracy until 30-40% of the total samples are 

mislabeled, as determined by Knights (2011). In this longitudinal 16S rRNA sequencing study, 

several “late” samples were switched to “early”, similar to our potential mislabeling of 

distinctive “cecum” samples as “ileum”. Additionally, based on observed relative abundance 

differences of the ileal samples where approximately less than half of each sample is dominated 

by Lactobacillus, 5 samples from the T1 group, 5 samples from the T2 group, and 4 samples 

from the T6 group appear to be mislabeled. This results in 14 of the total 45 ileal samples as 

potentially mislabeled, or an error of 31.1%, which falls within the range for maintenance of an 

accurate estimate of RF (Knights et al., 2011). Although this is not an ideal scenario, this may 

mean some inference obtained by RF can be helpful in explaining the relationship between NE, 

the tributyrin treatment, and the associated microbial modulation of each. 

 The classification algorithm, Random Forest (RF), predicted a few features that could possibly 

represent a link between the tributyrin treatment and the normalization of the gut microbiota after 

NE infection. In the cecum, RF identified an increase in abundance of OTU 175 Clostridium 

XIVa, OTU35 Lachnospiraceae, and OTU4 Bacteroides in the negative control and butyrate 

treatment group compared to the C. perfringens challenge group. Bacteria belonging to the 

Clostridium XIVa cluster, also known as the Clostridium Coccoides group, are known to be 

lactate-utilizing and butyrate-producing. The favorable functions of butyrate in the GIT are 

diverse and well-reviewed. Butyrate is a major energy source to intestinal epithelia, regulates cell 

proliferation and contributes to programmed cell death, enhances intestinal barrier function, and 

alleviates local inflammation (Guilloteau et al., 2010). Butyrate strengthens the gut barrier 

function through the upregulation of tight junctions, limiting barrier permeability to pathogen 

invasion and circulation (Chen et al., 2020). Our work corroborated previous work showing that 
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members of the Clostridium cluster XIVa are commonly found in the cecum of healthy broilers 

(Zhu et al., 2002; Guilloteau et al., 2010; Ijaz et al., 2018). Furthermore, it has been 

demonstrated that organic acid-based feed supplements increase the level of C. Coccoides cluster 

species in the cecum of healthy broiler chickens (Palamidi et al., 2018). The RF prediction of 

cluster XIVa Clostridia as prevalent in the cecum of negative control and butyrate treatment 

group birds is supported in the literature.  

The BLAST analysis identified OTU 35 Lachnospiraceae as Lacrimispora indolis with 96% 

identification accuracy. It can be assumed that this OTU is some relative of Lacrimispora indolis 

because the identity threshold is below 97% (Reller et al., 2007).  Previously named Clostridium 

indolis, this member of the Lachnospiraceae family possesses genes associated with lactate, 

citrate, malate, and succinate utilization as well as nitrogen fixation (Haas et al., 2020; Biddle et 

al., 2014). This bacterium is not well understood in terms of physiology and there are 

contradicting reports regarding the characterization of its functions in lactate or other 

carbohydrate utilization (Biddle et al., 2014). It has even been isolated alongside C. perfringens 

in human patients suffering with clostridium pseudobacteraemia. It is puzzling to observe an 

enrichment in this OTU outside of the Clostridium perfringens challenge group (T2).  

The final significant enriched OTU of the cecal samples as determined by RF, OTU 4 

Bacteroides was determined by BLAST analysis to be Phocaeicola dorei with 100% 

identification accuracy. There is a strong association between Phocaeicola spp. found in the gut 

and host health. In humans, bacteria belonging to this genus are known for enhancing immunity 

and enteric pathogen control (Wang et al., 2021). Phocaeicola dorei is closely related to 

Phocaeicola vulgatus, previously known as Bacteroides vulgatus, whose role in intestinal health 

is contradictory (Cobo et al., 2022; Lück et al., 2022). Phocaeicola vulgatus is highly abundant 
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in the human GIT and it and other Phocaeicola spp. are excellent SCFA producers (Lück et al., 

2022), but there are reported associations of Phocaeicola dorei with human disease (Usyk et al., 

2021; Cobo et al., 2022). In neonates, an increased abundance of both C. perfringens and P. 

dorei is associated with necrotizing enterocolitis, the human equivalent of NE in chickens (Heida 

et al., 2016). Our finding of enrichment of P. dorei in the T1 and T6 groups, rather than the T2 

group, is incredibly surprising based on the relationship of these microbiota in the literature.  

In the ileum, the abundance of OTU 385 Lachnospiraceae, was greatest in the C. perfringens 

challenge group, but less abundant in the negative control and the butyrate treatment groups. 

This OTU was identified by BLAST analysis as Christensenella minuta with 86.56% identity. 

Most taxonomists accept a percent identity score of ≥97% to classify a microorganism to a genus 

and ≥99% to a species using 16S rRNA gene sequence alignment (Reller et al., 2007). Based on 

this requirement, it is likely that OTU 385 is a novel relative of C. minuta. Christensenella 

minuta itself is a newly discovered strictly anaerobic, non-spore-forming, Gram-negative, rod-

shaped bacterium isolated from the GIT of adult humans (Morotomi et al., 2012). This member 

of the Christensenellaceae family within the order Clostridiales, is associated with weight loss in 

humans and chickens and is being considered as a potential enteric pathogen (Goodrich et al., 

2014; Borelli et al., 2017; Yang, et al., 2018). More work is needed to determine the functional 

role of this novel bacterium in the intestinal microbial community of humans and chickens, and 

whether this bacterium has any relationship with C. perfringens proliferation. 
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1. Conclusion 

The purpose of this research was to determine a) the validity of microbial analysis as a diagnostic 

tool for NE in chickens by highlighting specific microbes that appear to have a significant 

relationship with the occurrence of this disease and b) the efficacy of using a butyrate-derived 

supplement as a treatment for NE by highlighting specific microbes that appear to have a 

relationship with the presence of this supplement and a reduction in NE symptoms. 

Unfortunately, the C. perfringens challenge did not modulate the intestinal microbiota in birds 

compared to the negative control, and likewise, no significant changes were observed between 

intestinal microbial populations in the butyrate-treated, C. perfringens challenged group 

compared to the negative control. The random forest analysis determined there were a few 

enriched microbiota in each treatment group, which may play some role in the development of 

NE or are affected by the addition of a butyrate supplement. Additionally, the procedures utilized 

by our lab are comparable, and in some cases, exceed the quality and accuracy of common 

methods used for DNA sequencing and 16S rRNA microbial data analysis in the scientific 

community as of 2022. Because of this knowledge, I find it unlikely that our evaluation methods 

were unable to detect a significant modulation of the intestinal microbial communities. Rather, it 

seems likely that the inoculation of C. perfringens in our challenge and challenge-treatment 

groups was ineffective, or the butyrate supplement was not responsible for the observed 

alleviation of symptoms in a way that also altered the intestinal microbiota or both. It is still not 

well understood how or if butyrate can treat NE in broiler chickens. 

Regarding the enriched features determined by Random Forest, more work should be done to 

focus specifically on the relationship between C. perfringens and the presence of bacteria 

ongoing to the Clostridium XIVa cluster. Because the out-of-bag error rate was regrettably high, 
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a strong association cannot be confidently made based on the results of our study, but the 

literature supports a negative correlation between C. perfringens proliferation and a reduction in 

LAB in the intestine. Additionally, the increase in abundance of OTU 35 and OTU 6 in the T1 

and T6 treatment groups is puzzling. The reliability of the RF results remains in question.    

After evaluation of the procedures performed in this study, it is unlikely that any major errors 

were involved in the DNA extraction, sequencing, or data analysis steps of this study. It is, 

however, likely that a butyrate-based treatment is less suitable for the treatment of NE in 

chickens, based on our results and the available literature. There are other methods of disease 

control, such as probiotic supplementation and Clostridium perfringens vaccination, as described 

in the literature review chapter, that may be more suitable for the treatment of NE. Furthermore, 

the predisposing factors largely linked to bird management seem to point to a route of prevention 

through modification of the bird environment, making treatment elucidation a secondary 

concern. Furthermore, future work in this area should consider alternative methods of NE 

challenge induction, including another route of C. perfringens inoculation and the addition of 

two or more predisposing factors (i.e., fishmeal diet, coccidia challenge, increased stocking 

density, etc.). Overall, more work is needed to determine the relationship between butyrate 

supplementation and intestinal microbiota as well as the efficacy of butyrate as a treatment for 

NE in chickens.  
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