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Abstract 

Resource-efficient techniques for accurate soil carbon estimation are necessary to satisfy the 

increasing demand for spatiotemporal data. In the last thirty years, mid-infrared (MIR) soil 

spectroscopy has developed as an accurate, rapid, cost-effective, and non-destructive technique 

for soil organic carbon (SOC) analysis. In soil spectroscopy, a calibration model relates spectral 

data to a corresponding measured soil property (i.e., analyte value) and is subsequently used to 

predict this value from new spectral data. Various optimization techniques have been used to 

improve the statistical performance of calibrations; however, there is little consensus on the 

conditions that make these techniques effective. The objectives of this research were to (1) assess 

current trends in optimization techniques and conditions that render them effective for SOC (%) 

prediction, (2) validate the use of subsetting by environmental and soil attributes as an effective 

optimization technique, and (3) evaluate the effectiveness of taxonomic and mineralogic criteria 

and spiking as effective optimization techniques for spectral library transfer. For the first 

objective, a review of current optimization techniques, including the selection of calibration set 

size and the construction of targeted calibration models through subsetting and spiking, was 

performed. A decision chart for the selection of optimization techniques for spectroscopic 

modeling of SOC (%) was constructed and general guidance for the application of these 

techniques to small and large soil spectral libraries (SSLs) was provided. For the second 

objective, a dataset of MIR spectra and corresponding SOC (%) measurements from Nebraska 

and Kansas was extracted from the USDA-NRCS National Soil Survey Center-Kellogg Soil 

Survey Laboratory (KSSL) MIR SSL. The dataset was subset based on environmental criteria 

(climate, topography), soil attribute criteria (wetland, SOC (%), parent material type), and a 

combination of both for the construction of calibration models. Subset models reduced the 



prediction error by 13 to 56% relative to the full set model. Moreover, subset models constructed 

using 2 to 80% of the full set observations resulted in as or more accurate predictions than the 

full set. For the third objective, fractions of the KSSL library based on taxonomic (orders and 

suborders) and mineralogic (carbonate content) criteria and spiking were used to construct 

calibration models to predict SOC (%) in Cul de Sac, Haiti. Subsetting by suborders improved 

predictive performance over subsetting by orders, but neither model resulted in a desirable 

prediction error (≤0.40%). Spiking the general library calibration sets with 25 Cul de Sac 

observations produced the most desirable and reliable predictions. In addition, the spiked models 

outperformed the Cul de Sac model in terms of reduced prediction error. The research conducted 

suggests that subsetting can be an effective optimization technique and that subsetting alone or in 

combination with spiking are effective optimization techniques for library transfer using the 

KSSL MIR SSL.  
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CHAPTER ONE: Introduction 

Soil Organic Matter and Soil Organic Carbon 

Soils are a natural resource that provide ecosystem services which support life and help 

mitigate climate change. Soils deliver water, physical stability, and nutrients to plants, which 

consequently supply food, fiber, and fuel. Additionally, soils serve as buffers and filters for toxic 

materials, produce antibiotics, and maintain biodiversity by providing habitat for millions of 

organisms. The capacity of soil organic matter (SOM) to impact the soil’s ability to provide 

ecosystem services, makes it the single most important indicator of soil health and measure of 

soil quality. 

SOM profoundly influences soil chemical, physical, and biological properties. SOM 

supplies the energy source for microorganisms and plant essential nutrients, thus influencing 

metabolic activity and soil fertility as SOM is a major source of nitrogen (N), phosphorus (P), 

and sulfur (S). SOM is the primary source of food for soil microbes and soil fauna; therefore, the 

type and quantity of SOM influences biological activity and soil biodiversity. During SOM 

decomposition, soil organisms convert macronutrients stored in SOM to inorganic forms, which 

are subsequently immobilized in the construction of new organic materials or mineralized and 

added to the soil nutrient pool. SOM contributes about 90% of total soil N, 3 – 90% of total soil 

P, and > 90% of total soil S in non-saline soils (Baldock and Nelson, 2000). In addition to 

supplying macronutrients, SOM can increase the availability of soil micronutrients by chelating 

them in organo-mineral complexes and transporting soil metals and trace elements within the soil 

(Baldock and Nelson, 2000; Weil and Brady, 2017). 
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SOM greatly promotes the formation and stabilization of soil structure and water 

retention, which in turn reduces surface crusting, compaction, and erosion, and mitigates 

sedimentation and water pollution (Weil and Magdoff, 2004). Soil aggregation that is controlled 

by SOM occurs in three stages: (i) binding of clays into packets < 20 µm, (ii) binding of clay 

packets into microaggregates 20 – 250 µm in size, and (iii) binding of stable microaggregates 

into macroaggregates > 250 µm in size. Stage one is driven by soil mineralogical and chemical 

properties that reduce soil dispersion. Stage two is controlled by bacteria polysaccharides and 

glomalin-associated glycoproteins produced during SOM decomposition which act as glue 

binding the clay packets (Baldock and Nelson, 2000; Weil and Brady, 2017). In stage three, the 

stabilizing force of roots, plant residues, and fungal hyphae provide a physical mesh for the 

formation of stable macroaggregates (Baldock and Nelson, 2000). The ability of SOM to 

stabilize soil structure becomes more important as the clay and hydrous oxide content of soil 

decreases. In very clayey soils, humus has a reverse effect on soil structure by reducing the 

plasticity and cohesion of clayey soils, making them easier to handle.  

SOM directly and indirectly affects soil water capture and retention. SOM can absorb and 

hold up to 20 times its mass in water, which is four- to five times what silicate clays can hold 

(Baldock and Nelson, 2000; Weil and Brady, 2017). Indirectly, SOM impacts soil structure and 

pore geometry, which can affect the available water holding capacity. Additionally, organic 

residues on soil surfaces reduce evaporation and increase water infiltration. 

Soil cation exchange capacity (CEC) and buffering capacity are significantly influenced 

by SOM. Studies have demonstrated that SOM contributes between 25 and 90% of the total CEC 

of surface mineral soils and most of the CEC of peat and forest litter (Baldock and Nelson, 

2000). The CEC of humus can range from 150 – 500 cmolc/kg (Weil and Brady, 2017). The CEC 
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of SOM is mainly derived from the carboxyl, phenol, enol, and imide functional groups that 

compose SOM and is therefore pH dependent. The diversity in the chemical composition of 

SOM’s functional groups lends it the ability to act as a buffer across a wide range of pH 

(Baldock and Nelson, 2000). Adding SOM to acidic soils tends to increase their pH. This occurs 

through the decomplexation of metal cations and the mineralization and denitrification of soil N. 

Contrarily, the addition of SOM to alkaline soils has an acidifying effect, especially in aerobic 

and leaching conditions. This net effect is due to the mineralization of organic S and P, the 

mineralization and nitrification of organic N, and the dissociation of metal complexes and carbon 

dioxide (Baldock and Nelson, 2000). 

As the largest component of SOM (approximately 51%; Pribyl, 2010), soil organic 

carbon (SOC) is a natural source of energy and nutrients for soil microbes and plants and is 

directly related to water retention. Various studies have stated that the soil carbon pool is many 

times that of the atmosphere (2 to 4 times) and plant biomass (3 to 4.5 times) (Briedis et al., 

2020; Lal, 2004; Paustian et al., 1997; Vasques et al., 2010; Weil and Magdoff, 2004). Thus, soil 

carbon is an integral component in climate change mitigation efforts. Current global estimates of 

soil carbon range from 1500 to 2500 gigatons (Gt) or pentagrams (1015 g) (Patton et al., 2019). 

Given the significant contribution that SOC can make to improving soil and environmental 

quality and combating climate change, there is a high level of interest in quantifying and 

monitoring SOC content (Baldock et al., 2013; Hartemink and McSweeney, 2014; Wills et al., 

2013). 

Factors of Soil Formation and Soil Organic Carbon 

Soil carbon is balanced by inputs from vegetation and parent material and outputs from 

organic matter decomposition. This carbon balance is geographically controlled by climate (Weil 
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and Magdoff, 2004). Low temperatures inhibit microbial activity, which in turn decrease the rate 

of organic matter decomposition and result in SOC accumulation. In regions of high temperature, 

primary productivity and microbial decomposition are high; however, decomposition is 

relatively greater than productivity and thus SOC content tends to be less than in areas of low 

temperature (Brejda et al., 2000; Graham and Indorante, 2017). For this reason, SOC content is 

generally greater at higher latitudes and altitudes than at lower latitudes and altitudes (Graham 

and Indorante, 2017; Weil and Magdoff, 2004). Local climate conditions also affect SOC 

content. For example, excessive precipitation coupled with a shallow water table and/or poor soil 

drainage can cause saturation that results in anaerobic soil conditions. Under anaerobic 

conditions, decomposition is slow and incomplete, resulting in much higher SOC content (Weil 

and Magdoff, 2004). In general, wetter soils tend to have higher SOC content than drier soils 

(Wills et al., 2013). 

Parent material provides the initial geochemical material of a soil. The mineral fraction of 

the soil influences its fertility, texture, and reflectance features (Shi et al., 2015). Soil texture is 

particularly important for its influence on SOC content in soils. Within a climatic region, finer-

textured soils will contain more SOC than coarse-textured soils (Brown et al., 2005; Weil and 

Magdoff, 2004). This quality of finer-textured soils is due to the stabilizing effect of clay 

minerals, which is due to their ability to adsorb organic compounds. However, the relationship 

between clay content and SOC is not as straightforward at the soil profile scale. In a profile, 

particularly near the surface, the clay-SOC relationship may be inverse. This dynamic is due to 

weathering, eluviation, and illuviation processes that transport clays down in the profile and 

result in sandy, Fe-oxide depleted surface horizons that are high in SOC because most SOM 

deposition occurs here (Brown et al., 2005).  
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Topography exerts a strong control on the SOC balance at different scales. At the 

microscale, microtopographic features can trap wind-blown particles, can affect water 

infiltration, can create a microclimate around the soil, and can provide niches for biological 

activity, all of which can influence the SOC balance (Graham, 2006). At the hillslope scale, 

SOM tends to accumulate in lower slope positions, and thus SOC content tends to be highest at 

the footslope and toeslope positions. This is an indirect effect of the preferential movement of 

finer particles downslope with slope wash. This process is more common on gradual slopes than 

on very steep slopes where mass movement dominates. Soils of concave slopes typically have 

higher SOC concentrations than convex soils and this pattern is consistent across all climatic 

regions (Graham, 2006).  

The higher water content of soils in lower slope positions results in relatively higher 

biomass and greater incorporation of organic matter into the soil compared to upper slope 

positions. Additionally, soils on lower slopes tend to be more fertile due to the downslope 

movement of cations through leaching. This further promotes plant growth and contributes to the 

higher organic carbon content. Soils on lower slope positions tend to be saturated. Saturated 

conditions impede microbial decomposition of biomass and promote organic matter 

accumulation. At the landscape scale, aspect influences macro-and microclimate which in turn 

affects soil organic matter content. Aspects that receive less solar radiation tend to have higher 

SOC content. This is a result of cooler and wetter conditions that promote plant growth and a 

slow rate of decomposition (Graham, 2006). 

Soil Organic Carbon Determination 

Several analytical methods exist for determining SOC (Table 1). SOC can be estimated 

by measuring total soil carbon and inorganic carbon separately, and subsequently subtracting the 
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inorganic carbon from the total carbon (Grinand et al., 2012; Nelson and Sommers, 2018). Total 

carbon (sum of organic and inorganic carbon) analysis involves the conversion of all forms of 

carbon to carbon dioxide (CO2) followed by quantification of the evolved CO2 (Nelson and 

Sommers, 2018; Soil Survey Staff, 2014). Dry and wet combustion are the conventional methods 

of total carbon analysis and quantification. Dry combustion involves the thermal oxidation of 

organic carbon and the decomposition of inorganic carbon so that all carbon species are 

converted to CO2. In dry combustion, the samples are heated at high temperatures (1000 ºC to 

1600 ºC) in a furnace and the evolved CO2 is quantified to get a measure of total carbon (Davis 

et al., 2017; Nelson and Sommers, 2018). Dry combustion can also be used to measure SOC 

directly if acid digestion is used on the soil sample first to remove the inorganic carbon (Jandl et 

al., 2014).  

Wet combustion, commonly referred to as the Walkley-Black method, involves the wet 

oxidation of carbon. In wet combustion, a sample is mixed with potassium-dichromate 

(K2Cr2O7), phosphoric acid (H3PO4), and sulfuric acid (H2SO4) and boiled in a closed system. 

The evolved CO2 resulting from this process, is captured and quantified as a measure of the total 

carbon (Nelson and Sommers, 2018).  

Soil inorganic carbon is measured as the amount of carbonate (CaCO3) in the soil. 

Measurement of inorganic carbon involves the treatment of a sample with a strong acid, such as 

hydrochloric (HCl) or phosphoric acid (H3PO4), followed by a manometric measurement of the 

evolved CO2 (O’ Rourke and Holden, 2011; Soil Survey Staff, 2014). The amount of inorganic 

carbon is then calculated as percent CaCO3. 
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Table 1: Comparison of methodologies used for determination of organic C in soils. C, Carbon; 
Cr, Chromium; Fe, Iron; Mn, Manganese; N, Nitrogen; O, Oxygen. Source: Adapted from Table 
34-2 in Nelson and Sommers (2018). 

Method Principle Advantages Disadvantages 

Difference 
between total 
C (via dry 
combustion) 
and inorganic 
C 

Total C and inorganic 
C are determined on 
separate samples: 
organic C = total C – 
inorganic C 

Useful if total 
C and 
inorganic C 
are routinely 
determined 

Two separate analyses are required 

Total C determination requires special 
equipment 

Organic C calculated by determined 
difference has some inherent error 

Determined 
as total C (via 
dry 
combustion) 
after removal 
of inorganic 
C 

Total C is determined 
in soil sample after 
removal of inorganic 
C with an acid 
pretreatment: organic 
C = total C 

Accurate if 
dolomite is 
absent from 
soil 

Not all dolomite in soil may be removed 
by acid treatment 

Specialized equipment needed 

Dichromate 
oxidation 
without 
external heat 

Dichromate oxidizes 
organic C to CO2 in 
acid medium; amounts 
of Cr2O2-

7 reduced is 
quantitatively related 
to organic C present; 
not all organic C in 
samples is oxidized 
when external 
heat is omitted, and a 
correction factor is 
required. 

Very rapid 
and simple 

Incomplete oxidation of organic C 
necessitates use of a correction factor 

 

Chloride, Fe2+, and MnO2 interfere with 
method 

 

No special 
equipment is 
required 

 

It assumes soil organic C has an average 
valence of 0 

 

Variable recovery of C from carbonized 
materials 

Dichromate 
oxidation 
with external 
heat 

This is the same as the 
dichromate method 
above, except that all 
organic C in the 
sample is oxidized 
and no correction 
factor is required 

Rapid and 
simple, 
complete 
oxidation of 
organic C 
occurs 

Chloride, Fe2+, and MnO2 interfere with 
method 

Some specialized equipment is needed 

It assumes soil organic C has an average 
valence of 0 

Variable recovery of C in carbonized 
materials 
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Cost of Soil Organic Carbon Determination 

Several limitations exist with the conventional analytical methods for SOC 

determination. In addition to the disadvantages described in Table 1, conventional analytical 

methods may produce inaccurate SOC measurements, are time-consuming, produce toxic waste, 

and are costly. The wet combustion method may produce inaccurate results due to incomplete 

carbon recovery. Incomplete carbon recovery is more prevalent in samples with recalcitrant 

forms of carbon (Davis et al., 2017; Peng et al., 2014). Furthermore, chromium-based wet 

combustion methods create toxic residues that are harmful to the environment if not properly 

disposed of (Briedis et al., 2020; McDowell et al., 2012; Sequeira et al., 2014). Dry combustion 

is considered an accurate method of SOC measurement; however, it is time-consuming and 

expensive. The cost associated with the dry combustion method increases if inorganic carbon is 

present in the sample and needs to be removed prior to SOC quantification (Briedis et al., 2020; 

Davis et al., 2017; McDowell et al., 2012). 

Regardless of the exact method of analysis, the monetary and environmental cost 

associated with quantifying SOC is a barrier to wide scale monitoring and informed decision-

making (Sanderman et al., 2020). Considering the cost associated with analyzing a sufficient 

number of samples for SOC monitoring across the space-time continuum, more efficient and 

inexpensive methods should be explored. One such method is soil spectroscopy. 
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Basics of Spectroscopy 

Spectroscopy is the study of the interaction between matter and electromagnetic (EM) 

radiation. Two different concepts are used to describe the behavior of EM radiation and its 

interactions with matter. The first concept is the classical wave model which describes EM 

radiation as a transverse wave consisting of oscillating electric and magnetic fields. The wave 

model accounts for the direction of energy transfer and the macroscopic behavior of radiation, 

but it does not account for the atomic interactions between radiation and matter. The microscopic 

interactions are explained by the particle model which considers EM radiation as discrete 

bundles of energy called photons (Ben-Dor et al., 1999). EM radiation is emitted or absorbed as 

an atom’s electrons transition between energy states. When a photon is absorbed by an atom, its 

electrons are excited to a higher energy level. When an electron descends to a lower energy level, 

EM radiation is released. The frequency of energy absorbed or emitted is discrete and unique for 

each element and molecule. 

The total energy of a molecule is the sum of its electronic, translational, rotational, and 

vibrational energy. Electronic energy is related to energy transitions of electrons and the 

distribution of that energy across the molecule - either localized within a single chemical bond, 

or delocalized over a structure with multiple bonds, such as an aromatic ring (Coates, 2006). 

Translational energy is associated with the displacement of molecules in space due to thermal 

movement of matter. Rotational energy is related to the tumbling motions of a molecule as 

microwave radiation is absorbed. Vibrational energy corresponds to the absorption of quantized 

energy by a molecule as its molecules vibrate about the center of their bonds (Coates, 2006). 

Molecular bond vibrations either stretch bond lengths or bend the angles between bonds (Ben-

Dor et al., 1999). Stretching and bending vibrations are referred to as fundamental vibrations. 
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Stretching vibrations can be symmetrical or asymmetrical about a common atom. Bending 

vibrations include scissoring, rocking, twisting, and wagging, which occur as the atoms move in-

plane and out-of-plane about a common atom. 

When a sample is irradiated, EM radiation causes molecular bonds to vibrate by bending 

or stretching. Because molecules can only exist in quantized energy states, the energy of the 

absorbed radiation is equal to the energy difference between two electronic energy levels 

(Larkin, 2011). The absorption of EM radiation creates a unique spectral response which is 

represented as a spectrum with peaks and broad features across thousands of wavelengths (Ng et 

al., 2019). 

Absorbance is calculated using Beer’s Law, because it cannot be measured directly. 

According to Beer’s Law, the absorbance of a substance is directly proportional to its 

concentration and thickness (Equation 1): 

 𝐴𝐴 =  𝜀𝜀𝜀𝜀𝜀𝜀 =  −𝜀𝜀𝑙𝑙𝑙𝑙( 𝐼𝐼
𝐼𝐼0

); (1) 

where 𝐴𝐴 is the absorbance of the substance, 𝜀𝜀 is the molar absorptivity, a measure of how 

strongly a substance can absorb radiation, 𝜀𝜀 is the path length or the distance the radiation travels, 

and 𝜀𝜀 is the concentration of the substance. Similarly, the absorbance is equal to the difference 

between the logarithms of the intensity of radiation entering the sample (𝐼𝐼0) and the intensity of 

radiation after it passes through the sample (𝐼𝐼) (Stuart, 2004). Transmittance (𝑇𝑇) is defined as 

(Equation 2): 

 𝑇𝑇 = 𝐼𝐼
𝐼𝐼0

;  (2) 

and percentage transmittance is (Equation 3): 
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 %𝑇𝑇 = 100(𝑇𝑇),  (3) 

thus, absorbance and transmittance are related through the expression (Stuart, 2004) (Equation 

4): 

 𝐴𝐴 = − log𝑇𝑇 = log �1
𝑇𝑇
�.  (4) 

Transmittance is typically used for qualitative analysis of a spectrum, whereas absorbance is 

used for quantitative analysis (Stuart, 2004). In soil spectroscopy, spectra are typically presented 

in units of pseudo-absorbance, which is a function of reflectance (𝑅𝑅).  

Kubelka-Munk’s Law (Kubelka and Munk, 1931) is used to describe the transfer of 

radiation in an absorptive and reflective substance, while simultaneously transforming a 

reflectance spectrum to an absorbance spectrum. Kubelka-Munk’s Law relates the sample 

concentration to scattered radiation intensity (Equations 5 and 6):  

 (1−𝑅𝑅)2

2𝑅𝑅
=  𝑐𝑐

𝑘𝑘
  ; (5) 

 log 1
𝑅𝑅

= 𝑘𝑘′𝜀𝜀 = 𝐴𝐴;  (6) 

where 𝑅𝑅 is the absolute reflectance of the sample, 𝜀𝜀 is the concentration, 𝑘𝑘 is the molar 

absorption coefficient,𝑘𝑘′ is a constant, and 𝐴𝐴 is the absorbance of a substance (Stuart, 2004). The 

spectral response is captured by a spectrometer and recorded as a spectrum with absorbance units 

so that absorbance intensity is linear to the substance concentration (Bellon-Maurel and 

McBratney, 2011). The spectrum can be used to identify and quantify specific sample 

constituents (Ng et al., 2019; Stenberg et al., 2010). 

 



12 
 

Infrared spectroscopy 

The EM spectrum is a schematic representation of the energy, frequencies, and 

wavelengths of EM radiation (Fig.2). The important parameters of the EM spectrum are the 

wavelength, frequency, and wavenumber. The wavelength is the length of one wave of EM 

radiation, typically in units of nanometer (nm) or micrometer (µm). Frequency is the number of 

waves per unit time, typically presented as waves per second or wavenumber in reciprocal 

centimeters (cm-1). Wavenumber is the number of waves per unit length or the reciprocal of the 

wavelength and is linear with energy. The wavenumber (cm-1) can be calculated by dividing 

10,000 by the wavelength (µ) (Thompson, 2018). The three parameters are related through the 

expression (Equation 7): 

 �̅�𝜈 =  𝜈𝜈

�𝑐𝑐𝑛𝑛�
=  1

𝜆𝜆
 ;  (7) 

where �̅�𝜈 is the wavenumber, 𝜈𝜈 is the frequency, 𝜀𝜀 is the speed of light, 𝑛𝑛 is the refractive index of 

medium, and 𝜆𝜆 is the wavelength (Larkin, 2011). It is more common to use wavelength when 

referring to shorter wavelengths and wavenumber in reference to longer wavelengths. 

The infrared region of the spectrum (Fig.2) can be divided into three groups, in order of 

decreasing frequency and energy and increasing wavelength: the near-infrared (NIR; range: 780 

– 2500 nm, 13000 – 4000 cm-1), the mid-infrared (MIR; range: 2500 – 25000 nm, 4000 – 400 

cm-1), and the far infrared (> 25000 nm, < 400 cm-1) (Stuart, 2004). 
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Figure 1. Electromagnetic radiation spectrum and regions within the infrared. The infrared 
regions follow a non-standardized classification scheme for spectroscopy applications. Source: 
Adapted from Frank (2006). Material under the Creative Commons Attribution-Share Alike 4.0 
International license. 

Infrared spectroscopy is the study of the interaction between matter and EM radiation in 

the infrared region (0.7µm to 1 mm wavelength). In infrared spectroscopic analysis, infrared 

radiation is passed through a sample and molecules in the sample selectively absorb the infrared 

radiation at specific wavelengths. The radiation absorbed is that which matches the molecules’ 

frequency of fundamental modes of vibration (Stuart, 2004). The frequencies of molecular 

vibrations depend on the abundance of functional groups in a molecule, the strength of chemical 

bonds between molecular components, and the molecular geometric structure (Janik et al., 1998; 

Larkin, 2011; Thompson, 2018). A greater abundance of functional groups results in higher-

energy absorptions (Tinti et al., 2015). Similarly, the stronger the molecular bonds, the higher the 

vibrational frequencies; and thus, the shorter the wavelengths of radiation absorbed. Therefore, 

double and triple bonds absorb radiation of higher frequency/shorter wavelength (Fig. 3) 

(Thompson, 2018). Similarly, asymmetrical molecules will generally experience higher 

vibrational frequencies than symmetrical molecules and thus, will absorb shorter wavelengths of 

radiation (Stuart, 2004). 
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Figure 2. Regions of the infrared spectrum where vibrational bands are detected. The portion 
above the dashed line corresponds to stretching vibrations. The section below the dashed line 
corresponds to bending vibrations. Source: Adapted from Reusch (1999).  

In addition to the fundamental molecular vibrations, non-fundamental vibrations occur as 

electrons are excited to higher energy levels than those of fundamental vibrations (Coates, 2006; 

Thompson, 2018). Non-fundamental vibrations result in weaker spectral bands than those of 

fundamental vibrations and typically occur in the shorter wavelength region of the spectrum. The 

bands resulting from non-fundamental vibrations are categorized as overtone and combination 

bands. Overtone bands are multiples of the fundamental absorption frequency and typically 

appear at ½, 1/3 , or ¼ the wavelength of a fundamental vibration (i.e., 2x, 3x, or 4x the 

wavenumber) (Thompson, 2018). Combination bands result from the simultaneous absorption of 

the same frequency by a molecule. Therefore, combination bands occur at (𝜐𝜐1 + 𝜐𝜐2) 

wavenumbers on the spectrum (Stuart, 2004; Thompson, 2018). Fundamental vibrations are 

more common than non-fundamental vibrations, so absorption features in spectra are strongest 

for fundamental vibration bands (Ben-Dor et al., 1999).  
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Comparison of Near-Infrared and Mid-Infrared Spectroscopy 

Infrared spectroscopy is useful for soil analysis because the fundamental molecular 

vibrations of most organic molecules and minerals as well as their overtones and combinations 

occur in the infrared region of the EM spectrum (Ben-Dor et al., 1999; Brown et al., 2006). 

Fundamental bands occur in the mid- to far-infrared region and non-fundamental bands occur in 

the NIR region (Bellon-Maurel and McBratney, 2011; Ben-Dor et al., 1999; Gholizadeh et al., 

2013). Spectra in the NIR and MIR region contain information on the organic, inorganic, and 

molecular water content of soils, thus, NIRS and MIRS can be used to describe these 

constituents both qualitatively and quantitatively (Viscarra Rossel et al., 2016b).  

NIR spectra encode information on organic components, clays and bound water and MIR 

spectra encode information on organic components and minerals. Absorptions in the NIR region 

result from molecules containing C-H, N-H, and O-H bonds (Debaene et al., 2014). Absorptions 

in the NIR region are due to overtones of CO3
-2, SO4

-2, and O-H groups and combinations of 

fundamental vibrations of CO2 and H2O (Stenberg et al., 2010). Clay minerals can also show 

absorption in the NIR region due to combinations of O-H stretching and metal-OH bending 

(Viscarra Rossel et al., 2006). Tightly bound water and carbonates show absorption in the NIR, 

but their absorption bands are weak (Stenberg et al., 2010). Like NIR, absorptions in the MIR 

region result from the C-H, N-H and O-H molecular bonds, but unlike NIR, absorptions in the 

MIR region are a consequence of fundamental vibrations (Clairotte et al., 2016; Nocita et al., 

2015). This characteristic of MIR absorptions means that features in MIR spectra are more 

intense and can provide more information than NIR absorptions (Soriano-Disla et al., 2014).  

Because absorptions in the NIR region are due to overtones and combinations of 

fundamental vibrations, NIR spectral bands are often overlapped and the bands are weaker and 
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less specific to certain soil components than those of MIR (Bellon-Maurel and McBratney, 2011; 

Du and Zhou, 2009; Stenberg et al., 2010). These characteristics of NIR spectral bands makes 

NIR spectroscopy (NIRS) less useful than MIR spectroscopy (MIRS) for the qualitative and 

quantitative analysis of soil properties. In regards to the utility of NIRS and MIRS for SOC 

estimation, the NIR region can measure forms of carbon, nitrogen, and moisture content; 

however, the MIR region can better capture the differences due to carbon content and inorganic 

soil constituents, which are not captured in NIR spectra (Debaene et al., 2014; Reeves III, 2010; 

Viscarra Rossel et al., 2008). NIRS and MIRS have both been successful in measuring soil 

carbon content; however, studies comparing NIRS and MIRS on the same sample sets have 

demonstrated that MIRS outperforms NIRS in the prediction of soil carbon content (Bellon-

Maurel and McBratney, 2011; Janik et al., 1998; Madari et al., 2005; McCarty et al., 2002; 

Reeves III et al., 2006; Reeves et al., 2001; Sila et al., 2016; Viscarra Rossel et al., 2006). 

Spectral Interpretation of Soil Organic Carbon in the Mid-Infrared Region 

Mid-infrared spectra of soils contain information on the molecular structure of soil 

constituents. Interpretation of characteristic spectral features can be used to identify the structural 

features of molecules of soil constituents. In this context, the terms characteristic spectral feature, 

infrared band, and absorption band will be used interchangeably. In spectral interpretation, the 

position, width, and intensity of absorption bands is key in determining the structural features 

present (Thompson, 2018). However, rarely can all absorption bands of an MIR spectrum be 

fully determined (Coates, 2006). This difficulty is due in part to the presence of non-fundamental 

bands and the physical attributes of the sample. Non-fundamental vibrations which result in 

overtone bands can add complexity to spectra, making interpretation difficult. Furthermore, a 

peak distortion or reststrahlen band can occur because of the refractive index of large soil 
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particles present in the sample. The reststrahlen band can eliminate strong absorbance peaks and 

make it more difficult to identify characteristic spectral features. Nonetheless, several structural 

features can be determined using some distinctive spectral features.  

Structural features which can often be identified from an MIR spectrum, include 

backbone chains and functional groups (Coates, 2006). The characteristic spectral bands that 

identify specific functional groups are called group frequencies (Coates, 2006; Stuart, 2004) and 

those that correspond to the molecular backbone are called skeletal frequencies. Group 

frequencies can be applied to most molecules, but skeletal frequencies are unique to a specific 

molecule (Coates, 2006). Because each molecule has its own skeletal frequency, this 

characteristic absorption is often referred to as the fingerprint region. The fingerprint region is 

found between 1400 and 650 cm-1. The group frequency or absorption band of a particular 

functional group increases proportionately with the abundance of that functional group in the 

molecule (Coates, 2006). In this way, group frequencies can be used for qualitative and 

quantitative analysis of molecular structure. 

Organic functional groups, broadly defined, are molecular fragments that are attached to 

an organic backbone. The parallel lines used in this section typographically represent the bond 

types of the skeletal molecular formula: a single parallel line (-) represents a single bond; a 

double parallel line or equal sign (=) represents a double bond; and a triple parallel line (≡) 

represents a triple bond. The most common functional groups (-C-X) are the carbonyl group 

which includes a C=O bond, halogen group (where X = F, Cl, Br, and I), hydroxy group (where 

X = OH), oxy group (where X = O), ether group (where X = OR and R = alkyl), and amino 

group (where X = NH2, NH or N) (Coates, 2006). Some of these functional groups are easier to 

distinguish than others. For example, the carbonyl group is very distinctive in the spectrum as it 
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is often the most intense spectral feature. Like the carbonyl group, the hydroxy group is one of 

the most dominant and characteristic group frequencies. Oxy groups are not as easily identified 

because their C-O features are common in other functional groups, such as ethers (Coates, 2006).  

Knowing in what region of the MIR spectrum the characteristic frequency is found, can 

help determine the respective functional group or backbone (Stuart, 2004). The MIR regions in 

decreasing wavenumber are: (i) the X-H stretching region from 4000 to 2500 cm-1, (ii) the triple 

bond region from 2500 to 2000 cm-1, (iii) the double bond region from 2000 to 1500 cm-1, and 

(iv) the fingerprint region from 1500 to 600 cm-1 (Terhoeven-Urselmans et al., 2010). 

Fundamental vibrations in the X-H stretching region are an outcome of O-H, C-H, and N-H 

stretching. Stretching of O-H bonds produces a broad band between 3700 and 3600 cm-1. 

Stretching of an N-H bond results in a sharp spectral feature between 3400 and 3300 cm-1. Bands 

from C-H stretching of open-chain compounds occur between 3000 and 2850 cm-1. Likewise, C-

H stretching of a C-H bond adjacent to a double bond or an aromatic ring, produces a band 

between 3100 and 3000 cm-1. C≡C and C≡N bonds are the most common groups that produce 

characteristic spectral features in the triple bond region. Stretching of a C≡C bond results in an 

absorption band between 2300 and 2050 cm-1, whereas the nitrile group (C≡N) absorbs between 

2300 and 2200 cm-1. Although both triple bonds exhibit characteristic spectral features in the 

same range, they can be distinguished because C≡C absorption is weak and C≡N absorption is 

somewhat intense. The most common bands of the double bond region are associated with C=C, 

C=O, and C=N stretching. Carbonyl (C=O) stretching results in a very intense band that usually 

occurs between 1830 and 1650 cm-1. Stretching of a C=N bond appears as an absorption feature 

in the same region but is usually stronger. Stretching of a C=C bond produces a weak 
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characteristic absorption at around 1650 cm-1 (Stuart, 2004). The position of these and other 

bond stretches are illustrated in Figure 4.  

 
Figure 3. Absorptions in different regions of the infrared spectra. Source: Hannah and Swinchart 
(1974). 

Soil organic matter has a complex chemistry and is composed of a myriad of chemical 

compounds, which are mostly infrared active (Janik et al., 1998). Different SOM constituents 

can be characterized by specific functional groups, thus, it can be assumed that varying qualities 

of SOM and SOC will be distinguishable across different soil samples (Stumpe et al., 2011). 

Typical functional groups found in SOM include hydroxyls (-O-H), carbonyls (-C=O), carboxyls 

(-C(=O)OH), alkyls (-CH2 and -CH3), and amides (-NH and -CNO) (Janik et al., 1998; Janik and 

Skjemstad, 1995). Stretching of C=O, C=C and C-H bonds as well as C-OH bending is essential 

for identifying SOC in the MIR spectral region (Peng et al., 2014). Figure 5 is an example of 

spectra from soil samples showing the MIR regions. Other soil components, including quartz, 

clay minerals, and iron oxides, are infrared active and can be distinguished by their characteristic 

bands.  
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Figure 4. Example of spectra from soil samples showing the MIR regions. TB = triple bond; DB 
= double bond; X-H = hydrogen bond. Source: Viscarra Rossel et al. (2008). 

Mid-Infrared Spectroscopy Instrumentation and Techniques 

In general, an infrared spectrometer is an instrument that measures the absorption of 

radiation by a soil sample as a function of the frequency of the radiation emitted by a reference 

beam (Thompson, 2018). A record of energy absorption by molecules in the sample versus 

wavelengths is recorded as an absorption spectrum. Most commercial infrared spectrometers 

produce a spectrum with the frequency in units of wavenumber (cm-1) decreasing from left to 

right along the x-axis and the energy of infrared radiation along the y-axis. 

A soil spectrum can be acquired by a spectrometer through reflectance or transmittance 

as previously defined. Reflection is the process by which EM radiation is returned from the 

surface of a substance or the interior of a substance. Transmission is the movement of EM 

radiation through a substance. Both processes can be of diffuse, regular, or mixed type. Diffuse 

reflection is the process of deflecting or scattering a unidirectional beam of radiation at various 

angles. Similarly, diffuse transmission is the process of deflecting the transmitted unidirectional 

beam in many directions as it exits the substance. Regular reflection, also known as 
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retroreflection or specular reflection, is when no diffusion occurs so that the EM radiation is 

returned in the direction from which it came. In transmission, this is termed regular or direct 

transmission. Mixed reflection and mixed transmission, as the name implies, is a combination of 

both regular and diffuse processes. Soil is an absorptive and reflective substance; thus, a soil 

spectrum is typically acquired using diffuse reflectance rather than transmittance (Bellon-Maurel 

and McBratney, 2011). 

Most modern infrared spectrometers are of the Fourier-transform infrared (FTIR) type. 

FTIR instruments are equipped with a Michelson interferometer or a beam splitter that splits 

source radiation into transmission and reflection radiation. The beams of radiation are reflected 

back to the beam splitter where they recombine and produce interference which is used to 

measure frequency (Thompson, 2018). The FTIR instrument is optimized through a fast Fourier-

transformation algorithm (Stuart, 2004). FTIR instruments have several advantages over the 

previous generation of infrared spectrometer (i.e., classical slit and grating instruments): (i) a 

higher signal-to-noise ratio, (ii) higher accuracy of the wavenumber (error range of ± 0.01 cm), 

(iii) a shorter scan time (approximately 1 second), (iv) higher resolution, and (v) output as a 

continuous spectrum (Thompson, 2018). The most used FTIR spectroscopy technique in soils is 

diffuse reflectance infrared Fourier-transform (DRIFT). The diffuse reflectance accessory of a 

DRIFT spectrometer collects scattered radiation and sends it to an infrared detector, while 

simultaneously minimizing specular reflectance (Thompson, 2018).  

DRIFT-MIRS for Soil Organic Carbon Prediction 

For the past 30 years, DRIFT-MIRS has been used for the quantitative analysis of SOC 

(Janik et al., 2007; Janik and Skjemstad, 1995; Reeves et al., 2001). The relatively late 

application of DRIFT-MIRS in comparison to NIRS, was due to the belief that spectral analysis 
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of powdered samples required dilution in potassium bromide and thus, required extensive 

laboratory preparation. This belief was refuted by studies in the mid-90’s which demonstrated 

that non-diluted samples could outperform diluted samples (Barra et al., 2021; Janik et al., 2007, 

1998, 1995; Janik and Skjemstad, 1995; Madari et al., 2006, 2005; McCarty et al., 2002; 

McCarty and Reeves, 2006; Reeves III et al., 2006; Reeves et al., 2001). The popularity of 

DRIFT-MIRS for SOC estimation began to grow with the discovery of the relatively simple 

sample preparation requirements and advancements in chemometrics (McDowell et al., 2012).  

Chemometrics is the interdisciplinary science of extracting information from a chemical 

system through data-driven methods. Chemometrics applies methods from analytical chemistry, 

multivariate statistics, computer science, and applied mathematics for the estimation of soil 

properties from spectral data (Gemperline, 2006). Some of the chemometric techniques applied 

in DRIFT-MIRS include the extraction of chemical information from analytical data, calibration, 

validation, and the optimization of statistical procedures (Gemperline, 2006). The quantification 

of SOC using DRIFT-MIRS depends on chemometrics to detect spectral signatures of soil 

constituents that are directly related to SOC (Janik et al., 1998). 

The pioneering work of several scientists in the 1980s expanded the use of spectral 

analysis of soils as a quantitative analysis method. One of the first studies to explore the 

relationship between spectral data and SOM content was that of Krishnan et al. (1980). In their 

study, the authors associated changes in the slope of a spectral curve with increasing SOC 

content (Angelopoulou et al., 2020). Later in 1981, Stoner and Baumgardner (1981) related the 

presence or absence of characteristic spectral features to the organic matter and iron oxide 

content of soils. Stoner and Baumgardner stratified more than one thousand soil samples by 
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taxonomic similarity and soil forming factors prior to spectral analysis to facilitate the 

interpretation of results. 

Haaland and Thomas (1988) were one of the first, if not the first, to use multivariate 

statistics and infrared spectroscopy together for the quantitative analysis of soils. A few years 

later, Nguyen et al. (1991) were the first to report the use of DRIFT-MIRS for qualitative 

analysis or soil characterization. The first quantitative studies of soils using DRIFT-MIRS were 

those conducted by Janik and Janik and Skemstad in 1995 (Janik et al., 1995; Janik and 

Skjemstad, 1995). In these studies, the authors constructed calibration models for SOC and other 

soil properties using X-ray fluorescence and DRIFT-MIRS data. In 1998, Janik et al. (1998) 

presented a study that posed the question: “can mid infrared diffuse reflectance analysis replace 

soil extractions?” to which they responded that “…in some cases yes, but in general it should be 

thought of mostly as adding value to, or expanding, existing extraction methods and adding to 

the understanding of the underlying relationships between soil properties and soil chemistry.” 

Since then, new studies and advancements in computational techniques have developed to 

improve DRIFT-MIRS calibration model performance. DRIFT-MIRS is now considered a viable 

alternative to conventional laboratory analysis for the qualitative and quantitative analysis of 

SOC (Dangal et al., 2019) and is even used for quality assurance and quality control protocols in 

a national soils laboratory (Comstock et al., 2019). 

Spectroscopic Modeling for Soil Organic Carbon Prediction 

Modeling is conducted after SOC content has been determined through conventional 

laboratory methods and the spectroscopic reflectance has been obtained. Spectroscopic modeling 

consists of: (i) data pretreatment, in which spectral and analyte data are preprocessed to remove 

noise and irrelevant data and to apply useful data transformations (Soriano-Disla et al., 2014); 
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(ii) construction of the calibration model that relates the spectral data to the analyte 

concentration; and (iii) prediction and model performance assessment. 

Spectral Data Pretreatment 

It is important to remove irrelevant data and clean the raw spectral data before building a 

calibration model. Spectral data pretreatment helps to detect the response of spectral features to a 

particular soil property (Viscarra Rossel et al., 2006). Moreover, data pretreatment can yield a 

more parsimonious calibration model and improve model performance (Seybold et al., 2019). As 

a general rule, spectral data pretreatment should be applied across all data sets that will be used 

in modeling, including the calibration and validation (or prediction) sets (England and Viscarra 

Rossel, 2018). Spectral data pretreatment involves the use of statistical techniques to create 

symmetry in the data, minimize undesired noise, remove systematic spectral variation, enhance 

absorbance features, and remove irrelevant spectral data (Angelopoulou et al., 2020; Rinnan et 

al., 2009). The most common pretreatment techniques can be divided into four categories: data 

transformations, light scatter correction, noise reduction and/or smoothing, and baseline 

normalization (Dotto et al., 2018; Vašát et al., 2017). 

Nonlinear relationships between the analyte concentrations and spectral intensities are 

common in DRIFT-MIRS (Janik et al., 2007; Janik and Skjemstad, 1995). The purpose of data 

transformations is to increase the linearity of the relationship between the measured intensities 

and predicted concentrations. Therefore, a useful transformation should decrease the root mean 

square error and increase the coefficient of determination (Seybold et al., 2019). Transforming 

the reflectance spectra to pseudo-absorbance or apparent absorbance units using 

log10(1/reflectance) helps to linearize the relationship between reflectance data and analyte 

concentration (Seybold et al., 2019; Stenberg et al., 2010). This procedure is almost always 
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performed before quantitative analysis with DRIFT-MIRS. In addition, another routine that is 

commonly performed before quantitative analysis is truncation of the spectrum. More 

specifically, it is common to remove certain wavelengths at the tail ends of the spectrum prior to 

performing any statistical analysis. Parts of the spectra that are known to be insensitive to the soil 

property in question or that contain artifacts produced by the spectrometers may be removed 

(McBratney et al., 2006; Viscarra Rossel et al., 2006). Generally, data should not be removed 

unless there is evidence that suggests that it is an artifact or irrelevant to the analysis. 

Particle size heterogeneity and instrumental drift due to variation in light intensity, cause 

light scattering and differences in the effective optical path length (Rinnan et al., 2009; Sila et al., 

2016; Stumpe et al., 2011). These adverse effects result in undesired systematic variations in the 

spectra, including increased interferences which are often described as noise and additive and 

multiplicative offsets (Dotto et al., 2018; Sila et al., 2016). Some techniques commonly used to 

correct for light scattering effects are: (i) multiplicative scatter correction (MSC), (ii) standard 

normal variate (SNV), (iii) de-trending, (iv) normalization, and (v) baseline correction. The MSC 

estimates the level of light scattering for each sample in relation to a reference spectrum. Ideally, 

the reference spectrum should be obtained by averaging all spectra within a range of wavelengths 

that is unaffected by chemical information (e.g. constituents related to SOC), but in practice, the 

overall mean of all spectra in the calibration or validation dataset is used as the reference 

(Gemperline, 2006; Sila et al., 2016). Each individual spectrum is regressed against the reference 

spectrum and the slope and intercept of the corresponding ordinary least squares regression are 

used as correction coefficients (Gemperline, 2006; Nichols, 1984; Rinnan et al., 2009). The 

correction coefficients are used to correct each sample spectrum (Nichols, 1984).  
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The SNV correction effectively removes the slope variation across different spectra that 

is caused by scatter (Gholizadeh et al., 2013). This correction technique is performed on each 

spectrum individually by subtracting its mean absorbance value (centering) and then dividing by 

its standard deviation of absorbance values (scaling) (Gemperline, 2006; Nichols, 1984). 

Consequently, resulting spectra have a mean of zero and standard deviation of one. It is 

important to note, however, that the scaling and centering result in spectra that no longer have 

the original absorbance values (Sila et al., 2016). De-trending corrects the variation in baseline 

curvilinearity that results from densely packed samples (Barnes et al., 1989). A detrended 

spectrum is the residual from a spectrum regressed to a second-order polynomial (Barnes et al., 

1989). De-trending is typically applied after SNV transformation, but it can be performed 

without SNV (Barnes et al., 1989; Rinnan et al., 2009). 

Normalization adjusts the absorbance values of all spectra to a common scale. If noisy 

data is a concern, it may be more appropriate to use robust statistics in formulas for SNV and 

normalization, such as the median or the mean of the interquartile range and the standard 

deviation of the interquartile range (Rinnan et al., 2009). It is common to find different baseline 

offsets and slopes between spectra in a dataset. Baseline issues are attributed to the 

heterogeneous particle-size distribution of samples and instrument drift (Gemperline, 2006). 

Baseline correction is performed by a first derivative transformation of the spectra or by 

calculating an average, minimum, or maximum absorbance over a region of the spectrum with 

zero signal and subtracting it across the entire frequency range of the spectrum (Gemperline, 

2006; Stuart, 2004). 

The techniques used for noise reduction and smoothing include tools for averaging 

spectra, moving averages, median filters, the Savitzky-Golay (S-G) filter (Savitzky and Golay, 
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1964), and discrete wavelet transformation (DWT). Spectral smoothing techniques are common 

in spectral pretreatment and involve summarizing spectra by a given window size or frequency 

range. Smoothing improves the signal-to-noise ratio of a spectrum. However, the magnitude of 

smoothing should be addressed with care because spectral resolution can be lost in the process 

(Gemperline, 2006). A moving average calculates the average absorbance within a section of the 

spectrum sequentially so that each absorbance is calculated. Derivatives, which provide another 

method of smoothing, reduce additive and multiplicative scatter effects, remove baseline shifts, 

and enhance weak signals (Gholizadeh et al., 2013; Rinnan et al., 2009; Stenberg et al., 2010). 

The S-G algorithm is the most used method to convert spectra to the first or second derivative. S-

G is a convolution filter that fits a least-squares, low-degree (1st or 2nd order) polynomial 

function to the spectra in a moving window (Gemperline, 2006; Gholizadeh et al., 2013). The 

polynomial is evaluated at every window midpoint to determine a smoothed absorbance, and this 

process continues point by point until the entire curve is smoothed. The magnitude of smoothing 

is determined by the window width and the degree of the fitted polynomial (Gemperline, 2006; 

Rinnan et al., 2009). An S-G filter preserves the width and height of spectral peaks and increases 

the resolution of superimposed bands (Schafer, 2011). SOM spectra exhibit broad bands and 

shoulders in the 1800 to 800 cm-1 region, indicative of superimposed bands. Applying a second-

order S-G filter increases the resolution of the overlapping peaks so that different SOM 

constituents can be distinguished (Tinti et al., 2015). Direct wavelength transformation 

decomposes a signal into a set of mutually orthogonal wavelet basis functions (Viscarra Rossel 

and Lark, 2009). 

Baseline normalization techniques correct vertical offsets and slope effects. Continuum 

removal (CR) is a common baseline normalization technique that was introduced by Clark and 
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Roush (1984) to remove the continuous features of a spectrum and isolate particular absorption 

features (Dotto et al., 2018). The continuum is a convex hull fitted across the entire spectrum 

using a linear or spline interpolation to connect local spectra maxima (Gholizadeh et al., 2013; 

Shepherd and Walsh, 2002). After the continuum is defined, CR normalizes the spectrum by 

dividing the reflectance value of each wavelength by the corresponding convex hull value 

(Gholizadeh et al., 2013). There is no predetermined set of pretreatments that provide the best 

model performance, but some guidelines exist. Scatter correction techniques, with the exception 

of normalization, are meant to be applied on raw spectra, so they should be performed before 

smoothing (Rinnan et al., 2009). Moreover, detrending should not be performed before SNV 

(Rinnan et al., 2009). 

Analyte Data Pretreatment 

In addition to spectral pretreatment, analyte data transformation may also be necessary 

depending on the calibration model. If the calibration model requires that the response variable 

be normally distributed, then the analytical data may need to be transformed prior to building the 

model to approximate a normal distribution and satisfy the model assumptions (England and 

Viscarra Rossel, 2018). Many soil properties, including SOC, are not normally distributed. 

Deviation from the normal distribution can be detected by plotting a histogram of the data and 

calculating the skewness and kurtosis. A high absolute value of skewness indicates an 

asymmetric distribution. Similarly, kurtosis describes the shape of a probability distribution and 

a value greater than 3 indicates the presence of a heavy tail relative to the normal distribution. 

SOC data tends to have a high positive skewness and high kurtosis, indicating that the 

distribution of the data is not normal and has a heavy tail to the right. The transformations that 

are commonly applied to SOC analyte data are the square root transformation (Baldock et al., 
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2013; Briedis et al., 2020; Dangal et al., 2019; Guerrero et al., 2014; Janik et al., 2007; 

Sanderman et al., 2020; Viscarra Rossel et al., 2016b), log transformation (i.e., log10 or natural 

log) (Baldock et al., 2013; Brejda et al., 2000; Gomez et al., 2020; Knox et al., 2015; Lobsey et 

al., 2017; Ng et al., 2019; Stumpe et al., 2011; Udelhoven et al., 2003; Vasques et al., 2010; 

Viscarra Rossel et al., 2016b; Viscarra Rossel and Webster, 2012), and Box-Cox transformation 

(Shepherd and Walsh, 2002; Terhoeven-Urselmans et al., 2010). If the analyte data are 

transformed, the transformed data should be used in the linear calibration model and to compute 

the estimates and their confidence intervals. Afterwards, the data should be back-transformed to 

their original scale in order to assess the predictive performance of the model (Viscarra Rossel et 

al., 2016b). Some authors cite difficulties in interpreting model estimates from log-transformed 

data. Specifically, that back-transforming data that has been log-transformed yields values that 

greatly under- and over-estimate the extremes of the sample population (Dotto et al., 2018; 

Vasques et al., 2010). These authors suggest using distribution-free methods such as those which 

will be presented in the upcoming calibration and prediction models section, which do not 

require analyte data transformations. 

Outlier Detection and Removal 

It is important to check for potential outliers in the training set before building a 

calibration model or before finalizing a calibration model. There are two types of outliers: 

spectral data outliers and analyte data outliers (Gemperline, 2006; Gupta et al., 2018). Spectral 

data outliers are spectral data that do not fit the calibration model well and result in unusually 

large residuals (McCarty et al., 2002). Spectral data outliers may result from measurement errors, 

from soil samples dominated by specular reflectance, or from soil samples that are not well-

represented in the spectral library. The first two types of spectral data outliers will produce 
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unreliable results and therefore should be removed, but the last type should not be removed 

during modeling except during preliminary evaluations and if evidence suggests that the data are 

erroneous (England and Viscarra Rossel, 2018; Gupta et al., 2018; Ludwig et al., 2016). Analyte 

data outliers may also be due to measurement error or they may be due to human error in 

recording the measurements. Erroneous spectral and analyte data are not corrected by data 

pretreatment techniques; therefore, they should be removed from the dataset if detected (Gupta et 

al., 2018; Rinnan et al., 2009). 

Spectral and analyte outliers can be identified visually and statistically (Viscarra Rossel 

et al., 2016b). An observation is considered an analyte data outlier if its value deviates 

significantly from the mean. The criteria for the threshold distance from the mean is user-defined 

(e.g., a number of standard deviations from the mean) (England and Viscarra Rossel, 2018). 

Likewise, spectral data outliers are observations that are located beyond a specific distance from 

the mean observation in feature space. Spectral outliers can be identified through a 

dimensionality reduction of the spectral dataset (e.g., principal components analysis) followed by 

a calculation of distance (e.g., Mahalanobis distance) of each observation in feature space, where 

a greater distance means that observation is further from the mean (Ramirez-Lopez et al., 2013a). 

Calibration and Prediction 

After the data has been pre-processed, the calibration model can be constructed. In 

general, calibration techniques involve fitting and optimizing statistical models to estimate 

values of a response variable(s) from a spectral sample and corresponding analyte data (e.g., 

SOC content measurement). Prediction involves the use of a previously fitted statistical model to 

predict values of a response variable from an independent spectral sample. In this context, an 

independent spectral sample is one that exerts no influence whatsoever on that used for 
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calibration. As Reeves and Smith (2009) put it, “the true test of any calibration is the 

determination of samples not included in the samples used to develop the calibration”. To obtain 

a realistic estimation of the prediction performance of the calibration model for new unknown 

observations, the prediction sample should be selected through random sampling of the entire 

dataset, or as new data collected specifically for prediction. If random sampling is used to create 

the prediction sample set, the remaining observations can be used to build the calibration model. 

Typically, a greater portion of the entire dataset is allocated for calibration procedures than for 

prediction and it is common to select two-thirds or seven-tenths of the entire dataset for 

calibration and the remaining data for prediction. 

Training and Validation Datasets 

Many different algorithms exist that can be used to construct the calibration model, each 

with different requirements and assumptions. Oftentimes, the calibration model will have 

parameters that are user-defined and model tuning will be required to select the optimal 

parameters. England and Viscarra Rossel (2018) argue that the type of algorithm used is not as 

critical in achieving good predictive performance as long as the parameterization and validation 

of the calibration model are executed well. A fundamental process in calibration is the 

construction of sample sets for model optimization. More specifically, given a spectral sample, 

subsets of spectra can be constructed and assigned to train and validate the calibration model. 

The set of spectral data and corresponding analyte data used to construct and optimize the 

calibration model is termed the training set. The set of spectral data and corresponding analyte 

data used to evaluate the optimization of the calibration model is the validation set.  

Careful selection of the training and validation sets is important when developing a 

calibration model for the prediction of soil properties using DRIFT-MIRS (Stenberg et al., 2010). 
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The training set should be representative of the variation in the soil property and spectra of the 

entire calibration set as well as that of future unknown observations (Clingensmith et al., 2019; 

Soriano-Disla et al., 2014; Stenberg et al., 2010). An important consideration for calibration 

models is that they are empirical and thus, can only produce accurate predictions for signals 

(e.g., absorbance) and concentrations similar to those in the training set (Nocita et al., 2015). In 

principle, predictions should not be made for data that fall outside of the calibration domain. 

Evaluation of calibration model optimization can be performed using an independent 

validation set or through internal validation using only the training set. If an independent 

validation set is used, it should not contain aliquots of observations in the training set, such as 

observations collected from the same soil profile as those already in the training set. However, 

the training and validation sets should be similar, otherwise the prediction will result in biased 

estimates (Bellon-Maurel and McBratney, 2011). Moreover, the dataset size should be well 

balanced between the training and validation sets so that the model is stable (Gholizadeh et al., 

2013). 

Oftentimes the number of observations available for modeling is insufficient to construct 

two separate sets for calibration optimization and evaluation and thus, it becomes necessary to 

perform an internal validation. Whether it is valid to perform a calibration procedure using 

internal validation is debatable (Ludwig et al., 2008). Some authors argue that the predictive 

performance of the calibration model may be overestimated if a validation set is not independent 

of the training set (Bellon-Maurel and McBratney, 2011; Soriano-Disla et al., 2014; Stenberg et 

al., 2010), but authors also note that internal validation methods can be considered independent if 

the samples within the training set are highly independent of each other (Bellon-Maurel and 
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McBratney, 2011). What is true is that modern statistical methods allow for a realistic estimate 

of calibration model performance using internal validation.  

Resampling techniques are used for calibration model optimization when optimization 

and evaluation of the calibration model are performed using internal validation with a training 

set. Resampling techniques include cross-validation and bootstrapping. In k-fold cross-

validation, the calibration dataset is split into a number, k, of equal subsets or folds. The k-1 folds 

are used to train the model and the last fold is used to validate the model. This procedure is 

repeated with a different fold used for validation each time until all folds in the dataset have been 

used for training and validation. The true error estimate is calculated as the average error rate on 

the validation samples. The number of folds influences the true error rate and the computational 

time. The larger the number of folds, the larger the variance and smaller the bias of the true error 

rate; however, the computational time will increase exponentially with increasing k. 

Leave-one-out cross-validation (LOOCV) is a method of cross-validation that is 

commonly performed in DRIFT-MIRS. LOOCV is performed by deriving n calibration models, 

where n is the total number of spectra and associated analyte concentration pairs in the 

calibration dataset. For each test run, n-1 spectra are used for training and the remaining 

spectrum/analyte concentration pair is used for validation. The process of leaving out a spectrum 

is repeated until each of the calibration spectra has been left out (Gemperline, 2006; Gomez et 

al., 2020). 

Bootstrapping is resampling with replacement. In bootstrapping, n spectra/analyte value 

pairs are randomly selected with replacement from the entire calibration dataset and they are 

used for training. The n is typically set to the total number of observations in the calibration 

dataset. The remaining spectra-analyte pairs are used for validation. The process of selecting n 



34 
 

random spectra with replacement is repeated a fixed number of times (i.e., k folds). The true 

error rate is obtained as the average of the separate estimates of model performance. Compared 

to cross-validation methods of sampling without replacement, bootstrapping increases the 

variance that occurs in each fold and can achieve accurate measures of bias and variance of the 

error estimate (Efron and Tibshirani, 1993). Resampling techniques are not mutually exclusive 

and oftentimes multiple resampling techniques are employed in a calibration procedure. 

Data splitting methods involve separating the calibration dataset into a set that is 

dedicated for training and another set exclusively for validation. Selection of the samples for 

training and validation can be through simple random or non-random sampling. Simple random 

sampling splits the calibration dataset to produce entirely independent subsets that are unbiased. 

On the contrary, the goal of a sampling strategy is to ensure good representativeness and 

coverage of the analyte data and good replication of the distribution of the spectral data in feature 

space (Angelopoulou et al., 2020; Ramirez-Lopez et al., 2014). The most common non-random 

sampling strategies for data splitting in DRIFT-MIRS are Kennard-Stone (K-S) (Kennard and 

Stone, 1969) sampling, fuzzy c-means sampling (FCMS), conditioned Latin Hypercube sampling 

(cLHS), and systematic sampling. 

The K-S algorithm identifies the two observations that are furthest from each other in 

predictor space [at a greater distance from each other] and assigns them to the training set. The 

algorithm sequentially selects training observations that are furthest from the ones already 

assigned to the training set. The process of selecting training observations continues until the 

desired number or proportion of observations has been selected. The observations that were not 

assigned to the training set comprise the validation set (Briedis et al., 2020; Ramirez-Lopez et 

al., 2014; Viscarra Rossel and Webster, 2012). The K-S algorithm ensures that extreme 
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observations are included in the training set and thus, outliers should be removed prior to 

applying the K-S algorithm (Ramirez-Lopez et al., 2014). The FCMS sampling technique uses 

the fuzzy c-means clustering algorithm to partition the calibration dataset into subsets with high 

interclass variance and small intraclass variance and subsequently to sample from within the 

subsets (Schmidt et al., 2010). Typically, the observations selected for training are those that are 

nearest neighbors to each cluster centroid and the remaining observations comprise the validation 

set (Ramirez-Lopez et al., 2014). The cLHS algorithm uses a stratified random sampling that 

selects training observations that represent the cumulative probability distribution of the DRIFT-

MIRS data in feature space (Ramirez-Lopez et al., 2014). In cLHS, the user defines the number 

of observations for training and the remaining observations are assigned to the validation set.  

Systematic sampling selects observations for the training set by ranking the observed data 

and subsequently systematically sampling across regular intervals of the ordered dataset 

(Clingensmith et al., 2019). Purposive sampling based on the chronological order in which 

observations are acquired is another sampling approach applied in DRIFT-MIRS calibration 

(Janik et al., 2009). In this approach, observations acquired earlier are used for training and the 

validation set is constructed from observations acquired later to employ a more realistic scenario 

than data splitting by statistical means. 

Modeling Approaches 

A calibration model relates the spectral data from DRIFT-MIRS to the analyte data for 

the prediction of a soil chemical or physical attribute. In the context of DRIFT-MIRS for the 

prediction of SOC, multivariate calibration is applied, because the relationship between the 

predictors (spectral absorbances) and the response (SOC concentration) is many-to-one (Viscarra 

Rossel and Lark, 2009). A calibration model is constructed using many spectral absorbances in 
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order to provide sufficient information on SOC concentration, thus multivariate calibrations are 

used (Viscarra Rossel and Lark, 2009). It is important to note, however, that multivariate 

calibration can also refer to instances where a calibration model is constructed using spectral and 

other data (e.g., environmental factors, soil properties, etc.) to estimate and predict a soil 

chemical or physical property. 

Calibration models for soil modeling with DRIFT-MIRS often encompass a statistical 

learning system. The goal of statistical learning is to construct a calibration model which can 

predict future outputs with high accuracy given a new set of inputs. Statistical learning consists 

of computational-statistical procedures to reduce model errors by learning from a training set as a 

fitted model is adjusted. Algorithms that are included as part of some statistical learning systems 

perform parameter tuning, feature selection, coefficient estimation and balance the bias-variance 

tradeoff. Statistical learning procedures are often employed in the construction of a calibration 

model. The calibration model “learns” through parameter tuning and feature selection using 

resampling techniques, maximum likelihood, and distance calculations using a training set 

composed of a sample of spectral absorbances and their associated analyte concentration. Given 

the high dimensionality and potentially collinear nature of the training inputs, statistical learning 

techniques that perform dimensionality reduction and parameter tuning are especially useful in 

multivariate calibration for SOC prediction. These procedures prevent model over- and under-

fitting, perform variable and noise reduction, and are useful for outlier detection. 

Many soil spectroscopic studies have used regression analysis for calibration (Gholizadeh 

et al., 2013; Tinti et al., 2015), including multiple linear regression (MLR), principal component 

regression (PCR) and partial least-squares regression (PLSR). One of the assumptions of these 

regression models is that a linear relationship exists between the predictors and the response 
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(Gholizadeh et al., 2013). In MLR, spectral regions are selected prior to modeling, and this limits 

the predictive capability of the model. In PCR and PLSR, selection of spectral regions is not 

required before construction of the regression. Unlike MLR, PCR and PLSR can utilize all 

absorbance spectra in the calibration dataset and thus, can beneficially use spectral complexity to 

model soil properties (Janik et al., 1995). 

The simplest regression calibration model for SOC prediction is multiple linear 

regression (MLR). In MLR, a linear combination of the spectral absorbances is created for each 

selected wavelength and that combination is correlated to the associated analyte concentrations. 

In MLR, wavelengths are selected prior to building the regression model. The regression 

coefficients of the MLR are estimated through the method of least squares (Gemperline, 2006; 

Gholizadeh et al., 2013). Multicollinearity in the spectral absorbances of the selected 

wavelengths may be an issue that can cause the coefficient estimates of the MLR to change 

erratically if observations are added or removed. In the mid- to late-1980s, multivariate models, 

such as PCR and PLSR, were introduced in infrared spectroscopy as more robust and effective 

analysis methods than MLR (Janik et al., 1998). 

PCR is a popular model in chemometrics for multivariate calibration. PCR reduces the 

dimensionality of the regression space, solves the problem of data collinearity, and helps to filter 

noise in the predictors. PCR is a combination of principal component analysis (PCA) and MLR. 

The procedure of PCR is divided into two steps. In the first step, the matrix of the predictors is 

transformed into orthogonal principal components (PCs) through PCA. The PCs are linear 

combinations of the original spectral data that maximize the explained variance in the spectra 

(Gemperline, 2006). The first PC is a least-squares result that minimizes the residual matrix; 

thus, it explains the maximum amount of variance. Subsequent PCs explain less overall variance, 
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so it can be assumed that the last PCs computed contain mostly spectral noise. In the second step, 

the PC scores and loadings are used as predictors against the analyte concentration using an 

MLR model (Gemperline, 2006; Gholizadeh et al., 2013; Lucà et al., 2017; Varmuza and 

Filzmoser, 2009). PCR requires a decision on the number of PCs to include in the model. 

Statistical learning methods for variable selection can be applied to select the number of 

components that optimize the prediction of the response. The optimal number of PCs to include 

can be determined through various methods, including the cumulative variance explained by 

different numbers of PCs and a plot of the RMSE (of prediction or calibration) or the prediction 

residual error sum of squares (PRESS) statistic by the number of PCs. The more PCs are 

included in the model, the smaller the bias, but the larger the variance (Gemperline, 2006; 

Reeves et al., 2001). Model over-fitting can be prevented by applying statistical learning 

techniques; however, there is no guarantee that the PCs selected for the model will explain the 

relationship between the spectral absorbance and the soil attribute to be modeled (Gholizadeh et 

al., 2013). 

PLSR is the most widely used method in chemometrics for soil quantitative analysis 

(Soriano-Disla et al., 2014; Varmuza and Filzmoser, 2009). PLSR is very similar to PCR in that 

its goal is to estimate regression coefficients in a linear model with strongly-correlated spectra 

(Gemperline, 2006; Sequeira et al., 2014). An assumption of PLSR models is that the response is 

influenced by a few underlying variables termed latent variables (LVs) (Wold et al., 2001). 

Fitting a PLSR model aims to determine the number of LVs (in an iterative fashion) that explain 

most of the variation in the predictors and the response and exclude the random measurement 

noise (Mevik and Wehrens, 2007; Sudduth and Hummel, 1996; Wold et al., 2001). In PLSR, the 

predictors are transformed into a set of a few intermediate LVs and these variables are used for 
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an ordinary least squares regression with the response (Varmuza and Filzmoser, 2009). PLSR 

differs from PCR in that the latter only considers the predictor space in determining its PCs, 

whereas the components of PLSR consider the predictors and associated response. PLSR 

components are linear combinations of wavelengths that maximize the covariance between the x 

and y variables, thus the algorithm yields models through an iterative procedure which is 

perceived as a single regression step. The x and y variables are assumed to be realizations of the 

LVs, and are therefore not independent (Gholizadeh et al., 2013; Janik et al., 1995; Varmuza and 

Filzmoser, 2009). If the number of PLSR components equals the number of x variables, then the 

x variables are assumed to be independent and PLSR becomes identical to MLR (Varmuza and 

Filzmoser, 2009). 

PLSR is a powerful linear regression method because it handles a large number of 

variables and is insensitive to collinearity (Varmuza and Filzmoser, 2009). A benefit of using 

PLSR is that qualitative soil interpretations are possible through an assessment of the component 

loadings and scores (Janik and Skjemstad, 1995). The loadings provide the proportion of each 

predictor in each component and the first few loadings correspond to the spectral wavelength 

regions with maximum spectral and analyte concentration information (Janik et al., 2007, 1995). 

Positive peaks in the component plot correspond to constituents of interest, while negative peaks 

indicate interfering constituents (Viscarra Rossel et al., 2006). Furthermore, the scores provide 

information on the influence of each component on the response; thus, it is possible to determine 

which wavelengths explain the most variability in the analyte concentration (Janik et al., 2007, 

1998). As with PCR, the appropriate number of components must be determined in order to 

prevent over-fitting. Normally, the optimal number of components for PLSR is smaller than for 

PCR (Gholizadeh et al., 2013; Varmuza and Filzmoser, 2009). Moreover, as with PCR, PLSR 
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may be affected by non-linear data (Janik et al., 2009; McDowell et al., 2012). Non-linear 

spectral reflectance and a diverse mineralogical composition for calibration observations at high 

and low extremes of the analyte values result in a curved regression that under-predicts the 

extreme analyte values (Janik et al., 2009; Janik and Skjemstad, 1995). Furthermore, PLSR tends 

to predict negative response values when the response values in the calibration dataset are close 

to zero, which is often the case with SOC (Seybold et al., 2019). 

Another calibration model commonly implemented in quantitative soil analysis with 

DRIFT-MIRS is random forests (RF) regression. RF is an ensemble statistical learning model 

that combines the bagging technique and decision trees to improve model prediction in high-

variance, low-bias scenarios (Hastie et al., 2017). Bagging, which is short for bootstrap 

aggregation, is a variance-reducing technique that averages the prediction of multiple predictor 

structures built from bootstrap samples (Breiman, 1996). The bootstrap samples are drawn from 

the training set. The RF model improves the variance reduction of bagging by incorporating 

additional randomness as it builds trees for a forest. For every node of a tree, a user-defined 

number of predictors is randomly chosen from the total set of predictors. The node is then split 

into daughter nodes by selecting the predictor and value that best separates the observations. This 

process is repeated until a minimum node side (number of samples assigned to a split) is reached. 

The bagging and random selection of predictors at each node results in trees that are not 

correlated (Hastie et al., 2017). The output of RF is a mean prediction of the individual trees and 

out-of-bag samples are used to assess the model error. Some advantages of RF are that it is 

robust to noise, suitable for datasets with more variables than observations, can handle 

categorical and continuous variables, and is not affected by nonlinear relationships between the 
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predictors and response, so data transformation is not necessary (Knox et al., 2015; McDowell et 

al., 2012; Sequeira et al., 2014). 

Cubist is a statistical learning algorithm that builds regression trees based on rules that 

partition the dataset into homogenous groups, each with an associated MLR model. Unlike RF, 

cubist does not use bagging to construct the trees and to aggregate the predictions. Cubist uses all 

predictors to generate a set of if-then conditions that partition the observations of the response 

into subsets that share similar predictors. The set of observations of the response that fit the 

condition are termed coverage. Cubist then fits an MLR from predictors that fit the condition and 

coverage. Model error is reduced because the MLRs are local to a subset (Viscarra Rossel et al., 

2016b; Viscarra Rossel and Webster, 2012). When a sample matches the conditions of the rule, 

the model is used to calculate the predicted value (Minasny and McBratney, 2008). The final 

model is a set of rules, each with an associated MLR. The algorithm can build model trees 

iteratively so that each tree improves the prediction of the last. Each tree is called a committee 

and predictions across all committees are averaged to get the final prediction (Briedis et al., 

2020). In the context of soil property prediction from DRIFT-MIR spectra, cubist tends to 

outperform other statistical learning models due to its ability to efficiently select spectral 

variables and handle nonlinear relationships between the absorbance spectra and the analyte 

concentration (Dangal et al., 2019). Furthermore, cubist does not predict negative values, 

maintains the upper and lower limits of the training data, and allows the user to determine the 

extent to which predictions are extrapolated beyond the range of values in the training set 

(Minasny and McBratney, 2008). 

The boosted regression tree (BT) is another tree-based algorithm. Boosting is the theory 

that many weak models (weak learners) can form a strong one. In BT, a regression tree is 
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iteratively fit. After each iteration, the out-of-bag observations (those not used to create the tree) 

are given a weight in relation to their residuals. Subsequent trees will preferentially select those 

observations with the greatest error and in this way, the residuals will be minimized with each 

iteration (Sankey et al., 2008). The weighted sum of all predictions is the ensemble output. Some 

advantages of the BT model include its ability to model data with weak relationships, 

insensitivity to outliers, and relative “immunity” to over-fitting (Brown, 2007). 

Artificial neural networks, usually referred to as neural networks (NNs) are nonlinear 

statistical models. A NN is based on a collection of interconnected nodes called artificial neurons 

that can connect linear combinations of input variables to the response. Input variables received 

at an artificial node are weighted using a nonlinear sigmoid or logistic function and summed to 

derive a nonlinear response (Janik et al., 2009). The artificial neurons are aggregated into layers 

and different layers can perform different transformations on their input variables. In DRIFT-

MIRS, the input variables for the NN calibration model can be the raw spectral absorbances or 

the scores of a PCA, PLSR, or other dimensionality reduction model (Janik et al., 2009). The NN 

learns by adjusting input variable weights. Back-propagation is a technique used to adjust the 

variable weights. Given the complexity of NNs and their ability to model nonlinear relationships 

between spectral absorbance and analyte concentration, NNs are an effective model for soil 

quantitative analysis with DRIFT-MIRS when interpretation of the predictors is not required 

(Hastie et al., 2017). 

Support vector machine regression (SVMR) is a supervised, nonparametric, kernel-based, 

statistical learning model. SVMR maps the input data into a high dimensional feature space by 

transforming the original predictors using a kernel function (Viscarra Rossel and Behrens, 2010). 

This transformation by a kernel function is called a kernel trick (Boser et al., 1992). The kernel 
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trick derives a linear hyperplane which serves as a decision function for prediction. The 

hyperplane maximizes the distance from the hyperplane to each data point (Chakraborty et al., 

2012). SVM reduces the complexity of the training data to subsets of the training dataset called 

support vectors which it uses to solve the model in the linear data space (Nawar and Mouazen, 

2017).The model then back-transforms the data to a lower dimensional space for the prediction. 

The best regression model is obtained by using a loss function to minimize the coefficient size 

and the prediction errors simultaneously (Lucà et al., 2017). SVMR performs similarly to NN in 

terms of accuracy and robustness. SVMs can handle large input data efficiently as well as 

nonlinear relationships (Gholizadeh et al., 2013). 

Generalized linear model (GLM) is a class of models that share a common structure, 

estimation processes, inference methods, and diagnostic tools. GLMs consist of three 

components: (i) a random component for the response with a variance of distribution in the 

exponential dispersion models (EDM) group, (ii) a systematic linear predictor component, and 

(iii) a monotonic link function that connects the random component to the linear predictor. 

GLMs use the maximum likelihood method for parameter estimation, which is able to estimate 

parameters for non-normal distributions. Several probability distributions of the response belong 

to the EDM group, such as Gaussian, binomial, Poisson, negative binomial, gamma, inverse 

gaussian, and Tweedie. GLMs allow for selection of an appropriate EDM for the response 

distribution and can be used in combination with regularization techniques for variable selection. 

Multivariate adaptive regression splines (MARS) is a nonparametric multiple regression 

technique that has been applied in quantitative analysis of soil properties with infrared spectra. 

MARS builds flexible models by fitting piecewise linear regressions to the predictors and 

response variable(s) (Hastie et al., 2017). MARS splits the data in feature space, into regions 
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defined by knots. An adaptive piecewise linear regression is used to fit the data within a region 

and the regression coefficients are allowed to “adapt” or change between knots (Nawar and 

Mouazen, 2017; Shepherd and Walsh, 2002). Each relationship is represented as a basis function. 

MARS first builds a large model by adding all basis functions to it and redundant variables are 

subsequently reduced through a backward stepwise procedure that removes variables in order of 

least contribution to the model (Shepherd and Walsh, 2002). 

Soil Spectral libraries 

A soil spectral library (SSL) is a database that contains soil spectral measurements and 

their associated analytical measurements. Before development of a SSL, one must consider the 

soil properties that will be modeled and the geographic scale and diversity of the area where the 

SSL will be applied. Rossel et al. (2008) present three requirements for the development of a 

SSL: (i) it should contain a sufficient number of samples to capture the soil variability in the 

region where it will be used, (ii) the samples should be handled properly prior to, during, and 

after spectral data acquisition, and (iii) the analyte soil data should come from reliable and 

accredited analytical procedures. In addition to these three requirements, a SSL should contain 

descriptive metadata to facilitate data organization, sharing, and integration of data from 

different sources. Another important consideration is to ensure that the same laboratory method 

or technique was used for all measurements in the SSL corresponding to the same soil property. 

A variety of research has focused on the development of large SSLs scanned in the 

visible to near-infrared (VNIR) range. The largest and most diverse global VNIR SSL to date is 

that compiled by Viscarra Rossel et al. (2016a). As of 2016, this SSL was composed of 23,631 

soil spectra in the VNIR range which were shared by approximately 45 researchers from 92 

countries (Viscarra Rossel et al., 2016a). Another global effort is the International Centre for 
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Research in Agroforestry – International Soil Reference and Information Centre’s (ICRAF-

ISRIC) SSL which is composed of 4,438 samples from 785 soil profiles collected in Africa, 

America, Asia and Europe. Several continental VNIR SSLs exist, including: (i) North America: 

USDA-NSSC with 144,833 samples from 6,017 profiles collected as part of the Rapid Carbon 

Assessment (RaCA) project, (ii) Australia: 21,500 spectra collected from 4,000 profiles sampled 

during multiple surveys (Viscarra Rossel and Webster, 2012), (iii) Europe: 20,000 samples 

collected over 23 countries for the Land Use/Cover Area Frame Statistical Survey (LUCAS) 

database, and (iv) Africa: over 1,000 topsoils from eastern and southern Africa (Shepherd and 

Walsh, 2002) and the Africa Soil Information Service (AfSIS) SSL consisting of over 17,000 

samples collected across sub-Saharan Africa (Clairotte et al., 2016). 

Justification 

More recently, research has focused on the development of MIR SSLs. Currently, there is 

a global initiative supported by the Global Soil Laboratory Network (GLOSOLAN) of the 

Global Soil Partnership and the Soil Spectroscopy for Global Good network to construct a free 

service, termed the Global Soil Spectral Calibration Library and Estimation Service (GSCLES), 

to estimate soil properties around the world, using the open spectral library of the Kellogg Soil 

Survey Laboratory (KSSL) of the United States Department of Agriculture’s Natural Resources 

Conservation Service (Shepherd et al., 2022). Efforts are underway to improve the efficiency and 

practicality of the GSCLES so that it is operational. The global soil spectroscopy community 

recognizes that further research is needed in the effective use of the global calibration library. 

Some of the specific challenges and needs identified by the soil spectroscopy community have 

motivated the research presented in this work.  
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My research studies (1) assess current trends in optimization techniques and conditions 

that render them effective for SOC (%) prediction, (2) validate the use of subsetting by 

environmental and soil attributes as an effective optimization technique, and (3) evaluate the 

effectiveness of taxonomic and mineralogic criteria and spiking as effective optimization 

techniques for spectral library transfer. The optimization techniques presented in the studies that 

follow can guide the construction of new soil spectral libraries, as well as the expansion and 

efficient use of existing ones, including the GCLES, while overcoming some of the inherent 

challenges of predicting SOC in a new area with a small or large SSL. 
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Abstract 

 Resource-efficient techniques for accurate soil property estimation are necessary to 

satisfy the increasing demand for soil data to support environmental monitoring, precision 

agriculture, and spatial modeling. Over the last 30 yr, infrared soil spectroscopy has developed 

into a rapid, robust, and cost-effective technique for soil carbon analysis. Ongoing global efforts 

to make soil spectroscopy operational require the development of soil spectral libraries, which 

are the main source of data for the construction of calibration models. Understanding calibration 

optimization is important to ensure the efficient use of soil spectral libraries for the accurate 

estimation of soil carbon. Moreover, spectral library transfer can benefit new data collection, soil 

monitoring, and modeling efforts. This review presents techniques for optimization of calibration 

models and library transfer. Selection of calibration set size and subsetting are presented as 

current calibration optimization techniques. Moreover, spiking is discussed as an effective 

technique for spectral library transfer. Overall, studies have suggested that an increase in 

calibration size improves model performance and this continues until an optimal size is reached. 

Additionally, subsetting can improve model performance if the resulting subsets reduce the 

variability of spectrally active components. Studies have also suggested that spiking is effective 

when used in conjunction with subsetting techniques. These findings denote the current 

applicability and potential of optimization and library transfer techniques for the accurate 

estimation of soil carbon with soil spectroscopy. Future efforts should focus on refining 

optimization techniques to further expand the operability of soil spectroscopy for soil carbon 

estimation. 
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Introduction 

 Measuring and monitoring soil carbon is fundamental to the management of food 

security, environmental health, and plant and animal welfare. There is increasing demand for soil 

carbon data to support carbon market monitoring, reporting, and verification, environmental 

monitoring, precision agriculture, and spatial modeling (Brown et al., 2006; Sanderman et al., 

2021; Wijewardane et al., 2018). To satisfy this demand, resource-efficient techniques for 

accurate soil carbon estimation are necessary. The accurate estimation of soil carbon for the 

aforementioned efforts can be difficult to achieve due to costly, intrusive, and time-consuming 

traditional laboratory methods (Dotto et al., 2018; Smith et al., 2020). Regardless of the exact 

method of laboratory analysis, the monetary and environmental cost associated with quantifying 

soil carbon is a barrier to wide-scale monitoring and informed decision-making.  

 Over the past few decades, infrared soil spectroscopy has become prevalent as an 

complement to traditional soil carbon analysis because it is fast, cost-effective, nondestructive, 

environmentally friendly, robust, and adaptable for use in the lab or in situ (Barra et al., 2021; 

Gholizadeh et al., 2013; Nocita et al., 2015; Viscarra Rossel et al., 2006, 2016). Soil 

spectroscopy is less destructive than traditional laboratory analysis as only a relatively small 

sample and minimal sample preparation are required. Samples may only need to be dried and 

ground prior to scanning and scanning may only take seconds leading to cost and time savings. 

Moreover, soil spectroscopy does not require the use of hazardous chemical extractants; 

therefore, it is less harmful to the environment (O’Rourke & Holden, 2011; Viscarra Rossel et 

al., 2006). Lastly, a single spectrum can be used to assess several soil properties, making it a 

robust analysis method (Comstock et al., 2019; McBratney et al., 2006; Viscarra Rossel et al., 

2006, Viscarra Rossel et al., 2008). 
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 The practical use of soil spectral data depends on the construction of a soil spectral 

library (SSL). A SSL is a database containing spectra and their corresponding soil property 

measurements determined by traditional methods, defined here as those other than spectral 

based. For a SSL to be useful, the soil property measurements (i.e., analyte data) and associated 

spectral data must be from a reliable laboratory procedure (Viscarra Rossel et al., 2008). 

Moreover, the SSL should contain sufficient soil samples to capture the expected soil variability 

in the area where it will be applied (Minasny et al., 2009; Reeves,2010). 

 In soil spectroscopy, a calibration model relates the spectral data to the analyte data of 

soil samples to predict soil chemical or physical properties. An important process in the 

construction of calibration models is optimization. Optimization of calibration models focuses on 

reducing the statistical error of model estimates and helps ensure the efficient use of a SSL for 

the prediction of soil properties. Furthermore, optimized calibration models built from an 

existing SSL can be used to estimate soil properties at a new site through library transfer 

techniques. The review presented here is an effort to provide an overview of previous work and 

current trends in calibration optimization and library transfer techniques for soil spectroscopy. 

This work does not discuss spectral pre-processing techniques, nor does it intend to compare 

model performance across different spectral ranges (e.g., mid-infrared, near-infrared, etc.), both 

of which can influence soil property estimates. For more information on those topics, the reader 

is referred to Vasques et al. (2008) and Bellon-Maurel and McBratney (2011), respectively. 

Studies cited in this work are those pertinent to the estimation of soil carbon. This property was 

selected as the focus of this work given its importance to soil quality and soil health as well as 

the growing demand for soil carbon data for climate change monitoring (Lal, 2014; Smith et al., 

2020). 
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Calibration Models and Optimization 

 The estimation of soil properties using soil spectroscopy is conducted through calibration 

models constructed from observations that relate analyte data (e.g., organic carbon 

concentration) to spectral data (e.g., absorbances across a spectral range). The spectral data and 

corresponding analyte data used to construct these models is often termed the “training set.” 

Construction of a calibration model from a training set requires the application of statistical 

learning techniques that consist of computational-statistical procedures to construct 

estimation/prediction models with improved accuracy through iterative “learning” and fitting 

(Tibshirani et al., 2017). The accuracy of a calibration model is a measure of its systematic error, 

which is defined as the difference between the model estimates/predictions and the accepted true 

value of the soil property. In general, the assessment of calibration model accuracy should be 

conducted using an independent “validation set” (Bellon-Maurel & McBratney, 2011; Brown et 

al., 2005; Gemperline, 2006). 

 Calibration model optimization is a fundamental process in soil spectroscopy that focuses 

on improving overall model performance (e.g., reducing statistical error or bias). Calibration 

model optimization routines can determine the number of observations required to achieve an 

acceptable model accuracy, as well as improve the representativeness of the spectral data and 

their relationship to the analyte data. Moreover, some optimization routines consider the soil 

variability in the calibration set, which is important when observations are from soils developing 

under different environmental conditions, weathering stages, or soil depths. Calibration model 

optimization techniques are discussed next and where available, measurements of model error 

(e.g., RMSE) are presented. Unless otherwise stated, these error values are based on an 

independent validation set, as reported by the corresponding authors. 
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Calibration Set Size 

 Calibration set size affects model performance. If infrared spectroscopy is to be 

considered a cost-efficient method of soil analysis, then it is important to determine the optimal 

number of samples required not only in terms of its effect on model performance, but also for its 

cost-savings potential. The calibration model should contain sufficient observations to capture 

the variability of the soils in the area where it will be applied (Viscarra Rossel et al., 2008). 

Studies have reported that model accuracy increases with calibration size until a point is reached 

when no additional significant improvement is achieved (see Figures 1 and 2) (Angelopoulou et 

al., 2020; Clairotte et al., 2016; Debaene et al., 2014; Gogé et al., 2014; Grinand et al., 2012; 

Lucà et al., 2017; Shepherd & Walsh, 2002). An optimal calibration size is one at which a good 

tradeoff between model accuracy and resource efficiency is found. However, determining the 

optimal calibration size is not straightforward. Building a calibration model from many soil 

samples is neither cost nor time efficient and it can lead to increased noise in the model. 

Furthermore, conducting statistical analysis on a set with a large number of observations can be 

computationally expensive (Debaene et al., 2014; Lucà et al., 2017). On the contrary, building a 

calibration model from a few soil samples may save time and money, but can lead to inaccurate 

predictions (Lucà et al., 2017). 

 Several studies have examined the effect that varying the calibration set size has on 

model performance. Shepherd and Walsh (2002) assessed the effect of decreasing the size of a 

highly diverse calibration set on soil organic carbon (SOC) model performance. The authors 

observed that the R2 of the independent validation was less variable and thus more stable for 

models constructed using 20 and 30% of randomly selected observations from the calibration set. 

They noted that, when starting with a large set size, the predictive performance decreased 
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gradually with decreasing sample size. Contrarily, when starting with a small set size 

(approximately <20% of total observations), the predictive performance decreased abruptly with 

decreasing sample size (Shepherd & Walsh, 2002). This indicates that the magnitude of 

influence of each observation in the calibration set is not constant, but rather is influenced by the 

initial calibration set size. Using a French national mid-infrared (MIR) database, Grinand et al. 

(2012) tested the effect of calibration set size by systematically increasing the proportion of total 

observations used for the calibration with the remaining observations used for validation. Similar 

to the study by Shepherd and Walsh (2002), these authors achieved stable validation results for 

SOC when calibration models were constructed with a random selection of 20% (R2 = .89, ratio 

of performance to deviation, RPD = 3.00, standard error of prediction, SEP = 0.67%) and 30% 

(R2 = .89, RPD = 3.10, SEP = 0.65%) of the total observations. Additionally, the authors noted 

that there was a significant increase in the RPD and R2 when the calibration set size was 

increased from 10 to 20% (R2 = .84 vs. .89, RPD = 2.50 vs. 3.00). Similarly, the SEP decreased 

from 0.80 to 0.67%, respectively. Contrarily, there was only a minimal decrease in error when 

the calibration set size was increased from 20% (SEP = 0.67%) to 80% (SEP = 0.59%), with 

reduced stability of validation metrics at larger calibration sizes. The authors attributed these 

results to the proportion of atypical observations in the calibration at larger calibration set sizes. 

These studies suggest that model accuracy increases with an increase in calibration set size, but 

the influence of additional soil samples for the calibration set is dependent on the initial 

calibration size and the proportion of atypical observations added to the calibration set. 
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Figure 1. Plot of percentage of total number of calibration set observations used for modeling vs. 
ratio of performance to deviation (RPD) for the prediction of soil organic carbon using soil 
spectroscopy. The shading indicates distinct model reliability thresholds based on Chang et al. 
(2001). Dark gray shading represents the range in RPD considered to be an unreliable model, 
medium gray is for a fair model, and light gray is for a reliable model. The legend provides the 
study citation, the spectral range (visible and near-infrared [VNIR] or mid-infrared [MIR]) of the 
dataset, and the total number of calibration set observations in the dataset, in that order. In 
general, the RPD increases/improves as the percentage of total observations increases until a 
plateau is reached. The studies cited here are described in detail in this section and used an 
independent validation set. 

 Clairotte et al. (2016) tested the separate and combined use of visible and near-infrared 

(VNIR), near-infrared (NIR), and mid-infrared (MIR) spectra from a French national spectral 

database to determine the minimum calibration set intensity (i.e., optimal percentage of 

calibration observations) required to obtain an accurate prediction for an SOC dataset with a 

range of 0.2–6.3%. The authors tested 10 different calibration set intensities ranging from 10 to 

100%, in 10% increments. Results of the randomly selected calibration models demonstrated that 

the RPD and ratio of performance to interquartile range (RPIQ) increased gradually and the SEP 

decreased gradually with increasing calibration intensity but observed very little improvement 

above 60% intensity. Furthermore, they determined that the optimal calibration intensity was 
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greater for the calibration set that only used MIR spectra (50% intensity, SEP = 0.63%), as 

compared to those sets that used VNIR (30% intensity, SEP = 0.92) and NIR spectra (30% 

intensity, SEP = 0.85%). Nevertheless, better predictions were achieved using only MIR spectra 

(lowest SEP = 0.60%) than using VNIR (lowest SEP = 0.87%) or NIR (lowest SEP = 0.82%). 

The authors suggested that VNIR and NIR contain less useful information than MIR for 

predicting SOC and thus, require less calibration observations to extract the useful information 

and achieve their best model performance (Clairotte et al., 2016). 

 

Figure 2. Plot of percent of total number of calibration set observations used for modeling vs. R2 
for the prediction of soil organic carbon using soil spectroscopy. The shading indicates distinct 
model reliability thresholds based on Chang et al. (2001). Dark gray shading indicates the range 
in R2 considered to be an unreliable model, medium gray indicates a fair model, and light gray 
indicates a reliable model. The legend provides the study citation, the modeling approach used 
(partial least squares regression [PLSR], support vector machine regression [SVMR], 
multiplicative adaptive regression splines [MARS]), and the total number of calibration set 
observations in the dataset, in that order. In general, the R2 increases/improves as the percentage 
of total observations increases. The studies cited here are described in detail in this section and 
used an independent validation set. 
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 Several studies have investigated calibration set size in conjunction with different sample 

selection schemes including random sampling, stratified random sampling, Kennard-Stone 

(Kennard & Stone, 1969), and analyte value range. Brown et al. (2005) used VNIR models to 

assess the effect of three sampling schemes and a varying percentage of total calibration 

observations (10–70%) on the prediction of SOC in north-central Montana. The sampling 

schemes were (a) random sampling, (b) stratified random sampling of soil profiles per site, and 

(c) spectrally stratified random sampling using partitioning around medoids (PAM) (Kaufman & 

Rousseeuw, 1990). They observed a decrease in RMSE with an increase in observations more 

than 20% of the total dataset (57 of 283) and predictions with RMSE <0.14% with at least 35% 

of the total dataset across all sampling schemes. However, model performance varied depending 

on the sampling scheme. The models constructed from spectrally stratified sampling 

outperformed those of the other sampling schemes and consistently resulted in lower maximum 

RMSE values when 20–35% of the total dataset was used, indicating that sample selection 

influences the results. In their study on the separate and combined use of VNIR, NIR, and MIR 

spectra to predict SOC, Clairotte et al. (2016) also tested the effect of Kennard–Stone sampling 

on optimal calibration intensity. The authors noted that the optimal calibration intensity was 

greater with Kennard–Stone selection of calibration samples than with random sampling (MIR: 

60 vs. 50%; VNIR: 50 vs. 30%; NIR: 70 vs. 30%). Nevertheless, much better predictions were 

achieved by models constructed from Kennard–Stone samples as compared to those from 

random sampling (lowest SEP with Kennard–Stone vs. random sampling and MIR: 0.26 vs. 

0.60%; VNIR: 0.48 vs. 0.87%; NIR: 0.44 vs. 0.82%). 

 Several studies have tested the effect of varying calibration set size for the prediction of 

soil carbon at local scales. Debaene et al. (2014) investigated the effect of VNIR calibration set 
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size on model performance for the within-farm prediction of SOC concentration. Four sampling 

schemes were used to select the calibration set: (a) random sampling, (b) selective sampling by 

analyte value, (c) spectrally stratified random sampling using K-means clustering, and (d) 

spectrally stratified random sampling using principal components analysis (PCA) scores. The 

difference in lowest RMSE as well as the calibration size required to achieve the lowest error 

was small between the differently selected calibration models. Overall, random sampling 

achieved the smallest RMSE with the fewest observations. The RMSEs of the random sampling 

and analyte value models ranged from 0.12 to 0.18% and were achieved using approximately 

60% of the calibration set observations. The K-means clustering models had the widest range in 

RMSE (0.12–0.27%) as well as the smallest proportion of the calibration set required to achieve 

this RMSE (57%). The PCA score models had RMSEs between 0.12 and 0.22% with the 

minimum achieved using approximately 67% of the calibration set. The authors determined that 

a minimum of 79 of the total 199 calibration observations (approximately 40%) were suitable to 

adequately predict SOC concentration with a RMSE of 0.13%. Using a French national spectral 

database in the VNIR range, Gogé et al. (2014) compared various strategies to predict SOC 

concentration for a local site. The authors observed the effect of calibration size on model 

accuracy and noted that model RMSE and bias decreased and R2 increased as the number of 

observations, selected using the Kennard-Stone algorithm, increased.  

 The effect of calibration set size on total soil carbon prediction at a local scale using 

VNIR was tested by Lucà et al. (2017). Three calibration models, selected through stratified 

sampling by analyte value, were assessed and they each achieved different levels of performance 

depending on the calibration set size. In general, the RMSE decreased as the calibration set size 

increased. The best predictive performances were obtained using between 50 and 90% (72 and 
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130 of 144 observations) of the total calibration set. In addition to these studies, Ramirez-Lopez 

et al. (2014) investigated the combined effect of calibration set size and three calibration 

sampling algorithms: Kennard–Stone, conditioned Latin hypercube (McKay et al., 1979; 

Minasny & McBratney, 2006), and fuzzy c-means (de Gruijter et al., 2010). These authors found 

that the improvement in model performance by spectrally stratified random sampling depends on 

the calibration size. When models are small, the sampling algorithm significantly improves 

model accuracy; however, when the models are large, the sampling algorithm has little influence 

on model accuracy. Although random sampling is a statistically sound sample selection method, 

it is prone to select samples with little representativeness to the whole set, particularly when 

working with a large SSL composed of highly, pedologically diverse soil samples. In these cases, 

a spectrally stratified sampling approach such as Kennard–Stone, fuzzy c-means, or conditioned 

Latin hypercube sampling may be preferred. 

 Overall, these studies confirm previous findings that model accuracy increases with an 

increase in the calibration set size. Additionally, these studies demonstrate that the optimal 

calibration size depends on various factors, including the initial calibration set size, the sampling 

scheme used to select the calibration observations, and the spectral range of the calibration 

model. In addition to the aforementioned factors, the optimal calibration set size can vary 

depending on the mineralogical diversity and the geographical extent covered by the 

observations in the calibration (Clingensmith et al., 2019; Lucà et al., 2017; Ludwig et al., 2019). 

Sample Representativeness 

 The representativeness of the calibration set is another optimization factor that influences 

model performance. The empirical nature of spectroscopic calibrations limits their prediction 

accuracy to how well the calibration observations represent the unknowns (Nocita et al., 2015). 



72 
 

To construct a robust calibration model, the observations in the calibration set must be 

representative of the soils to which the model will be applied (Angelopoulou et al., 2020). Lucà 

et al. (2017) indicates that a representative sample set should be selected on the basis of spectral 

features or analytical properties. It is important to consider both the expected variability in soil 

chemical and physical properties that are spectrally active, as well as the expected distribution of 

the soil property values of the unknown observations. Additionally, limiting the range of 

variability in spectrally active properties and analyte concentrations of the calibration model can 

improve model performance. For example, NIRS studies on forages and grains obtained better 

results with calibration models developed for a limited, well-defined population (e.g., a specific 

varietal), as opposed to a universal calibration for all varieties (Murray et al., 1987; Roberts et 

al., 2004). Similarly, soil calibrations can perform better if constructed for a reduced spectral, 

pedologic, geographic, or analyte concentration range (Brown et al., 2005; Madari et al., 2005; 

Reeves &Smith,2009). 

 Calibration models can be constructed to estimate a specific group of the prediction set, 

such as specific analyte value ranges or soil types. This is achieved by subsetting the SSL using 

calibration selection approaches (Soriano-Disla et al., 2014). One approach is to construct local 

calibration models using the nearest spectral neighbors of the prediction set (i.e., the local 

approach). Another approach is the stratification of the SSL to select subsets based on ancillary 

information or classification criteria to build targeted calibrations. Examples of selection criteria 

include soil types or factors known to influence soil properties and presumably also the spectral 

response. It is important to note that using this ancillary information is a cost-effective approach 

when soil information systems (e.g., a soil survey with taxonomic attributes that can be related to 

the collected soil samples) are readily available. This approach may not be feasible in scenarios 
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where soil information systems are not available or in the appropriate scale for accurate 

representation of soil spatial variability. Once the targeted calibrations are constructed, they can 

be used to predict the target subset or group of unknowns (McDowell, Bruland, Deenik, & 

Grunwald, 2012; Soriano-Disla et al., 2014). The local model approach and the stratification 

approach, each hereafter referred to as subsetting, can be used either independently or 

simultaneously, as well as in conjunction with other optimization techniques to improve model 

performance (Lucà et al., 2017).  

 Table 1 summarizes some studies of spectroscopy for soil carbon estimation that have 

applied subsetting techniques. The example studies presented in Table 1 are not an exhaustive 

representation of the literature on calibration set subsetting. However, they are representative of 

subsetting criteria discussed in this paper and of the various techniques used in recent soil 

spectroscopy studies. 

Subsetting by Analyte Value 

 Several studies have explored the effect of subsetting by analyte value. Janik and 

Skjemstad (1995) split the total dataset into three subsets by range in SOC concentration (0–

2.5%, 2.5–10%, 9–25%) to improve model accuracy of a partial least squares regression (PLSR) 

based on cross-validation. While the calibration models constructed from the lowest and 

narrower ranges (0–2.5% and 2.5–10%) resulted in a larger R2 (.979), the highest and wider 

range model (9–25%) performed worse than the full set calibration model (R2 of .892 vs. .975). 

This discrepancy may be due to the small calibration size of the highest range model. McDowell, 

Bruland, Deenik, & Grunwald et al. (2012) investigated the effect of subsetting a VNIR and MIR 

calibration set by various soil sample characteristics, among them total carbon concentration. 

The authors determined through preliminary analysis, that subsetting the calibration observations 
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into low (0–10%) and high (10–55%) total carbon concentrations produced the best results for 

both spectral ranges. Consequently, they used 10% as the threshold value for subsetting the 

calibration set. The low carbon models, which also had a narrower range of analyte values, 

decreased in RPD (VNIR: 3.46 to 1.63; MIR: 4.07 to 2.34), RPIQ (VNIR: 3.19 to 2.12; MIR: 

3.74 to 3.05) and R2 (VNIR: 0.91 to 0.61; MIR: 0.94 to 0.82) as compared to the total set model. 

No improvement was observed with the high carbon model in comparison to the full set model. 

 In a study that used VNIR for SOC prediction, Vasques et al. (2010) developed different 

calibration models based on a general soil type, which inadvertently split the observations by 

lower and higher carbon concentration (0.01–14.7% and 13.52–57.54%, respectively).  

 Contrary to the results from McDowell, Bruland, Deenik, & Grunwald (2012), both 

subset models achieved higher RPD (lower C model: 1.26, higher C model: 1.20) and R2 (lower 

C: .41, higher C: .38) as compared to the full set model (RPD: 1.12 and R2: .29). Madari et al. 

(2005) subset observations into three groups of varying range in SOC concentration (0.02–

40.19%, 0.02–6.60%, and 0.02–3.00%) to construct calibration models. Through cross-

validation, the full set models (i.e., 0.02–40.19%) resulted in a greater R2 (MIR: 0.934, NIR: 

0.809) than the subset models (MIR: 0.840 and 0.810; NIR: 0.726 and 0.712 for the lower and 

higher SOC subsets, respectively). In general, the MIR models outperformed the NIR models 

based on cross-validation results. 

 The results of these studies demonstrate that the effect of subsetting by analyte value 

varies and may be influenced by other factors. In general, subsetting a calibration set by analyte 

value alone is most useful for improving prediction accuracy when the overall variability in 

spectra is low. Accordingly, the greatest variability in the calibration model will result from the 

variability in the analyte values (Clingensmith et al., 2019). 
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Table 1. Summary of soil spectroscopy studies that use subsetting for calibration set optimization and whether subsetting improved soil carbon prediction. 

Subsetting criteria Techniquea 
Total improvement 
over full set  
calibrationb 

Spectral rangec Reference 

Analyte Value SOC range Yes MIR Janik and Skjemstad, 1995 
Analyte Value Total carbon range No NIR and MIR Madari et al., 2005 
Analyte Value SOC range Yes VNIR Vasques et al., 2010 
Analyte Value Total carbon range No VNIR and MIR McDowell et al., 2012a 
Pedodiversity Geographic extent Yes NIR Sudduth and Hummel, 1996 
Pedodiversity Taxonomic soil class No NIR and MIR Madari et al., 2005 
Pedodiversity Textural group Yes NIR and MIR Madari et al., 2005 
Pedodiversity Textural group Yes NIR Brunet et al., 2007 
Pedodiversity Taxonomic soil order Yes VNIR Vasques et al., 2010 
Pedodiversity Taxonomic soil order, mineralogy, SOM Yes VNIR and MIR McDowell et al., 2012a 
Pedodiversity Geographic extent Yes MIR Baldock et al., 2013 
Pedodiversity Geographic extent Yes VNIR Peng et al., 2013 
Pedodiversity Taxonomic soil order No MIR Wijewardane et al., 2018 
Pedodiversity Master horizon Yes MIR Wijewardane et al., 2018 
Pedodiversity Taxonomic soil order + land use Yes VNIR-SWIR Moura-Bueno et al., 2019 
Pedodiversity Physiographic region, land use, textural class Yes VNIR Moura-Bueno et al., 2020 
Spectral Similarity Local model: LW-PLSR Yes NIR Christy and Dyer, 2006 
Spectral Similarity Local model: LOCAL Yes NIR Fernández Pierna and Dardenne, 2008 
Spectral Similarity Local model: LW-PLSR No NIR and MIR Igne et al., 2010 
Spectral Similarity Local model: LOCAL Yes NIR Genot et al., 2011 
Spectral Similarity Local model: LW-PLSR, LOCAL No VNIR Ramirez-Lopez et al., 2013b 
Spectral Similarity Local model: LW-PLSR Yes VNIR Nocita et al., 2014 
Spectral Similarity Local model: LW-PLSR Yes VNIR Gupta et al., 2018 
Spectral Similarity Local model: SBL Yes VNIR Ramirez-Lopez et al., 2013b 
Spectral Similarity Local model: SBL Yes MIR Dangal et al., 2019 
Wavelength Selection GA-PLSR Yes VNIR Vohland et al., 2011 
Wavelength Selection CARS-PLSR Yes VNIR and MIR Vohland et al., 2014 
Wavelength Selection OPS-PLSR Yes VNIR Sarathjith et al., 2016 

Wavelength Selection SPLSR, HEM,  Yes VNIR Clingensmith et al., 2019 

Wavelength Selection Automatic selection of wavenumber regions 
(Ludwig et al., 2019) Yes MIR and NIR Ludwig et al., 2021 
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When both spectral and analyte value variability are high, subsetting to account for both sources 

of variability can lead to better model performance. This is an important consideration for 

deciding when and how to subset the calibration set. Additionally, an adequate statistical 

comparison of model performance across different ranges of analyte values should not only be 

based on RMSE, given that this will decrease as the analyte range decreases (Stenberg et al., 

2010), but also requires a comparison of R2, RPD, and RPIQ in the context of the respective 

interquartile range (IQR), if possible (Ludwig et al., 2021). 

Subsetting by Pedodiversity 

 Several spectroscopic studies have used the variation in soil types and properties (i.e., 

pedodiversity) to subset the calibration set for SOC modeling. Subsetting criteria based on 

pedodiversity include taxonomic classification, soil-landscape/geographic region, and soil-

forming factors. A soil taxonomic classification indicates a range of properties that are limited by 

the soil parent material, mineralogy, and climate (Seybold et al., 2019). Knowledge about the 

relationships between taxonomic units and soil properties has been used to relate SOC to soil-

forming factors at the landscape scale (Wills et al., 2013). 

 Soil mineralogy and texture are spectrally active because their components interact with 

electromagnetic radiation and thus, cause variation in reflectance features (Moura-Bueno et al., 

2019). Stenberg et al. (2010) argue that models are more robust and perform better when 

constructed from a large, heterogeneous calibration set from soils with diverse parent materials 

(Vašát et al., 2017). Parent materials contribute different minerals and particle sizes that can 

better represent the potential characteristics of the prediction set (Nawar & Mouazen, 2017; 

Stenberg et al., 2010). However, problems with a diverse calibration set can arise if the 

unknowns are very different from the calibration set in terms of property values and spectrally 
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active properties (Bellon-Maurel &McBratney,2011; Brown et al., 2005, 2006; Sankey et al., 

2008; Wijewardane et al., 2018). 

 The high spatial variation of SOC is another important consideration when subsetting by 

pedodiversity (Schmidt et al., 2010). Identifying these patterns of variability is important as soils 

belonging to distinct patterns should be modeled separately (McBratney et al., 1991). One 

approach is to stratify the data by spatial units of similar landscape and soil-forming factors (i.e., 

soil-landscape units). Presumably, soil properties within a soil landscape will be less variable as 

compared to the soil population across the landscape due to interactions between soil-forming 

factors (McCarty & Reeves, 2006). In general, soil spectroscopy studies have demonstrated that 

models constructed through subsetting by spectral or pedologic criteria perform better than those 

that do not subset the calibration set (Ramirez-Lopez, Behrens, Schmidt, Stevens, et al., 2013). 

 Madari et al. (2005) used NIR and MIR spectral data from diverse Brazilian soils to 

model SOC. These authors subset their calibration sets by taxonomic soil class. Two subset 

models resulted, one for soils classified as Ferralsols and the other for Acrisols according to the 

World Reference Base (FAO, 1998). These subset models achieved lower R2 values as well as 

lower RMSEs (MIR: R2 = .862 and .905, RMSE = 0.545 and 0.449%; NIR: R2 = .725 and .784, 

RMSE = 0.770 and 0.675% for Ferralsols and Acrisols models, respectively) as compared to the 

full set calibration models (MIR: R2 = .934, RMSE: 1.088%; NIR: R2 = .809, RMSE = 1.855%). 

The authors concluded that overall, the models fitted by taxonomic class did not outperform the 

full set model for MIR and NIR. 

 In a study to estimate SOC concentration of soils in Florida by VNIR spectroscopy, 

Vasques et al. (2010) tested the effect of subsetting the observations in the calibration set by soil 

order (Alfisols, Entisols, Histosols, Inceptisols, Mollisols, Spodosols, and Ultisols) on PLSR 
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model performance. Additionally, the authors tested the performance of a committee trees (CT) 

model that included soil order as a categorical variable, and which was fitted with the full set and 

another fitted through subsetting by mineral vs. organic horizon. For the PLSR model, subsetting 

the observations by soil order improved the R2, RPD, and RMSE for six of the seven soil orders, 

as compared to the full set PLSR model (Alfisols: 0.58/1.54/0.51%, Entisols: 0.50/1.36/0.93%, 

Inceptisols: 0.42/1.24/1.19%, Mollisols: 0.68/1.54/0.90%, Spodosols: 0.56/1.41/0.70%, Ultisols: 

0.75/1.91/0.33%, and full set: 0.29/1.12/4.60% for R2/RPD/RMSE). An important consideration 

is that the values presented are the result of back-transformation of logSOC estimates to the 

original units, which the authors noted significantly reduced the quality of the PLSR models 

resulting in unreliable estimates. On the other hand, the R2 and RPD of the CT model did not 

improve by including a categorical variable of soil orders (0.65/1.69/0.69% for R2/RPD/RMSE) 

nor by subsetting by mineral/organic horizon type (Mineral: 0.66/1.70/0.70% and Organic: 

0.35/1.23/10.23% for R2/RPD/RMSE), as compared to the full set CT model (0.79/2.14/2.52% 

for R2/RPD/RMSE). Moreover, the full set CT model outperformed the PLSR models that were 

subset by soil order. These findings pose an important consideration that the type of statistical 

learning model used can lessen the benefit of subsetting by pedodiversity. 

 Wijewardane et al. (2018) investigated whether subsetting an MIR calibration set by land 

use/cover, soil order, and soil master horizons improved the prediction accuracy of SOC. The 

authors developed calibration models for each subset using the PLSR and artificial neural 

network (ANN) models. On average, subsetting by all three criteria reduced the RMSE of the 

PLSR models as compared to that fitted with the full set. Moreover, subsetting by soil order and 

master horizon resulted in lower statistical error than subsetting by land use/cover. Most of the 

ANN models, including the full set model, outperformed the PLSR models 
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(R2/bias/RPD/RPIQ/RMSE of 0.95/0.00%/4.55/0.82/1.89% and 0.99/−0.01%/11.46/2.05/0.75% 

for the full-set PLSR and ANN models, respectively). These results can be attributed to the 

superior capacity of ANNs in modeling complex and nonlinear relationships between analyte 

value and spectra. Moreover, although the subset ANN models outperformed all the PLSR 

models, they did not outperform the full set ANN model. These results corroborate those of 

Vasques et al. (2010), who also found that the effectiveness of subsetting for reducing the error 

of calibration models depends on the statistical learning model. Models such as CTs and ANNs 

may not benefit from subsetting because they can handle complex relationships in high-

dimensional feature space. Statistical models based on machine and deep learning handle 

relationships in a similar way to manual subsetting and thus, the improvement in model 

performance by subsetting is little to none (Viscarra Rossel & Behrens, 2010). 

 In a study of total carbon in Hawaiian soils, McDowell, Bruland, Deenik, & Grunwald 

(2012) fit MIR calibration models for broad soil groups. The soil groups were defined as sets of 

soil orders with similar clay mineralogy and soil organic matter concentration (Group 1: 

Andisols; Group 2: Aridisols, Entisols, Inceptisols, Mollisols, and Vertisols; Group 3: Oxisols 

and Ultisols; and Group 4: Histosols and Spodosols). The calibration model constructed for 

Group 2 (high-activity clay soil orders) resulted in greater accuracy (R2: .96 and RPD: 5.57) than 

that of the full set calibration model (R2: .94 and RPD: 4.07). An interesting result of this study 

was that the within-subset spectral variability was equally as high as that between subsets. The 

authors explained that soil taxonomic classification is based on properties that are often not 

spectrally active and that spectrally active properties, such as mineralogical properties, may not 

be exclusive to a taxonomic classification level (McDowell, Bruland, Deenik, Grunwald, & 

Knox, 2012). Consequently, subsets based on soil orders can contain spectral features that are 
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not mutually exclusive, which negatively affects model performance. As presented in the study 

by McDowell, Bruland, Deenik, Grunwald, & Knox (2012), a limitation exists in using single-

criterion taxonomic subsets such as soil orders or horizonation, given the high within-order 

variability present in pedologic conditions, such as highly dissimilar A and B horizons of a soil 

profile. In scenarios where high within-group variability is expected, multi-criteria subsetting, 

such as soil order coupled with horizonation, can be more useful.  

 Moura-Bueno et al. (2019) stratified a visible-near-infrared and short-wave infrared 

(VNIR-SWIR) spectral library of 810 observations using various combinations of two distinct 

soil classes and three land use types to construct calibration models for SOC% prediction. The 

full set was stratified into subsets based on the mean spectrum for each criterion and a 

quantitative analysis of the distribution of variance of the projected spectral data. Overall, in 

models with a sufficient calibration size (n > 77), subsetting by soil and land use type improved 

model performance. The subset models resulted in an R2 of .42–.82, RMSE of 0.29–0.70%, and 

an RPIQ of 1.992.60. The best model performance was achieved by a single soil type-single land 

use subset (R2 = .82, RMSE = 0.29%, and RPIQ = 2.60), which used 45% less observations than 

the full-set model (R2 = .74, RMSE = 0.55%, and RPIQ = 2.16). The authors attributed the better 

performance of this subset model to a reduction in the spectral variance, soil textural variance 

and SOC concentration of the calibration subsets. Additionally, results of the best-performing 

subset models demonstrated that soil spectral and compositional characteristics had a greater 

effect on model performance than the calibration set size. The authors concluded that, while the 

spectral library was local, spectral variability was high and subsetting the library to reduce 

spectral and soil property variability was effective in improving model performance. 

Furthermore, they proposed that future studies should consider a weighted sampling approach for 
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the construction of calibration models that assigns weights according to the spectral and 

compositional variation captured by each observation (Moura-Bueno et al., 2019). 

 Demattê and da Silva Terra (2014) examined the relationship between VNIR spectra and 

soil pedogenic properties along a toposequence (i.e., a soil catena). The authors observed that 

variations in reflectance intensity, specific wavelengths, and spectral shape enabled the detection 

of distinct mineralogy and textures. The spectral variations observed across soil depth helped 

distinguish between soil classes. The authors concluded that soil spectroscopy was able to 

discriminate between weathering levels and the presumed pedogenic processes (Demattê & da 

Silva Terra, 2014). Although these authors did not perform subsetting for calibration models, 

their study suggests that subsetting spectral data by criteria associated with pedogenic processes 

can be useful for taxonomic purposes, especially at the soil catena scale. 

 Various studies have used soil texture as subsetting criteria. Typically, as clay increases, 

so does SOC; however, this relationship can be confounded in spectroscopy by the spectral 

response of sand (Soriano-Disla et al., 2014; Stenberg et al., 2010; Vasques et al., 2010). Sand 

particles in a sample can influence the spectral response of SOC features (Stenberg et al., 2010). 

Consequently, soil samples with high sand and low SOC concentration can be very similar to 

samples with low sand and high SOC concentration (Nocita et al., 2015). Therefore, including 

particle size or textural classes in soil spectroscopic models for SOC of soil samples presumed to 

have high sand, can result in better prediction accuracy (Vasques et al., 2010). 

 Madari et al. (2005) performed subsetting by soil textural groups for the prediction of 

SOC with NIR and MIR spectra. The textural groups were defined based on the following 

particle fractions: very clayey (>60% clay), clayey (35–60% clay), and medium textured (<35% 

clay and >15% sand). The NIR calibration models for the very clayey subset, resulted in better 
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cross-validation model performance than their MIR counterparts (R2 = .975 and .967, 

respectively). On the contrary, the MIR calibration model for the clayey and medium-textured 

subsets (R2 = .962 and .917, respectively) outperformed its NIR counterpart (0.938 and 0.871). 

Overall, subsetting by textural class resulted in improved model performance over the full-set 

calibration (R2 = .809 NIR and .934 MIR). The authors concluded that models based on NIR are 

better-suited for sets of observations with homogeneous textures, while MIR models are best for 

heterogeneous textures (Madari et al., 2005). Accordingly, a subsetting scheme based on soil 

texture should be complemented by the selection of the appropriate spectral range (NIR or MIR), 

if possible. A study by Brunet et al. (2007) assessed how the heterogeneity of the soil particle 

size affects the prediction of total carbon by NIR. These authors constructed calibration models 

for coarse-textured and clayey subsets. Subsetting the data resulted in improved prediction 

accuracy as compared to the full-set model (coarse-textured: R2 = .96, SEP = 0.044%; clayey: 

0.89 and 0.150%; full-set: 0.84 and 0.354%). Furthermore, the more heterogeneous, coarse-

textured subset model outperformed the more homogeneous clayey subset model. 

 In a study that explored subsetting a subtropical, Brazilian VNIR spectral library using 

several criteria independently (i.e., three physiographic regions, three land use and land cover 

types, and four textural classes), Moura-Bueno et al. (2020) found that subsets that reduced the 

variance in SOC%, clay%, and spectral variance had an increase in accuracy of SOC predictions 

as compared to the full-set model. The authors noted that although the full-set model performed 

well (RMSE = 1.02%, R2 = .76, bias =−0.22%, RPIQ = 1.51) considering the high variance in 

SOC% (standard deviation = 1.81%) and diversity in clay mineralogy, subsetting by all criteria, 

reduced the bias in model predictions (lowest bias = 0.01%). The greatest reduction in RMSE 

(34% reduction as compared to full-set model) was observed for the land use/cover models 
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(RMSE range = 0.50–1.67%, R2 = .70.86, bias =−0.55–0.01%, RPIQ = 1.31–2.71), followed by a 

32% reduction in RMSE achieved by the physiographic region models (RMSE range = 0.54–

0.97%, R2 = .53–.93, bias =−0.28–0.04%, RPIQ = 1.63–2.28), and a 5% reduction by the textural 

class models (RMSE range = 0.56–1.10%, R2 = .22–.82, bias =−0.25–0.04%, RPIQ = 0.89–

2.25). 

 An interesting finding by Moura-Bueno et al. (2020), was that the diversity of clay 

mineralogy had a greater effect on spectral variance of the subsets than the clay concentration. 

Moreover, the authors presented a decision-making flow chart with their strategy on when and 

how to subset spectral libraries to predict SOC concentration, which they based on their study 

findings. In general, any decision on whether to subset should begin with an assessment of the 

analyte and ancillary information available in the spectral database. Next, if significant 

environmental (i.e., physiographic) and pedologic diversity exists, the observations should first 

be stratified by physiographic region, then by land use/cover, spectral similarity, and finally by 

textural class. The final decision on the best subsetting criteria should be based on a reduction of 

the variance of SOC, clay mineralogy, and spectral variance as compared to the full set 

calibration model (Moura-Bueno et al., 2020). 

 The geographic extent of the observations that comprise a calibration model can affect its 

statistical performance. Some studies suggest that it is better to develop models for smaller areas 

than for larger areas (Gholizadeh et al., 2013). The assumption being that calibration 

observations from soils collected across smaller areas will exhibit less variation in soil properties 

due to soils having similar pedologic conditions, which results in reduced variation and thus 

more accurate predictions (Kuang & Mouazen, 2011; Shi et al., 2015). It is important to note, 

however, that a reduction in the geographic extent of a calibration model may or may not reduce 
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the spectral feature space (Ramirez-Lopez, Behrens, Schmidt, Stevens, et al., 2013; Shi et al., 

2015). Moreover, building several isolated, small SSLs may not be practical for large-scale 

modeling or operational purposes. 

 Several studies have explored the effect of geographic extent on calibration model 

performance. Sudduth and Hummel (1996) studied the effective geographic range of an NIR soil 

sensor for SOC prediction in the United States. These authors constructed a calibration model 

using data from soil samples collected in and around the state of Illinois and samples collected 

across the United States. The calibration model constructed using observations from Illinois and 

surrounding states was slightly less predictive than that constructed using only observations from 

Illinois. Furthermore, calibration models that used observations from a more extensive 

geographic range resulted in unacceptable predictions. The authors concluded that SOC 

predictions become increasingly less accurate as the geographic range represented by the 

observations increases (Sudduth & Hummel, 1996). Similarly, Vasques et al. (2008) 

demonstrated that a VNIR calibration model for SOC prediction in Florida performed better with 

data from soil samples confined to a watershed, as compared to statewide samples. Like Sudduth 

and Hummel (1996), the authors concluded that increasing the geographic extent of SOC 

spectroscopic models can reduce their quality, particularly if geographic-related soil variation is 

added to the calibration model (Vasques et al., 2010). 

 In a study to predict carbon and its fractions using MIR spectra, Baldock et al. (2013) 

found that regional models produced more accurate predictions with lower uncertainty for all 

analytes than a national calibration model. The RPDs and RMSEs calculated for soils in each 

regional model were higher and lower, respectively, as compared to the full set model (full set: 

RPD range = 1.3–4.6 and RMSE range = 0.684–0.240%; regional models: 2.8–4.7 and 
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0.5730.185%). These authors observed that the major spectral differences between the 

observations in the regional and national calibrations were due to differences in mineral 

components (Baldock et al., 2013). Peng et al. (2013) developed VNIR calibration models for the 

prediction of SOC at the field scale. These authors subset the calibration set according to the 

geographic distance between each observation in a national spectral library and the field where 

the calibration models would be applied. Three calibrations models were developed using 

observations within 20, 30, and 40 km from the field site. Internal validation of the models 

revealed that the 30 km calibration subset outperformed the other two subsets, as well as the full 

set calibration. The authors concluded that the 30 km calibration subset performed the best 

because soils within this distance had a similar landscape and parent material, particularly in 

terms of carbonate concentration, to soils in the field site and were therefore more spectrally 

similar. 

Subsetting by Spectral Similarity 

 In addition to subsetting by soil-related criteria, construction of calibration models can 

involve subsetting based on spectral similarity/dissimilarity metrics (Reeves & Smith, 2009). 

This approach aims to construct calibration models from observations that are representative of 

the spectral features and soil properties in the prediction set. Spectral similarity is defined as 

observations that are close to each other in the spectral feature space. The distance between the 

observations can be computed with any distance metric. The most applied distance metrics in 

soil spectroscopy are the Euclidean distance (ED) and the Mahalanobis distance (MD). The ED 

and MD can be measured in the spectral space or in a projected space, such as the principal 

component space. Different variations of the MD in the principal component space have been 

widely applied in soil spectroscopy. These variations include the principal components 
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Mahalanobis distance (PC-MD) and the optimized principal components Mahalanobis distance 

(oPC-MD). For more information about these and other distance metrics, the reader is referred to 

Ramirez-Lopez, Behrens, Schmidt, Rossel, et al. (2013). 

Local Calibrations 

 A commonly used technique based on spectral similarity is to construct calibration 

models using only spectral neighbors, which are the spectra most similar to those in the 

prediction set. Calibration models constructed from spectral neighbors are termed local 

calibration models. The prediction from a local model is conducted on a case-by-case basis, 

meaning that spectral neighbors are found for each observation in the prediction set. This 

approach assumes that the relationship between spectral features and soil properties is locally 

stable (Nocita et al., 2014). In this context, a global calibration model refers to a model fitted 

using all the calibration observations, not only the spectral neighbors of the prediction set 

(Barthès et al., 2020; Gomez et al., 2020). 

 Local calibration models can be constructed using memory-based learning (MBL). The 

MBL approach is a data-driven statistical learning approach that offers instance-oriented models. 

This means that MBL derives a calibration for each new target spectrum requiring a soil property 

prediction. The MBL approach selects a relatively small subset of spectral neighbors to predict 

each unknown observation (Dangal et al., 2019; Lobsey et al., 2017). Four characteristics must 

be defined for any MBL algorithm: (a) the similarity/dissimilarity metric (i.e., spectral distance 

metric) used to find the spectral neighbors, (b) how the similarity/dissimilarity information will 

be used (e.g., used to assign weights, used as predictors, etc.), (c) how many spectral neighbors 

to consider, and (d) how to fit the local points (i.e., the target function) (Dangal et al., 2019; 

Ramirez-Lopez, Behrens, Schmidt, Rossel, et al., 2013). 
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 Commonly used MBL models in soil spectroscopy are locally weighted regression 

(LWR; Naes et al., 1990) and the LOCAL algorithm of Shenk et al. (1997). Locally weighted 

partial least squares regression (LW-PLSR) is a local version of PLSR that first defines spectral 

neighbors through the MD in the principal component space (Nocita et al., 2014). These 

neighbors are then weighted using a function and according to their spectral similarity to the 

target spectrum. Next, a PLSR is performed for the response value of the target spectrum and its 

corresponding neighbors to obtain the model coefficients (Gupta et al., 2018; Lobsey et al., 2017; 

Nocita et al., 2014). As with global PLSR, the regression coefficients are used to predict 

response values associated with the target spectra. Like LW-PLSR, the LOCAL algorithm 

calibrates local PLSR models based on spectral similarity; however, there are important 

differences between the algorithms. First, the LOCAL algorithm uses correlation coefficients as 

similarity metrics to select spectral neighbors of a target spectrum (Nocita et al., 2014; Shenk et 

al., 1997). Secondly, the LOCAL algorithm does not apply weights to the spectral neighbors of a 

target spectrum. Lastly, the predicted response value for each target spectrum results from a 

weighted sum of the predicted values across all local PLSR models (Fernández Pierna & 

Dardenne, 2008; Nocita et al., 2014). Both the LW-PLSR and the LOCAL algorithm are better 

suited for nonlinear predictor-response relationships (Genot et al., 2011; Peng et al., 2013). 

Nevertheless, as with global PLSR, the principal component space must represent the target 

spectrum and its corresponding neighbors well to achieve accurate predictions (Naes et al., 

1990). 

 A study by Christy and Dyer (2006) compared the effectiveness of LW-PLSR to predict 

total carbon using NIR data from seven agricultural fields in Iowa and Kansas. They compared 

LW-PLSR to three commonly used global regression models, namely multiple linear regression 



 

88 
 

(MLR), using principal components as predictors, and PLSR. The LW-PLSR approach produced 

the lowest error predictions for total carbon. Genot et al. (2011) used a large NIR spectral library 

from Belgium to predict total carbon concentration. The authors tested PLSR and the LOCAL 

algorithm. Additionally, they investigated the effect of increasing the fixed correlation 

coefficient between the spectra to find the spectral neighbors for each LOCAL model. The 

LOCAL algorithm outperformed the PLSR and a correlation coefficient value fixed at 0.99 (i.e., 

the highest value tested), produced the most accurate predictions for the LOCAL algorithm. 

 Igne et al. (2010) used NIR and MIR spectra to compare the performance of the LW-

PLSR against PLSR and support vector machine regression (SVMR) in the prediction of total 

carbon in Ultisols from a field in Maryland. The LW-PLSR resulted in smaller error than the 

SVMR but had a similar error to PLSR. The authors concluded that LW-PLSR is a good 

alternative to global PLSR; however, they stressed the importance of having a balanced number 

of observations across the value range of the soil property to be predicted. Ramirez-Lopez, 

Behrens, Schmidt, Stevens, et al. (2013) developed a novel type of MBL termed the spectrum-

based learner (SBL). These authors stated that one advantage of the SBL algorithm over other 

MBL models is that it determines the optimal number of principal components and the number 

of spectral neighbors for each target spectrum. Moreover, the SBL algorithm, as offered by the R 

package resemble (Ramirez-Lopez et al., 2016), allows the construction of local models with 

PLSR, weighted-PLSR, and Gaussian process regression (GPR). The GPR uses a kernel-based 

function to predict the response value based on the spectral neighbors. 

 Ramirez-Lopez, Behrens, Schmidt, Stevens, et al. (2013) tested the predictive 

performance of the SBL approach against PLSR, SVMR, LW-PLSR, and LOCAL for the 

estimation of SOC concentration using two VNIR SSLs. The SBL algorithm outperformed all 
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other models in terms of RMSE and R2. The SBL also had much faster processing time than the 

LW-PLSR and LOCAL. The authors attributed the better performance of the SBL algorithm to 

its superior ability in selecting spectral neighbors and to the use of the resulting distance matrix 

as a predictor variable in each local model. The authors also noted that LW-PLSR and LOCAL 

did not outperform PLSR and SVMR. According to the authors, LWPLSR and LOCAL 

performed an inadequate selection of spectral neighbors. The authors stated that like other 

MBLs, SBL should be used for modeling complex datasets where non-linear relationships exist 

and they should be avoided in datasets with low variability due to the selective nature of the 

spectral neighbors approach (Ramirez-Lopez, Behrens, Schmidt, Stevens, et al., 2013). 

 Dangal et al. (2019) tested the SBL of Ramirez-Lopez, Behrens, Schmidt, Stevens, et al. 

(2013) for the prediction of SOC concentration using a continental MIR SSL. The results of the 

SBL were compared with those from Cubist (see Quinlan, 1993), PLSR, and random forests 

(Breiman, 2001) models. The SBL model outperformed all the others in terms of RPD and 

RMSE. Moreover, the SBL model resulted in a slightly greater mean error than the Cubist 

model, but smaller mean error than PLSR and RF models. The authors concluded that the SBL 

model is a superior model for large and complex datasets due to its narrower prediction interval 

and its ability to provide an estimate of prediction uncertainty. Gupta et al. (2018) evaluated the 

performance of different local modeling approaches and several distance metrics for the 

prediction of SOC using a small VNIR SSL from India. Among the modeling approaches, there 

was a LW-PLSR that used a correlation coefficient-based distance metric to weigh spectral 

neighbors. This model outperformed all the other approaches. The authors determined that the 

higher prediction accuracy of the LW-PLSR was due to the model assigning higher weights to 

spectral neighbors with the same mineralogy as the test observations. 
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 Several authors have explored the combined utility of subsetting through local models 

and pedodiversity. Nocita et al. (2014) applied a modified LW-PLSR for the prediction of SOC 

from a large, international VNIR SSL. In addition to spectral similarity metrics, these authors 

also used sand concentration and the geographic coordinates of the calibration observations to 

find similar observations to those in the target area. These authors noted an inverse relationship 

between the standard deviation of sand and SOC concentrations. They attributed this relationship 

to higher texture variations at lower SOC concentrations. The results of their study demonstrated 

that using sand concentration to find the spectral neighbors produced the most accurate models. 

Accordingly, the authors suggested the use of sand concentration as subsetting criteria given that 

spectral differences due to variations in sand are more prominent in low SOC concentrations. Shi 

et al. (2015) tested the utility of a geographically constrained LW-PLSR for the prediction of soil 

organic matter concentration using a national, VNIR SSL from China. The resulting model 

outperformed the unconstrained LW-PLSR. The authors explained that the use of geographical 

information to select the calibration observations removed uninformative spectra from the 

calibration model and thus, improved its accuracy. 

Wavelength Selection 

 Wavelength selection aims at finding and using only the most “informative” wavelengths 

from the calibration set, rather than using the full spectra. Wavelength selection can result in 

parsimonious calibration models with greater statistical performance and interpretability (Ng et 

al., 2019; Vohland et al., 2014). The selected wavelengths should have a good signal/noise ratio, 

they should be linear, and their spectral variation should be proportional to changes in the soil 

property of interest (Gemperline, 2006). Overall, wavelength selection is meant to remove 
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uninformative wavelengths, improve model interpretability, and decrease time complexity for 

analyzing the spectral data (Ng et al., 2019). 

 Several wavelength selection approaches have been applied in soil spectroscopy. Viscarra 

Rossel et al. (2008) used the variable importance for projection (VIP) of Wold et al. (2001) 

coupled with PLSR coefficients to select MIR wavelengths for the prediction of SOC. These 

authors found that important wavelengths for SOC include those related to O-H and N-H bond 

stretching vibrations (∼3,400 cm−1); alkyl–CH2 asymmetric and symmetric stretches (∼2,930–

2,850 cm−1); carboxylic acid and ketones (∼1,725 cm−1); amides, aromatics, aliphatic acids, 

and alkyl groups of soil organic material (1,600–1,400 cm−1); and those related to carbohydrates 

and sugars (∼1,100 cm−1). Vohland et al. (2011) coupled PLSR with feature selection based on 

a genetic algorithm (GA-PLSR) for the estimation of various carbon fractions and total SOC 

using VNIR. Genetic algorithms are metaheuristic solutions to optimization problems that have 

been widely applied in chemometrics (see Jouan-Rimbaud et al., 1995; Leardi & Lupiáñez 

González, 1998). The genetic algorithm used by Vohland et al. (2011) identified two peaks 

related to water absorption (1,400 nm) and the hydroxyl band (2,200 nm) as prominent features 

for the estimation of SOC, which was in accordance with other soil spectroscopy studies (e.g., 

Ben-Dor & Banin, 1995). The SOC was predicted with a PLSR, GA-PLSR, and SVMR model 

and all approaches resulted in an R2 of .89 and RPDs of 2.68, 2.82, and 2.77, respectively. 

Although the GA-PLSR and SVMR predictions had a similar accuracy (RMSE = 0.27%), the 

authors considered the GA-PLSR model to be more reliable given its slightly better overall 

performance. In a study to predict SOC in smallholder farms in India using VNIR, Clingensmith 

et al. (2019) tested the utility of two multivariate variable reduction methods commonly applied 

in genomics, the sparse partial least squares regression (SPLSR, Chun & Keles, 2010) and the 
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heteroscedastic effects model (HEM, Shen et al., 2014). Overall, the SPLSR (R2 = .65, bias 

=−0.02%, RMSE = 0.42%, RPD = 1.69, RPIQ = 2.21) and HEM (R2 = .63, bias =−0.04%, 

RMSE = 0.43%, RPD = 1.64, RPIQ = 2.14) models improved predictions over those of PLSR 

(R2 = .53, bias =−0.03%, RMSE = 0.48%, RPD = 1.47, RPIQ = 1.92) models and were helpful 

for model interpretation. Additionally, the authors noted that the HEM and SPLSR algorithms 

could improve SOC predictions compared with PLSR with calibrations constructed from 

significantly fewer spectral predictors. 

 Other wavelength selection approaches include the competitive adaptive reweighted 

sampling (CARS) technique of Li et al. (2009). The CARS technique builds multiple PLSR 

models on observations selected randomly (∼80–90% of the calibration set) using a Monte Carlo 

strategy. Wavelengths of relatively small PLSR coefficients are then removed by applying an 

exponential decreasing function (EDF). Subsequently, weights are calculated for each remaining 

wavelength according to the PLSR coefficients and adaptive reweighted sampling is conducted 

to further eliminate wavelengths in a competitive manner. Vohland et al. (2014) applied the 

CARS technique to build calibration models for the estimation of SOC using VNIR and MIR 

data and compared the results of cross-validation. The CARS-PLSR model was significantly 

more accurate than the full-spectrum PLSR model for both spectral ranges (CARS-PLSR: R2 = 

.74 and .91; RPD = 1.98 and 3.37, RMSE = 0.16 and 0.1%; Full-spectrum: 0.60 and 0.78, 1.58 

and 2.12, and 0.21 and 0.15% for VNIR and MIR, respectively). These authors suggested that 

CARS selects wavelengths that are physically reasonable in a parsimonious and statistically 

accurate way. 

 In accordance with Teófilo et al. (2009), Sarathjith et al. (2016) conducted an ordered 

prediction selection (OPS) coupled with an EDF and variable indicators (e.g., VIP) to estimate 
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SOC using VNIR spectra. The variable indicator-based OPS approach followed by these authors 

successfully found those meaningful wavelength regions for the estimation of SOC. The regions 

identified include those related to the first overtone of O-H stretches (∼1,400–1,900 nm), and 

combination of the metal–OH bend associated with clay minerals (Clark, 1999; Viscarra Rossel 

et al., 2006; Vohland et al., 2014). According to the authors, the OPS-PLSR improved the 

prediction accuracy of SOC as compared to the full spectrum approach but only slightly (Full-

spectrum model for Alfisols: R2 = .56, RPD = 1.53 and RMSE = 0.08%; OPS-PLSR for Alfisols: 

0.57, 1.54, and 0.08%). Ludwig et al. (2021) investigated the effects of SOC% range, sample 

size, and wavenumber region selection on the RMSE and RPIQ. They used an automatic method 

to select optimal models from more than 17,800 combinations of nine spectral regions between 

7,000 and 1,030 cm−1 (MIR and long-range NIR) and spectral preprocessing treatments. The 

regions included peaks between 6,250 and 5,888 cm−1, 5,556 cm−1, 5,000 cm−1, and between 

4,167 and 4,545 cm−1, which are associated with organic matter. Other regions considered were 

those between 3,500 and 3,000 cm−1 (related to OH in water and O-H, N-H, and C-H bond 

stretching), 3,021 to 2,359 cm−1 (aliphatic CH stretching), 2,359 to 1,694 (vibrations of 

carboxylic groups), and 1,694 to 1,030 cm−1 (amides, associated water, carboxylate, and 

aromatic groups). All nine regions were used in at least one optimal model for SOC% indicating 

the wide range of useful information for the estimation of SOC% within the MIR to long-range 

NIR spectral region. The authors found that spectral pretreatment and wavenumber selection 

greatly improved the accuracy of SOC% estimates of PLSR models fitted with fewer 

observations (n = 71: RPIQ from 3.6 ± 0.3 to 5.4 ± 1.0 and n = 119: RPIQ from 3.9 ± 0.7 to 5.9 ± 

0.8), but there was no overall benefit of these techniques for PLSR models fitted with more 

observations (n = 144 and n = 263). The authors determined that model performance was related 
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to the calibration set variability, which had opposite effects on the RMSE and RPIQ. Lower 

RMSEs were associated with more homogeneous calibration models and higher RMSEs with 

more heterogeneous models; however, as Clingensmith et al. (2019) found, more heterogeneous 

models also had a wider IQR resulting in higher RPIQs. The authors cautioned that RPIQ and 

RMSE values should not be interpreted independently in infrared studies, but rather in the 

context of their associated IQR values (Ludwig et al., 2021). 

Library Transfer 

 There are several efforts around the world for the collection of soil spectral data and the 

application of this data for the assessment of soil carbon (see global: Brown et al., 2006; Viscarra 

Rossel et al., 2016; national: Dangal et al., 2019; Nocita et al., 2014; Wijewardane et al., 2018; 

regional: Demattê et al., 2016; Terra et al., 2015; Vasques et al., 2010; local: Dotto et al., 2018; 

Guerrero et al., 2016; Lucà et al., 2017; Moura-Bueno et al., 2019; Sanderman et al., 2021). A 

major reason for the construction and maintenance of a SSL is its utility for building calibration 

models. Currently, there is widespread interest in the development of SSLs; however, there is 

debate as to what scale is most useful for developing accurate calibrations. In this context, a 

global SSL refers to a dataset containing observations (i.e., soil analyte data and associated 

spectra) from around the world, including multiple continents. A local SSL is a field-scale 

dataset. A regional SSL has a greater geographic extent than a local library and its observations 

are typically limited to a physiographic or similar region (Brown et al., 2006; Sankey et al., 

2008). A regional or global SSL will typically contain a large number of observations that 

represent heterogeneous soil types and properties, allowing for the construction of large 

calibration models. The large number of observations may improve a calibration model’s ability 

to accurately predict soil properties across several geographic extents as compared to a 
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calibration model developed from a local SSL; however, the large size of a calibration model 

does not guarantee good model performance at a local site because soil variability is not constant 

across sites. Moreover, a regional or global SSL may fail to adequately capture the site-specific 

variability (Brown et al., 2006; Guerrero et al., 2014; Lobsey et al., 2017; Shepherd 

&Walsh,2002). An important consideration when comparing the performance of spectroscopic 

models developed from regional and global spectral libraries to site-specific models, is that the 

former typically contain observations with a wide range of analyte values, resulting in models 

that can lead to high prediction errors (Stenberg et al., 2010). Therefore, in addition to the 

prediction error, an objective evaluation and comparison of model performance also requires 

metrics like R2, RPD, and RPIQ. 

 Several studies have investigated the success of using a SSL developed for one area to 

construct calibration models for a different area. Table 2 summarizes some of these studies. The 

application of an existing (i.e., general) SSL to a new area (i.e., target area) is often referred to as 

library transfer. Transferring a general SSL to a target area can result in accurate predictions if 

the observations in the SSL represent similar pedodiversity to that of the target area (Gogé et al., 

2014; Janik et al., 2007; Wetterlind & Stenberg, 2010). Similar pedodiversity leads to greater 

mineralogical and chemical similarity between the calibration observations from the existing 

SSL and the unknowns from the new area, which results in greater model performance (Guerrero 

et al., 2014; Stenberg et al., 2010). 
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Table 2. Summary of library transfer studies and whether library transfer resulted in an accurate 
prediction of the target soil carbon concentration 

General SSL Target area Accurate prediction of 
target area soil C a 

Spectral Range Reference 

Farm Farm  Yes MIR Reeves et al. (2001) 
Regional State  Yes MIR McCarty et al. (2002) 
Global Global  No VNIR Brown et al. (2006) 
Regional State  No MIR Minasny et al. (2009) 
Regional Farm  Yes VNIR Kuang & Mouazen (2011) 
National Farm  Yes VNIR Peng et al. (2013) 
National Regional  No VNIR Gogé et al. (2014) 
National  National  Yes VNIR Gomez et al. (2020) 
National National  Yes MIR Briedis et al. (2020) 
National Continental  Yes MIR Dangal & Sanderman (2020) 
National Farm Yes MIR Sanderman et al. (2021) 

Note. MIR, mid-infrared; SSL, soil spectral library; VNIR, visible and near-infrared. aAccurate 
prediction determined based on a correlation coefficient ≥0.8 or a ratio of performance to 
deviation ≥2.0. 

 Reeves et al. (2001) performed library transfer of a local MIR SSL containing 180 

observations from two fields in Maryland. The authors used a PLSR model constructed using 

observations from one field to predict total organic carbon for the other field. In both fields, the 

constructed calibration model resulted in accurate predictions (Reeves et al., 2001). Shepherd 

and Walsh (2002) used a VNIR SSL with more than 1,000 observations from one region of 

Africa to predict SOC across a different region, also in Africa. They obtained accurate 

calibrations using multiplicative adaptive regression splines (MARS) (Shepherd & Walsh, 2002). 

McCarty et al. (2002) compared the prediction of two PLSR models constructed using a MIR 

SSL with observations from eight states in the United States. One PLSR model was constructed 

using 257 observations from the general SSL to predict SOC for 16 unknowns from a new state. 

The other PLSR model was constructed using 177 observations from the general SSL to predict 

60 randomly selected observations from the same SSL. The authors obtained slightly higher R2 

values (.98 vs. .94), but also a higher prediction error (0.60 vs. 0.32%) with the first model than 

with the second model (McCarty et al., 2002). 
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 Minasny et al. (2009) tested the applicability of three statewide calibration models 

developed from a regional Australian MIR SSL to predict soil carbon. Each state-wide model 

was used for prediction in the other two states. They determined that their calibration models 

were state-specific and nontransferable, as evidenced by the high prediction errors (mean of 

absolute error: 0.85 to 0.35%). These authors also created a single model by combining 

observations from all three states and used it to predict a subset of observations. They found that 

the state models (R2: .79–.92, mean of absolute error: 0.29–0.24%) outperformed the combined 

model (R2 = .74, mean of absolute error: 0.36%) (Minasny et al., 2009). Kuang and Mouazen 

(2011) constructed VNIR calibration models for three farms in Europe. They used a farm-

specific SSL to construct calibration models for the prediction of SOC% across each farm. 

Additionally, they compiled observations from the three farm-specific SSLs to construct a single 

calibration model to predict SOC at each farm. The model developed from the combined SSL 

resulted in predictions with larger R2 and RPD values, but also larger RMSE values than two of 

the three farm-specific calibration models (combined model: n = 408, R2 = .83, RPD = 2.49, 

RMSE = 0.54%; farm-specific1: n = 205, R2 = .12, RPD = 1.07, RMSE = 0.19%; farm-specific2: 

n = 128, R2 = .75, RPD = 2.00, RMSE = 0.30%). The authors attributed these results to SOC 

ranges being wider in the combined SSL than in the farm-specific SSLs. The farm-specific 

model constructed with the smallest number of observations (n = 70), resulted in the largest R2 

and RPD and largest RMSE (R2 = .96, RPD = 4.95, RMSE = 0.62%). Gogé et al. (2014) 

constructed a calibration model from a national VNIR SSL to predict SOC for a small region in 

France. The national SSL contained observations from the small region; however, the region was 

under-represented. The resulting model did not accurately predict SOC of the small region (RPD 

< 1.4, RMSE = 0.733%, bias > −5.0%) (Gogé et al., 2014). 
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 Using the same French national SSL as Gogé et al. (2014), Gomez et al. (2020) 

constructed a PLSR model to predict SOC of observations from Tunisia. Additionally, the 

authors constructed a PLSR model using only the spectral neighbors (subsetting by spectral 

similarity) of the French national SSL to the Tunisian observations. These two PLSR models 

also included a variation consisting of log-transformed SOC values, which resulted in a total of 

four PLSR models. For the full-set models, the log-transformed model (R2 = .90, RMSE = 

0.66%, bias =−0.01%, RPD = 2.9, RPIQ = 2.6) outperformed the untransformed model (R2 = .88, 

RMSE = 0.72%, bias =−0.04%, RPD = 2.7, RPIQ = 2.4). Similarly, the authors found that for the 

spectral neighbors models, the log-transformed model (R2 = .92, RMSE = 0.57%, bias =−0.01%, 

RPD = 3.4, RPIQ = 3.0) outperformed the untransformed model (R2 = .93, RMSE = 0.54%, bias 

=−0.07%, RPD = 3.6, RPIQ = 3.2). Finally, the log-transformed, spectral neighbors model 

outperformed the log-transformed, full-set model (R2: .92 vs. .90, RMSE: 0.57 vs. 0.66%, bias: 

−0.01 vs. 0.01%, RPD: 3.4 vs. 2.9, RPIQ: 3.0 vs. 2.6, respectively). The authors concluded that 

regardless of the model (full-set or spectral neighbors) using log-transformed SOC data 

improved the predictions. Briedis et al. (2020) compared the performance of three calibration 

models constructed from a national Australian SSL (n = 567) to a PLSR model constructed from 

a national Brazilian library (n = 402) to predict SOC of Brazilian soil samples. These authors 

tested PLSR, SBL, and Cubist calibration models. The PLSR model constructed from the 

Brazilian SSL (RPIQ = 5.86) outperformed all the calibration models constructed from the 

Australian SSL (average RPIQ = 2.96). 

 Dangal and Sanderman (2020) tested whether a PLSR, MBL, and Cubist calibration 

model constructed from an American SSL (n > 55,000) could predict, among other sets, a 

European dataset of 596 observations. Using calibration models of spectra preprocessed with a 
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baseline offset transformation, all three models achieved a good fit according to the R2 (> .85), 

RPIQ (0.72 –0.81), and RMSE (2.83.15%). Additionally, the best prediction was achieved by the 

Cubist model (R2 = .95, RMSE = 2.80%, RPIQ = 0.81, and bias =−0.72%). Sanderman et al. 

(2021) performed a study to determine whether changes in SOC concentration due to 

management could be detected through MIR spectroscopy. They used an American SSL (n > 

80,000) and MBL to predict values for seven long-term research field sites in the United States 

(smallest n = 28, largest n = 390) and consequently determine whether the changes in SOC 

detected through conventional laboratory analysis were also detected by spectroscopic analysis. 

The calibration model constructed from the national SSL was able to predict SOC values for 

most sites very well (R2: .70–.94, RPD: 1.82–3.55, RMSE: 0.100.33%, and bias: 0.08–0.38%) 

with the lower performance of some sites likely due to a narrower range in SOC%. On average, 

results of their ensemble machine learning with MBL predictions were significantly lower than 

the observed SOC values (1.14 vs. 1.37%). Nonetheless, the spectroscopic models were able to 

detect changes in SOC similar enough to those measured through conventional analysis in five of 

the seven sites and reach the same conclusions on the effect of agricultural management on SOC 

concentration. The authors concluded that existing large MIR SSLs can be used by other 

laboratories for the purpose of carbon monitoring. 

 Different techniques have been proposed to optimize library transfer of general SSLs and 

thus, improve the prediction accuracy of calibration models constructed from them. Optimization 

techniques, such as adjusting the number of observations and subsetting, can be applied to 

calibration models for the purpose of library transfer. Additionally, incorporating target area 

observations into the calibration model can improve model performance and thus, benefit more 

from general library transfer for site-specific modeling (Barthès et al., 2020; Brown,2007; 
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Lobsey et al., 2017; Sankey et al., 2008; Shepherd & Walsh, 2002; Sila et al., 2016; Wetterlind 

& Stenberg, 2010; Wijewardane et al., 2018). 

 Adding observations from the target area to a calibration model constructed from a 

general SSL to predict new observations from the target area is referred to as spiking. Spiking 

involves three general steps: (a) soil samples from the target area are analyzed, using the same 

laboratory methods as the observations in the calibration set and their observations are recorded; 

(b) these target area observations (i.e., spiking set) are added to the initial calibration set; and (c) 

the calibration model is “recalibrated” (Guerrero et al., 2014). A variation of spiking involves the 

replication of observations in the spiking set, which is referred to as spiking with extra 

weighting. This technique involves adding multiple copies of the target area observations to the 

initial calibration set in order to increase the leverage of the target area observations in the 

calibration (Guerrero et al., 2014). Spiking can be performed in combination with any of the 

optimization techniques previously discussed. For example, a spiking set can be selected based 

on its analyte value, pedogenic, or spectral similarity to the target area set of unknowns, thus 

performing a subsetting-spiking routine. Likewise, the number or proportion of the spiking set 

can be varied, thus resulting in a calibration size-spiking approach.  

 In general, when performing spiking, only a relatively small number of target area 

observations are included in the spiking set for the calibration model. This ensures that the model 

contains observations representative of those that it will predict (Nocita et al., 2015). However, 

as with a typical calibration, the number of target area observations included in the spiking set 

can be adjusted to optimize model performance. Typically, the larger the spiking set, the greater 

the prediction accuracy of the spiked calibration model. However, a larger number of spiking 
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observations implies a greater cost of analysis, which decreases the low-cost advantage of soil 

spectroscopy for soil analysis (Guerrero et al., 2014). 

 Table 3 summarizes some soil spectroscopy studies that have used spiking and a 

combination of spiking and subsetting techniques for library transfer. The example studies 

presented in Table 3 are not to be considered an exhaustive representation of the literature on 

library transfer optimization techniques. However, they are representative of techniques 

discussed in this paper and of the diversity of techniques used in recent studies. 

 McCarty and Reeves (2000) were some of the first to suggest that inclusion of only a few 

observations from the target area in the calibration set might improve model performance. 

Similarly, Brown et al. (2006) hypothesized that spiking could improve the effectiveness of 

library transfer. Moreover, they also hypothesized that spiking for library transfer could result in 

more accurate predictions than using only observations from the target area. These hypotheses 

were supported by the work of Brown (2007), who predicted SOC concentration for a Ugandan 

watershed through library transfer of a global VNIR SSL (n = 3,794) spiked with local 

observations (n ≤ 206). Brown (2007) found that spiking the calibration model constructed from 

the global SSL with observations from the watershed improved model performance and, in some 

cases, outperformed a calibration model constructed only from the watershed (i.e., target area) 

observations (RMSE = 0.53 and 0.59%, respectively, for model with n spiking and n watershed = 

206). 

 

 



 

 
 

102 

Table 3. Summary of library transfer studies that use spiking, spiking with extra weighting, and spiking and subsetting for the 
construction of calibrations to predict soil carbon and whether at least one of these techniques resulted in decreased prediction error 

Criteria General SSL Target area Decreased 
prediction error 
compared to 
calibration from 
general SSL 

Spectral range Reference 

Spiking Global  Watershed  Yes  VNIR Brown (2007) 
Spiking Global  U.S. state Yes  VNIR Sankey et al. (2008) 
Spiking National  Farm  Yes  VNIR Peng et al. (2013) 
Spiking National  Watershed  Yes  VNIR Gogé et al. (2014) 
Spiking National to farm Farm to small region Yes  NIR Guerrero et al. (2016) 
Spiking Farm  Continental  Yes  VNIR Nawar & Mouazen (2017) 
Spiking + weighting Global  U.S. state Yes  VNIR Sankey et al. (2008) 

Spiking + weighting National  Farm to small region Yes  NIR Guerrero et al. (2014) 

Spiking + weighting National to farm Farm to small region Yes  NIR Guerrero et al. (2016) 

Spiking + weighting Global  Farm  Yes  VNIR Lobsey et al. (2017) 

Spiking + subsetting National  Farm  Yes  NIR Wetterlind & Stenberg (2010) 

Spiking + subsetting National  Farm to small region Yes  NIR Guerrero et al. (2014) 

Spiking + subsetting Global  Farm  Yes  VNIR Lobsey et al. (2017) 

Spiking + subsetting National and regional Small region Yes  MIR Briedis et al. (2020) 

Spiking + subsetting Large region Small region Yes  VNIR Ng et al. (2022) 

Spiking + subsetting + 
weighting 

National  Small region Yes  MIR Barthès et al. (2020) 

Note. MIR, mid-infrared; NIR, near-infrared; SSL, soil spectral library; VNIR, visible and near-infrared.
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 Sankey et al. (2008) used the same global SSL as Brown (2007) to compare target area 

calibration models to global SSL models and global SSL models spiked with up to 234 

observations. Using these models, the authors predicted SOC concentration for three sites in 

Montana. The best model performance for each site (SEP = 0.380, 0.770, and 2.62%) was 

obtained by the spiked global SSL calibration model. These authors also tested the influence of 

weighting in the spiked calibration model by applying lower weight to the global observations 

than to the target area observations. Overall, this approach slightly improved SOC prediction 

accuracy as compared to the unweighted, spiked model. The authors suggested that the optimum 

weight for highest prediction accuracy depends on the variability of the target area and the soil 

property (Sankey et al., 2008). 

 Wetterlind and Stenberg (2010) compared the performance of several small, farm-level 

calibration models (n = 25) with those constructed from a national Swedish NIR SSL (n = 396) 

for the prediction of SOC. The national SSL models consisted of a full-set calibration and a 

spectral neighbors model (n = 50). Additionally, both full-set and spectral neighbors models 

were also tested in their spiked variant (spiked with ≤25 farm observations). The spectral 

neighbors model did not outperform the full-set model. The spiked variants of the full-set and 

spectral neighbors models outperformed their unspiked counterparts. Moreover, both spiked 

variants resulted in comparable prediction accuracy to that of the farm-specific calibration 

models. Additionally, the spiked variant of the spectral neighbors model outperformed the spiked 

variant of the full-set model. They attributed these findings to the ability of the spectral 

neighbors model to integrate the target area observations more easily due to its smaller size, as 

compared to the full-set model. 
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 Peng et al. (2013) compared the performance of calibration models constructed from a 

national Danish VNIR SSL (n = 2,688) to predict SOC for a field in Denmark. These authors 

constructed calibration models using subsets of the national SSL based on observations that were 

geographically closest (n = 84), pedologically most similar (n = 96), and spectrally most like 

those of the target area (n = 100). Additionally, they spiked the national SSL with a random set 

of 30 observations from the target area (n = 2,718). The best predictions on the target area 

unknowns were from the geographically closest subset as well as the spiked national calibration 

models (each with RMSE = 0.19% and RPD = 3.7). Additionally, the spiked calibration 

outperformed the full-set national SSL (RMSE = 0.19 and 0.22%, respectively) (Peng et al., 

2013). Gogé et al. (2014) constructed a calibration model using a French national VNIR SSL (n 

= 2,126) to predict SOC for a watershed in France. Moreover, the authors tested the spiked 

version of this model with a spiking set ranging from 10 to 94 observations. Spiking the 

calibration model decreased the RMSE and increased the R2 for SOC concentration as compared 

to the unspiked calibration model (RMSE = 0.733%) with the lowest error achieved by the 

spiked calibration model with the largest spiking set (RMSE = 0.579%). 

 Guerrero et al. (2014) used a national SSL from Spain to construct calibration models for 

the prediction of SOC across sites in Spain, the United Kingdom, and Sweden. These authors 

tested the effect of spiking the initial calibration models with extra weighting. These authors also 

evaluated 13 different subsetting strategies to select the spiking set, as well as the effect of 

different numbers of observations used to construct the calibration models from the national 

SSL. Results of this study indicated that spiking improved the prediction accuracy of all models. 

Moreover, differences in performance of the spiked models were due to the subsetting approach 

used to select the spiking set. The best predictions were achieved when the spiking set was 
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selected according to spectral neighbors. The accuracy of the predictions was further improved 

by extra weighting of the spiking set. Moreover, smaller spiked calibration models outperformed 

larger spiked models. 

 Guerrero et al. (2016) constructed calibration models from eight national, regional, and 

local SSLs from Spain and Sweden to predict SOC concentration for 10 sites in Spain and one in 

the United Kingdom. These authors observed that the fewer the observations used to construct 

the initial calibration models, the greater the effect of spiking. That is, there is an inverse 

relationship between the calibration size and the effect of spiking on model performance. These 

results are in accordance with those of Guerrero et al. (2014). Furthermore, the fewer the 

observations for the initial calibration model, the smaller the effect of spiking with extra 

weighting. Overall, the highest prediction accuracy resulted from calibration models with extra 

weighting. These authors explained that small SSLs can be just as effective in yielding high 

prediction accuracy through spiking with extra weighting, and thus, large SSLs are not needed 

for local assessment of SOC concentration (Guerrero et al., 2016). 

 Lobsey et al. (2017) combined spectral subsetting with spiking to improve the statistical 

performance of small calibration models for SOC concentration of two sites in Australia and 

New Zealand. These authors selected a subset of representative observations from the target area 

to spike a calibration model developed from a global VNIR SSL (n = 17,928). Results of this 

study showed that spiking the global SSL with as few as 20 target area observations was 

sufficient to yield an accurate prediction of SOC concentration at both sites (RMSE = 0.48 and 

1.16%). The spiked calibration models performed as well or better than those containing only 

target area observations (n ≤ 300) (Lobsey et al., 2017). In a study by Briedis et al. (2020), using 

a national Australian SSL (n = 567) spiked with as few as 20 target area observations (8% of 
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Brazilian regional SSL), improved the prediction accuracy of total OC over using only the 

Australian SSL and local-type models calibrated with spectrally similar observations. The 

highest prediction accuracy achieved was using the full, target area calibration model (RMSE = 

0.317% and RPIQ = 5.86). Moreover, the spiked Australian SSL model performed similarly to a 

model constructed using only the spiking set of 20 target-area observations (RPIQ = 4.74 and 

4.49, respectively). The authors concluded that a proper selection of a small, spectrally similar 

calibration set can result in accurate and cost-effective OC prediction using MIR (Briedis et al., 

2020). 

 Barthès et al. (2020) used a French national MIR SSL to predict soil inorganic carbon 

(SIC) in a region of France. The authors used the SBL algorithm to select spectral neighbors and 

performed spiking with extra weighting to construct a calibration model. Using only 

observations from the national SSL yielded an accurate prediction (SEP = 0.5%). Nevertheless, 

the prediction accuracy was improved through spiking with 10 observations, extra-weighted 40 

times (SEP = 0.33%). The calibration model constructed using only local target area 

observations yielded less accurate results than the spiked calibration (SEP = 0.36%). In a more 

recent study, Ng et al. (2022) compared the effectiveness of spiking and subsetting (MBL and a 

localized PLSR) for the prediction of SOC in small regions of Australia using a large regional 

VNIR SSL (n = 1,867). The localized PLSR models, constructed with ≥20 observations (n = 20; 

RPIQ: 0.23–0.71, RMSE: 0.38–1.07%, bias: −0.11 to −0.01%), outperformed the target area (n = 

20; RPIQ: 0.23–0.67, RMSE: 0.36–1.31%, bias: −0.17 to −0.00%) and spiked regional models (n 

= 20; RPIQ: 0.19–0.63, RMSE: 0.32–1.41%, bias: −0.77 to −0.02%). The authors concluded that 

spiking is dependent on the spectral similarity between the general SSL and the target area 
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observations. These authors also concluded that calibration models created through spiking were 

overall, not better than models constructed using only target area observations (Ng et al., 2022). 

 

Figure 3. General decision chart for the selection of optimization techniques for spectroscopic 
modeling of soil organic carbon (SOC) concentration. SSL, soil spectral library 

 The studies described demonstrate that various factors influence the effectiveness of 

calibration optimization techniques. The success of calibration optimization to improve 

prediction accuracy depends on SOC concentration range, the sample selection scheme used to 

build the calibration set, the modeling approach, and the spectral variability related to the 

pedodiversity of the calibration set. Additionally, the effectiveness of optimization techniques is 

influenced by the size of the SSL available for calibration. When constructing a calibration 

model for library transfer, optimization can be performed through subsetting, spiking, or a 

combination of both; however, considerations for the proportion of representative observations in 

the calibration set must be made. Figure 3 provides a generalized decision chart for the 

appropriate optimization technique. The chart presents conditions and factors required for 

successful optimization using the techniques discussed. The reader should note that the general 
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guidance provided here is based on studies presented in this work and that it may be necessary to 

consider other conditions before selecting a technique. 

Conclusions 

 The analysis of soil carbon through soil spectroscopy benefits from optimization 

procedures to improve the statistical performance of calibration models. The approaches for 

model optimization discussed in this work included the selection of calibration set size, the 

creation of targeted calibration models through subsetting, and spiking. Calibration set size 

influences model performance and has implications for the cost-savings potential of soil 

spectroscopy. Obtaining a large SSL is not always an option as studies may have limited 

resources for data collection and analysis, making it crucial to consider strategies that allow for a 

reduced number of observations without a decrease in model performance. In general, model 

performance improves with increasing calibration size, until it stabilizes and there is no 

significant improvement with additional observations. The optimal calibration size depends on 

the initial calibration set size and the sampling scheme used to select the calibration set. The 

reduction in prediction error by the addition of observations diminishes as the initial calibration 

size increases. That is, the added benefit of new observations is greater for smaller calibrations 

than larger ones. If affordability and computational efficiency are considered, starting with a 

smaller calibration set of at least 30 observations can be much more efficient than starting with a 

large set and may yield equally good results. 

 In scenarios where soil spectral libraries already exist, it can be useful to identify the best 

technique for selecting the calibration set. If the spectral library is homogeneous in terms of its 

spectral variability, then random sampling can perform as well as stratified sampling. However, 

when the spectral variability is large, spectrally stratified sampling generally improves model 
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performance. The spectrally stratified sampling approach has a greater influence on model 

performance when the models are small, so it is worthwhile to combine this optimization 

technique with an approach to define an optimal calibration size. 

 Reducing the range of variability in analyte concentrations can improve model 

performance. Subsetting a calibration set by analyte value is an effective optimization technique 

when the spectral variability is low. Therefore, subsetting by analyte value should be avoided in 

SSLs derived from soil samples with highly diverse spectrally active physical and chemical 

properties. Additionally, statistical dispersion is known to influence model performance, with a 

smaller dispersion (i.e., narrower data range) resulting in a reduction in RMSE. Therefore, it is 

critical that authors used and present suitable metrics of statistical performance when comparing 

across models with calibration data of varying range (e.g., R2, RPD, RPIQ). 

 If the spectral variability in the SSL is expected to be large, due to diverse mineralogy, 

large spatial extent, or other factors known to influence the analyte being assessed, then 

subsetting to reduce this variability within calibration sets can lead to better model performance. 

In these scenarios, utilizing criteria based on soil-forming factors that influence mineralogical 

properties, may be the most effective technique to improve model performance. The criteria used 

in these cases, should reduce within-subset and increase across-subset spectral and analyte 

variability. Subsets based on a single criterion, such as taxonomic soil order or horizonation, can 

contain spectral features that are not mutually exclusive; therefore, a multi-criteria approach can 

be more useful. 

 Subsetting by spectral similarity to the prediction set (i.e., through local modeling) is 

another effective technique for calibration optimization; however, as with soil-related criteria, it 

should be avoided in datasets with low spectral variability. Wavelength selection can result in 
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parsimonious calibration models with better model performance and interpretability than the full-

set models. Moreover, investigations on wavelength selection methods can guide the 

development of new spectroscopic instruments. The effectiveness of subsetting for improving 

model performance depends on the modeling approach. Utilizing a machine or deep learning, 

which can handle complex relationships in high-dimensional space, is generally as or more 

effective in improving model performance as compared to subsetting by analyte value, 

pedodiversity, or spectral similarity. 

 The capacity of an existing SSL to perform well in a new target area, depends on the 

spectral and analyte similarity to the target area unknowns. In library transfer, similar 

pedodiversity leads to greater mineralogical and chemical similarity, which in turn leads to 

greater spectral and analyte similarity between the calibration observations from the existing SSL 

and the target unknowns; thus, improving the statistical performance of the calibration models. 

Spiking can be performed in addition to or in combination with any of the other optimization 

techniques to improve model performance for library transfer. Spiking with representative target 

area observations improves model performance. Typically, the prediction accuracy of the spiked 

calibration model increases as the size or proportion of the spiking set increases, because a larger 

proportion of spiking observations results in greater representativeness of the target unknowns. 

Spiking is most useful in scenarios where target area SSLs are too small (n < 30) to produce 

accurate predictions. In these scenarios, using a spiked general SSL calibration model, 

outperforms the target area model. If target area observations are limited, spiking with extra 

weighting is a cost-effective method to improve model performance. Spiking with extra 

weighting reduces the need to add/collect new target observations because it duplicates existing 

target-area observations. Spiking with subsetting is most effective when using a criterion that 
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best separates spectrally active features related to the soil property being predicted; thus, it is 

important to couple subsetting by spectral similarity with spiking, particularly when the SSL to 

be transferred is spectrally different from the target area. 

 Optimization techniques can further improve the efficiency and reduce the cost of soil 

spectroscopy for soil carbon analysis and should be studied further. These techniques are useful 

for improving the model performance of calibrations constructed from both small and large 

SSLs. In cases where a large SSL already exists, optimization techniques represent a cost-

effective solution to improve the effectiveness of library transfer. In areas where SSLs are rare or 

absent, optimization techniques can support new data collection efforts as well as the 

construction of more parsimonious calibration models. 
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Abstract 

 The high demand for soil organic carbon data to support soil health and climate change 

mitigation efforts must be met with rapid, accurate, and inexpensive measurement methods. Mid-

infrared spectroscopy is a promising complement to conventional soil carbon analysis; however, 

its practicality depends on the construction and efficient use of a soil spectral library. Subsetting 

is a calibration optimization technique that can reduce the model prediction error. Nevertheless, 

the effectiveness of different subsetting criteria has yet to be well explored. The objective of this 

study was to assess whether several subsetting criteria would result in calibration models with 

reduced error in the prediction of soil organic carbon content, compared to calibration models 

constructed from a full spectral dataset. A mid-infrared spectral library composed of soil samples 

from Nebraska and Kansas was subset by (i) soilscapes, (ii) presence/absence of carbonates, (iii) 

a combination of soilscape and presence/absence of carbonates, and (iv) wetlands. Partial least 

squares regression was used to construct calibration models for each subset and the full set. 

Predictive performance of the subset models was compared to that of their corresponding full set 

model using several statistical metrics. In addition, several thresholds to rate model performance 

were used to assess the desirability and reliability of the subset models. Subsetting by soilscape 

reduced model error by 13 to 55% compared to their full set model counterpart. Subsetting by 

the presence/absence of carbonates reduced model error by 21 and 46%. Five of the eight models 

for the combination subsets reduced the model error by 14 to 51%. Subsetting by wetlands 

reduced model error by 22 and 56%. In general, subsetting by soilscape or the presence/absence 

of carbonates resulted in desirable and reliable soil organic carbon content predictions. 

Subsetting by a combination of soilscape and presence/absence of carbonates resulted in 

desirable and reliable models when the model calibration set contained more than 53 
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observations. Wetland subsets produced undesirable predictions and only one of two models was 

reliable. These results suggest that the tested subsetting criteria were generally effective in 

improving model performance for soil organic carbon prediction through mid-infrared 

spectroscopy. 

Introduction 

 Soil organic carbon (SOC) plays a key role in soil health, ecosystem services, and climate 

change mitigation (Bossio et al., 2020; Lal et al., 2015). Given the importance of SOC, there is 

growing demand for field and laboratory data to calculate and monitor soil carbon stocks (Bossio 

et al., 2020; Lal, 2004; Smith et al., 2020; Viscarra Rossel et al., 2014). However, conducting 

conventional soil carbon analysis by wet chemical or combustion techniques is expensive and 

slow, which may discourage wide-scale monitoring and thereby prevent informed decision-

making (Conant et al., 2011; Wadoux & McBratney, 2021). Over the past few decades, diffuse 

reflectance spectroscopy in the infrared range has been proven to be a viable complement for the 

rapid and cost-effective quantitative analysis of SOC (Nocita et al., 2015; Viscarra Rossel et al., 

2006; Viscarra Rossel, Brus, et al., 2016). Furthermore, it has been shown that mid-infrared 

(MIR) spectroscopy can provide more accurate predictions of SOC content than visible and near-

infrared (VNIR) and near-infrared (NIR) (Bellon-Maurel & McBratney, 2011; Viscarra Rossel et 

al., 2006). The advantage of MIR over other infrared methods for SOC assessment is its 

sensitivity to organic and mineral constituents, whose fundamental vibrational modes match 

those of the MIR electromagnetic energies (Janik et al., 1998). Moreover, it has been recently 

suggested that MIR is a more cost-effective method than dry combustion for the analysis of large 

numbers of soil samples (Li et al., 2021). Additionally, recent studies have suggested that MIR is 
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useful for global, regional, and local scale carbon measurement and monitoring (Dangal et al., 

2019; Sanderman et al., 2021; Viscarra Rossel et al., 2008).  

 The practicality of MIR spectroscopy depends on the construction and efficient use of a 

soil spectral library (SSL). A SSL is used to build calibration models that relate spectral data to 

analyte data (i.e., measured soil property) that are subsequently used to predict soil properties 

from new spectra. Calibration optimization techniques can ensure the efficient use of a SSL for 

SOC prediction by effectively reducing the statistical error of calibration models (Dorantes et al., 

2022). Calibration optimization techniques can be used to determine the optimal size of 

calibration sets and to improve the representativeness of these sets in relation to the prediction 

set (Brown et al., 2005; Debaene et al., 2014; Lucà et al., 2017; Reeves III & Smith, 2009; 

Viscarra Rossel et al., 2008). Subsetting is commonly employed to improve the 

representativeness within a calibration optimization routine. Targeted calibration models are 

constructed through subsetting to perform predictions on a specific group, such as distinct ranges 

in analyte value or soil types. One general subsetting approach builds targeted calibration models 

by stratifying the SSL using ancillary information(Baldock et al., 2013; Madari et al., 2005; 

McDowell et al., 2012; Moura-Bueno et al., 2019, 2020; Peng et al., 2013; Shi et al., 2015; 

Vasques et al., 2010; Wijewardane et al., 2018; Xu et al., 2016). Another subsetting approach 

constructs targeted calibrations by using the spectral similarity between the calibration and 

prediction sets (Genot et al., 2011; Igne et al., 2010; Ng, Minasny, Jones, et al., 2022; Nocita et 

al., 2014; Ramirez-Lopez et al., 2013).  

 Several spectroscopic studies have successfully used the variation in soil types and 

properties (i.e., pedodiversity) as ancillary data to subset SSLs for SOC prediction. Vasques et al. 

(2010) constructed VNIR calibration models based on subsets of similar soil type to predict SOC 
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content in Florida. This subsetting approach split the SSL into subsets of lower and higher 

carbon content (0.01-14.7% and 13.52-57.54%, respectively). Both subset calibration models 

resulted in improved model performance compared with the full set model. Wijewardane et al. 

(2018) subset a national MIR spectral library by land use/cover, taxonomic soil order, and soil 

master horizon to construct calibration models for the prediction of several soil properties. 

Subsetting by each of the criteria reduced model error and subsetting by soil order and master 

horizon were more effective than subsetting by land use/cover. Moura-Bueno et al. (2019) used 

various combinations of soil class and land use type to construct VNIR and short-wave infrared 

(SWIR) calibration models for SOC content prediction. Overall, subsetting by a combination of 

soil class and land use type improved model performance in models with at least 77 

observations. The authors attributed the improved performance of subset models to a reduction in 

spectral, soil textural, and SOC content variance.  

 In another study, Moura-Bueno et al. (2020) used several criteria to subset a VNIR 

spectral library for the construction of calibration models to predict SOC content. The authors 

found that subsetting by each tested criterion reduced prediction error and that subset models 

with reduced variance in SOC content, clay content, and lower spectral variance, resulted in 

improved prediction accuracy over the full set model. Many subsetting studies using soil related 

criteria have relied at least partly on ancillary information. This information often requires 

additional conventional analysis or data from an existing soil information system, such as 

particle size and taxonomic class. The use of ancillary information may produce effective subsets 

but may not be feasible or cost-effective when the source of information is not readily accessible. 

 Several studies have subset SSLs by spectral similarity (spectral neighbors) to construct 

targeted calibration models, termed localized calibrations in this context. Commonly used 
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modeling approaches to construct localized models include locally weighted regression (Naes et 

al., 1990) and the LOCAL algorithm (Shenk et al., 1997). A more recent approach that has been 

successful for calibration optimization is the spectrum-based learner (SBL; Ramirez-Lopez et al., 

2013). Calibration models constructed using the SBL approach have outperformed those 

constructed using partial least squares regression (PLSR), support vector machine regression, 

locally weighted PLSR, LOCAL, cubist, and random forests (Dangal et al., 2019; Ng, Minasny, 

Jeon, et al., 2022; Ramirez-Lopez et al., 2013). The application of subsetting by spectral 

similarity requires the existence of a large number of spectral observations, which may not be 

available if there is no SSL. Additionally, subsetting by spectral similarity, particularly through 

the SBL approach, is computationally demanding and thus, prohibitive for its application in large 

SSLs (Dangal et al., 2019).  

 Calibration optimization through subsetting by ancillary data is relevant even as more 

efforts are currently shifting towards the construction of global soil spectral calibration and 

prediction services (Demattê et al., 2022; Shepherd et al., 2022; Viscarra Rossel, Behrens, et al., 

2016). Effective subsetting techniques can inform sampling and resource allocation schemes for 

the establishment of new, geographically local SSLs. The establishment of these local libraries 

can follow a bottom-up approach. Such an approach allows for parallel efforts to build local 

libraries of high predictive performance, which may become operational even before they are 

merged into new or existing global SSLs. Additionally, subsetting can optimize approaches like 

SBL by reducing the set of observations, which may reduce the computational demand of model 

calibration and prediction. Overall, targeted calibration models constructed through subsetting 

can outperform general and full set calibration models (Moura-Bueno et al., 2020; Ramirez-

Lopez et al., 2013).  
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 This study investigates the effectiveness of subsetting criteria to construct targeted 

calibration models for the prediction of SOC content using data from a national MIR SSL. The 

subsetting criteria uses readily accessible information that does not require additional analysis. 

The objective of this study is to assess the effectiveness of subsetting by (i) environmental, (ii) 

soil attribute, (iii) combination of environmental and soil attribute, and (iv) wetland criteria in 

reducing the model prediction error. Because the resulting subsets will contain observations of 

reduced compositional and spectral variance, it is hypothesized that the targeted calibration 

models constructed from these subsets will outperform models constructed using the full set of 

observations in the study area. 

Materials and Methods 

Study Area and Soil Spectral Database 

 The study area comprises the states of Nebraska and Kansas, USA. These states 

encompass 413,000 km2 and occupy part of the Great Plains physiographic province. Entisols 

and Mollisols are the dominant soil orders in the study area. The major soil parent materials are 

deep loess/deep silty sediments, eolian sands, and residuum from calcareous clastic rocks (Isee 

Network, 2015). Most of the study area occurs in the mesic soil temperature regime with the 

southeastern region in the thermic (USDA-NRCS, 2016). The soil moisture regimes of the study 

area are (from west to east) aridic ustic, typic ustic, udic ustic, and udic (USDA-NRCS NSSC, 

n.d.). The mean elevation is 687 m that generally decreases towards the southeast. The mean 

annual temperature (MAT) ranges from 6.9° to 14.8° Celsius (C) with higher mean temperatures 

in the south. Total annual precipitation (TAP) increases towards the southeast and averages 800 

mm.  
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 The soil spectral data were obtained from the MIR spectral library that is compiled and 

curated by the USDA-NRCS National Soil Survey Center Kellogg Soil Survey Laboratory 

(KSSL). The analytical data were obtained from the Soil Characterization Database (SCD). The 

data was accessed through the KSSL’s Laboratory Information and Management System (LIMS) 

database. A query was conducted to select all soil samples containing soil organic carbon content 

(SOC, %) within a maximum soil depth of 30 cm, associated soil project information, and 

geographic location. Soil samples at a depth greater than 30 cm were excluded to ensure a strong 

relationship between the analytical data and environmental criteria that would be used for 

subsetting (Minasny et al., 2013; Vasques et al., 2010). The dataset of spectra and associated soil 

data were extracted using LIMS and constrained by the study area boundaries. Soil samples 

without a GPS location, that is, those with only a county centroid location, were removed 

because exact geographic locations would be needed to obtain relevant environmental and 

pedologic information. 

Organic Carbon and Spectral Measurement 

 The KSSL processed and analyzed all soil analyte data used in this study. Prior to soil 

analysis, the soil samples were air-dried, ground, and sieved (< 2 mm). Soil organic carbon 

content was calculated as the difference between total carbon and inorganic carbon. Total carbon 

was determined by elemental analysis via dry combustion (method 4H2a1, Soil Survey Staff, 

2014) and inorganic carbon was determined manometrically after reaction with HCl (method 

4E1a1a1, Soil Survey Staff, 2014). The measured SOC values were used as the reference values 

for model development.  

 The spectra were acquired by the KSSL using Diffuse Reflectance Infrared Fourier 

Transform (DRIFT) MIR spectroscopy. Air-dried, sieved, and ground (177 µm) soil samples 
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were pressed into a 96-well aluminum plate. These samples (four replicates per sample) were 

scanned using a Vertex70 XTS-XT Fourier transform infrared spectrometer equipped with a high 

throughput screening extension. Spectra were collected in the MIR range from 7500 to 600 cm-1 

at a resolution of 4 cm-1. The spectrometer was not purged with an infrared inactive gas; 

therefore, the background signal was quantified by collecting scans of an anodized aluminum 

well (i.e., background scan) before each soil sample scan. The background scan was used to 

correct the signal of the soil sample scans and thus reduce the effect of atmospheric intrusion. 

For the background scan and each soil replicate scan, 32 co-added scans comprised the recorded 

spectrum. Spectra were converted to absorbance [log(1/reflectance)] and truncated to 4000 to 

600 cm-1. 

Spectral Preprocessing 

 Spectra were preprocessed prior to subsetting. An average of the four replicates was 

taken for each soil sample. A median window baseline correction (BC; Friedrichs, 1995) was 

applied to overcome instrument drift and baseline shift attributed to heterogeneous particle size 

distribution in the soil samples (Gemperline, 2006; Stuart, 2004). Next, a smoothing Savitzky-

Golay filter (SG; Savitzky & Golay, 1964) with a second-order polynomial and a 17-point 

window was applied to the spectra. A SG filter preserves the shape of spectral peaks and 

decreases noise, thus enhancing spectral features (Schafer, 2011; Tinti et al., 2015). Lastly, a 

multiplicative scatter correction (MSC; Geladi et al., 1985) using the mean spectra as reference 

was applied. The MSC corrects for light scattering and change in path length (Gemperline, 

2006). The preprocessing techniques were implemented in R (R Core Team, 2021) using the 

following packages: spectacles (Roudier, 2021) for BC, signal (Ligges et al., 2014) for SG, and 

prospectr (Stevens & Ramirez-Lopez, 2021) for MSC.  
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 A robust principal components analysis (PCA) was performed on the preprocessed 

spectra to identify and remove bad leverage points. Observations with a long orthogonal and a 

long Mahalanobis distance to the PCA space are considered bad leverage points because they can 

control the estimation of the principal components (PCs) (Varmuza & Filzmoser, 2009). The 

chemometrics package (Filzmoser & Varmuza, 2017) was used to identify bad leverage points. 

A total of 17 observations representing 1% of the spectral dataset were removed. The remaining 

observations (N = 1739), hereafter referred to as the full spectral library (FULLSL), were split 

into subsets based on the criteria explained next.  

Soil Spectral Library Subsetting 

 Subsetting was performed based on environmental, soil attribute, and combined criteria. 

The rationale for subsetting was to improve SOC prediction while reducing the number of 

observations required, thereby maintaining efficiency of SOC predictions with soil spectroscopy. 

Accordingly, the subsetting criteria did not require additional chemical analysis nor costly 

geospatial datasets. Instead, they relied on readily accessible geospatial data, existing soil 

information or soil properties that can be estimated in the field. 

 The first subsetting criterion was defined to group together the wetland soils. Project 

information contained in the FULLSL indicated that some soil samples were collected for the 

National Wetland Condition Assessment program (Dreier, 2018). Most of these samples were 

collected from wetlands occurring in lowlands between sand dunes. It was assumed that these 

soils would exhibit higher concentrations of undecomposed organic matter, different organic 

carbon forms, and reduced iron compared to other soils in the study area (Jackson et al., 2014). 

Presumably, the chemical and mineralogical composition of wetland soils would result in distinct 

spectral features and thus, wetland observations were placed in an exclusive subset. The wetland 
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subset was further subdivided by analyte value. Observations with SOC content less than 10% 

comprised the WL10 subset, and those with SOC content greater than or equal to 10% comprised 

the WG10 subset. The 10% threshold has been used as subsetting criteria in previous studies and 

is commonly used in combination with clay content to distinguish organic from mineral soil 

materials (Soil Survey Staff, 1999) and justifies separation for calibration purposes. Together, 

the WG10 and WL10 comprised the ‘wetland subsets’ group.  

 Subsetting by environmental criteria consisted of three steps: (1) generating the 

environmental layers; (2) generating topo climatic regions through cluster analysis; and (3) 

subsetting the FULLSL without wetland subsets according to the clusters. Two topography and 

two climate raster layers were constructed from readily accessible and publicly available 

datasets. Topography and climate are recognized as environmental controls of spatial SOC 

variability (Brejda et al., 2000; Burke et al., 1989; Graham & Indorante, 2017; Jenny, 1994; Post 

et al., 1982; Weil & Magdoff, 2004). In general, climate influences the rate and extent of soil 

organic matter decomposition and topography influences the movement and energy of matter, 

thus dictating the potential of soil organic matter erosion and deposition. It was presumed that 

subsetting by these criteria would reduce the variance of SOC and corresponding spectra.  

 The topography layers consisted of a 90-meter digital elevation model (DEM) from the 

Shuttle Radar Topography Mission (Fig. 1A) and a Strahler-based valley depth (VD) layer (Fig. 

1B) derived from the DEM. The VD was calculated as the difference between elevation and an 

interpolated ridge level (Conrad et al., 2015). The climate layers consisted of TAP (Fig. 1C) and 

MAT (Fig. 1D), each derived from PRISM climate data (PRISM Climate Group, 2022) and 

aggregated for the 2000 to 2020 date range. These climate layers were downscaled to match the 

resolution of the DEM and VD. A k-means cluster analysis based on the hill-climbing method 
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(Rubin, 1967) was performed on the layers to produce four distinct topo climatic regions (i.e., 

soilscapes). Although the term soilscape has been used to describe an area of homogeneous soils 

(Hole, 1978; Schmidt et al., 2010), in this context it refers to a geographic region resulting from 

long-range interactions between climate and topography that will presumably dictate large scale 

spatial variation in SOC. The number of soilscapes was determined through visual inspection of 

large topo climatic patterns as well as consideration for the number of observations in each 

cluster. Geospatial processing was performed using the SAGA (System for Automated 

Geoscientific Analyses) software (Conrad et al., 2015). Four spectral library subsets were 

generated (Fig. 1E): soilscape 1 (SS1), soilscape 2 (SS2), soilscape 3 (SS3), and soilscape 4 

(SS4). The four soilscape subsets comprised the ‘soilscape subsets’ group. 

 Subsetting by a soil attribute criterion involved three steps: (1) determining the dominant 

parent material type for each soil observation in the FULLSL without wetland subsets; (2) 

reclassifying the dominant parent material according to its description; and (3) subsetting the 

FULLSL without wetland subsets according to the reclassified parent material. The NRCS 

SSURGO (Soil Survey Geographic) database (Soil Survey Staff, 2022) for Nebraska and Kansas 

was downloaded and the dominant parent material at the geolocation of the observations was 

extracted. The dominant parent material was reclassified into calcareous type and noncalcareous 

type depending on the parent material description. If the dominant parent material name included 

the term ‘calcareous’, that parent material was reclassified as ‘calcareous’, otherwise it was 

classified as ‘noncalcareous’. In this context, ‘calcareous’ and ‘noncalcareous’ assume the 

presence or absence of calcium carbonates, respectively. Observations belonging to the same 

reclassified parent material type were grouped together, resulting in two subsets: calcareous 
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(CALC) and noncalcareous (NOCALC) (Fig. 1E). The CALC and NOCALC subsets comprised 

the ‘soil attribute subsets’ group. 

 In MIR, the carbonyl groups in carbonates can mask the absorption bands of organic 

carbon (Bellon-Maurel & McBratney, 2011; McCarty et al., 2002). This complicates calibration 

models and, as some studies have noted, can reduce the ability to quantify SOC and lead to 

inaccurate predictions (McCarty et al., 2002; Reeves III, 2010; Reeves III & Smith, 2009; 

Seybold et al., 2019). It was presumed that subsetting by CALC and NOCALC would constrain 

the interference caused by carbonates to the CALC subset and thus, reduce the spectral variance 

of the observations in the NOCALC subset. Tatzber et al. (2010) obtained improved SOC % 

predictions by building subset models according to the presence/absence of carbonates, 

compared to using the complete SSL for model building. 

 Subsetting by combination was performed through a nested subsetting that considered the 

presence of CALC or NOCALC within each soilscape. This resulted in eight new subsets 

(soilscape x soil attribute): soilscape 1 and calcareous (SS1_CALC), soilscape 1 and 

noncalcareous (SS1_NOCALC), soilscape 2 and calcareous (SS2_CALC), soilscape 2 and 

noncalcareous (SS2_NOCALC), soilscape 3 and calcareous (SS3_CALC), soilscape 3 and 

noncalcareous (SS3_NOCALC), soilscape 4 and calcareous (SS4_CALC), soilscape 4 and 

noncalcareous (SS4_NOCALC). The eight subsets comprised the ‘combination subsets’ group. 

Figure 1 shows the input environmental layers previously discussed, the soilscapes derived from 

these layers, boxplots showing the distribution of values for each environmental layer according 

to the soilscape, and the observations from the wetland and soil attribute subsets. Figure 1 also 

shows the relationship between the soilscapes and the soil attribute subsets, which indicates the 

combination subsets. 
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Figure 1. Inputs and outputs of subsetting the FULLSL. The environmental layers elevation, 
valley depth, total annual precipitation, and mean annual temperature are shown in A, B, C, and 
D, respectively. The soilscape, soil attribute, and wetland subsets are shown in E. Note that the 
combination subset can be inferred according to the intersection of soil attribute and soilscape 
subsets (E). F shows boxplots of the environmental layers by soilscape. 

 The distribution of SOC content in the FULLSL and subset spectral libraries was 

characterized by its mean, minimum, median, maximum, standard deviation (StDev), coefficient 

of variation (CV), skewness, and kurtosis. Skewness is a measure of the asymmetry of a 

frequency distribution around its mean. A high absolute value of skewness indicates an 

asymmetric distribution. Skewness was calculated according to Equation 1: 

 𝑆𝑆𝑘𝑘𝑆𝑆𝑆𝑆𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆 =  
1
𝑛𝑛∗ ∑ (𝑦𝑦𝑖𝑖−𝑦𝑦�)3𝑛𝑛

𝑖𝑖=1

(�1𝑛𝑛∗ ∑ (𝑦𝑦𝑖𝑖−𝑦𝑦�)2𝑛𝑛
𝑖𝑖=1 )3

;  (1) 

where 𝑛𝑛 is the number of observations with 𝑖𝑖 = 1, 2, …, 𝑛𝑛, 𝑦𝑦𝑖𝑖 is the observed value at the 𝑖𝑖th 

observation, and 𝑦𝑦� is the mean of the observed values. Kurtosis describes the “tailedness” of a 

distribution near its central mode. A value greater than 3 indicates the presence of a heavy tail 

relative to the normal distribution. Kurtosis was calculated according to Equation 2: 
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 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝑙𝑙𝑆𝑆𝑖𝑖𝑆𝑆 =  
1
𝑛𝑛∗ ∑ (𝑦𝑦𝑖𝑖−𝑦𝑦�)4𝑛𝑛

𝑖𝑖=1

(�1𝑛𝑛∗ ∑ (𝑦𝑦𝑖𝑖−𝑦𝑦�)2𝑛𝑛
𝑖𝑖=1 )4

− 3;  (2) 

where 𝑛𝑛, 𝑦𝑦𝑖𝑖, and 𝑦𝑦� are as previously defined.  

 The difference in SOC content was assessed between the subsets and the FULLSL. The 

median unprocessed spectrum of the FULLSL was plotted to explore its compositional structure. 

Moreover, the subset spectra were subjected to a PCA to explore its structure and variance. The 

similarity of spectra within the wetland, soilscape, soil attribute, and combination subset groups 

was assessed based on the scores of the first two PCs.  

Calibration Model Development 

 A calibration model was developed using the spectral and analyte data from the FULLSL 

and each subset. The models will hereafter be referred to by their subset names: FULLSL, 

WG10, WL10, CALC, NOCALC, SS1, SS2, SS3, SS4, SS1_CALC, SS1_NOCALC, 

SS2_CALC, SS2_NOCALC, SS3_CALC, SS3_NOCALC, SS4_CALC, and SS4_NOCALC. 

Model development included residual outlier detection and removal, data-splitting for model 

calibration and validation, and optimization of a partial least squares regression (PLSR). An 

initial PLSR model was constructed for each subset using the complete subset dataset. This 

initial model was fitted with 15 components and served as the reference for residual outlier 

detection and PCs optimization through cross validation. Outliers identified as the largest 1% of 

prediction residuals or, in the case of models with fewer than 100 observations, the single largest 

residual, were removed from each subset. This procedure has been suggested because analyte 

errors are inevitable in large databases and the potential impact of these errors can be diminished 

without compromising model integrity by removing a small percentage of the data (Sanderman 

et al., 2020; Seybold et al., 2019).  
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 Following outlier removal, observations in each subset were split into calibration and 

validation sets to train and test the model, respectively. Using the Kennard-Stone (Kennard & 

Stone, 1969) algorithm from the prospectr (Stevens & Ramirez-Lopez, 2021) package, 80% of 

observations were selected for the calibration set and 20% for the validation set to assess the 

predictive performance of the model. The Kennard-Stone algorithm uniformly covers the 

predictor space by maximizing the distances between spectra (Briedis et al., 2020; Clingensmith 

et al., 2019; Ramirez-Lopez et al., 2014; Viscarra Rossel & Webster, 2012). This algorithm 

effectively projects the spectra to PCs and the Mahalanobis distance is computed on the score 

matrix. The most distant observations are selected for calibration and the remaining observations 

for validation.  

 PLSR models were developed from each calibration set using the pls package (Liland et 

al., 2021). PLSR is one of the most widely used algorithms in soil spectroscopy (Soriano-Disla et 

al., 2014; Varmuza & Filzmoser, 2009). PLSR effectively handles data with a greater number of 

predictors than observations, noise, and collinearity (Varmuza and Filzmoser, 2009). This 

algorithm shrinks the estimates in the coefficient matrix away from the least squares line by 

making the latent variables mutually orthogonal, thus only significant factors (in relation to the 

response) are included in the model (Cox & Gaudard, 2013). A benefit of using PLSR over more 

complex algorithms, is that qualitative soil interpretations are possible through an assessment of 

the component loadings and scores (Janik and Skjemstad, 1995). After the residual outlier 

removal and data splitting routines, the optimal number of PCs was assessed through the 

randomization testing (Van der Voet, 1994) and the one-sigma (Hastie et al., 2017) approaches. 

The maximum number of PCs, as suggested by either approach, was defined as the optimum. 

Ten-fold cross validation using random split into segments was used for model training. 
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Prediction and Model Performance Assessment 

 The optimal PLSR models for each subset were predicted on the subset validation set. 

The performance of a subset model was also compared with that of the FULLSL on subset 

model. For each subset, the FULLSL on subset model (i.e., FULLSUB) was constructed using 

80% of all the spectral data in the FULLSL, ensuring that the calibration data from the subset 

were included in this percentage. Moreover, for each subset, the FULLSUB model was validated 

using the validation data from the subset. This allowed a fair comparison of model performance 

between the FULLSUB and subset models. It is important to note that the FULLSUB model 

construction process also included the residual outlier removal, data splitting, and PC 

optimization routines previously described.  

 Model performance was evaluated by the coefficient of determination (R2; Equation 3), 

the root mean square error (RMSE; Equation 4), the mean absolute error (MAE; Equation 5), the 

ratio of performance to deviation (RPD; Equation 6), and the ratio of performance to 

interquartile range (RPIQ; Equation 7). The R2 is the ratio of model variability to variability in 

the observed values and can be used to assess the strength of the relationship between the 

predicted and observed values. For this study, an R2 greater than .80 is considered a reliable 

model and an R2 less than .80 an unreliable model (Chang et al., 2001). The RMSE measures the 

average difference between the predicted and observed values and is in units of the response. The 

MAE measures the bias of the model predictions and indicates the magnitude of model error. 

The RPD can be interpreted as the magnitude of improvement achieved by the model over using 

the mean of the reference data as a predicted value (Viscarra Rossel et al., 2008). The RPD has 

been widely adopted by the soils community as a metric to assess the usefulness of a prediction 

model as well as to compare the performance of different models (Bellon-Maurel et al., 2010; 
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Bellon-Maurel and McBratney, 2011). Chang et al. (2001) suggested a performance rating 

system based on the RPD value that has been adopted for this study. According to Chang et al. 

(2001), an RPD greater than 2.00 indicates a reliable model, an RPD between 1.40 and 2.00 

indicates a fair model, and an RPD less than 1.40 constitutes an unreliable model. The ratio of 

performance to interquartile range (RPIQ) was proposed by Bellon-Maurel et al. (2010) as a 

better metric than RPD for skewed data. The RPIQ scales the spread of the data using the 

interquartile range rather than the standard deviation. This allows for the comparison of model 

performance across different datasets with non-normal distributions. Based on the work of 

Ludwig et al. (2019), this study considers an RPIQ greater than 2.70 as indicative of a reliable 

model, between 1.89 and 2.70 as a fair model, and less than 1.89 as an unreliable model.  

 𝑅𝑅2 = 1 −  ∑(𝑦𝑦𝑖𝑖− 𝑦𝑦�𝑖𝑖)2

∑(𝑦𝑦𝑖𝑖− 𝑦𝑦�)2
 (3) 

 𝑅𝑅𝑅𝑅𝑆𝑆𝑅𝑅 = �1
n
∑ (𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖)2𝑛𝑛
𝑖𝑖=1  (4) 

 𝑅𝑅𝐴𝐴𝑅𝑅 =  1
𝑛𝑛

 ∑ |𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖|𝑛𝑛
𝑖𝑖=1   (5) 

 𝑅𝑅𝑅𝑅𝑅𝑅 =  𝑠𝑠
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

 (6) 

 𝑅𝑅𝑅𝑅𝐼𝐼𝑅𝑅 =  𝑄𝑄3−𝑄𝑄1
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

 (7) 

where: 𝑛𝑛, 𝑦𝑦𝑖𝑖, and 𝑦𝑦� are as previously defined, 𝑦𝑦� is the predicted value, 𝑆𝑆 is the standard deviation 

of the observed values in the calibration or validation set, 𝑅𝑅1 is the first quartile of the observed 

values that equals the 25th percentile, 𝑅𝑅3 is the third quartile that represents the 75th percentile. 

Results and Discussion 
Subsetting and Data Distribution 
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 The FULLSL had a mean SOC content of 2.30%, a median content of 1.67%, and ranged 

from 0.12 to 30.29% (Table 1). The StDev (3.04%) of the FULLSL indicated high variance. The 

high, positive skewness and kurtosis indicated substantial deviation from the normal distribution 

and a right-skewed distribution. Previous studies using MIR and PLSR have reported a similar 

distribution of SOC content (Brown et al., 2006; Seybold et al., 2019; Wijewardane et al., 2016, 

2018) and have applied a square-root transformation (e.g. Baldock et al., 2013; Briedis et al., 

2020; S. Dangal et al., 2019; Sanderman et al., 2020) or a log transformation (e.g. Gomez et al., 

2020; Knox et al., 2015; Stumpe et al., 2011; Vasques et al., 2010) to approximate a normal 

distribution. In this study, the analyte data were not transformed, because an initial PLSR with 

log- and another with square-root transformation indicated no improvement. In consideration of 

the skewed distribution of the data, the RPIQ was provided as a metric to evaluate model 

performance (Bellon-Maurel et al., 2010). 

 The median spectrum of the raw (unprocessed) FULLSL is presented in Figure 2. The 

shaded area in this figure represents the median +/- the median absolute deviation. Several high 

absorption peaks associated with mineral (a, f, and g) and organic (b, c, d, and e) soil constituents 

can be identified. The absorption peak at 3620 cm-1 (a) is associated with mineral O-H bonds of 

kaolinite, smectite, and illite (Nguyen et al., 1991; Wander & Traina, 1996). The sharp peaks at 

820 cm-1 (f) and 710 cm-1 (g) can be attributed to the presence of iron oxides (Soriano-Disla et 

al., 2014). Several high absorption bands related to C=O bonds (1870 cm-1, b; 1790 cm-1, c; and, 

1640 cm-1, d) and C-O bonds (1170 cm-1, e) of organic matter can be observed. These 

characteristic features are in agreement with functional groups identified in the spectra analyzed 

by other studies (Bellon-Maurel & McBratney, 2011; Gomez et al., 2020; Viscarra Rossel & 

Behrens, 2010; Wijewardane et al., 2018, 2018). 
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Figure 2. Median (solid line) and median +/- median absolute deviation (shaded region) of the 
mid-infrared spectrum of the unprocessed FULLSL. Diagnostic bands associated with clay 
minerals (a, f, and g) and soil organic matter (b-e) are shown. 

 The WL10 subset had a lower StDev than the FULLSL (2.00% vs. 3.04%), whereas the 

WG10 subset had a higher StDev (5.90%) (Table 1). Moreover, the skewness and kurtosis of the 

wetland subsets were lower than those of the FULLSL. Figure 3a shows a plot of the mean and 

StDev of PC1 and PC2 scores for the wetland subsets. The quadrant position of the mean score 

and the width of the error bars indicate considerable differences between the spectral variability 

of WL10 and WG10. The distinction in spectral variance between these subsets confirms their 

difference in chemical composition. Although the WG10 subset had a higher SOC variance than 

WL10, it exhibited lower spectral variance. This may be due to the presence of more 

homogeneous chemical composition in wetland soils with higher SOC content because the soil 

matrix is dominated by organic material.  
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Table 2. Summary statistics of soil organic carbon (SOC) content in wt% for each soil spectral library. 

Dataset n Min. Max. Median Mean Q1 Q3 StDev Variance Skewness Kurtosis 

FULLSL 1739 0.12 30.29 1.67 2.30 1.16 2.42 3.04 9.27 5.90 40.40 

WL10 116 0.53 9.58 2.79 3.25 1.71 4.26 2.00 3.98 0.98 0.46 

WG10 37 10.03 30.29 19.80 20.40 15.87 25.44 5.90 34.82 -0.16 -1.00 

SS1 813 0.20 8.44 1.54 1.66 1.10 2.00 0.92 0.85 1.90 7.37 

SS2 94 0.22 9.20 1.12 1.48 0.85 1.52 1.36 1.84 3.61 15.93 

SS3 485 0.34 7.32 1.90 2.18 1.38 2.77 1.16 1.34 1.34 2.21 

SS4 194 0.12 4.80 1.44 1.66 1.01 2.16 0.95 0.91 1.07 1.09 

CALC 194 0.30 9.20 2.15 2.39 1.42 3.11 1.36 1.86 1.41 3.65 

NOCALC 1392 0.12 8.44 1.56 1.73 1.10 2.10 0.99 0.98 1.78 5.57 

SS1_CALC 51 0.82 6.09 1.93 2.30 1.42 2.61 1.22 1.48 1.44 1.61 

SS1_NOCALC 762 0.20 8.44 1.52 1.62 1.09 1.95 0.89 0.79 1.91 8.38 

SS2_CALC 27 0.49 9.20 0.96 1.81 0.70 1.50 2.13 4.52 2.67 6.99 

SS2_NOCALC 67 0.22 5.30 1.17 1.35 0.87 1.53 0.86 0.75 2.52 8.53 

SS3_CALC 53 1.09 6.16 2.88 3.01 2.29 3.39 1.06 1.12 0.87 0.79 

SS3_NOCALC 432 0.34 7.32 1.79 2.08 1.35 2.62 1.13 1.28 1.52 3.01 

SS4_CALC 63 0.30 4.80 2.05 2.21 1.34 2.87 1.11 1.24 0.53 -0.44 

SS4_NOCALC 131 0.12 4.54 1.24 1.39 0.89 1.83 0.74 0.55 1.08 2.24 

Note: n = number of observations; Q1 = first quartile; Q2 = third quartile; StDev = standard deviation. 
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 Subsetting by soilscapes reduced the variance in SOC for all four subsets compared with 

the FULLSL. The greatest reduction in SOC StDev corresponded to SS1 (from 3.04% in 

FULLSL to 0.92%) and the smallest reduction corresponded to SS2 (1.36%) (Table 1). Among 

the soilscape subsets, SS3 had the highest mean (2.18%) and median (1.90%) SOC content. This 

soilscape had the lowest elevation and the highest VD, MAT, and TAP in relation to the other 

soilscapes. The environmental conditions of SS3 are conducive to greater supply and 

accumulation of SOC, which explains the relatively higher SOC content. The SS2 subset had the 

lowest mean (1.48%) and median (1.12%) SOC content of the soilscapes. Additionally, SS2 had 

the highest elevation and lowest VD, MAT, and TAP. The lower TAP may explain the low SOC 

content. The soilscape with the lowest maximum value of SOC content (4.80%) was SS4. This 

soilscape had a wide range in elevation, high MAT, and low TAP and VD. Presumably, high 

MAT and low TAP would result in lower SOC content due to less biomass production. SS1 was 

characterized as having low elevation, high VD, low MAT, and relatively high TAP. This 

soilscape had a relatively high maximum SOC (8.44%) and a relatively low StDev (0.92%). The 

patterns observed in SOC content in the soilscapes somewhat correspond to those of Burke et al. 

(1989) who concluded that SOC content in the U.S. Central Plains Grasslands, a region 

encompassing Nebraska and Kansas, increased with precipitation and decreased with 

temperature. At the soilscape scale, precipitation appears to be a more significant driver of SOC 

variability than temperature as evidenced by the higher SOC content of the eastern soilscapes 

(SS1 and SS3) that experience greater TAP.  

 Significant overlap in the mean and StDev of PC 1 and PC2 scores existed between SS1 

and SS3 and between SS2 and SS4 (Fig. 3b). More negative scores for PC1 occurred in 

observations from SS2 and SS4 than SS1 and SS3. Contrarily, more positive scores for PC1 
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occurred in observations from SS1 and SS3. The greater spectral similarity between SS1 and SS3 

and between SS2 and SS4 parallels similarities in environmental conditions, particularly 

elevation, VD, and TAP. SS1 and SS3 presented higher TAP, higher VD, and lower elevation 

than SS2 and SS4. The reader is referred to Figure 1 for boxplots showing the data distribution of 

the environmental layers according to the soilscape. Overall, SS1 appeared to have the smallest 

spectral variance as illustrated by the shorter error bars.  

 

Figure 3. Plots of mean (points) and standard deviation (error bars) of the scores of the first two 
principal components for each subset within the wetland (a), soilscape (b), soil attribute (c), and 
combination (d) subsets group. The reader is referred to the online version of this article for the 
colored figure.  

 Subsetting by soil attribute reduced the variance in SOC compared with the FULLSL. 

The greatest reduction in StDev corresponded to NOCALC (0.99%) and the smallest 

corresponded to CALC (1.36%) (Table 1). A study using the same KSSL dataset for a similar 



 

148 
 

geographic area, also reported higher SOC contents in soils with higher concentration of 

carbonates (Seybold et al., 2019). Regarding the spectral variance, there was considerable 

distinction between PC1 and PC2 scores of CALC and NOCALC (Fig. 3c). The spectral variance 

was higher for CALC as indicated by the width of its error bars. This corroborates the hypothesis 

that subsetting by calcareous/non-calcareous reduces the spectral variance of the NOCALC 

subset. In each soil attribute subset, the spectral variance corresponded to the SOC variance: 

CALC had higher spectral and SOC variance, whereas NOCALC had lower spectral and SOC 

variance.  

 Subsetting by a combination of soilscape and soil attribute reduced the SOC StDev in 

comparison to the FULLSL. SS2_CALC had the highest standard deviation (StDev = 2.13%) 

(Table 1). Moreover, SS2_CALC also had the fewest number of observations (n = 27) and the 

highest maximum value (9.20%) of SOC content across all combination subsets. A plausible 

explanation for the high StDev of SS2_CALC is that SS2 and CALC had the highest StDev in 

their corresponding subset group. Accordingly, the lowest variance would be expected to occur 

in SS1_NONCALC because SS1 and NOCALC had the lowest StDev in their corresponding 

subset group. Nevertheless, the greatest reduction in StDev corresponded to SS4_NOCALC 

(0.74%). A plausible explanation for this discrepancy is that subsetting by soil attribute (CALC 

or NOCALC) contributes to a greater reduction in SOC variance than subsetting by soilscapes. 

Moreover, the StDev of NOCALC combination subsets was smaller than that of their CALC 

counterparts in three of the four NOCALC combination subsets (SS1_NOCALC, 

SS2_NOCALC, and SS4_NOCALC). The highest mean (3.01%) and median (2.88%) SOC 

content corresponded to the SS3_CALC subset and agreed with the highest mean and median of 

SS3 and CALC in their corresponding subset group. The lowest mean SOC content corresponded 
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to SS2_NOCALC (1.35%), which matched the lowest mean of SS2 and NOCALC in their 

corresponding subset group. Compared with the SOC variance of their soilscape and soil 

attribute subset counterparts, only three combination subsets (SS1_NOCALC, SS2_NOCALC, 

SS4_NOCALC) had a reduced SOC variance. All combination subsets except for SS3_CALC 

and SS4_CALC had high values of skewness and kurtosis indicating deviation from the normal 

distribution. 

 Regarding spectral variance of the combination subsets, SS1_NOCALC and SS4_CALC 

were the most distant from each other on the PC1 and PC2 scores plot (Fig. 3d). Their disparate 

spectral variance may be related to the difference in environmental conditions (as denoted by 

SS1 and SS4) and in spectral variance between SS1 and SS4 and between CALC and NOCALC 

subsets. Combination subsets belonging to the same soil attribute (CALC or NOCALC) were 

closer to each other in spectral space than the combination subsets belonging to the same 

soilscape. A plausible explanation for this is that soil attribute subsetting reduces the spectral 

variance more so than subsetting by soilscapes. Some overlap occurred in the score values of all 

combination subsets. Higher spectral variance occurred in SS2_CALC and SS4_CALC and 

lower spectral variance occurred in SS1_NOCALC and SS3_NOCALC. It is important to note, 

as previously discussed, that the combination subsets with a NOCALC attribute also presented 

the lowest StDev of SOC content compared with their CALC counterparts.  

Effect of Subsetting on Model Performance 

 The relationship between observed and predicted SOC content for the subset models is 

presented in Figure 4. The PLSR model coefficients of the subset models are shown in Figure 5. 

The model performance statistics for calibration and validation are presented in Table 2. Metrics 

are presented for each subset and for the FULLSUB models. The percent reduction in RMSE 
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achieved by each subset model in comparison to its FULLSUB counterpart model is also 

provided. The reduction in RMSE determines the extent of model improvement. A maximum 

value of 0.40% for the RMSE calculated on the validation set was chosen to identify a desirable 

model for practical use. This threshold considers the lowest (0.22%) and highest (1.89%) RMSE 

values reported in studies also using SSLs from the KSSL (Seybold et al., 2019; Wijewardane et 

al., 2018). In addition, this threshold matches that defined by the “4 per 1000” global initiative to 

increase annual carbon stock (Minasny et al., 2017). Unless otherwise stated, only the validation 

metrics will be compared across models in the section that follows. 

 Subsetting by wetlands resulted in models that outperformed the FULLSUB models, even 

though they were calibrated with just 2% (WG10) and 7% (WL10) of the calibration set of their 

FULLSUB counterpart model (Table 2). This improvement might be attributed to a reduction in 

spectral variance because of the reduction in pedodiversity obtained through subsetting. The 

WG10 model reduced the RMSE by 56% over FULLSUB, whereas the WL10 model reduced it 

by 22%. The high RMSE of the wetland models (0.45 and 0.80% for WG10 and WL10, 

respectively), indicates that they are undesirable. Contrary to the undesirably high RMSE of the 

WG10 model, its R2 (0.99), RPD (11.06), and RPIQ (17.38) values imply that it is reliable. The 

high RMSE and R2 values of the WG10 model are likely a consequence of the high StDev of 

SOC content (Table 1). It is widely understood that the R2 and RMSE of spectroscopic models 

are positively related to the variance of the response (Stenberg et al., 2010). Unlike the WG10 

model, WL10 resulted in a fair value for R2 (0.72), fair value for RPD (1.90), and unreliable 

RPIQ (1.38). The much higher RMSE and lower R2 of WL10 compared with WG10, is likely a 

consequence of much higher spectral variance (Fig. 3a). 
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Figure 4. Scatterplots of predicted versus observed soil organic carbon content for each subset 
model. Note that these metrics were calculated using only the validation set of the subsets. 

 Although the WG10 model was calibrated on approximately 2% (n = 29) of the data of its 

FULLSUB counterpart and about 32% of the data of WL10, it greatly outperformed these 

models. This is contrary to the results of several studies that found that the predictive 

performance decreases with decreasing sample size (Clairotte et al., 2016; Gogé et al., 2014; 

Shepherd & Walsh, 2002). A likely explanation for the much-improved R2, RPD, and RPIQ of 

the WG10 model despite the smaller calibration size is its lower spectral variance. A study by 

Ramirez-Lopez et al. (2014) investigated the combined effect of calibration set size and three 
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calibration sampling algorithms, including spectrally stratified random sampling, on model 

performance. These authors found that when models are small, the spectrally stratified sampling 

improves model accuracy. This relationship would imply that when spectral variance is reduced 

in the calibration set (e.g., through the selection of spectrally similar observations, or in our case, 

subsetting by wetland and analyte value), prediction accuracy increases. 

 The regression coefficients contributing to the WG10 model showed large positive values 

at around 1750 cm-1 and 800 cm-1 (Fig. 5), consistent with the C=O bond of a carboxylic 

functional group and the presence of iron oxyhydroxides, respectively (Janik & Skjemstad, 1995; 

Soriano-Disla et al., 2014; Viscarra Rossel et al., 2008). Iron oxyhydroxides, that include 

ferrihydrite, goethite, and lepidocrocite, are particularly common in soils with elevated organic 

matter (goethite) and in noncalcareous soils that are seasonally anaerobic (lepidocrocite). These 

conditions are expected to occur in fine sand soils of wetlands that are seasonally flooded and 

have a high SOC content, such as those of the WG10 subset that were sampled from interdunal 

depressions of Nebraska (Dixon & Schulze, 2002). Negative coefficients consistent with signals 

obtained from calcium carbonates were present at 1500 cm-1, 2500 cm-1, and 2990 cm-1 (Baldock 

et al., 2013; Gomez et al., 2020; Reeves III et al., 2006; Sila et al., 2016). The negative 

coefficients agree with the expected inverse relationship between the high SOC content soils of 

the WG10 subset and soil inorganic carbon. The WL10 model was strongly influenced by 

spectra associated with constituents of soil organic carbon, specifically O-H stretching (3000 cm-

1; Hannah & Swinehart, 1974) and carboxylic functional groups (1750 cm-1; Janik & Skjemstad, 

1995; Viscarra Rossel et al., 2008).  
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Table 2. Cross validation and validation results of the partial least squares regression models for soil organic carbon. A negative (%) 
value of improvement by the subset model indicates that the FULLSUB model outperformed its counterpart subset model in terms of 
reduction in RMSE.  

  Subset Model 
FULLSUB Model Improvement 

by 

subset model 

(%) 
Dataset  n RMSE R2 MAE RPD RPIQ 

StDev 

SOC 

(%) 

RMSE 

 

R2 RPD RPIQ 

WG10 C 29 0.91 0.97 0.72 6.32 9.98 5.73 1.32 0.95 4.34 6.85 31 

 V 7 0.45 0.99 0.39 11.06 17.38 4.98 1.02 0.99 4.89 7.68 56 

WL10 C 92 1.31 0.60 0.93 1.56 2.14 2.05 1.88 0.51 1.09 1.50 30 

 V 23 0.80 0.72 0.50 1.90 1.38 1.53 1.03 0.59 1.48 1.07 22 

SS1 C 644 0.14 0.98 0.10 6.44 6.49 0.93 0.22 0.95 4.26 4.30 34 
 V 161 0.10 0.98 0.07 6.48 6.62 0.65 0.14 0.95 4.52 4.62 30 

SS2 C 74 0.53 0.89 0.37 2.85 1.46 1.50 0.68 0.82 2.21 1.13 23 
 V 19 0.16 0.80 0.14 2.02 2.10 0.33 0.19 0.87 1.75 1.83 13 

SS3 C 384 0.23 0.96 0.16 5.12 6.41 1.16 0.31 0.93 3.77 4.72 26 
 V 96 0.11 0.98 0.08 6.32 5.71 0.67 0.12 0.97 5.44 4.92 14 

SS4 C 154 0.21 0.96 0.15 4.84 5.78 1.01 0.35 0.89 2.85 3.40 41 
 V 38 0.12 0.97 0.11 5.69 8.36 0.70 0.28 0.90 2.54 3.74 55 

CALC C 154 0.37 0.93 0.26 3.79 4.85 1.40 0.41 0.92 3.46 4.43 9 

 V 38 0.20 0.97 0.16 5.28 4.87 1.07 0.37 0.89 2.87 2.65 46 

NOCALC C 1102 0.19 0.96 0.14 5.27 5.63 1.03 0.29 0.92 3.60 3.84 32 
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Note: C = calibration set; V = validation set; n = number of observations; RMSE = root mean square error of cross validation (for C) 
and root mean square error of validation (for V); MAE = mean absolute error; RPD = ratio of performance to deviation; RPIQ = ratio 
of performance to interquartile range; StDev = standard deviation.  

 V 276 0.12 0.97 0.09 5.40 5.70 0.66 0.15 0.95 4.24 4.49 21 

SS1_CALC C 40 0.26 0.96 0.18 4.78 4.72 1.23 0.26 0.96 4.73 4.67 1 

 V 10 0.19 0.98 0.17 6.59 3.81 1.28 0.13 0.99 9.72 5.62 -47 

SS1_NOCALC C 603 0.14 0.97 0.10 6.19 6.41 0.88 0.21 0.95 4.20 4.35 32 

 V 151 0.09 0.98 0.07 7.28 7.97 0.66 0.14 0.96 4.68 5.13 36 

SS2_CALC C 21 0.92 0.84 0.72 2.55 2.17 2.35 0.66 0.92 3.58 3.05 -40 

 V 5 0.25 0.87 0.19 1.41 1.94 0.35 0.38 0.54 0.93 1.29 34 

SS2_NOCALC C 53 0.49 0.74 0.34 1.94 1.47 0.95 0.72 0.61 1.33 1.01 32 

 V 13 0.21 0.56 0.17 1.38 1.49 0.29 0.18 0.90 1.59 1.71 -15 

SS3_CALC C 42 0.46 0.77 0.34 2.13 2.24 0.98 0.34 0.90 2.92 3.08 -37 

 V 10 0.26 0.96 0.19 3.79 3.49 0.99 0.18 0.97 5.43 5.01 -43 

SS3_NOCALC C 342 0.24 0.96 0.16 4.81 5.90 1.15 0.27 0.95 4.26 5.23 11 

 V 86 0.11 0.96 0.09 4.59 5.43 0.50 0.13 0.94 3.93 4.66 14 

SS4_CALC C 50 0.31 0.93 0.21 3.80 5.17 1.18 0.44 0.88 2.66 3.62 30 

 V 12 0.19 0.94 0.16 4.21 3.24 0.80 0.39 0.86 2.05 1.58 51 

SS4_NOCALC C 104 0.27 0.88 0.18 2.92 3.61 0.79 0.38 0.81 2.07 2.57 29 

 V 26 0.14 0.92 0.08 3.37 4.92 0.46 0.21 0.94 2.20 3.21 35 
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Figure 5. Partial least squares regression coefficients for the subset models (excluding the 
combination subsets). 

 Subsetting by soilscape resulted in models of reduced RMSE compared with the 

FULLSUB models. The greatest reduction in RMSE over its FULLSUB counterpart model was 

achieved by SS4 (55%), followed by SS1 (30%), then SS3 (14%), and SS2 (13%) subset models 

(Table 2). The SS4, SS1, SS3, and SS2 subset models were calibrated with 11%, 47%, 28%, and 

5% of the observations used to calibrate their FULLSUB counterpart model, respectively. These 
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results agree with several studies that have reported improved performance for calibration sets 

with reduced geographic range (Baldock et al., 2013; Shi et al., 2015; Sudduth & Hummel, 1996; 

Vasques et al., 2010). The underlying assumption for the superior performance of geographically 

constrained models is that the soils within each geographic area have similar pedologic 

conditions, which results in lower variation in organo-mineral components. In this study, the 

construction of soilscapes was aimed at reducing the pedologic diversity within each soilscape 

thus reducing variation in mineralogy and SOC chemistry.  

 The low RMSE of the soilscape models (0.10 to 0.16%) makes them desirable for SOC 

prediction. In terms of R2, RPD, and RPIQ, all soilscape models except for SS2, demonstrated 

better performance than their FULLSUB counterpart model. The performance metrics classify 

these models as reliable (R2 ≥ 0.97, RPD ≥ 5.69, and RPIQ ≥ 5.71). On the other hand, the SS2 

model barely met the threshold for R2 and RPD to be considered reliable, and its RPIQ (2.10) 

classifies it as only a fair model. The poorer performance of SS2 is likely a consequence of its 

high spectral variance (Fig. 3b) and high SOC variance, skewness, and kurtosis (Table 1) 

compared to the other soilscape models. The geographic region delineated by SS2 is very diverse 

in terms of its topography and climate. Consequently, it is possible that 74 observations were not 

sufficient to properly establish the relationships between pedologic diversity and SOC content. 

The best performing soilscape model was the SS1 model. A plausible explanation for the better 

performance of SS1 is that its observations had the lowest spectral (Fig. 3b) and SOC (Table 1) 

variance of any soilscape, and it was calibrated with the largest number of observations (n = 

644).  

 The soilscape models were strongly influenced by the presence of several functional 

groups related to organic and inorganic compounds (Fig. 5). For the SS1 model, large positive 
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peaks in the regression coefficients plot were observed at 1750 cm-1 and 1509 cm-1 consistent 

with carboxylic and amide organic structures (Janik & Skjemstad, 1995; Wander & Traina, 

1996). A large negative peak related to carbonyls (1850 cm-1) was also observed (Gomez et al., 

2020; Wander & Traina, 1996). This negative peak was likely associated with calcium 

carbonates of the calcareous soils in SS1. The pattern of positive and negative peaks was similar 

to that of the WG10 subset, which also indicated a positive relationship to organic constituents 

and negative relationship to inorganic constituents. The SS2 model coefficients plot showed a 

medium-sized positive peak at 1715 cm-1 and a large positive peak at 900 cm-1, indicating the 

influence of carboxyl groups (Baldock et al., 2013; Soriano-Disla et al., 2014; Stuart, 2004) and 

iron oxyhydroxides (Soriano-Disla et al., 2014), respectively. Two large negative peaks were 

consistent with calcium carbonates (2490 cm-1 and 1500 cm-1) and another was related to iron 

oxides (650 cm-1) (Reeves III et al., 2006; Sila et al., 2016; Soriano-Disla et al., 2014). A large 

negative peak occurred at 1550 cm-1, likely responding to the signal for amides or aromatic rings 

(Wander & Traina, 1996). If this was the case, it would be the effect of carbonates masking the 

amides and aromatic rings of organic carbon in the samples and it would cause noise in the 

model. This may explain the poor performance of the SS2 model. The spectral features that 

contributed significantly to the SS3 model were large positive coefficients at 2960 cm-1 

consistent with the symmetric stretch of a CH2 functional group (Wander & Traina, 1996), 2600 

cm-1 related to calcite (Nguyen et al., 1991), 2230 cm-1 representing the nitrile (C≡N) group 

(Stuart, 2004), and a medium-sized positive peak at 1720 cm-1 consistent with carboxyls 

(Soriano-Disla et al., 2014; Wander & Traina, 1996). Two large negative peaks were present at 

2490 cm-1 and 1850 cm -1 consistent with carbonate constituents and carbonyl (C=O) stretching 

(Reeves III et al., 2006; Stuart, 2004; Wander & Traina, 1996). The SS4 model coefficients were 
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large and positive at 1720 cm-1 and 700 cm-1, consistent with carboxyl (Baldock et al., 2013; 

Soriano-Disla et al., 2014) and iron oxides (Soriano-Disla et al., 2014), respectively. Large 

negative coefficients occurred in the region from 1750 to 1830 cm-1 consistent with carbonyl 

stretching of carbonates (Gomez et al., 2020; Stuart, 2004) and at 890 cm-1 representing iron 

oxyhydroxides (Soriano-Disla et al., 2014).  

 Subsetting by soil attribute resulted in models of improved performance over the 

FULLSUB models (Table 2). The CALC subset model reduced the RMSE by 46% over its 

FULLSUB counterpart, whereas the NOCALC subset model reduced it by 21%. The soil 

attribute subset models outperformed the FULLSUB models even though they were calibrated 

with only 11% (CALC) and 80% (NOCALC) of the calibration set of their FULLSUB 

counterpart model. This improvement can be attributed to a reduction in SOC and spectral 

variance obtained by subsetting. Overall, good agreement was found between the observed and 

predicted SOC values of each subset model as evidenced by their high R2 (0.97) and low RMSE 

(CALC: 0.20%, NOCALC: 0.12%) (Fig. 4). Additionally, the low RMSE, and high R2, RPD, 

and RPIQ indicate that the soil attribute subset models are desirable and reliable. The NOCALC 

model outperformed the CALC model, which can be attributed to the lower spectral and SOC 

variance (Fig. 3c and Table 1, respectively). Additionally, the superior performance of NOCALC 

may also be explained by the reduced interference caused by carbonates and the greater 

representation of organic constituents in the calibration model. Carbonates can degrade the 

prediction of SOC content; therefore, by subsetting, their negative effect can be constrained to 

the CALC model (Bellon-Maurel & McBratney, 2011; Soriano-Disla et al., 2014).  

 The CALC model was influenced by a positive coefficient at about 2620 cm-1 consistent 

with N-H stretching (Terhoeven-Urselmans et al., 2010) and a large positive coefficient at 1720 
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cm-1 related to carbonyl stretching (Baldock et al., 2013; Soriano-Disla et al., 2014) (Fig. 5). 

Additionally, there were large negative coefficients around 2470 cm-1 and 1830 cm-1 that were 

likely related to carbonates (Baldock et al., 2013; Hannah & Swinehart, 1974) and a medium-

sized negative coefficient around 650 cm-1 consistent with iron oxides (Soriano-Disla et al., 

2014). The NOCALC model was influenced by several medium-sized positive coefficients 

related to organic compounds, including one at 2620 cm-1 consistent with N-H stretching 

(Terhoeven-Urselmans et al., 2010), 2230 cm-1 representing the nitrile (C≡N) group (Stuart, 

2004), 1750 cm-1 consistent with carboxyls (Viscarra Rossel et al., 2008), and 1520 cm-1 related 

to aromatic C=C stretching (Ludwig et al., 2008; Wander & Traina, 1996). Like the CALC 

model, the largest negative coefficients present in the NOCALC model were consistent with 

carbonates (2470 cm-1 and 1800 to 1830 cm-1; Du & Zhou, 2009). The magnitude of the positive 

and negative coefficients of the NOCALC model was smaller than that of the CALC model; 

however, the NOCALC model considered more organic carbon constituents than the CALC 

model. Furthermore, the negative peaks associated with carbonates were larger for the CALC 

model, indicating the greater importance of these constituents in CALC.  

 Five of the eight combination subset models resulted in a reduced RMSE over their 

FULLSUB counterpart model (Table 2): SS4_CALC, SS1_NOCALC, SS4_NOCALC, 

SS2_CALC, and SS3_NOCALC (51%, 36%, 35%, 34%, and 14% reduction, respectively). 

These models were calibrated with 3.6%, 44%, 7.5%, 1.5%, and 25% of the calibration set of 

their FULLSUB counterpart model, respectively. Three combination subsets did not reduce the 

RMSE (SS1_CALC, SS3_CALC, and SS2_NOCALC), most likely due to their relatively higher 

spectral variance and small calibration set sizes (3-4% of the calibration set of their FULLSUB 

counterpart model). Regardless of the inferior performance of some combination subset models 
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compared with their FULLSUB counterpart, all models achieved RMSE of less than 0.40%, 

making them desirable models. Except for SS2_CALC and SS2_NOCALC, all other 

combination subset models achieved high enough values of R2, RPD, and RPIQ to deem them 

reliable models. The best performing model was SS1_NOCALC (RMSE = 0.09%, R2 = .98, 

RPD = 7.28, and RPIQ = 7.97). This model was calibrated with less than half (44%) of the 

calibration set of its FULLSUB counterpart model. The superior performance of SS1_NOCALC 

can be attributed to its low spectral variance (Fig. 3d), coupled with a relatively low SOC 

variance (Table 1). Furthermore, the SS1_NOCALC subset was derived from SS1 and NOCALC 

subset, whose models showed the best performance in their subset groups. The worst performing 

model in terms of RMSE was the SS3_CALC model (RMSE = 0.26%). A plausible explanation 

for the poorer performance of SS3_CALC is its relatively high SOC and spectral variance (Table 

1 and Fig. 3d, respectively) coupled with a very small calibration set size (3% of the calibration 

set of its FULLSUB counterpart model).  

 The reduction in error by the subset models was between 13 and 56%, using calibration 

sets containing 2 to 80% of the calibration set size of their FULLSUB counterpart model. 

Overall, the models for the wetland, soilscape, and soil attribute subsets outperformed their 

FULLSUB model counterpart (Table 2). The models for the wetland subsets were undesirable in 

terms of their RMSE values and only the WG10 model was reliable as determined by its R2, 

RPD, and RPIQ. The models for the soilscape subsets were desirable and reliable, except for the 

unreliable RPD of SS2. The models for the soil attribute subsets were both desirable and reliable. 

Five of the eight models for the combination subsets reduced the model error by 14 to 51% using 

calibration sets containing 1.5 to 44% of the calibration set size of their FULLSUB counterpart. 

The models for the combination subsets were all desirable and only two were not reliable 
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(SS2_CALC and SS2_NOCALC). The best model performance, as shown by the SS1 and 

NOCALC subset models, was achieved when their calibration sets had the lowest spectral and 

SOC variance across their subset group. The superior performance of SS1 and NOCALC subset 

models was transferred to SS1_NOCALC, which achieved the best model performance in the 

combination subset group. In general, small calibration set size did not impede the reduction in 

model error by the subset models when their spectral variance was low (as demonstrated by the 

WG10 subset model), a pattern that was also observed by Moura-Bueno et al. (2019). The 

inverse relationship between calibration set size and model error was greater in subsets with 

higher spectral variance, such as the SS3_CALC combination subset model. Subsetting by 

soilscapes, presence/absence of carbonates, a combination of soilscape and presence/absence of 

carbonates, and wetlands, can lead to subsets with observations that are more similar in their 

organo-mineral composition and spectra, which can result in improved model performance.  

Conclusions 

 The goal of this study was to determine whether subsetting a diverse MIR SSL by 

environmental, soil attribute, combination of environmental and soil attribute, and wetland 

criteria would improve model performance over a prediction made using a full dataset spanning 

two states. We predicted SOC content in the top 30 cm for Nebraska and Kansas in the United 

States using two datasets: (i) a dataset including all the observations in the MIR SSL, and (ii) a 

targeted dataset with the observations corresponding to each subset. We validated both versions 

of the models (full and subset) using the same validation set (i.e., the validation set of each 

subset). The overall findings of this study are listed next.  
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1. Isolating soils based on their distinct organo-mineral composition (i.e., wetland criterion) 

improves the model predictive performance, but still results in undesirable models as 

determined by the model error.  

2. Subsetting by large-scale topo climatic zones (i.e., soilscape criterion) reduces the model 

error and results in desirable and reliable models. 

3. Subsetting by the presence/absence of carbonates (i.e., soil attribute criterion) reduces 

model error and results in reliable and desirable models.  

4. Subsetting by a combination of soilscape and soil attribute criteria, results in desirable 

and reliable models when the model calibration set contains more than 53 observations.  

5. Overall, the reduction in calibration set size by subsetting negatively affects the 

predictive performance of models when the spectral variance of the subset is high.  

6. The best predictive performance is achieved by subset models calibrated with 

observations of reduced spectral and SOC variance, regardless of the number of 

observations for calibration.  

 If MIR spectroscopy will complement conventional chemical analysis in a fully 

operational state and meet the high demand for local SOC estimates, it must be optimized for 

efficiency. Optimization ensures the resource-efficiency of MIR spectroscopy while improving 

the predictive performance of calibration models. The subsetting methods presented in this study 

provide a novel, effective optimization scheme that can guide the construction of new soil 

spectral libraries, as well as the expansion and efficient use of existing ones, while overcoming 

some of the inherent challenges of predicting SOC with a small or large SSL.  

 A challenge associated with building new SSLs is determining the optimal sample 

allocation to achieve accurate predictions while maintaining the low-cost advantage of soil 
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spectroscopy. Our results suggest that stratifying an area by topo climatic zones and sampling 

within the zones (i.e., soilscapes) can be used as a low-cost, bottom-up approach for SSL 

construction. A sampling scheme based on the subsetting criteria presented in this study would 

ensure proper resource allocation to build small, local libraries of desirable and reliable 

prediction performance. Furthermore, these local libraries, products of a bottom-up approach, 

can be integrated into larger, regional SSLs. A common challenge when subsetting SSLs is the 

access to ancillary information for subsetting. We overcome this potential challenge by using 

criteria that do not require additional chemical analysis and depend on free and accessible 

remotely sensed data (soilscapes), and optionally, the use of criteria that is based on existing soil 

information or that can easily be field estimated (presence/absence of carbonates). Subsetting can 

reduce the demand for high performance computing resources that are needed when building 

calibration models from large SSLs, particularly when using complex, nonlinear algorithms. 

Moreover, subsetting can reduce the bias associated with predictions made at local scales using 

large SSLs, or when small changes in SOC, such as those caused by management, must be 

detected. These benefits can make soil spectroscopy a more viable method of SOC prediction for 

carbon monitoring.  
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CHAPTER FOUR: Spiking and subsetting by taxonomy reduce the error of United States 
MIR models for soil organic carbon prediction in Haiti 

 

Abbreviations:  

BC, baseline correction; cLHS, conditioned Latin Hypercube Sampling; DRIFT, diffuse 

reflectance infrared Fourier transform; GPR, Gaussian process regression; KSSL, Kellogg Soil 

Survey Laboratory; LIMS, Laboratory Information and Management System; MBL, memory-

based learning; MIR, mid-infrared; MSC, multiplicative scatter correction; PC, principal 

component; PLSR, partial least squares regression; RPD, ratio of performance to deviation; 

RPIQ, ratio of performance to interquartile range; SG, Savitzky–Golay; SOC, soil organic 

carbon; SSL, soil spectral library. 
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Abstract 

 Soil quality is essential to achieve and maintain environmental health, agricultural 

productivity, and soil and food security. This is especially true for countries like Haiti that 

experience severe soil degradation. Soil organic carbon data can be used to inform decision 

making to improve soil quality, but current methods of measuring organic carbon can be 

expensive. Large mid-infrared soil spectral libraries, such as that compiled and curated by the 

United States Department of Agriculture, provide an opportunity to build robust calibration 

models that can be used to predict organic carbon in new areas like Haiti. However, appropriate 

selection of calibration sets is required. Subsetting and spiking are optimization techniques that 

can be applied in library transfer to reduce model prediction error. The objective of this study 

was to evaluate the effectiveness of pedologic criteria and spiking to construct a calibration 

model from a United States mid-infrared soil spectral library (i.e., general library) that would 

accurately predict soil organic carbon content in the Cul de Sac region of Haiti (i.e., target area). 

Eight schemes were tested to construct calibration models using a fraction of the general library 

to predict soil organic carbon of A horizon soils in the target area. The schemes included models 

constructed from observations of the same soil taxonomic orders as those described in the target 

area, the same suborders, same taxonomic class in combination with a minimum carbonate 

content, and spiked variations of all previous models. Memory-based learning was used as the 

modeling approach for the general library models. Additionally, a partial least squares regression 

was used to construct a calibration model using a random sample of target area observations. 

Several thresholds to rate model performance were used to assess the desirability and reliability 

of the resulting models. Subsetting by shared suborders (RMSE = 0.65 and 0.70%; RPIQ = 1.56 

and 1.44 for the suborders and suborders plus carbonate content model, respectively) improved 
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predictive performance over subsetting by shared orders (RMSE = 0.76 and 0.81%; RPIQ = 1.34 

and 1.25 for the orders plus carbonate content and orders model, respectively), but neither 

model’s predictions were desirable. Spiking the general library calibration sets with 25 target 

area observations produced the most desirable and reliable predictions (RMSE: 0.28-0.33%; 

RPIQ: 3.16-2.72). In addition, the spiked models outperformed the target area model (RMSE = 

0.45%; RPIQ = 3.81) in terms of reduced prediction error. Our results suggest that the 

optimization techniques employed in this study were effective in reducing model prediction error 

and can be used to predict soil organic carbon content in new target areas using the United States 

Department of Agriculture’s mid-infrared soil spectral library. 
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Introduction 
 Soil organic carbon (SOC) provides ecosystem services that support life, sequester 

carbon, and regulate climate (Smith et al., 2015). Besides its benefit for climate change 

mitigation, soil carbon sequestration can be a cost-effective and environmentally friendly 

strategy to improve soil quality (Lal, 2004; Smith et al., 2015). Enhancing soil quality is 

especially crucial in countries like Haiti that have experienced severe soil depletion and 

degradation by natural and anthropogenic means (Kome et al., 2018). Thus, SOC content 

measurement and monitoring in Haiti is fundamental to achieving and maintaining 

environmental health, sustainable agricultural productivity, and soil and food security (Lal, 

2004). 

 Soil carbon is typically measured as total carbon (sum of SOC and inorganic carbon) or 

as organic carbon after the removal of the inorganic fraction, using dry combustion or wet 

oxidation. Dry combustion is widely accepted as the standard method for total carbon 

measurement (FAO, 2019; Nelson & Sommers, 2018). Although it produces accurate 

measurements, it is time-consuming, expensive, and can underestimate SOC content in soils with 

char (Briedis et al., 2020; FAO, 2019). Moreover, the cost of analysis increases with the removal 

of inorganic carbon if a measure of SOC is desired (Davis et al., 2017). Wet oxidation, 

commonly known as the Walkley-Black method (Walkley & Black, 1934), is more susceptible to 

error than dry combustion and generates toxic chemical waste (Tivet et al., 2012; Walkley & 

Black, 1934). Overall, the monetary and environmental cost associated with measuring SOC 

through either method is a barrier to SOC monitoring and management. Therefore, an accurate, 

environmentally friendly, and cost-effective method of SOC measurement is needed.  
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 Over the past 30 years, diffuse reflectance spectroscopy in the mid-infrared (MIR) range 

has developed to be an accurate, cost-effective, and environmentally safe method of SOC 

analysis (Barra et al., 2021; Gholizadeh et al., 2013; Li et al., 2021; Nocita et al., 2015; Viscarra 

Rossel & Webster, 2012). SOC analysis using MIR spectroscopy relies on the construction of 

calibration models from spectral-analyte (SOC content) pairs contained in a soil spectral library 

(SSL). Several studies have demonstrated that SOC predictions for a specific area are more 

accurate when calibration models are constructed from geographically local (i.e., local) SSLs 

than from regional, national, or global SSLs (Briedis et al., 2020; Gogé et al., 2014; Janik et al., 

2007; Minasny et al., 2009; Ng et al., 2022; Wetterlind & Stenberg, 2010). The higher prediction 

accuracy obtained by local calibration models can be attributed to the smaller variation in soil 

and spectral properties within a geographically local area. Reduced spectral and analyte variance 

coupled with greater mineralogical similarity between the calibration and validation set improves 

prediction (Guerrero et al., 2014; Stenberg et al., 2010; Sudduth & Hummel, 1996). However, 

local calibration models are often not suitable for prediction in new areas and construction of 

many site-specific SSLs to predict across several different areas or across a large area may not be 

cost-effective (Briedis et al., 2020; Guerrero et al., 2014, 2016; Wetterlind & Stenberg, 2010).  

 Library transfer, or the application of an existing, general SSL (typically a national, 

continental, or global SSL) to a new site (i.e., target area), has been successfully employed for 

SOC prediction (Brown et al., 2006; Dangal et al., 2019; Demattê et al., 2016; Nocita et al., 

2014; Terra et al., 2015; Vasques et al., 2010; Viscarra Rossel et al., 2016; Wijewardane et al., 

2018). Although a national, continental, or global library typically contains many observations, 

its size does not guarantee that spectroscopic models derived from it will perform well in a target 

area, because it may fail to capture local variability (Brown et al., 2006; Guerrero et al., 2014; 
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Lobsey et al., 2017; Ramirez-Lopez et al., 2013; Shepherd & Walsh, 2002). Moreover, national, 

continental, and global SSLs generally span a wide range of SOC values, which may increase the 

model prediction error (Stenberg et al., 2010). In response to these challenges, several 

researchers have applied techniques to optimize the use of existing SSLs for the accurate 

prediction of SOC in a target area.  

 Subsetting, spiking, and a combination of both have been used to optimize library 

transfer. Subsetting is an optimization strategy to construct targeted calibration models through 

the stratification of an existing SSL. Effective targeted calibration models increase the 

representativeness of the calibration set to the prediction set and thus, improve model prediction 

accuracy (Dorantes et al., 2022). Spiking is the addition of target area observations to a 

calibration model built from an existing SSL to predict in the target area (Guerrero et al., 2014). 

This technique ensures that the calibration model constructed from the existing SSL will contain 

similar spectral and analyte variability to the prediction set (Nocita et al., 2015).  

 Several spectroscopic studies have used subsetting by spectral similarity to improve the 

predictive performance of their calibration models for library transfer (Barthès et al., 2020; 

Briedis et al., 2020; Ng et al., 2022). Moreover, several studies have demonstrated the 

effectiveness of spiking for library transfer using a global (Brown, 2007; Sankey et al., 2008) and 

national (Gogé et al., 2014; Guerrero et al., 2016; Peng et al., 2013) SSL. Additionally, 

subsetting and spiking has been used in combination for library transfer. For instance, Wetterling 

and Stenberg (2010) spiked a spectral neighbors model derived from a national SSL with farm-

specific observations. The spiked spectral neighbors calibration model resulted in comparable 

prediction accuracy to a farm-specific model and outperformed the calibration model constructed 

from the spiked, full set national SSL. The authors attributed the superior performance of the 
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spiked spectral neighbors model to its smaller size, which resulted in a greater relative proportion 

of local observations and thus, greater representativeness of the prediction set. Guerrero et al. 

(2014) evaluated 13 subsetting strategies to select a spiking set for a national SSL to predict SOC 

across target areas in three countries. A calibration model constructed with a spiking set selected 

according to spectral neighbors resulted in the best predictions. Like Guerrero et al. (2014), 

Lobsey et al. (2017) used subsetting by spectral neighbors to select a representative set of local 

observations with which to spike a global SSL for SOC prediction in two countries. The spiked 

global SSL calibration model performed as well or better than a calibration model constructed 

using only country-specific observations. Overall, these studies demonstrate that library transfer 

can be improved through subsetting and spiking.  

 This study investigated the effectiveness of pedologic subsetting criteria, spiking, and a 

combination of both to construct calibration models for the prediction of SOC content in a region 

of Haiti using a national, United States MIR SSL. The subsetting criteria used general soil 

information that can be inferred and thus, does not require laboratory analysis. Our main 

objectives were to evaluate the effectiveness of a fraction of a national MIR SSL that is (i) 

taxonomically similar (observations from the same soil orders), (ii) taxonomically more similar 

(observations from the same suborders), (iii) taxonomically and mineralogically similar (same 

orders and a minimum carbonate content), (iv) taxonomically more similar and mineralogically 

similar (same suborders and a minimum carbonate content), and (v) a spiked variant of each 

previous set, to construct a spectral neighbors calibration model that will yield an accurate 

prediction of SOC content in the target area (region of Haiti). Additionally, a model constructed 

using only observations from the target area was also generated for comparison of model 

performance. We hypothesized that:(i) the spectral neighbors models constructed from a more 
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taxonomically similar and mineralogically-similar set (i.e., suborders and carbonate content set) 

would result in lower model prediction error than their soil order counterparts, and that (ii) 

spiking would decrease model prediction error and increase model prediction accuracy. 

Materials and Methods 

Soil Spectral Libraries 

 The target area encompasses 30 km2 of the Cul de Sac region (18° 36' N and 72° 9' W) in 

the Ouest department of Haiti. It is located northeast of Port-Au-Prince and south and west of 

two brackish lakes (Trou Caiman and Lake Azuei, respectively). The Cul de Sac area is a valley 

filled with marine and erosional deposits that is situated between uplifted mountain ranges. 

Agriculture is the dominant land use and a smaller portion of the region is savanna vegetation. 

The elevation is between 52 and 330 meters above sea level, the mean temperature is 26.2°C, 

and the mean annual precipitation is 740 mm (USAID et al., 2014). Landscapes in the area have 

developed from tectonic uplift and subsequent erosion as well as sediment transfer and 

deposition by streams and rivers. Limestone residuum, marine deposits of various particle sizes, 

colluvium, and calcareous alluvium are the soil parent materials. The soils described in a recent 

soil survey of the Cul de Sac are: Ustalfs, Ustepts, and Ustolls (USAID et al., 2014). 

Isohyperthermic and ustic are the soil temperature and moisture regime, respectively (Libohova 

et al., 2017). The soils have high concentrations of carbonates, particularly calcite (CaCO3), 

throughout their profiles and some have high sodium concentrations (USAID et al., 2014). As a 

result, the surface horizons exhibit slight to violent effervescence and the terms “carbonatic,” 

“calcidic”, and “petrocalcic” occur in some of the soil taxonomic classifications.  
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 The United States Department of Agriculture-Natural Resources Conservation Service 

National Soil Survey Center-Kellogg Soil Survey Laboratory (KSSL) has collected and curated 

MIR spectral and analytical data on soil samples from the Cul de Sac region. The soil samples 

originated from a soil survey conducted in the Cul de Sac area (USAID et al., 2014). The data 

were accessed through the KSSL’s Laboratory Information and Management System (LIMS) 

database. A query was conducted to select all soil samples in the target area (project_id = 4708 

and 4711) that had SOC content (% wt) values. The resulting database was further filtered by 

master horizon and SOC % content. Only soil samples from the ‘A’ horizon and with less than 

10% SOC content were kept. Only ‘A’ horizon soil samples were selected because the majority 

of the soil organic matter in the region occurs in the surface layer (USAID et al., 2014). 

Additionally, studies have shown that predicting ‘A’ horizons separately improves model 

prediction accuracy (Seybold et al., 2019; Wijewardane et al., 2018). Two soil samples that 

contained greater than 10% SOC content were excluded from the target area spectral library. A 

value of 10% is generally used as a threshold to distinguish mineral from organic soils and 

organic soils can have very different spectral signatures from mineral soils (McDowell et al., 

2012; Soil Survey Staff, 1999). The resulting spectral library for the Cul de Sac area consisted of 

90 soil samples and will hereafter be referred to as the CuldeSacSL. 

 The KSSL’s SSL also contains data for thousands of soil samples from across the United 

States representing a myriad of soil types. A query was conducted on the LIMS database to 

select ‘A’ horizon samples with an SOC content less than 10% that belonged to soils classified as 

Mollisols, Alfisols, and Inceptisols. These criteria were selected to match the soils of the Cul de 

Sac area which had low SOC content, and which, according to the soil survey (USAID et al., 

2014), belong to those soil orders. This query resulted in 5,230 soil samples and the spectral 
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library will be referred to as the OrdersSL. A separate query was conducted to collect soil 

samples for ‘A’ horizons of soils classified as Mollisols, Alfisols, and Inceptisols and which 

contained greater than 5% CaCO3 in the 2 mm soil fraction. The resulting set contained 355 soil 

samples and will be referred to as the CarbonatesSL.  

Organic Carbon and Spectral Measurement 

 The KSSL processed and analyzed all soil analyte data used in this study. Prior to soil 

analysis, the soil samples were air-dried, crushed, and sieved (< 2 mm). Soil organic carbon 

content was calculated as the difference between total carbon and inorganic carbon. Total carbon 

was determined by elemental analysis via dry combustion (method 4H2a1, Soil Survey Staff, 

2014) and inorganic carbon was determined manometrically after reaction with HCl (method 

4E1a1a1, Soil Survey Staff, 2014). The measured SOC values were used as the reference values 

for model development and the SIC values were used as subsetting criteria.  

 The spectra were acquired by the KSSL using Diffuse Reflectance Infrared Fourier 

Transform (DRIFT) MIR spectroscopy. Air-dried, sieved, and ground (177 µm) soil samples 

were pressed into a 96-well aluminum plate. These samples (four replicates per sample) were 

scanned using a Vertex70 XTS-XT Fourier transform infrared spectrometer equipped with a high 

throughput screening extension. Spectra were collected in the MIR range from 7,500 to 600 cm-1 

at a resolution of 4 cm-1. The spectrometer was not purged with an infrared inactive gas; 

therefore, the background signal was quantified by collecting scans of an anodized aluminum 

well (i.e., background scan) before each soil sample scan. The background scan was used to 

correct the signal of the soil sample scans and thus reduce the effect of atmospheric intrusion. 

For the background scan and each soil replicate scan, 32 co-added scans comprised the recorded 
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spectrum. Spectra were converted to absorbance [log(1/reflectance)] and truncated to 4,000 to 

600 cm-1. 

Spectral Preprocessing 

 Spectra in the CuldeSacSL, OrdersSL, and CarbonatesSL were preprocessed prior to 

construction of the calibration models. An average of the four replicates was taken for each soil 

sample. A median window baseline correction (BC; Friedrichs, 1995) was applied to overcome 

instrument drift and baseline shift attributed to heterogeneous particle size distribution in the soil 

samples (Gemperline, 2006; Stuart, 2004). Next, a smoothing Savitzky-Golay filter (SG; 

Savitzky & Golay, 1964) with a second-order polynomial and a 17-point window was applied to 

the spectra. A SG filter preserves the shape of spectral peaks and decreases noise, thus enhancing 

spectral features (Schafer, 2011; Tinti et al., 2015). Lastly, a multiplicative scatter correction 

(MSC; Geladi et al., 1985) using the mean spectra as reference was applied. The MSC corrects 

for light scattering and change in path length (Gemperline, 2006). The preprocessing techniques 

were implemented in R (R Core Team, 2021) using the following packages: spectacles (Roudier, 

2021) for BC, signal (Ligges et al., 2014) for SG, and prospectr (Stevens & Ramirez-Lopez, 

2021) for MSC. 

Construction of Calibration Models 

 Four different schemes were used to construct calibration models using the CuldeSacSL, 

the OrdersSL, and a combination of the OrdersSL and the CarbonatesSL. The rationale for 

constructing calibration models from a fraction of the KSSL’s SSL to predict SOC content in the 

target area, was to determine whether good model performance could be achieved on a 

pedologically distinct area using a reduced number of observations from a national library. If so, 
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resource-efficiency can be maintained for SOC predictions with the KSSL dataset and its utility 

for library transfer can be optimized even as the dataset continues to grow. This has direct 

application in current efforts to build the Global Soil Spectral Calibration Library and Estimation 

Service that will use the SSL of the KSSL as its source calibration library (Shepherd et al., 

2022). To maintain a low-cost modeling framework, the subsetting criteria did not require 

additional chemical analysis or soil assessment. Instead, they relied on general soil information 

that can be estimated in the field (e.g., presence of carbonates) and existing soil survey 

information. All modeling was conducted in R (R Core Team, 2021).  

Scheme 1 – Calibration from Cul de Sac Samples Only 

 The CuldeSacSL was randomly split into a calibration set (70%; n = 63) and testing (i.e., 

prediction) set (30%; n = 27). The prediction set was used to evaluate the performance of the 

target area calibration model. After splitting the data for calibration and prediction, a partial least 

squares regression (PLSR) model was developed from the calibration set using the R package, 

pls (Liland et al., 2021). PLSR is one of the most widely used algorithms in soil spectroscopy 

(Soriano-Disla et al., 2014; Varmuza & Filzmoser, 2009). The PLSR algorithm generates a 

general or global regression using all observations in the calibration set. This regression is then 

used to predict the response of the observations in the prediction set. PLSR effectively handles 

data with a greater number of predictors than observations, noise, and collinearity (Varmuza and 

Filzmoser, 2009). This algorithm shrinks the estimates in the coefficient matrix away from the 

least squares line by making the latent variables mutually orthogonal, thus only significant 

factors (in relation to the response) are included in the model (Cox & Gaudard, 2013). The 

optimal number of principal components (PCs) was set to 15 and the optimal number of 

components was assessed through the randomization testing (Van der Voet, 1994) and the one-
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sigma (Hastie et al., 2017) approaches in the calibration process. The maximum number of PCs, 

as suggested by either approach, was defined as the optimal number of components to retain. 

Ten-fold cross validation using random split into segments was used for model training. The 

resulting model from this scheme is hereafter referred to as PLSR_CuldeSac.  

Scheme 2 – Calibrations from U.S. Samples with Same Taxonomy 

 Two taxonomy-based calibration models were constructed using the OrdersSL. For the 

first model, all the observations of the OrdersSL were used to construct the reference calibration 

set (n = 5230). For the second model, the OrdersSL was filtered to include only the observations 

of the suborders that occur in the Cul de Sac area, as per the soil survey (USAID et al., 2014): 

Ustalfs, Ustepts, and Ustolls. The resulting dataset consisted of 1,710 observations and will be 

referred to as the SubordersSL. The entire SubordersSL was used to construct a second reference 

calibration set. A memory-based learning (MBL) algorithm was applied to each taxonomy-based 

calibration set to predict the entire set of target area observations (CuldeSacSL). The resulting 

models that used the OrdersSL and SubordersSL datasets are hereafter referred to as MBL_O 

and MBL_SO, respectively. The prediction set for these models is hereafter referred to as 

CuldeSac_predset. 

 MBL is a data-driven statistical learning approach that constructs instance-oriented 

models. That is, it derives a statistically local model for each new spectrum in the prediction set 

rather than a global model for the entire prediction set. For each spectrum in the prediction set, 

the MBL algorithm used an optimized principal components Mahalanobis distance to retrieve a 

sequence of nearest neighbors from the reference library calibration set (U.S. calibration sets) 

(Ramirez-Lopez et al., 2013). The minimum and maximum number of nearest neighbors was set 

to 30 and 300, respectively as per Briedis et al. (2020). Once the nearest neighbors set was 
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identified, the MBL algorithm constructed a statistically local model using one of three 

approaches: (1) PLSR, (2) weighted average partial least squares regression, or (2) Gaussian 

process regression (GPR). The weighted average partial least squares regression calculates a 

weighted average of all the predicted values generated by statistically local PLSR models 

constructed using the full range of PCs. These PLSRs are similar to those generated through the 

LOCAL algorithm (Shenk et al., 1997). The GPR is a non-parametric Bayesian method that uses 

a kernel-based function to predict the value of the response based on the spectral neighbors 

identified (Briedis et al., 2020; Lobsey et al., 2017; Ramirez-Lopez et al., 2013). For further 

details on the algorithms, the reader is referred to Ramirez-Lopez (2013). The MBL algorithm 

was implemented in R using the resemble package (Ramirez-Lopez et al., 2022). 

Scheme 3 – Calibrations from U.S. Samples with Same Taxonomy and Similar Mineralogy 

 For this scheme, the OrdersSL and SubordersSL were further stratified to include only 

the soil samples with greater than 5% of carbonates in the 2 mm fraction. A similar approach was 

used in a library transfer study by Sankey et al. (2008) who used the presence of carbonates to 

stratify a global SSL for prediction of SOC in watershed soils in Montana, United States. In our 

study, the selection of a calibration set of observations with a minimum carbonate content would 

presumably reduce the spectral variance of the calibration set and increase the similarity between 

the calibration and the target area observations (prediction set), because the target area soils have 

high carbonate content. Calibration models from these subsets were constructed using the MBL 

algorithm and the CuldeSac_predset was predicted. The model that used the soil samples of 

matching orders and that contained high carbonate content is hereafter referred to as 

MBL_O+CC. The model that used the soil samples of matching suborders and with high 

carbonate content is referred to as MBL_SO+CC. 
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Scheme 4 – Calibrations from U.S. Samples Spiked with Cul de Sac Samples 

 A spiked variant of each calibration set of the previous four models (MBL_O, MBL_SO, 

MBL_O+CC, and MBL_SO+CC) was created by adding 25 observations from the CuldeSacSL. 

This process, known as spiking, involves adding observations from the target area to the 

calibration set of the reference SSL to predict new observations from the target area (Guerrero et 

al., 2014). Spiking is an optimization technique that aims to increase the representativeness in 

analyte and spectral variability of the calibration set to the prediction set. Moreover, spiking can 

effectively reduce the model prediction error in library transfer when the spiking set is 

representative of the spectral and analyte variance found in the target area (Brown, 2007; 

Guerrero et al., 2014; Lobsey et al., 2017; Peng et al., 2013; Wetterlind & Stenberg, 2010). 

 The spiking set was selected using conditioned Latin hypercube sampling (cLHS) 

(Minasny & McBratney, 2006) from the clhs (Roudier, 2011) package. The cLHS algorithm 

ensured that the spiking set was representative of the spectral diversity in the target area because 

it uniformly covers the predictor (spectral) space through stratified random sampling of the 

multidimensional distribution of the predictor space. This algorithm has been applied for 

calibration selection in soil spectroscopy (Ramirez-Lopez et al., 2014; Viscarra Rossel et al., 

2008). The 25 most distant observations were selected as the spiking set and the remaining target 

area observations (n = 65) that comprise the CuldeSac_spk_predset, were used for prediction. 

The resulting models that used the spiked calibration sets are hereafter referred to as 

MBL_O+spk, MBL_SO+spk, MBL_O+CC+spk and MBL_SO+CC+spk. 
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Statistical and Spectral Analysis of Calibration Datasets 

 The distribution of SOC content in each of the calibration datasets was characterized by 

its mean, minimum, median, maximum, standard deviation (StDev), skewness, and kurtosis. 

Skewness is a measure of the asymmetry of a frequency distribution around its mean. A high 

absolute value of skewness indicates an asymmetric distribution. Skewness was calculated 

according to Equation 1: 

 𝑆𝑆𝑘𝑘𝑆𝑆𝑆𝑆𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆 =  
1
𝑛𝑛∗ ∑ (𝑦𝑦𝑖𝑖−𝑦𝑦�)3𝑛𝑛

𝑖𝑖=1

(�1𝑛𝑛∗ ∑ (𝑦𝑦𝑖𝑖−𝑦𝑦�)2𝑛𝑛
𝑖𝑖=1 )3

;  (1) 

where 𝑛𝑛 is the number of observations with 𝑖𝑖 = 1, 2, …, 𝑛𝑛, 𝑦𝑦𝑖𝑖 is the observed value at the 𝑖𝑖th 

observation, and 𝑦𝑦� is the mean of the observed values. Kurtosis describes the “tailedness” of a 

distribution near its central mode. A value greater than 3 indicates the presence of a heavy tail 

relative to the normal distribution. Kurtosis was calculated according to Equation 2: 

 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝑙𝑙𝑆𝑆𝑖𝑖𝑆𝑆 =  
1
𝑛𝑛∗ ∑ (𝑦𝑦𝑖𝑖−𝑦𝑦�)4𝑛𝑛

𝑖𝑖=1

(�1𝑛𝑛∗ ∑ (𝑦𝑦𝑖𝑖−𝑦𝑦�)2𝑛𝑛
𝑖𝑖=1 )4

− 3;  (2) 

where 𝑛𝑛, 𝑦𝑦𝑖𝑖, and 𝑦𝑦� are as previously defined.  

 The median unprocessed spectrum of the CuldeSacSL was plotted to explore its 

compositional structure. Moreover, to assess the spectral similarity of the calibration and 

prediction set of each model, the pre-processed calibration spectra were subjected to a principal 

components analysis and the corresponding pre-processed prediction spectra were projected onto 

the PC space defined by the first two PCs of the calibration set. 
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Prediction and Model Performance Assessment 

 Model performance was evaluated by the coefficient of determination (R2; Equation 3), 

the root mean square error (RMSE; Equation 4), the ratio of performance to deviation (RPD; 

Equation 5), and the ratio of performance to interquartile range (RPIQ; Equation 6). The R2 is the 

ratio of model variability to variability in the observed values and can be used to assess the 

strength of the relationship between the predicted and observed values. For this study, an R2 

greater than .80 is considered a reliable model and an R2 less than .80 an unreliable model 

(Chang et al., 2001). The RMSE measures the average difference between the predicted and 

observed values and is in units of the response. The RPD can be interpreted as the magnitude of 

improvement achieved by the model over using the mean of the reference data as a predicted 

value (Viscarra Rossel et al., 2008). The RPD has been widely adopted by the soils community 

as a metric to assess the usefulness of a prediction model as well as to compare the performance 

of different models (Bellon-Maurel et al., 2010; Bellon-Maurel and McBratney, 2011). Chang et 

al. (2001) suggested a performance rating system based on the RPD value that has been adopted 

for this study. According to Chang et al. (2001), an RPD greater than 2.00 indicates a reliable 

model, an RPD between 1.40 and 2.00 indicates a fair model, and an RPD less than 1.40 

constitutes an unreliable model. The ratio of performance to interquartile range (RPIQ) was 

proposed by Bellon-Maurel et al. (2010) as a better metric than RPD for skewed data. The RPIQ 

scales the spread of the data using the interquartile range rather than the standard deviation. This 

allows for the comparison of model performance across different datasets with non-normal 

distributions. Based on the work of Ludwig et al. (2019), this study considers an RPIQ greater 

than 2.70 as indicative of a reliable model, between 1.89 and 2.70 as a fair model, and less than 

1.89 as an unreliable model.  
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 𝑅𝑅2 = 1 −  ∑(𝑦𝑦𝑖𝑖− 𝑦𝑦�𝑖𝑖)2

∑(𝑦𝑦𝑖𝑖− 𝑦𝑦�)2
 (3) 

 𝑅𝑅𝑅𝑅𝑆𝑆𝑅𝑅 = �1
n
∑ (𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖)2𝑛𝑛
𝑖𝑖=1  (4) 

 𝑅𝑅𝑅𝑅𝑅𝑅 =  𝑠𝑠
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

 (5) 

 𝑅𝑅𝑅𝑅𝐼𝐼𝑅𝑅 =  𝑄𝑄3−𝑄𝑄1
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

 (6) 

where: 𝑛𝑛, 𝑦𝑦𝑖𝑖, and 𝑦𝑦� are as previously defined, 𝑦𝑦� is the predicted value, 𝑆𝑆 is the standard deviation 

of the observed values in the prediction set, 𝑅𝑅1 is the first quartile of the observed values that 

equals the 25th percentile, 𝑅𝑅3 is the third quartile that represents the 75th percentile. 

Results and Discussion 

Descriptive Analysis of SOC Content and Spectra 

 Summary statistics for SOC content in each of the calibration and prediction sets are 

provided in Table 1. The SOC content for all soils in the Cul de Sac dataset ranged from 0.08 to 

7.89%. The mean SOC content of the PLSR_CuldeSac calibration set was 2.47% and the median 

content was 1.95%. Although the corresponding prediction set was selected through random 

selection, it had a similar mean (2.85%) and median (2.17%) to the calibration set. The 

calibration sets constructed using the United States spectral library each had a higher maximum 

SOC content than the Cul de Sac datasets. The higher SOC content can be attributed to the 

greater pedologic diversity of the United States soil samples and to the selection criteria used that 

included all soil samples with any value less than 10% for SOC. The spiked calibration sets each 

had a minimum SOC content as low or lower than the lowest SOC content in the Cul de Sac 

dataset. This can be attributed to cLHS that selected a representative set of observations from the 
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CuldeSacSL to comprise the spiking set. The spiking set not only covered the variability in the 

predictor space (spectra), but also covered the full range of SOC content. The mean and median 

SOC content of the MBL_O and MBL_O+CC calibration sets (mean = 2.45% and median = 

1.93% and 2.51% and 2.16%, respectively) were more similar to those of their prediction set 

(CuldeSac_predset: mean = 2.58% and median = 2.08%) than the mean and median of the 

MBL_SO and MBL_SO+CC calibration sets (mean = 1.89% and median = 1.52% and 2.07% 

and 1.79%, respectively). A similar relationship was observed between the mean and median of 

the MBL_O+spk calibration set, its prediction set (CuldeSac_spk_predset), and the 

MBL_SO+spk calibration set.  

 The suborders calibration sets had lower standard deviation than the orders calibration 

sets, which means that more of the observations in the suborders sets had SOC % values closer to 

the mean. The reduction in standard deviation in the suborders calibration sets was expected 

because the observations in those sets are presumably more similar in their pedology. The lower 

standard deviation of the suborders calibration sets demonstrates that soil samples from a select 

set of suborders have lower analyte variance than soil samples from a set of corresponding soil 

orders. In the unspiked MBL calibration sets, the sets constrained by inorganic carbon content 

(+CC) had a lower standard deviation than those that were not constrained by inorganic carbon 

content. The same relationship was observed for the spiked orders calibration sets, but not for the 

spiked suborders calibration sets. The discrepancy in the spiked suborders calibration sets is 

likely due to analyte variance introduced by the spiking set. The MBL_SO+CC calibration set 

had the lowest standard deviation (1.30%) and the fewest calibration observations (n = 188). On 

the other hand, the MBL_O and MBL_O+spk calibration sets had the highest standard deviation 

(1.80%) and the most calibration observations (n = 5230 and 5255, respectively). All datasets 
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had a high, positive skewness and kurtosis that indicated deviation from the normal distribution 

and a somewhat right-skewed distribution. Moreover, the kurtosis of the suborders datasets was 

much higher (4.21 to 4.85) than that of the orders datasets, which indicated the presence of a 

heavy right tail or more soil samples with higher SOC content. Despite the high skewness and 

kurtosis, the analyte values were not transformed in this study prior to modeling. In consideration 

of the skewed distribution of the data, the RPIQ was provided as a metric for model evaluation 

and will be used to highlight the difference in model performance (Bellon-Maurel et al., 2010). 

 The median spectrum of the raw (unprocessed) CuldeSacSL is presented in Figure 1. The 

shaded area in this figure represents the median +/- the median absolute deviation. Several high, 

positive absorption peaks associated with mineral (a-c and e-h) and organic (d) soil constituents 

can be identified. The broad absorption peak at 3600 cm-1 (a) is associated with hydroxyl (O-H) 

stretching vibrations of smectite (Nguyen et al., 1991; Wander & Traina, 1996). This is 

consistent with the taxonomic classification of several of the soils described in Cul de Sac that 

contain a ‘smectitic’ classifier (USAID et al., 2014). The presence of high concentrations of 

carbonates is evidenced by the sharp peaks at 2515 cm-1 (b), 1790 cm-1 (c), 880 cm-1 (g), and 710 

cm-1 (h), as well as a broad peak at 1470 cm-1 (e), which indicate the presence of carbonates 

(Baldock et al., 2013; Nguyen et al., 1991; Wijewardane et al., 2018). The sharp peak at 2515 

cm-1 (b) is indicative of the presence of calcite in particular (Nguyen et al., 1991; Viscarra Rossel 

et al., 2008). The broad peak around 1110 cm-1 (f) is associated with the presence of quartz 

(Soriano-Disla et al., 2014). Only one high absorption band is observed that can be directly 

attributed to the presence of organic matter and that is the broad peak at around 1650 cm-1 (d) 

that is related to protein amides (OC-NH) (Wijewardane et al., 2018).  
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 Figure 2 presents the pre-processed spectra from the corresponding prediction set 

projected onto the PC 1 and 2 space of its corresponding pre-processed calibration set spectra. 

Significant overlap can be observed in the prediction and calibration sets of the MBL_SO 

(Fig.2c), MBL_O+CC (Fig.2d), and each of the spiked models (Fig.2f-i). This indicates that the 

first two PCs of the Cul de Sac spectra had similar spectral signatures to the first two PCs of the 

calibration set spectra of those models. It is also evident that spiking brought the calibration 

spectra closer to the projected target area spectra because the calibration spectra (triangles) in the 

spiked model plots (Fig.2f-i) are closer to the prediction spectra (triangles) than in the unspiked 

model plots (Fig.2b-e). 
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Figure 1. Median (solid line) and median +/- median absolute deviation (shaded region) of the 
mid-infrared spectrum of the unprocessed CuldeSacSL spectra. Diagnostic bands associated with 
inorganic constituents (a-c and e-h) and soil organic matter (d) are shown.



 

 
 

199 

Table 1. Summary statistics of soil organic carbon (SOC) content in wt% for the Cul de Sac and United States calibration and 
prediction sets. 

Dataset n Minimum Maximum Median Mean Q1 Q3 StDev Skewness Kurtosis 

PLSR_CuldeSacc 63 0.46 7.98 1.95 2.47 1.61 2.46 1.53 2.08 4.10 

PLSR_CuldeSacp 27 0.08 7.24 2.17 2.85 1.53 3.76 1.70 1.24 1.00 

MBL_O 5230 0.03 9.96 1.93 2.45 1.22 3.17 1.80 1.54 2.56 

MBL_SO 1710 0.3 9.90 1.52 1.89 0.92 2.46 1.41 1.74 4.23 

MBL_O+CC 355 0.10 9.20 2.16 2.51 1.30 3.23 1.66 1.39 2.33 

MBL_SO+CC 188 0.10 8.62 1.79 2.07 1.11 2.70 1.30 1.72 4.85 

CuldeSac_predset 90 0.08 7.98 2.08 2.58 1.65 2.69 1.58 1.75 2.62 

MBL_O+spk 5255 0.03 9.96 1.94 2.46 1.22 3.17 1.80 1.54 2.54 

MBL_SO+spk 1735 0.03 9.9 1.53 1.90 0.93 2.47 1.43 1.75 4.21 

MBL_O+CC+spk 380 0.08 9.20 2.16 2.55 1.33 3.24 1.69 1.41 2.21 

MBL_SO+CC+spk 213 0.08 8.62 1.86 2.18 1.22 2.74 1.44 1.81 4.47 

CuldeSac_spk_predset 65 0.46 6.49 1.99 2.43 1.63 2.57 1.32 1.74 2.61 

Note: PLSR_CuldeSacc = calibration set for the PLSR_CuldeSac model; PLSR_CuldeSacp = prediction set for the PLSR_CuldeSac 
model; n = number of observations; Q1 = first quartile; Q2 = third quartile; StDev = standard deviation. 
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Figure 2. Plots of the mid-infrared spectra of the corresponding Cul de Sac prediction set 
projected onto the principal components 1 and 2 space of the following calibration sets: 
PLSR_CuldeSacc (a), MBL_O (b), MBL_SO (c), MBL_O+CC (d), MBL_SO+CC (e), 
MBL_O+spk (f), MBL_SO+spk (g), MBL_O+CC+spk (h), and MBL_SO+CC+spk (g). The 
projected prediction sets are: PLSR_CuldeSacv (a), CuldeSac_predset (b-e), and 
CuldeSac_spk_predset (f-i). The spiking set is projected separately for calibration sets that 
included spiking (+spk; f-i). 
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Prediction of SOC Content 

 The relationship between observed and predicted SOC content for the subset models is 

presented in Figure 3. The RMSE and RPIQ values for the different models as well as the 

thresholds for a desirable and reliable model are plotted in Figure 4. The model performance 

statistics for the prediction sets are presented in Table 2. Metrics are presented for the prediction 

set of each calibration model. A maximum value of 0.40% for the RMSE, calculated on the 

prediction set, was chosen as the upper threshold to constitute a desirable model for practical use. 

This threshold considers the lowest (0.22%) and highest (1.89%) RMSE values of SOC content 

prediction reported in studies also using the KSSL SSL (Ng et al., 2022; Seybold et al., 2019; 

Wijewardane et al., 2018). In addition, this threshold matches that defined by the “4 per mille” 

global initiative to increase annual carbon stock (Minasny et al., 2017). Unless otherwise stated, 

only the prediction metrics will be compared across models in the section that follows. 

 The PLSR_CuldeSac model resulted in an undesirable prediction error (0.45%), but the 

R2 (0.93), RPD (3.81), and RPIQ (3.81) values indicate that it is a reliable prediction (Table 2). 

None of the unspiked MBL models resulted in desirable RMSE. The highest RMSE of the 

unspiked models was from the MBL_O model (0.81%) and the lowest RMSE was from the 

MBL_SO model (0.65%). The MBL_O and MBL_SO models also had the lowest and highest 

values of RPIQ (1.25 and 1.56) of the unspiked models, respectively. The relationship between 

high StDev of the calibration set and high RMSE and R2, commonly noted in spectroscopic 

models (Stenberg et al., 2010), was not observed in the unspiked models. For example, the 

MBL_O model calibration set had the highest StDev (1.80), and although the model also resulted 

in the highest RMSE (0.81%), it had the lowest R2 (0.78) of the unspiked models. Similarly, the 

MBL_SO+CC calibration set had the lowest StDev (1.30), but it did not result in the lowest 
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RMSE (0.70%) nor the lowest R2 (0.87). The discrepancy in relationship between the RMSE, R2, 

and StDev is likely a consequence of the difference between their prediction and calibration set 

spectra (Fig. 2). In terms of R2 and RPD, all unspiked models can be considered reliable. 

Overall, the unspiked suborders model and unspiked suborders plus carbonate content model 

resulted in lower RMSE and higher RPIQ than their unspiked orders model counterpart. That is, 

the MBL_SO and MBL_SO+CC model outperformed the MBL_O and MBL_O+CC model, 

respectively. These results support the hypothesis that the unspiked suborders models would 

outperform the unspiked orders models. The better performance of the unspiked suborders 

models can be attributed to greater spectral representativeness of the suborders model to the 

target area prediction set.  

 Stratifying the soil orders calibration set by carbonate content (MBL_O+CC) reduced the 

model error (0.81 to 0.76%) and increased the R2 (0.78 to 0.85), RPD (1.95 to 2.09), and RPIQ 

(1.25 to 1.34). On the other hand, stratifying the soil suborders calibration set by carbonate 

content (MBL_SO) increased the RMSE (0.65 to 0.70%) and decreased the RPD (2.43 and 2.26) 

and RPIQ (1.56 to 1.44). A plausible reason for the lower performance of the suborders model 

stratified by carbonate content is the smaller calibration set size (n = 188) compared with the 

suborders calibration set (n = 1710). Sankey et al. (2008) observed a similar effect when they 

stratified a calibration set derived from a global SSL by carbonates for SOC content prediction in 

a semiarid grassland in the United States. In their study, the calibration model constructed using 

the full global SSL outperformed a model constructed using a fraction of a global SSL that 

contained “detectable” calcium carbonates.  
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Figure 3. Scatterplots of predicted versus observed soil organic carbon content for each model. 
Note that these metrics were calculated using the corresponding prediction set of each model. 

 The spiked models outperformed the unspiked models in terms of RMSE, R2, RPD, and 

RPIQ. A plausible explanation for these results is that the inclusion of target area observations in 

the calibration set increased the spectral and analyte representativeness to the prediction set. This 

is at least true of the spectral representativeness in the PC 1 and 2 space of the calibration and 

prediction sets of the spiked models (Fig. 2f-i). The spiked models also outperformed the 

PLSR_CuldeSac model in terms of RMSE, R2, and RPD. Similar results were obtained by 

Brown (2007) and Sankey et al. (2008). In his study, Brown (2007) predicted SOC content of 

soil samples in a Ugandan watershed using a calibration model constructed from a global SSL 
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and spiked with target area observations. The spiked models outperformed the models 

constructed using only the target area observations. Sankey et al. (2008) reported better 

performance by a spiked calibration set constructed using the same global SSL as Brown (2007) 

than a calibration model constructed using only target area observations. 

 

Figure 4. Root mean square error (RMSE) and ratio of performance to interquartile range (RPIQ) 
of soil organic carbon content prediction from each model. The dashed line represents the upper 
threshold value of RMSE that is used to classify a desirable model. The dashed and dotted line 
represents the lower threshold value of RPIQ that is used to classify a reliable model. 

 All spiked models achieved a RMSE of less than 0.40%, making them desirable models. 

Furthermore, all spiked models can be considered reliable models because they achieved RPIQ 

values greater than 2.70. These results support our hypothesis that spiking would decrease model 

prediction error and increase model prediction accuracy. Moreover, the spiked soil orders and 

suborders models constructed from calibration sets that were stratified by carbonate content (i.e., 

MBL_O+CC+spk and MBL_SO+CC+spk) outperformed the spiked orders and suborders 

models (i.e., MBL_O+spk and MBL_SO+spk). A plausible explanation for the better 

performance of the spiked and carbonate stratified models is their smaller calibration set size 
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compared to the spiked models that were not stratified and thus, the greater relative proportion of 

target area observations in the calibration set. As suggested by Wetterlind and Stenberg (2010), a 

smaller calibration set can more easily integrate target area observations when a spiking 

technique is used for library transfer. This relationship was confirmed by Guerrero et al. (2010) 

whose study tested the influence of calibration set size with spiking and showed that smaller 

spiked models outperformed larger spiked models.  

Table 2. Model validation and prediction results of the partial least squares regression (PLSR) 
and memory-based learning (MBL) models. Desirable and undesirable RMSE values are 
highlighted in green and red, respectively. Reliable, fair, and unreliable values of R2, RPD, and 
RPIQ are highlighted in green, yellow, and red, respectively.  

Model nc np StDev RMSE R2 RPD RPIQ 
PLSR_CuldeSac 63 27 1.70 0.45 0.93 3.81 3.81 
MBL_O 5230 90 1.75 0.81 0.78 1.95 1.25 
MBL_SO 1710 90 1.75 0.65 0.86 2.43 1.56 
MBL_O+CC 355 90 1.75 0.76 0.85 2.09 1.34 
MBL_SO+CC 188 90 1.75 0.70 0.87 2.26 1.44 
MBL_O+spk 5255 65 1.74 0.30 0.95 4.38 2.96 
MBL_SO+spk 1735 65 1.74 0.33 0.94 4.02 2.72 
MBL_O+CC+spk 380 65 1.74 0.29 0.95 4.56 3.08 
MBL_SO+CC+spk 213 65 1.74 0.28 0.96 4.67 3.16 

Note: nc = number of observations in the calibration set; np = number of observations in the 
prediction set; StDev = standard deviation of validation or prediction set; RMSE = root mean 
square error of prediction; RPD = ratio of performance to deviation; RPIQ = ratio of 
performance to interquartile range. 

 The MBL_SO+CC+spk model, that was constructed from the smallest calibration set size 

(n=213) of the spiked models, was the best performing model with an RMSE of 0.28%, R2 of 

0.96, RPD of 4.67, and RPIQ of 3.16. Overall, the MBL_SO+CC+spk model resulted in the 

lowest model error of all models, the highest R2, and the highest RPD. However, none of the 

models constructed from the U.S. dataset outperformed the Haiti model in terms of RPIQ. 

Overall, the worst performing model was the most general or pedologically diverse model, 

MBL_O. The MBL_SO model which only used observations from the United States SSL, 

performed similarly in terms of RMSE (0.64%), to models of in recent studies that used the same 
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KSSL SSL to predict SOC content on a 20% hold-out validation set (Dangal et al., 2019; 

Sanderman et al., 2020).  

Conclusions 
 The goal of this study was to determine whether a taxonomically similar or 

taxonomically and mineralogically similar fraction of a diverse United States SSL, could 

accurately predict SOC content in a region of Haiti, by itself or in combination with soil samples 

from the target area. We predicted SOC content in the A horizon of soil samples from the Cul de 

Sac region of Haiti using MBL and eight calibration sets constructed from a fraction of the KSSL 

SSL: (i) same soil orders as the Cul de Sac region, (ii) same suborders, (iii) same orders and a 

minimum carbonate content, (iv) same suborders and a minimum carbonate content, (v) same 

orders and a spiking set of Cul de Sac observations, (vi) same suborders and the spiking set, (vii) 

same orders and a minimum carbonate content and the spiking set, and (viii) same suborders and 

a minimum carbonate content and the spiking set. Additionally, a PLSR model was constructed 

from a random sample of the Cul de Sac SSL, which was validated on Cul de Sac data. We 

predicted the entire Cul de Sac SSL with the unspiked models and we predicted the remaining 

Cul de Sac SSL (not used for spiking) with the spiked models. The overall findings of this study 

are listed next.  

1. Calibration sets based on soil suborders that occur in the target area improved the model 

predictive performance over calibration sets based on orders, but still resulted in 

undesirable models according to the model error.  

2. Stratifying the KSSL SSL based on orders and a minimum carbonate content to construct 

a MBL calibration model, improved model predictive performance compared to a soil 
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orders model not stratified by carbonate content. Nonetheless, the orders plus carbonates 

model was still undesirable and unreliable. 

3. Spiking the MBL calibration models constructed using the SSL of the KSSL observations 

with 25 target area observations selected through cLHS, markedly improved model 

predictive performance and resulted in desirable and reliable models. Moreover, the 

spiked models outperformed the target area model.   

4. The best predictive performance was achieved by an MBL model calibrated with KSSL 

SSL observations of the same soil suborders, containing a minimum carbonate content, 

and spiked with target area observations. 

 This study demonstrates the usefulness of the large, diverse, and well-curated KSSL SSL 

for constructing calibration models that yield desirable and reliable predictions of SOC content 

in a new area that is not contained in the SSL of the KSSL. The optimization techniques 

employed in this study were effective in reducing model prediction error and can be used to 

predict SOC content in new target areas using the KSSL SSL. The results of our spiked models 

demonstrate that desirable and reliable SOC predictions can be obtained through spectroscopic 

models constructed from the KSSL SSL and spiked with only a small target area dataset (n = 25), 

even if the soil types and pedologic conditions of the target area are vastly different from those 

of the KSSL SSL. Furthermore, a spiked model can outperform a target area model. Finally, 

stratifying the KSSL library to include only soil samples of the same suborders to the target area 

improves predictive performance.  

 A recent paper by Kome et al. (2018) noted that the Haitian government plans to expand 

their soil survey to the entire country and this will increase the demand for soil property 
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measurements. We believe that the optimization techniques presented in this study can aid in 

providing more accurate soil property estimations using the KSSL SSL for countries like Haiti, 

which do not currently have a national SSL and may want to capitalize on the open and readily 

available KSSL library for soil property predictions. 
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CHAPTER FIVE: Conclusions 

 For over three decades, soil spectroscopy has been used to study and quantify soil 

properties. Presently, it is a technology that complements conventional laboratory analysis for 

soil organic carbon (SOC) quantification in several laboratories across the globe. Mid-infrared 

(MIR) diffuse reflectance spectroscopy is particularly effective in the accurate estimation of SOC 

because the energy of vibrational modes of atoms, particularly those of functional groups 

matches that of MIR radiation, thereby producing strong spectral signals that can be associated 

with SOC concentration. Moreover, MIR spectroscopy is a cost-effective technology for 

estimating large numbers of samples.  

 Taking into consideration the benefits of MIR spectroscopy and the growing demand for 

SOC data, there is currently a global initiative to develop a free and accessible global estimation 

service that will use one of the world’s largest and most diverse MIR soil spectral libraries 

(SSLs) to estimate many soil properties, including SOC. This and other efforts around the world 

to adopt MIR soil spectroscopy for soil property estimation can benefit from calibration 

optimization techniques that can ensure the efficient use of a SSL for SOC prediction by 

effectively reducing the statistical error of calibration models.  

 The subsetting and spiking methods presented in this dissertation provide novel, effective 

optimization schemes that can guide the construction of new SSLs , by informing sampling 

schemes, as well as the expansion and efficient use of existing SSLs, while overcoming some of 

the inherent challenges of predicting SOC with a small or large SSL. Additionally, the research 

presented in this dissertation has demonstrated the capability of calibration models constructed 

from a relevant fraction of the Kellogg Soil Survey Laboratory’s MIR SSL, to accurately predict 

SOC content in a vastly different new target area. 
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 There are several opportunities for future research based on the work presented in this 

dissertation. The assumption that a calcareous/noncalcareous dominant parent material type is a 

good estimate of the presence/absence of calcium carbonates or inorganic carbon in the top 30 

cm, may not hold in certain parent materials of Nebraska and Kansas or other parts of the 

country. A future study may use the lab-measured inorganic carbon content to subset the full 

spectral library by calcareous/noncalcareous. Although replicating this new study may not be 

practical because it requires additional analyte data, its results can have more informative and 

practical implications. For example, if subsetting samples that have a measured soil inorganic 

carbon content value improves model performance for calcareous and noncalcareous subsets, 

then field estimation of the presence/absence of carbonates (with HCl) can be used to stratify 

samples when initiating a SSL. Another opportunity for additional research is to investigate the 

optimal spiking set size for library transfer and relate this to taxonomic similarity/dissimilarity of 

the target area to the reference library. There are also many opportunities to explore various 

types of subsetting criteria in combination with sampling techniques for optimization of soil 

spectroscopy. 
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