
University of Arkansas, Fayetteville University of Arkansas, Fayetteville

ScholarWorks@UARK ScholarWorks@UARK

Graduate Theses and Dissertations

8-2022

Scheduling, Complexity, and Solution Methods for Space Robot Scheduling, Complexity, and Solution Methods for Space Robot

On-Orbit Servicing On-Orbit Servicing

Susan E. Sorenson
University of Arkansas, Fayetteville

Follow this and additional works at: https://scholarworks.uark.edu/etd

 Part of the Artificial Intelligence and Robotics Commons, Industrial Engineering Commons, Industrial

Technology Commons, and the Navigation, Guidance, Control and Dynamics Commons

Citation Citation
Sorenson, S. E. (2022). Scheduling, Complexity, and Solution Methods for Space Robot On-Orbit Servicing.
Graduate Theses and Dissertations Retrieved from https://scholarworks.uark.edu/etd/4648

This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for
inclusion in Graduate Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more
information, please contact uarepos@uark.edu.

https://scholarworks.uark.edu/
https://scholarworks.uark.edu/etd
https://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F4648&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.uark.edu%2Fetd%2F4648&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/307?utm_source=scholarworks.uark.edu%2Fetd%2F4648&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1062?utm_source=scholarworks.uark.edu%2Fetd%2F4648&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1062?utm_source=scholarworks.uark.edu%2Fetd%2F4648&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/226?utm_source=scholarworks.uark.edu%2Fetd%2F4648&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/etd/4648?utm_source=scholarworks.uark.edu%2Fetd%2F4648&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:uarepos@uark.edu

Scheduling, Complexity, and Solution Methods for Space Robot On-Orbit Servicing

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy in Industrial Engineering

by

Susan E. Sorenson
University of West Florida

Bachelor of Science in Mathematics, 2003
Air Force Institute of Technology

Master of Science in Applied Mathematics, 2005

August 2022
University of Arkansas

This dissertation is approved for recommendation to the Graduate Council.

Sarah G. Nurre Pinkley, Ph.D. Edward A. Pohl, Ph.D.
Dissertation Director Dissertation Co-Director

Raymond R. Hill, Ph.D. Manuel D. Rossetti, Ph.D.
Committee Member Committee Member

Abstract

This research proposes problems, models, and solutions for the scheduling of space robot on-

orbit servicing. We present the Multi-Orbit Routing and Scheduling of Refuellable On-Orbit

Servicing Space Robots problem which considers on-orbit servicing across multiple orbits with

moving tasks and moving refuelling depots. We formulate a mixed integer linear program model

to optimize the routing and scheduling of robot servicers to accomplish on-orbit servicing tasks.

We develop and demonstrate flexible algorithms for the creation of the model parameters and as-

sociated data sets. Our first algorithm creates the network arcs using orbital mechanics. We have

also created a novel way to mathematically represent the movement of the tasks and refuelling

depots and present algorithms for constructing both sets of data. We create robust case studies

based on current operational satellites in Low Earth Orbit, Mid Earth Orbit, and Geosynchronous

Earth Orbit. With these case studies we perform extensive computational experiments to present

example insights about robot servicers, task completion, and their use of refuelling depots.

Building upon this work, we next focus on proving the computational complexity and gen-

erating fast, accurate algorithms and present and demonstrate two solution methods. The solution

methods use node labels akin to those in Dijkstra’s algorithm but include much more informa-

tion about the servicers, tasks, and fuel levels. We use the labels to find the shortest paths to tasks

which are in motion on the network. The first heuristic assigns servicers to tasks greedily and the

second heuristic assigns tasks using a clustering algorithm. We use a case study to compare our

heuristic time and solution performance with CPLEX with promising results.

In our final work, we address the Multi-Orbit Routing and Scheduling of Refuellable On-

Orbit Servicing Space Robots with Known Task Times. Previously, we considered the tasks to

have instantaneous completion which is realistic for survellance type tasks but not for the more

intricate tasks, such as corrective maintenance or equipment upgrade. Thus we remove the as-

sumption of instantaneous task completion and consider a known task processing time. We

present a new mixed integer linear program model to optimize the routing and scheduling of

robot servicers to accomplish the on-orbit servicing tasks. As both tasks and servicers move, con-

sidering task duration is complex because (i) the task and servicer must coincide at the correct lo-

cation and time, (ii) the task and servicer must move through the network together for at least the

duration of the processing time, and (iii) the completion of the task is at a different location and

time than the start. The model accounts for the movement of the servicers, tasks, and refuelling

depots and also for the task duration. We also present two related constructive heuristics for solv-

ing the problem. We also incorporate the task times into a case study which is based on satellites

and orbits which are in use today. We use the case study to conduct computational experiments

comparing the heuristic solving times and solution accuracy with CPLEX.

©2022 by Susan E. Sorenson
All Rights Reserved

Contents

1 Introduction 1

Bibliography . 4

2 Multi-Orbit Routing and Scheduling of Refuellable On-Orbit Servicing Space

Robots 5

2.1 Introduction . 5

2.2 Literature Review . 8

2.3 Problem Statement and Methodology . 10

2.3.1 Problem Formulation and Algorithm Development 10

2.3.2 Parameters, Sets, and Mathematical Model 14

2.3.2.1 Parameters/Sets . 15

2.3.2.2 Decision Variables . 16

2.3.2.3 Model . 16

2.4 Data and Computational Results . 17

2.4.1 Network Construction . 17

2.4.2 Core Case Study . 22

2.4.2.1 Core Case Study: Test Design and Data Generation 22

2.4.2.2 Core Case Study: Results and Insights 26

2.4.3 Refuelling Case Study . 32

2.4.4 Single Versus Multi-Orbit Case Study . 34

2.5 Conclusions . 35

Bibliography . 38

Appendices 41

Appendix 2.A Appendix: Orbital Mechanics . 41

2.A.1 Orbital Parameters and Constants . 41

2.A.2 Hohmann Transfer . 42

2.A.3 Combined Hohmann Transfer with Inclination Change 43

2.A.4 Phasing Maneuver . 44

Appendix 2.B Demonstration of Algorithms Presented in this Work 46

2.B.1 Arc Creation Algorithm Example . 46

2.B.2 Sub Task Creation Algorithm Example 46

2.B.3 Refueling Arc Designation Algorithm Example 47

Bibliography . 49

3 Complexity and Solution Methods for the Multi-Orbit Routing and Scheduling of

Refuellable On-Orbit Servicing Space Robots 52

3.1 Introduction . 52

3.2 Literature . 54

3.3 Problem Statement . 56

3.4 Complexity . 57

3.5 Solution Methodology . 59

3.5.1 Label Making Algorthim . 60

3.5.2 Heuristic I: Greedy Task Assignment . 64

3.5.3 Heuristic II: Greedy Clustering Task Assignment 66

3.6 Computational Results . 67

3.6.1 Greedy Task Assignment . 69

3.6.2 Greedy Clustering . 75

3.6.3 Greedy vs. Greedy Clustering vs. CPLEX Results 82

3.7 Conclusions . 86

Bibliography . 87

4 Solution Methods for the Multi-Orbit Routing and Scheduling of Refuellable On-

Orbit Servicing Space Robots with Known Task Times 89

4.1 Introduction . 89

4.2 Literature . 91

4.3 Problem Statement . 93

4.3.1 Model . 96

4.4 Solution Methodology . 98

4.4.1 Heuristic I: Fast Task Assignment . 98

4.4.2 Heuristic II: Task Plus One Algorithm . 100

4.5 Computational Results . 103

4.5.1 Fast Task Algorithm . 105

4.5.2 Task Plus One Algorithm . 108

4.6 Conclusions . 119

Bibliography . 121

5 Conclusions and Future Work 123

Bibliography . 125

List of Tables

2.1 Orbital parameters for the nodes used in all case studies. Nodes are needed for

every orbit on which a task or refuelling depot is located. 19

2.2 Summary of all arcs possible for nodes used in case studies. 21

2.3 The number of arcs for runs in the Single vs. Multi-Orbit Case Study. 22

2.4 Factors and levels for the Core Case Study. 23

2.5 Tasks and their associated starting nodes for a 16 task run in the Core Case

Study. 24

2.6 When and Where Refuelling Arcs or Sub Task Completion Occur for Figure 2.2. 25

2.7 Solving results for the integer optimal and time limit reached runs for the Core

Case Study. 28

2.8 Where tasks were completed versus the starting orbit of the completing servicer. . 30

2.9 Where servicers refuelled versus their starting location (starting node). 31

2.10 Distribution of refuelling events by servicer starting fuel. 32

2.11 Factors and levels for the focused Refueling Case Study. 33

2.12 How refuelling depots affected task completion. 33

2.13 Factors and levels for the focused Single vs. Multi-Orbit Case Study. 34

2.B.1 All Possible Arcs from Node i = 3 with Maneuver Types, Time and Fuel Costs . 46

2.B.2 MORSO Core Case Study: Sub Tasks for Task 4 47

2.B.3 Example: Refuelling Arcs for Depot Starting at Node 12 48

3.5.1 Components of labels used in both heuristics. 62

3.6.1 Factors and levels for the test cases. The combination of these factors and lev-

els resulted in 1,860 test cases which were solved with CPLEX and each of the

heuristics. 68

3.6.2 A comparison of the optimality gaps and solving times for Greedy Task As-

signment and CPLEX for runs with a 24 hour time horizon. In the last two

columns, negative values indicate that, on average, the heuristic outperformed

CPLEX for those instances. 71

3.6.3 A comparison of the optimality gaps and solving times for Greedy Task As-

signment and CPLEX for runs with a 48 hour time horizon. In the last two

columns, negative values indicate that, on average, the heuristic outperformed

CPLEX for those instances. 74

3.6.4 A comparison of the optimality gaps and solving times for Greedy Clustering

and CPLEX for runs with a 24 hour time horizon. In the last two columns, neg-

ative values indicate average amount that the heuristic outperformed (or not)

CPLEX for that combination of factors. 80

3.6.5 A comparison of the optimality gaps and solving times for Greedy Clustering

and CPLEX for runs with a 48 hour time horizon. In the last two columns, neg-

ative values indicate average amount that the heuristic outperformed (or not)

CPLEX. 81

3.6.6 Table which counts the number of instances in which CPLEX or a heuristic

obtained a better solution and also if there was a tie. We did not break out the

heuristic by type because in most cases Greedy Clustering obtained the better

solution. We can see that the heuristics performed better than CPLEX with a

longer time horizon and that with the shorter time horizon, the heuristics per-

form as well as CPLEX in many cases. 84

3.6.7 Table with solving times for each methodology. The Greedy Clustering Task

Assignment times do not include the pre-processing times. 85

4.4.1 Components of labels used in both heuristics. Fields marked with † indicate

new fields added in this work. The other fields existed in [18]. 99

4.5.1 Factors and levels for the test cases. The combination of these factors and lev-

els resulted in 1860 test cases which were solved with CPLEX and each of the

algorithms. 104

4.5.2 Results for the Fast Task Algorithm compared with CPLEX for the 24 hour

time horizon. In the last two columns, negative values indicate that on aver-

age, the heuristic outperformed CPLEX for those instances. Three runs failed

to achieve any solution within the 12 hour solving time for CPLEX. 786/930

cases reached integer optimality and 141/930 cases hit the solving time limit for

CPLEX. 107

4.5.3 Results for the Fast Task Algorithm compared with CPLEX for the 48 hour

time horizon. In the last two columns, negative values indicate that on aver-

age, the heuristic outperformed CPLEX for those instances. 48 runs failed

to achieve any solution within the 24 hour solving time for CPLEX. 417/930

cases reached integer optimality and 465/930 cases hit the solving time limit for

CPLEX. 109

4.5.4 Runs for which CPLEX did not find a solution in 24 hours. The optimality gap

is that of the Fast Task Algorithm as compared to the reported CPLEX Best

Upper Bound. 110

4.5.5 Results for the Task Plus One Algorithm compared with CPLEX for the 24

hour time horizon. In the last two columns, negative values indicate that on av-

erage, the heuristic outperformed CPLEX for those instances. Three runs failed

to achieve any solution within the 12 hour solving time for CPLEX. 786/930

cases reached integer optimality and 141/930 cases hit the solving time limit for

CPLEX. 112

4.5.6 Runs for which CPLEX did not find a solution in 24 hours. The optimality gap

is that of the Task Plus One Algorithm as compared to the reported CPLEX

Best Upper Bound. 114

4.5.7 Results for the Task Plus One Algorithm compared with CPLEX for the 48

hour time horizon. In the last two columns, negative values indicate that on

average, the heuristic outperformed CPLEX for those instances. 48 runs failed

to achieve any solution within the 24 hour solving time for CPLEX. 417/930

cases reached integer optimality and 465/930 cases hit the solving time limit for

CPLEX. 115

4.5.8 Table with solving times for for each methodology. The Task Plus One Algo-

rithm times do not include the pre-processing times. 116

List of Figures

2.1 Node and orbit locations relative to Earth for nodes used in this work. 20

2.2 Movement of refuelling depots or tasks over time. 25

2.3 Histogram of Gap Values. 27

2.4 How the number and fuel capacity of servicers affected task completion. 29

2.5 Where tasks were completed versus the starting orbit of the completing servicer. . 30

2.6 Where servicers refuelled versus their starting location (starting node). 31

2.7 Task completion by network configuration and time horizon. 35

2.A.1 Orbital Parameters . 41

3.4.1 Graphical representation of a MORSO network with n tasks. The arc cost is

equal to the processing time of the task p j, for j = 1, . . . ,n = |J| 58

3.6.1 Comparison of the distributions of the non-zero optimality gap values for

Greedy Task Assignment (right) and CPLEX (left) with a 24 hour time hori-

zon. 70

3.6.2 A comparison of the objective values for Greedy Task Assignment and CPLEX

for runs with 24 Hour time horizon. Greedy Task Assignment matched or out-

performed CPLEX in 354/930 cases. (38%) Positive values indicate CPLEX

performed better and negative values indicate the heuristic performed better. . . 72

3.6.3 Distributions of non-zero gap values for Greedy Task Assignment (right) and

CPLEX (left) with a 48 hour time horizon . 73

3.6.4 A comparison of the objective values for Greedy Task Assignment and CPLEX

for runs with 48 hour time horizon. The heuristic matched or outperformed

CPLEX in 543/930 cases. (58%) Positive values indicate CPLEX performed

better and negative values indicate the heuristic performed better. 75

3.6.5 Distributions of non-zero gap values for Greedy Clustering (right) 254 and

CPLEX (left) 523 with a 24 hour time horizon 77

3.6.6 A comparison of the objective values for Greedy Clustering and CPLEX for

runs with 24 Hour time horizon. Greedy Clustering matched or outperformed

CPLEX in 420/930 cases. (45%) Positive values indicate CPLEX performed

better and negative values indicate the heuristic performed better. 78

3.6.7 Distributions of non-zero gap values for Greedy Clustering (right) and CPLEX

(left) for the cases/runs with a 48 hour time horizon 78

3.6.8 A comparison of the objective values for Greedy Clustering and CPLEX for

runs with 48 hour time horizon. Greedy Clustering matched or outperformed

CPLEX in 543/930 cases. (61.6%) Positive values indicate CPLEX performed

better and negative values indicate the heuristic performed better. 79

3.6.9 Histogram showing the number of times each methodology achieved the fastest

solve time. 83

3.6.10 Histogram showing the number of times each methodology achieved the best

solution, alone or in a tie. This has more than 1,860 because there were ties for

the best solution on several runs. There were 397 three-way ties and 490 two-

way ties for the best solution. 83

3.6.11 There were 757 cases in which the method that achieved the fastest solution

time also achieved at least a tie for the best objective value solution. Here we

see the distribution of those that led in both categories. 85

4.5.1 Distributions of non-zero optimality gap values for the Fast Task Algorithm

(right) and CPLEX (left) with a 24 hour time horizon. In the Fast Task Algo-

rithm, a gap of 6.25% or 12.5% indicates that the heuristic solution was within

1 task of the CPLEX reported best upper bound. 106

4.5.2 Fast Task Algorithm with a 24-Hour time horizon compared with CPLEX. The

Fast Task Algorithm matched or outperformed CPLEX in 399/930 cases (43%)

and was within 1 task of CPLEX in 724/930 (77.8%) cases. Positive values

indicate CPLEX performed better and negative values indicate the heuristic

performed better. 108

4.5.3 Distributions of non-zero optimality gap values for the Fast Task Algorithm

(right) and CPLEX (left) with a 48 hour time horizon. In the Fast Task Algo-

rithm, a gap of 6.25% or 12.5% indicates that the heuristic solution was within

1 task of the CPLEX reported best upper bound. 110

4.5.4 Fast Task Algorithm with a 48-Hour time horizon compared with CPLEX. The

Fast Task Algorithm matched or outperformed CPLEX in 495/930 cases (53%)

and was within 1 task of CPLEX in 565/930 (60.7%) cases. Positive values

indicate CPLEX performed better and negative values indicate the heuristic

performed better. 111

4.5.5 Distributions of non-zero optimality gap values for the Task Plus One Algo-

rithm (right) and CPLEX (left) with a 24 hour time horizon. In the Task Plus

One Algorithm, a gap of 6.25% or 12.5% indicates that the heuristic solution

was within 1 task of the CPLEX reported best upper bound. 111

4.5.6 Task Plus One Algorithm with a 24-Hour time horizon compared with CPLEX.

The Task Plus One Algorithm matched or outperformed CPLEX in 543/930

cases (58.3%) and was within 1 task of CPLEX in 742/930 (79.7%) cases. Pos-

itive values indicate CPLEX performed better and negative values indicate the

heuristic performed better. 113

4.5.7 Distributions of non-zero optimality gap values for the Task Plus One Algo-

rithm (right) and CPLEX (left) with a 48 hour time horizon. In the Task Plus

One Algorithm, a gap of 6.25% or 12.5% indicates that the heuristic solution

was within 1 task of the CPLEX reported best upper bound. 114

4.5.8 Task Plus One Algorithm with a 48-Hour time horizon compared with CPLEX.

The Task Plus One Algorithm matched or outperformed CPLEX in 548/930

cases (59%) and was within 1 task of CPLEX in 644/930 (69.2%) cases. Pos-

itive values indicate CPLEX performed better and negative values indicate the

heuristic performed better. 116

4.5.9 Histogram showing the number of times each methodology achieved the fastest

solve time. 117

4.5.10 Histogram showing the number of times each methodology achieved the best

solution. This has more than 1860 because there were ties for the best solution

on several runs. 518 resulted in a three-way tie and 541 resulted in a tie for the

best solution. 117

4.5.11 Cases in which the method that achieved the fastest solution time also achieved

at least a tie for the best objective value solution. 118

The views expressed in this dissertation are those of the author and do not reflect the official pol-
icy or position of the United States Air Force, Department of Defense, or the United States Gov-
ernment.

List of Published Papers

Chapter 2:

S.E. Sorenson and S. G.Nurre Pinkley, “Multi-Orbit Routing and Scheduling of

Refuellable On-Orbit Servicing Space Robots,” Computers and Industrial Engineering,

Submitted, (2022).

Chapter 3:

S.E. Sorenson and S. G.Nurre Pinkley, “Complexity and Solution Methods for the Multi-

Orbit Routing and Scheduling of Refuellable On-Orbit Servicing Space Robots,” Journal of

Heuristics, Submission Pending, (2022).

Chapter 4:

S.E. Sorenson and S. G.Nurre Pinkley, “Solution Methods for the Multi-

Orbit Routing and Scheduling of Refuellable On-Orbit Servicing Space Robots with

Known Task Times,” Optimization Letters, Submission Pending, (2022).

1. Introduction

A repair to the Hubble Telescope in December of 1993 is considered to be one of the first in-

stances of a field called On-Orbit Servicing [4]. In the almost 30 years that have passed since

that time, on-orbit servicing (OOS) has dramatically increased, most notably in the past decade.

The definition of on-orbit servicing used by NASA is, “a wide range of activities spanning fix-

ing, improving, and reviving satellites and refers to any work to refuel, repair, replace or augment

an existing asset in space.” In the past two years, Northrup Grumman has completed two OOS

missions in Geosynchronous Earth Orbit (GEO) [5] to refuel and upgrade two different satellites.

GEO is arguably the most valuable orbit because the satellites placed there stay above the same

relative position on Earth. OOS missions will continue to grow in number because they can help

replenish, refuel, or refurbish satellites in GEO, Mid Earth Orbit (MEO) and Low Earth Orbit

(LEO) which are now dead or in need of repair.

This research considers the optimization of these types of missions in space. Throughout

this work, we make assumptions about the future of space technologies which do not yet ex-

ist, such as the fleet of highly maneuverable, refuellable space robots. We created these space

robots with capabilities which do not yet exist to be our servicers and accomplish imagined

tasks on satellites which are currently on orbit. We also hypothesize that eventually there will be

widespread refuelling depots spread across LEO, MEO, and GEO for a robot servicer fleet to re-

fuel and replenish in between accomplishing OOS tasks. In this vein, we present the Multi-Orbit

Routing and Scheduling of Refuellable Space Robots for On-orbit Servicing (MORSO) problem.

This problem determines how to route and schedule a fleet of highly maneuverable space robots

to accomplish tasks spanning LEO, MEO, and GEO. The MORSO problem is the basis for the

research contained in this dissertation.

In Chapter 2 we present our formulation for a new mixed integer linear program (MILP)

optimization model for MORSO which seeks to maximize the weighted number of completed

tasks within a set time horizon. The model is complex because the servicers, the tasks, and the

1

refuelling depots are all moving over time. We account for the movement mathematically in the

model and present algorithms to create the model parameters and the data sets to represent the

moving tasks and refuelling depots. We also present an algorithm to create a network with nodes

as fixed locations in space and arcs representing the orbital maneuvers to transit between the

nodes. Using this network and data, we explore three case studies using data based on satellites

currently on orbit in LEO, MEO, and GEO.

The main contributions in Chapter 2 are: (i) We are the first to consider OOS over multiple

orbits with moving tasks and moving refuelling depots; (ii) We formulate a mixed integer linear

program to optimize the routing and scheduling of space robots to accomplish OOS; (iii) We de-

velop and demonstrate flexible algorithms for the creation of model parameters which include a

multiple orbit network, and a novel way to represent the movement of tasks and refuelling depots;

(iv) We create robust case studies based on current operational satellites in LEO, MEO, and GEO

and perform extensive computational experiments (v) and present example insights about robot

servicers, task completion, and their use of refuelling depots.

In Chapter 3 we examine the complexity of the MORSO problem and prove that this prob-

lem with objective seeking to maximize the weighted number of completed tasks within a set

time horizon is NP−Hard. We make the reduction from the known NP−Complete 1 | d j = d |

w jU j which is a single machine scheduling problem that seeks to minimize the weighted number

of late tasks when all tasks have the same due date [3]. With the complexity established, we then

developed two new constructive heuristics for solving the problem. Both methods use a node la-

beling approach which is based on ideas from Dijkstra’s algorithm and an aircraft shortest path

routing with refuelling algorithm [1, 2]. Dijkstra’s algorithm uses, updates, and tracks node la-

bels in order to find the shortest path though a network. We extend this idea and create, update,

and track labels for the nodes in our network to find efficient paths to the moving tasks while also

considering the moving refuelling depots. The first algorithm uses a greedy approach to assign

robot servicers to tasks and the second algorithm uses a clustering approach to assign robot ser-

vicers to the first in a group of tasks. We demonstrate that the heuristics can find near optimal

2

solutions in significantly less time than CPLEX.

The main contributions in Chapter 3 are (i) We prove the MORSO problem with objective

seeking to maximize the weighted number of completed tasks is NP−Hard; (ii) We develop and

demonstrate two constructive heuristics for solving the MORSO problem; (iii) We perform exten-

sive computational experiments on a realistic data set based on active satellites; (iv) We summa-

rize the results of the experiments thereby demonstrating the speed, accuracy, and scalability of

our proposed heuristic methods.

In Chapter 4 we continue to examine the MORSO problem.. In Chapter 2, our MILP

model considers a task complete as soon as a servicer arrives at a node at the time a task is also

at that node. This equates to an instantaneous processing time for the tasks. In some cases, such

as a fly-by inspection, the instantaneous task time might be correct, but for more complex service

types, this is not reality. Any task processing time would be truly unknown until the servicer ar-

rived at the task location and had completed the negotiation and rendezvous, connecting to the

satellite where the task is located. Task processing times are an important part of this problem,

and are uncertain. Thus, in this work, we take the first step towards the bigger problem with un-

known task times.

We present the first step as a new problem: Multi-Orbit Routing and Scheduling of Refu-

ellable Space Robots for On-Orbit Servicing with Known Task Times (MORSO-KTT). MORSO-

KTT determines how to best schedule and route a set of space based robotic servicers to complete

a set of tasks with known task times on satellites spanning multiple orbits in space. The model is

more complex than MORSO because the task and servicer must coincide at the correct location

and time and must move through the network together for at least the duration of the process-

ing time ending the service at a time and location different from the start. To account for this, we

expand the model by creating sets of arcs for the tasks. Servicers must traverse the entire set of

arcs consecutively, in order to complete a task. We also present an algorithm for creating the sub-

tasks and subtask sets which takes the network, tasks, and task processing times as inputs. We

significantly modify the constructive heuristics from Chapter 3 to account for the subtask sets

3

and conduct extensive computational experiments, with a case study based on satellites and orbits

currently in use today, to compare the modified constructive heuristics with CPLEX.

The main contributions of Chapter 4 are: (i) We present a new MILP formulation for the

MORSO-KTT problem; (ii) We present an algorithm for the construction of the task data which

includes the subtasks and the process for constructing the set of arcs for each subtask (iii); We de-

velop and demonstrate two constructive heuristics for the solving the MORSO-KTT problem; (iv)

We perform extensive computational experiments on a realistic data set based on active satellites

and orbits demonstrating the speed and accuracy of our algorithms.

Bibliography

[1] Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. (1993). Network Flows: Theory, Algorithms,
and Applications. Prentice Hall, Englewood Cliffs, N.J.

[2] Kannon, T. E., Nurre, S. G., Lunday, B. J., and Hill, R. R. (2015). The Aircraft Routing Prob-
lem with Refueling. Optimization Letters, 9(8):1609–1624.

[3] Lenstra, J. K., Kan, A. R., and Brucker, P. (1977). Complexity of Machine Scheduling Prob-
lems. In Annals of Discrete Mathematics, volume 1, pages 343–362. Elsevier.

[4] NASA (2021). About - Hubble Servicing Missions. https://www.nasa.gov/mission pag
es/hubble/servicing/index.html. Last Accessed: July 4, 2022.

[5] Northrup Grumman (2020). Mission Extension Vehicle. https://news.northropgrumm
an.com/news/releases/northrop-grumman-and-intelsat-make-history-with-
docking-of-second-mission-extension-vehicle-to-extend-life-of-satellite.
Last Accessed: July 4, 2022.

4

https://www.nasa.gov/mission_pages/hubble/servicing/index.html
https://www.nasa.gov/mission_pages/hubble/servicing/index.html
https://news.northropgrumman.com/news/releases/northrop-grumman-and-intelsat-make-history-with-docking-of-second-mission-extension-vehicle-to-extend-life-of-satellite
https://news.northropgrumman.com/news/releases/northrop-grumman-and-intelsat-make-history-with-docking-of-second-mission-extension-vehicle-to-extend-life-of-satellite
https://news.northropgrumman.com/news/releases/northrop-grumman-and-intelsat-make-history-with-docking-of-second-mission-extension-vehicle-to-extend-life-of-satellite

2. Multi-Orbit Routing and Scheduling of Refuellable On-Orbit Servicing Space Robots

Susan E. Sorenson Sarah G. Nurre Pinkley

Abstract: We present the Multi-Orbit Routing and Scheduling of Refuellable Space Robots for

On-Orbit Servicing optimization problem which determines how to best route and schedule a

fleet of highly maneuverable and refuellable space robot servicers to complete a set of tasks orbit-

ing in space. We formulate this problem as a mixed-integer linear program and seek to maximize

the weighted number of completed tasks subject to constraints related to the movements of the

space robots, refuelling depots, and tasks. We present and demonstrate algorithms for construct-

ing the network and model using case studies with data based on satellites operating in the Low

Earth, Mid Earth, and Geosynchronous Earth Orbits. Our results indicate the benefit of consider-

ing multiple orbits and policies related to the number and starting locations of robot servicers and

refuelling depots.

2.1 Introduction

Soon after the Hubble Telescope was launched in 1990, scientists discovered a defect in one of

its mirrors which made the images it collected useless [16]. This defect motivated one of the ear-

liest realizations of on-orbit servicing (OOS) and in December 1993, NASA astronauts repaired

and replaced parts, restoring the operational capability of the telescope [16]. NASA astronauts

serviced the Hubble Telescope four additional times over the next 16 years [16]. More recently,

Northrup Grumman executed two OOS missions for Intelsat satellites in 2020 and again in 2021

[18]. Their vision is to establish a fleet of servicers in Geosynchronous Orbit to address most any

servicing need [18]. Although not yet commonplace, over the past two decades, researchers and

engineers have made great strides in the technology which will eventually make OOS the norm,

rather than a novel occurrence. We hypothesize that in the not too distant future, corporations will

5

have on-orbit refuelling depots and fleets of refuellable space robots capable of accomplishing

satellite servicing missions across Low Earth Orbit (LEO), Mid Earth Orbit (MEO), and Geosyn-

chronous Orbit (GEO). The routing and scheduling of a set of OOS tasks over an upcoming day,

week, or month will become a more common and important problem. This work demonstrates

the formulation and solvability of this scheduling challenge using a Mixed Integer Linear Pro-

gram (MILP). We begin the discussion with a review of the OOS technology which relates to the

formulation of our problem.

NASA continues developing future concepts and architectures, such as the Lunar Gateway

and manned Mars missions which will require significant use of OOS and manufacturing. One

of these concepts is the On-orbit Servicing, Assembly and Manufacturing-1, a robotic spacecraft

designed to operate in LEO, equipped with the tools, technologies, and techniques needed to ex-

tend satellites’ lifespans – even if they were not originally designed to be serviced on-orbit [17].

In 2019, as part of a clean space initiative, the European Space Agency (ESA) announced a call

for proposals from European companies to develop OOS robots for the safe removal of ESA-

owned satellites [11]. We point the reader to Li et al. [14] for a review of over 130 launched or

proposed engineering developments related to OOS missions. Additionally, Corbin et al. [4] pro-

vides a more recent review of international OOS developments for On-Orbit Servicing, Assembly

or Manufacturing.

In the future, as OOS missions grow in number and magnitude, any long term OOS under-

taking will require a space based refuelling depot so that on-orbit robot servicers can refuel them-

selves and conduct On Orbit Refueling (OOR) and OOS of other satellites. In late 2020, NASA

awarded several contracts to companies for the development and/or demonstration of space and

lunar based fuel depots [15]. An aerospace company based in the United Kingdom, Thales Ale-

nia Space, will build a chemical refuelling station with an expected launch in 2027 [3]. Although

fuel depots to support OOS missions are behind OOS technologies, they are undoubtedly in de-

velopment and eventually will be able to support OOS missions as envisioned in this work.

We present the Multi-Orbit Routing and Scheduling of Refuellable Space Robots for On-

6

Orbit Servicing (MORSO) problem which determines how to schedule and route a small fleet of

highly maneuverable refuellable space robots to complete a set of OOS tasks spanning multiple

orbits in space. We formulate MORSO as a new MILP optimization model which seeks to max-

imize the weighted number of completed tasks over a set time horizon. This model is complex

because the tasks and refuelling depots move through an orbit over time. Our model considers

these complexities and we present a novel way to represent the movement of tasks and refuelling

depots over time. We present an algorithm to construct a network with arcs representing differ-

ent types of orbital maneuvers and with this network as an input we present general, flexible al-

gorithms to create data representing the movement of tasks and refuelling depots over time and

space. Using these data sets, we demonstrate the model using three case studies.

Main Contributions. The main contributions of this work are as follows: (i) We are the

first to consider OOS over multiple orbits with moving tasks and moving refuelling depots; (ii)

We formulate a mixed integer linear program to optimize the routing and scheduling of space

robots to accomplish OOS; (iii) We develop and demonstrate flexible algorithms for the creation

of model parameters which include a multiple orbit network, and a novel way to represent the

movement of tasks and refuelling depots; (iv) We create robust case studies based on current op-

erational satellites in LEO, MEO, and GEO and perform extensive computational experiments (v)

and present example insights about robot servicers, task completion, and their use of refuelling

depots.

The remainder of this work is as follows. In Section 2.2, we summarize literature related

to the optimization of different types OOS missions. In Section 2.3, we provide the algorithms to

construct the network arcs and to create the data representing the moving tasks and refuelling de-

pots and then present a formal definition of the model. In Section 2.4, we demonstrate the model

and algorithms using a case study with data based on the orbital parameters of current satellites

and provide operational insights. In Section 2.5, we present conclusions and areas for further

study.

7

2.2 Literature Review

In this section, we summarize the literature relevant to the optimization of the routing and sched-

uling of autonomous satellites, space robots, to accomplish On-Orbit Servicing (OOS). OOS in-

volves at least two participants, one who does the servicing and another that receives the service.

We denote those who do the servicing as a servicer and those who receive the service as a task.

Although refuelling is a type of OOS, when we use the term refuelling we refer to an action that

a servicer will take at a space based refuelling depot to replenish themselves for the purpose of

accomplishing OOS missions which may or may not include the on-orbit refuelling of tasks.

Many works address a class of on-orbit refuelling (OOR) problem in which there is no a

priori designated “servicer.” Instead, any participant can act as a servicer to any other participant.

In these works, the refuelling is the sharing of fuel which is already on board one of the partici-

pants and usually occurs at a location away from both participants’ starting locations. Dutta and

Tsiotras [8] sought to minimize the overall ∆V expended during maneuvers with a greedy random

adaptive search procedure and Dutta and Tsiotras [9] also sought to minimize the overall impulse

per unit of spacecraft mass (∆V), fuel, by optimally matching participants based on their fuel lev-

els. Later, Dutta and Tsiotras [10] found a lower bound of the overall ∆V consumption using a

network flow optimization. Du et al. [7] used a Mixed Integer Non-linear Programming (MINLP)

formulation, with non-linear ∆V costs using the Tsiolkovsky rocket equation, to minimize the ∆V

consumed and solved the problem using a Multi-island Genetic Algorithm. Shen and Tsiotras

[20] applied a matching algorithm to minimize the mission time for a single orbit peer-to-peer

refuelling problem. Yu et al. [22] addressed a similar problem by solving two sub-problems. The

first problem optimized assignments to equally distribute the fuel across all participants and the

second minimized the overall ∆V cost. In all of these works, the focus was on a single orbit OOR

without any designated servicers, using fuel which is already on board the participants. In our

work, we have multiple designated servicers, which can refuel and replenish at orbiting fuel de-

pots located across multiple orbits in our network.

8

Some authors address problems with a single designated servicer which must complete a

set of OOR or OOS tasks. These problems also focus on the minimization of time and/or ∆V ,

but differ in how the model is formulated. Alfriend et al. [1] addressed a single orbit, single ser-

vicer, OOR problem as a Travelling Salesman Problem (TSP) while Bourjolly et al. [2] and [12]

used a Vehicle Routing Problem (VRP) formulation to model a multi-orbit single servicer, OOS

problem. Zhang et al. [24] considered a multi-objective optimization model, seeking to simul-

taneously minimize the ∆V and mission time while routing a single servicer to tasks in multi-

ple orbits within the same orbital band. [28] sought to determine the refuelling order, the opti-

mal refuelling time, and the optimal orbital transfers while also minimizing the ∆V and mission

time. Yu et al. [23] optimized the scheduling of a single servicer to multiple tasks in GEO, using

a multi-objective optimization model seeking to minimize the fuel used, maximize the number of

refuelling events, and maximize the sum of the weights of the tasks to be completed. Zhao et al.

[26] used a MINLP model, with non-linear ∆V costs, to address an OOR problem with a single

servicer in which the tasks requiring fuel moved to a servicing area for the OOR. These works all

had only one servicer to accomplish the OOR and OOS tasks while minimizing the time and/or

∆V . Our work has multiple servicers operating in multiple orbital bands and we seek to maximize

the weighted number of completed tasks.

Our work is the first to route and schedule multiple refuellable servicers across multiple

orbital bands to accomplish multiple tasks moving over time. Our work is unique in that the ser-

vicers, the tasks, and the refuelling depots are all moving throughout the network over time. Zhou

et al. [27] formulated a time-fixed OOR problem with multiple refuellable servicers based only

in GEO. Although the servicers were moving the tasks were not and the model is not changing

over time. Daneshjou et al. [6] examined a time-fixed, single orbit, multiple servicer OOS prob-

lem using a multi-objective optimization model to determine optimal servicer orbital parameters

to minimize the ∆V and time used. Zhang et al. [25] used a location routing problem to solve an

OOR problem with multiple refuelling depots and multiple servicers, but their problem was in a

single orbit and also time-fixed. Hudson and Kolosa [13] addressed a single orbit multiple ser-

9

vicer OOS problem in GEO as a moving task TSP looking to maximize lifetime profit. Sarton du

Jonchay et al. [19] examined a single orbit multiple servicer OOS mission using a strategic level

MILP model with decisions about servicer types and servicing tools. Although their work is not

time-fixed, they focus on strategic decisions to minimize costs and do not have moving tasks and

refuelling depots. With the literature summarized, we proceed by formalizing the Multi-Orbit

Routing and Scheduling of Refuellable Space Robots for On-Orbit Servicing (MORSO) problem

notation and mathematical model.

2.3 Problem Statement and Methodology

We seek to solve the Multi-Orbit Routing and Scheduling of Refuellable Space Robots for On-

Orbit Servicing (MORSO) problem by determining the maximum number of weighted tasks

which can be accomplished within a set time horizon. A novel aspect of the problem is that the

tasks, servicers and fuel depots are all are orbiting over time. We represent several orbits using a

network and optimize the routing, scheduling, and refuelling of space robot servicers through the

network over time to complete tasks. We proceed by explaining the network, tasks, and robot ser-

vicers and present algorithms for the construction of each. We then define the decision variables,

parameters and sets, and model.

2.3.1 Problem Formulation and Algorithm Development

We consider a set of orbits and represent this set as a connected network of nodes, N and arcs, A.

We represent each orbit with a subset of the nodes. We represent the nodes as stationary locations

in space thus we treat the orbital parameter of true anomaly as a fixed value, but in convention

it would indicate the position on the orbit that an object occupies at a given time. We connect a

node i with another node j with an arc (i, j) if an orbital maneuver is possible. There are many

maneuvers possible. We proceed by describing the four maneuvers we considered for our net-

work. However, we note and emphasize that the model is suitable for networks with arcs repre-

senting other possible maneuvers which are outside of the scope of this work.

10

We add directed arcs to A to represent orbital maneuvers between nodes which share and

do not share the same orbit. We add a directed arc (i, j) for an orbiting maneuver between nodes

i and j which share the same orbit and are adjacent in the rotation direction of the orbit. When

nodes i and j share the same orbit but are not adjacent in the rotation direction of the orbit, we

add a directed arc (i, j) for a phasing maneuver. When nodes i and j are in different orbits, dif-

fer by 180◦ in their stationary true anomaly value, and are on the same plane and we add directed

arc (i, j) as a Hohmann transfer. Finally, we add a directed arc (i, j) for a Hohmann transfer with

an inclination change when nodes i and j are in different orbits, differ by 180◦ in their stationary

true anomaly value, and are not on the same plane (inclination). For each arc (i, j) ∈ A, we as-

sociate known input parameter values. We denote τi j and φi j as the time and fuel (∆V) needed to

move along arc (i, j), respectively. We denote Ψi j as the per time period fuel needed to traverse

arc (i, j) where φi j = Ψi jτi j. In Algorithm 1 we present our general pseudocode which dictates

the construction of arcs in a network, given a set of nodes and their associated orbital parame-

ters. Our algorithm only includes the four types of orbital maneuvers we considered, but can be

modified to fit orbital maneuvers of any type. To consider other maneuvers, the the Ψi j and τi j

values for each arc (i, j) are needed. To further aid in the explanation of the Arc Creation Algo-

rithm, we provide a detailed example in 2.B.1. For this work, we assume the time and ∆V costs

for servicers to rendezvous with their tasks are 0, however, these values could be included. Note,

when we use the term fuel, we are referring to ∆V , or the scalar amount of velocity required for a

spacecraft of unit mass to accomplish a maneuver. For this reason, throughout this paper we use

fuel and ∆V interchangeably.

Over time, through the network, tasks, servicers, and fuel depots are all moving. We pro-

ceed by describing the novel aspect of our work in which we model the movement of tasks, ser-

vicers, and fuel depots over time and space. We consider a discrete, finite time horizon, T , over

which tasks are to be completed. We discretize this time horizon into distinct time intervals from

t = 0, . . . , |T |.

We denote B as the set of tasks where each task v ∈ B is prioritized by a weight wv. Be-

11

Algorithm 1 Arc Creation Algorithm
1: Create arc set A = /0.
2: Input ∆t as the time period length, N as the node set, and T as the time horizon.
3: for i, j ∈ N, i ̸= j do
4: Set ∆θ = the angle between nodes i and j.
5: if i and j are in the same orbit and are adjacent in rotation direction of orbit then
6: Create (i, j) representing an orbiting maneuver.
7: Set P as the period of orbit for nodes i and j.
8: Set τi j =

∆θ

360 ×
P
∆t , φi j = 0, Ψi j = 0.

9: else if i and j are in the same orbit and are not adjacent in rotation direction of orbit then
10: Create (i, j) representing a phasing maneuver.
11: Calculate the τi j = time and φi j = ∆V as shown in 2.A.1.
12: else if the inclination of i = inclination of j AND the semi-major axis of i ̸= semi-major

axis of j AND ∆θ = 180 then
13: Create (i, j) representing an Hohmann transfer.
14: Calculate the τi j = time and φi j = ∆V as shown in 2.A.1.
15: else if i ̸= j AND the inclination of i ̸= inclination of j AND the semi-major axis of i ̸=

semi-major axis of j AND ∆θ = 180 then
16: Create (i, j) representing a Hohmann transfer with an inclination change.
17: Calculate the τi j = time and φi j = ∆V as shown in 2.A.1.
18: end if
19: if τi j ≤ T then
20: Add (i, j) to A
21: end if
22: end for
23: Return arc set A.

cause tasks are orbiting, each task is at a different location (node in the network) at different

times. Thus, we represent each task v ∈ B with a set of sub tasks, Bv, where each sub task k ∈ Bv

is represented by a node and a time pair, i.e., (nvk, tvk). This indicates that task v will be at node

nvk at time tvk. Thus, for a given task v and its associated starting node and orbit, we first create

a sub task k ∈ Bv. Next, we iteratively move in the rotational direction of the orbit along the in-

put set of arcs representing orbiting maneuvers. With each new node visited, we create a sub task

pair based on the node location and current time calculated based on the traversal time of the or-

biting maneuver arc. We continuously proceed with this process until the time horizon is reached.

We present explicit details of these steps in our Sub Task Creation Algorithm (see Algorithm 2).

We consider task v complete when any subtask k ∈ Bv is complete. To complete a subtask, a ser-

12

vicer must arrive at node nvk at time tvk. In other words, a servicer must leave any node i in the

network along arc (i,nvk) starting at time tvk − τinvk . To aid in the explanation of the sub task cre-

ation, we provide an example in 2.B.2.

Algorithm 2 Sub Task Creation Algorithm

1: Input |T | as the time horizon and network (N,A).
2: Input task set B where each task v ∈ B has a known starting node and orbit.
3: for each task v ∈ B do
4: Create sub task set Bv = /0.
5: Set current node = starting node.
6: Set current time = 0.
7: while current time ≤ |T | do
8: Add sub task to Bv associated with the (current node, current time).
9: Set next node = to the next node on the orbit in the rotational direction of the orbit.

10: Set current time = current time+ τcurrent node next node.
11: Set current node = next node.
12: end while
13: end for
14: Return Bv, ∀v ∈ B.

To complete the tasks, we consider a set of identical robot servicers, D, which move

through the network along arcs (i, j) ∈ A over time. Each servicer d ∈ D begins the time hori-

zon at a starting node sd ∈ N and we decide which first arc (sd, j) the servicer moves along. If

a task starting node equals sd for any servicer d ∈ D then this task is marked complete, and re-

moved from the set of tasks, prior to solving the model. For all other tasks, the servicers must

move through the network to complete the tasks. We model the movement of each robot servicer

as flow throughout the network which must adhere to flow conservation (i.e., after moving on arc

(sd, j) the servicer can only move along arcs (j, i) ∈ A). Thus, over time, we determine if servicer

d starts to move along arc (i, j) ∈ A starting at time t. We assume that each servicer needs fuel to

move throughout the network. Thus, over time, we track the fuel on-board of each servicer with

fdt where the maximum fuel each robot servicer d ∈ D can carry is Fd . Thus, a servicer can only

traverse arc (i, j) starting at time t if fdt ≥ φi j.

Orbiting throughout the network are a set of fuel depots where servicers can refuel. Just

like the tasks, the fuel depots are moving along an orbit and are located at specific locations at

13

specific times. We assume that refueling requires at least one time period to conduct, thus, instead

of associated refueling with node locations, we instead designate some of the orbital maneuver

arcs as refueling arcs based on time.

We represent this set of arcs and times indicating where and when refuelling of robot ser-

vicers can occur with the set AR
t . The triplet (i, j, t) ∈ AR

t indicates that a robot servicer traversing

arc (i, j) ∈ A starting at t can be refuelled up to Fd while moving with a fuel depot on arc (i, j)

between time t and t + τi j. On the refuelling depots, we assume there are ample locations for all

robot servicers to refuel simultaneously. For a given refuelling depot r with an associated starting

node and orbit, we designate the refuelling arcs in accordance with Algorithm 3. In this algo-

rithm, we iteratively move in the rotational direction of the orbit, increment time based on the

input arc τi j values, and designate refuelling arcs. We can continue in this manner, creating trip-

licates of the form (i, j, t) stopping when t ≥ T . We show this using pseudocode in Algorithm 3.

To aid in the explanation of the refuelling arc creation, we provide an example in 2.B.3.

Algorithm 3 Refueling Arc Designation Algorithm

1: Input |T | as the time horizon and network (N,A).
2: Input refueling depot set R where each r ∈ R has a known starting node and orbit.
3: Create refuelling arc set AR

t = /0 for all t ∈ T .
4: for each depot r ∈ R do
5: Set current node = starting node.
6: Set next node = to the next node on the orbit in the rotational direction of the orbit.
7: Set current time = 0
8: while current time ≤ |T | do
9: Add arc (current node,next node) to AR

current time as a refuelling arc.
10: Set current time = current time+ τcurrent node next node.
11: Set current node = next node.
12: end while
13: end for
14: Return AR

t , ∀t ∈ T .

2.3.2 Parameters, Sets, and Mathematical Model

With the detailed problem formulation and algorithms presented, we continue with the formal

definition of the the decision variables, parameters and sets, and model. The decision variables,

14

parameters, and sets used in the mathematical model were introduced at the start of this work.

As we consider this finite time horizon (i.e., one day, one week), we must determine what oc-

curs when t ≥ |T |. We assume that robot servicers may finish at any node in the network at |T |.

We model this assumption through the addition of a super sink node E where each node i ∈ N is

connected to E with a directed arc (i,E) with unit traversal time and no fuel requirements. With

this design, in the model, we force each robot to be at node E at time |T |. We model this problem

using a mixed-integer linear programming (MILP) formulation as follows.

2.3.2.1 Parameters/Sets

T : Set of time periods, where |T | is the last time period
N : Set of nodes , i ∈ N
E : Super sink node, E ∈ N
B : Set of tasks,v ∈ B
Γ : Set of refuelling depots,r ∈ Γ

Bv : Set of sub tasks associated with v ∈ B,k ∈ Bv

A : Set of directed arcs,(i, j) ∈ A

AR
t : Set of refuelling arcs at time t ∈ T,AR

t ⊂ A
D : Set of robot servicers,d ∈ D
sd : Starting node of servicer d ∈ D
Fd : Maximum fuel capacity of servicer d ∈ D, in ∆V
wv : Weight of task v ∈ B
nvk : The node location of sub task k ∈ Bv of task v ∈ B
tvk : Time period of sub task k ∈ Bv of task v ∈ B
τi j : Time periods to traverse arc (i, j) ∈ A
φi j : Fuel to traverse arc (i, j) ∈ A, in ∆V

Ψi j : Per time period fuel needed to traverse arc (i, j) ∈ A, in ∆V

15

2.3.2.2 Decision Variables

βvk =

{
1, if sub task k of task v is completed, for v ∈ B
0, otherwise

fdt = fuel level of robot d at time t; for d ∈ D and t ∈ T

ydi jt =

{
1, if robot servicer d initiates move on arc (i, j) ∈ A, at time t ∈ T
0, otherwise

2.3.2.3 Model

max ∑
v∈B

wv ∑
k∈Bv

βvk (2.1)

s.t. ∑
k∈Bv

βvk ≤ 1, for v ∈ B (2.2)

∑
d∈D

∑
i:(i,nvk)∈A

tvk−τinvk≥0

ydinvktvk−τinvk
≥ βvk, for v ∈ B,k ∈ Bv (2.3)

∑
j:(j,i)∈A
t−τ ji≥0

yd jit−τ ji − ∑
j:(i, j)∈A

ydi jt =


−1, if i = sd and t = 0
1, if j = E and t = |T |
0, otherwise

for i ∈ N,d ∈ D, t ∈ T (2.4)

fdt ≤ fdt−1 −

 ∑
(i, j)∈A

t

∑
s=max{t−τi j,0}

(
ydi js ∗Ψi j

)
+ ∑

(i, j)∈AR
t

t−τi j≥0

(
ydi jt−τi j ∗Fd

)
for t ∈ T \ |T |,d ∈ D (2.5)

fd0 = Fd, for d ∈ D (2.6)
0 ≤ fdt ≤ Fd, for d ∈ D, t ∈ T (2.7)
ydi jt , βvk ∈ {0,1} , for d ∈ D,(i, j) ∈ A, t ∈ T,v ∈ B,k ∈ Bv (2.8)

In Equation, (2.1) we present the objective function seeking to maximize the weighted number

of tasks completed. In Constraints (2.2), we ensure that for each task, at most one sub task is

completed. In Constraints (2.3), we link the movement of robot servicers with the completion

of subtasks. In Constraints (2.4), we balance the flow of robot servicers through the network by

ensuring that each robot servicer must start at their designated start node, only leave a node they

16

are at, and must finish at the super sink E (i.e., any node in the network because each node i ∈ N

is connected to E with arcs (i,E)). In Constraints (2.5), we update the fuel on-board of each ser-

vicer at each time based on the prior time period fuel level, movement, and refuelling decisions.

In Constraints (2.6), we set the starting fuel level of all robot servicers to the maximum amount.

In Constraints (2.7), we force the fuel level of each servicer over time to be between 0 and the

maximum capacity. In Constraints (2.8), we place the binary restriction on some decision vari-

ables. Next, we demonstrate the validity and benefits of the model with a case study.

2.4 Data and Computational Results

In this section, we use case studies to demonstrate and solve the Multi-Orbit Routing and

Scheduling of Refuellable Space Robots for On-Orbit Servicing (MORSO) Mixed Integer Lin-

ear Program (MILP) model to gain insights about the possible strategic and operational decisions

of multiple servicer on-orbit servicing (OOS) with refuelling. To deduce these insights, we per-

formed case studies using a data set we created to represent the current active satellites found in

Low Earth Orbit (LEO), Mid Earth Orbit (MEO), and Geosynchronous Orbit (GEO) [21]. Us-

ing this data set, we varied the number of refuelling depots, robot servicers, the number of tasks,

robot servicer maximum fuel capacity, robot servicer starting locations and network configura-

tions. In the following, first, we describe the details of constructing the network used for our case

studies. Next, we describe the details, results, and insights of our three case studies investigating

general behavior, refueling, and inter orbit movements.

2.4.1 Network Construction

For this work, we conducted three cases studies, each with similar networks in that the nodes

for all three case studies were the same but the number and types of arcs were not. The network

nodes were chosen based on where our notional tasks were located so that the tasks would inter-

sect. In this section, we present an in depth breakdown of the network for the largest case study,

called the Core Case Study and then explain the differences between the networks for the two

17

additional case studies.

To create the network for the Core Case Study, we begin by selecting the time horizon and

the tasks. Our created dataset has a time horizon of 24 hours and is broken into T = 96 distinct

time units where one time unit represents 15 minutes. We choose the orbits for the network based

on where our tasks are operating. For the cases studies presented here, we had tasks in eight dif-

ferent orbits which span the three orbits closest to Earth. The band closest to Earth, LEO, in-

cludes orbits with a semi-major axis of 6,558 to 8,378 kilometers. The next band called MEO,

includes orbits with a semi-major axis of 8,378 to 42,158 kilometers. Finally GEO, is for ob-

jects with semi-major axes over 42,158 kilometers. Next, we describe the specifics of the nodes

in each orbital band.

We considered three different circular orbits in the LEO band, denoted 1L,2L, and 3L.

Each of these orbits have a semi-major axis of 6652.55 km and a period of 90 minutes. We

placed nodes 15 minutes (1 time unit) apart on the orbit, so that each orbit has 6 nodes each

spaced 60 degrees apart. True anomaly indicates where on an orbit, in degrees, an object is

located. Because our nodes are “fixed” locations in space and tasks and servicers move “be-

tween” nodes, we treated the true anomaly as a constant position. As an example, using orbit

1L, the nodes are spaced 60 degrees apart, so we have 6 nodes with “fixed” true anomalies of

0◦,60◦,120◦,180◦,240◦,300◦. The inclination and RAAN values in the LEO orbits were cho-

sen based on where SpaceX Starlink Space-Track.org [21] satellites reside, as if our tasks were

on the same orbits as the SpaceX Starlink satellites.

We considered four different circular orbits in the MEO band, denoted 4M,5M,6M, and 7M.

The nodes within each of these orbits have a semi-major axis of 26,610 kilometers and a period

of 720 minutes or 12 hours. We placed nodes 30 minutes (2 time units) apart so that each orbit

has 24 nodes. There are 96 total nodes in MEO on four different circular orbits. The inclination

and RAAN values in the MEO orbits were chosen based on where the U.S. Global Positioning

System (GPS) Space-Track.org [21] satellites reside, as if our tasks were located on the same

orbits.

18

Lastly, we considered one GEO orbit, denoted 8G which has a semi-major axis of 42,241

kilometers and a period of 1440 minutes, or 24 hours. We placed nodes 30 minutes (2 time units)

apart resulting in 48 nodes. The node locations on the orbit were determined as they were for

LEO and MEO. The inclination and period in the GEO orbit were chosen based on where the

U.S. Wideband Global SATCOM 9 (WGS) Space-Track.org [21] satellite resides, as if our tasks

were located on the same orbit. Figure 2.1 shows a visualization of all nodes and their associated

orbits relative to Earth.

Table 2.1: Orbital parameters for the nodes used in all case studies. Nodes are needed for every
orbit on which a task or refuelling depot is located.

Orbit Nodes Semi-Major Inclination RAAN Based Period Separation
ID Start, . . . ,End Axis (km) on (min) (min/deg)
1L 1, . . . ,6 6652.550 52.986 290.269 Starlink 90 15.0/60.0
2L 7, . . . ,12 6652.550 52.989 120.183 Starlink 90 15.0/60.0
3L 13, . . . ,19 6652.550 53.000 64.290 Starlink 90 15.0/60.0
4M 19, . . . ,42 26610.000 0.000 0.000 GPS 720 30.0/15.0
5M 43, . . . ,66 26610.000 55.000 300.000 GPS 720 30.0/15.0
6M 67, . . . ,90 26610.000 55.000 45.000 GPS 720 30.0/15.0
7M 91, . . . ,114 26610.000 55.000 225.000 GPS 720 30.0/15.0
8G 115, . . . ,162 42241.000 0.000 0.000 WGS 1440 30.0/7.5

#i
Indicates the orbit ID number and orbit location where L represents Low Earth Orbit, M
represents Mid Earth Orbit, and G represents Geosynchronous Orbit.

In Table 2.1, we show the parameters of the orbits and nodes for all case studies. The first

column is the orbit ID and the second column shows the nodes associated with each orbit. The

middle three columns are the orbital parameters for each orbit. Eccentricity is not included be-

cause all orbits were assumed circular. However, we note that this is not a necessary assump-

tion for the model outlined in Section 2.3. Instead, this is an assumption we made when creating

the case study data set. The fourth column indicates on which real-world satellite the parameters

were based. Finally, the last two columns show the period and spacing of the nodes on that orbit.

We constructed equidistant nodes for each orbit so that the time between two nodes which are

adjacent in the rotation direction of the orbit is 1 or 2 time units, 15 or 30 minutes (∆t), respec-

tively. To accompany Table 2.1, in Figure 2.1, we present a visualization of the nodes relative to

19

Figure 2.1: Node and orbit locations relative to Earth for nodes used in this work.

Earth. With the node locations for the case study established, we proceed by explaining our arc

construction.

To construct the network arcs for the Core Case Study, we considered four different

types of orbital maneuvers: Orbiting Maneuvers, Hohmann Transfers, Phasing Maneuvers, and

Hohmann Transfers with an inclination change. With the set of nodes (N) and the time period

length (∆t) as inputs, we constructed the network arcs using Algorithm 1. For the Core Case

Study, we consider T = 24 hours. In Algorithm 1 we exclude any arcs with a traversal time ≥ T .

After following the algorithm using our set of 162 nodes, the network had |A| = 1,381 total di-

rected arcs for the 24 hour time horizon. Additionally, each node is connected to a sink node for

1,381+162 = 1,543 total arcs.

In Table 2.2, we show the arcs for the set of nodes used in our case studies. The arcs are

organized by the direction and the type of maneuver. For the Core Case Study, any arcs with a

time cost which exceeded the time horizon of 24 hours were excluded.

In Table 2.2, the first column indicates the direction of the maneuvers as a change in the

orbit altitude. The next column indicates the type of maneuver, we only considered four types of

maneuvers in this work, but any number of maneuver types could be considered in the network

construction as only the time and ∆V for each arc are needed. The next two columns indicate the

20

starting and ending orbital bands. The fifth column, “Count” shows the number of arcs which

fall into that category. The “Time” columns show the minimum, mean, and maximum traver-

sal times for arcs in that category. The “∆V ” columns show the minimum, mean, and maximum

∆V costs for arcs in that category. The final columns show the minimum, mean, and maximum

∆V per hour costs for arcs in that category. Because the weight of the robot servicer is unknown,

∆V is used throughout the case study, but this could easily be adjusted once the weight and other

properties of the chosen robot servicer are known. The time and ∆V costs shown were calculated

as outlined in [5].

Table 2.2: Summary of all arcs possible for nodes used in case studies.

Direction
Maneuver

Type
Starting

Orbit
Ending
Orbit

Count
Time (hours) ∆ V ∆V per Hour

Min Mean Max Min Mean Max Min Mean Max

Ascending

Hohmann MEO GEO 24 12.00 12.00 12.00 1.54 1.54 1.54 0.13 0.13 0.13
Hohmann

w/Inclination
Change

LEO MEO 72 6.00 6.00 6.00 7.42 7.64 8.24 1.24 1.27 1.37
LEO GEO 18 12.00 12.00 12.00 7.02 7.02 7.02 0.59 0.59 0.59
MEO GEO 72 12.00 12.00 12.00 4.46 4.46 4.46 0.37 0.37 0.37

Descending

Hohmann GEO MEO 24 6.00 6.00 6.00 1.63 1.63 1.63 0.27 0.27 0.27
Hohmann

w/Inclination
Change

MEO LEO 72 0.75 0.75 0.75 3.32 3.54 4.14 4.43 4.71 5.52
GEO LEO 18 0.75 0.75 0.75 2.15 2.15 2.15 2.87 2.87 2.87
GEO MEO 72 6.00 6.00 6.00 3.63 3.63 3.63 0.61 0.61 0.61

Same

Orbit
LEO LEO 18 0.25 0.25 0.25 0.00 0.00 0.00 0.00 0.00 0.00
MEO MEO 96 0.50 0.50 0.50 0.00 0.00 0.00 0.00 0.00 0.00
GEO GEO 48 0.50 0.50 0.50 0.00 0.00 0.00 0.00 0.00 0.00

Phasing
LEO LEO 75 2.00 3.74 5.00 0.74 1.83 2.39 0.37 0.49 0.54
MEO MEO 2116 13.00 28.54 46.00 0.10 0.84 1.29 0.01 0.03 0.03
GEO GEO 2209 25.00 56.55 94.00 0.04 0.65 1.04 0.00 0.01 0.01

Overall 4934 0.25 37.03 94.00 0.00 0.98 8.24 0.00 0.14 5.52

As eluded to earlier, we also conducted two smaller case studies. We examined the effect

of refuelling in the Refuelling Case Study and the effect of inter-orbit transfers in the the Single

vs. Multi-Orbit Case Study on the number of tasks completed. In later sections, we present the

detailed factors and levels for each of these case studies, but now we will talk about the network

differences.

The network for the Refuelling Case Study used the same node set, N, as the Core Case

Study, but used a 48 hour time horizon. Thus, any arcs with a traversal time, τi j ≥ 48 hours were

excluded. After following the algorithm using our set of 162 nodes, the network had |A| = 3,590

total directed arcs for the 48 hour time horizon plus the arcs connected to a sink node for 3,590+

21

162 = 3,752 total arcs. Additionally, one half of the runs allowed refuelling arcs in the network

while the other half did not allow refuelling arcs.

The network for the Single vs. Multi-Orbit Case Study also used the same node set, N, as

the Core Case Study, but had multiple different time horizons of 24,36,48,72, and 96 hours. In

the same manner as described previously, for each run, the network was reconfigured to exclude

arcs which exceeded the designated time horizon for that run. In addition, for the single orbit

runs we exclude the arcs representing Hohmann transfers and Hohmann transfers with an incli-

nation change and only considered orbiting and phasing maneuvers. All runs in the Single vs.

Multi-Orbit Case Study allowed refuelling. The number of arcs for the Single vs. Multi-Orbit

Case Study are shown in Table 2.3 broken down by the network configuration and time hori-

zon. In all case studies which allow inter orbit transfers, there are 48 Hohmann transfer arcs, 324

Hohmann transfer with an inclination change arcs, and 162 orbiting arcs.

Table 2.3: The number of arcs for runs in the Single vs. Multi-Orbit Case Study.

Network Configuration Time Horizon (hours) Number of Arcs

Multi-Orbit
24 1381
36 2582

Single Orbit
24 1009
48 3218
72 3986
96 4934

2.4.2 Core Case Study

2.4.2.1 Core Case Study: Test Design and Data Generation

In the previous section, we covered the network generation for each of our three case studies.

With the network established, we will now focus on the Core Case Study and the details of how

the data for the tasks, subtasks, and refuelling arcs were created. We begin with the test design as

it contains the information needed for data generation.

To generate the data for the tasks, subtasks, and refuelling arcs, we need to know the num-

22

ber and starting location of the tasks, the number and starting locations for the refuelling depots,

and the number, fuel capacity, and starting location of the robot servicers. All of this informa-

tion for each of the case studies is in the case study test design. For this case study, the Core Case

Study, we examined the largest set of factors and levels hoping to draw big picture insights. In

Table 2.4, we show the factors and levels used in the Core Case Study. We considered between

one and five fuel depots and between one and five robot servicers. For all case studies, the refu-

elling depot starting location, was some combination of the following: 12,32,80,125,150. These

nodes are in orbits 2L,4M,2M, and 8G. We also assumed that robot servicers always started at

a fuel depot. Thus, these are also the values for sd . When the number of robot servicers equals

the number of depots, one servicer started at each depot. We enumerated all cases for one to five

depots and their starting locations and this resulted in 31 cases for the combined factor of Fuel

Depot Starting Location. We also considered the robot servicer fuel capacity and placed one or

two tasks per orbit which resulted in 8 or 16 tasks. We continue with the generation of the data

for the refuelling arcs and subtask locations.

Table 2.4: Factors and levels for the Core Case Study.

Factor Levels
Fuel Depot Starting Locations 31 cases†

Number of Robot Servicers 1, 2, 3, 4, 5
Robot Servicer Fuel Capacity (∆V) 10, 15, 25
Number of Tasks 8, 16
† The Fuel Depot Starting Locations factor is a

combination of factors for the number of ser-
vicers, number of depots, and the fuel depot
starting locations.

Now with the parameters for the refuelling depot(s) from the test design, starting loca-

tion and orbit of the refuelling depots, the time horizon (|T |), the set of nodes (N), and the set

of arcs (A) we have all the inputs to use Algorithm 3 to determine the elements of AR
t . Figure 2.2

presents a visual example of refuelling depot movement which is implemented in Algorithm 3.

Next we generate the subtasks from the tasks. In our set of arcs A there are 162 arcs which are

23

orbiting maneuvers. Depending on the number of refuelling depots and the time, every arc on an

orbit that has a refuelling depot becomes a refuelling arc.

For all case studies, we considered runs with either |B| = 8 or |B| = 16 tasks indicating

one or two tasks per orbit. We numbered the tasks sequentially and assigned a unit weight to each

task. The locations of tasks are moving over time, thus given the location of a task (i.e., the node

closest to its starting position) at the start of the time horizon, we can approximate where and

when the task is in our network at a given time. When we had two tasks on the same orbit, we

started them at nodes on opposite sides of the orbit. In application, the starting node for a task

should be the node closest to its location on the orbit at the start of the time period. With all of

the input parameters (the time horizon (|T |), the set of nodes (N), the set of arcs (A), the task

set (B), and the tasks (v ∈ B) with their starting nodes and orbits for Algorithm 2 we generated

the subtasks, (Bv,∀v ∈ B). Figure 2.2 and Table 2.6 present a visual and tabular example of task

movement.

Table 2.5: Tasks and their associated starting nodes for a 16 task run in the Core Case Study.

Orbit Tasks
Starting
Nodes

1L 1, 9 1, 4
2L 2, 10 7, 10
3L 3, 11 13, 16
4M 4, 12 19, 31
5M 5, 13 43, 55
6M 6, 14 67, 79
7M 7, 15 91, 103
8G 8, 16 115, 139

#i
Indicates the orbit ID number and orbit
location where L represents Low Earth
Orbit, M represents Mid Earth Orbit, and
G represents Geosynchronous Orbit.

In Figure 2.2, we depict the movement over time of a task or fuel depot moving through an

orbit between times t to t + 2. For this figure, we assume that the task (or fuel depot) is at node 2

at time t and the nodes in this orbit are ∆t = 15 minutes (1 time unit) apart. On the far left we de-

24

pict a task’s subtask at node 2 or a refuelling depot at node 2 at time t resulting in a refuelling arc

on (2,3) at time t. In the middle we see the same subtask now at node 3 at time t + 1 or a refu-

elling arc on (3,2) at t = t +1. On the right, as time proceeds, the same subtask is now at node 4

or a refuelling arc at time t + 2 on (4,5). In Table 2.6, we present a tabular representation of Fig-

ure 2.2 indicating where tasks could be completed or the robot servicers might refuel, depending

on if the figure represents depots or tasks.

1

23

4

5 6

t = t 1

23

4

5 6

t = t +1 1

23

4

5 6

t = t +2

Figure 2.2: Movement of refuelling depots or tasks over time.

Table 2.6: When and Where Refuelling Arcs or Sub Task Completion Occur for Figure 2.2.

Activity Possible Where When
If the figure represents depots

Refuelling Arc (2,3) t = t
Refuelling Arc (3,4) t = t +1
Refuelling Arc (4,5) t = t +2

If the figure represents tasks
Sub Task Location Node 2 t = t
Sub Task Location Node 3 t = t +1
Sub Task Location Node 4 t = t +2

With the network, parameters and sets created for the Core Case Study, we used the test

design in Table 2.4 to create a full factorial design with 930 runs (31× 5× 3× 2 = 930). All of

these runs were conducted on a High Performance Computer (HPC) using IBM Decision Opti-

mization for CPLEX (DOcplex). IBM DOcplex is an optimization software package written for

use in Python. Next we present the results and insights from the 930 runs in the Core Case Study.

25

2.4.2.2 Core Case Study: Results and Insights

Now we present insights about solving statistics, servicer behaviors, refuelling, and network

configuration for the Core Case Study. In every case study, the goal of the optimization model

was to maximize the weighted number of completed tasks. In all results, when we say com-

pleted tasks, we are actually referring to the weighted number of completed tasks. This is in-

terchangeable in our case study because all of our tasks had an equal weight of one. During

the analysis, we sometimes examine and refer to another response variable: proportion of

weighted tasks completed. This proportion allows a discussion of task completion without cat-

egorizing the results based on the number of tasks, because maximizing the completed num-

ber of tasks also maximizes this proportion. For each run, we calculated this value as follows:

Proportion of Weighted Tasks Completed =
Objective Function Value

Number of Tasks
. For the Core Case Study,

this proportion varied from 0.12−1.00, with an overall mean of 0.59 and a standard deviation of

0.26. This means that over all 930 runs, between 12−100% of the tasks were completed and that

on average 59% of the tasks were completed.

To further examine the response, we fit a regression model with the the main effects and

the two factor interactions of our design factors shown in Table 2.4. The most influential fac-

tors, by far, on the proportion of weighted of tasks completed are the servicer starting fuel and the

number of servicers, accounting for over 80% of the variability in the response. The completed

tasks (objective values) results are shown in Table 2.7 grouped by the number of servicers and the

fuel capacity as these were the two most influential factors.

Next, we will cover the solving statistics for the Core Case Study. We begin with a brief

explanation of terminology and then proceed with the details of the solving statistics. The goal

when solving any optimization model to find an optimal solution. For our problem, this trans-

lates to finding a solution for which the servicers complete as many tasks as possible. When solv-

ing our problem, the software stopped when it found an integer optimal solution to the problem,

reached the time limit, or ran out of memory.

Of the 930 runs, 523 reached integer optimality. When solving, we set a 12 hour solv-

26

0 20 40 60
0

20

40

60

80

100

3

104

32

16

94

28
37

25

8

38

10 8
2

Gap %

C
ou

nt

Figure 2.3: Histogram of Gap Values.

ing time limit for each of the 930 runs. If the solver could not find an optimal solution before

the time limit was reached, the software reported the best objective function value at that time

along with the gap. Given an optimal solution, the gap is a value which indicates that the cur-

rent solution is off by no more than this percentage. Of the 930 runs, 404 reached the 12 hour

time limit with an average gap of 28.4% and a range of 6.25− 69.1%. This means that the solu-

tions obtained at the end of the 12 hours, in the worst case, differed from an optimal solution by

6.25− 69.1%. A visualization of the gap distribution for these runs is shown in Figure 2.3. Fi-

nally, there were 3 runs which ran out of memory on the high performance computer and failed to

solve. The HPC has another partition which is designated high-memory. We ran the 3 runs with a

12 hour time limit on the high-memory partition and they all reached the 12 hour time limit. The

combined solving results for all runs are shown in Table 2.7.

Each row of the table summarizes the outcome of the 31 runs for that set of factor levels,

with the exception of the runs which ran out of memory and did not solve on the HPC. For the

factor combinations which ran out of memory, those rows are marked with a number in the ex-

ponent which indicates the number of runs which ran out memory. The column Mean 12 Hour

Gap (%) shows the averaged gap for each row. When the value in this column is zero, this means

that all 31 runs resulted in an integer optimal solution. When the value in this column is not zero,

27

Table 2.7: Solving results for the integer optimal and time limit reached runs for the Core
Case Study.

Factors Using CPLEX 12.10 Objective Value

Number
of

Tasks

Number
of

Servicers

Fuel
Capacity

Integer
Optimal
Solution

Reached
12

Hours

Mean
12 Hour
Gap (%)

Mean
Solve Time

(hours)
Min Mean Max

1 10 31 0 0.00 0.16 1 1.61 2
1 15 31 0 0.00 0.12 2 2.48 3
1 25 31 0 0.00 0.05 3 3.00 3
2 10 13 18 28.89 8.19 2 3.06 4
2 15 27 4 3.38 4.31 4 4.61 5
2 25 24 7 5.00 4.16 5 5.00 5
3 10 1 30 41.86 11.79 3 4.52 6
3 15 5 26 16.83 10.95 6 6.32 7
3 25 8 23 9.27 10.58 6 6.90 7
4 10 1 30 28.23 11.63 4 5.71 7
4 15 18 13 5.24 5.64 7 7.52 8
4 25 29 2 0.81 1.14 7 7.90 8
5 10 7 24 17.34 10.82 5 6.58 8
5 15 31 0 0.00 0.70 7 7.97 8

8

5 25 31 0 0.00 0.34 7 7.97 8
1 10 31 0 0.00 0.05 2 2.58 3
1 15 31 0 0.00 0.04 3 3.52 4
1 25 31 0 0.00 0.03 4 4.00 4
2 10 16 132 16.60 8.02 4 4.84 6
2 15 27 4 1.70 3.72 6 6.52 7
2 25 30 1 0.36 0.72 8 8.00 8
3 10 2 281 24.74 11.35 5 6.94 9
3 15 25 6 4.56 4.35 9 9.39 10
3 25 28 3 2.25 2.71 9 10.48 12
4 10 3 28 40.98 11.74 6 7.94 10
4 15 6 25 22.98 10.14 10 11.00 12
4 25 5 26 16.98 10.60 10 12.45 14
5 10 0 31 45.98 12.00 6 8.58 11
5 15 0 31 26.65 12.00 9 11.71 13

16

5 25 0 31 13.52 12.00 11 13.81 15

Indicates the number of runs which ran out of memory.

this means that at least one of of the 31 reached the 12 hour time limit when solving. Each row

shows the counts of the runs which were integer optimal or reached the time limit of 12 hours.

The Mean 12 Hour Gap (%) includes zero values in the average for those runs that reached in-

teger optimality. This same logic follows for the Mean Solve Time (hours) column. For the rows

which had runs which reached the 12 hour time limit, the solve time mean includes 12 hours in

28

1 2 3 4 5

0.2

0.4

0.6

0.8

1

Number of Servicers

Pr
op

or
tio

n
of

C
om

pl
et

e
Ta

sk
s

Servicer Fuel Capacity: = 10∆V = 15∆V = 25∆V

Figure 2.4: How the number and fuel capacity of servicers affected task completion.

the average.

In addition to solving insights, we can show the number and configuration of the robot ser-

vicers impacts the number of completed tasks using the Objective Value columns. As would be

expected, as the number of servicers increases so does the number of completed tasks. We exam-

ined this further using Figure 2.4 and can see that the slopes of the lines decrease as the number

of servicers increase indicating a diminishing return on the number of completed tasks. Figure

2.4 also illustrates the decreasing impact of increasing the servicer fuel capacity. The increase in

the objective value when increasing the servicer fuel capacity from 10 to 15 is almost twice that

of the increase when the fuel capacity increases from 15 to 25, illustrating the decreasing impact

of increasing the servicer fuel capacity.

In addition to solving statistics and the impact of the factors on the response variable, we

also examined robot servicer movements. In the 930 runs of the main test design, there were

2,790 total servicers and 11,160 tasks. On average, each servicer completed 2.3 tasks, refuelled

2.8 times, and used 13.9 ∆V . The number of tasks completed by servicers ranged from 0 − 4.

There were 3 servicers that completed no tasks and all of these cases occurred when there were 5

29

servicers available. These results are intuitive because when there are less servicers, the servicers

available must complete more tasks. No servicer completed more than 4 tasks in this 24-hour

time horizon indicating that it might be better to have more than one servicer when then are more

than four tasks to be completed.

LEO MEO GEO
0

500

1,000

1,500

2,000

2,500
215

214

779

855
731

782

1,387 1,232

Servicer Starting Orbit

#
of

Ta
sk

s

Task Completed Orbit: LEO MEO GEO

Figure 2.5: Where tasks were completed versus the starting orbit of the completing servicer.

Table 2.8: Where tasks were completed versus the starting orbit of the completing servicer.

Servicer Starting Orbit
Refuelling Orbit LEO MEO GEO
LEO 782 1387 1232
MEO 779 855 731
GEO 95 215 214

Another interesting observation from this case study is that where servicers started did

not influence where they completed tasks. We examined the orbits where tasks were completed

versus where the completing servicer started. Figure 2.5 shows where tasks were completed as

compared to where the completing servicer started and Table 2.8 shows a tabular representation.

The plot shows the results for all completed tasks in the Core Case Study. The colors indicate

the proportion of all tasks which were completed in that orbit. We know from Table 2.2 that the

maneuvers to and within LEO use much less time allowing the servicers to move more and per-

30

haps complete more tasks. All servicers completed the most tasks in LEO, followed by MEO and

GEO and this was true across all servicer starting orbits indicating that no matter where a servicer

starts, they proceed to lower orbits to accomplish tasks. The results here motivated the third case

study which focused on the impact of inter orbit transfers.

LEO MEO GEO
0

200

400

600

800

1,000

1,200

741

1,209

629

Servicer Starting Orbit

#
R

ef
ue

ls

Task Completed Orbit: LEO MEO GEO

Figure 2.6: Where servicers refuelled versus their starting location (starting node).

Table 2.9: Where servicers refuelled versus their starting location (starting node).

Servicer Starting Orbit
Refuelling Orbit LEO MEO GEO
LEO 629 76 12
MEO 5 1209 1
GEO 0 0 741

Although the servicers preferred to work in LEO, they refuelled most often in the orbits

where they started. In the Core Case Study, there were 2673 refuelling events. A refuelling event

occurred when the fuel level of a servicer increased from one time period to the next while travel-

ling on a refuelling arc. As shown in Section 2.3, in our model, there is no penalty for refuelling,

meaning that servicers can refuel as many times as they want. Servicers refuelled on average 1.93

times. Figure 2.6 shows where servicers started versus where they refuelled and Table 2.9 shows

a tabular representation of the same data. The distribution of the number of refuelling events by

31

the servicer fuel capacity is shown in Table 2.10. As would be expected, servicers with a smaller

fuel capacity refuelled more often. These results motivated the second case study which focused

on refuelling. In this section, we have shown a few examples of insights to be gained when using

this model to solve a robot servicer scheduling and routing problem. Next, we present the details

of the Refuelling Case Study.

Table 2.10: Distribution of refuelling events by servicer starting fuel.

Servicer Fuel
Capacity

(∆V)

Number of
Refuelling Events

25 498
15 883
10 1292

Total 2673

2.4.3 Refuelling Case Study

Following the Core Case Study, we completed a smaller, more focused test design to determine

how refuelling affects the number of weighted tasks completed. We proceed in the section with

the test design and then present the results.

The test design for the Refuelling Case Study was a full factorial design of 30 runs based

on the factors and levels in Table 2.11. Half of the runs had 5 refuelling depots and the other half

had none. We also examined a longer time horizon than the main test design, using 48 hours,

with the hypothesis that refuelling becomes more influential in a longer time horizon. Finally,

because a longer time horizon makes the problem more difficult to solve, we extended the solving

time limit to 72 hours.

The results of the Refuelling Case study indicated that the presence of refuelling depots

enabled the completion of more tasks, however, not as significantly as expected. Servicers, on av-

erage, completed on average 1− 2 more tasks when refuelling depots were available. It is likely

these results would have been more significant if solving difficulties were not present. Even with

the longer solving time, only 19 of the 30 runs solved to integer optimality. None of the runs with

32

Table 2.11: Factors and levels for the focused Refueling Case Study.

Factor Levels
Number of Fuel Depots 0, 5†

Number of Robot Servicers 1
Robot Servicer Fuel Capacity 10, 15, 25
Servicer Starting Node 12-LEO, 32-MEO, 80-MEO, 125-GEO, 150-GEO
Number of Tasks 8
Time Horizon (hours) 48
Solving Time Limit (hours) 72
† No runs without any fuel depots were accomplished in the original data set.

Table 2.12: How refuelling depots affected task completion.

Servicer
Starting Orbit

Servicer
Fuel Capacity

Without
Refuelling

With
Refuelling

Complete Incomplete Complete Incomplete

LEO
10 1 7 3 5
15 3 5 5 3
25 5 3 6 2

MEO
10 5 11 7 9
15 6 10 9 7
25 10 6 10 6

GEO
10 6 10 7 9
15 6 10 10 6
25 10 6 11 5

refuelling depots and the smallest fuel capacity of 10∆V solved to optimality within the 72 hour

time limit. All of the runs without refuelling depots reached integer optimality within the 72 hour

time period. Thus, the 1− 2 task improvement with refuelling depots is a lower bound because

the true optimal solutions could be up to 39% improved in the runs which did not reach integer

optimality. In Table 2.12, we show the results for all 30 grouped by the servicer fuel capacity and

servicer starting orbit. As would be expected, the impact of refuelling depots on task completion

is most evident when the servicer fuel capacity is lower. Although on orbit refuelling depots do

not yet exist, these results show that refuelling is necessary to fully enable the long term opera-

tion of robot servicers. In the next case study, we examine the effect that the inter-orbit transfers

have on the weighted number of tasks completed.

33

2.4.4 Single Versus Multi-Orbit Case Study

During the Core Case Study, we observed that when tasks were completed, they were most of-

ten completed by servicers which started in a different orbit (see Figure 2.5). This observation

combined with the multi-orbit nature of our problem motivated the creation and execution of a

smaller case study focused on determining the difference in the weighted number of completed

tasks when inter-orbit maneuvers are and are not allowed.

This section summarizes the details and results of the Single Versus Multi-Orbit (SVM)

Case Study. We begin with the test design and then present the results and insights.

We call the network which allows inter orbit transfers a multi-orbit network and the net-

work without inter orbit transfers a single orbit network. We show the SVM Case Study factors

and levels in Table 2.13. We completed 36 runs using these factors and levels. We did not in-

clude time horizons greater than 36 hours for the multi-orbit network configuration due to solving

issues observed in the Core Case Study. In contrast to the Core Case Study, we examined mul-

tiple different time horizons and only included runs with 5 servicers and 5 refuelling depots. In

the comparisons, we included tasks on orbits which had a servicer and excluded all tasks which

would be unreachable without inter orbit transfers reducing the number of tasks to 4 or 8. To cre-

ate the single orbit networks, we followed the arc creation algorithm as shown in Algorithm 1 for

each time horizon, and then removed all arcs which allowed servicers to move between orbits or

exceeded the time horizon.

Table 2.13: Factors and levels for the focused Single vs. Multi-Orbit Case Study.

Factor Levels
Number of Robot Servicers 5
Robot Servicer Fuel Capacity 10, 15, 25
Number of Tasks 4,8
Network Configuration Multi-Orbit, Single Orbit
Time Horizon (hours) 24, 36, 48, 72

The mean solving time for the runs with a single orbit network configuration was less than

13 minutes, while the mean solving time for runs with the multi-orbit network configuration was

34

24
-S

ing
le

36
-S

ing
le

24
-M

ult
i

48
-M

ult
i

72
-M

ult
i

96
-M

ult
i0

10

20

30

21 21

35 36

15 15

36 36

#
Ta

sk
s

Complete Incomplete

Figure 2.7: Task completion by network configuration and time horizon.

nearly 11 hours. The results of the runs are shown in Figure 2.7. Each bar shows the results from

36 possible tasks for that network configuration/time horizon combination.

For our network, the effect of the multi-orbit network is significant. Servicers operating

on the multi-orbit network completed nearly as many tasks in 24 hours as those operating on the

single orbit network in 72 hours. These results would likely translate to similar results with larger

networks and longer time horizons which could justify using multi-orbit servicers at some point

in the future as space technologies advance.

2.5 Conclusions

We are the first to consider the Multi-Orbit Routing and Scheduling of Refuellable On-Orbit Ser-

vicing Space Robots (MORSO) problem. We present a novel Mixed Integer Linear Program for-

mulation seeking to maximize the weighted number of tasks completed within a given time hori-

zon. We created new algorithms to model the movement of tasks and refuelling depots over time

and to generate the network data based on time and ∆V costs which come from orbital mechanics

calculations. We performed computational tests using data created based on satellites which are

currently on-orbit in LEO, MEO, and GEO and provide managerial insights which inform deci-

35

sion makers on the number and configuration of robot servicers needed for a set of tasks. We also

demonstrated the benefit of on orbit refuelling depots and the importance of inter-orbit transfers

for task completion.

To validate MORSO, we completed three case studies using our network and were able to

provide results concerning where robot servicers were completing tasks and how refuelling de-

pots and servicer starting locations influence tasks completions. These results translate into pol-

icy insights for the numbers and locations of both robot servicers and refuelling depots. We also

present analysis showing how network configuration impacts the types and numbers of move-

ments that robot servicers make. Finally, we presented the significant impact of a multi versus

single orbit network on task completions. These results are based on our network, however sim-

ilar types of insights would be possible from larger network configurations, with more detailed

maneuver costs. Incorporating additional maneuver types, precise rendezvous time and ∆V costs,

and incorporating task times are definite possibilities for future research.

Another facet of this work is the initial evidence surrounding the solving difficulty of

MORSO when constructed with larger networks, more servicers, more refuelling depots, and

longer time horizons. The solving difficulties encountered with even 24 hour time horizon empir-

ically demonstrate that the MORSO may be hard to solve. To prove the MORSO is hard to solve

is the first direction for follow-on research related to this work.

Although the technology for the MORSO does not yet exist, there are many additional ar-

eas of research such as the development of a heuristic to obtain optimal or near optimal solutions

to the MORSO more quickly. With a heuristic, much longer time horizons and much larger net-

works could be investigated. Further research could also include examining the MORSO as a

multi-objective optimization maximizing the number of tasks completed while minimizing time

and ∆V expenditures. This work has demonstrated that this model can be used to effectively op-

timize the scheduling and routing of robot servicers to accomplish on-orbit servicing tasks across

many orbits and presents algorithms which make it robust to larger and more complex network

considerations.

36

Funding: This research did not receive any specific grant from funding agencies in the public,

commercial, or not-for-profit sectors.

37

Bibliography

[1] Alfriend, K. T., Lee, D. J., and Creamer, N. G. (2006). Optimal Servicing of Geosynchronous
Satellites. Journal of Guidance, Control, and Dynamics, 29(1):203–206.

[2] Bourjolly, J., Gürtuna, Ö., and Lyngvi, A. (2006). On Orbit Servicing: A Time Dependent,
Moving Target Traveling Salesman Problem. International Transactions in Operational Re-
search, 13(5):461–481.

[3] British Broadcasting Corporation (2020). Space news: First Ever Space ‘Petrol Station’ to Be
Built in UK. https://www.bbc.co.uk/newsround/54551557. Last Accessed: July 4, 2022.

[4] Corbin, B. A., Abdurezzak, A., Newell, L. P., Roesler, G. M., and Lal, B. (2020). Global
Trends in On-Orbit Servicing, Assembly and Manufacturing (OSAM). https://www.ida.or
g/research-and-publications/publications/all/g/gl/global-trends-in-on-
orbit-servicing-assembly-and-manufacturing-osam. IDA Document D-13161.

[5] Curtis, H. (2019). Orbital Mechanics for Engineering Students. Elsevier Science & Technol-
ogy, San Diego.

[6] Daneshjou, K., Mohammadi-Dehabadi, A. A., and Bakhtiari, M. (2017). Mission Planning
For On-Orbit Servicing Through Multiple Servicing Satellites: A New Approach. Advances in
Space Research, 60(6):1148–1162.

[7] Du, B., Zhao, Y., Dutta, A., Yu, J., and Chen, X. (2015). Optimal Scheduling of Multispace-
craft Refueling Based on Cooperative Maneuver. Advances in Space Research, 55(12):2808–
2819.

[8] Dutta, A. and Tsiotras, P. (2007). A Greedy Random Adaptive Search Procedure for Optimal
Scheduling of P2P Satellite Refueling. In AAS/AIAA Space Flight Mechanics Meeting, pages
07–150.

[9] Dutta, A. and Tsiotras, P. (2008). A Cooperative P2P Refueling Strategy for Circular Satellite
Constellations. In AIAA SPACE 2008 Conference & Exposition, page 7643.

[10] Dutta, A. and Tsiotras, P. (2010). Network Flow Formulation for Cooperative Peer-to-Peer
Refueling Strategies. Journal of Guidance, Control, and Dynamics, 33(5):1539–1549.

[11] ESA (2018). Removing Debris to Demonstrate Commercial In-Orbit Servicing. https:
//blogs.esa.int/cleanspace/2018/09/06/removing-a-debris-to-demonstrate-
commercial-in-orbit-servicing/. Last Accessed: July 4, 2022.

[12] Gürtuna, Ö. and Trépanier, J. (2003). On-Orbit Satellite Servicing: A Space-Based Vehicle
On-Orbit Servicing Routing Problem. In Operations Research in Space and Air, pages 123–
141. Springer.

[13] Hudson, J. S. and Kolosa, D. (2020). Versatile On-Orbit Servicing Mission Design in
Geosynchronous Earth Orbit. Journal of Spacecraft and Rockets, 57(4):844–850.

38

https://www.bbc.co.uk/newsround/54551557
https://www.ida.org/research-and-publications/publications/all/g/gl/global-trends-in-on-orbit-servicing-assembly-and-manufacturing-osam
https://www.ida.org/research-and-publications/publications/all/g/gl/global-trends-in-on-orbit-servicing-assembly-and-manufacturing-osam
https://www.ida.org/research-and-publications/publications/all/g/gl/global-trends-in-on-orbit-servicing-assembly-and-manufacturing-osam
https://blogs.esa.int/cleanspace/2018/09/06/removing-a-debris-to-demonstrate-commercial-in-orbit-servicing/
https://blogs.esa.int/cleanspace/2018/09/06/removing-a-debris-to-demonstrate-commercial-in-orbit-servicing/
https://blogs.esa.int/cleanspace/2018/09/06/removing-a-debris-to-demonstrate-commercial-in-orbit-servicing/

[14] Li, W. J., Cheng, D. Y., Liu, X. G., Wang, Y. B., Shi, W. H., Tang, Z. X., Gao, F., Zeng,
F. M., Chai, H. Y., Luo, W.-B., Cong, Q., and Gao, Z. L. (2019). On-orbit Service (OOS) of
Spacecraft: A Review of Engineering Developments. Progress in Aerospace Sciences, 108:32–
120.

[15] NASA (2020). NASA Selects Proposals to Demonstrate In-Space Refueling and Propellant
Depot Tech. https://www.nasa.gov/directorates/spacetech/solicitations/tippin
g points/2020 selections. Last Accessed: July 4, 2022.

[16] NASA (2021a). About - Hubble Servicing Missions. https://www.nasa.gov/mission p
ages/hubble/servicing/index.html. Last Accessed: July 4, 2022.

[17] NASA (2021b). On-orbit Servicing, Assembly, and Manufacturing 1 (OSAM-1). https:
//nexis.gsfc.nasa.gov/osam-1.html. Last Accessed: July 4, 2022.

[18] Northrup Grumman (2020). Mission Extension Vehicle. https://news.northropgrumm
an.com/news/releases/northrop-grumman-and-intelsat-make-history-with-
docking-of-second-mission-extension-vehicle-to-extend-life-of-satellite.
Last Accessed: July 4, 2022.

[19] Sarton du Jonchay, T., Chen, H., Gunasekara, O., and Ho, K. (2020). Rolling Horizon Op-
timization Framework For the Scheduling of On-Orbit Servicing Operations Under Servicing
Demand Uncertainties. In ASCEND 2020, page 4131. American Institute of Aeronautics and
Astronautics, Inc.

[20] Shen, H. and Tsiotras, P. (2005). Peer-to-Peer Refueling for Circular Satellite Constella-
tions. Journal of Guidance, Control, and Dynamics, 28(6):1220–1230.

[21] Space-Track.org (2021). Space-Track.org. https://www.space-track.org. Last
Accessed: July 4, 2022.

[22] Yu, J., Ouyang, Q., Chen, X. Q., and Chen, L. H. (2013). Optimal Peer-to-Peer Maneuvers
for Refueling Satellites in Circular Constellations. Applied Mechanics and Materials, 290:41.

[23] Yu, J., Yu, Y. G., Huang, J. T., Chen, X. Q., and Liu, H. Y. (2017). Optimal Scheduling
of GEO On-Orbit Refuelling with Uncertain Object Satellites. MATEC Web of Conferences,
114:3001.

[24] Zhang, J., Parks, G. T., Luo, Y. Z., and Tang, G. J. (2014). Multispacecraft Refueling Op-
timization Considering the J2 Perturbation and Window Constraints. Journal of Guidance,
Control, and Dynamics, 37(1):111–122.

[25] Zhang, T. J., Yang, Y. K., Wang, B. H., Li, H. N., Li, Z., and Shen, H. X. (Oct 2019). Opti-
mal Scheduling for Location Geosynchronous Satellites Refueling Problem. Acta Astronau-
tica, 163:264–271.

[26] Zhao, Z., Zhang, J., Li, H. Y., and Zhou, J. Y. (2017). LEO Cooperative Multi-Spacecraft
Refueling Mission Optimization Considering J2 Perturbation and Target’s Surplus Propellant
Constraint. Advances in Space Research, 59(1):252–262.

39

https://www.nasa.gov/directorates/spacetech/solicitations/tipping_points/2020_selections
https://www.nasa.gov/directorates/spacetech/solicitations/tipping_points/2020_selections
https://www.nasa.gov/mission_pages/hubble/servicing/index.html
https://www.nasa.gov/mission_pages/hubble/servicing/index.html
https://nexis.gsfc.nasa.gov/osam-1.html
https://nexis.gsfc.nasa.gov/osam-1.html
https://news.northropgrumman.com/news/releases/northrop-grumman-and-intelsat-make-history-with-docking-of-second-mission-extension-vehicle-to-extend-life-of-satellite
https://news.northropgrumman.com/news/releases/northrop-grumman-and-intelsat-make-history-with-docking-of-second-mission-extension-vehicle-to-extend-life-of-satellite
https://news.northropgrumman.com/news/releases/northrop-grumman-and-intelsat-make-history-with-docking-of-second-mission-extension-vehicle-to-extend-life-of-satellite
https://www.space-track.org

[27] Zhou, Y., Yan, Y., Huang, X., and Kong, L. (2015). Optimal Scheduling of Multiple
Geosynchronous Satellites Refueling Based on a Hybrid Particle Swarm Optimizer. Aerospace
Science and Technology, 47:125–134.

[28] Zhou, Y., Yan, Y., Huang, X., and Yang, Y. (2017). Multi-Objective Planning of a Multiple
Geostationary Spacecraft Refuelling Mission. Engineering Optimization, 49(3):531–548.

40

Appendix

Appendix 2.A Appendix: Orbital Mechanics

2.A.1 Orbital Parameters and Constants

These orbital parameters and constants were used in the creation of the data sets in this work.

a or r: semi-major axis, distance from the center the Earth in km; orbital altitude

ν or θ: true anomaly, degrees, where on the “orbit” the node is located

i: inclination, degrees, the vertical “tilt” of the orbit

e: eccentricity, the “roundness” of the orbit

Ω: right ascension of ascending node (RAAN), degrees, the horizontal “tilt” of the orbit

ω: perigee (angle to periapsis, the location on the orbit that is closest to Earth)

µ: Earth’s gravitational parameter in km3/s2 398,600

NOTE: Circular orbits have e = 0 and do not have ω, because all points on the orbit have the

same distance to Earth.

Equatorial Plane

Reference direction (γ)

Orbital Plane

Node Periapsis

Semi-Major Axis (a or r)
ω

ν

RAAN (Ω)
Inclination (i)

Figure 2.A.1: Orbital Parameters

The period (the time) of a circular orbit is calculated as follows: T =
2πr√

µ
r

, in seconds,

where r is the semi-major axis of the orbit.

41

2.A.2 Hohmann Transfer

A Hohmann transfer is used to make a change in orbital altitude, r on the same orbital plane. The

arrival location on the destination orbit is at a position of 180 degrees forward or backward (ν),

depending on where maneuver was initiated. The calculations for a change in altitude from circu-

lar orbit r1 to the co-planar orbit r2 are as follows [5]:

The angular momentum of the starting orbit is:

h1 =
√

2∗µ
√

r1 ∗ r1

r1 + r1
km2/s (2.9)

The angular momentum of the transfer orbit is:

h2 =
√

2∗µ
√

r1 ∗ r2

r1 + r2
km2/s (2.10)

The angular momentum of the destination orbit is:

h3 =
√

µr2 km2/s (2.11)

The velocity at the starting orbit is:

V1 =

√
2∗µ

√
r1∗r1
r1+r1

r1
km/s (2.12)

The velocity at the transfer orbit is:

V2 =

√
2∗µ

√
r1∗r2
r1+r2

r1
km/s (2.13)

The velocity at the destination orbit is:

V3 =

√
µr2

r2
km/s (2.14)

42

The ∆V for the maneuver is:

∆v1 =V2 −V1

∆v2 =V3 −V2

∆V = |v1|+ |v2|

(2.15)

The time for the maneuver is:
T
2
=

2πr
3
2
2

2
√

µ
(2.16)

2.A.3 Combined Hohmann Transfer with Inclination Change

This maneuver combines a change from r1 to r2 (altitude) and a change in i (inclination). Let the

starting orbit (i) have parameters r1 and i1 and the destination orbit (j) have parameters r2 and i2.

The calculations are as follows [5]:

The velocity at the starting orbit, i:

vi1 =

√
µ
r1

km/s (2.17)

The angular momentum at the destination orbit, j:

h j =
√

2µ
√

r1 ∗ r2

r1 + r2
km/s (2.18)

Intermediate calculations:

vi2 =
h j

r1
(2.19)

v j2 =
h j

r2
(2.20)

v j3 =

√
µ
r2

(2.21)

The change in inclination can be done either at the starting orbit, the destination orbit or

43

half and half. The lower the altitude, the more expensive the ∆V for the inclination change [5]. At

the destination:

∆v j =
√

v2
j2 + v2

j3 −2∗ v j2 ∗ v j3 ∗ cos∆i (2.22)

=

√(
h j

r2

)2

+

(
µ
r2

)
−2∗

h j

r2
∗
√

µ
r2

∗ cos∆i

∆vi = vi2 − vi1 =
h j

r1
−
√

µ
r1

(2.23)

∆V = ∆vi +∆v j (2.24)

At the origin:

∆vi =
√

v2
i1 + v2

i2 −2∗ vi2 ∗ vi1 ∗ cos∆i (2.25)

=

√
µ
r1

+

(
h j

r1

)2

−2∗
√

µ
r1

∗
h j

r1
∗ cos∆i

∆v j = v j3 − v j2 =

√
µ
r2

−
h j

r2
(2.26)

∆V = ∆vi +∆v j (2.27)

We calculated the costs for accomplishing the inclination change at both the starting orbit

and the destination orbit and the result with the smaller ∆V .

2.A.4 Phasing Maneuver

A phasing maneuver is used for a change in the true anomaly. Let ∆φ = the change in true

anomaly angle between nodes i and j in radians. We can calculate the costs for a phasing ma-

neuver as follows [5]: 
θ j −θi < 0 ∆φ = 360+θ j −θi

π

180

θ j −θi ≥ 0 ∆φ = θ j −θi
π

180

(2.28)

44

The period of the starting orbit is:

Ts =
2πr√

µ
r

seconds (2.29)

The mean motion of the satellite in its circular orbit is:

n =

√
µ
r3 (2.30)

k is the number of revolutions which the satellite performs in the phasing ellipse, here in this

work we assume k = 1. The minimum k is 1. As k increases, the time increases, and the ∆V for

the maneuver decreases. So then the phasing ellipse orbital period in seconds is [5]:

Tphasing ellipse =
2kπ+∆φ

kn
(2.31)

And the semi major axis of the phasing ellipse is:

a(k,n,r)phasing ellipse =

µ
(

2kπ+∆φ

kn

)2

4π2


1
3

(2.32)

The ∆V to start and stop the maneuver is equal so the total ∆V is:

∆V = 2∗

∣∣∣∣∣
√

2µ
r
− µ

a(k)phasing ellipse
−
√

µ
r

∣∣∣∣∣ (2.33)

The time to complete the phasing maneuver is:

t∆φ = Tphasing ellipse ∗
∆φ

2π
+ k ∗Tphasing ellipse (2.34)

45

Appendix 2.B Demonstration of Algorithms Presented in this Work

2.B.1 Arc Creation Algorithm Example

To aid the in the explanation of arc creation we provide a specific example as follows. Con-

sider node i = 3 in orbit 1. Node 3 has a stationary true anomaly of 120◦, a semi-major axis of

6652.55(km), and an inclination of 52.986. For node i = 3 there are 10 arcs possible. Table 2.B.1

shows the nodes that node i = 3 is connected to in column j. The third column indicates the type

of maneuver. Node i = 3 is adjacent in the rotation direction of the orbit to node j = 4 on the

same orbit therefore the arc (3,4) between these nodes is an orbiting maneuver arc. Node i = 3

can make a phasing maneuver to any other node on the same orbit which is not adjacent in the

rotation direction of the orbit, therefore node i = 3 is connected to nodes j = 1,2,5,6 by phasing

maneuver arcs. Node i = 3 is connected to orbit 4 on the arc (3,39), orbit 5 on the arc (3,63),

orbit 6 on the arc (3,87), orbit 7 on arc (3,111) and to orbit 8 on arc (3,155) using Hohmann

transfer with inclination change arcs.

Table 2.B.1: All Possible Arcs from Node i = 3 with Maneuver Types, Time and Fuel Costs

Maneuver Time ∆V Fuel per
i j Type Cost (Fuel Cost) Time Period

τi j φi j Ψi j
3 1 Phasing 17 2.09 0.12
3 2 Phasing 20 2.39 0.12
3 4 Orbit 1 0.00 0.00
3 5 Phasing 11 1.30 0.12
3 6 Phasing 13 1.74 0.13
3 39 Hohmann+incline 24 8.24 0.34
3 63 Hohmann+incline 24 7.44 0.31
3 87 Hohmann+incline 24 7.44 0.31
3 111 Hohmann+incline 24 7.44 0.31
3 155 Hohmann+incline 48 7.02 0.15

2.B.2 Sub Task Creation Algorithm Example

An example of the subtasks for Task 4 is shown in Table 2.B.2 below.

46

Table 2.B.2: MORSO Core Case Study: Sub Tasks for Task 4

Task Sub Task Start Time End Time Weight
4 19 1 1 1
4 20 3 3 1
4 21 5 5 1
4 22 7 7 1
4 23 9 9 1
4 24 11 11 1
4 25 13 13 1

4
...

...
...

...
4 40 91 91 1
4 41 93 93 1
4 42 95 95 1

2.B.3 Refueling Arc Designation Algorithm Example

An example of the refuelling arcs for a depot starting at node 12 is shown in Table 2.B.3. The

scenarios in this case study have 1 to 5 robot servicers available to accomplish tasks. The robots

start the overall time period at one of the refuelling depots. The movements of the robot servicers

are controlled with the decision variable ydi jt as and their fuel level is controlled with the decision

variable fdt . Like the tasks, the fuel depots are also in orbit and so for a particular arc in a refuel-

ing orbit, we have times when that depot is available for refueling. For all case studies, we have

162 orbiting maneuver arcs. Thus, for a given depot, we can determine if and when each of these

arcs is available to refuel robot servicers. Table 2.B.3 shows on which arcs at which times that

fuel depot 12 is available for refueling. Thus if a robot servicer needs to refuel, it would need to

move on one of these arcs at one of the times listed as these are the (i, j, t) ∈ AR
t for depot 12.

47

Table 2.B.3: Example: Refuelling Arcs for Depot Starting at Node 12

From To
i j Refuelling Time Periods: t

12 7 0, 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90
7 8 1, 7, 13, 19, 25, 31, 37, 43, 49, 55, 61, 67, 73, 79, 85, 91
8 9 2, 8, 14, 20, 26, 32, 38, 44, 50, 56, 62, 68, 74, 80, 86, 92
9 10 3, 9, 15, 21, 27, 33, 39, 45, 51, 57, 63, 69, 75, 81, 87, 93

10 11 4, 10, 16, 22, 28, 34, 40, 46, 52, 58, 64, 70, 76, 82, 88,94
11 12 5, 11, 17, 23, 29, 35, 41, 47, 53, 59, 65, 71, 77, 83, 89,95

48

Bibliography

[1] Alfriend, K. T., Lee, D. J., and Creamer, N. G. (2006). Optimal Servicing of Geosynchronous
Satellites. Journal of Guidance, Control, and Dynamics, 29(1):203–206.

[2] Bourjolly, J., Gürtuna, Ö., and Lyngvi, A. (2006). On Orbit Servicing: A Time Dependent,
Moving Target Traveling Salesman Problem. International Transactions in Operational Re-
search, 13(5):461–481.

[3] British Broadcasting Corporation (2020). Space news: First Ever Space ‘Petrol Station’ to Be
Built in UK. https://www.bbc.co.uk/newsround/54551557. Last Accessed: July 4, 2022.

[4] Corbin, B. A., Abdurezzak, A., Newell, L. P., Roesler, G. M., and Lal, B. (2020). Global
Trends in On-Orbit Servicing, Assembly and Manufacturing (OSAM). https://www.ida.or
g/research-and-publications/publications/all/g/gl/global-trends-in-on-
orbit-servicing-assembly-and-manufacturing-osam. IDA Document D-13161.

[5] Curtis, H. (2019). Orbital Mechanics for Engineering Students. Elsevier Science & Technol-
ogy, San Diego.

[6] Daneshjou, K., Mohammadi-Dehabadi, A. A., and Bakhtiari, M. (2017). Mission Planning
For On-Orbit Servicing Through Multiple Servicing Satellites: A New Approach. Advances in
Space Research, 60(6):1148–1162.

[7] Du, B., Zhao, Y., Dutta, A., Yu, J., and Chen, X. (2015). Optimal Scheduling of Multispace-
craft Refueling Based on Cooperative Maneuver. Advances in Space Research, 55(12):2808–
2819.

[8] Dutta, A. and Tsiotras, P. (2007). A Greedy Random Adaptive Search Procedure for Optimal
Scheduling of P2P Satellite Refueling. In AAS/AIAA Space Flight Mechanics Meeting, pages
07–150.

[9] Dutta, A. and Tsiotras, P. (2008). A Cooperative P2P Refueling Strategy for Circular Satellite
Constellations. In AIAA SPACE 2008 Conference & Exposition, page 7643.

[10] Dutta, A. and Tsiotras, P. (2010). Network Flow Formulation for Cooperative Peer-to-Peer
Refueling Strategies. Journal of Guidance, Control, and Dynamics, 33(5):1539–1549.

[11] ESA (2018). Removing Debris to Demonstrate Commercial In-Orbit Servicing. https:
//blogs.esa.int/cleanspace/2018/09/06/removing-a-debris-to-demonstrate-
commercial-in-orbit-servicing/. Last Accessed: July 4, 2022.

[12] Gürtuna, Ö. and Trépanier, J. (2003). On-Orbit Satellite Servicing: A Space-Based Vehicle
On-Orbit Servicing Routing Problem. In Operations Research in Space and Air, pages 123–
141. Springer.

[13] Hudson, J. S. and Kolosa, D. (2020). Versatile On-Orbit Servicing Mission Design in
Geosynchronous Earth Orbit. Journal of Spacecraft and Rockets, 57(4):844–850.

49

https://www.bbc.co.uk/newsround/54551557
https://www.ida.org/research-and-publications/publications/all/g/gl/global-trends-in-on-orbit-servicing-assembly-and-manufacturing-osam
https://www.ida.org/research-and-publications/publications/all/g/gl/global-trends-in-on-orbit-servicing-assembly-and-manufacturing-osam
https://www.ida.org/research-and-publications/publications/all/g/gl/global-trends-in-on-orbit-servicing-assembly-and-manufacturing-osam
https://blogs.esa.int/cleanspace/2018/09/06/removing-a-debris-to-demonstrate-commercial-in-orbit-servicing/
https://blogs.esa.int/cleanspace/2018/09/06/removing-a-debris-to-demonstrate-commercial-in-orbit-servicing/
https://blogs.esa.int/cleanspace/2018/09/06/removing-a-debris-to-demonstrate-commercial-in-orbit-servicing/

[14] Li, W. J., Cheng, D. Y., Liu, X. G., Wang, Y. B., Shi, W. H., Tang, Z. X., Gao, F., Zeng,
F. M., Chai, H. Y., Luo, W.-B., Cong, Q., and Gao, Z. L. (2019). On-orbit Service (OOS) of
Spacecraft: A Review of Engineering Developments. Progress in Aerospace Sciences, 108:32–
120.

[15] NASA (2020). NASA Selects Proposals to Demonstrate In-Space Refueling and Propellant
Depot Tech. https://www.nasa.gov/directorates/spacetech/solicitations/tippin
g points/2020 selections. Last Accessed: July 4, 2022.

[16] NASA (2021a). About - Hubble Servicing Missions. https://www.nasa.gov/mission p
ages/hubble/servicing/index.html. Last Accessed: July 4, 2022.

[17] NASA (2021b). On-orbit Servicing, Assembly, and Manufacturing 1 (OSAM-1). https:
//nexis.gsfc.nasa.gov/osam-1.html. Last Accessed: July 4, 2022.

[18] Northrup Grumman (2020). Mission Extension Vehicle. https://news.northropgrumm
an.com/news/releases/northrop-grumman-and-intelsat-make-history-with-
docking-of-second-mission-extension-vehicle-to-extend-life-of-satellite.
Last Accessed: July 4, 2022.

[19] Sarton du Jonchay, T., Chen, H., Gunasekara, O., and Ho, K. (2020). Rolling Horizon Op-
timization Framework For the Scheduling of On-Orbit Servicing Operations Under Servicing
Demand Uncertainties. In ASCEND 2020, page 4131. American Institute of Aeronautics and
Astronautics, Inc.

[20] Shen, H. and Tsiotras, P. (2005). Peer-to-Peer Refueling for Circular Satellite Constella-
tions. Journal of Guidance, Control, and Dynamics, 28(6):1220–1230.

[21] Space-Track.org (2021). Space-Track.org. https://www.space-track.org. Last
Accessed: July 4, 2022.

[22] Yu, J., Ouyang, Q., Chen, X. Q., and Chen, L. H. (2013). Optimal Peer-to-Peer Maneuvers
for Refueling Satellites in Circular Constellations. Applied Mechanics and Materials, 290:41.

[23] Yu, J., Yu, Y. G., Huang, J. T., Chen, X. Q., and Liu, H. Y. (2017). Optimal Scheduling
of GEO On-Orbit Refuelling with Uncertain Object Satellites. MATEC Web of Conferences,
114:3001.

[24] Zhang, J., Parks, G. T., Luo, Y. Z., and Tang, G. J. (2014). Multispacecraft Refueling Op-
timization Considering the J2 Perturbation and Window Constraints. Journal of Guidance,
Control, and Dynamics, 37(1):111–122.

[25] Zhang, T. J., Yang, Y. K., Wang, B. H., Li, H. N., Li, Z., and Shen, H. X. (Oct 2019). Opti-
mal Scheduling for Location Geosynchronous Satellites Refueling Problem. Acta Astronau-
tica, 163:264–271.

[26] Zhao, Z., Zhang, J., Li, H. Y., and Zhou, J. Y. (2017). LEO Cooperative Multi-Spacecraft
Refueling Mission Optimization Considering J2 Perturbation and Target’s Surplus Propellant
Constraint. Advances in Space Research, 59(1):252–262.

50

https://www.nasa.gov/directorates/spacetech/solicitations/tipping_points/2020_selections
https://www.nasa.gov/directorates/spacetech/solicitations/tipping_points/2020_selections
https://www.nasa.gov/mission_pages/hubble/servicing/index.html
https://www.nasa.gov/mission_pages/hubble/servicing/index.html
https://nexis.gsfc.nasa.gov/osam-1.html
https://nexis.gsfc.nasa.gov/osam-1.html
https://news.northropgrumman.com/news/releases/northrop-grumman-and-intelsat-make-history-with-docking-of-second-mission-extension-vehicle-to-extend-life-of-satellite
https://news.northropgrumman.com/news/releases/northrop-grumman-and-intelsat-make-history-with-docking-of-second-mission-extension-vehicle-to-extend-life-of-satellite
https://news.northropgrumman.com/news/releases/northrop-grumman-and-intelsat-make-history-with-docking-of-second-mission-extension-vehicle-to-extend-life-of-satellite
https://www.space-track.org

[27] Zhou, Y., Yan, Y., Huang, X., and Kong, L. (2015). Optimal Scheduling of Multiple
Geosynchronous Satellites Refueling Based on a Hybrid Particle Swarm Optimizer. Aerospace
Science and Technology, 47:125–134.

[28] Zhou, Y., Yan, Y., Huang, X., and Yang, Y. (2017). Multi-Objective Planning of a Multiple
Geostationary Spacecraft Refuelling Mission. Engineering Optimization, 49(3):531–548.

51

3. Complexity and Solution Methods for the Multi-Orbit Routing and Scheduling of
Refuellable On-Orbit Servicing Space Robots

Susan E. Sorenson Sarah G. Nurre Pinkley

Abstract: The Multi-Orbit Routing and Scheduling of Refuellable Space Robots for On-Orbit

Servicing optimization problem determines how to best route and schedule a fleet of highly ma-

neuverable and refuellable space robot servicers to complete a set of tasks orbiting in space. We

prove that this problem with objective seeking to maximize the weighted number of completed

tasks within a set time horizon is NP−Hard. In spite of these results, we present and demonstrate

two heuristics which utilize a node labeling algorithm. The first heuristic assigns servicers to

tasks greedily and the second heuristic assigns tasks using a clustering algorithm. Using a real-

istic case study, with a network spanning the Low, Mid, and Geosynchronous Earth Orbits, and

tasks based on satellites that are currently on orbit, we compare our heuristics with CPLEX and

present encouraging results.

3.1 Introduction

On-orbit servicing (OOS) is a field that has experienced tremendous growth over the past decade

and covers a wide range of activities spanning fixing, improving, removing, or reviving satellites

and refers to any work to refuel, repair, replace, or augment an existing asset in space [16]. In this

work, we examine the Multi-Orbit Routing and Scheduling of Refuellable Space Robots for On-

Orbit Servicing (MORSO) problem which determines how to schedule and route a fleet of highly

maneuverable refuellable space robots to complete a set of OOS tasks spanning multiple orbits in

space. Although we use the term OOS, we are referring to any space-based activity that a servicer

might do which could be inspection, refuelling, repair, replace, augment, or upgrade.

Although the technology is not yet widely available, OOS with refuellable servicers will

soon be the norm rather than a novel occurrence. Recent successes in OOS have occurred by

52

Northrup Grumman [17] and in 2020, NASA granted contracts to several companies to develop

and demonstrate space and lunar based based fuel depots [15]. One company, Thales Alenia

Space is building a chemical refuelling depot with an expected launch in 2027 [3]. These projects

are only a few examples of the many proposed or already launched systems. The reader should

investigate [14, 5] for comprehensive reviews of engineering developments and planned OOS

missions or projects.

The purpose of this work is to establish the computational complexity of the MORSO

problem and to present two fast accurate constructive heuristics for solving this problem. We fo-

cus on the optimization goal of maximizing the weighted number of tasks completed within a set

time horizon. With this focus, we present the complexity results for MORSO with a reduction

from the known NP−Hard non-preemptive single machine scheduling problem seeking to min-

imize the weighted number of late tasks when all tasks have the same due date [13]. We follow

this with two constructive heuristics for solving the MORSO problem. We empirically show that

the heuristics can find near optimal solutions in significantly less time than CPLEX.

Main Contributions. The main contributions of this work are as follows: (i) We prove the

MORSO problem with objective seeking to maximize the weighted number of completed tasks

is NP−Hard; (ii) We develop and demonstrate two constructive heuristics for the solving the

MORSO problem; (iii) We perform extensive computational experiments on a realistic data set

based on active satellites (iv) We summarize the results of the experiments thereby demonstrating

the speed, accuracy, and scalability of our proposed heuristic methods.

The remainder of this work is as follows. In Section 3.2, we summarize literature related

to the optimization of different types of OOS missions. In Section 3.3, we provide a detailed

overview of the MORSO problem. In Section 3.4, we provide the complexity results. In Section

3.5, we present our two new constructive heuristics and in Section 3.6, we demonstrate the speed,

accuracy, and scalability using test cases based on the orbital parameters of current satellites. In

Section 3.7, we present conclusions and areas for further study.

53

3.2 Literature

In this section, we focus our literature review on the relevant works related to the computational

complexity and optimization of the routing and scheduling of space robots for on-orbit servicing

(OOS). We call the highly maneuverable space robots which do the tasks “servicers” and any

work that a space vehicle is to receive a “task.” In our work, there is always a set of designated

servicers and a set of tasks to be accomplished on other satellites. The servicers actively move

to rendezvous with the satellite where their next task is located. In our work, OOS involves at

least two participants, one who does the servicing and another that has the task and receives the

service. We use the term OOS to refer to any activity that a servicer might do as a task which

could be inspection, refuelling, repair, replace, augment, or upgrade.

The optimization of the routing and scheduling of space robots is relatively new, and thus

works which examine the computational complexity of OOS are few. In Gürtuna and Trépanier

[10] OOS is modelled as a Vehicle Routing Problem (VRP) and thus, stated to be NP−Hard. In

Coene et al. [4] the OOS problem is that of refuelling and both the servicer and task move to a

different location to share fuel while seeking to minimize the total fuel expended during maneu-

vers. It is shown to be NP−Hard using a reduction from a three dimensional assignment problem

with decomposable costs. We will now summarize other works which use heuristic methods for

solving problems related to OOS.

The number of works which examine the complexity of OOS are few when compared to

the number of works that use constructive and meta heuristics for solving OOS problems. In the

next few paragraphs we discuss works which use heuristics for solving different types of OOS

problems. For many works which address the scheduling of OOS, the meta heuristic “particle

swarm optimization” is used for solving. qian Chen and Yu [18] use a combination of exhaus-

tive search and particle swarm optimization to minimize financial costs while solving a single

orbit refuelling problem. A multi-objective particle swarm optimization was used to examine the

mission planning for a large scale OOS which sought to simultaneously minimize time and fuel

54

consumption in [6]. Zhou et al. [24] formulated a single orbit time-fixed refuelling problem with

multiple refuellable servicers and used a hybrid particle swarm optimizer to minimize the fuel

consumed during orbital transfers. Zhang and Zhang [21] used a hybrid discrete particle swarm

optimization to minimize lost spacecraft, fuel, and time while simultaneously maximizing the

tasks completed.

In addition to particle swarm optimization, other heuristics have also been used for op-

timizing the routing and scheduling of robot servicers for OOS. Bourjolly et al. [2] consider a

single servicer and a set of tasks as a time dependant moving target Travelling Salesman Prob-

lem (TSP). For instances with a small number of tasks (n ≤ 10), they solve the problem with an

exhaustive search and use a Tabu search algorithm for instances with a large amount of tasks

(n > 10). Gürtuna and Trépanier [10] model OOS as a time static Vehicle Routing Problem

(VRP) and use the Clarke and Wright Algorithm to determine the best task sequence. Hudson

and Kolosa [11] addressed a single orbit multiple servicer OOS problem in GEO as a moving

task TSP looking to maximize lifetime profit with simulations run on a well known space simu-

lation software. Zhang et al. [22] examined on-orbit refuelling (OOR) as a location routing prob-

lem with multiple refuelling depots and multiple servicers and used the ant colony optimization

heuristic for solving. Zhang et al. [20] considered a multi-objective optimization model and used

a hybrid encoding genetic algorithm to simultaneously minimize the fuel and time while routing

a single servicer to tasks located in closely located but different orbits.

Other OOS problem formulations include a Mixed Integer Non-linear Programming

(MINLP) formulation for a refuelling problem, with non-linear fuel cost calculations, seeking

to minimize the fuel consumed and solved the problem using a Multi-island Genetic Algorithm

Du et al. [7]. Dutta and Tsiotras [8] used a greedy random adaptive search procedure to schedule

movements that minimize orbital maneuver fuel expenditure for on orbit refuelling without des-

ignated servicers. Called cooperative refuelling, space vehicles with surplus fuel are assigned to

transfer fuel to fuel deficient space vehicles. Zhao et al. [23] used a two level approach to solve

a MINLP which modelled cooperative refuelling while considering Earth’s gravitational effects.

55

They used a hybrid-encoding genetic algorithm to find near optimal solutions for the up-level op-

timization and then a linear relative dynamic equation in the low level optimization for the grav-

itational effects. Zhou et al. [25] also implemented a two-level optimization for a single orbit

OOR in which the up-level optimization determined the refuelling order with a non-dominated

sorting genetic algorithm and an exact method for the low level optimization to minimize fuel

consumption.

With a review of some of the literature related to the complexity and solving heuristics for

OOS and OOR problems, we next present the problem statement.

3.3 Problem Statement

In this section, we provide an overview of the Multi-Orbit Routing and Scheduling of Refu-

ellable Space Robots for On-Orbit Servicing (MORSO) problem, presenting our solving goal and

nomenclature for the network, tasks, refuelling, robot servicers, and time horizon. In the MORSO

problem examined here, we seek to maximize the weighted number of tasks completed within

a set time horizon. The discussion that follows in the section is heavily based on Sorenson and

Nurre Pinkley [19] in which the MORSO problem and a Mixed Integer Linear Program for solv-

ing are initially introduced. This information is included out of necessity to demonstrate the true

contributions of this work – problem complexity and heuristic solution methods.

In the MORSO problem, the robot servicers, the satellites with tasks, and the refuelling

depots are all constantly moving though a network over time. The network, G, consists of a set

of nodes, N, i ∈ N, which are “fixed” locations in space, and a set of directed arcs, A,(i, j) ∈ A,

which have associated time: τi j, and fuel: φi j costs. The nodes and arcs span multiple orbital alti-

tudes and the time and fuel costs are calculated using orbital mechanics.

The problem has a a finite time horizon: T , which is broken down into smaller intervals

from t = 0, . . . , |T |. Within the network, the robot servicers, the satellites with tasks, and the re-

fuelling depots all have starting locations which are known and are located at one of the network

nodes at t = 0. Within the set of tasks, B,v ∈ B, each task is broken down into a set of time dis-

56

cretized subtasks, k ∈ Bv. Each k has an associated time and node and the subtasks are how task

movement is expressed over time. Tasks also have a weight, wv, which corresponds to the impor-

tance of task completion. Task completion is tracked with the decision variable:

βvk =


1, if sub task k of task v is completed, for v ∈ B

0, otherwise
(3.1)

Another important aspect of MORSO includes the refuelling of the robot servicers using

on-orbit refuelling depots. The set of refuelling depots is expressed as Γ,r ∈ Γ. Refuelling de-

pot movement is expressed by designating specific arcs as refuelling arcs depending on the time.

Arcs which are available for refuelling at time t are contained in the set AR
t ⊂ A. In this work,

when we consider refuelling, we assume that if a servicer moves along an arc denoted a refu-

elling arc, the servicer completely refuels to the maximum capacity by the end of the refuelling

arc.

Finally, the robot servicers, d ∈ D, have a known starting location withing the network

and a known maximum fuel capacity, F . The fuel level of a servicer is tracked over time with the

decision variable fdt , for d ∈ D and t ∈ T . We also track the movement of the servicers through

the network with a time and a node number for each servicer.

With an understanding of the MORSO problem notation, we next proceed to demonstrating

the complexity of MORSO.

3.4 Complexity

We now prove that the MORSO problem with objective seeking to maximize the weighted num-

ber of completed tasks is NP-Hard. For our proof, we reduce the known NP−Complete problem

1 | d j = d | w jU j to an instance of the MORSO problem. 1 | d j = d | w jU j which is a single

machine scheduling problem that seeks to minimize the weighted number of late tasks when all

tasks have the same due date [13]. We proceed by presenting the instance of the MORSO prob-

57

0

1

2

3

4

5

n

p1 0

p2

0

p3

0

p40

p5

0

pn

0

Figure 3.4.1: Graphical representation of a MORSO network with n tasks. The arc cost is equal
to the processing time of the task p j, for j = 1, . . . ,n = |J|

lem and the formal proof. We point the reader to Garey and Johnson [9] for an introduction to

complexity.

Theorem 3.4.1. The simplified MORSO problem, excluding multiple orbits, moving tasks, and

servicer refuelling, with an objective to maximize the weighted number of completed tasks is

NP−Hard

Proof. We reduce the NP−Hard problem, 1 | d j = d | w jU j, to an instance of our MORSO prob-

lem that seeks to maximize the weighted number of completed tasks. We note, in the forthcoming

MORSO instance we ignore orbits, refuelling, and moving tasks, thus creating a simplified ver-

sion of the MORSO problem. As we will show, this simplified version of the MORSO problem is

NP−Hard, thus, we can then claim the more complex MORSO problem with multiple orbits and

moving tasks is also NP−Hard.

From the input 1 | d j = d | w jU j problem with 1 machine and n jobs we transform the

problem and create an instance of our simplified MORSO problem. We set D = 1 thereby equat-

ing one servicer in the MORSO problem with the single machine. Next, we consider a network

58

representation as indicated in Figure 3.4.1. In this network, there is a single central node 0, sur-

rounded by n additional nodes. The n additional nodes correspond to the n jobs in the schedul-

ing problem. Each of these n nodes has a single associated task, where the weight for each task

equals w j from the associated scheduling job. Note, as we are not considering task movement,

there are no subtasks needed. Specifically, in our MORSO problem instance, we consider tasks

B = 1, . . . ,n. In the network, the nodes are connected through directed arcs (0, j) and (j,0) for

j = 1, . . . ,n, with traversal times equal to p j and 0, respectively. In the MORSO instance, we start

the single servicer at node 0 and set the time horizon of the problem T = d.

With this transformation, we now equate a solution to this MORSO instance to a solution

of the input 1 | d j = d | w jU j scheduling problem and vice versa. In the MORSO instance, β j =

1 if the task is completed within the time horizon. We seek to equate this to information about

whether a schedule job is tardy, U j = 1, or not, U j = 0.

When β j = 1, this equates to U j = 0 because task j in the MORSO instance was able to

be completed within the time horizon (T = d) thereby meaning scheduling job j is not tardy.

Likewise, when β j = 0, this equates to U j = 1, because task j was not completed within the time

horizon of the MORSO instance, thus the associated scheduling job is tardy. Thus, by solving

this instance of MORSO, we also get a solution to 1 | d j = d | w jU j.

We can translate a solution to 1 | d j = d | w jU j into a solution to MORSO as follows. In

a solution to 1 | d j = d | w jU j, there are tasks j = 1, . . . ,n and each task has a completion time,

C j. If C j ≤ d, then U j = 0, otherwise U j = 1. If we let d = T , the time horizon in MORSO,

then U j = 0 is equivalent to β j = 1 and U j = 1 is equivalent to β j = 0. Therefore a solution to

1 | d j = d | w jU j provides a solution to MORSO.

2

3.5 Solution Methodology

With the complexity of the Multi-Orbit Routing and Scheduling of Refuellable Space Robots for

On-Orbit Servicing (MORSO) problem established, we proceed in this section to present two

59

solving methodologies and a node labelling algorithm that they both use. Because both heuristics

use the node labelling algorithm, we begin with node labelling and then proceed with the details

of the heuristics. We begin with the assumptions and inputs needed when using the methods in

this section.

In this section, we solve MORSO seeking to maximize the weighted number of tasks com-

pleted within a given time horizon. The model inputs here are based on the inputs to the mixed

integer linear program (MILP) model for MORSO presented in Sorenson and Nurre Pinkley [19].

Our inputs include a network G = (N,A) with nodes i ∈ N and arcs (i, j) ∈ A. The arcs have as-

sociated time and fuel costs: τi j and φi j respectively. The problem has a a finite time horizon: T ,

which is broken down into smaller intervals from t = 0, . . . , |T |. We have a set of robot servicers

D with d ∈ D that have a known starting location at some i ∈ N and a known maximum fuel ca-

pacity, F . Servicers also have a fuel level which changes as servicers move through the network,

fdt , for d ∈ D and t ∈ T . We have a set of tasks, B,v ∈ B, and each task is broken down into a

set of time discretized subtasks, k ∈ Bv. Each subtask k has an associated time and node and task

completion occurs instantaneously when a servicer is at the subtask node at the correct time. Fi-

nally, the set of refuelling depots is expressed as Γ,r ∈ Γ, and as the depots move, some of the

arcs in A are designated as refuelling arcs, so we have the set AR
t ⊂ A which contains the arcs

(i, j) ∈ A which are available for refuelling at time t. The node labelling algorithm centers around

the robot servicers which we present next.

3.5.1 Label Making Algorthim

In this section we present the Label Making Algorthim which is used in both of the constructive

heuristics that follow. The node labelling algorithm is based on ideas which come from Dijkstra’s

algorithm and an aircraft shortest path routing with refuelling algorithm [1, 12]. Dijkstra’s algo-

rithm makes labels in order to find the shortest path through a network. We extend this idea and

use the labels to find efficient paths to tasks while also considering refuelling. The labels provide

information about the nodes that the servicer can reach within the time horizon and contain data

60

concerning tasks, fuel levels, and the time to reach the nodes from the servicer starting location.

The information in the labels is then used in the heuristics that follow in order to determine how

to best assign servicer movements to complete tasks.

Our labels consist of 10 fields and are unique when indexed on the first three fields. The

first field is the servicer name, d ∈ D which pertains to one servicer. The next field is the node

number, i ∈ N, to which this label belongs. The label number is the next field, which is a number

that begins at 1 for each node, for each servicer, and increments by one, each time a new label is

added for this servicer at this node. The next field is the “cost to here” which as labels are made,

we add the time cost, τi j for all of the arcs taken from the servicer starting location to the current

node. This value has an upper bound of the time horizon, T . The “fuel remaining” field contains

the current fuel level for the servicer after reaching this node which is fdt −φi j if the arc ending at

the node is not a refuelling arc. This field has a lower bound of 0. If the arc is a refuelling arc, we

assume the servicer takes on fuel from the depot on that arc and then the “fuel remaining” field is

the maximum fuel capacity of the servicer, F . The sixth field is an indicator which is 0 if there is

not a task at this node and the task number, if there is a task at the node. The seventh and eighth

fields track the nodes and the labels that the servicer passed en route to this node. The final two

fields track the status of the labels. The dominated field is initially set to 0 and later is set to 1, if

the label has been superseded by another label at the same node with an earlier “cost to here” and

more “fuel remaining”. As is done in Djikstra’s, we mark the node label permanent, if all nodes

connected to this node have been labelled, or in other words, if this node has been examined. We

can see a summary of these labels in Table 3.5.1. Next we will present how to make, update, and

examine the labels and then present the associated pseudocode for labelmaking.

When the heuristics, and thus the label making algorithm are initialized, no tasks are com-

plete and all servicers’ current location is their starting node and their time is t = 0. For the dis-

cussion here, we assume there are no tasks at any of the servicer starting nodes. It is important

to note that the Label Making Algorthim is run for each servicer independently, creating all pos-

sible labels for that servicer. To begin, We consider a single servicer, d, and create a label for its

61

Table 3.5.1: Components of labels used in both heuristics.

Field Description
Servicer d ∈ D
Node i ∈ N
Name Label Number
Cost to Here ∑τi j from servicer current node

Fuel Remaining

{
fdt −φi j, if not a refuelling arc
F, if the node ends a refuelling arc

Task

{
v ∈ B, if there is a task at this node
0, otherwise

Predecessors Previous nodes
Label numbers of predecessors Previous nodes’ label numbers

Dominated?

{
1, if “bested” by another label
0, otherwise

Permanent?

{
1, if label has been examined
0, otherwise

starting node, i, also marking the label permanent. The first label for servicer d, is as follows:

(d, i,1,0,F,0, [i], [1],0,1). We next examine each of the nodes connected to node i and create a

label for each in the same manner, updating the values for “cost to here” and “fuel remaining” as

required. A second label for servicer d at node j connected to node i, without a task, and with-

out refuelling would be as follows: (d, j,1,0+ τi j,F − φi j,0, [i, j], [1,1],0,0). A label for ser-

vicer d at node k connected to node i, with a task v, would be as follows: (d,k,1,0 + τik,F −

φik,v, [i,k], [1,1],0,0). A label for servicer d at node ℓ connected to node i, without a task, but

with refuelling on arc (i, ℓ) at time t = 0 would be as follows: (d, ℓ,1,0+ τiℓ,F,0, [i, ℓ], [1,1],0,0).

When labels have been created for all nodes connected to node i, we examine the non-permanent

labels, and choose the node label with the earliest “cost to here” as our next label. We mark the

next node label permanent and make labels for all of the connected nodes.

Some additional considerations when making labels follow. If when marking a node per-

manent, the label has an incomplete task, we track a potential completion time for that task and

remove it from the list of incomplete tasks for this servicer for this round of label making. If

62

there is a potential completion time for all incomplete tasks, we stop label making for this ser-

vicer. If when considering a connected node the “cost to here” would be greater than the time

horizon, we do not make the label for that node. We also do make the label if the “fuel remain-

ing” would be less than or equal to 0 as we do not want to consider sending a servicer to location

where they would be stranded. If we examine a node and a label exists, we check to see if it can

be dominated by examining the “cost to here” and “fuel remaining” fields. If the potential new la-

bel has an earlier “cost to here” and more “fuel remaining” then the existing label is marked dom-

inated and the new label is created, otherwise no new label is created for this node. We continue

through the network, making labels for this servicer until all nodes have been marked permanent,

or no more labels can be created because of time or fuel, or because we have a potential comple-

tion time for all incomplete tasks. The set of created labels for each servicer are then used in each

of the MORSO solving heuristics that follow. We present high level label making psuedocode in

Algorithm 4 Label Making.

63

Algorithm 4 Label Making
1: Input: Network G = (N,A) with nodes i ∈ N and arcs (i, j) ∈ A have time τi j and fuel φi j

costs.
2: Input: Servicer d, with time t ∈ T , current location i ∈ N, and fuel level fdt
3: Input: Set of incomplete tasks B with v ∈ B
4: Create a label for node i, make labelpermanent = 0, and cost to here = t
5: while ∃ a task without a potential completion time AND ∃ time remaining for servicer d do
6: for All j : (i, j) ∈ A do
7: Set MakeLabel = TRUE
8: if Labels exist at this node then
9: for Each existing label do

10: if labeldominated = 0 then
11: if labelcost to here ≤ potential cost to here AND

labelFuel Remaining ≥ potential Fuel Remaining then
12: Set MakeLabel = FALSE
13: else
14: Make labeldominated = 1 and labelpermanent = 1
15: end if
16: end if
17: end for
18: end if
19: if MakeLabel = TRUE then
20: Create a label for this node
21: end if
22: end for
23: From the non-permanent labels, choose the one with the earliest cost to here and mark it

labelpermanent = 1
24: Let i = the node associated with this label
25: end while
26: Output: Set of labels for servicer d

3.5.2 Heuristic I: Greedy Task Assignment

The first heuristic we present for solving MORSO is called Greedy Task Assignment, because

the servicers are assigned to tasks “greedily” based on the “cost to here” field in the available la-

bels. The Label Making Algorithm is run for all servicers and all of the labels with incomplete

tasks are examined. The label with the earliest “cost to here” is chosen from all of the labels that

have tasks. The servicer in that label is assigned to the task in the label and the task is marked

permanently complete. When the servicer is assigned to the task, the servicer is advanced in time

64

and position to the location and time in the label. Additionally, the servicer fuel is updated to the

“fuel remaining” in the label. All of the labels for the just assigned servicer are removed from the

set of labels. The just matched task and its associated subtasks are removed from all of the re-

maining labels. The Label Making Algorithm is run again for the just matched servicer beginning

with the servicer’s updated location, time, and fuel level and the just completed task removed

from the incomplete task list. We continue in this manner until all tasks have been completed, or

all servicers are advanced as far as possible within the time horizon. The high level psuedocode

for this heuristic is presented in Algorithm 5 Greedy Task Assignment.

Algorithm 5 Greedy Task Assignment
1: Input: Network G = (N,A) where nodes i ∈ N have an associated time ti ∈ T and arcs (i, j) ∈ A have

time τi j and fuel φi j costs.
2: Input: Set of servicers D with their associated starting location, time, current location, and fuel capac-

ity
3: Input: Set of incomplete tasks B and subtasks Bv for k ∈ Bv and v ∈ B
4: for each servicer d ∈ D do
5: Label Making Algorithm
6: end for
7: Examine all node labels which have tasks; choose the label with the smallest cost to here, call this the

chosen label.
8: while Any task is incomplete or while any servicer time is less than time horizon do
9: Assign the servicer to the task in the chosen label

10: Advance the servicer to the node and time in the chosen label, and update the servicer fuel level
based on the fuel remaining in the chosen label.

11: Mark the task in the chosen label complete
12: Remove the task from the set of incomplete tasks
13: Remove all labels from the set of labels for the servicer in the chosen label
14: Remove the task and subtask in the chosen label from all the remaining labels
15: Do Label Making Algorithm for the just assigned servicer.
16: if Node labels with tasks exist then
17: Examine all node labels which have tasks; choose the label with the smallest cost to here, call

this the chosen label.
18: else
19: Advance all servicer current time values to end of the time horizon.
20: end if
21: end while
22: Output: Completed tasks and associated labels indicating when and by which servicer

65

3.5.3 Heuristic II: Greedy Clustering Task Assignment

The next heuristic we present for solving MORSO is “Greedy Clustering”. Tasks are examined

in clusters to assign a servicer to an area of the network where more tasks are potentially avail-

able. To speed up the active processing, we preprocess the input data, specifically the tasks and

the network to create a lookup table of “clustered tasks”. We use Dijkstra’s Algorithm on a time

expanded version of the network to find the shortest path, based on time, from every subtask to

every other task to create the lookup table. With the lookup table created, we proceed as de-

scribed in Algorithm 5 Greedy Task Assignment, but when the initial set of labels are created,

we use the lookup table to match each label that contains a task, with the next nearest incom-

plete task. We then examine each “clustered” pair of tasks and choose the cluster with the earliest

combined time. We call this combined time the “clustered time”. We choose the label with the

earliest “clustered time” and assign the servicer to the task in this chosen label. As in the Greedy

Task Assignment algorithm, the task in the chosen label is marked permanently complete and

the servicer is advanced in time and position to the location and time in the label. Additionally,

the servicer fuel is updated to the “fuel remaining” in the chosen label. All of the labels for the

just assigned servicer are removed from the set of labels. The just matched task and its associ-

ated subtasks are removed from all of the remaining labels. The Label Making Algorithm is run

again for the just matched servicer beginning with the servicer’s updated location, time, and fuel

level and the just completed task removed from the incomplete task list. We continue in this man-

ner until all tasks have been completed, or all servicers are advanced as far as possible within the

time horizon. The high level psuedocode for this heuristic is presented in Algorithm 6 Greedy

Clustering.

66

Algorithm 6 Greedy Clustering
1: Input: Network G = (N,A) where nodes i ∈ N have an associated time ti ∈ T and arcs (i, j) ∈ A have time

τi j and fuel φi j costs.
2: Input: Set of servicers D with their associated starting location, time, current location, and fuel capacity
3: Input: “Lookup Table” with the shortest path from each subtask to all other tasks
4: for Each servicer d ∈ D do
5: Label Making Algorithm
6: end for
7: for Every label obtained in Label Making Algorithm which has a task do
8: Check “Lookup Table” to find the next closest task to the current task and add the time in the current label to

the time to the next closest task from the table; call this the “clustered time”
9: end for

10: From the list of labels, choose the label with the earliest “clustered time”, call this the chosen label
11: while Any task is incomplete or while any servicer time is less than time horizon do
12: Assign the servicer to the task in the chosen label
13: Advance the servicer to the node and time in the chosen label, and update the servicer fuel level based on the

fuel remaining in the chosen label.
14: Mark the task in the chosen label complete
15: Remove the task from the set of incomplete tasks
16: Remove all labels from the set of labels for the servicer in the chosen label
17: Remove the task and subtask in the chosen label from all the remaining labels
18: Do Label Making Algorithm for the just assigned servicer.
19: if Node labels with tasks exist then
20: for Every label obtained in Label Making Algorithm which has a task do
21: Check “Lookup Table” to find the next closest task to the current task and add the time in the current

label to the time to the next closest task from the table; call this the “clustered time”
22: end for
23: From the list of labels, choose the label with the earliest “clustered time”, call this the chosen label
24: else
25: Advance all servicer current time values to end of the time horizon.
26: end if
27: end while
28: Output: Completed tasks and the associated labels indicating when and by which servicer

3.6 Computational Results

We used each of the solving algorithms in the previous section and CPLEX to solve the Multi-

Orbit Routing and Scheduling of Refuellable Space Robots for On-Orbit Servicing (MORSO)

problem, and in this section will compare the performance of each of the two solving heuris-

tics with CPLEX. Convention when comparing the performance of constructive heuristics with

a commercial solver is to examine optimality gaps. In MORSO we are seeking to maximize the

weighted number of completed tasks, thus the objective values are always some multiple of the

number of tasks, which is 8 or 16 in this work. For this reason, we examined the objective values

67

as well as the optimality gaps when comparing the solving methods. We proceed with descrip-

tions of the computing resources, test design, and then present the comparisons of each method

with CPLEX.

When solving MORSO for this work, each of the 1,860 runs from the test design in Table

3.6.1 was set to solve with CPLEX and each of the heuristics. The CPLEX instances were run

using resources from a high performance computing center public standard nodes with two Xeon

Gold 6130 processors, 32 cores, and 192 GB of memory. For the CPLEX instances we set a solv-

ing time limit of 12 hours for the runs with a 24 hour time horizon and a solving time limit of 24

hours for the 48 hour time horizon runs. All heuristic instances were run on a single Apple Mac

Mini with an M1 processor and 16 GB of RAM. Next we cover the network and composition of

the 1,860 instances which were solved with each of the solving methods.

The test design, network and tasks used in these computational tests are based on the case

studies presented in Sorenson and Nurre Pinkley [19]. Their case studies and therefore the net-

work used in this work, are based on satellites currently on orbit, but the methods in this work

can be used on any network with or without moving tasks and refuelling. All that is needed are

the time and fuel costs for the arcs in the network and the starting locations of the servicers,

tasks, and refuelling depots. We created a test design in which we varied the number of servicers,

the number of refuelling depots, the starting locations of servicers and refuelling depots, the fuel

capacity of the servicers, and the time horizon. The factors and levels of the test design can be

seen in Table 3.6.1.

Table 3.6.1: Factors and levels for the test cases. The combination of these factors and levels re-
sulted in 1,860 test cases which were solved with CPLEX and each of the heuristics.

Factor Levels
Number of Robot Servicers 1, 2, 3, 4, 5
Number of Refuelling Depots 1, 2, 3, 4, 5
Refuelling Depot Starting Locations (node numbers) 12, 32, 80, 125, 150
Robot Servicer Fuel Capacity 10, 15, 25
Number of Tasks 8, 16
Time Horizon 24, 48

68

For these runs, we used both time expanded and non time expanded networks. A time ex-

panded network has all the same information as a non time expanded network, with the exception

that the node time and node name are combined. Our time increment is 15 minutes, thus a 24

hour time horizon has 96 time steps and the 48 hour time horizon has 192 steps. If we consider

a non time expanded network with 162 nodes and 1,627 arcs and a time horizon of 24 hours this

becomes a time expanded network with 15,552 nodes and 65,188 directed arcs. Likewise the 48

hour time expanded network has 31,104 nodes and 311,132 directed arcs. The benefit of the time

expanded network is that one less piece of data is tracked for each servicer and task because the

node time and node name are combined.

3.6.1 Greedy Task Assignment

We compare the performance of CPLEX and Greedy Task Assignment for the 24 hour time hori-

zon and the 48 hour time horizon separately. We begin with the results for the 930 runs with a 24

hour time horizon. A numeric summary of the results organized by the number of tasks, number

of servicers, and the servicer fuel capacities can be seen in Table 3.6.2. For the CPLEX solutions,

each case was given a 12 hour solving time limit to obtain a solution. CPLEX found an integer

optimal solution within 12 hours in 523 of 930 cases. In 407 of 930 cases, CPLEX presented the

best solution obtained at the 12 hour time limit. The distribution of the non optimal optimality

gaps for these cases can be seen on the left in Figure 3.6.1.

The total time to complete the CPLEX runs for the 24 hour time horizon was almost 233

days. The median time to complete a run with a 24-hour time horizon with CPLEX is 3.6 hours

and the mean is 6 hours. Greedy Task Assignment optimality gaps can be seen on the right in

Figure 3.6.1. The total time to complete the same 930 runs with Greedy Task Assignment for the

24 hour time horizon was less than two days. The median time to complete a run with a 24-hour

time horizon with Greedy Task Assignment was 2.1 minutes and the mean was 2.8 minutes. A

more in depth breakdown of the time differences grouped by the number of tasks, the number

of servicers, and the servicer starting fuel level can be seen in Table 3.6.2. On average, in every

69

0 20 40 60
0

50

100

150

200

3

104

32
16

94

28
37

25
8

38

10 8 2

CPLEX: Gap %

N
um

be
ro

fC
as

es

0 20 40 60
0

50

100

150

200

106

20

69

161

135

94

47

11

57

13
19

2

Greedy Task Assignment: Gap %

Figure 3.6.1: Comparison of the distributions of the non-zero optimality gap values for Greedy
Task Assignment (right) and CPLEX (left) with a 24 hour time horizon.

case, Greedy Task Assignment was faster than CPLEX when solving the 24 hour time horizon

runs in our case study.

Now we consider the objective values, we see a visual comparison in Figure 3.6.2. For

each run, we subtracted the heuristic objective value from the CPLEX objective value, or best up-

per bound if no solution was reported. We can see here that Greedy Task Assignment matched or

exceeded the objective value for CPLEX in just over 38% of the cases, and was within one task

of the CPLEX objective value for nearly 77% of the cases. This translates to a 99.2% reduction

in the median solving time to be within one task of CPLEX 77% of the time. Next we present the

results for the 48 hour time horizon cases.

We next consider the same 930 runs with a 48 hour time horizon to compare Greedy Task

Assignment and CPLEX. For the CPLEX solutions, the runs were each given a 24 hour solving

time limit to obtain a solution. CPLEX found an integer optimal solution within 24 hours in 133

of 930 cases. In 730 of 930 cases, CPLEX presented the best solution obtained at the 24 hour

time limit and in 67 cases CPLEX failed to find any solution within the 24 hour solving time. A

numeric summary of the results organized by the number of tasks, number of servicers, and the

servicer fuel capacities can be seen in Table 3.6.3. The 67 runs which did not achieve a solution

70

Table 3.6.2: A comparison of the optimality gaps and solving times for Greedy Task Assignment
and CPLEX for runs with a 24 hour time horizon. In the last two columns, negative values indi-
cate that, on average, the heuristic outperformed CPLEX for those instances.

Factors CPLEX 12.10 Heuristic
Comparison

CPLEX - Heuristic

Number
of

Tasks

Number
of

Servicers

Starting
Fuel

Number
of

Runs

Mean
Gap
(%)

Mean
Solve
Time
(sec)

Mean
Gap
(%)

Mean
Solve
Time
(sec)

Mean
Gap
(%)

Mean
Solve Time

(sec)

8

1
10 31 0.00 587 6.45 25 6.45 -561
15 31 0.00 428 16.13 46 16.13 -382
25 31 0.00 194 30.10 49 30.10 -145

2
10 31 28.89 29499 39.33 72 10.44 -29426
15 31 3.38 15530 15.64 92 12.26 -15438
25 31 5.00 14987 23.35 88 18.36 -14898

3
10 31 41.86 42449 49.56 99 7.70 -42350
15 31 16.83 39441 20.87 224 4.03 -39217
25 31 9.27 38080 20.85 200 11.58 -37879

4
10 31 28.23 41877 38.08 128 9.85 -41749
15 31 5.24 20313 11.69 231 6.45 -20081
25 31 0.81 4113 12.10 183 11.29 -3929

5
10 31 17.34 38944 27.94 153 10.60 -38791
15 31 0.00 2498 1.21 225 1.21 -2273
25 31 0.00 1233 1.21 226 1.21 -1006

16

1
10 31 0.00 182 5.38 33 5.38 -148
15 31 0.00 137 21.50 64 21.50 -73
25 31 0.00 112 12.90 71 12.90 -41

2
10 31 16.60 28863 25.04 66 8.44 -28796
15 31 1.70 13401 18.93 127 17.23 -13273
25 31 0.36 2596 20.03 177 19.67 -2419

3
10 31 24.74 40861 34.61 162 9.87 -40699
15 31 4.56 15681 22.98 271 18.43 -15409
25 31 2.25 9765 20.68 216 18.44 -9549

4
10 31 40.98 42274 47.18 136 6.20 -42138
15 31 22.98 36504 34.63 354 11.65 -36149
25 31 16.98 38155 33.95 257 16.97 -37897

5
10 31 45.98 43215 50.07 169 4.09 -43045
15 31 26.65 43212 35.13 446 8.48 -42766
25 31 13.52 43210 30.70 469 17.18 -42741

are annotated in the “Number of Runs” column with the exponent indicating the number of runs

that failed to get any solution within the solving time limit.

The distribution of the optimality gaps for the cases which did not reach integer optimal-

71

2 10

342
362

139

67

8

Objective Value Difference: CPLEX - Greedy Task Assignment

N
um

be
ro

fC
as

es

C
um

ul
at

iv
e

%
of

C
as

es

−4 −2 0 2 4
0

100

200

300

400

0

20

40

60

80

100

Figure 3.6.2: A comparison of the objective values for Greedy Task Assignment and CPLEX
for runs with 24 Hour time horizon. Greedy Task Assignment matched or outperformed CPLEX
in 354/930 cases. (38%) Positive values indicate CPLEX performed better and negative values
indicate the heuristic performed better.

ity can be seen on the left in Figure 3.6.3. The total time to complete the CPLEX runs for the

48 hour time horizon was almost 873 days. The median solving time for the runs with a 48 hour

time horizon with CPLEX was 24 hours, the mean 22.5 hours, and the minimum 2.5 hours. The

total time to complete the same 930 runs for the 48 hour time horizon with Greedy Task Assign-

ment was just over 9 days. The median solving time for runs with a 48 hour time horizon using

Greedy Task Assignment was 4.3 minutes, the mean 14.3 minutes, and the minimum 8.0 sec-

onds. For a breakdown of the solving times and optimality gaps organized by the number of ser-

vicers, the number of tasks, and the servicer starting fuel, see Table 3.6.3. For the 48 hour time

horizon, Greedy Task Assignment performed better than CPLEX on average for all of the factor

combinations we examined. As the time horizon grows beyond 48 hours, the solving time differ-

ence between CPLEX, if it can reach a solution, and Greedy Task Assignment will continue to

grow.

A histogram of the Greedy Task Assignment optimality gaps can be seen on the right in

Figure 3.6.3 and a visual comparison of the objective values can be seen in Figure 3.6.4. We can

72

0 20 40 60 80 100
0

50

100

150

1

45

12
2

79

42

111

46

10

83

32

73

20

1

39

16
2825

CPLEX: Gap %

N
um

be
ro

fC
as

es

0 20 40 60 80 100
0

50

100

150

13

55

23

1

103

20

66
76

2

51

22

136

26
21

81

22
12

Greedy Task Assignment: Gap %

Figure 3.6.3: Distributions of non-zero gap values for Greedy Task Assignment (right) and
CPLEX (left) with a 48 hour time horizon

see that Greedy Task Assignment matched or exceeded the objective value for CPLEX in just

over 58% of the cases, and was within one task of the CPLEX objective value for nearly 70% of

the cases. This equates to a 99.7% reduction in the median solving time to be on average within

one task of CPLEX 75% of the time. Overall, when compared to the solving results obtained

by CPLEX, Greedy Task Assignment provides results within one task of CPLEX over 70% of

the time with a 99% reduction in the solving time. Next we will look at the “Greedy Clustering”

heuristic and how it compares with CPLEX.

73

Table 3.6.3: A comparison of the optimality gaps and solving times for Greedy Task Assignment
and CPLEX for runs with a 48 hour time horizon. In the last two columns, negative values indi-
cate that, on average, the heuristic outperformed CPLEX for those instances.

Factors CPLEX 12.10 Heuristic
Comparison

CPLEX - Heuristic

Number
of

Tasks

Number
of

Servicers

Starting
Fuel

Number
of

Runs

Mean
Gap
(%)

Mean
Solve
Time
(sec)

Mean
Gap
(%)

Mean
Solve
Time
(sec)

Mean
Gap
(%)

Mean
Solve Time

(sec)

8

1
10 31 60.09 84329 79.81 3415 19.72 -80914
15 31 45.56 86253 68.50 152 22.93 -86100
25 31 27.42 84374 58.47 173 31.05 -84200

2
10 31 50.81 86443 69.35 1153 18.55 -85289
15 31 26.21 86448 44.35 350 18.15 -86098
25 31 2.82 45294 23.79 40 20.97 -45253

3
10 313 62.50 86411 56.45 1633 2.82 -85126
15 31 27.82 80709 18.55 368 -9.27 -80341
25 31 0.00 37098 0.00 36 0.00 -37062

4
10 315 73.79 86418 35.08 1371 -16.94 -85627
15 31 29.84 85424 0.81 404 -29.03 -85020
25 31 3.63 57625 0.00 37 -3.63 -57588

5
10 317 83.06 86409 18.55 1698 -28.23 -85524
15 314 58.47 85144 0.00 440 -32.66 -85169
25 313 22.18 72622 0.00 43 -2.82 -72926

16

1
10 31 61.25 86430 77.73 4065 16.48 -82364
15 31 46.60 86431 74.62 262 28.02 -86169
25 31 13.92 63166 48.27 180 34.36 -62985

2
10 31 66.33 86420 72.38 1092 6.05 -85328
15 31 46.98 86428 62.90 565 15.93 -85862
25 31 33.27 86431 44.15 102 10.89 -86328

3
10 315 83.06 86408 60.48 1830 -9.27 -85158
15 311 50.20 86413 45.97 656 -0.60 -87075
25 31 27.82 86414 25.00 76 -2.82 -86338

4
10 318 91.73 86412 50.60 1558 -13.31 -85783
15 311 67.14 86415 27.22 623 -34.68 -86914
25 312 44.56 86497 7.46 74 -25.00 -86654

5
10 3118 95.56 86404 40.12 2650 20.36 -85844
15 316 73.59 86410 14.52 663 -23.59 -86443
25 314 62.30 86411 0.00 88 -36.49 -86786

#i
where i indicates the number of cases which failed to achieve any CPLEX solution within the
24 hour solving period.

74

9 10 10 11 12 13 7 12

32
24

42
24

34
43

52
63

145

107

170

74

33

3

Objective Value Difference: CPLEX - Greedy Task Assignment

N
um

be
ro

fC
as

es

C
um

ul
at

iv
e

%
of

C
as

es

−16 −14 −12 −10 −8 −6 −4 −2 0 2 4
0

50

100

150

200

0

20

40

60

80

100

Figure 3.6.4: A comparison of the objective values for Greedy Task Assignment and CPLEX
for runs with 48 hour time horizon. The heuristic matched or outperformed CPLEX in 543/930
cases. (58%) Positive values indicate CPLEX performed better and negative values indicate the
heuristic performed better.

3.6.2 Greedy Clustering

We next compare the results when solving the test cases using Greedy Clustering and CPLEX. A

major difference between Greedy Task Assignment and Greedy Clustering is the pre-processing

required to obtain a table of lookup values with the shortest path from each subtask to every other

task. We add in the pre-processing time when we compare the solving times to ensure that all

computational time is included. For the 24 hour time horizon, the lookup table creation took ap-

proximately 8 hours on a single Apple Mac Mini with an M1 processor and 16 GB of RAM. For

the 48 hour time horizon, the lookup table took approximately 24 hours on two Xeon E5-2680

processors with 32 cores and 192 GB of memory. We consider the same 930 cases for the 24 and

48 hour time horizons in this section. We begin with the 24 hour time horizon.

A numeric summary of the optimality gap and solving time comparisons between Greedy

Clustering and CPLEX are organized by the number of tasks, number of servicers, and the ser-

vicer starting fuel in Table 3.6.4. We can see a visual comparison of the optimality gaps in Fig-

ure 3.6.5 and of the objective function values in Figure 3.6.6. Greedy Clustering matched or ex-

75

ceeded CPLEX in just over 45% of the 930 cases (420/930) and was within one task of CPLEX

in 85% of the cases (791/930).

The Greedy Clustering runs took just over 42 hours in total, and if we add in the lookup

table preprocessing time, this equates to just over 50 hours, which is still a significant reduc-

tion from the CPLEX total processing time. The total time to complete the CPLEX runs for the

24 hour time horizon was almost 233 days. The median time to complete a run with a 24-hour

time horizon with CPLEX is 3.6 hours and the same is 2.3 minutes using Greedy Clustering.

The mean processing time for a run with a 24 hour time horizon with CPLEX is 6 hours and 2.7

minutes with Greedy Clustering. This is a 99% reduction in processing time to obtain a solution

within one task of the CPLEX solution 85% of the time. In all of the runs with a 24 hour time

horizon, Greedy Clustering performed no worse than 3 tasks different than CPLEX and solved

faster than CPLEX in all but three (3/930) cases.

The Greedy Clustering runs with a 48 hour time horizon took much longer than the runs

with a 24 hour time horizon. The total processing time for the runs with a 48 hour time horizon,

was just over 1,188 hours and just over 1,212 hours with the pre-processing included. The me-

dian Greedy Clustering processing time for a run with a 48 hour time horizon was 1.2 hours, the

mean 1.3 hours, and the minimum 8.3 seconds. The total time to complete the CPLEX runs for

the 48 hour time horizon was almost 873 days. As stated earlier, the median CPLEX solving time

for the runs with a 48 hour time horizon was 24 hours, the mean 22.5 hours, and the minimum

2.5 hours. A breakdown of the solving times and optimality gaps grouped by the number of tasks,

number of servicers, and the servicer fuel capacity is shown in Table 3.6.5. On average, Greedy

Clustering results in a 94% reduction over the CPLEX solving time for runs with a 48 hour time

horizon.

In 67 of the 930 runs with a 48 hour time horizon, CPLEX failed to achieve any solution

within the 24 hour solving period. In Table 3.6.5, in column, “Number of Runs”, the exponent in-

dicates how many of the runs failed to get any solution in the 24 hour solving time. A comparison

of the optimality gaps for the runs which failed to reach an integer optimal solution are shown

76

0 20 40 60
0

50

100

150

200

3

104

32
16

94

28
37

25
8

38

10 8 2

CPLEX: Gap %

N
um

be
ro

fC
as

es

0 20 40 60
0

50

100

150

200

2

135

33

52

133

110

71

28

8

61

10

25

8

Greedy Clustering: Gap %

Figure 3.6.5: Distributions of non-zero gap values for Greedy Clustering (right) 254 and CPLEX
(left) 523 with a 24 hour time horizon

in Figure 3.6.7 and a comparison of the objective values is shown in Figure 3.6.8. Greedy Clus-

tering performed as well as or better than CPLEX in nearly 59% of the cases (506/930) and was

within one task of CPLEX in nearly 73% of the cases (628/930).

77

1 11

408
371

116

23

Objective Value Difference: CPLEX - Greedy Clustering

N
um

be
ro

fC
as

es

C
um

ul
at

iv
e

%
of

C
as

es

−4 −2 0 2 4
0

100

200

300

400

0

20

40

60

80

100

Figure 3.6.6: A comparison of the objective values for Greedy Clustering and CPLEX for runs
with 24 Hour time horizon. Greedy Clustering matched or outperformed CPLEX in 420/930
cases. (45%) Positive values indicate CPLEX performed better and negative values indicate the
heuristic performed better.

0 20 40 60 80 100
0

20

40

60

80

100

120

1

45

12
2

79

42

111

46

10

83

32

73

20

1

39

16

2825

CPLEX: Gap %

N
um

be
ro

fC
as

es

0 20 40 60 80
0

20

40

60

80

100

120

16

51

36

68

41

64 66

2

57

25

94

22 22

79

22 24

Greedy Clustering: Gap %

Figure 3.6.7: Distributions of non-zero gap values for Greedy Clustering (right) and CPLEX
(left) for the cases/runs with a 48 hour time horizon

78

10 11 10 13 7
17

8
21 28 23

37 33
42 49 50 55

159

122
137

74

23

1

Objective Value Difference: CPLEX - Greedy Clustering

N
um

be
ro

fC
as

es

C
um

ul
at

iv
e

%
of

C
as

es

−16 −14 −12 −10 −8 −6 −4 −2 0 2 4
0

50

100

150

200

0

20

40

60

80

100

Figure 3.6.8: A comparison of the objective values for Greedy Clustering and CPLEX for runs
with 48 hour time horizon. Greedy Clustering matched or outperformed CPLEX in 543/930
cases. (61.6%) Positive values indicate CPLEX performed better and negative values indicate
the heuristic performed better.

79

Table 3.6.4: A comparison of the optimality gaps and solving times for Greedy Clustering and
CPLEX for runs with a 24 hour time horizon. In the last two columns, negative values indicate
average amount that the heuristic outperformed (or not) CPLEX for that combination of factors.

Factors CPLEX 12.10 Heuristic
Comparison

CPLEX - Heuristic

Number
of

Tasks

Number
of

Servicers

Starting
Fuel

Number
of

Runs

Mean
Gap
(%)

Mean
Solve
Time
(sec)

Mean
Gap
(%)

Mean
Solve
Time
(sec)

Mean
Gap
(%)

Mean
Solve Time

(sec)

8

1
10 31 0.00 587 22.58 25 22.58 -562
15 31 0.00 428 13.98 45 13.98 -383
25 31 0.00 194 13.98 89 13.98 -105

2
10 31 28.89 29499 38.82 52 9.93 -29446
15 31 3.38 15530 11.12 94 7.74 -15435
25 31 5.00 14987 8.76 108 3.76 -14878

3
10 31 41.86 42449 48.31 89 6.45 -42360
15 31 16.83 39441 19.66 144 2.82 -39296
25 31 9.27 38080 18.78 202 9.51 -37877

4
10 31 28.23 41877 37.10 120 8.87 -41756
15 31 5.24 20313 11.69 187 6.45 -20126
25 31 0.81 4113 12.10 241 11.29 -3871

5
10 31 17.34 38944 25.81 150 8.47 -38794
15 31 0.00 2498 0.00 234 0.00 -2263
25 31 0.00 1233 0.00 311 0.00 -921

16

1
10 31 0.00 182 5.38 36 5.38 -146
15 31 0.00 137 26.61 63 26.61 -73
25 31 0.00 112 0.00 67 0.00 -44

2
10 31 16.60 28863 23.86 73 7.26 -28790
15 31 1.70 13401 23.47 161 21.77 -13239
25 31 0.36 2596 12.41 148 12.05 -2448

3
10 31 24.74 40861 31.58 107 6.84 -40753
15 31 4.56 15681 20.01 201 15.45 -15480
25 31 2.25 9765 14.40 225 12.15 -9540

4
10 31 40.98 42274 44.60 183 3.62 -42091
15 31 22.98 36504 31.96 324 8.99 -36180
25 31 16.98 38155 29.69 300 12.71 -37855

5
10 31 45.98 43215 50.47 179 4.49 -43035
15 31 26.65 43212 30.69 354 4.03 -42858
25 31 13.52 43210 26.65 384 13.13 -42825

80

Table 3.6.5: A comparison of the optimality gaps and solving times for Greedy Clustering and
CPLEX for runs with a 48 hour time horizon. In the last two columns, negative values indicate
average amount that the heuristic outperformed (or not) CPLEX.

Factors CPLEX 12.10 Heuristic
Comparison

CPLEX - Heuristic

Number
of

Tasks

Number
of

Servicers

Starting
Fuel

Number
of

Runs

Mean
Gap
(%)

Mean
Solve
Time
(sec)

Mean
Gap
(%)

Mean
Solve
Time
(sec)

Mean
Gap
(%)

Mean
Solve Time

(sec)

8

1
10 31 60.09 84329 82.5 2089 22.41 -82240
15 31 45.56 86253 72.77 1430 27.21 -84823
25 31 27.42 84374 50.83 1957 23.41 -82416

2
10 31 50.81 86443 70.56 1808 19.76 -84635
15 31 26.21 86448 45.56 2666 19.35 -83781
25 31 2.82 45294 9.68 3293 6.85 -42000

3
10 313 58.48 86412 53.57 2849 -4.91 -83563
15 31 27.82 80709 15.73 3908 -12.1 -76800
25 31 0 37098 0 4776 0 -32322

4
10 315 68.75 86421 33.17 3871 -35.58 -82550
15 31 29.84 85424 0 5351 -29.84 -80073
25 31 3.63 57625 0 6114 -3.63 -51510

5
10 317 78.13 86412 15.63 4940 -62.5 -81471
15 314 52.31 84958 0 6646 -52.31 -78311
25 313 13.84 71145 0 7555 -13.84 -63590

16

1
10 31 61.25 86430 77.73 3391 16.48 -83039
15 31 46.6 86431 74.62 1729 28.02 -84702
25 31 13.92 63166 43.54 2372 29.62 -60793

2
10 31 66.33 86420 72.18 2734 5.85 -83685
15 31 46.98 86428 62.5 3514 15.52 -82914
25 31 33.27 86431 39.11 4262 5.85 -82168

3
10 315 79.81 86409 59.62 4332 -20.19 -82076
15 311 48.54 87656 42.92 5147 -5.63 -82508
25 31 27.82 86414 16.94 6250 -10.89 -80164

4
10 318 88.86 86416 47.01 5307 -41.85 -81109
15 311 66.04 87455 24.38 6663 -41.67 -80791
25 312 40.73 86504 1.08 8161 -39.66 -78343

5
10 3118 89.42 86411 42.31 4617 -47.12 -81794
15 316 67.25 86413 16 8269 -51.25 -78143
25 314 56.71 86412 0 9919 -56.71 -76493

#i
where i indicates the number of cases which failed to achieve any CPLEX solution within the
24 hour solving period.

81

3.6.3 Greedy vs. Greedy Clustering vs. CPLEX Results

In previous sections of this work, we compared each solving heuristic with CPLEX individually.

Now we present a comparison of all three solving methods simultaneously. We begin with the

solving time. When we compared the solving time for all three methods across all 1,860 runs,

we observed that CPLEX was never the fastest solving method and that Greedy Task Assignment

was fastest method most often. Figure 3.6.9 shows the breakdown of the fastest methods.

We also compared the solutions by method and in many cases there was a tie in methods

for the best objective value. In the 1,860 cases we examined, 397 resulted in a three-way tie and

490 resulted in a two-way tie for the best solution. Greedy Clustering tied with CPLEX for the

best solution most often. For the 973 runs in which there was a single method with the best ob-

jective value, 793 of these were obtained with CPLEX, 138 with Greedy Clustering, and 42 with

Greedy Task Assignment. Figure 3.6.10 shows the counts for the number of times a solution

methodology achieved the best solution value for that run; this shows more than 1,860 because

of the many ties for best solution. We also examined a combination of speed and accuracy. There

were 757 cases (of 1,860) in which the method that had the fastest solve time also achieved at

least a tie for the best solution. The distribution of these is shown in Figure 3.6.11.

Finally in Table 3.6.6 we examined each of the combinations of factors and counted how

many of the runs a heuristic or CPLEX performed best. We did not break out the heuristic by

type because in most cases Greedy Clustering obtained a better solution. We can see that the

heuristics performed better than CPLEX with the longer time horizon and that with the shorter

time horizon, the heuristics perform as well as CPLEX in many cases. This is a testament to

the scalability of the heuristics for a longer time horizon with a smaller time increment. In Ta-

ble 3.6.7 we present a summary of the solving times for each of the solving methods. In the best

case, a heuristic reduced the solving time by 99% and the worst solving time improvement was a

94% reduction in processing time.

82

CPLEX Greedy Greedy Clustering
0

500

1,000

1,500

2,000

0

1,629

231

Solving Methodology with the Fastest Solve Time

N
um

be
ro

fR
un

s

Figure 3.6.9: Histogram showing the number of times each methodology achieved the fastest
solve time.

CPLEX Greedy Greedy Clustering
0

500

1,000

1,500

2,000

1,449

764
951

Solving Methodology with the Best Solution: Most Tasks completed

N
um

be
ro

fR
un

s

Figure 3.6.10: Histogram showing the number of times each methodology achieved the best so-
lution, alone or in a tie. This has more than 1,860 because there were ties for the best solution on
several runs. There were 397 three-way ties and 490 two-way ties for the best solution.

83

Table 3.6.6: Table which counts the number of instances in which CPLEX or a heuristic obtained
a better solution and also if there was a tie. We did not break out the heuristic by type because
in most cases Greedy Clustering obtained the better solution. We can see that the heuristics per-
formed better than CPLEX with a longer time horizon and that with the shorter time horizon, the
heuristics perform as well as CPLEX in many cases.

Factors Number
of

Cases

Time Horizon
Number

of
Tasks

Number
of

Servicers

Starting
Fuel

24 48

CPLEX
CPLEX and
Heuristic Tie Heuristic CPLEX

CPLEX and
Heuristic Tie Heuristic

8

1
10 62 1 30 0 22 9 0
15 62 13 18 0 29 2 0
25 62 13 18 0 29 2 0

2
10 62 3 28 0 27 4 0
15 62 12 19 0 27 3 1
25 62 6 25 0 16 13 2

3
10 62 6 25 0 7 8 16
15 62 7 24 0 2 10 19
25 62 23 8 0 0 31 0

4
10 62 17 14 0 0 4 27
15 62 16 15 0 0 5 26
25 62 28 3 0 0 28 3

5
10 62 16 12 3 0 0 31
15 62 0 31 0 0 2 29
25 62 0 31 0 0 17 14

16

1
10 62 5 26 0 30 1 0
15 62 24 7 0 31 0 0
25 62 0 31 0 31 0 0

2
10 62 10 21 0 20 4 7
15 62 23 8 0 29 2 0
25 62 30 1 0 23 7 1

3
10 62 16 15 0 4 1 26
15 62 27 4 0 6 11 14
25 62 30 1 0 4 10 17

4
10 62 13 14 4 1 0 30
15 62 24 7 0 1 0 30
25 62 30 1 0 0 0 31

5
10 62 15 11 5 0 0 31
15 62 17 12 2 0 0 31
25 62 29 2 0 0 0 31

84

Table 3.6.7: Table with solving times for each methodology. The Greedy Clustering Task Assign-
ment times do not include the pre-processing times.

Time Horizon Solving Method
Solving Time (hours unless indicated)

Minimum Median Maximum Total

24 Hours
CPLEX 0.02 3.62 12.00 5582.52

Greedy Task Assignment 9.94(sec) 0.03 1.20 43.4
Greedy Clustering 12.13(sec) 0.04 0.36 42.36

48 Hours
CPLEX 2.50 24.01 24.02 20940.55

Greedy Task Assignment 7.96 (sec) 0.07 11.75 222.27
Greedy Clustering 0.02 1.15 8.31 1188.43

CPLEX Greedy Greedy Clustering
0

200

400

600

0

663

94

Solving Methodology with the best solution and fastest solve time

N
um

be
ro

fR
un

s

Figure 3.6.11: There were 757 cases in which the method that achieved the fastest solution time
also achieved at least a tie for the best objective value solution. Here we see the distribution of
those that led in both categories.

85

3.7 Conclusions

In this work we examined the Multi-Orbit Routing and Scheduling of Refuellable Space Robots

for On-Orbit Servicing (MORSO) optimization problem which seeks to maximize the weighted

number of tasks which can be completed in a set time horizon. First we proved the complexity

of the problem with a reduction from the known NP−Complete problem 1 | d j = d | w jU j to

an instance of the MORSO problem. Next we presented our two new heuristics for solving the

MORSO problem and a node labelling algorithm used in both. The heuristics resulted in a signif-

icant reduction in processing times while providing near optimal solutions to the problem.

We also conducted a comparison of the solution paths that the heuristics and CPLEX pro-

vided and were not able to discern an appreciable pattern attributable to any of the factors ex-

amined in this study. One area for future study could be to use machine learning or other more

intensive data mining techniques to determine why the heuristics perform as they do. We also

recommend incorporating task processing times into the problem and into the heuristics which

would also require modification to the existing mixed integer linear programming model. An-

other direction for this work would be to examine a larger network with smaller time intervals.

The smaller time intervals and larger network would make it more difficult for CPLEX to solve,

so ideally much longer solving time wall would be needed for CPLEX to find the best solution

possible for comparison with the heuristics.

86

Bibliography

[1] Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. (1993). Network Flows: Theory, Algorithms,
and Applications. Prentice Hall, Englewood Cliffs, N.J.

[2] Bourjolly, J., Gürtuna, Ö., and Lyngvi, A. (2006). On Orbit Servicing: A Time Dependent,
Moving Target Traveling Salesman Problem. International Transactions in Operational Re-
search, 13(5):461–481.

[3] British Broadcasting Corporation (2020). Space news: First Ever Space ‘Petrol Station’ to Be
Built in UK. https://www.bbc.co.uk/newsround/54551557. Last Accessed: July 4, 2022.

[4] Coene, S., Spieksma, F. C. R., Dutta, A., and Tsiotras, P. (2012). On the Computational Com-
plexity of Peer-to-Peer Satellite Refueling strategies. INFOR: Information Systems and Oper-
ational Research, 50:88–94.

[5] Corbin, B. A., Abdurezzak, A., Newell, L. P., Roesler, G. M., and Lal, B. (2020). Global
Trends in On-Orbit Servicing, Assembly and Manufacturing (OSAM). https://www.ida.or
g/research-and-publications/publications/all/g/gl/global-trends-in-on-
orbit-servicing-assembly-and-manufacturing-osam. IDA Document D-13161.

[6] Daneshjou, K., Mohammadi-Dehabadi, A. A., and Bakhtiari, M. (2017). Mission Planning
For On-Orbit Servicing Through Multiple Servicing Satellites: A New Approach. Advances in
Space Research, 60(6):1148–1162.

[7] Du, B., Zhao, Y., Dutta, A., Yu, J., and Chen, X. (2015). Optimal Scheduling of Multispace-
craft Refueling Based on Cooperative Maneuver. Advances in Space Research, 55(12):2808–
2819.

[8] Dutta, A. and Tsiotras, P. (2007). A Greedy Random Adaptive Search Procedure for Optimal
Scheduling of P2P Satellite Refueling. In AAS/AIAA Space Flight Mechanics Meeting, pages
07–150.

[9] Garey, M. R. and Johnson, D. S. (1979). Computers and Intractability, volume 174. freeman
San Francisco.

[10] Gürtuna, Ö. and Trépanier, J. (2003). On-Orbit Satellite Servicing: A Space-Based Vehicle
On-Orbit Servicing Routing Problem. In Operations Research in Space and Air, pages 123–
141. Springer.

[11] Hudson, J. S. and Kolosa, D. (2020). Versatile On-Orbit Servicing Mission Design in
Geosynchronous Earth Orbit. Journal of Spacecraft and Rockets, 57(4):844–850.

[12] Kannon, T. E., Nurre, S. G., Lunday, B. J., and Hill, R. R. (2015). The Aircraft Routing
Problem with Refueling. Optimization Letters, 9(8):1609–1624.

[13] Lenstra, J. K., Kan, A. R., and Brucker, P. (1977). Complexity of Machine Scheduling Prob-
lems. In Annals of Discrete Mathematics, volume 1, pages 343–362. Elsevier.

87

https://www.bbc.co.uk/newsround/54551557
https://www.ida.org/research-and-publications/publications/all/g/gl/global-trends-in-on-orbit-servicing-assembly-and-manufacturing-osam
https://www.ida.org/research-and-publications/publications/all/g/gl/global-trends-in-on-orbit-servicing-assembly-and-manufacturing-osam
https://www.ida.org/research-and-publications/publications/all/g/gl/global-trends-in-on-orbit-servicing-assembly-and-manufacturing-osam

[14] Li, W. J., Cheng, D. Y., Liu, X. G., Wang, Y. B., Shi, W. H., Tang, Z. X., Gao, F., Zeng,
F. M., Chai, H. Y., Luo, W.-B., Cong, Q., and Gao, Z. L. (2019). On-orbit Service (OOS) of
Spacecraft: A Review of Engineering Developments. Progress in Aerospace Sciences, 108:32–
120.

[15] NASA (2020). NASA Selects Proposals to Demonstrate In-Space Refueling and Propellant
Depot Tech. https://www.nasa.gov/directorates/spacetech/solicitations/tippin
g points/2020 selections. Last Accessed: July 4, 2022.

[16] NASA (2021). On-orbit Servicing, Assembly, and Manufacturing 1 (OSAM-1). https:
//nexis.gsfc.nasa.gov/osam-1.html. Last Accessed: July 4, 2022.

[17] Northrup Grumman (2020). Mission Extension Vehicle. https://news.northropgrumm
an.com/news/releases/northrop-grumman-and-intelsat-make-history-with-
docking-of-second-mission-extension-vehicle-to-extend-life-of-satellite.
Last Accessed: July 4, 2022.

[18] qian Chen, X. and Yu, J. (2017). Optimal Mission Planning of GEO On-Orbit Refueling in
Mixed Strategy. Acta Astronautica, 133:63–72.

[19] Sorenson, S. E. and Nurre Pinkley, S. G. (2022). Multi-Orbit Routing and Scheduling of
Refuellable On-Orbit Servicing Space Robots. Manuscript submitted for publication.

[20] Zhang, J., Parks, G. T., Luo, Y. Z., and Tang, G. J. (2014). Multispacecraft Refueling Op-
timization Considering the J2 Perturbation and Window Constraints. Journal of Guidance,
Control, and Dynamics, 37(1):111–122.

[21] Zhang, Q. and Zhang, Y. (2014). On-orbit servicing task allocation for multi-spacecrafts
using hdpso. Applied Mechanics and Materials, 538(Mechanical, Electronic and Engineering
Technologies (ICMEET 2014)):150–153.

[22] Zhang, T. J., Yang, Y. K., Wang, B. H., Li, H. N., Li, Z., and Shen, H. X. (Oct 2019). Opti-
mal Scheduling for Location Geosynchronous Satellites Refueling Problem. Acta Astronau-
tica, 163:264–271.

[23] Zhao, Z., Zhang, J., Li, H. Y., and Zhou, J. Y. (2017). LEO Cooperative Multi-Spacecraft
Refueling Mission Optimization Considering J2 Perturbation and Target’s Surplus Propellant
Constraint. Advances in Space Research, 59(1):252–262.

[24] Zhou, Y., Yan, Y., Huang, X., and Kong, L. (2015). Optimal Scheduling of Multiple
Geosynchronous Satellites Refueling Based on a Hybrid Particle Swarm Optimizer. Aerospace
Science and Technology, 47:125–134.

[25] Zhou, Y., Yan, Y., Huang, X., and Yang, Y. (2017). Multi-Objective Planning of a Multiple
Geostationary Spacecraft Refuelling Mission. Engineering Optimization, 49(3):531–548.

88

https://www.nasa.gov/directorates/spacetech/solicitations/tipping_points/2020_selections
https://www.nasa.gov/directorates/spacetech/solicitations/tipping_points/2020_selections
https://nexis.gsfc.nasa.gov/osam-1.html
https://nexis.gsfc.nasa.gov/osam-1.html
https://news.northropgrumman.com/news/releases/northrop-grumman-and-intelsat-make-history-with-docking-of-second-mission-extension-vehicle-to-extend-life-of-satellite
https://news.northropgrumman.com/news/releases/northrop-grumman-and-intelsat-make-history-with-docking-of-second-mission-extension-vehicle-to-extend-life-of-satellite
https://news.northropgrumman.com/news/releases/northrop-grumman-and-intelsat-make-history-with-docking-of-second-mission-extension-vehicle-to-extend-life-of-satellite

4. Solution Methods for the Multi-Orbit Routing and Scheduling of Refuellable On-Orbit
Servicing Space Robots with Known Task Times

Susan E. Sorenson Sarah G. Nurre Pinkley

Abstract: The Multi-Orbit Routing and Scheduling of Refuellable Space Robots for On-

Orbit Servicing with Known Task Times optimization problem determines how to best route and

schedule a fleet of highly maneuverable and refuellable space robot servicers to complete a set of

tasks with known task times on satellites orbiting in space. We formulate the problem as a mixed

integer linear program seeking to maximize the weighted number of completed tasks within a

set time horizon. The model has constraints related to the the movements of the robot servicers,

the refuelling depots, and the tasks. We also present two constructive heuristics for solving the

problem and compare the results with CPLEX.

4.1 Introduction

The Multi-Orbit Routing and Scheduling of Refuellable Space Robots for On-Orbit Servicing

with Known Task Times (MORSO-KTT) determines how to best schedule and route a set of

space based robotic servicers to complete a set of tasks with known task times on other satellites

spanning multiple orbits in space. When servicing satellites that are already on orbit, it is called

On-Orbit Servicing (OOS). Servicing events can include activities like refuelling, refitting, refur-

bishing, repairing, inspecting, augmenting, or upgrading. OOS is not a common occurrence yet,

but many countries and commercial enterprises have accomplished or are planning to accomplish

OOS in the future [4, 12].

NASA completed it’s first OOS to repair the Hubble telescope in 1993 [13] and is devel-

oping technologies like the the On-orbit Servicing, Assembly and Manufacturing-1, a robotic

spacecraft designed to extend the life of satellites, even if they were not designed for OOS [14].

A commercial entity, Orbit Fab placed a refuelling depot in Low Earth Orbit (LEO) in 2021 and

89

plans to place another in Geostationary Earth Orbit (GEO) in cooperation with SpaceX in the

near future [20]. As these technologies continue to grow and robots which can travel across mul-

tiple orbital bands to accomplish OOS become commonplace, the optimization of the scheduling

and routing of these robot servicers to accomplish multiple tasks spanning multiple orbits will

grow.

The purpose of this work is to present a new model for MORSO-KTT along with two al-

gorithms for solving. The MORSO problem was previously studied in [19] but in their work, the

tasks had instantaneous processing times. For a servicer to accomplish a task, they must negoti-

ate and rendezvous with the satellite that has the task, and continue to orbit with them while the

task is processed. In reality, the actual task processing times would be unknown until the servicer

arrives at the task location and has completed the negotiation and rendezvous portion of the mis-

sion. Task processing times are an integral part of this problem and are for the most part uncer-

tain, thus in this work we take the first step towards the problem with stochastic processing times

by examining the problem with deterministic task processing times. We present a new mixed in-

teger linear programming (MILP) model for solving the MORSO-KTT problem. The model ac-

counts for the movement of the servicers, tasks, and refuelling depots. The model also uses sets

of arcs to represent the time the servicer must stay with the task for processing and completion.

After we establish the model, we then present two constructive heuristics for solving the

MORSO-KTT problem. We use a realistic case study with a network and tasks based on satellites

currently on orbit to compare the the solving times and solution accuracy of the heuristics with

CPLEX.

Main Contributions. The main contributions of this work are as follows: (i) We present a

new MILP formulation for the MORSO-KTT problem; (ii) We develop and demonstrate two con-

structive heuristics for the solving the MORSO-KTT problem; (iii) We perform extensive compu-

tational experiments on a realistic data set based on active satellites demonstrating the speed and

accuracy of our algorithms.

The remainder of this work is as follows. In Section 4.2, we summarize literature related

90

to the modeling and optimization of different types of OOS missions. In Section 4.3, we pro-

vide a detailed overview of the MORSO-KTT problem and the MILP. In Section 4.4, we present

two heuristic solution methods and in Section 4.5 we demonstrate the speed and accuracy of our

methods. In Section 4.6, we present conclusions and areas for further study.

4.2 Literature

In this section, we focus our literature review on works related to the modeling of on-orbit ser-

vicing (OOS) that address the scheduling of tasks with known or unknown processing times and

methodologies for solving these same OOS problems. We begin with a definition of OOS and

defining terminology used in this work.

In a work which reviewed OOS technologies defined it as follows: [O]n-orbit activities

conducted by a space vehicle that performs up-close inspection of, or results in intentional and

beneficial changes to, another resident space object. These activities include non-contact sup-

port, orbit modification (relocation) and maintenance, refueling and commodities replenishment,

upgrade, repair, assembly, and debris mitigation [6]. This definition considers on-orbit refuelling

(OOR) as a type of OOS, and with this as motivation, when we refer to OOS in this work, it may

or may not include OOR activities, but if we use the term OOR then we are specifically referring

to the specific OOS task of OOR. Additionally, when we use the term “refuelling” we are refer-

ring to the refuelling of the robot servicers that we are routing and scheduling throughout this

work.

We begin with some works that examine OOS or OOR missions and assume known and

fixed task processing times. Daneshjou et al. [5] use Particle Swarm Optimization to minimize

the mission time and fuel consumed for a set of OOS tasks. Their problem has three service types

with different task times for each type of service. Zhang et al. [22] also sought to minimize the

mission time and fuel consumed for a single servicer to accomplish multiple OOS tasks in mul-

tiple orbits with known rendezvous and service times. They use a hybrid encoding genetic algo-

rithm to optimize the sequence of tasks. Gürtuna and Trépanier [10] modeled a single servicer

91

accomplishing multiple tasks, with identical known processing times, as a time dependant Ve-

hicle Routing Problem (VRP) and used the Clarke and Wright algorithm to minimize the fuel

expended. [16] propose an optimization framework for a multi-servicer OOS mission with fixed

servicing times using a MILP model, but their framework and model is focused at the strategic

level with decisions about servicer types and servicing tools.

Some authors who examine OOS or OOR do not make a distinction between those that do

the servicing and those that receive the servicing. These works address a class of problems which

involve peer-to-peer servicing or refuelling. Peer-to-peer OOR with a fixed servicing time was

examined by Dutta and Tsiotras [8] and the authors sought to minimize the overall fuel expended

using a greedy random adaptive search procedure. Later in [9], they used a network flow model

with a fixed servicing time to determine the minimum fuel required to conduct a set of peer-to-

peer OOR operations. Shen and Tsiotras [17] treat the scheduling of a peer-to-peer OOR as a

matching problem looking to minimize mission time and all refuelling events occur simultane-

ously within a set time horizon.

Other works do not specifically address the service times or assume service is accom-

plished instantaneously. Bourjolly et al. [3] models a single servicer to many OOS tasks as a time

dependant Travelling Salesman Problem (TSP) assuming instantaneous task completion upon

rendezvous. They solve it with an exhaustive search when there are less than 10 tasks and use a

Tabu search when there are more than 10 tasks. qian Chen and Yu [15] examine OOS, with both

a single servicer and multiple servicers, looking to minimize the overall cost and fuel used, with-

out specifically addressing the servicing times. They solve the problem with a particle swarm

optimization optimizing decisions concerning the fuel and path. Yu et al. [21] examined a sin-

gle servicer OOS scheduling problem on a single orbit. They used a multi-objective optimization

model, minimizing the fuel used while maximizing the weighted number of refuelling tasks for a

single servicer and did not consider servicing time, only the servicing order. In the initial presen-

tation of Multi-Orbit Routing and Scheduling of Refuellable Space Robots for On-Orbit Servic-

ing as a mixed integer linear program (MILP) in [19], tasks were accomplished instantaneously.

92

Some works make the servicing time the decision variable. Alfriend et al. [2] treats a single

orbit OOR problem as a TSP, looking to minimize the total fuel expended, by deciding the ma-

neuvers and the service time. In Du et al. [7] look to minimize the expended fuel costs for a OOR

mission by deciding the task sequence, rendezvous strategy, and the refuelling time and locations

using an algorithm which combines a Multi island Genetic Algorithm and Sequential Quadratic

Programming. Their mission format requires the satellites to leave their orbital location to ren-

dezvous with the servicer.

With an overview of some of the existing literature, we proceed by formalizing the

MORSO-KTT problem notation and mathematical model.

4.3 Problem Statement

In this section we provide an overview of the Multi-Orbit Routing and Scheduling of Refuellable

Space Robots for On-Orbit Servicing with Known Task Times (MORSO-KTT) problem. We

present the nomenclature for the time horizon, network, robot servicers, tasks, and refuelling. We

also present an algorithm for creating the subtasks and subtask sets which are used for tracking

task movement and completion. We finish with the mixed integer linear program (MILP) formu-

lation. Much of the discussion that follows in this section is heavily based on Sorenson and Nurre

Pinkley [19] in which the MORSO problem and a MILP are first introduced. We begin with the

problem nomenclature.

MORSO-KTT has a a finite set of time intervals: t = 0, . . . , |T |. We also have a network

G = (N,A) with nodes i ∈ N and arcs (i, j) ∈ A. The nodes are at “fixed” locations in space. Arcs

exist between nodes if there exists an orbital maneuver such that a robot servicer would be able to

get from i to j via some route within the given time horizon. The time and fuel costs, τi j and φi j

respectively, for each arc, are the actual time and fuel costs for the arc, calculated using orbital

mechanics. We allow the robot servicers to finish at any node in the network with the designation

of a super sink node, E. The super sink node E is connected to every node i ∈ N with a directed

arc (i,E) with unit traversal time, τiE = 1 and no fuel cost, φiE = 0. Equivalently, we allow a

93

servicer to end at any node in the network at time |T |−1.

The problem also has a set of identical robot servicers D, with d ∈ D. The robot servicers

move on the arcs in the network over time. Each servicer has a starting location at a node, sd ∈

N, and a known maximum fuel capacity, F . The fuel level of each robot servicer, fdt , for d ∈

D and t ∈ T , changes over time as the servicers move through the network accomplishing tasks.

A robot servicer, d, can only move on arc, (i, j) ∈ A if the fuel level of the servicer fdt exceeds

the fuel cost of the arc φi j. Refuelling is allowed only if the arc is a refuelling arc. Refuelling arcs

are determined by the starting location of a refuelling depot. As time passes, refuelling depots

continually move through the network on arcs. If a refuelling depot is on an arc (i, j) ∈ A at time

t = t this arc then becomes a refuelling arc. Over time the refuelling depot transits many arcs

and we create a set of arcs for each time period t: AR
t where AR

t is the set of refuelling arcs at time

t ∈ T,AR
t ∈ A.

The goal when solving the MORSO-KTT problem is to maximize the weighted number of

tasks completed within the time horizon. The set of tasks to be completed is called B, and each

task v ∈ B has a weight wv which is the task priority. Tasks also have a known discrete processing

time, pv and a starting node which is some i ∈ N at time t = 0. As with the refuelling depots,

the tasks are also always moving. We break the tasks into subtasks adding a subtask for each

node the task passes. A servicer could start processing a task at any one of these subtask nodes.

Therefore each subtask k ∈ Bv has a starting node represented by a node and time pair: (nvk, tvk).

We first create all the subtasks by determining their starting node and time pairs. Task servicing

can begin at any one of these subtask starting node and time pairs, but for servicing to be com-

pleted, the servicer must stay with the subtask through the full processing time. To account for

this, we create a set of arcs for each subtask which begins at the subtask starting node and time

pair, (nvk, tvk). We call this set of arcs Ωvk. We construct Ωvk by adding consecutive orbiting arc

beginning at (nvk, tvk) until the time cost of all the included arcs is greater than or equal to the task

processing time pv. In other words, each arc has an associated time cost, τi j, and the sum of the

time costs for the arcs in each Ωvk must be equal to or exceed the processing time, pv for the task.

94

For the detailed steps for creating the subtasks and associated sets, see Algorithm 7. For a subtask

and therefore a task to be completed, the same servicer must consecutively travel each arc in Ωvk

at the associated times.

Algorithm 7 Subtask Set Creation Algorithm

1: Input |T | as the time horizon and network G = (N,A).
2: Input task set B where each task v ∈ B has a known starting node and processing time pv
3: for each task v ∈ B do
4: Create subtask set Bv = /0.
5: Set current node = starting node.
6: Set current time = 0.
7: while current time ≤ |T | do
8: Add subtask to Bv associated with the (current node, current time).
9: Set next node = to the next node on the orbit in the rotational direction of the orbit.

10: Set current time = current time+ τcurrent node next node.
11: Set current node = next node.
12: end while
13: for each subtask k ∈ Bv do
14: for each (nvk, tvk) ∈ Bv do
15: Create Ωvk = /0

16: Let current node = nvk and let current time = tvk
17: Set next node = to the next node on the orbit in the rotational direction of the orbit.
18: Let arc count = ⌈ pv

τcurrent node next node
⌉

19: while |Ωvk|< arc count do
20: Add arc (current node,next node),current time to Ωvk
21: Set current node = next node
22: Set current time = current time+ τcurrent node next node
23: Set next node = to the next node on the orbit in the rotational direction of the orbit.
24: end while
25: end for
26: end for
27: end for
28: Return Bv, Ωvk ∀k ∈ Bv ∀v ∈ B

The last input to MORSO-KTT is a set of refuelling depots expressed as Γ,r ∈ Γ, and as

the depots move, some of the arcs in A are designated as refuelling arcs, so we have the set AR
t ⊂

A which contains the arcs (i, j) ∈ A which are available for refuelling at time t.

95

4.3.1 Model

With the overview of the notation presented we next present the MORSO-KTT MILP formula-

tion which includes the formal definition of the decision variables, parameters and sets, and the

constraints. The model comes from [18] with † indicating new or modified entries.

Parameters/Sets

T : Set of time periods, where |T | is the last time period
N : Set of nodes , i ∈ N
E : Super sink node, E ∈ N
B : Set of tasks,v ∈ B
Γ : Set of refuelling depots,r ∈ Γ

Bv : Set of subtasks associated with v ∈ B,k ∈ Bv

A : Set of directed arcs,(i, j) ∈ A

AR
t : Set of refuelling arcs at time t ∈ T,AR

t ⊂ A

Ωvk
† : Set of arcs,(i, j) ∈ A, and times, t ∈ T,

associated with subtask k ∈ Bv, for task v ∈ B
D : Set of robot servicers,d ∈ D
sd : Starting node of servicer d ∈ D
Fd : Maximum fuel capacity of servicer d ∈ D, in ∆V
wv : Weight of task v ∈ B

pv
† : Processing time of task v ∈ B, in time periods

nvk : The node location of subtask k ∈ Bv of task v ∈ B
tvk : First time period of subtask k ∈ Bv of task v ∈ B
τi j : Time periods to traverse arc (i, j) ∈ A
φi j : Fuel to traverse arc (i, j) ∈ A, in ∆V

Ψi j : Per time period fuel needed to traverse arc (i, j) ∈ A, in ∆V

Decision Variables

βvkd
† =

{
1, if subtask k of task v is completed by servicer d ∈ D, for v ∈ B
0, otherwise

fdt = fuel level of servicer d at time t, for d ∈ D and t ∈ T

ydi jt =

{
1, if robot servicer d initiates move on arc (i, j) ∈ A, at time t ∈ T
0, otherwise

96

Decision Variables

† max ∑
v∈B

wv ∑
k∈Bv

∑
d∈D

βvkd (4.1)

s.t. †
∑

k∈Bv

∑
d∈D

βvkd ≤ 1, for v ∈ B (4.2)

†
∑

i:(i,nvk)∈A
tvk−τinvk≥0

ydinvktvk−τinvk
≥ βvkd, for v ∈ B,k ∈ Bv,d ∈ D (4.3)

†
∑

(i, j,t)∈Ωvk

τi j ∗ ydi jt

pv
≥ βvkd, for v ∈ B,k ∈ Bv,d ∈ D (4.4)

∑
j:(j,i)∈A
t−τ ji≥0

yd jit−τ ji − ∑
j:(i, j)∈A

ydi jt =


−1, if i = sd and t = 0
1, if j = E and t = |T |
0, otherwise

for i ∈ N,d ∈ D, t ∈ T (4.5)

fdt ≤ fdt−1 −

 ∑
(i, j)∈A

t

∑
s=max{t−τi j,0}

(
ydi js ∗Ψi j

)
+ ∑

(i, j)∈AR
t

t−τi j≥0

(
ydi jt−τi j ∗Fd

)
for t ∈ T \ |T |,d ∈ D (4.6)

fd0 = Fd, for d ∈ D (4.7)
0 ≤ fdt ≤ Fd, for d ∈ D, t ∈ T (4.8)

ydi jt ,
†
βvkd ∈ {0,1} , for d ∈ D,(i, j) ∈ A, t ∈ T,v ∈ B,k ∈ Bv (4.9)

In Equation, (4.1) we present the objective function seeking to maximize the weighted

number of tasks completed. In Constraints (4.2), we ensure that across all servicers at most one

subtask is completed for each task. In Constraints (4.3), we ensure the robot servicers travel all

arcs in a subtask set for the task to be completed. In Constraints (4.5), we balance the flow of

robot servicers through the network by ensuring that each robot servicer must start at their desig-

nated start node, only leave a node they are at, and must finish at the super sink E. In Constraints

(4.6), we update the fuel on-board of each robot servicer at each time based on the prior time pe-

riod fuel level, movement, and refuelling decisions. In Constraints (4.7), we set the starting fuel

level of all robot servicers to the maximum amount. In Constraints (4.8), we force the fuel level

of each servicer over time to be between 0 and the maximum capacity. In Constraints (4.9), we

place the binary restriction on some decision variables.

97

With the model presented we next present two new algorithms for solving MORSO-KTT.

4.4 Solution Methodology

In this section, we present two algorithms for solving MORSO-KTT. We begin by expanding on

the label contents for the labels created in the “Label Making Algorithm” presented in Sorenson

and Nurre Pinkley [18]. The label making scheme builds upon ideas from Dijkstra’s algorithm

and an aircraft routing with refuelling algorithm [1, 11] to find the shortest paths to tasks that are

in motion on a network. We expand the label content to include information about the subtasks

and task processing times for the nodes that have tasks. The complete label contents are shown in

Table 4.4.1. With the exception of the contents of the labels, the “Label Making Algorithm” from

Sorenson and Nurre Pinkley [18] should be used in the solution methodology algorithms in this

work.

4.4.1 Heuristic I: Fast Task Assignment

The Fast Task Assignment algorithm is very similar to the “Greedy Task Assignment” algorithm

in [18] with a change to the steps for assigning a servicer to a task and marking the task com-

plete. In the “Greedy Task Assignment” algorithm [18], the servicer completed a task by advanc-

ing to the location of the matched task. In this work, tasks are not completed instantaneously and

have an associated processing time. The modifications to the “Greedy Task Assignment” algo-

rithm in [18] are marked in Algorithm 8. Next we provide an overview of the “Fast Task Assign-

ment” algorithm.

The “Fast Task Assignment” algorithm begins with the network, the servicers, the tasks,

and the associated subtasks and subtask sets for the tasks. Labels are created for each of the ser-

vicers as described in “Label Making Algorithm” from [18]. Next we examine the labels for all

servicers and focus on those which have incomplete tasks indicated in the label. We choose the

label with a task that has the earliest “cost to here” value. This represents the task that can be

reached the fastest based on the position and time of all of the available servicers. We assign the

98

Table 4.4.1: Components of labels used in both heuristics. Fields marked with † indicate new
fields added in this work. The other fields existed in [18].

Field Description
Servicer d ∈ D
Node i ∈ N
Name Label Number
Cost to Here ∑τi j from servicer current start

Fuel Remaining

{
fdt −φi j, if not a refuelling arc
F, if the node ends a refuelling arc

Task

{
v ∈ B, if there is a task at this node
0, otherwise

† Subtask

{
k ∈ Bv, if a subtask begins at this node
0, otherwise

† Task Processing Time

{
pv,v ∈ B, if there is a task at this node
0, otherwise

Predecessors Previous nodes
Label numbers of predecessors Previous nodes’ label numbers

Dominated?

{
1, if “bested” by another label
0, otherwise

Permanent?

{
1, if label has been examined
0, otherwise

servicer to the subtask/task in the label with the earliest “cost to here” value and mark the task

complete. When we assign the servicer to the task, we must move the servicer along the arcs

in the associated subtask set. We then remove all of the labels from the set of labels associated

with the just assigned servicer and remove the just completed task and its subtasks from each

of the labels that contained them. We do the “Label Making Algorithm” from [18] again for the

just assigned servicer. We again find the label with the earliest “cost to here” value and continue

through the steps until all tasks have been marked complete or until the servicers cannot reach

any more tasks within the time horizon. The details and pseudocode for the algorithm can be seen

in Algorithm 8.

99

Algorithm 8 Fast Task Assignment (Lines marked with † indicate new or changed steps in the
algorithm.)

1: Input: Network G = (N,A) where nodes i ∈ N have an associated time t ∈ T and arcs (i, j) ∈
A have time τi j and fuel φi j costs.

2: Input: Set of servicers D with their associated starting location, current time, current location,
and fuel capacity

3: † Input: Set of subtask sets Ωvk, for k ∈ Bv and v ∈ B
4: for each servicer ∈ D do
5: Label Making Algorithm from [18]
6: end for
7: † Examine all node labels which have tasks; choose the label with the smallest cost to here,

call this the chosen label.
8: † Let chosen task be the task number in the chosen label and let chosen subtask be the sub-

task number in the chosen label.
9: while Any task is incomplete or while any servicer time is less than time horizon do

10: †Obtain the set of arcs and times for the chosen label: Ωchosen task,chosen subtask
11: †Advance the servicer position to the final node in Ωchosen task,chosen subtask
12: †Advance the servicer time to the time corresponding to the final node in

Ωchosen task,chosen subtask
13: Mark the task in the chosen label complete
14: Do Label Making Algorithm from [18] for the just assigned servicer.
15: if Node labels with tasks exist then
16: Examine all node labels which have tasks; choose the label with the smallest

cost to here, call this the chosen label.
17: else
18: Advance all servicer current time values to end of the time horizon.
19: end if
20: end while
21: Output: Completed tasks and the associated labels indicating when and by which servicer

4.4.2 Heuristic II: Task Plus One Algorithm

The next constructive heuristic we present is called the “Task Plus One Algorithm” because it

examines the next task, plus one additional task into the future. This algorithm is similar to the

“Greedy Clustering Task Assignment” algorithm in [18], but because it incorporates the task pro-

cessing times, there are some differences. The Task Plus One algorithm has an additional pre-

processing step much like the “Greedy Clustering Task Assignment” in [18] in which we create a

lookup table which contains the minimum time cost from the end of each subtask to every other

incomplete task that can be reached within the time horizon. Creating the lookup table can take

100

some time, especially for problems with a longer time horizon, but the pre-processing increases

the efficiency of finding close pairs of tasks. The steps to create a “Task Plus One” lookup table

are very similar to the well known steps of Dijkstra’s Algorithm [1], but we present the pseu-

docode to illustrate how the task processing times are incorporated. The pseudocode is shown in

Algorithm 9. We use this lookup table in the Task Plus One Algorithm when examining labels

which we introduce next.

Algorithm 9 Steps to create the lookup table for the “Task Plus One” Algorithm
1: Input: Network G = (N,A) with nodes i ∈ N and a time t ∈ T and arcs (i, j) ∈ A have time

τi j and fuel φi j costs.
2: Input: Set of tasks B, with v ∈ B and the set of associated subtasks for each tasks Bv with

k ∈ Bv and the associated sets for each subtask Ωvk for v ∈ B, for k ∈ Bv.
3: for v ∈ B do
4: for k ∈ Bv do
5: Let tasks todo = B\ v
6: for i ∈ N do
7: Create a label for each i with Permanent = 0 and cost to here = ∞

8: end for
9: Obtain the f inal node vk and f inal time vk from the set Ωvk

10: For f inal node vk, set cost to here = f inal time vk
11: Set curr node = the node with Permanent = 0 and the minimum cost to here
12: while tasks todo ̸= /0 AND ∃ a Permanent = 0 node do
13: for All j : (curr node, j) ∈ A do
14: Let next cost = curr nodecost to here + τcurr node j
15: if jcost to here > next cost then
16: jcost to here = next cost
17: end if
18: end for
19: Set curr node with Permanent = 1
20: if ∃ a subtask at curr node for a task which is ∈ tasks todo then
21: Remove the task from tasks todo and retain this subtask k, task v, and the associ-

ated f inal node vk and f inal time vk from the set Ωvk
22: end if
23: Set curr node = to be the node with Permanent = 0 and the smallest cost to here
24: end while
25: end for
26: end for
27: Output: “Lookup Table”: A list containing ∀k ∈ Bv ∀v ∈ B the time cost of the path from k to

v if it exists.

Like the “Fast Task Assignment” algorithm, the “Task Plus One” algorithm begins with the

101

network, the servicers, the tasks, and the associated subtasks and subtask sets for the tasks. La-

bels are created for each of the servicers as described in “Label Making Algorithm” from [18].

We examine the labels for all servicers and focus on those which have incomplete tasks indicated

in the label. For each of the labels with an incomplete task, we use the lookup table to obtain the

time cost to the next closest incomplete task and this value becomes the “Task Plus One” time

for that task. From all of the labels with tasks, we choose the label with the earliest “Task Plus

One” time and assign the servicer to accomplish the task in the label ensuring we move the ser-

vicer along the arcs in the associated subtask set. We then remove all of the labels from the set of

labels associated with the just assigned servicer and remove the just completed task and its sub-

tasks from each of the labels that contained them. We do the “Label Making Algorithm” from

[18] again for the just assigned servicer. We continue in this manner until all the tasks have been

assigned to servicer or until all of the servicers run out of time. The details and associated pseu-

docode can be seen in Algorithm 10.

102

Algorithm 10 Task Plus One Assignment (Lines marked with † indicate new or changed steps in
the algorithm.)

1: Input: Network G = (N,A) where nodes i ∈ N have an associated time t ∈ T and arcs (i, j) ∈ A have
time τi j and fuel φi j costs.

2: Input: Set of servicers D with their associated starting location, current time, current location, and fuel
capacity

3: Input: “Lookup Table” created with Algorithm 9
4: † Input: Set of subtask sets Ωvk, for k ∈ Bv and v ∈ B
5: for each servicer ∈ D do
6: Label Making Algorithm from [18]
7: end for
8: for Every label obtained in Node Labeling Algorithm from [18] which has a task do
9: † Check “Lookup Table” to obtain the time cost to the next closest incomplete task and this value

becomes the task plus one time for that task
10: end for
11: † From the list of labels, choose the label with the earliest task plus one time, call this the chosen

label.
12: † Let chosen task be the task number in the chosen label and let chosen subtask be the subtask num-

ber in the chosen label.
13: while Any task is incomplete or while any servicer time is less than time horizon do
14: †Obtain the set of arcs and times for the chosen label: Ωchosen task,chosen subtask
15: †Advance the servicer position to the final node in Ωchosen task,chosen subtask
16: †Advance the servicer time to the time corresponding to the final node in Ωchosen task,chosen subtask
17: Mark the task in the chosen label complete
18: Do Label Making Algorithm from [18] for the just assigned servicer.
19: if Node labels with tasks exist then
20: for Every label obtained in Node Labeling Algorithm from [18] which has a task do
21: † Check “Lookup Table” to obtain the time cost to the next closest incomplete task and this

value becomes the task plus one time for that task
22: end for
23: † From the list of labels, choose the label with the earliest task plus one time, call this the cho-

sen label.
24: † Let chosen task be the task number in the chosen label and let chosen subtask be the subtask

number in the chosen label.
25: else
26: Advance all servicer current time values to end of the time horizon.
27: end if
28: end while
29: Output: Completed tasks and the associated labels indicating when and by which servicer

4.5 Computational Results

In the previous section, we presented two algorithms for solving the Multi-Orbit Routing and

Scheduling of Refuellable Space Robots for On-Orbit Servicing with Known Task Times

103

(MORSO-KTT) problem. In this section we performed extensive computation testing using the

mixed integer linear program model presented in Section 4.3 first solving with CPLEX and then

solving the same instances with both the “Fast Task” algorithm and the “Task Plus One” algo-

rithm. The computational tests used in this work come from a case study first presented in [19].

The case study uses a network with 162 nodes spread across three different orbital altitudes. The

arcs between the nodes were constructed based on considerations from orbital mechanics result-

ing in 1624 arcs. The case study in [19] uses a test design based on factors similar to the factors

in Table 4.5.1. The factor and level combinations in Table 4.5.1 result in 1860 test cases. We ran

all cases three times once with CPLEX and then once with each algorithm.

The CPLEX runs were accomplished in the high performance computing center on pub-

lic standard nodes with two Xeon Gold 6130 processors, 32 cores, and 192 GB of memory. For

the CPLEX instances with a 24 hour time horizon we set a solving time limit of 12 hours for the

instances with a 24 hour time horizon we set a solving time limit of 24 hours. All heuristic in-

stances were run on a single Apple Mac Mini with an M1 processor and 16 GB of RAM.

In the sections that follow we will first present a comparison of the optimality gaps

achieved with each algorithm as compared to CPLEX. Each instance has a set of 8 or 16 tasks

for the servicers to complete therefore the maximum value of the objective function is 8 or 16,

depending on the number of tasks available. For this reason, we also present a comparison of the

objective values achieved by each algorithm as compared to CPLEX. For each comparison we

will also present a table comparing the numerical results for the optimality gaps and the solving

times. We begin with the ‘Fast Task” algorithm.

Table 4.5.1: Factors and levels for the test cases. The combination of these factors and levels re-
sulted in 1860 test cases which were solved with CPLEX and each of the algorithms.

Factor Levels
Number of Robot Servicers 1, 2, 3, 4, 5
Number of Refuelling Depots 1, 2, 3, 4, 5
Refuelling Depot Starting Locations (node numbers) 12, 32, 80, 125, 150
Robot Servicer Fuel Capacity 10, 15, 25
Number of Tasks 8, 16
Time Horizon 24, 48

104

4.5.1 Fast Task Algorithm

In this section we present the results for the Fast Task Algorithm (FTA) as compared to CPLEX

for solving MORSO-KTT. First we present the results for the cases with a 24 hour time horizon.

Then we present the results for cases with a 48 hour time horizon.

In Table 4.5.2 we group the responses by the Number of Factors, Number of Servicers, and

the robot servicer Starting fuel, which is also the robot servicer maximum fuel capacity. These

three factors were the most influential on the difference in the optimality gap and solving time

when comparing CPLEX with FTA. Each of these combinations has 31 cases because the num-

ber and starting locations of the refuelling depots, and the starting location of the robot servicers

were not statistically significant.

For the cases with a 24 hour time horizon, 3 of 930 cases failed to achieve any solution in

CPLEX in the 12 hour solving time. Within the 12 hour solving time, 786/930 cases reached in-

teger optimality and 141/930 cases presented the best solution when the time limit was reached.

The cases that failed to reach any solution are marked with an exponent on the Number of Runs

column. When examining the two furthest right columns, we can see that FTA provided the

biggest combined improvement over CPLEX for the resource constrained problem with 8 tasks, 5

services and a fuel capacity of 15. Next we take a deeper look at the optimality gap and an alter-

native to evaluating the solution qualities.

Convention when comparing solution methodologies is to compare the demonstrated opti-

mality gaps achieved within the same solving time period. We show a histogram to compare the

optimality gaps achieved in 12 hours in Figure 4.5.1. For the runs with 16 tasks, a gap of 6.25%

indicates that the FTA solution was off by one task from the CPLEX Best Upper Bound (BUB).

Likewise for the 8 task runs a gap of 12.5% indicates that the FTA was off from the CPLEX BUB

by 1 task. Because the objective values are limited to 8 or 16, we also present a comparison of the

objective values in Figure 4.5.2. In this figure we see that FTA was within CPLEX in nearly 78%

of cases.

In addition to the objective values, we also considered the time savings. For the 930 runs

105

considered the solving time for CPLEX ranged from 12 seconds to 12 hours. The FTA solving

times ranged from 5 seconds to 35 minutes. The total solving time for CPLEX was just over 2110

hours while the total solving time for FTA was just under 39 hours which is a 98% reduction in

solving time.

0 10 20 30 40 50 60 70
0

50

100

150

200

14

59

7
16 20

7 10
2 2 4

CPLEX: Gap %

N
um

be
ro

fC
as

es

0 10 20 30 40 50 60 70
0

50

100

150

200

41

182

33

52

101

75

20
28

6

38

1 5 1

Fast Task Algorithm: Gap %

Figure 4.5.1: Distributions of non-zero optimality gap values for the Fast Task Algorithm (right)
and CPLEX (left) with a 24 hour time horizon. In the Fast Task Algorithm, a gap of 6.25% or
12.5% indicates that the heuristic solution was within 1 task of the CPLEX reported best upper
bound.

Next we examine the 48 hour time horizon and compare the performance of CPLEX and

the FTA. As we did with the 24 hour time horizon we have a table comparing the results in Table

4.5.3. We can see that the FTA performed better than CPLEX in the resource constrained cases,

which were generally more difficult for CPLEX to solve. As in the 24 hour time horizon cases,

the one task optimality gap equivalent in the 16 task cases is 6.25% and in 8 task cases is 12.5%.

We can see that in the cases with 16 tasks, 5 servicers and a starting fuel of 10, that the FTA per-

formed on average 5.5 tasks better than the CPLEX BUB and nearly half of the 31 runs failed

to get any solution within the 24 hour solving time. The distributions of the optimality gaps can

be seen in Figure 4.5.3 and the differences in the objective values (number of tasks completed)

can be seen in Figure 4.5.4. For the cases with the 48 hour time horizon, the FTA matched or

exceeded the CPLEX performance in 53% of the runs and was within 1 task of the CPLEX per-

106

Table 4.5.2: Results for the Fast Task Algorithm compared with CPLEX for the 24 hour time
horizon. In the last two columns, negative values indicate that on average, the heuristic outper-
formed CPLEX for those instances. Three runs failed to achieve any solution within the 12 hour
solving time for CPLEX. 786/930 cases reached integer optimality and 141/930 cases hit the
solving time limit for CPLEX.

Factors CPLEX 12.10 Heuristic
Comparison

CPLEX - Heuristic

Number
of

Tasks

Number
of

Servicers

Starting
Fuel

Number
of

Runs

Mean
Gap
(%)

Mean
Solve
Time
(sec)

Mean
Gap
(%)

Mean
Solve
Time
(sec)

Mean
Gap
(%)

Mean
Solve Time

(sec)

8

1
10 31 0.00 824 34.41 12 34.41 -811
15 31 0.00 200 19.89 53 19.89 -146
25 31 0.00 19 12.90 32 12.90 13

2
10 311 10.96 20363 35.64 56 24.68 -20307
15 31 0.65 1734 17.40 117 16.75 -1617
25 31 0.00 36 7.84 118 7.84 82

3
10 31 9.67 24161 31.44 44 21.77 -24117
15 31 1.33 9635 11.41 65 10.08 -9569
25 31 0.00 84 12.10 143 12.10 59

4
10 311 13.79 34563 23.14 172 9.34 -34391
15 31 6.85 16855 6.85 119 0.00 -16735
25 31 0.00 137 6.85 190 6.85 52

5
10 31 10.96 24166 17.07 154 6.11 -24012
15 31 5.65 12755 0.40 321 -5.24 -12434
25 31 0.00 177 0.40 241 0.40 64

16

1
10 31 0.00 208 32.26 22 32.26 -186
15 31 0.00 195 9.68 72 9.68 -122
25 31 0.00 87 0.00 78 0.00 -8

2
10 31 4.76 9650 31.49 109 26.73 -9541
15 31 0.00 92 14.09 202 14.09 110
25 31 0.00 51 3.87 158 3.87 107

3
10 311 9.24 10468 28.42 126 19.18 -10341
15 31 0.00 457 10.00 226 10.00 -230
25 31 0.00 84 2.42 344 2.42 260

4
10 31 7.66 18167 25.05 239 17.39 -17927
15 31 2.03 4804 9.69 154 7.66 -4649
25 31 0.00 359 0.69 249 0.69 -110

5
10 31 13.94 31983 26.19 123 12.25 -31860
15 31 4.32 18570 10.78 253 6.46 -18316
25 31 0.40 4160 4.30 328 3.90 -3831

#i
where i indicates the number of cases which failed to achieve any CPLEX solution within the
12 hour solving period.

107

2 2 8 6 18

363
325

130

38 24 8 6

Objective Value Difference: CPLEX - Fast Task Algorithm

N
um

be
ro

fC
as

es

C
um

ul
at

iv
e

%
of

C
as

es

−6 −4 −2 0 2 4 6
0

100

200

300

400

0

20

40

60

80

100

Figure 4.5.2: Fast Task Algorithm with a 24-Hour time horizon compared with CPLEX. The Fast
Task Algorithm matched or outperformed CPLEX in 399/930 cases (43%) and was within 1 task
of CPLEX in 724/930 (77.8%) cases. Positive values indicate CPLEX performed better and nega-
tive values indicate the heuristic performed better.

formance in 60% of the runs.

The FTA time savings over CPLEX is significant. For the runs with a 48 hour time horizon

and a 24 hour solving time limit, the CPLEX runs took 657 days, while the FTA runs took 24

days. CPLEX failed to get any solution, other than a trivial BUB, within 24 hours in 48 of the

runs; FTA provided a solution in all 930 runs. In Table 4.5.3 the runs which CPLEX failed to

get any solution are marked in the Number of Runs column with the number of failed runs in

the exponent. A deeper examination of the runs for which CPLEX failed to obtain a solution are

shown in Table 4.5.4.

4.5.2 Task Plus One Algorithm

In this section we present the results for the Task Plus One algorithm (TPO) as compared to

CPLEX for solving MORSO-KTT. First we present he results for the cases with a 24 hour time

horizon and then we present the cases with a 48 hour time horizon. Table 4.5.5 shows the nu-

meric summary of the results for the TPO with a 24 hour time horizon. Figure 4.5.5 shows the

108

Table 4.5.3: Results for the Fast Task Algorithm compared with CPLEX for the 48 hour time
horizon. In the last two columns, negative values indicate that on average, the heuristic outper-
formed CPLEX for those instances. 48 runs failed to achieve any solution within the 24 hour
solving time for CPLEX. 417/930 cases reached integer optimality and 465/930 cases hit the
solving time limit for CPLEX.

Factors CPLEX 12.10 Heuristic
Comparison

CPLEX - Heuristic

Number
of

Tasks

Number
of

Servicers

Starting
Fuel

Number
of

Runs

Mean
Gap
(%)

Mean
Solve
Time
(sec)

Mean
Gap
(%)

Mean
Solve
Time
(sec)

Mean
Gap
(%)

Mean
Solve Time

(sec)

8

1
10 31 19.16 61868 69.07 153 49.91 -61714
15 31 6.08 28685 58.39 380 52.32 -28304
25 31 0.00 1285 40.63 499 40.63 -785

2
10 31 30.24 85782 61.69 801 31.45 -84981
15 31 4.84 50068 29.44 1477 24.60 -48591
25 31 0.00 12209 6.45 1126 6.45 -11083

3
10 312 35.48 85530 42.74 1054 7.26 -84475
15 31 4.84 48470 4.03 1293 -0.81 -47176
25 31 0.00 18416 0.00 1584 0.00 -16832

4
10 317 57.26 85223 21.37 881 -35.89 -84342
15 312 17.74 65592 0.00 1532 -17.74 -64060
25 31 2.82 30901 0.00 1617 -2.82 -29283

5
10 3110 76.61 85463 7.66 1069 -68.95 -84394
15 31 11.29 63673 0.00 2307 -11.29 -61365
25 31 7.26 43702 0.00 2234 -7.26 -41468

16

1
10 31 41.00 86427 71.69 508 30.68 -85919
15 31 2.31 30146 47.19 1111 44.88 -29035
25 31 0.00 2701 33.08 1302 33.08 -1398

2
10 31 33.27 86426 64.11 1275 30.85 -85151
15 31 15.12 86433 40.73 2367 25.60 -84065
25 31 8.67 86414 21.17 2926 12.50 -83487

3
10 31 37.10 86413 48.79 1955 11.69 -84457
15 31 8.47 75368 15.73 3230 7.26 -72138
25 31 0.00 40601 2.82 3667 2.82 -36933

4
10 319 75.40 86407 34.07 1875 -41.33 -84531
15 31 43.95 83220 3.63 4039 -40.32 -79180
25 31 25.81 68844 0.40 5211 -25.40 -63632

5
10 3115 83.27 86406 17.14 2458 -66.13 -83947
15 313 55.24 83205 0.81 4723 -54.44 -78482
25 31 39.92 76658 0.00 4422 -39.92 -72236

#i
where i indicates the number of cases which failed to achieve any CPLEX solution within the
24 hour solving period.

109

Table 4.5.4: Runs for which CPLEX did not find a solution in 24 hours. The optimality gap is
that of the Fast Task Algorithm as compared to the reported CPLEX Best Upper Bound.

Number
of

Tasks

Number
of

Servicers

Starting
Fuel

Number of
CPLEX

Failed Runs

Mean
Gap
(%)

8

3 10 2 37.5

4
10 7 23.2
15 2 0.0

5 10 10 7.5

16
4 10 9 31.9

5
10 15 16.3
15 3 0.0

0 20 40 60 80 100
0

50

100

150

200

41

85

33

4

58

16

48

26

5
17

5
1710 16

2430

11

CPLEX: Gap %

N
um

be
ro

fC
as

es

0 20 40 60 80 100
0

50

100

150

200

7

93

27

66

40

77

14

99

12

66

22
8

2316
1

Fast Task Algorithm: Gap %

Figure 4.5.3: Distributions of non-zero optimality gap values for the Fast Task Algorithm (right)
and CPLEX (left) with a 48 hour time horizon. In the Fast Task Algorithm, a gap of 6.25% or
12.5% indicates that the heuristic solution was within 1 task of the CPLEX reported best upper
bound.

distribution of the optimality gaps and Figure 4.5.6 shows the differences in the objective values.

For the 25 hour time horizon, TPO exceeded or matched the CPLEX performance 58% of the

time and was within one task of nearly CPLEX 80% of the time.

This methodology requires the use of a lookup table. The time to complete the lookup table

for the 24 hour time horizon was approximately 8 hours. If we add the lookup table creation to

the total processing time used to solve the 930 cases for the 24 hour time horizon, the total time

for TPO is approximately 53 hours. This is a 97% time savings from the CPLEX total solving

110

7 6 20 19 12 22 7 4 14 13 18 16 12 15 16
35

259

70
96

120
96

31
13 5 2 1 1

Objective Value Difference: CPLEX - Fast Task Algorithm

N
um

be
ro

fC
as

es

C
um

ul
at

iv
e

%
of

C
as

es

−16 −14 −12 −10 −8 −6 −4 −2 0 2 4 6 8 10
0

100

200

300

400

0

20

40

60

80

100

Figure 4.5.4: Fast Task Algorithm with a 48-Hour time horizon compared with CPLEX. The Fast
Task Algorithm matched or outperformed CPLEX in 495/930 cases (53%) and was within 1 task
of CPLEX in 565/930 (60.7%) cases. Positive values indicate CPLEX performed better and nega-
tive values indicate the heuristic performed better.

time of 2110 hours.

0 10 20 30 40 50 60 70
0

50

100

150

200

14

59

7
16 20

7 10
2 2 4

CPLEX: Gap %

N
um

be
ro

fC
as

es

0 10 20 30 40 50 60 70
0

50

100

150

200

41

149

28

81
63 62

7 8 4
18

2

Task Plus One Algorithm: Gap %

Figure 4.5.5: Distributions of non-zero optimality gap values for the Task Plus One Algorithm
(right) and CPLEX (left) with a 24 hour time horizon. In the Task Plus One Algorithm, a gap of
6.25% or 12.5% indicates that the heuristic solution was within 1 task of the CPLEX reported
best upper bound.

Next we present the results for the cases with a 48 hour time horizon. Table 4.5.7 shows

the numeric summary of the results for the TPO with a 48 hour time horizon as compared with

111

Table 4.5.5: Results for the Task Plus One Algorithm compared with CPLEX for the 24 hour
time horizon. In the last two columns, negative values indicate that on average, the heuristic out-
performed CPLEX for those instances. Three runs failed to achieve any solution within the 12
hour solving time for CPLEX. 786/930 cases reached integer optimality and 141/930 cases hit the
solving time limit for CPLEX.

Factors CPLEX 12.10 Heuristic
Comparison

CPLEX - Heuristic

Number
of

Tasks

Number
of

Servicers

Starting
Fuel

Number
of

Runs

Mean
Gap
(%)

Mean
Solve
Time
(sec)

Mean
Gap
(%)

Mean
Solve
Time
(sec)

Mean
Gap
(%)

Mean
Solve Time

(sec)

8

1
10 31 0.00 824 13.98 29 13.98 -795
15 31 0.00 200 2.42 34 2.42 -165
25 31 0.00 19 0.00 58 0.00 39

2
10 311 10.96 20363 17.30 64 6.34 -20299
15 31 0.65 1734 5.56 80 4.92 -1654
25 31 0.00 36 0.00 111 0.00 75

3
10 31 9.67 24161 16.09 96 6.42 -24065
15 31 1.33 9635 2.54 116 1.21 -9518
25 31 0.00 84 3.23 156 3.23 71

4
10 311 13.79 34563 15.00 122 1.21 -34441
15 31 6.85 16855 1.21 198 -5.65 -16656
25 31 0.00 137 1.21 206 1.21 68

5
10 31 10.96 24166 12.57 156 1.61 -24010
15 31 5.65 12755 0.40 247 -5.24 -12508
25 31 0.00 177 0.40 270 0.40 93

16

1
10 31 0.00 208 32.26 40 32.26 -168
15 31 0.00 195 27.74 86 27.74 -109
25 31 0.00 87 11.22 107 11.22 20

2
10 31 4.76 9650 29.97 87 25.21 -9562
15 31 0.00 92 18.92 173 18.92 80
25 31 0.00 51 8.39 205 8.39 153

3
10 311 9.24 10468 21.00 134 11.76 -10333
15 31 0.00 457 3.23 230 3.23 -226
25 31 0.00 84 0.00 312 0.00 228

4
10 31 7.66 18167 20.15 177 12.49 -17990
15 31 2.03 4804 3.84 272 1.81 -4531
25 31 0.00 359 0.00 394 0.00 34

5
10 31 13.94 31983 26.19 210 12.25 -31773
15 31 4.32 18570 10.30 401 5.98 -18169
25 31 0.40 4160 10.95 461 10.55 -3699

#i
where i indicates the number of cases which failed to achieve any CPLEX solution within the
12 hour solving period.

112

1 1 4 8 6
28

495

199

136

31 18 3

Objective Value Difference: CPLEX - Task Plus One Algorithm

N
um

be
ro

fC
as

es

C
um

ul
at

iv
e

%
of

C
as

es

−6 −4 −2 0 2 4
0

100

200

300

400

500

0

20

40

60

80

100

Figure 4.5.6: Task Plus One Algorithm with a 24-Hour time horizon compared with CPLEX. The
Task Plus One Algorithm matched or outperformed CPLEX in 543/930 cases (58.3%) and was
within 1 task of CPLEX in 742/930 (79.7%) cases. Positive values indicate CPLEX performed
better and negative values indicate the heuristic performed better.

CPLEX. Figure 4.5.7 shows the distribution of the optimality gaps and Figure 4.5.8 shows the

differences in the objective values. For the 48 hour time horizon, TPO exceeded or matched the

CPLEX performance 59% of the time and was within one task of nearly CPLEX 69.2% of the

time. The time to complete the lookup table for the 48 hour time horizon was approximately 22

hours. If we add the lookup table creation to the total processing time used to solve the 930 cases

for the 48 hour time horizon, the total time for TPO is approximately 561+22 = 583 hours. This

is a 96% time savings from the CPLEX total solving time of 15779 hours. Table 4.5.6 shows the

breakdown of the 48 hour time horizon runs for which CPLEX did not obtain a solution. The

optimlaity gap for the TPO uses the CPLEX reported BUB.

We have presented the computational comparison results for each of two constructive

heuristics as compared to CPLEX for solving the MORSO-KTT problem. Both heuristics present

an accurate and timely alternative to CPLEX, especially in the cases that are resource constrained

and therefore more difficult to solve. In this brief section we want to provide some results when

we compared all three methods.

113

Table 4.5.6: Runs for which CPLEX did not find a solution in 24 hours. The optimality gap is
that of the Task Plus One Algorithm as compared to the reported CPLEX Best Upper Bound.

Number
of

Tasks

Number
of

Servicers

Starting
Fuel

Number of
CPLEX

Failed Runs

Mean
Gap
(%)

8

3 10 2 25.0

4
10 7 1.8
15 2 0.0

5 10 10 0.0

16
4 10 9 30.6

5
10 15 15.0
15 3 0.0

0 20 40 60 80 100
0

20

40

60

80

100

120

41

85

33

4

58

16

48

26

5

17

5

17
10

16
24

30

11

CPLEX: Gap %

N
um

be
ro

fC
as

es

0 20 40 60 80 100
0

20

40

60

80

100

120

4

80

21

6

97

8

46

28

15

82

17

56

15
9 7

12

Task Plus One Algorithm: Gap %

Figure 4.5.7: Distributions of non-zero optimality gap values for the Task Plus One Algorithm
(right) and CPLEX (left) with a 48 hour time horizon. In the Task Plus One Algorithm, a gap of
6.25% or 12.5% indicates that the heuristic solution was within 1 task of the CPLEX reported
best upper bound.

First we compared the solving times of all three methods. A summary of the solving time

data is shown in Table 4.5.8. We next compared the solving times for all three methods for all

1860 runs and FTA had the fastest solving time most often. Figure 4.5.9 shows the breakdown of

the fastest methods. We also compared the solutions by method and in many cases there was a tie

in methods for the best objective value. In the 1860 cases or runs that we examined, 518 resulted

in a three-way tie and 541 resulted in a tie for the best solution. The TPO algorithm tied with

CPLEX for the best solution most often. Figure 4.5.10 shows the counts for the number of times

114

Table 4.5.7: Results for the Task Plus One Algorithm compared with CPLEX for the 48 hour
time horizon. In the last two columns, negative values indicate that on average, the heuristic
outperformed CPLEX for those instances. 48 runs failed to achieve any solution within the 24
hour solving time for CPLEX. 417/930 cases reached integer optimality and 465/930 cases hit the
solving time limit for CPLEX.

Factors CPLEX 12.10 Heuristic
Comparison

CPLEX - Heuristic

Number
of

Tasks

Number
of

Servicers

Starting
Fuel

Number
of

Runs

Mean
Gap
(%)

Mean
Solve
Time
(sec)

Mean
Gap
(%)

Mean
Solve
Time
(sec)

Mean
Gap
(%)

Mean
Solve Time

(sec)

8

1
10 31 19.16 61868 59.86 320 40.71 -61547
15 31 6.08 28685 41.40 660 35.33 -28024
25 31 0.00 1285 21.74 551 21.74 -733

2
10 31 30.24 85782 51.21 541 20.97 -85241
15 31 4.84 50068 17.74 1069 12.90 -48999
25 31 0.00 12209 0.00 1318 0.00 -10890

3
10 312 35.48 85530 31.05 631 -4.44 -84898
15 31 4.84 48470 0.81 1575 -4.03 -46894
25 31 0.00 18416 0.00 1831 0.00 -16584

4
10 317 57.26 85223 7.66 904 -49.60 -84319
15 312 17.74 65592 0.00 2002 -17.74 -63589
25 31 2.82 30901 0.00 1967 -2.82 -28933

5
10 3110 76.61 85463 1.61 1404 -75.00 -84059
15 31 11.29 63673 0.00 2838 -11.29 -60834
25 31 7.26 43702 0.00 2276 -7.26 -41426

16

1
10 31 41.00 86427 71.69 753 30.68 -85674
15 31 2.31 30146 57.75 1132 55.45 -29014
25 31 0.00 2701 42.64 1247 42.64 -1453

2
10 31 33.27 86426 62.50 1393 29.23 -85032
15 31 15.12 86433 42.94 2442 27.82 -83990
25 31 8.67 86414 18.55 2793 9.88 -83620

3
10 31 37.10 86413 43.15 1729 6.05 -84683
15 31 8.47 75368 9.88 4020 1.41 -71348
25 31 0.00 40601 0.00 3827 0.00 -36773

4
10 319 75.40 86407 28.63 2509 -46.77 -83897
15 31 43.95 83220 0.40 5280 -43.55 -77940
25 31 25.81 68844 0.00 4993 -25.81 -63850

5
10 3115 83.27 86406 17.74 2007 -65.52 -84398
15 313 55.24 83205 0.20 5368 -55.04 -77836
25 31 39.92 76658 0.00 5780 -39.92 -70878

#i
where i indicates the number of cases which failed to achieve any CPLEX solution within the
24 hour solving period.

115

7 7
22 18 16 18 8 4

28
10 9 17 10 17 21

40

296

96 98

42
72

49
20

3 2

Objective Value Difference: CPLEX - Task Plus One Algorithm

N
um

be
ro

fC
as

es

C
um

ul
at

iv
e

%
of

C
as

es

−16 −14 −12 −10 −8 −6 −4 −2 0 2 4 6 8
0

50

100

150

200

250

300

350

0

20

40

60

80

100

Figure 4.5.8: Task Plus One Algorithm with a 48-Hour time horizon compared with CPLEX.
The Task Plus One Algorithm matched or outperformed CPLEX in 548/930 cases (59%) and was
within 1 task of CPLEX in 644/930 (69.2%) cases. Positive values indicate CPLEX performed
better and negative values indicate the heuristic performed better.

a solution methodology achieved the best solution value for that run; this shows more than 1860

because of the ties for best solution. We also examined a combination of speed and accuracy.

There were 874 cases (of 1860) in which the method that had the fastest solve time also achieved

at least a tie for the best solution. The distribution of these is shown in Figure 4.5.11.

Table 4.5.8: Table with solving times for for each methodology. The Task Plus One Algorithm
times do not include the pre-processing times.

Time Horizon Solving Method
Solving Time (hours unless indicated)

Minimum Median Maximum Total

24 Hours
CPLEX 12.07(sec) 0.06 12.06 2110.21

Fast Task Algorithm 5.47(sec) 0.02 0.57 38.86
Task Plus One Algorithm 12.89(sec) 0.04 0.14 45.49

48 Hours
CPLEX 0.10 24.00 24.02 15779.38

Fast Task Algorithm 27.25(sec) 0.34 3.10 508.80
Task Plus One Algorithm 0.02 0.36 4.09 561.15

116

CPLEX Fast Task Task Plus One
0

200

400

600

800

1,000

1,200

249

1,159

452

Solving Methodology with the Fastest Solve Time

N
um

be
ro

fR
un

s

Figure 4.5.9: Histogram showing the number of times each methodology achieved the fastest
solve time.

CPLEX Fast Task Task Plus One
0

500

1,000

1,500

2,000

1,554

808

1,075

Solving Methodology with

N
um

be
ro

fR
un

s

Figure 4.5.10: Histogram showing the number of times each methodology achieved the best so-
lution. This has more than 1860 because there were ties for the best solution on several runs. 518
resulted in a three-way tie and 541 resulted in a tie for the best solution.

117

CPLEX Fast Task Task Plus One
0

200

400

600

249

479

258

Solving Methodology

N
um

be
ro

fR
un

s

Figure 4.5.11: Cases in which the method that achieved the fastest solution time also achieved at
least a tie for the best objective value solution.

118

4.6 Conclusions

In this work we examined the Multi-Orbit Routing and Scheduling of Refuellable Space Robots

for On-Orbit Servicing with Known Task Times (MORSO-KTT) optimization problem. We pre-

sented a new mixed integer linear program model for solving this problem with an algorithm for

constructing the parameters for solving. Next we presented two solving methods for MORSO-

KTT and completed computational tests comparing the speed and accuracy of the methods with

CPLEX. We showed that the solving heuristics result in a significant reduction in processing

times while providing near optimal solutions to the problem.

For future study we first recommend extending the time horizon and increasing the number

of tasks and robot servicers. The speed of the heuristics reduced the overall solving time by over

95% which would allow for a longer time horizon with a smaller step size to be examined. In

this work the step size was 15 minutes, a step size of 1 to 5 minutes would decrease the error and

allow for more accurate mission duration estimations.

We also recommend incorporating stochastic task processing times into the problem,

model, and the heuristics. In most cases, it is unlikely that we would know exactly how long a

task would take before the mission begins. If we allowed for the inherent randomness that occurs

in maintenance operations, we could better estimate robot servicer numbers and mission duration.

Another direction for the work would be to have task times and service types also allowing

for different robot servicers carrying and different tool types for the different types of services.

The technology is growing fast and undoubtedly the need for solutions optimizing the routing and

scheduling of space robots will continue to grow.

Acknowledgements

Funding: This research did not receive any specific grant from funding agencies in the public,

commercial, or not-for-profit sectors.

This research was supported by the Arkansas High Performance Computing Center which is

119

funded through multiple National Science Foundation grants and the Arkansas Economic De-

velopment Commission.

120

Bibliography

[1] Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. (1993). Network Flows: Theory, Algorithms,
and Applications. Prentice Hall, Englewood Cliffs, N.J.

[2] Alfriend, K. T., Lee, D. J., and Creamer, N. G. (2006). Optimal Servicing of Geosynchronous
Satellites. Journal of Guidance, Control, and Dynamics, 29(1):203–206.

[3] Bourjolly, J., Gürtuna, Ö., and Lyngvi, A. (2006). On Orbit Servicing: A Time Dependent,
Moving Target Traveling Salesman Problem. International Transactions in Operational Re-
search, 13(5):461–481.

[4] Corbin, B. A., Abdurezzak, A., Newell, L. P., Roesler, G. M., and Lal, B. (2020). Global
Trends in On-Orbit Servicing, Assembly and Manufacturing (OSAM). https://www.ida.or
g/research-and-publications/publications/all/g/gl/global-trends-in-on-
orbit-servicing-assembly-and-manufacturing-osam. IDA Document D-13161.

[5] Daneshjou, K., Mohammadi-Dehabadi, A. A., and Bakhtiari, M. (2017). Mission Planning
For On-Orbit Servicing Through Multiple Servicing Satellites: A New Approach. Advances in
Space Research, 60(6):1148–1162.

[6] Davis, J., Mayberry, J., and Penn, J. (2019). On-orbit servicing: Inspection, repair, refuel,
upgrade, and assembly of satellites in space. https://aerospace.org/sites/default/fi
les/2019-05/Davis-Mayberry-Penn OOS 04242019.pdf. Last Accessed: 4 July 2022.

[7] Du, B., Zhao, Y., Dutta, A., Yu, J., and Chen, X. (2015). Optimal Scheduling of Multispace-
craft Refueling Based on Cooperative Maneuver. Advances in Space Research, 55(12):2808–
2819.

[8] Dutta, A. and Tsiotras, P. (2007). A Greedy Random Adaptive Search Procedure for Optimal
Scheduling of P2P Satellite Refueling. In AAS/AIAA Space Flight Mechanics Meeting, pages
07–150.

[9] Dutta, A. and Tsiotras, P. (2010). Network Flow Formulation for Cooperative Peer-to-Peer
Refueling Strategies. Journal of Guidance, Control, and Dynamics, 33(5):1539–1549.

[10] Gürtuna, Ö. and Trépanier, J. (2003). On-Orbit Satellite Servicing: A Space-Based Vehicle
On-Orbit Servicing Routing Problem. In Operations Research in Space and Air, pages 123–
141. Springer.

[11] Kannon, T. E., Nurre, S. G., Lunday, B. J., and Hill, R. R. (2015). The Aircraft Routing
Problem with Refueling. Optimization Letters, 9(8):1609–1624.

[12] Li, W. J., Cheng, D. Y., Liu, X. G., Wang, Y. B., Shi, W. H., Tang, Z. X., Gao, F., Zeng,
F. M., Chai, H. Y., Luo, W.-B., Cong, Q., and Gao, Z. L. (2019). On-orbit Service (OOS) of
Spacecraft: A Review of Engineering Developments. Progress in Aerospace Sciences, 108:32–
120.

121

https://www.ida.org/research-and-publications/publications/all/g/gl/global-trends-in-on-orbit-servicing-assembly-and-manufacturing-osam
https://www.ida.org/research-and-publications/publications/all/g/gl/global-trends-in-on-orbit-servicing-assembly-and-manufacturing-osam
https://www.ida.org/research-and-publications/publications/all/g/gl/global-trends-in-on-orbit-servicing-assembly-and-manufacturing-osam
https://aerospace.org/sites/default/files/2019-05/Davis-Mayberry-Penn_OOS_04242019.pdf
https://aerospace.org/sites/default/files/2019-05/Davis-Mayberry-Penn_OOS_04242019.pdf

[13] NASA (2021a). About - Hubble Servicing Missions. https://www.nasa.gov/mission p
ages/hubble/servicing/index.html. Last Accessed: July 4, 2022.

[14] NASA (2021b). On-orbit Servicing, Assembly, and Manufacturing 1 (OSAM-1). https:
//nexis.gsfc.nasa.gov/osam-1.html. Last Accessed: July 4, 2022.

[15] qian Chen, X. and Yu, J. (2017). Optimal Mission Planning of GEO On-Orbit Refueling in
Mixed Strategy. Acta Astronautica, 133:63–72.

[16] Sarton du Jonchay, T., Chen, H., Gunasekara, O., and Ho, K. (2020). Rolling Horizon Op-
timization Framework For the Scheduling of On-Orbit Servicing Operations Under Servicing
Demand Uncertainties. In ASCEND 2020, page 4131. American Institute of Aeronautics and
Astronautics, Inc.

[17] Shen, H. and Tsiotras, P. (2005). Peer-to-Peer Refueling for Circular Satellite Constella-
tions. Journal of Guidance, Control, and Dynamics, 28(6):1220–1230.

[18] Sorenson, S. E. and Nurre Pinkley, S. G. (2022a). Complexity and solution methods for
the multi-Orbit Routing and Scheduling of Refuellable On-Orbit Servicing Space Robots.
Manuscript submitted for publication.

[19] Sorenson, S. E. and Nurre Pinkley, S. G. (2022b). Multi-Orbit Routing and Scheduling of
Refuellable On-Orbit Servicing Space Robots. Manuscript submitted for publication.

[20] The Space Report Online (2022). On-orbit Refueling, Servicing Extends Life for Old Satel-
lites, Promises Longer Mission Capabilities with Network of Stations. https://www.thespa
cereport.org/uncategorized/on-orbit-refueling-servicing-extends-life-
for-old-satellites-promises-longer-mission-capabilities-with-network-of-
stations/. Last Accessed: July 4, 2022.

[21] Yu, J., Yu, Y. G., Huang, J. T., Chen, X. Q., and Liu, H. Y. (2017). Optimal Scheduling
of GEO On-Orbit Refuelling with Uncertain Object Satellites. MATEC Web of Conferences,
114:3001.

[22] Zhang, J., Parks, G. T., Luo, Y. Z., and Tang, G. J. (2014). Multispacecraft Refueling Op-
timization Considering the J2 Perturbation and Window Constraints. Journal of Guidance,
Control, and Dynamics, 37(1):111–122.

122

https://www.nasa.gov/mission_pages/hubble/servicing/index.html
https://www.nasa.gov/mission_pages/hubble/servicing/index.html
https://nexis.gsfc.nasa.gov/osam-1.html
https://nexis.gsfc.nasa.gov/osam-1.html
https://www.thespacereport.org/uncategorized/on-orbit-refueling-servicing-extends-life-for-old-satellites-promises-longer-mission-capabilities-with-network-of-stations/
https://www.thespacereport.org/uncategorized/on-orbit-refueling-servicing-extends-life-for-old-satellites-promises-longer-mission-capabilities-with-network-of-stations/
https://www.thespacereport.org/uncategorized/on-orbit-refueling-servicing-extends-life-for-old-satellites-promises-longer-mission-capabilities-with-network-of-stations/
https://www.thespacereport.org/uncategorized/on-orbit-refueling-servicing-extends-life-for-old-satellites-promises-longer-mission-capabilities-with-network-of-stations/

5. Conclusions and Future Work

In this dissertation we thoroughly study the routing and scheduling of space robots to com-

plete tasks on satellites in space. First, in Chapter 2, we introduce the Multi-Orbit Routing and

Scheduling of Refuellable On-Orbit Servicing Space Robots (MORSO) problem and present

a novel Mixed Integer Linear Program (MILP) formulation seeking to maximize the weighted

number of tasks completed within a given time horizon. We created new algorithms which en-

able the creation of data used when solving the problem. Beginning with the nodes, which are

fixed locations in space, we present an algorithm to create the arcs to connect the nodes using or-

bital mechanics to calculate the arc time and fuel costs. We created a novel way to represent the

movement of the tasks and refuelling depots on the network and present the two algorithms to

construct the data and parameter inputs which are also used when solving the problem.

To validate MORSO, we used our algorithms to create the data used in the solving the

problem. We created multiple case studies based on satellites which are currently operating in

Low Earth Orbit (LEO), Mid Earth Orbit (MEO), and Geosynchronous Earth Orbit (GEO) and

used the MORSO MILP to solve them. From the case study solutions, we provided sample in-

sights for decision makers on the number and configuration of robot servicers needed for a set

of tasks. All results were based on our network but similar insights could be gained with a larger

network with more accurate arc costs which could include not only the time and fuel for tasks but

the expected rendezvous and negotiation time and fuel costs.

During the computational experiments for the case studies in Chapter 2, we observed that

CPLEX often ran out of memory, or was unable to find a solution within the allotted solving

time likely due to the large number of decision variables and constraints. This motivated the

hypothesis that the MORSO problem is hard to solve. In 3, we used the known NP−Complete

1 | d j = d | w jU j: single machine scheduling problem that seeks to minimize the weighted num-

ber of late tasks when all tasks have the same due date [3] to prove our hypothesis that MORSO

is indeed NP−Hard. With the complexity of MORSO established, we turned our focus to devel-

oping constructive heuristic solution methods.

123

In Chapter 3 while working towards the development of a constructive heuristic, we devel-

oped a node labelling process which expands upon the type of node labelling used in Dijkstra’s

algorithm [1] and in an aircraft routing with refuelling problem [2]. We then used the labels to

develop a greedy algorithm for assigning the robot servicers to tasks. We also investigated and

successfully implemented a second constructive heuristic, Greedy Clustering, for solving based

on the clustering of pairs of tasks. The idea was to find the next closest task to the current task

under consideration. Both of these heuristics performed well in terms of accuracy and speed.

In terms of solution quality, the heuristics performed better, matched the performance, or com-

pleted one less task than the CPLEX solution in more than 70% of the 1,860 cases we examined.

Furthermore, in terms of speed, the heuristics found these high-quality solutions in a matter of

minutes or seconds compared to hours needed by CPLEX.

Although the assumption of instantaneous task completion is valid for OOS tasks such as

inspection, it is not valid for tasks that require the servicer to physically touch and connect with

the satellite needing service. In contrast to the MORSO in Chapter 2 in which the tasks had in-

stantaneous processing time, in our next problem, the tasks have known task processing times.

In Chapter 4, we examined the Multi-Orbit Routing and Scheduling of Refuellable Space Robots

for On-Orbit Servicing with Known Task Times (MORSO-KTT) optimization problem to address

the OOS problem for tasks that are not instantaneous in nature. We presented a new mixed in-

teger linear program model for solving this problem and include an algorithm for constructing

the data and parameters representing the tasks, subtasks, and subtask sets. The new MILP uses

subtasks with location time pairs to represent the start of tasks along with a set of arcs which are

consecutive in the rotational direction of the orbit to ensure that a robot servicer stays on task un-

til completion.

We augmented the case study created in Chapter 2 to add processing times and then used

CPLEX to solve 1,860 instances of the MORSO-KTT MILP. We modified the constructive

heuristics created in Chapter 3 to account for the subtask sets and task duration to create a new

greedy heuristic called, Fast Task, and a new clustering algorithm called, Task Plus One. The

124

heuristics performed well when solving the runs in the case study with a significant reduction in

solving time.

Although the technology for the MORSO and MORSO-KTT does not yet exist, the field is

growing rapidly and there are many areas for future work. For future study, we first recommend

extending the time horizon and increasing the number of tasks and robot servicers. The speed of

the heuristics reduced the overall solving time by over 90% which would allow for a longer time

horizon with a smaller step size to be examined. In this work, the step size was 15 minutes, and a

step size of 1 to 5 minutes would allow for more accurate mission duration estimations.

Because fuel is such a valuable commodity in space, further research could also include ex-

amining the MORSO-KTT as a multi-objective optimization maximizing the weighted number of

tasks completed while simultaneously minimizing the number of refuelling events or minimizing

the amount of fuel expended to complete the tasks. This could be explored with an expansion to

the node labeling algorithm similar to [2].

We also recommend incorporating uncertain task processing times into the problem,

model, and the heuristics. In most cases, it is unlikely that we would know exactly how long a

task would take before the mission begins. If we allowed for the inherent randomness that occurs

in maintenance operations, we could better estimate robot servicer numbers and mission duration.

These are just a few of the directions this research could go. The technology is growing fast and

undoubtedly the need for solutions optimizing the routing and scheduling of space robots will

continue to grow.

Bibliography

[1] Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. (1993). Network Flows: Theory, Algorithms,
and Applications. Prentice Hall, Englewood Cliffs, N.J.

[2] Kannon, T. E., Nurre, S. G., Lunday, B. J., and Hill, R. R. (2015). The Aircraft Routing Prob-
lem with Refueling. Optimization Letters, 9(8):1609–1624.

[3] Lenstra, J. K., Kan, A. R., and Brucker, P. (1977). Complexity of Machine Scheduling Prob-
lems. In Annals of Discrete Mathematics, volume 1, pages 343–362. Elsevier.

125

	Scheduling, Complexity, and Solution Methods for Space Robot On-Orbit Servicing
	Citation

	Introduction
	Bibliography

	Multi-Orbit Routing and Scheduling of Refuellable On-Orbit Servicing Space Robots
	Introduction
	Literature Review
	Problem Statement and Methodology
	Problem Formulation and Algorithm Development
	Parameters, Sets, and Mathematical Model
	Parameters/Sets
	Decision Variables
	Model

	Data and Computational Results
	Network Construction
	Core Case Study
	Core Case Study: Test Design and Data Generation
	Core Case Study: Results and Insights

	Refuelling Case Study
	Single Versus Multi-Orbit Case Study

	Conclusions
	Bibliography

	Appendices
	Appendix Appendix: Orbital Mechanics
	Orbital Parameters and Constants
	Hohmann Transfer
	Combined Hohmann Transfer with Inclination Change
	Phasing Maneuver

	Appendix Demonstration of Algorithms Presented in this Work
	Arc Creation Algorithm Example
	Sub Task Creation Algorithm Example
	Refueling Arc Designation Algorithm Example

	Bibliography

	Complexity and Solution Methods for the Multi-Orbit Routing and Scheduling of Refuellable On-Orbit Servicing Space Robots
	Introduction
	Literature
	Problem Statement
	Complexity
	Solution Methodology
	Label Making Algorthim
	Heuristic I: Greedy Task Assignment
	Heuristic II: Greedy Clustering Task Assignment

	Computational Results
	Greedy Task Assignment
	Greedy Clustering
	Greedy vs. Greedy Clustering vs. CPLEX Results

	Conclusions
	Bibliography

	Solution Methods for the Multi-Orbit Routing and Scheduling of Refuellable On-Orbit Servicing Space Robots with Known Task Times
	Introduction
	Literature
	Problem Statement
	Model

	Solution Methodology
	Heuristic I: Fast Task Assignment
	Heuristic II: Task Plus One Algorithm

	Computational Results
	Fast Task Algorithm
	Task Plus One Algorithm

	Conclusions
	Bibliography

	Conclusions and Future Work
	Bibliography

