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Abstract

In particular medical imaging data, such as positron emission tomography (PET), computed to-

mography (CT), and fluorescence intravital microscopy (IVM), have become prevalent for use in

a wide variety of applications, from diagnostic purposes, tracking diseases’ progress, and mon-

itoring the effectiveness of treatments to decision-making processes. The detailed information

generated by medical imaging has enabled physicians to provide more comprehensive care. Al-

though numerous machine learning algorithms, especially those used for imaging data, have been

developed, dealing with unique structures in imaging data remained a big challenge. In this disser-

tation, we are proposing novel statistical tree-based methods with more efficient and more accurate

responses for use in medical imaging applications.

In Chapter 2, we introduce a gradient Boosted Trees for Spatial Data (Boost-S) with covariate

information. The main innovation of this chapter is to incorporate the spatial correlation struc-

ture into the boosting structure. Boosting trees are one of the most successful statistical learning

approaches that involve sequentially growing an ensemble of simple regression trees. However,

gradient boosted trees are not yet available for spatially correlated data. Boost-S integrates the

spatial correlation structure into the classical framework of gradient boosted trees. Each tree is

constructed by solving a regularized optimization problem, where the objective function takes

into account the underlying spatial correlation and involves two penalty terms on tree complex-

ity. A computationally-efficient greedy heuristic algorithm is proposed to obtain an ensemble of

trees. The proposed Boost-S is applied to the spatially-correlated FDG-PET (fluorodeoxyglucose-

positron emission tomography) imaging data collected from clinical trials of cancer chemoradio-

therapy. Quantitatively assessing and monitoring tumor response to therapy is essential for an

optimized treatment plan. Hence, accurately predicting the change of SUV (standardized uptake

value) is critical for treatment optimization and control. Our numerical investigations successfully

demonstrate the advantages of the proposed Boost-S over existing approaches for this particular

application.



In Chapter 3, we propose a Structured Adaptive Boosting Trees algorithm (AdaBoost.S) for

the edge detection problem associated with medical images. The main innovation of this chapter

is to develop structural learning in an additive boosting model. The algorithm is motivated by

the well-known observation that edges over an image mask often exhibit special structures and

are highly interdependent. Such structures can be predicted using the features extracted from a

bigger image patch that covers the image mask. We present the details of feature extraction and

the technical details of constructing structured boosting trees leveraging the classical framework of

adaptive boosting. The proposed AdaBoost.S is applied to detect the platelet-neutrophil aggregates

from a large number of fluorescence IVM images of the pulmonary microcirculation. The platelet-

neutrophil aggregates are important to assess lung injury from e-cigarette exposure. Therefore, a

statistical learning algorithm is required to efficiently and accurately detect the edges of platelet-

neutrophil aggregates. The predictive capabilities of the proposed approach are demonstrated by

comparing the F-score, precision, and recall with those of other methods.

In Chapter 4, we review a variety of feature selection (FS) techniques that are built around

random forests (wrappers based on RF) since high dimensional datasets recently have become

overwhelmingly generated in different fields, especially in gene selection studies. The main goal

of using such techniques is to identify and eliminate features with less or no predictive power in

order to improve the predictive accuracy by removing unimportant or non-informative features,

enhance the interpretability of a former complex data structure, and significantly reduce the com-

putational complexity of the predictor. Our review includes Boruta, RRF, GRRF, GRF, r2VIM,

PIMP (Altmann), NTA (vita), varSelRF, VSURF, RF-SRC, AUCRF, and RFE methods. Also, the

mentioned methods are applied to three publicly available datasets.

Keywords: Statistical Learning; Ensemble Learning; Boosting Trees; Spatial Statistics; Medical

Imaging; Feature Selection; Random Forests; Gradient Boosted Trees.
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1 Introduction

With the rapid development of technology in the past few decades, a wide variety of equipment

has been emerged to recreate medical images. Medical imaging refers to a set of techniques and

processes in which various images of tissues, internal organs, and limbs can be generated by clin-

icians. Evolving the medical imaging technologies has opened a new chapter in diagnostic pur-

poses, monitoring diseases progress, and treatment planning. Medical imaging complies with

non-invasive procedures, enabling physicians to observe living cells in the actual environment and

their behavior over time while putting patients at the lowest risks. This efficient, fast, and reliable

resource generates large volumes of two-dimensional (2D) and three-dimensional (3D) data. From

a wide range of applications and techniques that medical imaging provides, we focus on 1) positron

emission tomography (PET) to detect metabolically active malignant lesions and to quantitatively

assess tumor response to treatment and 2) fluorescence intravital microscopy (IVM) images of the

pulmonary microcirculation to locate and detect the edges of aggregates within blood vessels due

to e-cigarette vapor exposure. PET imaging focuses on the organ level at lower resolution and

is noninvasive; it provides functional information about the metabolism of the tumor. Intravital

imaging focuses on the cellular level at much higher resolution (∼ 250 nm) but is invasive and

usually requires cutting into the tissue; intravital imaging can also provide functional information

about cellular movement in blood vessels or tissues over time. Clinicians are starting to use optical

imaging, but it is only for surface applications such as skin imaging or with cameras to image the

gastrointestinal tract. In this dissertation, we propose statistical algorithms to analyze phenomena

at different scales (organ level vs. cellular level).

Machine learning (ML) is a technique that by using data, enables systems to mimic human

learning skills and predict outcomes more accurately. With the large amount of data generated in

clinical trials, machine learning plays a major role in the healthcare sector’s developments. Al-

though research in computer analysis of healthcare applications brings more promises to improve

patients’ comprehensive care, a lot more research yet needs to be done to improve diagnosis and

1



prediction accuracy. Among the machine learning methods, ensemble models have become one

of the most successful statistical learning approaches. Ensemble models are supervised learning

techniques that combine numerous base models (which are also referred to as “weak learners”)

to render better predictive performance than any individual weak learners could possibly perform.

Even though several sophisticated ensemble models have been developed, we found some impor-

tant incapability of them which we will address in this dissertation with our two novel boosting

trees models. Specifically, the first major contribution within this thesis is proposing a gradient

Boosted Trees algorithm for Spatial Data (Boost-S) with covariate information where Boost-S in-

tegrates the spatial correlation into the classical framework of eXtreme Gradient Boosting. Our

second research contribution is the proposal of a Structured Adaptive Boosting Trees algorithm

(AdaBoost.S) for the edge detection problem associated with medical images where the model

predicts mask structures using the features extracted from a bigger image patch that covers the

image mask.

In Chapter 2, we introduce a novel Gradient Boosting Trees algorithm for Spatial Data (Boost-

S) with covariate information to be applied to the spatially-correlated FDG-PET (fluorodeoxyglucose-

positron emission tomography) imaging data collected from FLARE-RT clinical trial of cancer

chemoradiotherapy. FDG-PET has been widely used in cancer diagnosis to detect metabolically

active malignant lesions, and plays a critical role in quantitatively assessing and monitoring tumor

response to treatment. 18F-FDG PET is a radiotracer that contains a glucose analog that is labeled

with F18. Tumors perform glycolysis to generate ATP (energy), which is much less efficient than

oxidative phosphorylation. As tumors grow, they need more ATP, which leads to elevated glucose

metabolism. The 18F-FDG is taken up by tumor cells and is metabolized; the localization of the

radiolabeled glucose analog in living tumor cells is what gives the PET signal. Tumor cells that are

successfully killed will not take up the imaging agent and will not cause a hot spot on the image.

The Standardized Uptake Values (SUV) is a ratio that measures cells activity in PET imaging. By

comparing the SUV PET images at different time spots, before and in the middle of the treatment, it

is possible to observe the shrinkage of the tumor in case of the effective treatment. The data used in

2



this work are obtained from patients diagnosed with locally advanced and surgically unresectable

non-small cell lung cancer (NSCLC) who enrolled onto the FLARE-RT clinical trial. A tumor

is a 3D object and typically presents spatially-correlated and spatially-heterogeneous responses to

radiotherapy. Some areas of a tumor may respond well to treatment while some areas may not

respond to treatment because the treatment did not reach all areas of the tumor or because certain

tumor cells can be resistant to treatment. One that is important to mention is that the overall SUV

level decreases three weeks after the radiotherapy. Also, the change in SUV, i.e., tumor’s response

to radiotherapy, varies over space. Therefore, the capability of modeling and predicting the change

of SUV is critical for treatment optimization. We aim to model the differences between the Pre-RT

SUV (before treatment) and the Mid-RT SUV (during the third week of treatment course), which

helps clinicians further optimize or control the treatment plans. However, the complex relationship

between the change of SUV and available features can hardly be directly specified. The non-linear

effects, as well as the interactions among features, motivate us to investigate the non-parametric

tree-based models.

Spatial data refer to an important type of data which arise in a spatial area and are often corre-

lated in space. One challenge arising from practice is to capture such correlation between features

and responses, which can rarely be adequately specified by linear models. Thus, non-parametric

approaches, especially the additive-tree-based models, provide some major modeling advantages.

Constructing a tree does not need parametric assumptions on the complex relationship between

features and responses. An individual tree performs a partition of the feature space. For each sub

feature space (represented by a tree leaf), a predicted value is found for the individuals over that

sub feature space. A sum-of-trees model consists of multivariate components that effectively han-

dle the complex interaction effects among features (Chipman et al., 2010). Figure 1.1 represents

the architecture of boosting trees. It has been shown that as more trees are added to the ensemble

at each iteration, more variability could be explained; hence, the error is gradually decreased.

Among the additive-tree-based methods, gradient boosted trees have become one of the most

successful statistical learning approaches. The main idea behind the gradient boosting is fitting

3
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Figure 1.1: The architecture of Boosting Trees

a sequence of correlated “weaker learners” (such as simple trees) such that each tree attempts to

explain only a small amount of variation not captured by previous trees.

Among the vast majority of existing tree-based methods, a key assumption is that observations

are independent. Many existing boosting trees, such as XGBoost, do not consider the possible spa-

tial correlation at all when they are applied to spatial data. This means that all residual correlation,

i.e. correlation that is not accounted for by the regression function, is ignored. Modeling such

correlation allows not only for better learning of the regression function, but it is also important

for prediction, in particular for probabilistic prediction and for predicting averages of sums over

space, time, and groups of clusters (Sigrist, 2020). Hence, the main contribution of this research

is to propose a computationally-efficient gradient boosting method for growing the ensemble trees

for spatially-correlated data.

In Chapter 3, we propose a Structured Adaptive Boosting Trees (AdaBoost.S) for the edge

detection problem associated with medical imaging data. This research is part of a bigger investi-

gation of the effects of e-cigarette vapor on vascular systems as well as finding possible invisible

damages that may occur. Neutrophils are the most abundant type of white blood cells and can
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release a network of DNA fibers called neutrophil extracellular traps (NETs) as a host defense

mechanism. NETs can cause downstream injury through enabling inflammation, vessel damage,

and clot formation. Platelets, which are known to activate clotting, can adhere to neutrophils to

form platelet-neutrophil aggregates that can block blood vessels and prevent gas exchange. There-

fore, detection of platelet-neutrophil aggregates from the fluorescence lung IVM images is an

essential step toward understanding the effects of e-cigarette vapor and other pathologies driven by

platelet-neutrophil interactions. In IVM imaging, fluorescent dyes and fluorescent antibodies are

injected into the blood vessels that will either illuminate the bloodstream or certain cells of interest

in different colors to be visible on IVM. Our proposed method is applied to detect vascular lung

injury on fluorescence IVM images of mice exposed to e-cigarette vapor. IVM allows one to track

interactions between multiple cell types over time in several organs throughout the body including

but not limited to the lungs, liver, and brain of living subjects.

Fluorescence IVM captures large datasets of dynamic multicellular interactions within vari-

ous organs. In one imaging session, gigabytes of dynamic data are generated which presents a

challenge to manual analysis of cell interactions. To meet this need, microscope manufacturers

have designed analytical software to detect the individual labeled cells, but these platforms are met

with limitations including high cost, requiring human input for each video, multicellular interac-

tions artifacts, and lung movement artifacts. Herein, a statistical learning approach is developed to

automate detection of multicellular aggregates of distinctly labeled blood cells within the microcir-

culation of live mice. By comparing fluorescence IVM images of the pulmonary microcirculation

of healthy mice and mice exposed to e-cigarette vapor during the experimental trial, the formation

of platelet-neutrophil aggregates (the total area of objects containing colocalized neutrophil and

platelet staining) can be clearly observed from the mouse exposed to e-cigarette vapor, indicat-

ing the potential for decreased blood flow. The data used in this research are obtained from mice

undergoing e-cigarette vapor exposure in the preclinical study conducted by the authors’ team.

An edge in an image can be defined as an abrupt change of color intensity between two neigh-

boring pixels (Ziou, Tabbone, et al., 1998). Edge detection is a process that detects the presence
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and location of edges formed by sharp changes in the image’s color intensity (Ramana et al.,

2017). A critical observation is that edges over an image mask often exhibit special structures and

are highly interdependent and this notion pipes us into a family of novel methods called struc-

tured learning. The main point of structural learning is to learn the structures of a group of pixels,

called masks, rather than ordinary computing if individual pixels contain edges. Because Random

Forests and boosting trees are main competitors of each other, which are based on opposite ideas,

this research fills a gap in the literature where the structured boosting trees are not yet available.

Hence, the main contribution of this research is to propose a new Structured Adaptive Boosting

Trees algorithm (AdaBoost.S) for edge detection problems.

In Chapter 4, we review and do the comparative study of random forest based feature selection

for classification problems. Feature selection (FS) is a pre-processing step to achieve a more effi-

cient dataset and to build a more accurate predictive model. The core idea behind FS methods is to

identify and eliminate features with less or no predictive power. FS methods are generally classified

into filters, wrappers, and embedded algorithms which we focus on wrappers built over random

forest classification in the review. Random forests are commonly used machine learning models

because of their high predictive accuracy and the calculating measures of variable importance.

Hence, random forest is a strong candidate for building wrappers. Our review includes Boruta,

RRF, GRRF, GRF, r2VIM, PIMP (Altmann), NTA (vita), varSelRF, VSURF, RF-SRC, AUCRF,

and RFE. Also, we evaluate the mentioned FS methods on three publicly available datasets.
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2 Gradient Boosted Trees for Spatial Data and its Application to Medical Imaging Data

2.1 Introduction

Fluorodeoxyglucose-Positron Emission Tomography (18F-FDG-PET) has been widely used in

cancer diagnosis to detect metabolically active malignant lesions, and plays a critical role in quanti-

tatively assessing and monitoring tumor response to treatment. For illustrative purposes, Figure 2.1

shows the Standardized Uptake Values (SUV) obtained from the FDG-PET imaging of a patient.

The FDG-PET SUV distribution is overlaid as a hot metal false colorwash (range SUV 0-20) along

with the grayscale CT image. The CT and PET images are used to help pin the exact location of

the tumor as PET shows active malignant lesions and CT shows body structure. Radiation isodose

lines are displayed on a rainbow false colorscale as percentages of the prescribed radiation therapy

dose (98% - red, 90% - orange, 80% - yellow, 65% - green, 50% - cyan, 25% - blue). Different

doses are needed since the density of malignant tumors varies spatially, also we want to minimize

the side effects to surrounding normal tissue; hence, the highly concentrated areas in the center of

the tumor need a higher dosage.

In Figure 2.1, the top row shows the baseline FDG-PET image taken before radiotherapy (i.e.,

Pre-RT), while the bottom row shows the image three weeks after initiation of radiotherapy (i.e.,

Mid-RT image). By comparing the top and bottom rows of this figure, it is possible to observe

the shrinkage of the tumor, indicating the effectiveness of treatment. Hence, the difference be-

tween the Mid-RT and Pre-RT images can be effectively used to quantify the tumor’s spatial re-

sponse to treatment. Figure 2.1 also suggests that a tumor typically presents spatially-correlated

and spatially-heterogeneous responses. Darker areas (dead tumor cells with no radiotracer uptake)

may respond well to treatment, while brighter areas (metabolically active tumor cells that are still

taking up radiotracer) appear to be less responsive. The importance of capturing such spatially-

varying and spatially-correlated responses has been thoroughly discussed in Bowen et al., 2019.

A tumor is a 3D object. Figure 2.2 shows the SUV in three-dimensional spaces for another
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Figure 2.1: An example of spatially-correlated Pre-RT and Mid-RT FDG-PET images. The khaki-
colored contour is the pre-treatment metabolic tumor volume. The rainbow contours are radiation
isodose lines corresponding to varying levels of radiation dose, 98%, 90%, 80%, 65%, 50%, and
25% respectively.

two patients. The top row shows the Pre-RT data, while the bottom row shows the Mid-RT data

collected three weeks after the radiotherapy. It is seen that,

• The overall SUV level decreases three weeks after the radiotherapy;

• The change in SUV, i.e., tumor’s response to radiotherapy, varies over space. In general, the

SUV level is higher in the center of the tumor and gradually decreases from the centroid to

the surface of a tumor.

Hence, the capability of modeling and predicting the change of SUV is critical for treatment

optimization and control. To model the change of SUV at location s within the spatial domain S

occupied by a tumor, a statistical spatial model is needed that enables clinicians to understand how

the change of SUV depends on a vector of features (including geometric features, therapy dosage,

and so on). However, the complex relationship between the change of SUV and available features

can hardly be directly specified. The non-linear effects, as well as the interactions among features,

motivate us to investigate the non-parametric tree-based methods in this paper.
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Figure 2.2: 3D Pre-RT and Mid-RT SUV images from two patients

2.1.1 Literature Review

Spatial data refer to an important type of data which arise in a spatial area and are often correlated

in space. Capturing such correlation is the centerpiece of statistical analysis of spatial data (Cressie

& Wikle, 2011b; Schabenberger & Gotway, 2005). Applications of statistical spatial data modeling

can be found in a spectrum of scientific and engineering applications ranging from energy (Ezzat

et al., 2019), reliability (Fang et al., 2019; Liu et al., 2018c), quality and manufacturing (Wang

et al., 2016; Yue et al., 2020; Zang & Qiu, 2019), environmental and natural process (Guinness &

Stein, 2013; Liu et al., 2018a; Liu et al., 2020), medical informatics (Yan et al., 2019; Yao & Yang,

2021; Yao et al., 2017), etc.

The pioneering work of statistical modeling of spatial data can be found in Banerjee et al.,

2004, Schabenberger and Gotway, 2005 and Cressie and Wikle, 2011a. The mainstay approach,
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also known as the geostatistical paradigm, models spatial processes by random fields with fully

specified covariance functions. A linear relationship between covariates and process mean is of-

ten assumed, and the model parameters can be obtained through Generalized Least Squares or

Maximum Likelihood Estimation. The covariance structures are typically derived from moments

of multivariate probability distributions and motivated by considerations of mathematical conve-

nience (e.g., stationary, isotropic, space-time separable, etc.). Hence, there have been prolonged

research interests to provide flexible and effective ways to construct non-stationary covariance

functions (Cressie & Huang, 1999; Fuentes et al., 2005; Ghosh et al., 2010; Gneiting, 2002; Gneit-

ing et al., 2006; Lenzi et al., 2019; Reich et al., 2011). The geostatistical modeling paradigm,

which heavily relies on random fields, becomes less practical for large problems and approxima-

tions are commonly used, such as the Gaussian Markov Random Fields representation (Lindgren &

Rue, 2011), Nearest-Neighbor Gaussian Process (Banerjee, 2017; Datta et al., 2016), kernel con-

volution (Higdon, 1998), low-rank representation (Banerjee et al., 2008; Cressie & Johannesson,

2002; Nychka & Wikle, 2002), the approximation of likelihood functions (Fuentes, 2007; Guin-

ness & Fuentes, 2015; Stein et al., 2004), Bayesian inference for latent Gaussian models based

on the integrated nested Laplace approximations (R-INLA, 2019; Rue et al., 2009), Lagrangian

spatio-temporal covariance function (Gneiting et al., 2006), matrix-free state-space model (Mon-

dal & Wang, 2019), Vecchia approximations of Gaussian processes (Katzfuss et al., 2020), as well

as the multi-resolution approximation (M-RA) of Gaussian processes observed at irregular spatial

locations (Katzfuss, 2017).

Other spatial models have also been proposed in the literature. Notably, the Markov Random

Fields (MRF) model focuses on the (conditional) distribution of the quantity at a particular spa-

tial location given the neighboring observations, such as the auto Poisson model (Besag, 1974),

Conditional Autoregressive Model (Carlin & Banerjee, 2003; Liu et al., 2018b), etc. The Spatial

Moving Average (SMA) approach models a spatial process through a process convolution with

a convolution kernel (Brown et al., 2000; Higdon, 1998; Liu et al., 2016). There is also a large

body of literature focusing on spatio-temporal data. For example, the Hierarchical Dynamical
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Spatio-Temporal Models (DSTM) (Berliner, 2003; Cressie & Wikle, 2011a; Katzfuss et al., 2020;

Stroud et al., 2010; Wikle & Cressie, 1999), and the SPDE-based modeling approach that aims to

integrate governing physics into statistical spatio-temporal models (Brown et al., 2000; Hooten &

Wikle, 2008; Liu et al., 2020; Sigrist et al., 2015; Stroud et al., 2010). A summary of the latest ad-

vances in the spatial modeling with SPDE can be found in Cressie and Wikle, 2011a and Krainski

et al., 2019.

2.1.2 Challenges and Contributions

One challenge arising from practice is to specify the relationship between features and responses,

which can rarely be adequately captured by linear models. For the FDG-PET imaging data, for ex-

ample, both non-linear and interaction effects are expected between tumor’s response and features

(such as treatment, geometric features of the tumor, etc.). Hence, non-parametric approaches, espe-

cially the additive-tree-based approaches, provide some major modeling advantages. Constructing

a tree does not require parametric assumptions on the complex relationship between features and

responses. An individual tree performs a partition of the feature space. For each sub feature space

(represented by a tree leaf), a predicted value is found for the individuals over that sub feature

space. A sum-of-trees model consists of multivariate components that effectively handle the com-

plex interaction effects among features (Chipman et al., 2010). Feature selection is also possible

under the framework of additive-tree-based models (Hastie et al., 2009; Liu & Pan, 2020).

Among the additive-tree-based methods, gradient boosted trees have become one of the most

successful statistical learning approaches, generating 17 winning solutions among 29 Kaggle chal-

lenges in 2015 (Chen & Guestrin, 2016). Schapire, 1999 introduced the first applicable Boosting

method. The main idea of gradient boosting hinges on fitting a sequence of correlated “weaker

learners” (such as simple trees). Each tree explains only a small amount of variation not captured

by previous trees (Chipman et al., 2010; Hastie et al., 2009).

In fact, gradient boosted trees have been used for medical applications. Leveraging an open-

source implementation, Oguz et al., 2017 illustrated the gradient boosted trees in a corrective
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learning for the segmentation of the caudate nucleus, putamen and hippocampus. de Melo et al.,

2018 applied Light Gradient Boosting Machine to detect the posterior wall of the left ventricle from

echocardiogram images. Fu et al., 2020 developed gradient boosted trees classifier to diagnose the

lesion as malignant or benign for Breast Cancer Diagnosis. Nishio et al., 2018 performed the

comparison between support vector machine and XGBoost for computer-aided diagnosis of lung

nodule. Xie et al., 2019 applied extreme gradient boosting and gradient boosting machine to predict

modified Rankin scale scores using biomarkers for 512 patients enrolled in a retrospective study.

Among the vast majority of existing tree-based methods, a key assumption is that observations

are independent. Many existing boosting trees, such as XGBoost, do not consider the possible

spatial correlation at all when they are applied to spatial data. To our best knowledge, Sigrist, 2020

recently proposed the only boosted-trees-based approach for Gaussian Process (which captures

correlated errors). Such a method minimizes the negative log-likelihood at each tree node splitting,

and is available in the R package, GPBoost. The package also provides a range of regularization

and tuning parameter options. As also noted by Sigrist, 2020,“In many state-of-the-art supervised

machine learning algorithms, in particular in boosting, it is assumed that a flexible and potentially

complex function relates a set of predictor variables to a response variable. Conditional on the

predictor variables, the response variable is assumed to be independent across observations. This

means that all residual correlation, i.e. correlation that is not accounted for by the regression

function, is ignored. Modeling such correlation allows not only for better learning of the regression

function, but it is also important for prediction, in particular for probabilistic prediction and for

predicting averages or sums over space (block kriging), time, and groups or clusters.”

In our paper, on the other hand, regularization terms are directly added to the objective function

in order to control the complexity of individual trees (i.e., number of leaves and leaf weights), lead-

ing to a regularized optimization problem at each tree node splitting. The regularization terms are

motivated by the fundamental idea behind boosting trees which involves a sequence of correlated

simple trees. This idea has been adopted by XGBoost (Chen & Guestrin, 2016), while an alter-

native approach adopted by the Bayesian Additive Regression Trees (BART) involves assigning
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prior distributions on parameters characterising the tree structure (Chipman et al., 2010). Hence,

the main contribution of the paper is to propose a computationally-efficient gradient boosting

method for growing the ensemble trees for spatially-correlated data. Each tree is grown by solving

a regularized optimization problem, where the objective function involves regularizations on tree

complexity and takes into account the underlying spatial correlation. The proposed algorithm is

referred to as Boost-S, which stands for Gradient Boosted Trees for Spatial Data with covariate

information (Boost-S). Boost-S integrates the spatial correlation structure into the classical frame-

work of gradient boosted trees. In Statistics, Ordinary Least Squares is extended to Generalized

Least Squares for correlated data. An analogous notion can be formulated here when extending

the classical framework of gradient boosted trees to spatially-correlated data, giving rise to

the proposed Boost-S.

The rest of this paper is structured as follows: Section 2.2 presents the technical details of the

Boost-S algorithm. The application of Boost-S is presented in Section 2.3. Section 5 concludes

the paper.

2.2 Boost-S: Technical Details

2.2.1 The Problem Statement

In this paper, we are concerned with the modeling problem:

Y (s) = Z(xs) + ε(s), s ∈ S (2.1)

where Y (s) represents the observation at a spatial location s ∈ S, xs is a vector that collects

the available features at s, Z(x) ≡ E(Y ;x) is the mean-value function given x, and ε(s) is an

isotropic and weakly stationary spatial noise process with zero-mean and a covariance C(h), where

C(h) = cov(Y (s), Y (s′)) with h being some distance measure between s and s′; for example, the

Euclidean distance.
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The goal of this paper is to tackle the modeling problem (2.1) by devising a new additive-tree-

based method that approximates Z(x) as follows:

Z(x) ≈ ϕ(x) =
K∑
k=1

fk(x), f ∈ F (2.2)

where {fk(x)}Kk=1 represents an ensemble of binary decision trees, andF represents the tree space.

Apparently, the problem hinges on how the ensemble of trees {fk(x)}Kk=1 can be grown,

while taking into account the important spatial correlation of Y (s). In particular, we exploit

the idea of gradient boosting which involves sequentially growing an ensemble of simple regression

trees. Mathematically, each tree is added to the ensemble by solving an optimization problem

with a carefully chosen objective function. This goal boils down to three fundamental tasks to

be addressed in this paper: (i) formulate a (regularized) optimization problem that balances the

complexity of individual trees and takes into account the spatial correlation associated with Y (s);

(ii) devise an algorithm that solves the regularized optimization problem in a computationally

efficient manner (so that trees can be added sequentially to the ensemble); and (iii) validate the

performance of the proposed method on real datasets.

Suppose that data are collected from a number of n spatial locations, s1, s2, ..., sn. At each

location, we observe a response y and a m-dimensional feature vector x = (x1, x2, ..., xm)
T . From

(2.1) and (2.2), Boost-S aims to construct an ensemble of binary trees, {fk(x)}Kk=1, using gradient

boosting such that

Y (s) =
K∑
k=1

fk(x) + ε(s), s ∈ {s1, s2, ..., sn}. (2.3)

Let Y = (Y (s1), Y (s2), ..., Y (sn))
T be a multivariate random vector representing the re-

sponses from the n spatial locations, and let f (k) be a vector of predicted values at the n spatial

14



locations generated from the kth tree (k ≥ 0), we re-write (2.3) as

Y =
K∑
k=0

f (k) + ε, ε ∼ N (0,Σθ) (2.4)

where f (0) is a vector of zeros corresponding to the initial condition when no tree has been grown.

2.2.2 A Regularized Problem

This subsection presents the detailed tree structures and formulates a regularized optimization

problem that leads to a sequence of ensemble trees. In (2.3), each tree fk is a Classification and

Regression Tree (CART) that resides in a binary tree space

F =
{
f(x) = wq(x)

}
(2.5)

where q : Rp → T and w ∈ RT . Here, T represents the number of tree leaves (i.e., terminal

nodes), w is the value on a tree leaf (i.e., leaf weight), and q determines the tree structure (i.e., a

mapping that links a feature vector x to a tree leaf).

Suppose that a number of k−1 trees have been grown (k ≥ 1). Then, the (ensemble) predicted

values at the n spatial locations are given by ŷ(k−1) =
∑k−1

j=0 f
(j) from the k − 1 trees. An

immediate next step is to construct the kth tree and add the new tree to the ensemble such that

ŷ(k) = ŷ(k−1) + f (k) =
∑k

j=0 f
(j). For binary trees, this involves finding the optimal split features

as well as the split points for the kth tree. This task can be formulated as a regularized optimization

problem:

min
f (k)

{
ℓ(ŷ(k−1) + f (k)) + Ω(f (k))

}
(2.6)

where ℓ is a loss function that depends on the output of the kth tree, and the regularization Ω is
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given by:

Ω(f) = γT +
1

2
λ∥w∥2. (2.7)

The first term, γT , regularizes the depth of the tree (by penalizing the total number of leaves),

while the second term is used to regularize the contribution of tree k to the ensemble predictions

(by penalizing the weights on tree leaves). Recall that, the fundamental idea behind boosting trees

is to construct a sequence of correlated “weaker learners” (i.e., simple trees), where each “weaker

learner” is added to explain the unexplained variation by existing trees in the ensemble (Chipman

et al., 2010). Hence, the regularization (2.7) effectively controls the complexity of individual trees.

In fact, it is worth noting that the regularization also helps to prevent the well-known overfitting

issue of boosting trees. When a sufficient number of trees have been included in the ensemble, the

penalty of adding one more tree may dominate the benefit (of adding more trees), which stops the

algorithm from growing more trees.

Because the multivariate response Y is spatially correlated with the covariance matrix Σθ, a

sensible choice for the loss function ℓ is the squared Mahalanobis length of the residual vector:

ℓ(ŷ(k−1) + f (k)) = ℓ(ŷ(k))

≡ (y − ŷ(k))TΣ−1
θ (y − ŷ(k))

(2.8)

and (2.6) can thus be written as

min
f (k)

{
(y − ŷ(k))TΣ−1

θ (y − ŷ(k)) + γT +
1

2
λ∥w∥2

}
. (2.9)

Note that, (2.9) above extends the classical XGBoost which does not consider the correlation

among the elements of Y (Chen & Guestrin, 2016). The extension made by this paper is in

analogy to the extension from Ordinary Least Squares to Generalized Least Squares. However,

such an extension requires new algorithms for the problem (2.9) to be efficiently solved.

16



The regularized optimization above is a formidable combinatorial optimization problem which

can hardly be directly solved. Hence, we approximate the objective function ℓ(ŷ(k)) + Ω(f (k)) by

a second-order multivariate Taylor expansion:

ℓ(ŷ(k)) + Ω(f (k))

≈ ℓ(ŷ(k−1)) + gTf (k) +
1

2
(f (k))THf (k) + Ω(f (k))

(2.10)

where g is the column gradient vector of the loss function with its ith element given by gi =

∂ℓ(ŷ(k−1))/∂ŷ
(k−1)
i , and H is the Hessian matrix with its (i, j)th entry being given by hi,j =

∂2ℓ(ŷ(k−1))/∂ŷ
(k−1)
i ∂ŷ

(k−1)
j .

The Taylor expansion approximates the original combinatorial optimization problem (2.9), and

enables us to develop the greedy algorithm that yields a heuristic solution. Note that, the truncation

error of the Taylor expansion is
∑

|α|≥3
dαℓ(ŷ(k−1))

α!
(f (k))α where dα is α-th order partial derivatives

of a multivariate function ℓ : Rn → R. Hence, for the truncation error to be small, f (k) needs

to be small (i.e., the contribution from the kth tree). Interestingly, f (k) can be kept small through

the penalty term, 1
2
λ∥w∥2, which controls the learning rate of the gradient boosted trees. This

observation also helps to justify why a small learning rate is often preferred in training boosting

trees.

Because the first term on the right-hand-side of (2.10) is a constant, it is sufficient to minimize

the sum of the remaining three terms:

L(k) = gTf (k) +
1

2
(f (k))THf (k) + Ω(f (k)). (2.11)

Note that, for any given tree structure, it is possible to define a set Ip = {i | q(xi) = p} that

consists of all samples that fall into leaf p. Then, we let gp be a column vector that only retains the

elements in g corresponding to samples in Ip, and similarly, let Hp,q be a matrix by only keeping

the rows and columns of H corresponding to samples in Ip and Iq, respectively.

Figure 2.3 provides an illustration of how gp and Hp,q are constructed. Consider a simple
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example where n = 7 (i.e., only 7 samples are available), then, the dimensions of the gradient

vector g and the Hessian matrix H are 7 × 1 and 7 × 7, respectively. Suppose that Ip = 1, 2, 6

and Iq = 3, 4. Then, the vector gp consists of the 1st, 2nd and the 6th element in g, and the matrix

Hp,q is a 3× 2 matrix that retains the entries H located at the intersections of rows 1, 2 and 6, and

columns 3 and 4.

g

1 2 6{ , , }T
p g g gg

if {1,2,6}pI

H

if {1,2,6} and {3,4}p qI I

,  is represented by the red boxesp qH

Figure 2.3: An illustration of the vector gp and the matrix Hp,q

Then, for any given tree structure q(x), we re-write (2.11) as follows:

L(k) =
T∑

p=1

gT
p wp +

1

2

{∑
p∈T

wT
p Hp,pwp

}

+
1

2

 ∑
(p,q)∈CT

2

wT
p Hp,qwq

+ Ω(f (k))

(2.12)

where CT
2 denotes the combination (i.e., the number of 2-combinations from a given set of T

elements), wp = wp1|Ip| with wp and 1|Ip| respectively being the weight on tree leaf p and a

column vector of ones of dimension |Ip|, and | · | represents the cardinality of a set.
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Substituting (2.7) into (2.12) yields

L(k) =γT +
T∑

p=1

wp

∑
i∈Ip

gi +
1

2

λ+
∑

(i,j)∈Ip

hi,j

w2
p


+

1

2

T∑
p=1


T∑

q=1;q ̸=p

λ+
∑

i∈Ip;j∈Iq

hi,j

wpwq

 .

(2.13)

Taking the partial derivatives of (2.13) with respect to {wp}Tp=1 leads to a system of equations,

which provides the key computational advantage: given any tree structure, the optimal weights

w = {w1, w2, ..., wT} can be quickly found by solving the linear system:

Ξw = −g̃ (2.14)

where Ξ is a T × T matrix with its pth row given by

1

2
(λ+

∑
i∈Ip;j∈I1

hi,1),
1

2
(λ+

∑
i∈Ip;j∈I2

hi,2), ..., (λ+
∑

(i,j)∈Ip

hi,j), ...,
1

2
(λ+

∑
i∈Ip;j∈IT

hi,T ) (2.15)

and g̃ is a T × 1 vector with its pth element given by
∑

i∈Ip gi.

Obtaining the linear system (2.14) plays an extremely important role in searching for the op-

timal tree: given any candidate tree structure, it is possible to quickly and accurately find the op-

timal weights w on the leaf nodes by solving (2.14) using least squares, i.e., no numerical search

is required. Substituting the optimal w into (2.11) immediately yields the value of the objective

function L(k).

2.2.3 The Sequential Update of the Unknown Covariance Matrix

Constructing the linear system (2.14) and evaluating the objective function L(k) require a known

covariance matrix of the errors, Σθ. However, Σθ is not known and needs to be estimated before

the first tree (k = 1), or any subsequent tree (k > 1), can be constructed. In this section, we
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describe how Σθ can be consistently estimated before the kth tree is constructed, given the outputs

from the first k − 1 trees.

Suppose that k − 1 trees have been constructed (k ≥ 1), and let r(k−1) = Y −
∑

f (k−1) be

the residual vector. It follows from (2.4) that r(k−1) is Gaussian with the covariance Σθ. Note that,

the mean of r(k−1) may not even be close to zero when k is small, i.e., when the ensemble has not

yet had sufficient trees to well capture the mean of Y . In this case, we model r(k−1) by a Locally

Weighted Mixture of Linear Regressions (LWMLR) (Stroud et al., 2001). LWMLR is a spatial

model constructed by Gaussian weighted kernels and linear regression surfaces that:

r(k−1) =
J∑

j=1

πT
j (s)kj(s)βj + ε(s), k ≥ 1 (2.16)

where J denotes the total number of kernels, kj(s) = {kj1(s), ..., kjq(s)} is a set of spatial basis

functions, βj = (βj1, ..., βjq) is a vector of unknown coefficients, πj(s) is a Gaussian kernel given

as follows:

πj(s) ∝ |Vj|−1/2 exp

{
−1

2
(s− µj)

TV −1
j (s− µj)

}
(2.17)

Note that, we may re-write (2.16) as a linear model, r(k−1) = XB + ε, where X = (diag(π1)

X1, ..., diag(πJ)XJ), Xj = (kT
j (s1),k

T
j (s2), ...,k

T
j (sn))

T , and B = (β1,β2, ...,βJ)
T . To elab-

orate, we let kT
j (si) = (1, si1, si2, si3)

T represent the linear surfaces where si1, si2, and si3 show

the first, second, and third coordinates of location s, respectively. Then, it is possible to obtain a

consistent estimate of Σθ, Σ̂(k−1)
θ , using the Feasible Generalized Least Square (FGLS), before the

kth tree can be constructed.
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2.2.4 The Boost-S Algorithm

Following the discussions above, Figure 2.4 provides a high-level illustration of the flow of the

Boost-S algorithm. At the initialization stage, we obtain the initial estimate of the covariance ma-

trix Σ̂
(0)
θ . Then, by solving the regularized optimization problem (2.6), a new tree k is constructed

and added to the ensemble. Next, the estimate of the covariance matrix is updated Σ̂
(k)
θ before tree

k + 1 can be constructed. The steps are repeated until K trees have been grown in the ensemble.

The Boost-S algorithm is summarized by Algorithm 1. It is possible to see that the com-

putational complexity of Boost-S is O(Kdn3 logm), where K is the number of trees, d is the

maximum depth of trees, n is the sample size, and m is the number of features. This computa-

tional complexity can be directly derived from the well-known complexity of XGBoost, which is

O(Kdn logm). Note that, Boost-S incorporates the covariance matrix into the loss function. In

order to compute the second-order Taylor expansion, Boost-S needs to compute all elements in

a dense Hessian matrix while XGBoost only calculates the second-order derivatives of the loss

function on the diagonal line of the Hessian matrix. Hence, the time complexity is cubic in sample

size n for Boost-S, while the time complexity is linear in sample size n for XGBoost. The results

above are not surprising. Recall that, the time complexity is O(m2n) for Ordinary Least Squares,

while the complexity of Generalized Least Squares becomes O(m2n3) when correlated errors are

taken into account.

(Initialization)

• Set 

• Estimate

(Tree Growing)

Grow tree k by solving the 

regularized optimization problem
(0)

(0)

1k
f 0

r y
(0)ˆ
θ

(Update the covariance matrix)

• Set 

• Estimate

( ) ( )

1

kk j

j
r y f

( )ˆ k
θ

1k k

Figure 2.4: An illustration of the flow of the Boost-S algorithm
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Algorithm 1: Boost-S: Gradient Boosted Trees for Spatial Data
1 Set the values for λ, γ and K

2 Let k = 0, f (0) = 0 and r(0) = y

3 Obtain the initial estimate, Σ̂(0)
θ , from (2.16) using FGLS

4 for k=1,...,K do
5 Grow tree k by repeating the following steps:
6 (i) Given the current tree topology, generate a set of all possible new tree structures by

splitting a tree node based on candidate split variables and candidate split values.
7 (ii) For each new tree structure, obtain the weights ω on the leaf nodes by solving the

linear system Ξw = −g̃, and evaluate the objective function L(k) in (2.11) for the
new topology.

8 (iii) If there exists at least one new tree structure that further reduces the objective
function (over the existing tree structure), retain the new topology that generates the
greatest reduction and go to (i); otherwise, terminate the tree growing process for tree
k, and go to the next step.

9 (iv) Update the estimate Σ̂
(k)
θ using FGLS.

10 end

2.3 Illustration of Boost-S on the FDG-PET Imaging Data

This section re-visits the motivating application presented in Section 4.1. We apply Boost-S to real

datasets and compare the performance of Boost-S to that of existing approaches.

2.3.1 Data

The data used in this section are obtained from 25 patients diagnosed with locally advanced and

surgically unresectable non-small cell lung cancer (NSCLC) who enrolled onto the FLARE-RT

clinical trial (NCT02773238). All patients were consented under the approval of the University of

Washington/Fred Hutchinson Cancer Consortium Institutional Review Board (CC IRB 9599). For

each patient, this clinical trial data set contains geographic features, dosage, Pre-RT and Mid-RT

SUV levels. As discussed in Section 4.1, the goal is to model the difference between the Pre-

RT SUV (before treatment) and Mid-RT SUV (during the third week of treatment course), which

helps clinicians further optimize or control the treatment plans. In fact, it allows oncologists to

modify the dosage level or develop different follow-up plans by administering alternative therapies
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if response is minimal.

Let Y (s) represent the ratio between Mid-RT SUV and Pre-RT SUV at location s (a voxel in

the image) within the spatial domain S occupied by the tumor, i.e.,

Y (s) =
Mid-RT SUV
Pre-RT SUV

. (2.18)

If the treatment is effective, the Mid-RT SUV is expected to be lower than the Pre-RT SUV level.

Hence, a lower ratio indicates more effective treatment.

2.3.2 Application of Boost-S

We first demonstrate the application of Boost-S on the data collected from one of the 25 patients.

The PET scan for this patient has 3110 voxels (i.e., the number of spatial locations). We randomly

split the data into two parts: 15% for training while 85% for testing. Such a low training-testing

ratio is chosen to demonstrate the out-of-sample prediction capability of Boost-S constructed from

a relatively small training dataset.

To obtain the initial estimate of the covariance matrix Σ̂
(0)
θ , the FGLS is used to solve the

linear model (2.16) in Algorithm 1. Before the FGLS is performed, one needs to first choose a

parametric spatial covariance function c(·) of the process ε in (2.16). Figure 2.5 shows both the

empirical semivariance and the fitted semivariance using FGLS assuming the Gaussian covariance

function. The sill, range and nugget effect can be clearly seen from Figure 2.5, and the Gaussian

covariance function appears to be an appropriate choice.

Algorithm 1 requires the tuning parameters λ and γ to be pre-specified. The choice of these two

parameters affects both the depth and contribution of individual trees to the ensemble prediction,

which in turn influences the total number of trees in the ensemble. A common strategy suggests

that we explore the suitable values for λ and γ while leaving K as the primary parameter (Hastie et

al., 2009). Although it is theoretically possible to perform a grid search for the best combinations

of λ and γ on a two-dimensional space, such an approach may not be practical nor necessary in
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Figure 2.5: Exploratory analysis on the covariance structure: plot of the empirical and fitted semi-
variance using FGLS

practice when it is computationally intensive to run Boost-S on big datasets. Hence, we resort

to a powerful tool in computer experiments—the space-filling designs (Joseph, 2016). The idea

of space-filling designs is to have points everywhere in the experimental region with as few gaps

as possible, which serves our purpose very well. For example, the Maximum Projection Latin

Hypercube Design (MaxPro) can be adopted. The main advantage of MaxPro is that such a design

approach ensures good projections to all subspaces of the tuning parameters. Based on MaxPro,

N pairs of tuning parameters (λi, γi), for i = 1, 2, ..., N , are found by minimizing the following

criterion (Joseph et al., 2015)

min
N−1∑
i=1

N∑
j=i+1

1

|λi − λj|2|γi − γj|2
(2.19)

Figure 2.6 shows the MaxPro design of 16 pairs of λ and γ, where the experimental ranges for

these two parameters are respectively [0, 0.1] and [0, 10].

For each design, Figure 2.7 shows the box plot of the number of tree leaves per tree in an

ensemble for each combination of λ and γ. Since the key idea behind boosting trees is that each

individual tree needs to be kept simple (Hastie et al., 2009), we identify that Designs #7, #8 and
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Figure 2.6: Maximum projection design of 16 runs with different combinations of λ and γ. Design
“∗” yields an appropriate combination such that λ = 0.05 and γ = 4.25.

#9 provide the most suitable combinations of λ and γ. Note that, the choice on the right-sized

trees for boosting can be very empirical. For example, in Sec. 10.11 of Hastie et al., 2009, the

authors suggest that “Experience so far indicates that 4 ≤ T ≤ 8 (T is the number of leaves) works

well in the context of boosting”. As shown in Figure 2.7, trees based on Designs #1∼#6 may be

too complex (excessive number of leaves), while trees based on Designs #10∼#16 may not have

enough leaves. Note that, the Designs #7, #8 and #9 are adjacent to each other, indicating that

the appropriate choices for λ and γ are approximately within [0.025, 0.075] and [4, 5.5]. A refined

search in a much smaller experimental region yields an appropriate combination of λ = 0.05 and

γ = 4.25 (Design “∗” in Figure 2.6). Design “∗” is between Designs #7 and #8, and the 25th, 50th

and 75th empirical quartiles of the number of tree leaves are 6, 8 and 10 as shown in Figure 2.7.

After λ and γ have been appropriately chosen, 49 trees are constructed using the training dataset

to form the ensemble predictor using Algorithm 1. Figure 2.8 (top panel) shows that the Maha-

lanobis distance (i.e., the objective function) decreases as more trees have been included into the

ensemble, indicating that the algorithm is working as expected. Figure 2.8 (bottom panel) shows
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Figure 2.7: Boxplot of the number of tree leaves per tree in an ensemble for the 16 candidate
designs. Design “∗” indicates the chosen combination such that λ = 0.05 and γ = 4.25.

the number of tree leaves for individual trees in this ensemble. It is interesting to note that the

algorithm no longer splits the (root) tree node after 37 trees have been grown. In addition, the

outputs of these one-node trees are all zeros, indicating that all trees after tree 37 are completely

redundant. This is precisely due to the regularization γT and 1
2
λ∥w∥2 in (2.6). The gain in ℓ is

outweighted by the loss caused by Ω if one more tree is added.

Applying the constructed ensemble trees to the testing dataset, Figure 2.9 shows the out-of-

sample Root-Mean-Square-Error (RMSE) and Mean-Gross-Error (MGE). We see that both per-

formance metrics decrease as more trees are included and stabilize approximately after 30 to 40

trees have been grown. As discussed above, this is precisely due to the fact that all trees after #37

are redundant with zero output. Figure 2.10 shows the (out-of-sample) predictions against actual

observations of the SUV level at different voxels. The figure shows that the proposed Boost-S

accurately predicts the SUV levels given the covariate information.

Furthermore, we reconstruct the Mid-RT SUV (3 weeks after treatment) by the proposed Boost-

S, and compare the actual and predicted Mid-RT SUV using slice plots (Figure 2.11). Because a

26



0

50

100

150

0 10 20 30 40 50
Number of Trees

M
ah

al
an

ob
is

 d
is

ta
nc

e

0

5

10

15

0 10 20 30 40 50
Number of Trees

# 
of

 L
ea

ve
s

Figure 2.8: Top panel: the Mahalanobis distance decreases as the number of trees grows; Bottom
panel: the number of tree leaves of individual trees.

tumor is a 3D object with three coordinates, x, y, and z, the MidPET images are shown on the

x − y plane for given values of z. We see that the ensemble trees are capable of predicting the

Mid-RT SUV for the entire tumor body.
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Figure 2.11: MidPET images on the x− y plane for different values of z. Rows 1 and 3: observed
images; Row 2 and 4: reconstructed images.
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2.3.3 Comparison Study

We compare the predictive capability of Boost-S to six other methods using the data collected from

25 patients. The six methods included in the comparison study are: LightGBM (Ke et al., 2017),

Random Forests (RF) (Breiman, 2001), Extreme Gradient Boosting Trees (XGBoost) (Chen &

Guestrin, 2016), non-parametric cubic splines, universal kriging with a linear spatial trend, and

multiple linear regression without considering the spatial correlation. For each patient, 15% of

the observations are randomly chosen as the training dataset, and all 7 models are constructed to

generate the out-of-sample predictions using the testing dataset. Such a low training-testing ratio

is used to test the predictive capabilities of these methods.

Tables 1, 2 and 3 respectively show the Mean Gross Error (MGE), Relative Error (RE) and

Rooted Mean Squared Error (RMSE) of the out-of-sample predictions for the 25 patients using

different methods. MGE, RE, and RMSE are performance metrics for regression models. All of

them involve calculating errors between predicted values and the actual values and are commonly

used metrics to report and summarize the predictive advantages of a model. While the changes in

MGE are linear and intuitive, RMSE punishes larger errors more than smaller errors; hence, it is

more sensitive to outliers. This is due to the square of the error values where MGE does not give

weights to errors. RE expresses the performance of a model in generic percentage terms and is

more useful for whom that are not familiar with the unit of the data. It is interesting to observe that

• Boost-S yields the lowest MGE for 19 out of the 25 patients, while RF performs the best for

the remaining 6 patients;

• Boost-S yields the lowest RE for 18 out of the 25 patients, while RF performs the best for

the remaining 7 patients;

• Boost-S yields the lowest RMSE for 17 out of the 25 patients, while RF performs the best

for the remaining 8 patients;

In addition, Tables 1, 2, and 3 also present the p-values of the Wilcoxon signed-rank test that

compares Boost-S with other methods. The Wilcoxon signed-rank test is a non-parametric test to
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assess whether the population mean ranks differ (one may refer to Neuhaus, 1989 for the well-

established procedures). It is possible to conclude that, the proposed Boost-S provides the best

performance for majority of the patients in terms of all three performance measures, al-

though no method uniformly outperforms others (which is realistic and expected given the

well-known modeling power of RF and XGBoost). The reason why Boost-S outperforms other

additive-tree-based methods, i.e., RF and XGBoost, is likely because of its capability of accounting

for the spatial correlation among observations (as this is the main differentiating feature of Boost-

S relative to these other two methods). The reason why Boost-S outperforms universal Kriging

and multiple linear regression may be due to the advantages of non-parametric tree-based method

in capturing complex non-linear and interaction effects between features and responses. These

results demonstrate that Boost-S is able to effectively combine the strengths of these different ap-

proaches in order to improve on their performance in this setting with spatial correlation among

observations.

In the Appendix, Figures 2.12, 2.13 and 2.14 respectively show the MGE, RE and RMSE of

the out-of-sample predictions for the 25 patients. Such visualizations provide a holistic view on

the performance of the seven candidate methods.
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Table 2.1: Mean Gross Error of the out-of-sample predictions for 25 patients using 7 different
methods (note that: rows 1 to 25 respectively show the results corresponding to the 25 patients,
while the last row shows the p-value of the one-side paired Wilcoxon test. The “NA” p-value is
due to the fact that it is not necessary to compare Boost-S with itself.)

Patient Boost-S RF LightGBM XGBoost
Cubic Universal Linear

Splines Kriging Regression
1 8.24 6.78 7.73 7.31 8.45 10.32 9.01
2 10.68 9.61 11.30 10.55 11.57 13.41 13.79
3 5.84 6.22 8.13 6.32 7.14 10.37 9.08
4 4.30 4.37 5.51 4.68 6.19 6.76 6.20
5 3.15 4.45 5.79 3.97 4.70 10.04 8.58
6 1.95 2.40 3.30 2.51 3.07 5.42 4.25
7 5.20 5.40 7.64 5.67 5.47 13.30 10.34
8 5.04 5.30 6.60 5.93 9.00 10.39 9.88
9 8.59 9.28 11.76 9.50 9.22 12.55 11.79

10 2.37 2.79 3.89 3.17 4.46 6.70 5.97
11 9.08 8.63 9.55 8.91 11.16 10.79 11.22
12 1.44 1.74 2.77 2.08 2.64 4.00 2.99
13 1.65 1.91 2.63 2.08 3.61 4.36 3.69
14 0.74 1.32 1.90 1.35 1.58 2.48 1.83
15 10.19 9.77 11.45 10.59 10.98 15.03 13.71
16 4.17 4.37 6.58 4.25 7.79 9.64 7.89
17 2.71 3.20 4.48 3.78 4.22 7.15 6.47
18 6.53 7.06 9.14 8.27 8.41 13.43 12.18
19 13.10 10.62 12.83 11.36 12.57 13.77 14.23
20 3.51 3.96 5.18 4.06 4.44 9.30 6.85
21 1.22 1.24 1.88 1.57 1.58 2.55 2.03
22 4.17 4.82 5.83 5.01 7.69 11.25 8.71
23 5.47 6.62 7.88 6.43 10.65 18.82 12.05
24 3.87 3.63 4.70 4.13 5.08 5.52 5.47
25 1.86 2.42 3.24 2.58 3.57 5.60 4.19

p-value N.A. 0.04 < 10−6 0.001 < 10−6 < 10−7 < 10−7
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Table 2.2: Relative Error (in %) of the out-of-sample predictions for 25 patients using 7 different
methods (note that: rows 1 to 25 respectively show the results corresponding to the 25 patients,
while the last row shows the p-value of the one-side paired Wilcoxon test. The “NA” p-value is
due to the fact that it is not necessary to compare Boost-S with itself.)

Patient Boost-S RF LightGBM XGBoost
Cubic Universal Linear

Splines Kriging Regression
1 9.67 8.01 9.10 8.58 9.91 12.29 10.68
2 56.62 51.01 61.28 55.37 60.03 60.47 67.27
3 11.04 12.52 15.79 11.93 13.72 18.40 17.01
4 5.03 5.34 6.65 5.53 7.60 8.36 7.61
5 7.30 9.41 12.28 8.26 10.77 20.25 19.07
6 4.42 5.73 7.53 5.65 7.29 12.52 9.72
7 8.92 9.41 13.52 9.52 9.72 20.53 18.06
8 23.25 22.32 27.34 25.52 43.34 43.51 43.78
9 13.62 15.45 19.11 15.18 14.45 20.04 18.91

10 2.28 2.74 3.80 3.07 4.26 6.48 5.77
11 11.44 10.78 12.31 10.94 14.42 13.41 14.39
12 1.09 1.32 2.11 1.55 1.99 3.06 2.25
13 3.66 4.25 5.82 4.55 8.00 9.70 8.20
14 1.49 2.75 3.89 2.72 3.17 4.70 3.59
15 21.40 19.97 23.97 21.21 23.26 32.02 29.69
16 8.36 8.67 13.14 8.13 15.27 20.18 15.49
17 3.90 4.68 6.49 5.34 6.05 9.93 9.51
18 7.46 8.79 11.28 9.97 9.99 17.54 15.31
19 21.70 17.32 21.40 18.19 20.08 21.71 23.53
20 4.02 4.58 6.01 4.60 5.05 10.15 7.95
21 1.91 1.94 2.91 2.43 2.53 4.08 3.24
22 6.34 7.18 8.67 7.61 11.55 17.54 13.37
23 8.10 9.55 11.61 8.73 16.69 25.45 18.96
24 5.24 5.01 6.55 5.63 7.10 7.85 7.61
25 5.07 6.59 8.69 6.86 9.72 14.92 11.26

p-value N.A. 0.09 < 10−6 0.004 < 10−6 < 10−7 < 10−7
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Table 2.3: Rooted Mean Squared Error of the out-of-sample predictions for 25 patients using 7
different methods (note that: rows 1 to 25 respectively show the results corresponding to the 25
patients, while the last row shows the p-value of the one-side paired Wilcoxon test. The “NA”
p-value is due to the fact that it is not necessary to compare Boost-S with itself.)

Patient Boost-S RF LightGBM XGBoost
Cubic Universal Linear

Splines Kriging Regression
1 11.05 9.01 10.05 9.66 10.89 13.00 11.66
2 16.46 14.77 15.88 16.22 16.14 19.66 19.42
3 7.73 7.83 10.42 8.10 9.17 12.89 11.61
4 5.74 5.51 6.96 5.89 7.73 8.28 7.74
5 4.13 5.97 7.75 5.41 6.00 12.83 10.64
6 2.68 3.11 4.27 3.24 3.89 6.68 5.36
7 7.03 6.68 10.16 7.13 6.98 17.10 12.64
8 7.62 7.88 9.86 8.58 11.50 14.09 13.07
9 11.15 11.69 14.64 12.02 11.80 15.57 15.04

10 3.21 3.80 5.09 4.32 5.97 8.28 7.66
11 12.52 12.06 12.76 12.41 14.47 14.68 14.87
12 1.89 2.20 3.48 2.64 3.64 4.75 4.02
13 2.20 2.46 3.38 2.66 4.56 5.10 4.68
14 1.04 1.69 2.38 1.72 1.95 3.21 2.37
15 14.17 13.19 15.05 14.17 14.29 18.66 17.32
16 5.77 5.94 9.01 5.71 10.18 12.27 10.31
17 3.48 4.15 5.84 4.73 5.30 8.99 8.28
18 8.72 8.98 11.69 10.50 10.83 16.69 15.26
19 19.26 15.23 17.88 16.30 17.69 20.01 19.80
20 5.02 5.21 6.50 5.29 5.94 11.18 8.33
21 1.72 1.82 2.75 2.22 2.09 3.29 2.72
22 5.52 6.61 8.09 6.59 9.75 13.63 11.06
23 7.36 8.73 10.18 8.68 13.29 23.28 15.15
24 5.10 4.78 6.05 5.41 6.63 7.07 7.07
25 2.55 3.16 4.16 3.34 4.67 7.14 5.39

p-value N.A. 0.19 < 10−5 0.003 < 10−4 < 10−7 < 10−7
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2.4 Conclusion

This paper proposed a new gradient Boosted Trees algorithm for Spatial Data with covariate infor-

mation (Boost-S). It has been shown that Boost-S successfully integrates spatial correlation into

the classical framework of gradient boosted trees. A computationally-efficient algorithm as well as

the technical details have been presented. The Boost-S algorithm grows individual trees by solv-

ing a regularized optimization problem, where the objective function involves two penalty terms

on tree complexity and takes into account the underlying spatial correlation. The advantages of

the proposed Boost-S, over six other commonly used approaches, have been demonstrated using

real datasets involving the spatially-correlated FDG-PET imaging data collected during concurrent

cancer chemotherapy and radiotherapy. In the current application, Boost-S was applied to data

from individual patients separately. One immediate future task is to extend the current algorithm

such that it can simultaneously handle data from a group of patients involved in the FLARE-RT

phase II clinical trial (NCT02772338). Random-effect model needs to be integrated into Boost-S

so as to account for the between-patient variation. The long-run purpose of the project is to pre-

dict whether the treatment will be effective for a patient or not before performing the treatment.

This task requires a more complicated model that involves random-effect that can account for pa-

tients’ information such as sex, age, etc. To achieve such a model, we have to build a model on a

patient-level basis that needs to be applied to multiple patients at once.
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2.6 Appendix

The following figures respectively show the MGE, RE and RMSE of the out-of-sample predictions

for the 25 patients. Such visualizations provide a holistic view on the performance of the seven

candidate methods. Note that, the proposed Boost-S yields (i) the lowest MGE for 19 out of the 25

patients, while RF performs the best for the remaining 6 patients; (ii) the lowest RE for 18 out of

the 25 patients, while RF performs the best for the remaining 7 patients; and (iii) the lowest RMSE

for 17 out of the 25 patients, while RF performs the best for the remaining 8 patients.

0

5

10

15

0 5 10 15 20 25
Patient

M
G

E

Method

Boost−S
Cubic Splines
LightGBM
Linear Regression
Random Forest
Universal Kriging
XGBoost

Figure 2.12: Mean Gross Error (MGE) of the out-of-sample predictions for 25 patients using 7
different methods
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Figure 2.13: Relative Error (RE) of the out-of-sample predictions for 25 patients using 7 different
methods
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Figure 2.14: Rooted Mean Squared Error (RMSE) of the out-of-sample predictions for 25 patients
using 7 different methods
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3 Structured Adaptive Boosting Trees and Detection of Platelet-Neutrophil Aggregations

due to E-Cigarette Exposure

3.1 Introduction

To surmount the edge detection problems associated with medical image analysis, this paper pro-

poses a Structured Adaptive Boosting Trees algorithm (AdaBoost.S) for fast detection of dynamic

multicellular aggregates present in fluorescence intravital microscopy (IVM) image data. The al-

gorithm is primarily motivated by the well-known observation that edges over an image mask

often exhibit special structures and are highly interdependent. Such structures can be exploited

and predicted, by statistical learning methods, using features extracted from bigger image patches

that cover the image masks. This paper presents (1) how features can be extracted from image

patches, (2) how extracted features can be used to predict the edge structures using the proposed

AdaBoost.S, and (3) how the proposed approach can be applied to detect vascular lung injury on

fluorescence intravital microscopy (IVM) data sets of mice exposed to e-cigarette vapor.

3.1.1 Motivating Application: Detection of Multicellular Aggregates in Fluorescence In-

travital Microscopy

IVM can be utilized to track interactions between multiple cell types over time in several organs

throughout the body including but are not limited to the lungs, liver, and brain (Bennewitz et al.,

2017; Kolaczkowska et al., 2015; Rapoport et al., 2015; Secklehner et al., 2017; Weigert et al.,

2010). To enable visualization of dynamic cell phenomena, the desired tissue is first gently immo-

bilized against a glass coverslip. The vasculature and cell populations of interest are highlighted

by injection of fluorescent dyes or antibodies, or through genetic engineering of fluorescent pro-

teins. In one imaging session, gigabytes of dynamic data are generated which presents a challenge

to manual analysis of cell interactions. To meet this need, microscope manufacturers have de-

signed analytical software to detect the individual labeled cells, but these platforms are met with

limitations including high cost. Additionally, processing requires human input to create a recipe
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that must be manually tweaked for every video, as fluorescent intensity varies for every mouse.

Multicellular interactions cannot be quantified longitudinally and fluorescent artifacts cannot be

excluded. Furthermore, lung movement is not corrected, which causes stationary cells to appear

mobile. Finally, there is no method to determine cell types within aggregates or the size of the

blocked vessel. In contrast, machine learning has the capability for smart detection and longitudi-

nal analysis of the multicellular interactions observed in IVM.

In this paper, we focus on blood cell interactions in the lungs of live mice exposed to e-cigarette

vapor. Currently, e-cigarettes have received much media attention due to the recent surge in teen

vaping of 135%, combined with more than 60 fatalities and more than 2700 hospitalizations asso-

ciated with e–cigarette use (Spectrum Health, 2022). While many believe that e-cigarettes are less

harmful than traditional cigarettes, the possible invisible damage of vaping has not yet been fully

elucidated. One of our goals with machine learning is to characterize the subclinical pathologies

resulting from e-cigarette vapor exposure to better predict the risks that accompany chronic use.

Specifically, the role of blood cells including neutrophils and platelets in lung injury needs to be

evaluated. Neutrophils are the most abundant type of white blood cells and can release a network of

DNA fibers called neutrophil extracellular traps (NETs) as a host defense mechanism (Brinkmann

et al., 2004). NETs can cause downstream injury through enabling inflammation, vessel damage,

and clot formation (Demers et al., 2012; Saffarzadeh et al., 2012). Platelets, which are known to

activate clotting, can adhere to neutrophils to form platelet-neutrophil aggregates that can block

blood vessels and prevent gas exchange (Etulain et al., 2015; Ma & Kubes, 2008).

For illustrative purposes, Figure 3.1 shows two fluorescence IVM images of the pulmonary

microcirculation of a healthy mouse (left), and a mouse exposed to e-cigarette vapor for three

hours per day over three days (right). These images are obtained from a preclinical study con-

ducted by the co-authors’ team. Blood vessels (green), platelets (pink), neutrophils (blue), and

NETs (red) were visualized in lung blood vessels after injection of FITC dextran, AlexaFluor 647

CD49b, Pacific Blue Ly6G, and SYTOX orange, respectively. By comparing the two IVM images

in Figure 3.1, the formation of platelet-neutrophil aggregates (the total area of objects containing
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(a) Healthy Mouse (b) Exposed Mouse

Figure 3.1: Fluorescence IVM images, obtained from a preclinical study conducted by the co-
authors’ team, of the pulmonary microcirculation of (left) a healthy mouse and (right) a mouse
exposed to e-cigarette vapor. Blood vessels are shown in green, platelets in pink, neutrophils in
blue and NETs in red. Arrows denote the direction of blood flow. Scale bar: 50µm.

colocalized neutrophil (blue) and platelet (purple) staining) are clearly observed from the mouse

exposed to e-cigarettes vapor, indicating the potential for decreased blood flow. Hence, given a

large number of fluorescence IVM images, a statistical learning algorithm is needed to efficiently

and accurately detect the edges of platelet-neutrophil aggregates, which serves as an essential step

toward understanding the effects of e-cigarettes and other pathologies driven by neutrophil-platelet

interactions.

3.1.2 Literature Review and Contributions

An edge in an image can be defined as an abrupt change of color intensity between two neighboring

pixels (Ziou, Tabbone, et al., 1998). Edge detection is a process that detects the presence and

location of edges formed by sharp changes in the image’s color intensity (Ramana et al., 2017).

Over the past decades, edge detection has remained as a fundamental yet challenging problem in

image analysis, computer vision and statistical learning (Goodfellow et al., 2016; Xie & Tu, 2015).

Early work has focused on detecting significant intensity changes or gradient magnitudes us-

ing convolutional masks on images such as Canny, Sobel, and Prewitt (Senthilkumaran & Rajesh,
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2009). These methods are fast but do not have the desired outcomes in most cases because they

are not capable of capturing texture edges and are too sensitive to noise. To better capture texture

edges and improve the robustness of the algorithms against noise, the state-of-the-art edge detec-

tion approaches employ various feature engineering techniques to extract information for making

meaningful differences between pixels. Then, machine learning techniques can be used to learn

the mapping between edges and extracted features (Bansal et al., 2022; Dollar et al., 2006; Good-

fellow et al., 2016; Lim et al., 2013; Singh & Sharma, 2021; Zheng et al., 2010). These approaches

predict whether a pixel contains an edge by considering the features extracted from surrounding

pixels, i.e., an image patch.

A critical observation is that edges over an image mask often exhibit special structures and are

highly interdependent (see Figure 3.7 in Section 3.3 for some examples). Nowozin and Lampert,

2011 and Dollár and Zitnick, 2013 investigated the interdependency among local patches and in-

troduced a family of novel methods called Structured Learning (SL). The key idea behind SL is to

learn the structures of a group of pixels, called masks, rather than computing if individual pixels

contain edges. Dollár and Zitnick, 2013 proposed an important ensemble tree-based algorithm for

fast edge detection—the Structured Random Forest (Structured RF). Such an algorithm grows an

ensemble of decision trees that robustly map the structured labels to a discrete space in which the

standard framework of Random Forest can be utilized (Hastie et al., 2009). It has been shown

that this approach can well leverage the inherent structure in edge patches and is computationally

efficient for real-time image edge detection.

Following the idea of Structured RF, this paper further makes the following contributions: it

proposes a new Structured Adaptive Boosting Trees algorithm (AdaBoost.S) for edge detection

problems. This work is naturally driven by the quest that, if the framework of Random Forest can

be adapted for structured learning, then, the framework of boosting trees should also have the po-

tential to be adapted for structured learning. Because Random Forest and boosting trees are main

competitors of each other, which are based on opposite ideas (fully-grown de-correlated trees in

parallel v.s. simple correlated trees in series), this paper fills a gap in the literature where the struc-
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tured boosting trees are not yet available. We describe in detail how features can be extracted from

image patches (such as color channels, gradient magnitude features, and orientation-based features

at multiple scales using Gabor wavelets), and how extracted features are used to predict the edge

structure over an image mask inside the image patch (see Figure 3.2). The AdaBoost.S algorithm

is applied to detect the platelet-neutrophil aggregates within lung blood vessels visualized on IVM

images, which facilitates our understanding of the potential damaging effects of e-cigarette vapor

exposure.

The rest of this paper is outlined as follows: Section 3.2 presents the feature extraction process

and the technical details of the proposed AdaBoost.S. The application of AdaBoost.S is presented

in Section 3.3, and Section 3.4 concludes the paper.

3.2 Structured Adaptive Boosting Trees

3.2.1 Basic Terminologies

We first define the key terminologies used in this paper:

An Image in Grayscale. An image is a matrix of pixels (picture elements) arranged in columns

and rows. For an image in grayscale, the value of each pixel represents only the intensity informa-

tion. In this paper, we let I(s1, s2) represent the intensity of a pixel, where s1 ∈ S1 and s2 ∈ S2

are the horizontal and vertical coordinates of the pixel, respectively.

Segmentation Mask. Image segmentation partitions an image into two segments (objects of

interest and the background). The segmented binary image is called the segmentation mask of

the original image. Image segmentation can be performed using the clustering algorithms such

as K-means (Dhanachandra et al., 2015), region-based Segmentation (Kohler, 1981), Mask R-

CNN (Huang et al., 2019), etc. These algorithms create the so-called black/white image, known

as binarization, where 0 and 1 indicate whether a pixel belongs to the background or an object.

Image segmentation is an essential process that reduces noise and defines the objects of interest;

for example, the platelets-neutrophils aggregates.

Image Patch. An image patch is a pixel array that has a predetermined dimension.
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Edge Mask. An edge mask is a pixel array in which the value of each element of this pixel

array is an edge label that indicates if this pixel belongs to an edge.

An image patch

An edge mask

Figure 3.2: (left) an IVM image; (right) a zoomed-in view of an image patch (outer square) and an
edge mask (inner square) taken from the IVM image.

Figure 3.2 provides an example of an image patch and an edge mask (inside the patch) taken

from an IVM image. In edge detection problems, using the features extracted from the surrounding

image patch, the values on an edge mask are predicted.

3.2.2 Feature Extraction

In this paper, the goal is to predict the values on an edge mask using features extracted from the

surrounding image patch. Feature extraction starts with creating the segmentation mask, which

distinguishes objects of interest from the background. In the motivating example, the objects

of interest are the platelet-neutrophil aggregates. The Gaussian low-pass blur filters are firstly

employed to enhance image structures at three different scales (including the original scale). Then,

the gradient magnitude features are extracted, and each gradient magnitude feature is further split

into four orientation-based features by the Gabor feature extraction technique. Each step of feature

extraction is explained in further detail below.
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Gaussian blur is a low-pass filter that reduces the level of noise in the image, which improves

the result of the edge-detection algorithms (Deriche, 1992; Van Vliet et al., 1998). When applying

the Gaussian blur filter, the image is convolved with an isotropic kernel Gaussian function:

IGF(s1, s2;σ) = HGaussian ∗ I(s1, s2)

≡
∫
S1

∫
S2

HGaussian(u, v)I(s1 − u, s2 − v)dudv
(3.1)

where ∗ represents the convolution operation, and HGaussian is a two-dimensional Gaussian kernel:

HGaussian(u, v;σ) =
1

2πσ2
exp

(
−u2 + v2

2σ2

)
(3.2)

where σ is the patch radius (standard deviation). The choice of σ controls the blurring scales:

the higher the σ, the lower the image resolution. In this paper, three different scales are used,

σ1 = 0 (the original scale), σ2 = 1, and σ3 = 2, and we obtain three low-pass filtered images

IGF(s1, s2;σ1), IGF(s1, s2;σ2), and IGF(s1, s2;σ3).

Based on the filtered images, gradient magnitudes can be computed:

|∇I(s1, s2;σ)| =
√

g2s1 + g2s2 (3.3)

where∇ is the gradient operator, and

gs1 =
∂I(s1, s2;σ)

∂s1
, gs2 =

∂I(s1, s2;σ)

∂s2
. (3.4)

Hence, the gradient magnitudes create three (feature) channels corresponding to the three scales

of σ of the Gaussian kernel, and we denote these three channels by C1(s1, s2), C2(s1, s2), and

C3(s1, s2).

Next, the Gabor filter is applied to each channel Ci(s1, s2), i = 1, 2, 3, to create additional

feature channels. The Gabor filter is a linear filter used for analyzing whether there is any specific

frequency content in the image along specific directions within a localized region around the point
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Figure 3.3: Gabor filter bank at orientations
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or region of analysis. A two-dimensional Gabor filter is a Gaussian kernel function modulated by

a sinusoidal plane wave:

HGabor(u, v; τ, θ, λ, γ, ϕ) = exp

(
−u′ 2 + λ2v′ 2

2τ 2

)
exp

(
i

(
2π

u′

λ
+ ϕ

))
(3.5)

where u′ = u cos θ + v sin θ and v′ = −u sin θ + v cos θ, τ represents the standard deviation, θ

indicates the angle, λ represents the wavelength, γ is the aspect ratio, ϕ controls the offset, and i

is an imaginary number. As an illustration, Figure 3.3 shows the Gabor filter at orientations π/4,

π/2, 3π/4, and π.

Applying the four Gabor filters (with orientations π/4, π/2, 3π/4, and π) to each of the gradient

magnitude channels, C1(s1, s2), C2(s1, s2), C3(s1, s2), creates another 12 (feature) channels. In

particular, we let Ci,j(s1, s2) represent the channel created by applying the j-th Gabor filter to the

i-th gradient magnitude channel. Table 3.1 provides a summary of the 16 features extracted for the

edge detection algorithm to be described in the next section. The 16 features channels include the 3

gradient magnitude channels (i.e., C1(s1, s2), C2(s1, s2), and C3(s1, s2)), the 12 orientation-based

channels created by the Gabor filter (i.e., Ci,j for i = 1, 2, 3 and j = 1, 2, 3, 4), and the original

grayscale image (i.e., I(s1, s2)).
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Table 3.1: A summary of the 16 features extracted for the edge detection algorithm

Feature Notation
Number of
channels

Grayscale intensity I(s1, s2) 1
Gradient magnitude C1(s1, s2), C2(s1, s2), and C3(s1, s2) 3

Orientation-based features Ci,j , i = 1, 2, 3 and j = 1, 2, 3, 4 12

3.2.3 Structured Learning using AdaBoost.S

We first present the data structure used to train the proposed structured adaptive boosting trees.

The extracted features are used to generate the feature matrix. From the images of the training

dataset, suppose that N image patches can be obtained and each patch is an n× n pixel array. For

patch i, we can obtain the n2 pixel values from each of the 16 feature channels and arrange the

pixel values into a 1 × n2 row vector. The 16 row vectors are combined to form a long 1 × 16n2

feature vector for patch i (see Figure 3.4). In total, there are N such rows in the feature matrix

which has a dimension of N × 16n2.

Associated with each patch i (i.e., each row of the feature matrix), there exists an edge mask

which is an m ×m pixel array. Each pixel on the edge mask takes a value of either 1 or 0, where

1 indicates that the pixel belongs to an edge. Figure 3.5 provides an illustrative example of two

distinct edge structures on two 4×4 edge masks. If we vectorize the m×m pixel arrays by columns,

we obtain a binary response vector yi = (yi,1, yi,2, · · · , yi,m2) for each edge mask, i = 1, 2, · · · , N .

Patch i I C1 C2 C3 C1,1 …… C3,3 C3,4

1 × n2 1 × n2 1 × n2 1 × n2

1 × 16n2

1 × n21 × n2 1 × n2

Figure 3.4: Illustration of the i-th row of the feature matrix

It is important to note that, in structured regression trees, each response vector needs to ef-

fectively represent a special edge structure. However, simple vectorization of the edge mask
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y = (1,0,0,0,1,0,0,0,1,0,0,0,1,1,1,1)

An edge structure The response vector
y = (1,0,0,0,1,1,1,0,0,0,1,0,0,0,1,1)

An edge structure The response vector

Figure 3.5: Each response vector represents a special edge structure.

(e.g., the y vectors shown in Figure 3.5) does not allow us to quantify the similarity between

two edge structures by computing the Euclidean distance between two vectors. For example, con-

sider three different edge structures on a 3 × 3 edge mask and their corresponding y vectors,

y1 = (1, 1, 1, 0, 0, 0, 0, 0, 0), y2 = (1, 1, 0, 0, 0, 0, 0, 0, 0) and y3 = (1, 0, 1, 0, 0, 0, 0, 0, 0). Al-

though the Euclidean distance between y1 and y2 is the same as the distance between y1 and y3, the

first and second edge structures are clearly more similar to each other.

To tackle this challenge, Dollár and Zitnick, 2013 advocated to create a long one-dimensional

vector zi ∈ Z from yi ∈ Y so as to represent the edge structure over an edge mask i through a

mapping:

Π : Y → Z. (3.6)

The length of zi is
(
m2

2

)
and each element of zi corresponds to a pair of pixels within yi. In

particular, for any pair yi,j and yi,j′ , the corresponding element in zi is set to 1 if yi,j ̸= yi,j′;

otherwise, the corresponding element in zi is set to 0. Hence, a vector zi, i = 1, 2, · · · , N , is

a binary vector that uniquely represents an edge structure over edge mask i. It is now possible

to define the dissimilarity between two edge structures by computing the Euclidean distance of

two z vectors. When m is large, Principal Component Analysis (PCA) can be used to reduce the

dimension of the z vectors.

Figure 3.6 illustrates the structure of the data used to train the structured boosting trees. The

feature matrix is extracted from the image patches. The response vectors (i.e., the z vectors) are
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obtained from the vectorized edge masks (i.e., the y vectors).

Patch 1

Patch 2

Patch N

…
 …

N × 16n2

Feature Matrix

N × m2

y vectors

N × m2
!

Responses (z vectors)

Image 
patches Data for growing the tree

Edge 
masks

Figure 3.6: Illustration of the structure of the dataset used to train the structured boosting trees
algorithm.

Based on the prepared training data, AdaBoost.S involves growing an ensemble of trees. It is

important to note that, an individual tree here is not a regular multivariate classification tree. In

this paper, because each z vector represents an edge structure in the training dataset, it is essential

to predict the entire response vector (i.e., the edge structure) all at once.

To tackle this challenge, Dollár and Zitnick, 2013 proposed to first perform a clustering analysis

of the response vectors on a tree node before this tree node can be split. The clustering analysis

effectively finds similar edge structures by grouping the response vectors (the z vectors) into a

small number of classes (i.e., each vector is assigned a discrete label). After this step, the tree

node splitting can be carried out as if we were growing a classification tree. Once the two daughter

nodes are found, the original response vectors are recovered, and the steps above are repeated on

each daughter node to complete the tree.

To elaborate, like how a classification tree is typically grown, we utilize the framework of

greedy algorithm (Hastie et al., 2009). At each tree node, we find the optimal splitting variable j

and split point l that define the left and right daughter nodes:

RL(j, l) =
{
x|x(j) ≤ l

}
, RR(j, l) =

{
x|x(j) > l

}
(3.7)
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where x(j) is the j-th feature of the feature vector x.

Before splitting a tree node , the feature vectors on the tree node are first clustered into K

classes using existing clustering algorithms (e.g., K-means, hierarchical clustering, etc.). The

clustering analysis defines a mapping C that assigns each zi on the tree node with a label ci

C : z 7→ c ∈ [1, 2, · · · , K]. (3.8)

After this step, the optimal splitting variable j and split point l are found by minimizing

min
j,l


∑

x
(j)
i ∈RL(j,l)

δ(ci, ĉL) +
∑

x
(j)
i ∈RR(j,l)

δ(ci, ĉR)

 (3.9)

where ĉL and ĉR are the predicted labels on the left and right daughter nodes which can be deter-

mined by the majority class on a node, and δ(·, ·) can be any commonly used measures such as the

misclassification error, Gini index, entropy, and so on.

When a tree is fully grown, the predicted label ĉ is converted back to the z vector through

the inverse mapping C−1. In particular, suppose a tree divides the feature space into D regions,

R1, R2, · · · , RD, and the predicted structure vector over each region is denoted by ẑ(m), then, the

output of the tree is given by

f(x) =
D∑

m=1

ẑ(d)I{x∈Rd} (3.10)

where I{x∈Rd} = 1 if x ∈ Rd, otherwise I{x∈Rd} = 0.

However, it is immediately noted that there often exist multiple distinct z vectors associated

with the same label c on a terminal node. Hence, the medoid of the z vectors on a terminal node d

is used as the predicted ẑ(d) on that node:

ẑ = argmink

∑
i,j

(zk,j − zi,j)
2 (3.11)
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which is the vector that has the minimum average distance to all other vectors.

Once it is possible to construct a single tree, we embed the structured trees into the classical

framework of AdaBoost.M1 (Freund & Schapire, 1997), and obtain the following AdaBoost.S

algorithm:

Initialization. All edge masks in the data set are given equal weights, ω
(0)
i = N−1, i =

1, 2, · · · , N .

Grow Structured trees. Grow M structured trees sequentially, T1, T2, · · · , TT . For t = 1, 2, · · · , T ,

this involves:

• Grow a structured tree Tt based on the training data with weights ω
(t−1)
i . Note that, the

weighted medoid of the z vectors on a terminal node m is used as the predicted ẑ(m) on that node.

In particular, let Id be a set that contains the image masks on terminal node d. Then, we have

ẑ = argmink

1

ω
(t−1)
k

∑
i∈Id, j=1,··· ,(m

2

2 )

(zk,j − zi,j)
2, k ∈ Id (3.12)

which is the vector that has the minimum weighted average distance to all other vectors.

• Compute the modeling error of Tt by

errt =
∑n

i ω
(t−1)
i I(yi ̸= Tt(xi))∑n

i ω
(t−1)
i

(3.13)

where I = 1 if yi ̸= Tt(xi), and I = 0 otherwise.

• Update the weights

ω
(t)
i ← ω

(t−1)
i exp{αtI(yi ̸= Tt(xi))}, i = 1, 2, · · · , N (3.14)

where αt = log((1−errt)/errt). Note that, it is necessary to make sure that αt > 0, or equivalently

errt < 0.5. This can be achieved by controlling the complexity (i.e., tree depth and number of

terminal nodes) of individual trees.

Ensemble output. Finally, for any image mask i, let ẑ(t)i be its predicted value from tree t for
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t = 1, 2, · · · , T . Then, the ensemble predictor of mask i is given by the weighted medoid of ẑ(t)i

ẑensemble
i = T (xi) = argmink

1

αk

∑
t

(ẑ
(k)
i − ẑ

(t)
i )2. (3.15)

3.3 Application: AdaBoost.S for Platelet-Neutrophil Aggregates Detection

This section revisits the example of fluorescence IVM images showing lung injury in mice exposed

to e-cigarette vapor in Section 3.1.1. Herein, we demonstrate the performance of the proposed

AdaBoost.S to identify platelet-neutrophil aggregates within this real dataset.

The data used in this section are obtained from mice undergoing e-cigarette vapor exposure in

the preclinical study conducted by the authors’ team. In the experiment, 3 mice are put into one

group and there are a total of 4 groups with different exposure paradigms. At least 15 videos are

taken of the lung in each region for each group. In this numerical example, we randomly extract 47

images (i.e., snapshots) from the videos and each image has a dimension of 420×300 pixels. Image

patches are extracted from the images. Each image patch has a dimension of 8× 8 pixels, and the

edge mask within an image patch has a dimension of 4×4 pixels. Figure 3.7 shows some examples

of edge structures on selected edge masks. To demonstrate the proposed algorithm, we focus on

the edges of the overlay of neutrophil and platelet. In total, there are 1809 unique structures in

our dataset. Based on the image patches and the feature extraction procedure described in Section

3.2.2, 16× 82 = 1024 features are extracted. We split the data according to a 55/45 ratio to create

the training and testing datasets, although other ratios may be used. In this case, 26 images are

used to grow the tree, while the remaining 21 images are used to validate the algorithm.

It is also important to note that, the images used in this example are extremely sparse, mean-

ing that most of the image patches are empty (which do not contain any edges). In our dataset,

91.5% of masks are empty and contain no structural information. Such data imbalance is known to

create a significant challenge for classification problems. To overcome this issue, we first use the

conventional AdaBoost to classify the image patches into two categories: the patches that contain

edges and the patches that do not contain any edges. Then, we apply the AdaBoost.S algorithm
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only to those image patches that contain edges. This hybrid procedure is illustrated in Figure 3.8.

Hence, given a new testing image, the trained AdaBoost model first identifies those non-empty im-

age patches. After that, the trained Adaboost.S model predicts the edge masks for those non-empty

image patches.

Figure 3.7: Examples of selected edge structures of neutrophil-platelet aggregates.

Following the procedure outlined in Figure 3.8, we train the AdaBoost.S ensemble trees using

the training dataset and test the model using the testing dataset. To demonstrate the performance of

AdaBoost.S, Figures 3.9, 3.10, and 3.11 present three examples that compare the predicted edges

with the labelled edges. To label the edges, the original images are firstly denoised and the pixels

that belong to the edges of the overlay of neutrophil and platelet are carefully identified. It is

immediately seen that the proposed AdaBoost.S is capable of detecting different edge structures

presented in these images.

Tables 3.2, 3.3 and 3.4 present the F-score, precision, and recall of the proposed AdaBoost.S

based on the testing dataset. Precision indicates the ratio between the number of correctly predicted

edge pixels and the total number of predicted edge pixels; Recall indicates the ratio between the

number of correctly predicted edge pixels and the number of actual edge pixels; and the F-score

is the harmonic mean of precision and recall. For all three metrics, their values lie between 0
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Figure 3.8: The hybrid procedure adopted for the edge detection problem in the numerical example:
AdaBoost first identifies those non-empty image patches, and Adaboost.S then predicts the edge
masks for those non-empty image patches.

and 1, and a higher value indicates better model performance. In addition, we also include the

comparison between the proposed AdaBoost.S and other tree-based methods including Random

Forest, XGBoost, and classification trees. It is seen that the proposed AdaBoost.S has the highest

recall and F-score on all testing cases. Although Random Forest yields the highest precision, it

yields a lower recall. Further investigation reveals that Random Forest generates fewer false edge

points so that a higher precision is achieved, while AdaBoost.S predicts far less non-edge pixels,

which distinguishes our algorithm from its competitors. When comparing the F-score, which is

the harmonic mean of precision and recall, the proposed AdaBoost.S significantly outperforms

the other methods. Note that, deep learning methods, such as the Convolutional Neural Networks

(CNN) (Goodfellow et al., 2016), are not included in the comparison because of the relatively

small training sample size in this numerical example (26 images are used to train the AdaBoost.S
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trees). Hence, this numerical example demonstrates the performance of the proposed method for

problems with small and moderate data sizes, while adapting a deep learning method such as CNN

for structured learning can be a very important topic once we have more data from our experiments.
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Figure 3.9: Illustration of the AdaBoost.S responses in the first selected field of view (FOV). The
top figure shows the actual fluorescence IVM image with the labelled edge map of neutrophil-
platelet aggregates, and the bottom figure shows the predicted edges of neutrophil-platelet aggre-
gates.
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Figure 3.10: Illustration of the AdaBoost.S responses in the second selected FOV. The top figure
shows the actual fluorescence IVM image with the labelled edge map of neutrophil-platelet aggre-
gates, and the bottom figure shows the predicted edges of neutrophil-platelet aggregates.

61



Figure 3.11: Illustration of the AdaBoost.S responses in the third selected FOV. The top figure
shows the actual fluorescence IVM image with the labelled edge map of neutrophil-platelet aggre-
gates, and the bottom figure shows the predicted edges of neutrophil-platelet aggregates.
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Table 3.2: F-score of the out-of-sample predictions

Image AdaBoost.S Random Forest XGBoost Decision Tree

1 0.82 0.65 0.64 0.11
2 0.84 0.65 0.63 0.11
3 0.80 0.66 0.65 0.10
4 0.85 0.54 0.61 0.09
5 0.81 0.55 0.58 0.10
6 0.84 0.64 0.65 0.11
7 0.78 0.55 0.61 0.10
8 0.73 0.18 0.45 0.09
9 0.72 0.39 0.51 0.11
10 0.81 0.54 0.61 0.08
11 0.77 0.52 0.60 0.11
12 0.72 0.44 0.54 0.08
13 0.74 0.49 0.57 0.10
14 0.77 0.57 0.60 0.12
15 0.81 0.61 0.63 0.10
16 0.83 0.64 0.63 0.11
17 0.85 0.68 0.69 0.10
18 0.75 0.54 0.57 0.13
19 0.80 0.64 0.62 0.11
20 0.81 0.58 0.62 0.09
21 0.84 0.66 0.63 0.10

Average ± Stdv 0.79 ± 0.04 0.56 ± 0.12 0.60 ± 0.05 0.10 ± 0.01
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Table 3.3: Precision of the out-of-sample predictions

Image AdaBoost.S Random Forest XGBoost Decision Tree

1 0.79 0.81 0.69 0.23
2 0.83 0.85 0.70 0.25
3 0.78 0.85 0.73 0.25
4 0.83 0.81 0.71 0.21
5 0.79 0.86 0.66 0.23
6 0.82 0.85 0.75 0.26
7 0.78 0.87 0.69 0.24
8 0.75 0.78 0.65 0.21
9 0.73 0.80 0.68 0.25
10 0.80 0.82 0.69 0.17
11 0.75 0.85 0.69 0.24
12 0.72 0.77 0.69 0.18
13 0.73 0.81 0.67 0.23
14 0.74 0.78 0.66 0.25
15 0.79 0.82 0.69 0.24
16 0.81 0.85 0.69 0.27
17 0.83 0.84 0.74 0.23
18 0.73 0.78 0.65 0.24
19 0.78 0.82 0.67 0.24
20 0.80 0.81 0.69 0.23
21 0.82 0.79 0.71 0.24

Average ± Stdv 0.78 ± 0.04 0.82 ± 0.03 0.69 ± 0.03 0.23 ± 0.02
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Table 3.4: Recall of the out-of-sample predictions

Image AdaBoost.S Random Forest XGBoost Decision Tree

1 0.86 0.54 0.60 0.07
2 0.85 0.53 0.58 0.07
3 0.84 0.53 0.58 0.07
4 0.87 0.41 0.53 0.06
5 0.83 0.40 0.51 0.07
6 0.86 0.51 0.58 0.07
7 0.79 0.42 0.55 0.06
8 0.70 0.10 0.34 0.06
9 0.71 0.25 0.40 0.07
10 0.81 0.40 0.55 0.05
11 0.79 0.38 0.53 0.07
12 0.73 0.31 0.45 0.05
13 0.75 0.35 0.50 0.06
14 0.80 0.45 0.55 0.08
15 0.84 0.49 0.58 0.07
16 0.85 0.51 0.58 0.07
17 0.87 0.57 0.65 0.06
18 0.78 0.42 0.51 0.09
19 0.83 0.52 0.57 0.07
20 0.83 0.45 0.56 0.06
21 0.87 0.56 0.56 0.07

Average ± Stdv 0.81 ± 0.05 0.43 ± 0.11 0.54 ± 0.07 0.07 ± 0.01
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3.4 Conclusions

We have proposed a Structured Adaptive Boosting Trees algorithm (AdaBoost.S) for edge detec-

tion problems associated with medical image analysis. The paper described in detail the feature

extraction process from image patches, and presented the technical details of how the extracted

features can be used to predict the edge structures using the proposed AdaBoost.S. The algorithm

captures the special edge structures which are highly interdependent. The proposed approach

was applied to a fluorescence IVM dataset for edge detection of platelet-neutrophil aggregates

within the pulmonary microcirculation of live mice exposed to e-cigarette vapor. AdaBoost.S is

widely applicable to analysis of other fluorescence IVM applications including cancer, infection,

and cardiovascular disease, with edge detection capability beyond platelets and neutrophils. Our

comparison studies have demonstrated the advantages of the proposed AdaBoost.S over existing

methods. One important future research direction is to adapt deep learning approaches, especially

CNN, for structure learning problems with large training datasets. For future work, CNN for

structured learning can be a very important topic once we have more data from our experiments.

Also, neutrophil-platelet aggregates can be labeled individually, and the direction and the range of

movement can be identified as the shape of clots is not changing drastically in a video. Having such

information, we are able to overcome the movement artifact. Furthermore, by labeling different

neutrophil-platelet aggregates, we can draw information such as their sizes and perimeters.
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4 A Review of Random Forest Based Feature Selection Techniques

4.1 Introduction

High dimensional datasets have been provided in recent years, especially those collected in gene

expression studies (Hua et al., 2005; Jirapech-Umpai & Aitken, 2005; Lee et al., 2005; Liu et al.,

2010; Ruiz et al., 2006; Zhu et al., 2007). Hence, many feature selection techniques have been

widely introduced in order to select a subset of features from a feature set such that the new set

increases the predictive accuracy by removing unimportant or non-informative features, enhances

the interpretability of a former complex data structure, and significantly reduces the computational

complexity of the predictor. Although many feature selection techniques are available, finding the

appropriate method for a specific application could be an overwhelming task. Therefore, we need

to classify them based on their nature as well as their objectives.

In general, feature selection methods are classified into filters, embedded algorithms, and wrap-

pers (Guyon & Elisseeff, 2003; Kohavi & John, 1997).

Filters employ some statistical measures to evaluate the relationship between the predictors and

the response vector such as correlation prior to the model building process. They select a subset of

features independent from the predictor, which in this paper all are classifiers. One major drawback

of filters is that they ignore the model performance, although they usually are faster than wrappers.

Embedded algorithms are the ones that contain built-in feature selection. These techniques

perform along the training process and select features that ensure accuracy improvements.

Finally, wrappers include predictive performance in their feature selection objective. Meaning

they fit different models to different combinations of features and identify the optimal set of fea-

tures that maximizes model performance. Also, wrappers can be built over any kind of model that

calculates feature importance. It is true that wrappers have the ability to eliminate unimportant

features, but the risk of overfitting is eminent.

Random Forests (RF) successful performance have been shown in a wide variety of applica-

tions. RF carries many advantages, such as its robustness against overfitting, the ability to han-
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dle noisy and missing data, and calculating measures of the so-called variable importance (VIM)

(Breiman, 2001). Therefore, RF is a strong candidate for building wrapper feature selection tech-

niques. RF based feature selection techniques or wrappers built over RF have been widely consid-

ered as the need for feature selection has been surging.

In this paper, We only focused on wrapper feature selection techniques built over RF. Be-

fore we move on, we further categorized the methods as either performance-based or test-based.

Performance-based methods tend to work under a forward selection and/or a backward elimination

strategy to select or remove features in the direction of prediction accuracy improvements. On the

other hand, test-based approaches tend to incorporate permutation frameworks in their algorithms

and exploit statistical tests to identify statistically significant features (Speiser et al., 2019).

One also needs to mention that different feature selection methods have various goals and

address different problems. One objective is finding a minimal optimal set in which they identify a

possible subset of features to perform the prediction. The other objective is known as identifying

all relevant features (strongly relevant and weakly relevant) in which removing these features has

a negative impact on the prediction accuracy (Kursa & Rudnicki, 2011).

The rest of this paper outlined as follows: Section 4.2 reviews background on RF classifiers.

Wrapper feature selection methods built over RF are presented in details in Section 4.3. Numerical

results are provided in Section 4.4, and Section 5 concludes the paper.

4.2 Random Forest

Random Forests (RF) are one of the most successful statistical learning approaches that build an

ensemble by growing many uncorrelated classification or regression trees (CART) in parallel. The

idea looks straightforward, combining many noisy but almost unbiased models in order to reduce

the variance of an estimated prediction function. The RF method is a supervised learner that builds

fully-grown trees and unpruned. For the ease of explanation, we provide Algorithm 2.

At the bootstrapping sampling, a portion of the dataset is picked with the replacement for

building a tree and those that opt out, are called out-of-bag (OOB) and are used to provide an
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Algorithm 2: Random Forests for Regression and Classification
1 Set the number of trees ntree = B
2 Set the value of mtry = m
3 for b=1,...,B do
4 Grow tree t by repeating the following steps:
5 (i) Draw a bootstrap sample of size N from the training set.
6 (ii) Grow a binary decision tree Tb to the bootstrapped data as follow, until the

stoppage criterion is met:

• Randomly select m variable from the feature set
• Find the best split variable, and split value that minimize impurity
• Split the node into two daughter nodes

(iii) Output the ensemble of trees {Tb}B1
7 end
8 To predict a new data point: use majority voting for classification problems and average

for regression problems

unbiased estimate of the model predictive performance. After growing each tree, an OOB error

rate is estimated like the way errors are calculated by N-fold cross-validation. Randomness in RF

helps to develop uncorrelated trees and as a result, has a low error rate. Also using a subset of

variables (i.e. mtry) at splitting nodes further reduces the model complexity and makes the model

robust to overfitting. Although, there is a rule of thumb for setting m =
√
p yet choosing the right

mtry is highly dependent on the problem and can be treated as a tuning parameter.

To elaborate, consider a set of B independent and identically distributed random variables. The

average on these B random variables, each with variance σ2, produces variance 1
B
σ2. On the other

hand, if we exclude the independence assumption among variables, the average of these B variables

becomes:

ρσ2 +
1− ρ

B
σ2 (4.1)

where ρ is the positive pairwise correlation.

RF fades the second term away by creating many trees. Also, it seeks to further reduce the
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overall ensemble variance by adding more noise to disrupt the correlation among trees while be-

ing conservative about increasing the variables’ variance. This strategy is achieved by bootstrap

sampling from the training set at each tree and by using a random subset of variables at each tree

node.

Finally, RF uses majority voting and averaging over all individual trees for classification and

regression problems, respectively to determine the prediction.

RF carries many advantages, such as its robustness against overfitting, the ability to handle

noisy and missing data, and calculating measures of the so-called variable importance measures

(VIM).

4.2.1 Variable Importance Scores

The RF algorithm has the built-in property that calculates variable importance scores in two dif-

ferent ways. By Mean Decrease Impurity (also known as Gini importance) or Mean Decrease

Accuracy (also known as Permutation importance). Either way, RF records the improvement in

the split criterion separately for each variable and accumulates them in the end. Putting the scores

in order gives a ranking in which the most important variable stands at the top of the list.

•Mean Decrease Impurity

The Gini index at node ν can be computed as follow:

Gini(ν) =
C∑
c=1

pνc (1− pνc ) (4.2)

where pνc is a portion of class-c observations at node ν. The Gini impurity of the variable Xi for

the two daughter nodes of ν is then derived from:

Gain(Xi, ν) = Gini(Xi, ν)− ωLGini(Xi, ν
L)− ωRGini(Xi, ν

R) (4.3)
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let νL and νR be two daughter nodes of ν, and ωL and ωR be proportions of observations dropped

in each daughter node.

The Gini criterion enables the RF classification model to split nodes at their highest impurity.

RF then calculates the variable importance (also known as Gini importance) by taking the average

of all decreases in Gini impurity.

Variable importance ranks features based on their contribution to the training process. Although

VIMs are an excellent source of variable assessments yet there is no benchmark to distinguish

informative from non-informative features. The next section introduces 12 wrappers build around

RF classification to cover the above issue.

•Mean Decrease Accuracy

The mean decrease accuracy is a method that evaluates the variable contributions in building the

ensemble by permuting OOB samples of each feature one after another. For each variable, the

predictive accuracy is once again evaluated and the decrease of performance induced by permu-

tation is averaged over all trees. The obtained values are then used as a measure of the variable

importance.

4.3 Feature Selection Methods

In this section, we provide a comprehensive review of the feature selection methods based on RF

for classification problems. In particular, a total number of 12 methods are reviewed, including

Boruta, RRF, GRRF, GRF, r2VIM, PIMP, NTA, varSelRF, VSURF, RF-SRC, AUC-RF and RFE.

For each method, we describe its main idea as well as the R packages for implementation. A

high-level overview of these methods is provided in Table 4.1.
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4.3.1 Boruta

Boruta, proposed by Kursa and Rudnicki (2010), is a wrapper feature selection method built around

the RF classification algorithm. Boruta is a test-based heuristic approximation algorithm that at-

tempts to find a threshold for feature selection rather than ranking features with some VIMs. In

other words, it solves the challenging all-relevant feature selection problem rather than finding

a minimal set of features. Boruta has been implemented in the R package, Boruta (Kursa &

Rudnicki, 2010).

The core idea behind the Boruta is that a feature is not important if its calculated importance

is less than the importance of a randomly permuted feature. Because removing irrelevant features

is expected to increase the accuracy in computing the variable importance, Boruta hinges upon

sequentially removing features that are found significantly irrelevant.

At each iteration, the Boruta algorithm duplicates each feature that exists in the feature set

with a random permutation of their observations. The duplicated features are referred to as the

shadow features. The RF is performed upon all features, including the shadow features, and the

feature importance is computed. Then, the features that have the higher importance compared to

the maximum importance among all the shadow features are deemed relevant, while the remaining

features are considered irrelevant and removed from the feature set. Since the random forest clas-

sifier produces different importance measures due to its randomness and the presence of shadow

features, Boruta usually repeats the process above multiple times until no more irrelevant features

can be removed. Finally, Boruta categorizes each feature as relevant (irrelevant) if it has an impor-

tance significantly higher (lower) than the maximum Z−score among all random shadow features

(MZSF). For those features with close importance measure to the best shadow feature (known as

tentative features), the Boruta algorithm does not make any decisions and let the user decide if

those tentative features should be included given the context of the application.
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4.3.2 RRF, GRRF, and GRF

Regularized Random Forest (RRF) is a wrapper feature selection technique built over the RF binary

classification problems. Unlike Boruta, RRF attempts to find a minimal optimal set of relevant

features and remove non-relevant features. RRF is available in the R package RRF. (Deng &

Runger, 2012)

Note that, although it is often possible to select the first K features with the highest importance

scores using the RF algorithm, selecting non-relevant features among the K features is likely in

the presence of correlated features. Hence, the RRF is an ensemble and greedy feature selection

technique that employs a regularized framework together with an upper bound of the Gini infor-

mation gain value when computing the feature importance. The regularized feature selection by

RRF helps on identify a compact feature subset possible to perform the prediction. Lets F be the

empty set of indices, λ ∈ (0, 1] be the penalty coefficient, and Gain∗ = 0 be the initial upper

bound of Gini information gain. At each tree node, for any feature Xi that are not in the set of

indices i /∈ F , RRF penalizes it by multiplying λ with the Gini information gain. The regularized

gain for variable Xi at a non-leaf node ν is then calculated as follow:

GainR(Xi, ν) =


λ× Gain(Xi, ν) if i /∈ F

Gain(Xi, ν) if i ∈ F

(4.4)

Hence, the split on Xi only occurs if the GainR(Xi, ν) exceeds the upper bound Gain∗ ob-

tained from previous splits, and the Gain∗ is updated after the node splitting. A comprehensive

description of the algorithm is provided in Deng and Runger (2012).

Note that, although RRF can be used as an ensemble classifier, RRF is often recommended to

use only for feature selection purposes. It is also noted that, as the depth of a tree increases, fewer

observations may drop in non-leaf nodes. The lack of enough observations may affect calculating

the Gini information gain, known as the node sparsity issue. Because of the node sparsity issue,

selecting a subset of features that includes weakly relevant features is probable.
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To alleviate the node sparsity issue, Deng and Runger (2013) proposed an enhanced version

of the RRF called the Guided Regularized Random Forest (GRRF). GRRF is also available in

the R package RRF. GRRF aims to select a compact feature set by building multiple ensembles,

and features are evaluated on the entire training set. GRRF incorporates the importance scores

calculated by an ordinary RF to guide the feature selection procedure in RRF, while the penalty

coefficient λ is no longer fixed for the entire feature set. In other words, GRRF dynamically

penalizes features out of the set of indices as follows:

GainR(Xi, ν) =


λi × Gain(Xi, ν) if i /∈ F

Gain(Xi, ν) if i ∈ F

(4.5)

where λi is given by

λi = 1− γ(1− Impi) (4.6)

with γ and Impi respectively being the weighting control parameter and the normalized variable

importance score of the variable Xi.

Based on experimental results on 10 gene datasets, it has been shown that GRRF may be

more robust than RRF against parameter changes, while the overall accuracy of RRF is higher.

Hence, RRF is recommended when accuracy is the major concern, while one may choose GRRF

if shrinking the feature set is the priority.

Finally, Deng (2013) proposed the Guided Random Forest (GRF) as a special case of GRRF.

GRF also shares the same idea of using a regular RF VIM to guide the feature selection process.

However, despite the GRRF that uses sequentially grown trees, GRF intends to build independent

trees in which parallel computation is applicable. Moreover, GRF removes the regularized part

in GRRF, making each split in a tree node highly dependent on previous splits. In a numerical

investigation based on 10 gene datasets, GRF in general selects more features than GRRF does.

However, it ends up building a more accurate classification RF model than building the RF using

78



the entire features. GRF is available in the R package RRF as well.

4.3.3 r2VIM

Recurrent Relative Variable Importance Measure (r2VIM) was proposed by Szymczak et al. (2016)

and is implemented in the R package Pomona (Fouodo, 2022). r2VIM is a test-based feature se-

lection technique built around the RF. The method is applicable for both regression or classification

problems. Like Boruta, the main goal is to find all-relevant features. In contrast, r2VIM establishes

a criterion to determine the number of features that need be selected.

The main idea of r2VIM is that relevant features have relatively high variable importance scores

no matter how many times and with what seeds we run the RF. On the other hand, irrelevant features

only occasionally have high importance scores.

The r2VIM algorithm involves three main components. First, it builds several RFs and cal-

culates VIMs associated with the ensembles. Second, since observing negative VIM for a noise

feature is probable, each variable importance score is divided by the observed absolute value of

the minimum importance score, called the relative importance score. Finally, all variables with

relative importance scores larger than a threshold in all runs are selected as all-relevant features.

The main advantage of r2VIM is that it is able to limit the number of false-positives under the null

hypothesis.

4.3.4 PIMP

Permutation Importance (PIMP) was proposed by Altmann et al. (2010) to distinguish relevant

predictors from less important ones. The key idea of using permutation in PIMP is to destroy any

sort of correlations between features and the response variable. PIMP is a heuristic approach that

attempts to find unbiased importance scores by fitting RFs to different permutations of the response

vector.

The PIMP algorithm starts by obtaining variable importance scores using the intact response

vector. Then, RFs are fitted on N different permutations of the response vector and the importance
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scores for all variables are calculated. Finally, based on the N sets of important scores, the p-value

is computed for each variable. Here, the p-values can be obtained by computing the fraction of

N importance scores that exceed the original importance score. Very often, to reduce the number

of permutations, a prior distribution such as Gaussian, log-normal, or gamma can be assumed.

The PIMP algorithm fits the distribution by computing the maximum likelihood estimates. After

that, the p-values for each variable are defined as the probability of observing an importance score

greater than the original importance score. Once the p-values for all variables have been computed,

variables with p-values less than a predetermined threshold (e.g. 0.05) are statistically significant

and thus selected. The R code for this method is available in the R package vita. (Celik, 2015)

4.3.5 NTA

One limitation that almost all test-based feature selection techniques is that RF does not provide a

threshold for selecting features. Hereby, Janitza et al. (2018) proposed a Naive and New Testing

Approach (NTA), a computationally fast heuristic variable importance test, that aims to find a cut-

off point in the VIMs generated by RF so as to find all-relevant features for classification problems.

NTA is available in the R package vita. (Celik, 2015)

NTA uses the hold-out variable importance, also known as the two-fold cross-validation method.

It first splits the entire dataset into two equal-sized subsets. Then, RF is applied to one of the sub-

sets and the variable importance scores are calculated for the other set. This process is repeated

for the other subset as well. The hold-out variable importance is defined as the mean variable

importance scores. The main idea of NTA is that irrelevant features do not create positive variable

importance. Based on the non-positive variable importance scores, NTA constructs an approxi-

mate null hypothesis distribution, and subsequently, computes the p-values corresponding to the

features of interest. Finally, the features that are statistically significant are included as all-relevant

features.
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4.3.6 varSelRF and RFE

Dıéaz-Uriarte and Alvarez de Andrés (2006) proposed a performance-based Variable Selection

method using Random Forests (varSelRF) and is available in the R package varSelRF (Diaz-

Uriarte, 2007). Using a backward elimination strategy under the aggressive variable selection

framework, the goal of this method is to find the smallest possible set of variables that has relatively

good predictive accuracy for either two-class or multi-class classification problems. The varSelRf

algorithm calculates variable importance only once by fitting RF on all features. Then, it fits

several RFs successively, and for each RF model, a predefined fraction of features with the lowest

importance scores (e.g., 20%) is removed. Finally, the algorithm identifies the smallest set of

features that has the smallest OOB error rate with an error rate within a chosen standard errors of

the minimum error rate among the fitted RFs.

It is noted that the varSelRF algorithm above ranks feature importance only once, which may

not be suitable in the existence of highly correlated predictors. Hence, Guyon et al. (2002) pro-

posed a modified version of varSelRf called Recursive Feature Elimination (RFE) to handle the

issue above. RFE is a performance-based feature selection algorithm that works under a backward

elimination strategy to find a minimal set of features with the minimum OOB-error rate. RFE is an

iterative algorithm where at each step:

(1) A RF model is fitted.

(2) Variable importance is calculated.

(3) OOB-error rate is estimated using samples that were not used in the model.

(4) A predefined ratio of least important features is removed from the feature set.

One needs to stress that, unlike varSelRF, RFE repeatedly calculates variable importance. The

algorithm stops when only a single feature remains. In the end, RFE identifies a set of features that

has the minimum OOB-error rate or has an error within a small range of the minimum error. RFE

is available in the R package caret. (Kuhn, 2020)
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4.3.7 VSURF

Variable Selection Using Random Forests (VSURF) is another performance-based feature selec-

tion technique applicable to both regression and classification problems. VSURF outputs two sub-

sets of features: one subset for interpreting purposes including all features that are highly correlated

with the response variable, and the other subset (known as the interpretation subset) for predict-

ing purposes that exclude redundant features so that the model involves only a smaller number of

features (Genuer et al., 2015). The algorithm is available in the R package VSURF. (Genuer et al.,

2019)

The VSURF algorithm consists of two steps: (i) preliminary elimination and ranking, and (ii)

variable selection. In the first step, a number of RFs are constructed and the variable importance

scores for all variables are obtained. Then, taking the average over all importance scores from all

RF runs, variables are sorted in descending manner in terms of their importance and those with the

least importance scores are removed from the feature set.

In the second step, using features retained from step one with the same order, VSURF fits a

RF to the most important variable and iteratively adds another variable until the last RF is fitted to

all variables. The interpretation subset thus becomes the smallest feature set that yields the lowest

OOB error rate with an error rate within its standard deviation. In particular, VSURF uses a forward

selection strategy to further shrink the feature set to achieve a better prediction performance. A

threshold is derived as follows:

1

m−m′

m−1∑
j=m′

|errOOB(j + 1)− errOOB(j)| (4.7)

where m is the number of variables selected in the first step, m′ is the number of variables that exist

in the interpretation subset, and errOOB(j) is the OOB error of the j-th RF constructed. Hence, a

variable is selected if the decrease of OOB error exceeds the threshold.
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4.3.8 RF-SRC

Random Forests for Survival, Regression, and Classification problems (RF-SRC) was proposed

and developed in the R package randomForestSRC (Ishwaran et al., 2022). In the confrontation

with high-dimensional data, the number of features p may exceed the sample size n. As a result, the

trees in a RF model cannot reach sufficient depth where the predictive variables can be identified.

Motivated by this limitation, Ishwaran et al. (2010) proposed the Variable Hunting (RSF-VH)

approach which performs as a forward stepwise regularized feature selection method.

The key idea behind RSF-VH is that features that are being split in nodes closer to the root

node are likely to be more important. Hence, a new concept of order statistic, called the minimal

depth of maximal subtrees, is employed to calculate variable importance scores. The algorithm of

RSF-VH works as follows:

(1) Fit a RF and select features using minimal depth thresholding.

(2) The set of features obtained in step (1) is used as an initial model. After that, other features

are added to the initial model based on minimal depth ranking until the variable importance

becomes stabilized in the nested models.

(3) Repeat steps 1 and 2 several times. Finally, a feature that appears most is selected if its size

is greater than the average.

It is reported that, for very high-dimensional microarray datasets, RSF-VH is able to select a

small set of features, genes in these particular datasets, along with low predictive error compared

to other state-of-the-art methods. (Wang & Li, 2017)

4.3.9 AUC-RF

AUC-RF was proposed by Calle et al. (2011) and is available in the R package AUCRF (Urrea &

Calle, 2012). AUC-RF is a performance-based variable selection method using RFs for problems
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with a labeled response vector. Using a backward elimination strategy under the aggressive vari-

able selection framework, the goal of this method is to find the set of features that has the highest

area under the ROC curve (AUC).

Like varSelRf, AUC-RF fits several RF models successively. For each RF constructed, feature

importance scores are obtained and features with the lowest importance scores are eliminated by

a predetermined ratio between 0 and 1 (e.g., 0.2). Finally, the algorithm selects a set of predictive

variables that has the highest OOB-AUC value among all RFs constructed.

4.4 Examples and Discussions

In this section, we apply the feature selection methods reviewed in Section 4.3 to three datasets,

and compare the results generated by different approaches. The data used in this section is obtained

from the UCI Machine Learning Database Repository (Frank, 2010).

The first dataset is the Sonar, Mines vs Rocks (SMR) dataset (Gorman & Sejnowski, 1988).

This dataset contains the sonar (sound navigation and ranging) data that can be used to distinguish

metal sea mines and rocks on seafloor. This dataset contains 60 features and 208 instances where

111 of them are metal samples and the rest are rock samples. The features are derived from the

receiving sonar signals under various conditions and from different angles, spanning 90 degrees

for the cylinder and 180 degrees for the rocks.

The second dataset is the Wisconsin Breast Cancer (WBC) dataset from patients diagnosed

with cancer(Wolberg & Mangasarian, 1990; Zhang, 1992). This dataset can be used to predict

whether a cancerous tumor is malignant or benign utilizing the information obtained from biopsy

procedures. The dataset has 9 features and involves 699 patients. Features are computed from a

digitized image of a fine needle aspirate (FNA) of a breast mass. They describe characteristics of

the cell nuclei present in the image.

The third dataset is the Spam Emails (SE) dataset (Hopkins et al., 1999). The data are col-

lected from personal and work-related emails, and include 4601 sample emails categorized into

two groups: spam and nonspam. A total number of 57 features are available, including the ratio
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of 48 different words that repeat in an email over the total number of words, the frequency of 6

different characters occurring in the email, and 3 other features relating to uninterrupted sequences

of capital letters.

For all three datasets, we apply the ordinary Random Forest (using all features) as well as the

12 feature selection approaches (using selected features). Figures 4.1, 4.2, and 4.3 respectively

show the number of features selected by each method for the three datasets. An initial examination

immediately suggests that the number of features selected by different feature selection methods

vary dramatically. One that needs to be explained here is that having more features or less fea-

tures highly depends on the user preferences and the nature of the application. Too many features

add much complexity to models that cause excessively slow computational processes. Therefore,

feature selection techniques try to eliminate features with less predictive importance and sacrifice

some predictive accuracy in favor of interpretability and computational complexity. There must

be a trade-off between them, but we can safely say in a case that if predictive accuracy did not

change much by shrinking its feature set, a smaller feature set is preferred for sure. For all three

datasets, GRF always selects the smallest number of features based on all three datasets, while

Boruta tends to include most of the features. The lack of consistency is the first indication that one

should always carefully choose feature selection methods given the problem at hand.

Furthermore, Tables 4.8, 4.9, and 4.10 respectively show exactly what features are selected by

different approaches for the three datasets. In these tables, “1” and “0” respectively denote that

a feature is included or excluded, and the last column shows the number of times that a feature

is selected by the 12 feature selection methods. It is not surprising to see that different feature

selection methods select different sets features, as these methods are built upon different ideas.

One interesting question to answer is to see which of these feature selection methods tends to

select the same features. In other words, we want to detect associations or relationships between

feature selection methods. For example, if a feature is picked by a method set, how likely would

it be to be picked by another method set. To shed some light on this question, we perform an

association analysis of the features.
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Figure 4.1: Number of features selected by each method for the SMR dataset.
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Figure 4.2: Number of features selected by each method for the WBC dataset.
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Figure 4.3: Number of features selected by each method for the SE dataset.

Table 4.2: Association analysis sorted by support on SMR dataset

Left method set Right method set Support Confidence

PIMP NTA 0.8 1
NTA PIMP 0.8 0.82

Boruta NTA 0.63 1
NTA Boruta 0.63 0.65

Boruta PIMP 0.58 0.92
PIMP Boruta 0.58 0.72

Boruta, PIMP NTA 0.58 1
Boruta, NTA PIMP 0.58 0.92
NTA, PIMP Boruta 0.58 0.72

r2VIM NTA 0.51 1
NTA r2VIM 0.51 0.53

r2VIM Boruta 0.5 0.96
Boruta r2VIM 0.5 0.78

Boruta, r2VIM NTA 0.5 1
r2VIM, NTA Boruta 0.5 0.96
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Table 4.3: Association analysis sorted by confidence on SMR dataset

Left method set Right method set Support Confidence

GRRF AUCRF 0.11 1
GRRF r2VIM 0.11 1
GRRF Boruta 0.11 1
GRRF NTA 0.11 1

VSURF varSelRF 0.15 1
VSURF AUCRF 0.15 1
VSURF r2VIM 0.15 1
VSURF Boruta 0.15 1
VSURF NTA 0.15 1

RFE NTA 0.38 1
RF.SRC AUCRF 0.33 1
RF.SRC r2VIM 0.33 1
RF.SRC Boruta 0.33 1
RF.SRC NTA 0.33 1
varSelRF Boruta 0.40 1

Table 4.4: Association analysis sorted by support on WBC dataset

Left method set Right method set Support Confidence

AUCRF Boruta 1 1
Boruta AUCRF 1 1
RFE AUCRF 0.89 1

AUCRF RFE 0.89 0.89
RFE Boruta 0.89 1

Boruta RFE 0.89 0.89
RRF AUCRF 0.89 1

AUCRF RRF 0.89 0.89
RRF Boruta 0.89 1

Boruta RRF 0.89 0.89
RFE, AUCRF Boruta 0.89 1
Boruta, RFE AUCRF 0.89 1

Boruta, AUCRF RFE 0.89 0.89
RRF, AUCRF Boruta 0.89 1
Boruta, RRF AUCRF 0.89 1
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Table 4.5: Association analysis sorted by confidence on WBC dataset

Left method set Right method set Support Confidence

GRF RF.SRC 0.33 1
GRF varSelRF 0.33 1
GRF GRRF 0.33 1
GRF VSURF 0.33 1
GRF RRF 0.33 1
GRF AUCRF 0.33 1
GRF Boruta 0.33 1
PIMP varSelRF 0.44 1
PIMP VSURF 0.44 1
PIMP RRF 0.44 1
PIMP AUCRF 0.44 1
PIMP Boruta 0.44 1

RF.SRC GRRF 0.44 1
RF.SRC VSURF 0.44 1
RF.SRC RRF 0.44 1

Table 4.6: Association analysis sorted by support on SE dataset

Left method set Right method set Support Confidence

RFE Boruta 0.95 0.98
Boruta RFE 0.95 0.96
r2VIM RFE 0.84 1
RFE r2VIM 0.84 0.87

r2VIM Boruta 0.84 1
Boruta r2VIM 0.84 0.86

r2VIM, RFE Boruta 0.84 1
Boruta, r2VIM RFE 0.84 1
Boruta, RFE r2VIM 0.84 0.89

PIMP RFE 0.81 1
RFE PIMP 0.81 0.84
PIMP Boruta 0.81 1
Boruta PIMP 0.81 0.82

RFE, PIMP Boruta 0.81 1
Boruta, PIMP RFE 0.81 1
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Table 4.7: Association analysis sorted by confidence on SE dataset

Left method set Right method set Support Confidence

GRF VSURF 0.11 1
GRF GRRF 0.11 1
GRF RF.SRC 0.11 1
GRF varSelRF 0.11 1
GRF RRF 0.11 1
GRF AUCRF 0.11 1
GRF PIMP 0.11 1
GRF r2VIM 0.11 1
GRF RFE 0.11 1
GRF Boruta 0.11 1

VSURF RRF 0.37 1
VSURF r2VIM 0.37 1
VSURF RFE 0.37 1
VSURF Boruta 0.37 1
GRRF AUCRF 0.42 1
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Table 4.8: Selected features of SMR dataset
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V1 1 0 1 1 0 0 0 1 1 0 0 0 5

V2 1 0 0 0 1 0 0 1 0 0 0 0 3

V3 0 0 0 0 0 0 0 1 0 0 0 0 1

V4 1 1 1 1 0 0 0 1 1 0 1 1 8

V5 1 0 1 1 0 0 0 1 1 0 1 1 7

V6 0 0 0 0 0 0 0 1 0 0 1 0 2

V7 0 0 0 0 0 0 0 1 0 0 0 0 1

V8 1 0 0 1 1 0 0 1 1 0 0 0 5

V9 1 1 1 1 0 1 1 1 1 0 1 1 10

V10 1 1 1 0 0 1 1 1 1 0 1 1 9

V11 1 1 1 0 1 1 1 1 1 1 1 1 11

V12 1 1 1 1 1 1 1 1 1 1 1 1 12

V13 1 1 1 0 1 0 0 1 1 0 1 1 8

V14 0 0 0 1 0 0 0 1 0 0 0 0 2

V15 1 1 1 0 0 0 0 1 1 0 0 0 5

V16 1 1 1 0 1 0 0 1 1 1 1 1 9

V17 1 1 1 1 1 0 0 1 0 1 1 1 9

V18 1 1 1 0 0 1 0 1 0 0 1 0 6

V19 1 0 0 0 0 0 0 1 1 0 0 0 3

V20 1 1 1 0 1 0 0 1 1 0 1 0 7

V21 1 1 1 1 0 0 0 1 1 1 1 1 9
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V47 1 1 1 1 1 0 0 1 1 0 1 1 9

V48 1 1 1 0 1 0 0 1 1 1 1 1 9

V49 1 1 1 1 0 0 0 1 1 0 1 1 8

V50 0 0 0 0 0 0 0 1 1 0 0 0 2

V51 1 0 1 1 0 0 0 1 1 0 1 1 7

V52 1 0 1 1 1 1 0 1 1 0 1 1 9

V53 0 0 0 0 1 0 0 1 1 0 0 0 3

V54 0 0 0 0 0 0 0 1 1 0 0 0 2

V55 0 0 0 0 0 0 0 1 1 0 0 0 2

V56 0 0 0 0 1 0 0 0 0 0 0 0 1

V57 0 0 0 0 0 0 0 1 0 0 0 0 1

V58 0 0 0 0 0 0 0 1 1 0 0 0 2

V59 1 0 0 0 0 0 0 1 1 0 0 0 3

V60 0 0 0 0 0 0 0 1 1 0 0 0 2
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Table 4.9: Selected features of WBC dataset
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Cell.size 1 1 0 0 1 1 1 0 1 1 1 1 9

Cell.shape 1 1 0 1 1 1 1 0 0 1 1 1 9

Marg.adhesion 1 0 0 1 1 0 0 0 0 0 1 0 4

Epith.c.size 1 0 0 1 1 1 0 0 0 1 1 0 6

Bare.nuclei 1 1 0 1 1 1 1 0 1 1 1 1 10

Bl.cromatin 1 0 0 1 1 1 0 0 0 1 1 1 7

Normal.nucleoli 1 1 0 1 1 1 0 0 1 1 1 0 8

Mitoses 1 0 0 1 0 0 0 0 0 0 1 0 3

Table 4.10: Selected features of SE dataset
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make 1 0 0 1 1 0 0 0 0 0 1 0 4
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over 1 1 1 1 1 1 0 0 1 0 1 0 8

remove 1 1 1 1 1 1 1 0 1 1 1 1 11

internet 1 1 1 1 1 0 0 0 1 0 1 1 8

order 1 0 1 1 1 1 0 0 1 0 1 0 7

mail 1 0 1 1 1 1 0 0 1 0 1 1 8

receive 1 1 1 1 0 0 0 0 1 0 1 1 7

will 1 1 1 1 1 1 0 0 1 1 1 1 10

people 1 0 1 1 1 0 0 0 1 0 1 0 6

report 1 0 0 1 0 0 0 0 1 0 1 0 4

addresses 1 0 1 1 0 0 0 0 1 0 0 0 4

free 1 1 1 1 1 1 1 0 1 1 1 1 11

business 1 1 1 1 1 0 0 0 1 1 1 1 9

email 1 1 1 1 1 1 0 0 1 0 1 1 9

you 1 1 1 1 1 1 0 0 1 1 1 1 10

credit 1 1 1 1 1 1 0 0 1 0 1 0 8

your 1 1 1 1 1 1 1 0 1 1 1 1 11

font 1 0 1 1 0 0 0 0 1 0 1 0 5

num000 1 1 1 1 1 0 0 0 1 1 1 1 9

money 1 1 1 1 0 0 0 0 1 0 1 1 7

hp 1 1 1 1 1 1 0 0 1 1 1 1 10

hpl 1 1 1 1 0 0 0 0 1 0 1 1 7
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george 1 1 1 1 1 1 0 0 1 1 1 1 10

num650 1 1 1 1 1 0 0 0 1 1 1 0 8

lab 1 0 1 1 1 0 0 0 0 1 0 0 5

labs 1 1 1 1 0 0 0 0 1 0 1 0 6

telnet 1 0 1 1 0 0 0 0 1 0 0 0 4

num857 1 0 0 0 0 0 0 0 0 0 0 0 1

data 1 0 1 1 1 1 0 0 1 0 1 0 7

num415 1 0 0 0 0 0 0 0 0 0 0 0 1

num85 1 0 1 1 1 0 0 0 1 0 1 0 6

technology 1 0 1 1 1 0 0 0 1 0 1 0 6

num1999 1 1 1 1 1 0 0 0 1 1 1 1 9

parts 1 0 0 1 0 0 0 0 0 0 0 0 2

pm 1 0 1 1 0 0 0 0 0 0 1 0 4

direct 1 0 0 1 0 0 0 0 1 0 0 0 3

cs 1 0 0 1 1 0 0 0 0 0 0 0 3

meeting 1 1 1 1 1 1 0 0 1 1 1 1 10

original 1 0 1 1 0 0 0 0 0 0 0 0 3

project 1 0 1 1 1 0 0 0 1 0 1 0 6

re 1 1 1 1 1 1 0 0 1 1 1 1 10

edu 1 1 1 1 1 1 0 0 1 1 1 1 10

table 0 0 0 1 0 0 0 0 0 0 0 0 1
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conference 1 0 1 1 0 0 0 0 1 0 0 0 4

charSemicolon 1 0 1 1 1 1 0 0 1 0 1 0 7

charRoundbracket 1 1 1 1 1 0 0 0 1 0 1 1 8

charSquarebracket 1 0 1 1 0 1 0 0 0 0 1 0 5

charExclamation 1 1 1 1 1 1 1 0 1 1 1 1 11

charDollar 1 1 1 1 1 1 1 0 1 1 1 1 11

charHash 1 0 1 1 1 0 0 0 1 0 1 0 6

capitalAve 1 1 1 1 1 1 1 0 1 1 1 1 11

capitalLong 1 1 1 1 1 1 0 0 1 1 1 1 10

capitalTotal 1 1 1 1 1 1 0 0 1 1 1 1 10

Finally, a 10-fold cross-validation is performed for all approaches. The mean and standard

deviation of the classification AUC (Area under the Curve), F1-score, and OOB-error rate are re-

ported. Tables 4.11, 4.12, and 4.13 respectively present the results obtained from the three datasets.

Each table shows the 10-fold cross-validation AUC, F1-score, OOB-error rate, and the number of

features selected by each method.

For the SMR dataset, we see from Table 4.11 that the number of features selected by different

feature selection methods vary dramatically. While the NTA method identifies 58 features, the

GRF method only includes 4 features. Remarkably, it is noted that the VSURF approach achieves

the highest F-1 score and the lowest OOB-error rate by including the smallest number of features

(i.e., only 9 out of the 60 features are included to achieve the best performance). VSURF also

produces a reasonably high AUC which is only slightly lower than that of PIMP, varSelRF, and

97



NTA, while the latter three approaches involve way more features.

For the WBC dataset, we obtain from Table 4.12 a similar observation that the number of

features selected by different feature selection methods can vary dramatically. While the Boruta

and AUCRF approaches retain all 9 features, GRF method only selects 3 features. It is also noted

that the r2VIM and NTA approaches are not able to produce valid results (indicated by “NAs”) in

this table. As already mentioned in Section 4.3, this is because the r2VIM and NTA algorithms lean

on negative variable importance created by non-relevant features, and error messages are returned.

For the SE dataset, all methods but NTA are able to produce valid results as shown in Table

4.13. The number of features selected by different feature selection methods again vary dramati-

cally. GRF approach identifies a much smaller number of features. However, it also has the worst

overall performance among the 13 approaches. Because all methods (except for GRF) yield sim-

ilar predictive performance, one naturally prefer those methods that include a smaller feature set

features for a better balance of model complexity and model performance, such as VSURF (21

features), GRRF (24 features), and RF-SRC (26 features).

Table 4.11: Summary of RF 10-fold cross-validation using Sonar, Mines vs Rocks dataset

Method AUC F1-score OOB(%) Selected Features

RF 0.946 ± 0.036 0.824 ± 0.108 15.97 ± 1.17 60
Boruta 0.936 ± 0.040 0.802 ± 0.148 15.01 ± 1.65 38

varSelRF 0.938 ± 0.045 0.809 ± 0.096 14.79 ± 1.44 24
r2VIM 0.936 ± 0.043 0.838 ± 0.096 14.63 ± 1.54 31
RFE 0.929 ± 0.048 0.781 ± 0.137 16.93 ± 1.15 23
RRF 0.923 ± 0.049 0.798 ± 0.106 16.56 ± 1.44 22

GRRF 0.872 ± 0.073 0.777 ± 0.112 20.62 ± 1.97 7
GRF 0.800 ± 0.087 0.703 ± 0.085 26.87 ± 1.47 4
NTA 0.939 ± 0.039 0.796 ± 0.170 15.49 ± 1.65 58
PIMP 0.949 ± 0.037 0.828 ± 0.132 15.11 ± 0.88 48

VSURF 0.937 ± 0.049 0.842 ± 0.063 14.37 ± 1.03 9
AUCRF 0.936 ± 0.045 0.812 ± 0.112 15.06 ± 0.91 29
RF-SRC 0.922 ± 0.043 0.802 ± 0.140 17.25 ± 1.26 20
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Table 4.12: Summary of RF 10-fold cross-validation using Wisconsin Breast Cancer dataset

Method AUC F1-score OOB(%) Selected Features

RF 0.993 ± 0.009 0.963 ± 0.029 2.86 ± 0.33 9
Boruta 0.993 ± 0.009 0.963 ± 0.029 2.86 ± 0.33 9

varSelRF 0.989 ± 0.011 0.949 ± 0.043 3.28 ± 0.53 5
r2VIM NA NA NA NA
RFE 0.992 ± 0.009 0.961 ± 0.035 2.50 ± 0.34 8
RRF 0.993 ± 0.008 0.963 ± 0.032 2.74 ± 0.35 8

GRRF 0.990 ± 0.011 0.948 ± 0.047 3.28 ± 0.53 6
GRF 0.990 ± 0.010 0.935 ± 0.043 4.52 ± 0.57 3
NTA NA NA NA NA
PIMP 0.989 ± 0.010 0.942 ± 0.052 3.52 ± 0.43 4

VSURF 0.992 ± 0.009 0.961 ± 0.029 2.89 ± 0.44 7
AUCRF 0.993 ± 0.009 0.961 ± 0.033 2.63 ± 0.25 9
RF-SRC 0.990 ± 0.010 0.927 ± 0.034 4.63 ± 0.61 4

Table 4.13: Summary of RF 10-fold cross-validation using the Spam Emails dataset

Method AUC F1-score OOB(%) Selected Features

RF 0.986 ± 0.006 0.936 ± 0.010 4.93 ± 0.14 57
Boruta 0.986 ± 0.006 0.935 ± 0.012 4.91 ± 0.10 56

varSelRF 0.986 ± 0.005 0.937 ± 0.010 4.91 ± 0.10 30
r2VIM 0.986 ± 0.006 0.938 ± 0.011 4.91 ± 0.05 48
RFE 0.986 ± 0.006 0.937 ± 0.012 4.95 ± 0.13 55
RRF 0.986 ± 0.005 0.941 ± 0.009 4.71 ± 0.11 38

GRRF 0.985 ± 0.005 0.935 ± 0.010 5.04 ± 0.07 24
GRF 0.957 ± 0.006 0.895 ± 0.010 7.82 ± 0.23 6
NTA NA NA NA NA
PIMP 0.986 ± 0.005 0.932 ± 0.010 4.82 ± 0.17 46

VSURF 0.986 ± 0.005 0.936 ± 0.010 4.79 ± 0.16 21
AUCRF 0.986 ± 0.005 0.938 ± 0.012 4.76 ± 0.11 45
RF-SRC 0.986 ± 0.005 0.936 ± 0.007 5.02 ± 0.12 26
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5 Conclusion

Feature selection is still a hot research topic as datasets with excessive-high dimensionality have

been collected recently, especially in gene expression studies. FS advantages lie underneath of

removing unimportant and highly correlated features, which reduces the complexity of models,

enhances interpretability of the features, and improves the predictive accuracy in practice. The

algorithms and strategies of variant wrappers built over RF were fully discussed. In our review,

VSURF performed very well while selecting relatively smaller sets of features. However, we make

no recommendation here since finding an appropriate FS method highly depends on the application

and users’ preferences.

To sum up, it has been shown that GRF always selects the smallest sets, but this does impact

its predictive performance. NTA and r2VIM suffer from their algorithm foundation. As we men-

tioned, they are not applicable if they cannot find any negative variable importance. It has been

observed that Boruta selects a large number of features and its performance is approximately close

to RF itself. Also, it is interesting to see that VSURF offered outstanding predictive performances,

although it selects relatively smaller sets of features compared to other approaches.
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6 Summary

In machine learning, numerous methods have been developed and are being used in a wide variety

of applications. However, the vital role these models play in the healthcare sector’s developments

and the importance of improving diagnosis and prediction accuracy has prompted this dissertation.

Among the machine learning methods, ensemble models have become one of the most successful

statistical learning approaches. Despite existing sophisticated ensemble models, we could extend

the depth of this branch of modeling with our two proposed boosting trees models. In this disser-

tation, we introduced Boost-S, a gradient boosted trees algorithm for spatial data with covariate

information, and AdaBoost.S, a structured adaptive boosting trees algorithm for edge detection

problems.

It has been shown that Boost-S successfully integrates spatial correlation into the classical

framework of gradient boosted trees. A computational-efficient algorithm as well as the technical

details have been presented. The Boost-S algorithm grows individual trees by solving a regularized

optimization problem, where the objective function involves two penalty terms on tree complexity

and takes into account the underlying spatial correlation. Boost-S performance and advantages

were assessed by applying based on the real datasets involving the spatial-correlated FDG-PET

imaging and comparing to six other commonly used approaches.

We also described in detail the feature extraction process from image patches and presented

the technical details of how the extracted features can be used to predict the edge structures which

are highly interdependent. AdaBoost.S capabilities and predictive accuracy was evaluated based

on real datasets of fluorescence IVM images for edge detection of platelet-neutrophil aggregates

within pulmonary microcirculation of live mice exposed to e-cigarette vapor. Our comparison

studies have demonstrated the advantages of the proposed AdaBoost.S over existing methods.

In the end, as datasets with excessive-high dimensionality have been collected recently, feature

selection has become a hot research topic. Therefore, we gave a comprehensive review and com-

pared different random forest based feature selections for classification problems. We showed that
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GRF always selects the smallest sets, but this does impact its predictive performance. NTA and

r2VIM are not applicable to all datasets since their algorithms lean on producing negative variable

importance. Also, it has been observed that Boruta selects a large number of features and its per-

formance is approximately close to RF. It was interesting to see that VSURF offered outstanding

predictive performances while selecting relatively smaller sets of features compared to other ap-

proaches. Finally, We found that a good FS method highly depends on the application and user’s

preferences
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