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Abstract  

This dissertation details the development of a surface wave method (SWM) technique to 

generate deep shear wave velocity profiles (VS profiles), applying this technique at 24 sites 

across the Mississippi embayment and developing an approach to generate pseudo site signature 

consistent VS profiles from velocity functions and fundamental frequency. In the presented SWM 

technique, active and passive source surface wave measurements are inverted along with 

fundamental frequency to develop a site signature consistent VS profile. Multiple transformation 

methods, including MSPAC, HRFK and FK are used to resolve experimental dispersion data 

from surface wave measurements. SWM VS profile at the Central US Seismic Observatory 

(CUSSO) site is validated by comparing with the downhole measurements at the site. Both a-

priori and blind approach parameterizations are used for the surface wave inversion. While a 

comparable result is found between the blind and a-priori approach, the blind approach is 

incapable of identifying velocity reversals. Therefore, if available, a-priori information should be 

used to guide the parameterization process. In the absence of a-priori information, engineering 

judgement, experience of local geology and iterative parameterization should be used. 

Deep VS profiles are developed at 24 sites across the Mississippi embayment utilizing the 

SWM technique. While the Central US Seismic Velocity Model (CUSVM) provides a 

continuous 3D Vs model of the embayment, significant differences in layer interfaces and shear 

wave velocities are observed between the measured and CUSVM modeled VS profiles, 

particularly for the Memphis sand layer. Lower shear wave velocity for the deeper layers is 

observed in comparison to the measured SWM VS profiles, indicating a spatial bias across the 

embayment. A parametric study varying the depth and velocity of the Memphis sand is 

conducted to observe the impact of the layer on site response. While the velocity of the Memphis 

sand has an impact on amplification, the depth to the Memphis sand influences both the 



amplification and frequency range of the amplification. Inaccurate site characterization of the 

Memphis sand layer could affect the long period public infrastructures with 1 – 2 second natural 

period, such as highway bridges and skyscrapers.     

Utilizing the 24 deep VS profiles, velocity functions are developed for the geologic units 

found in the embayment. Pseudo site signature consistent deep VS profiles are generated utilizing 

a layer interface model, velocity functions and fundamental frequency. Modeled VS profiles 

generated using the developed approach are compared to the measured VS profiles. While 

differences in the near surface characterization is observed, overall modeled VS profiles have 

similar linear site response as the measured VS profiles, i.e., capturing the site signature.   
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 Chapter 1: Introduction 

1.1 Site Characterization to Understand the Local Site Effects 

September 19, 1985. A magnitude 8 (MW=8.0) earthquake hit the coast of Mexico. 

Epicenter of the seismic event was registered near the coastal town Michoacán, Mexico with a 

VI – VII Modified Mercalli intensity scale (MMI). However, 350 km away from the epicenter, 

the Mexico City felt the devastation with a MMI of IX. Presence of high plasticity clay in the 

Mexico City basin amplified the seismic waves about 5 times of the original ground motion 

(Bard et al., 1988). In addition, the overall soil column structure found in the Mexico City 

consisting of soft lake sediments and shallow impedance boundary having a site period of 2 – 3.5 

second was associated to the double resonance occurred to most 6 – 15 storied buildings 

(Mayoral et al., 2019). With 5000 dead and financial damage in order of billion USD, this 

seismic event forced engineers and seismologists to rethink about the local site effects in addition 

to the source and path effects of seismicity.  

The series of seismic events in the Mexico City spawned more research interest centered 

around the site characterization methods to decipher and better understand local site effects. 

Much progress is made to this day to better understand site characterization. Primary focus in 

these research efforts have been on: (i) advancement of borehole site characterization methods, 

(ii) development of newer geophysics based site characterization methods without the need of 

boreholes known as surface wave methods (SWM), (iii) validating reliability of SWM in 

comparison to the borehole methods (Garofalo et al., 2016b), (iv) efforts to develop 

continuous/3D site characterization to better understand ground response. However, sparsity of 

deep site characterization to this day for many deep basin like structures, such as the Mississippi 



2 

 

embayment shows need to develop deep site characterization techniques to understand 

amplification, ground motion prediction and wave propagation studies for such geologic 

structures.     

1.2 Research Significance  

The Mississippi Embayment encompasses a large area in the central United States that 

covers parts of Arkansas, Missouri, Illinois, Kentucky, Tennessee, and Mississippi. The 

unconsolidated sedimentary deposits found in the embayment are shallow near the basin edge, 

being only a few meters thick near southern Illinois, but become very deep in the central and 

southern part of the embayment with depths up to about 1000 m near southern Memphis, 

Tennessee (Van Arsdale and TenBrink, 2000). Regardless of the sediment thickness, a strong 

impedance contrast is observed between the soil column and Paleozoic bedrock across the 

embayment. Local site effects, consisting of basin edge effects in the shallow portions of the 

embayment, which cause longer duration earthquake ground motions (Kawase, 2003; Boore, 

1999), and a complex mixture of amplification/deamplification of seismic waves at different 

period ranges in the deeper parts of the embayment (Hashash et al., 2001; Wood et al., 2018; 

Woolery et al., 2016; Romero and Rix, 2005). The New Madrid Seismic Zone (NMSZ), situated 

in the Mississippi Embayment is a series of faults and the major source of seismicity in the 

embayment. Collectively, the local site effects from the deep sediments, basin edge effects from 

the shallow part of the embayment, and the presence of the NMSZ lead to areas in the 

embayment having some of the highest design ground motions in the United States (ASCE 

2017). Very large earthquakes (7 – 8 MW) occurred in the region in the past (Bakun and Hopper, 

2004) and there is a 25 – 40% probability of a MW 6+ earthquake in the next 50 years (Frankel et 

al., 2009). However, no large earthquake ground motions have been recorded in the embayment. 



3 

 

In absence of locally recorded ground motion, quality deep small strain shear wave velocity 

profiles (VS) throughout the embayment provided a way to understand the future spatial variance 

of seismic amplifications in the embayment.  

Quality VS profiles are critical for estimating site specific hazard and are one of the most 

critical inputs into site response analyses with numerous site response studies demonstrating the 

influence of input VS profiles on both the amplitude and frequency content of predicted surface 

ground motions (Bazzurro and Cornell, 2004; Rathje et al., 2010; Li and Assimaki, 2010; 

Grifitths et al., 2016; Teague and Cox, 2016). Despite the large variations in soil structure in the 

embayment, many of the seismic amplification studies in the Mississippi Embayment have used 

reference VS profiles developed by Romero and Rix (2005) due to lack of proper site-specific VS 

profiles in the embayment. However, these two reference VS profiles fail to account for the 

changes in the basin structure in the embayment (Wood et al., 2018). The overall site-specific VS 

profiles for the embayment are sparse, with majority of the available VS profiles being 30 – 60 m 

deep (Liu et al., 1997; Street et al., 2004). Rosenblad et al. (2010) developed eleven deep VS 

profiles extending down to 200 – 250 m to a shallow impedance boundary in the embayment but 

lack information down to the deep bedrock layer. The most recent study for deep VS information 

in the Mississippi Embayment is the USGS Central U.S. Seismic Velocity Model (CUSVM) 

(Ramirez-Guzman et al., 2012). While this 3-D shear wave velocity model provides 

understanding of the basin structure, it was shown by Wood and Himel (2019) to have significant 

errors in VS for different geologic units and depths to the shallow impedance boundary from the 

Memphis sand layer, which could significantly impact site response studies for the embayment. 

This emphasizes the need for additional site-specific deep VS profiles to improve velocity models 

for the region and reduce uncertainties in site response studies.  
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Ever since the advent of geophysics for use in site characterization, development of 

seismic reflection/refraction survey (Raitt et al., 1954), Spectral Analysis of Surface Wave 

(SASW) (Heisey et al., 1982, Nazarian and Stokoe, 1984), Multi-channel Analysis of Surface 

Wave (MASW) (Park et al., 1999) have increased the accuracy and convenience of using 

geophysical methods. These methods have mainly contributed to more precise shallow site 

characterizations (30 – 60 m). Nevertheless, the seismic reflection/refraction methods can 

capture the velocity differences in deeper layers and infer geologic layer boundaries; they lack 

direct evidence of VS for individual soil layers exceeding 150 m depth (Street et al., 2004). 

However, at this time, no SWM site characterization technique is available to 

researchers/practitioners that can be used to develop comparable deep site characterization 

results as the invasive methods. Moreover, available deep site characterization measurements 

across the embayment would be beneficial to understand the spatial change of basin geology in 

the embayment and consequently would be useful in developing a 3D shear wave velocity 

model.  

1.3 Scope of Research 

This dissertation details the development of a new SWM technique combining active and 

passive source surface wave measurements for deep site characterization. This technique utilizes 

a joint inversion solution of the measured experimental dispersion characteristics and site 

fundamental frequency, ensuring site signature consistent shear wave velocity profiles (VS 

profiles). The surface wave measurements are for low strain displacements of soil; hence, VS 

profiles produced are representing in-situ condition of soil. Lack of low-frequency energy, 

presence of effective mode dispersion data, and identification of the mode of wave propagation 

are a few of the issues for resolving VS profiles using this technique. To validate the developed 
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technique, active and passive source surface wave measurements are made at the CUSSO site 

with an array of boreholes down to the bedrock, where downhole measurements are made to 

compare with the developed SWM VS profiles at the location. 

A parametric study to observe the effect of properly characterizing the shallow 

impedance boundary on site response is conducted. The shallow impedance boundary in the 

Mississippi embayment is due to the stiff Memphis sand layer, which is often poorly 

characterized. In this dissertation, a suit of pseudo VS profiles is developed by varying the depth 

and formation velocity of the Memphis sand layer from a base VS profile developed at the 

CUSSO site. Site response of the suit of VS profiles are evaluated using linear and non-linear 

approach. Residuals between surface response spectra estimated from pseudo VS profiles and the 

base VS profile is calculated to observe differences in site response.  

Utilizing the developed deep site characterization SWM technique, deep VS profiles at 24 

sites across the embayment is generated. Acquisition and processing of the active and passive 

source surface wave data is discussed. At each site, theoretical dispersion and ellipticity are 

compared to the experimental dispersion and HVSR f0, respectively to ensure VS profiles 

capturing local site signature. Developed VS profiles are compared to existing CUSVM VS 

profiles and measured VS profiles in the embayment.  

An approach for generating site signature consistent VS profiles for the Mississippi 

embayment utilizing power-law velocity functions is developed. For this, power-law velocity 

functions for the geologic units found in the embayment is developed utilizing the 24 deep VS 

profiles generated across the embayment. Initial VS profiles at the study sites are modeled using 

the developed velocity functions, mean formation velocities of geologic units and layer interface 

information at that site location. The developed initial VS profiles are adjusted to constrain the 



6 

 

theoretical transfer function peak (TF0) and ellipticity peak (Ell0) to match the measured HVSR 

f0. Pseudo VS profiles at 24 study locations using the developed approach is generated and 

compared to the measured VS profiles at these locations. Pearson correlation coefficient between 

the time averaged VS of the modeled and measured VS profiles is calculated to evaluate the 

correlation between the modeled and measured VS profiles.       

1.4 Organization of the Dissertation  

The organization of the dissertation is divided in six chapters. The first chapter discusses 

the research significance, and the scope of the research. Chapter 2 details the development of a 

SWM technique for deep site characterization in the Mississippi embayment. Results of this 

chapter are published in Soil Dynamics and Earthquake Engineering entitled “Developing an 

updated set of VS profiles for the Central United States Seismic Observatory with estimates of 

uncertainty between different methods.” Chapter 3 details a parametric study conducted to 

observe site response impacts of properly characterizing the Memphis sand layer in the 

Mississippi embayment. Results of this chapter are published in the conference proceedings of 

Geoextreme 2021 entitled “Site response impacts of the Memphis sand layer within the 

Mississippi Embayment.” Chapter 4 details the development of deep VS profiles at 24 sites 

across the Mississippi embayment utilizing the developed SWM technique in Chapter 2. Results 

of the chapter four are published in Soil Dynamics and Earthquake Engineering entitled “Deep 

shear wave velocity profiles in the Mississippi embayment from surface wave measurements.” 

Chapter 5 details the development of an approach to generate site signature consistent deep VS 

profiles in the Mississippi embayment utilizing power-law velocity functions. Results of this 

chapter is submitted for review in Soil Dynamics and Earthquake Engineering entitled “An 

approach for developing site signature consistent deep shear wave velocity profiles for the 
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Mississippi Embayment using generalized power-law functions.” In chapter 6, the work 

discussed in this dissertation are summarized, concluded and future research are presented.  

 

 Chapter 2: Developing an updated set of VS profiles for the central United States seismic 

observatory with estimates of uncertainty between different methods 

2.1 Abstract 

Deep dynamic site characterization was conducted at the Central United States Seismic 

Observatory (CUSSO), which is a 587 meter deep vertical seismic array situated in the 

Mississippi Embayment. This characterization included a combination of active and passive 

source surface wave methods and horizontal to vertical spectral ratio (HVSR). These 

measurements were used in a multimodal joint inversion of Rayleigh and Love dispersion data 

and the natural site frequency from HVSR (f0) to develop non-invasive VS profiles for the site. 

Downhole seismic measurements were also made down to 425 m to validate the surface wave 

method results and understand the uncertainty between the various measurements at the site. The 

developed VS profiles are compared to published site specific VS profiles from direct 

measurements, velocity models, and reference VS profile for the embayment to understand the 

variability and uncertainty between different methods. Major differences in the Vs profiles were 

noticed in the top 50 meters, near the Memphis sand layer, and the Paleozoic bedrock layer. Site 

signatures from experimental dispersion data, HVSR f0 and empirical transfer function (ETF) 

were evaluated to assess the appropriateness of the candidate VS profiles. Comparison results 

indicate the developed VS profiles in this study performed well in capturing the site signatures. 

However, the theoretical dispersion fits from published VS profiles demonstrated a larger misfit 
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with the experimental data. Theoretical transfer function and Rayleigh ellipticity from published 

profiles also exhibited considerable differences with the HVSR f0 and ETF amplification factor.   

 

2.2 Introduction 

The Mississippi Embayment encompasses a large area in the central United States 

covering parts of Arkansas, Missouri, Illinois, Kentucky, Tennessee, and Mississippi. The deep, 

unconsolidated sedimentary deposits in the embayment range from 100 m at St. Louis, Missouri 

to 1000 m at Shelby County, Memphis (Van Arsdale and TenBrink, 2000). This deep deposit is 

an important source of local site effects, causing uncertainty in the amplification of seismic 

waves (Hashash and Park, 2001; Romero and Rix, 2005; Wood and Baker, 2018). Seismicity in 

the region is caused by a series of faults collectively called the New Madrid Seismic Zone 

(NMSZ), which has some of the highest design ground motions in the United States (ASCE 

2017). Understanding the local seismic site effects is crucial to designing seismic resistant 

infrastructure in the region. Rathje et al. (Rathje et al., 2010) listed four basic sources of 

uncertainty for site response analysis as: (1) input rock motions, (2) shear wave velocity (VS) 

profiles, (3) non-linear dynamic soil properties, and (4) analysis method. Various site response 

studies have demonstrated the influence of VS profiles on the amplitude and frequency content of 

surface ground motion (Rathje et al., 2010; Li and Assimaki, 2010; Griffiths et al., 2016; Teague 

and Cox, 2016). Thus, estimation of acceptable VS profiles with associated uncertainties are 

significant for site response study.   

Site-specific VS profiles can be developed using either invasive tests, such as crosshole, 

downhole, and P-S suspension logging or non-invasive tests, such as surface wave methods. 

Invasive methods are considered to be more reliable than non-invasive methods as they are based 
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on direct measurements of VS. However, epistemic uncertainties developed from wave arrival 

picking and wave path assumptions can influence these invasive tests (Griffiths et al., 2016a; 

Passeri et al., 2019). As the invasive tests are mostly localized measurements of a site, aleatory 

uncertainties could also be associated with the measurements. Epistemic uncertainties in invasive 

profiles are usually accounted for by the development of upper/lower bound VS profiles from a 

base case profile (typically base profile±20%) (EPRI 2012), whereas the aleatory uncertainties 

are accounted for using statistically randomized profiles (Toro, 1995). Non-invasive methods, 

such as surface wave methods are cost-effective and have become very popular (Socco et al., 

2010).  Moreover, surface wave methods are found suitable for a variety of ground conditions 

(Socco et al., 2010). However, the surface wave inversion process to compute a shear wave 

velocity profile from dispersion data is highly non-linear and non-unique (Cox et al., 2014; Luke 

et al., 2003). Surface wave measurement results have been compared to borehole measurements 

in several studies for validation (Garofalo et al., 2016; Brown et al., 2002). Garofalo et al. (2016) 

showed that the non-invasive surface wave methods are capable of providing precise results 

comparable to invasive methods. As part of assessing the non-unique surface wave VS profiles 

and statistically derived VS profiles, the idea of the ‘site signature’ was developed (Griffiths et 

al., 2016a; Griffiths et al., 2016b;  Teague et al., 2018).  Griffiths et al. (Griffiths et al., 2016a; 

Griffiths et al., 2016b) first recognized the dispersion data as a site signature, which is a spatially 

averaged property of the site material that can reveal important information about wave 

propagation across the site. Griffiths et al. (2016b) demonstrated that upper/lower bound VS 

profiles (base profile±20%) yielded a poor theoretical fit to the experimental dispersion data (i.e., 

not capturing the site signature). Also, very few of the randomized profiles to account for the 

aleatory uncertainty were found acceptable based on the dispersion fit. Later, in addition to the 
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experimental dispersion data, Teague et al. (2018) studied the fundamental frequency from the 

HVSR peak as a site signature. Regardless of the non-unique nature of the surface wave method 

VS profiles, Griffiths et al. (Griffiths et al., 2016a; Griffiths et al., 2016b) and Teague et al. 

(2018) concluded that non-unique VS profiles are able to match the site signature when they are 

carefully developed. As a result, non-unique surface wave method VS profiles which match the 

site signature provide rational means to account for uncertainty and yield reasonable site 

response estimates (Teague et al., 2018).   

In the Mississippi Embayment, different invasive and non-invasive site-specific VS 

characterization techniques and generic reference VS profiles have been used to study site effects. 

However, the database of site-specific VS profiles for the region is sparse, with the majority of 

the available VS profiles being only 30 – 60 m deep (Liu et al., 1997; Street et al., 2004). For 

deeper Vs profiles to bedrock, reference VS profiles from Romero and Rix (2005) are typically 

used for site response studies in the embayment (Romero and Rix, 2005; Hashash and Park, 

2001). These profiles consist of two reference VS profiles (lowlands and highlands) and were 

based on compiled Vs profiles from southern Tennessee, eastern Arkansas, and northwestern 

Missouri. While these are commonly used, they do not well represent any single site in the 

embayment. Rosenblad et al. (2010) developed eleven deep VS profiles in the region using 

surface wave method, but these only range from 200 – 250 m deep. Cramer et al. (2006) used P-

S suspension logging to characterize down to 420 m at the Memphis light, gas, and water well 

site (MLGW). Gomberg et al. (2003) showed that shear wave velocity in the Mississippi 

Embayment is correlated with the local lithology and hence could be extrapolated without direct 

measurements. Based on this philosophy, Ramirez-Guzman et al. (2012) developed the Central 

United States Seismic Velocity Model (CUSVM), a 3-D shear wave velocity model using a 



11 

 

significant number of boreholes and seismic refraction profiles. However, below 100 m depth, 

the reference VS profiles and the site-specific CUSVM VS profiles for the Mississippi 

Embayment show more than 50% difference, increasing the uncertainty in site response studies 

using the generalized reference profiles for the whole embayment (Wood and Himel, 2019). 

Another effort to develop a Vs profile for the Mississippi Embayment was made by 

Woolery et al. (Woolery et al., 2016) at the Central United States Seismic Observatory (CUSSO) 

(shown in Fig 2.1), which was constructed to study the effects of local geology on seismic wave 

propagation. The CUSSO borehole array consists of three boreholes with depths of 30 m, 259 m, 

and 587 m. Seismometer and accelerometer are placed at the surface and 2 m into bedrock to 

observe amplification of seismic waves through the soil column. Accelerometers at 30 m, 259 m, 

and 526 m depths were also installed to study the amplification/deamplification of seismic waves 

at different geological interfaces. A complex mixture of amplification/deamplification generated 

by the sedimentary deposits was observed (Woolery et al., 2016), emphasizing the necessity of 

proper dynamic site characterization of the entire soil profile to fully understand the site effects. 

Woolery et al. (2016) developed a seismic velocity model at CUSSO by performing: (1) 

walkaway seismic reflection and refraction surveys, (2) P-S suspension logging, and (3) 

analyzing phase arrival times from the instrumented vertical array. The shear wave velocity 

model developed from the suspension log and walkaway survey showed significant 

differences(as much as up to 300 m/sec), which was speculated to be caused by inaccuracies in 

the P-S suspension logging due to sediment disturbances in the borehole.  This Vs inaccuracy at 

CUSSO provides an opportunity to better understand the Vs structure in the embayment, but also 

to understand the uncertainty in the Vs structure when different dynamic site characterization 

methods are used at a deep sedimentary basin site.     
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Figure 2.1 Map of the Mississippi Embayment showing the CUSSO station. The historic 

earthquakes occurred in the Mississippi Embayment and Illinois basin are also shown. 

 

 This study focuses on updating the shear wave velocity information at the CUSSO 

downhole array, validating the use of non-invasive surface wave methods for Mississippi 

Embayment sites, and understanding the uncertainty between Vs profiles collected by various 

authors at CUSSO. For this purpose, surface wave and downhole measurements were made at 

the CUSSO site. Both active and passive source surface wave methods were used to collect data 

near the CUSSO boreholes. The downhole testing was conducted down to 115 m and 425 m, 

respectively in the 259 m and 587 m deep boreholes. A blind analysis method, without a-priori 
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information on the site and a guided analysis method, are used to develop the non-invasive 

surface wave method VS profiles. The developed non-invasive VS profiles are compared with the 

invasive VS profile and literature VS profiles at the site to understand the uncertainty between Vs 

profiles developed using a variety of methods at a deep basin site. Next, the theoretical 

dispersion data from all the profiles are compared with the recorded experimental dispersion data 

to check the Vs profiles appropriateness at capturing the site signature. Moreover, the ellipticity 

peak and theoretical transfer function (TTF) peak generated from VS profiles are compared to the 

experimental HVSR f0 and empirical transfer function (ETF). The potential errors and 

uncertainty of each Vs profile are discussed.   

2.3 Overview of the Mississippi Embayment Geology 

The main constituents of the Mississippi Embayment geology are Quaternary, Upper 

Tertiary, Lower to Middle Claiborne, Paleocene, Cretaceous and Paleozoic era bedrock 

(Ramirez-Guzman et al., 2012). The surface deposits in the Quaternary layer are classified as 

Holocene or Pleistocene (Romero and Rix, 2005). The Holocene deposits are found in the 

alluvial plains of the Mississippi river floodplain, also known as the lowlands and the Pleistocene 

deposits are found further east on the highlands (Figure 2.1) (Romero and Rix, 2005). The Upper 

Tertiary layer consists of the Jackson formation and the upper Claiborne group. The Jackson 

formation contains clay, silt, sand and lignite (Brahana et al., 1987), whereas the upper Claiborne 

includes Cockfield and Cook Mountain formation, characterized by silts and clay (Van Arsdale 

and TenBrink, 2000). The Lower to Middle Claiborne group (LMC) below the Upper Tertiary 

layer contains the Memphis sand unit, also known as the “500-foot sand” (Romero and Rix, 

2005). The Memphis sand is a very fine to coarse grained, light gray-white sand (Van Arsdale 

and TenBrink, 2000) with a thickness of 164 – 292 m and approximately 300 m deep in the 
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Memphis area (Brahana et al., 1987). The Paleocene layer contains the Wilcox and Midway 

groups, which are made up of several formations. Silt, clay, fine to coarse grained sand, and 

minor limestone are the main components of the Paleocene layer (Van Arsdale and TenBrink, 

2000; Brahana et al., 1987). The Cretaceous layer is situated just above the bedrock, containing 

several forms of clays and sands. This layer contains the McNairy sand, Demopolis formation 

and coffee formation. The Paleozoic bedrock layer signifies the basement of the Mississippi 

Embayment deposits and is primarily made up of white to dark-gray, fine to coarse crystalline 

dolomite (Brahana et al., 1987). 

The Memphis sand and Paleozoic bedrock are two major sources of impedance contrast 

in the embayment. The alluvial surface deposits have a low VS of 193 ± 14 m/sec compared with 

the Memphis sand and the Paleozoic bedrock units, which have VS of 685 ± 83 m/sec (Rosenblad 

et al., 2010) and 2000 - 3400 m/sec (Cramer et al., 2006), respectively. The low shear wave 

velocity of the deep deposits and two impedance boundaries make the embayment susceptible to 

ground motion amplification.     

2.4 Testing Methodology 

Non-Invasive Method  

The surface wave method Vs profiles at CUSSO were developed using a combination of 

active source multichannel analyses of surface wave (MASW) (Park et al., 1999), passive source 

microtremor array measurement (MAM) (Tokimatsu, 1997), and horizontal to vertical spectral 

ratio (HVSR) (Nakamura, 1989). Both Rayleigh and Love wave MASW data were collected 

with a linear array of 24, 4.5 Hz vertical (Rayleigh) and horizontal (Love) geophones with 2 m 

geophone spacing (array length of 46 m). A 5.4 kg sledgehammer was used as the seismic source 

to create the Rayleigh and Love waves by vertical and horizontal strikes, respectively. Multiple 
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source offsets of 5 m, 10 m, 20 m, and 40 m were used from the first geophone to produce high 

quality data allowing uncertainty to be quantified and near-field effects to be minimized. At each 

source offset location, ten sledgehammer blows were stacked to improve the signal-to-noise 

ratio. Using the same MASW geophone array and a 2 m source offset, P-wave refraction data 

was collected to estimate the ground water table at the site.  

The MAM measurements were carried out using circular and L-shaped arrays. Circular 

arrays of 50 m, 200 m, and 500 m diameters were used. In the circular MAM array, nine three 

component Trillium compact, 20 second broadband seismometers were used. These 

seismometers were arranged with one at the center and eight uniformly distributed around the 

circumference. Ambient noise was recorded for one hour for the 50 m and 200 m diameter arrays 

and for two hours for the 500 m diameter array. A Nanometrics Centaur digitizer was used to 

record the data. Exact locations of each seismometers in the field were recorded using a 

centimeter accurate GPS unit. The MAM data recorded using the circular array of seismometers 

were also used for the HVSR measurements. The L-array MAM measurements were carried out 

using 24, 4.5 Hz vertical geophones. A geophone spacing of 5 m was used, resulting in an 

approximate L-shaped array of 55 m x 60 m. Ambient noise for the L-array was recorded for one 

hour. A map of all the surface wave recording arrays is shown in Figure 2.2 .  
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Figure 2.2 A map of the three circular MAM arrays (50 m, 200 m, and 500 diameter), active 

MASW array, and L-array is shown along with the adjacent CUSSO boreholes. 

 

Invasive Method  

Downhole seismic testing was conducted in the CUSSO boreholes in two stages. The 

preliminary shallow testing was conducted down to 115 m in the 259 m deep borehole, whereas 

the deep testing was conducted down to 425 m in the 587 m deep borehole. The shallow 

downhole testing was conducted in accordance with ASTM D7400-19 (ASTM, 2019). In both 

cases, a wall-lock type Geostuff BHG-3 geophone system was used (Crice, 2002). Due to the 

steel casings in both boreholes, the orientation mechanism in the BHG-3 could not be utilized. 

587 m Borehole

259 m Borehole
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To avoid the inclusion of any tube waves, the water level in the borehole was lowered to 

approximately 30 m prior to the testing in each stage.  

For the shallow testing in the 259 m deep borehole, a 5.4 kg sledgehammer was used as a 

seismic source. A vehicle-on-beam traction source and steel strike plate with offset of 3.05 m 

from borehole were used for generating the seismic waves. Downward propagating P-waves 

were generated by vertical blows on the strike plate, whereas downward propagating horizontally 

polarized shear waves were generated by horizontal blows on the traction beam. For identifying 

the first arrival of the shear wave, “positive” and “negative” polarity waves were created by 

striking the traction beam from either side. Five sledgehammer blows were stacked at each 

incremental depth to increase the signal-to-noise ratio. A Data Physics Quattro dynamic signal 

analyzer was used for recording the signal from the receiver. Testing was performed from the top 

down, starting at 0.75 m below ground surface with sampling intervals of 0.75 m down to 15 m 

and 1.5 m interval below 15 m.    

For the deep testing in the 587 m deep borehole, the University of Arkansas Vibroseis 

truck (Industrial Vehicles International T – 15000) was utilized as the seismic source. The center 

of the vibroseis plate was offset from the borehole by 3 m with the reaction mass oriented 

perpendicular to the borehole to generate horizontally polarized shear waves. Three to five 8 

second sinusoidal sweeps with frequency ranging from 20 – 80 Hz were used at each incremental 

depth. The same BHG-3 geophone system was used for testing. A Data Physics Mobilyzer 

dynamic signal analyzer was used to record the waveforms during testing. Testing was 

performed from the top down, starting at 3 m below the surface with a 3 m sampling interval 

down to 425 m. Further details and raw data from the invasive and non-invasive testing are 

available in Wood and Himel (2019).      
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2.5 Data Processing 

Non-Invasive 

The active source MASW data (Rayleigh and Love) were processed using the Frequency 

Domain BeamFormer (FDBF) method in conjunction with the multiple source offset approach 

(Cox and Wood, 2011; Zywicki, 1999). The circular and L-array MAM dispersion data were 

processed using the high resolution frequency wavenumber method (HRFK) (Capon, 1969). In 

addition, the circular array Rayleigh MAM dispersion data were processed using the modified 

spatial auto-correlation method (MSPAC) (Bettig et al., 2001). The high resolution Rayleigh 

wave three component beamforming method (RTBF) was also utilized to process the circular 

array Rayleigh MAM data (Wathelet et al., 2018). The RTBF method offers some advantage 

over the conventional frequency wavenumber methods (f-k) to identify various modes, 

particularly at higher frequencies where the conventional f-k methods fail due to aliasing 

(Wathelet et al., 2018). A composite experimental dispersion curve was developed by refining 

the experimental data from each method and combining the resulting dispersion data.   

The circular array MAM data were also used to develop HVSRs for each of the nine 

seismometers for all circular arrays. The peaks from all measurements were combined to 

determine a single HVSR peak frequency with associated standard deviation. General guidelines 

established by the SESAME project were followed for processing the HVSR (SESAME, 2004). 

The fundamental frequency from the HVSR test was later used for a joint inversion to constrain 

the overall stiffness of the VS profile. For this study, the bedrock depth was constrained at 585 m 

deep based on borehole logs at the site (Woolery et al., 2016).   
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The P-wave refraction data was processed following the method in Redpath (1973). 

Recorded time series data from the linear geophone array were processed to identify the P-wave 

arrival at each receiver offset as a function of time. The time-intercept method was used to 

estimate the depth of water table from the receiver offset-arrival time plot.  

A joint inversion of the composite experimental dispersion data and the HVSR peak 

frequency (f0) was conducted to obtain the shear wave velocity profiles using the Geopsy 

software package, Dinver (Wathelet, 2008). The neighborhood algorithm method (Dunkin, 1965) 

is used in Dinver to generate numerous theoretical VS profiles within user-defined constraints. 

Parameters to constrain the inversion solution contain ranges of shear wave velocity, P-wave 

velocity, Poisson’s ratio, density and number/thickness of layers. In this study, two sets of 

parameterizations were used. First a generic set of ‘blind’ parameterizations using normally 

dispersive soil characteristics was developed based on knowledge from the literature (Wood and 

Baker, 2018; Lin et al., 2014; Ramirez-Guzman et al., 2012, Rosenblad et al., 2010). The 

inversion models developed using these generic parameterizations are referred to as ‘SWM’ 

throughout the paper. Second is an informed set of parameterizations where the Vs and layering 

information from the downhole seismic testing is used as a guide for establishing layer thickness 

and velocity bounds. These models are referred to as ‘SWM Guided’ hereafter. In both SWM 

and SWM Guided, two million trial VS profiles were generated in the final inversion to ensure 

that the solution space was properly explored. The theoretical dispersion curves and ellipticity 

peaks generated from the VS profiles were compared with the experimental dispersion data and 

the HVSR f0, respectively. The overall ‘closeness’ between the experimental and theoretical 

results were quantified as the misfit (Wathelet et al., 2004). A misfit value of one indicates that 

the theoretical results are within one standard deviation of the experimental result (Deschenes et 
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al., 2018). During the iterative inversion process, the neighborhood algorithm attempts to 

minimize the misfit. The effective and higher mode data were identified manually by comparing 

the theoretical and experimental dispersion curves after each inversion run. Since Dinver cannot 

utilize effective modes, the identified effective mode data were removed. The detected higher 

mode data were assigned appropriate mode number and were utilized in the inversion run. For 

each circular array, most of the dispersion points beyond the array resolution limit (kmin/2) were 

removed (Wathelet, 2008). A representative 1000 lowest misfit VS profiles were used to calculate 

a median Vs profile for the site. This provides a more reasonable solution to the inversion 

problem than selecting just the single lowest misfit profile (Deschenes et al., 2018). Along with 

the calculated median, a random selection of 1000 VS profiles within a misfit of one were 

selected to represent the uncertainty in the Vs from the inversion process.  

Invasive  

The shallow and deep downhole datasets were both analyzed using the corrected vertical 

travel time versus depth analysis method (Wood, 2009). The horizontal components of the 

downhole tool (BGH-3) were rotated to the highest amplitude azimuth to orient one horizontal 

component in-line with the E-W oriented shear beam and cross-line vibroseis signal, respectively 

for the shallow and deep dataset. For the shallow dataset, the first arrival times were picked 

directly from the waterfall plot of the waveforms. For the deep dataset, the recorded raw data 

from the field were cross-correlated with the true reference source signal for each depth and the 

highest amplitude of the cross correlation was chosen as the travel time at each depth. The arrival 

time was corrected for the offset of the source from the borehole. The velocity and thickness of 

different layers are then identified from the travel time vs depth plot of the S-wave arrival times.  
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2.6 Results and Discussion 

Downhole Results 

The shear wave velocity profile obtained from the downhole analysis at CUSSO 

boreholes is shown in Figure 2.3a along with the P-S suspension-log shear wave velocity profile 

from Woolery et al. (2016) and reference VS profiles for different soil types from Lin et al. 

(2014). The geologic stratigraphy at the CUSSO site from Woolery et al. (2016) is shown in 

Figure 2.3b with some modification. A dashed red line marks the interface between the Upper 

Paleocene and Early Paleocene in Figure 2.3b. 
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Figure 2.3 (a) Downhole VS profile obtained from the 259 m and 587 m deep borehole at CUSSO. 

Suspension-log shear wave profile from Woolery et al. (2016) and reference VS profiles for 

different soil types from Lin et al. (2014) are shown for comparison. (b) Geologic stratigraphy at 

CUSSO from Woolery et al. (2016) is shown. 

 

The downhole VS profile is in good agreement with the P-S suspension-log VS profile 

down to around 40 m, representing the Quaternary layer interface. The P-S suspension-log VS 

profile then exhibits an anomalously low-velocity zone from 40 – 130 m and does not match 

with the downhole VS profile. This anomalous low-velocity zone is suspected to be due to 

sediment disturbances in the borehole (Woolery et al., 2016). The downhole VS profile infers the 

Upper Tertiary layer from around 40 – 125 m, with a velocity of 385 m/sec, which is similar to a 
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dense sand layer reference velocity at this depth range. At 125 m, a major velocity increase to 

600 m/sec is observed in the downhole VS profile. This velocity contrast corresponds with the 

geologic stratigraphy for the lower middle Claiborne (LMC) or, i.e., the Memphis sand 

formation. The downhole profile does not clearly resolve the Paleocene formation. However, two 

stiffer layers are observed with VS of 675 m/sec and 700 m/sec and extend to 255 m and 390 m, 

respectively. The P-S suspension-log VS profile exhibits another anomalous low-velocity zone 

from around 180 – 300 m, making the suspension-log VS profile incoherent with the downhole 

VS profile in this depth range. In the downhole VS profile, a softer layer with velocity reversal is 

observed at 390 m with a velocity of 620 m/sec, which is in the vicinity of upper Paleocene and 

early Paleocene interface, extending below 425 m. The suspension-log VS profile also exhibits 

softer layers in this depth range. To complete the downhole VS profile to bedrock, the VS profile 

from Woolery et al. (2016) is used to include the Cretaceous layer with a VS of 875 m/sec 

starting at 495 m and extending down to the bedrock at 585 m. A bedrock VS of 2130 m/sec was 

presumed for the downhole profile based on the surface wave testing results discussed later in 

the paper.  

Surface Wave Inversion Results 

The composite experimental dispersion data developed from the surface wave 

measurements are shown in Figure 2.4a and b for the Rayleigh and Love wave data, respectively. 

For each data point, the mean and +/- one standard deviation are shown. The array resolution 

limit for the 500 m circular array (kmin/2) is also shown. In general, the active and passive 

dispersion data fits well together for both the Rayleigh and Love wave data. The Rayleigh wave 

data does extend to lower frequencies than the Love wave data with significantly more 

uncertainty in the data below a frequency of 1 Hz. 
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Figure 2.4 Composite experimental dispersion data from the surface wave measurements at 

CUSSO is shown for (a) Rayleigh wave and (b) Love wave. The array resolution limit for the 500 

m circular array (kmin/2) shows the boundary for potentially less reliable data. 

 

The theoretical dispersion curves associated with the SWM and SWM Guided VS profiles 

are shown in Figure 2.5. In both cases, a theoretical fit from the median VS profile and theoretical 

fits from 1000 randomly selected VS profiles (within a misfit of 1.0) are shown. The calculated 

misfit between the experimental dispersion data and theoretical fit (for the median VS profile) for 

the SWM and SWM Guided are 0.24 and 0.4, respectively. Visually and quantitatively, both 

analyses have comparable fits with the experimental data. For the Rayleigh and Love wave data, 

data points approximately from 0.6 – 0.8 Hz and 2.3 – 6 Hz were removed as they were 

identified as effective mode through numerous iterations. A few experimental dispersion points 

for the Rayleigh wave data (<0.6 Hz) were beyond the array resolution limit but were used to 

ensure enough resolution at deeper depths.        
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Figure 2.5 Experimental dispersion data and theoretical fits for the median VS and randomly 

selected 1000 VS profiles. Misfit calculated between the experimental and theoretical fit (median 

VS) for SWM and SWM Guided are 0.24 and 0.4, respectively. 

 

The experimental HVSR results for the CUSSO site are shown in Figure 2.6. The natural 

frequency from the HVSR first peak is 0.29 ±0.01 Hz. The fundamental mode Rayleigh 

ellipticity curves generated from the median VS profiles of the SWM and SWM Guided are 

shown along with the HVSR curve in Figure 2.6a and b, respectively. The ellipticity peaks from 

SWM and SWM Guided are 0.297 Hz (2.4% higher) and 0.291 Hz (0.34% higher), respectively, 

which are within one standard deviation of the HVSR peak. This infers that the deep impedance 

contrast from bedrock was accurately modeled in both of the inversion runs.  
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Figure 2.6 Experimental HVSR curve along with theoretical Rayleigh ellipticity curve generated 

from the median VS profile for (a) SWM and (b) SWM Guided. 

 

Shear wave velocity profiles obtained from the SWM and SWM Guided are shown in 

Figure 2.7a and b, respectively. For each analysis method, the median VS profile estimated from 

the 1000 lowest misfit VS profiles and 1000 randomly selected VS profiles within a misfit of 1.0 

are shown. It should be noted that the median VS profiles were not directly generated from the 

inversion method. Instead, they were calculated by computing the median layer depth and 

median VS for each layer from the 1000 lowest misfit Vs profiles. Reference VS profiles for 

different soil types from Lin et al. (2014) are shown for comparison with the SWM and SWM 

Guided analyses results. To demonstrate the variability among the VS profiles, the standard 

deviation of the natural logarithm of VS (σln(VS)) is shown for each analysis in Figure 2.7c. The 

σln(VS) method has been commonly used as a tool to quantify the variability in VS (Deschenes et 

al., 2018; Teague et al., 2018; Toro, 1995). The geologic stratigraphy at the CUSSO site from 

Woolery et al. (2016) is superimposed on Figure 2.7c. 
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Figure 2.7 VS profiles generated from the surface wave inversion are shown. A median VS 

profile computed from the 1000 lowest misfit VS profiles and 1000 randomly selected VS profiles 

within misfit of 1 from a pool of 2 million models are shown for (a) SWM and (b) SWM Guided. 

Reference VS curves from Lin et al. (2014) for different soil types are shown for comparison with 

each analyses methods VS profile. Standard deviation of the natural logarithm of VS (σlnVS) for 

each analyses methods are shown for demonstrating the variability between the VS profiles in (c). 

The geologic stratigraphy at CUSSO from Woolery et al. (2016) is superimposed on (c). 

 

From Figure 2.7, both the SWM and SWM Guided Vs profiles resolve the Quaternary 

and the Upper Tertiary layer interface around similar depth. Both profiles demonstrate VS values 

within the soft soil and dense sand reference VS curves down to roughly 120 m, which is 

consistent with the soil types found in the Quaternary and Upper Tertiary layer in the Mississippi 

Embayment. A major velocity increase to around 610 m/sec is observed in both VS profiles at 
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130 m and 120 m deep in the SWM and SWM Guided, respectively. This interface in both 

analyses is a shallow impedance contrast, having a VS value close to the dense gravel at this 

depth, inferring the start of the lower middle Claiborne (LMC) or, i.e., the Memphis sand. The 

Claiborne/LMC in the geologic stratigraphy is around 131 m, which is in good agreement with 

the VS profiles. Following this shallow impedance contrast, both analyses show uniform 

increases in VS for the Paleocene layer (the SWM Guided shows this trend until the velocity 

reversal). At 375 - 500 m, the SWM Guided analysis was able to resolve the velocity reversal 

interpreted from the downhole test. The velocity reversal in the SWM Guided is in the vicinity of 

the Upper Paleocene-Early Paleocene interface. A sharp change in natural gamma-ray count log 

and single-point resistivity log is also observed at this depth in Woolery et al. (2016), indicating 

a change of material type. The SWM and SWM Guided demonstrate another velocity increase 

around 450 – 500 m deep with an average VS value of 850 m/sec, which is similar to the Upper 

Cretaceous layer formation velocity suggested by Ramirez-Guzman et al. (2012) and Woolery et 

al. (2016). The geologic stratigraphy at CUSSO shows this layer starting at 480 m. In both 

analyses, the bedrock was constrained at 585 m. The bedrock VS for SWM ranged from 2000 – 

2130 m/sec and 1850 – 2130 m/sec for the SWM Guided. In both analyses, the σln(VS)  is below 

0.2 and primarily shows increased uncertainty near the layer interfaces, notably for the Memphis 

sand and Upper Cretaceous layer around 120 m and 500 m, respectively. This demonstrates the 

variability and uncertainty associated with the layer interfaces. 

Inter-method comparison  

In this section, a comparison is made between VS profiles in this study and CUSSO VS 

profiles from the literature. In Figure 2.8a, a comparison of the VS profiles from SWM (median), 

SWM Guided (median), downhole, Woolery et al. (2016), Ramirez-Guzman et al. (2012) 
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(CUSVM), and Romero and Rix (2005) (lowland profile) is shown down to 200 m, whereas in 

Figure 2.8b, a comparison down to the bedrock is shown. Two pseudo VS profiles computed 

from the maximum and minimum VS values of the SWM and SWM Guided random profiles at 

every 0.1 m depth, together termed as ‘max/min of non-invasive’, are also shown in Figure 2.8a 

and 8b. These two pseudo VS profiles help understand the uncertainty and variability associated 

with each layer of the median surface wave Vs profiles. The geologic stratigraphy from Woolery 

et al. (2016) is superimposed on Figure 2.8a and b. The time average shear wave velocity (VS,Z) 

(similar to Vs30 calculation) is computed at every 0.1 m depth increment for all the VS profiles 

mentioned and is shown in Figure 2.8c. The σlnVS between all VS profiles, except Romero & Rix 

(2005) (as this profile is not site-specific) and the pseudo VS profiles were calculated for the 

actual VS and VS,Z and are shown in Figure 2.8d. The geologic stratigraphy from CUSVM, which 

was used as one of the literature sources for creating the parameterizations for surface wave 

inversions are superimposed on Figure 2.8d for layer depth and thickness comparisons. In this 

paper, unless CUSVM geologic stratigraphy is mentioned, by default the geologic stratigraphy 

from Woolery et al. (2016) is inferred.   



30 

 

 

Figure 2.8 Shear wave velocity comparison between the developed VS profiles and related VS 

profiles from literature shown in (a) for the top 200 m, (b) down to the bedrock. Two pseudo VS 

profiles computed from the maximum and minimum values of the random SWM and SWM 

Guided profiles, together termed as ‘max/min of non-invasive’ are shown in (a) and (b). The 

geologic stratigraphy from Woolery et al. (2016) is superimposed on (a) and (b) for comparing the 

layer thicknesses with the VS profiles. A comparison of the time averaged VS profiles (VS,Z) is 

shown in (c). The σlnVS between all VS profiles (except the Romero and Rix (2005) and the pseudo 

VS profiles) are shown for actual VS and VS,Z in (d). The geologic stratigraphy from CUSVM is 

superimposed on (d) for comparing the layer thicknesses and depth with the VS profiles. 

 

The SWM, SWM Guided, and downhole VS profiles show similar depths to the 

Quaternary-Upper Tertiary interface, which approximately matches the geologic stratigraphy 

from Woolery et al. (2016). These VS profiles resolve the Memphis sand at 120 – 130 m depth, 

within reasonable bound of the Memphis sand depth depicted by the local geology (131 m). 

However, the Romero and Rix (2005), Ramirez-Guzman et al. (2012), and Woolery et al. (2016) 
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VS profiles have a shallower impedance contrast at 70 m, 82 m, and 85 m, respectively, inferring 

the probable Memphis sand, which is not in agreement with the local geology.  All the VS 

profiles in the comparison show similar trends from around 120 – 375 m, except the CUSVM, 

which is softer in this depth range and closer to the minimum of the pseudo VS profiles. The 

downhole and SWM Guided VS profiles resolved a velocity reversal layer around 380 m. The 

SWM VS profile could not resolve this velocity reversal as it utilized a normally dispersive 

parameterizations. All the VS profiles resolve the start of the Upper Cretaceous layer at around 

470 – 520 m, except the Romero and Rix (2005), which does not resolve this layer. The local 

geology has this layer starting at around 480 m. The Paleozoic bedrock depth was constrained in 

the invasive and non-invasive VS profiles as per the Woolery et al. (2016) bedrock depth at 585 

m. However, the CUSVM VS profile demonstrates the bedrock depth at 604 m, and the Romero 

and Rix (2005) does not include a bedrock layer at any specific depth. The SWM, SWM Guided 

and downhole VS profiles have a bedrock VS ranging from 2080 – 2180 m/sec. In contrast, the 

Woolery et al. (2016) VS profile has a top-of-bedrock VS of 1452 m/sec, which is likely a result 

of the P-S suspension log only penetrating a few meters into the bedrock layer. The CUSVM VS 

profile has a bedrock VS of 2140 m/sec, consistent with the developed VS profiles in this study.  

For the VS,Z  comparison (Figure 2.8c), all the VS,Z profiles are within the bounds of the 

‘max/min of non-invasive’ pseudo profiles. The SWM, SWM Guided, and downhole VS,Z 

profiles are in good agreement throughout the entire profile. The CUSVM VS profile has a lower 

time weighted average velocity down to the bedrock, making this the softest among all profiles 

(except the lower bound of pseudo profiles). The Woolery et al. (2016) also has lower VS,Z down 

to around 100 m, but onwards become coherent with the VS profiles in this study. The Romero 

and Rix (2005) VS,Z profile surpasses all the other profiles around 70 m due to the shallow 
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impedance contrast at 70 m depth, making this time weighted profile stiffest among all profiles 

(except the upper bound of the pseudo profiles). The Woolery et al. (2016) reported the average 

shear wave velocity from earthquake phase arrivals between the ground surface and bedrock to 

be 610 m/sec. The time weighted average shear wave velocity down to the bedrock for SWM, 

SWM Guided, downhole, Woolery et al. (2016), and CUSVM are 558, 552, 553, 546, and 526 

m/sec, respectively. The developed VS profiles in this study have average shear wave velocities 

in the range of 8.5 – 9.5% lower than the recorded average earthquake shear wave velocity, 

whereas the Woolery et al. (2016) and CUSVM profile’s average shear wave velocities are 

respectively 10.5 and 13.5% lower. It should be noted that the time weighted average shear wave 

velocity for CUSVM was calculated down to the bedrock at 604 m.  

The σlnVS for Vs and VS,Z shown in Figure 2.8d demonstrates the uncertainty between the actual 

VS profiles and the time weighted profiles, respectively. The σlnVS for the actual VS profiles is 

approximately 0.1 for much of the depth range. However, it jumps up to 0.2 in the near surface 

(top 50 m) and at depths associated with major impedance contrasts (e.g., Claiborne/Memphis 

Sand (80-160 m), and Upper Cretaceous (420-500)). Moreover, the bedrock σlnVS  Jumps up to 

0.36.This is mainly due to the bedrock VS deviation of Woolery et al. (2016) VS profile from all 

other profiles. Garofalo et al. (2016) also found similar trends of uncertainty for non-invasive VS 

profiles. The coefficient of variation (COV) near the surface was found to be in the range of 0.2 

– 0.4, whereas less than 0.2 COV was observed in the mid-profile depth. At depth near bedrock, 

COV was found to be as much as 0.8, inferring the challenge associated with resolving the 

bedrock depth and velocity with surface wave methods. The σlnVS for time weighted VS,Z 

profiles is generally around 0.1. Low COV value was also observed for VS,Z profiles in Garofalo 
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et al. (2016), except near the surface. Near surface COV for surface wave method VS,Z profiles in 

Garofalo et al. (2016) ranged from approximately 0.2 – 0.4 and decreased gradually with depth. 

 The CUSVM geologic stratigraphy is superimposed on Figure 2.8d to show the 

differences between the geologic stratigraphy from the Woolery et al. (2016) and CUSVM. The 

most noticeable differences between these two geologic stratigraphy is observed in the 

Claiborne/LMC layer depth and deeper layers, such as the Upper Cretaceous and bedrock depths. 

The developed VS profiles in this study show more association with the local geologic 

stratigraphy from Woolery et al. (2016) than the geology from CUSVM. This also raises the 

question of utilizing the CUSVM for site specific site response studies, especially where shallow 

impedance contrast depths could influence the site response.   

Site signature comparison 

In this section, experimental site signatures from the dispersion data, HVSR, and 

recorded empirical transfer function (ETF) at CUSSO are used as a quantitative means of 

assessing the discussed VS profile’s appropriateness. The comparison between the experimental 

dispersion data and theoretical fits from the VS profiles are shown in Figure 2.9. The comparison 

of theoretical dispersion fit with experimental dispersion data for the SWM and SWM Guided 

are shown in Figure 2.5in the Section 5.3. The calculated misfit between the experimental 

dispersion data and theoretical fit (both for Rayleigh and Love) for SWM, SWM Guided, 

downhole, Woolery et al. (2016), CUSVM, and Romero and Rix (2005) VS profiles are 0.24, 0.4, 

0.57, 1.0, 1.49, and 0.88, respectively. The non-invasive VS profiles have lower misfit than the 

downhole. This is likely because the non-invasive VS profiles were modeled using surface wave 

data. Thus, a relatively better fit is expected from the surface wave profiles than the downhole 

profile. The Woolery et al. (2016) theoretical fit (Figure 2.9c, 9d) has a higher misfit (misfit of 
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1.0) than the developed VS profiles in this study. This is also graphically visible in Figure 2.9c as 

the Rayleigh theoretical fit separates from the experimental dispersion data around 2.2 Hz at a 

phase velocity of 372 m/sec. This point (372 m/sec, 2.2 Hz) represents a wavelength, λ≈170 m, 

and a resolution depth of approximately 85 m, which is the shallow impedance contrast depth 

that separated the Woolery et al. (2016) from the developed VS profiles. For the CUSVM VS 

profile, the theoretical Rayleigh and Love dispersion curves (Figure 2.9e, 9f) have a lower phase 

velocity than the experimental data, as a result the CUSVM has the highest misfit among all Vs 

profiles (1.49). Similarly the Woolery et al. (2016), Romero and Rix (2005)  Rayleigh theoretical 

dispersion curve (Figure 2.9g) have a separation from the experimental dispersion data at around 

a wavelength of 140 m (pseudo depth of 70 m) due to the VS profile’s early shallow impedance 

contrast (Figure 2.8a, 8b, 8c). All the Love theoretical dispersion curves, except CUSVM, show 

similar misfits as the downhole and surface wave profiles, though the VS profiles are quite 

different. This may be because Love wave experimental data did not reach to as long of a 

wavelength as the Rayleigh data, making it hard to observe the differences in theoretical fits. 

Moreover, Love waves have been shown to be less sensitive to VS profile changes in the high 

frequency range (Zeng et al., 2007).   
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Figure 2.9 Comparison of experimental dispersion data and theoretical fit. Misfit calculated 

between the experimental and theoretical fit (for both Rayleigh and Love) for downhole, Woolery 

et al. (2016), CUSVM, and Romero and Rix (2005) VS profiles are 0.57, 1.0, 1.49, and 0.88, 

respectively. 

(a) Downhole Rayleigh (b) Downhole Love

(c) Woolery et al. 2016 Rayleigh (d) Woolery et al. 2016 Love

(e) CUSVM Rayleigh (f) CUSVM Love

(g) Romero and Rix 2005 Rayleigh (g) Romero and Rix 2005 Love

misfit=0.57

misfit=1.0

λ=372/2.2≈85 m deep

misfit=1.49

misfit=0.88

l=354/2.7≈70 m deep
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A further assessment of the VS profiles were carried out by comparing the theoretical SH 

wave transfer function (TTF) generated from the VS profiles with empirical transfer function 

from the downhole array (ETF) and HVSR f0. The fundamental mode Rayleigh wave ellipticity 

peaks generated from the VS profiles were also compared with the HVSR f0 as a crosscheck 

measurement. The HVSR curve is often modeled using either the SH wave transfer function 

(Lermo and Chavrz-Garcia, 1993) or the Rayleigh wave ellipticity (Malischewsky and 

Scherbaum, 2004).  

Comparisons of the TTF, ETF, and HVSR are shown in Figure 2.10a. The linear-

viscoelastic TTFs were computed using the MATLAB code from Teague (Teague, 2017). The 

TTFs are computed between the bedrock and ground surface and computed using small strain 

damping ratios proposed by Darendeli (2001). The ETF at CUSSO was reported in Carpenter et 

al. (Carpenter et al., 2018) and is the spectral ratio of the transverse component at the ground 

surface to the transverse component at bedrock. The TTFs generated from the SWM, SWM 

Guided, downhole, Woolery et al. (2016) and CUSVM VS profiles match well with the HVSR 

peak, f0 and ETF first peak. The Romero and Rix (2005) TTF peak is situated to the left of the 

HVSR peak and ETF first peak, inferring a softer shear wave resonance frequency than the shear 

wave resonance frequency delineated by the HVSR f0 and ETF first peak. The TTF first peak 

amplitude of SWM, SWM Guided, and downhole profiles correspond well with the ETF first 

peak amplitude and are within 3.3 – 4.1%, whereas the Woolery et al. (2016) first peak 

amplitude is 36% lower. This is due to the low bedrock velocity of the Woolery et al. (2016) VS 

profile, causing the impedance contrast between the bedrock and overall profile to be lower and 

as a result generating lower amplification between the seismic waves traveling from bedrock to 

the ground surface.  
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Figure 2.10 (a) Linear viscoelastic theoretical transfer functions (TTF) between surface and 

bedrock, generated from the VS profiles are shown. An empirical transfer function (ETF) from 

Carpenter et al. (2018) and HVSR f0 are also shown for comparison. (b) Fundamental mode 

Rayleigh wave ellipticity curves generated from the VS profiles are shown. The HVSR f0 is also 

shown for comparing with the ellipticity first peak, which denotes the shear wave resonance 

frequency in presence of seismic impedance contrast. 

 

A comparison of Rayleigh ellipticity with the HVSR f0 is shown in Figure 2.10b. The 

ellipticity peaks generated from SWM, SWM Guided, and downhole match well with the HVSR 

f0, whereas the CUSVM ellipticity peak is slightly to the left of HVSR f0. Similar to the TTF 

trend, the Romero and Rix [3] profile’s ellipticity peak is to the left of HVSR f0. The Woolery et 

al. (2016) profile’s ellipticity peak is to the right of the HVSR f0, and significantly higher (39%). 

This is again likely due to the bedrock Vs used by Woolery et al. (2016). 

Overall, the SWM, SWM Guided, and downhole profiles exhibit better performance in 

capturing the site signature from dispersion data, HVSR f0, and ETF peaks. The CUSVM 

profile’s first peak of TTF and ellipticity are in the range of 1 – 4% of HVSR f0. However, the 

theoretical dispersion fit of CUSVM profile shows a large misfit of 1.49, which is the largest 

among all candidate VS profiles. As such, the CUSVM VS profile do not appropriately capture 

the experimental site signature. The Romero and Rix (2005) TTF and ellipticity first peak and 
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Woolery et al. (2016) ellipticity first peak show noteworthy difference with the HVSR f0, ranging 

from 5.2 – 39%. In addition, the Woolery et al. (2016) TTF first peak amplitude is significantly 

lower than the ETF first peak amplitude and is 37 % lower. The Romero and Rix (2005) and 

Woolery et al. (2016) profile’s misfit between the theoretical fit and experimental data are 

substantial (0.88 – 1.0), ascertaining poor capture of experimental site signature. 

2.7 Conclusions 

In this study, a set of VS profiles utilizing invasive and non-invasive methods was 

developed to evaluate the non-invasive method’s reliability and estimate the variability with 

previously developed profiles at the CUSSO site. A joint inversion of the active and passive 

source surface wave data and HVSR fundamental frequency were used to conduct inversions to 

develop the non-invasive VS profiles. Both a blind and a guided approach were utilized for 

surface wave inversion. Downhole measurements were carried out in the 259 m and 587 m deep 

boreholes using a sledgehammer and vibroseis truck as seismic sources, respectively. Even 

though non-invasive methods are generally considered less reliable, the non-invasive VS profiles 

in this study provided comparable results to the invasive profile. However, the invasive 

downhole profile was able to resolve a deep low velocity layer, which is traditionally attributed 

to the invasive method’s higher resolution at deeper depths. The blind approach non-invasive 

profile could not resolve this layer. Nonetheless, the guided non-invasive profile was able to 

resolve this deeper low velocity layer, indicating the effect of parameterization on the non-

invasive method’s capability to resolve deeper layers.  

The developed shear wave velocity profiles were compared with the existing VS profiles 

in Woolery et al. (2016), Ramirez-Guzman et al. (2012), and Romero and Rix (2005). 

Uncertainty (σlnVS) between the Vs profiles was generally 0.1 with the uncertainty increasing up 
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to approximately 0.36 in the near surface layers (top 50 m), Memphis sand layer, and the 

Paleozoic bedrock. Several of these jumps in the uncertainty are associate with the major 

impedance contrasts at the site, highlighting the challenge in identifying the depth and Vs of 

these interfaces.  

Site signatures were evaluated to assess the appropriateness of all discussed VS profiles. 

The theoretical dispersion curves associated with the median of non-invasive VS profiles and 

downhole VS profile fit well with the experimental dispersion data with a reasonable misfit (0.24 

– 0.57). Conversely, the theoretical dispersion curves associated with VS profiles from previous 

studies have a larger misfit (0.88 – 1.49) and do not fit well with the experimental dispersion 

data. The better fit by the surface wave Vs profiles is expected since they were developed based 

on the experimental dispersion data. However, the downhole Vs profile developed in this study 

was developed independently of the surface wave data, indicating its higher accuracy compared 

to previous Vs models for the site. The site response from linear visco-elastic transfer function 

(TTF) associated with the developed VS profiles demonstrated a better match with the HVSR f0 

and ETF. However, VS profiles from previous studies show discrepancy with the HVSR f0 and 

ETF, especially, the Woolery et al. (2016) TTF, which underestimated the amplification factor 

from ETF. Overall, the developed VS profiles demonstrate the non-invasive method’s 

applicability for characterizing deep sites in the Mississippi Embayment. These new 

measurements provided a suite of more accurate Vs profiles for modeling the recorded ground 

motions at the CUSSO array. The Vs profiles can be used for back analyses to reproduce ground 

motions at bedrock and simulation of seismic wave propagation in the Mississippi Embayment.  
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 Site Response Impacts of the Memphis Sand Layer within the Mississippi Embayment  

 

3.1 ABSTRACT 

In this study, the site response impacts of accurately characterizing and resolving the 

Memphis sand layer at the Central United States Seismic Observatory (CUSSO) site are 

explored. The Memphis sand, also known as the '500 feet sand', is a major shallow impedance 

contrast in the Mississippi Embayment, influencing the site response estimates across the 

embayment. However, the Mississippi Embayment's available velocity information, including 

the Central United States Seismic Velocity Model, often does a poor job of properly identifying 

the depth and impendence contrast associated with the Memphis sand layer. To understand the 

impacts of the Memphis sand layer on site response estimates, a parametric study using linear 

visco-elastic transfer function and non-linear site response analysis is performed on a suite of 

shear wave velocity (VS) profiles with varying depths to the Memphis sand and varying 

formation velocity of the Memphis sand. The linear and non-linear site response results indicate 

that varying the depth and VS of the Memphis Sand layer within reasonable ranges can 

significantly impact site response results, with a variation of 10-30% observed for periods less 

than 1.0 sec. However, the largest variations are observed at periods between 1.0 and 2.0 secs 

with variations of up to 45%. This highlights the need to properly resolve shallow impedance 

contrast, such as the Memphis Sand in the Mississippi Embayment, for site response analyses.  

3.2 Introduction 

Understanding the influence of local soil conditions on earthquake ground motions (i.e., 

seismic site effects) is a critical aspect of the seismic design process. While many buildings or 
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bridges can be designed using the code based general procedure to account for seismic site 

effects, some sites and structures require site-specific ground motion response analyses 

(SSGMRA) (AASHTO 2011). One of the areas that often requires or can benefit from SSGMRA 

is the Mississippi Embayment. The Mississippi Embayment, situated in the central United States 

has deep unconsolidated sedimentary deposits ranging from 100 m to 1000 m (Van Arsdale and 

TenBrink, 2000) and situated in the vicinity of seismically active New Madrid Seismic Zone 

(NMSZ) (see Figure 3.1). This deep sediment thickness in the embayment is expected to 

attenuate short-period waves and amplify long period waves to a much greater extent than 

estimated using the general seismic design procedure (Cox et al., 2012). Therefore, SSGMRA 

are required for certain structures and soil conditions, especially highway bridges on liquefiable 

soil (AASHTO 2011). Wood and Baker (2018) showed the benefits of conducting the SSGMRA 

for short period bridges in the embayment, which could lead to a 7% reduction in the cost of the 

structure by reducing the design response spectrum in the short period range (< ~1.0 second).  

To conduct a SSGMRA, the following are required: (1) input rock motions, (2) shear 

wave velocity (VS) profiles, (3) non-linear dynamic soil properties, and (4) analysis method, 

which are also sources of uncertainty in the analysis (Idriss 2004). One of the most critical 

aspects is the VS profile, preferably down to the bedrock (Hashash et al., 2001). In the 

Mississippi Embayment, the presence of the thick unconsolidated deposits add significant 

uncertainty in characterizing the VS profile down to bedrock. Proper characterization of major 

impedance contrast, such as the Paleozoic bedrock and the Memphis sand in the embayment, 

play a critical role in SSGMRA. These two impedance boundaries in the embayment are known 

to influence the local site response (Wood et al., 2018; Himel 2018). Cox et al. (2012) observed 

almost identical site response results in their sensitivity analyses of surface response spectrum to 



42 

 

depth to bedrock in the Mississippi Embayment. However, the impact of the Memphis sand layer 

on local site response has not been studied in detail. A shallow impedance contrast in other 

regions has demonstrated significant influence on site response during past earthquakes, such as 

in the 1996 Pujili (Ecuador) earthquake. In this seismic event, most damaged buildings had a 

similar natural frequency to the superficial thin layer’s resonant frequency (Field and Jacob, 

1993).  

In Gomberg et al. (2003), the upper Eocene layer (Eocene layer containing the Jackson, 

and Claiborne formation-Figure 3.1a) is estimated to be the source of the shallow impedance 

contrast. However, recent studies, conducted with stronger active source and/or low frequency 

passive source surface wave testing and deep downhole testing estimated the Memphis sand, 

which is a part of the lower to middle Claiborne group, to be the source of this shallow 

impedance contrast (Rosenbled et al., 2010; Wood and Himel, 2019). In spite of the borehole 

disturbances around 50 – 130 m, the Woolery et al. (2016) suspension log VS profile also shows 

a sharp increase in velocity near the Claiborne formation (Figure 3.1a), predicting an impedance 

contrast. While the geologic association of the shallow impedance contrast in the Mississippi 

Embayment is still debated, in this paper we consider the Memphis Sand layer as the source of 

the impedance contrast. In this paper, the VS profile developed by Himel and Wood (2021) is 

considered as the base profile (Figure 3.1), which estimates the Memphis sand as the source of 

shallow impedance contrast in the embayment. The Memphis sand layer is characterized 

throughout the embayment in previous studies with different formation velocities ranging from 

445 m/sec (Central United States Seismic Velocity Model) (Ramirez-Guzman et al. 2012) to 685 

m/sec (Rosenblad et al., 2010) and with different depths ranging from 50 m (Ramirez-Guzman et 

al. 2012) to 180 m (Wood and Himel, 2019). The resolved depth and VS of this layer has even 
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been shown to vary significantly for a single site within the embayment. In a recent study at the 

Central United States Seismic Observatory (CUSSO) site, located in Western Kentucky 

(36°33'8.34"N, 89°19'46.99"W), the depth and VS of the Memphis sand layer were provided by 

four research groups and was shown to vary between 70 m and 130 m with VS between 425 m/s 

and 600 m/s (Himel and Wood, 2021).   

In this paper, the site response impacts of properly characterizing the Memphis sand layer 

are explored. A suite of VS profiles developed from a base VS profile at CUSSO is constructed 

by varying the formation velocity and depth to the Memphis sand. To understand the impact of 

the Memphis sand on a site response analysis, both linear and non-linear site response analyses 

are conducted. Linear site response analyses are conducted on the VS suite using a linear visco-

elastic transfer function. The non-linear site response analyses are conducted using a suite of ten 

input rock motions, spectrally matched with the unified hazard target spectrum at the site. The 

response spectral acceleration and amplification for each VS profile are compared and the 

residuals are computed to understand the impact of variations in the Memphis Sand on site 

response estimates.  

3.3 Shear Wave Velocity Profiles 

Downhole seismic measurements were conducted by Himel and Wood (2021) at the 

CUSSO boreholes down to 425 meters and used along with other VS information to develop a 

full-depth VS profile down to the Paleozoic bedrock at 585 m below the surface. This base 

profile has a Memphis sand formation velocity of 600 m/sec and a depth to the top of the 

Memphis sand of 125 m (VS30=230 m/sec, site class D). In order to account for measurement 

uncertainty and spatial variability, the Memphis sand formation velocity and depth are varied as 

per previous studies to construct four additional pseudo VS profiles. To account for the 
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uncertainty in depth to the Memphis sand layer, two VS profiles are constructed by holding the 

VS of the Memphis Sand layer at 600 m/s but varying the depth to the top of the layer from 50 m 

to 175 m (depth varied VS profiles). This range of depths represent a reasonable depth range for 

the Memphis sand based on previous studies. In the same fashion, two VS profiles are 

constructed by holding the top of the Memphis sand layer at a depth of 125 m but varying the 

formation velocity from 450 m/sec to 650 m/sec, which is also a reasonable range based on 

previous studies (velocity varied VS profiles). The VS profiles used in this study are shown in 

Figure 3.1a and 1b, respectively.  While these ranges of depth and Vs may seem excessive for a 

single project site, site specific Vs information for most bridge projects only extends down to 30-

45 m below the surface. This depth is significantly less than the typical depth of the Memphis 

Sand layer.  Therefore, reference VS profiles are typically used for site response. Hence, 

additional uncertainty is often introduced for the projects and the depth and Vs ranges used in the 

study are typical for various site-specific and reference Vs profiles in the region. 

3.4 Linear Site Response Analysis 

Linear visco-elastic theoretical transfer functions (TTF) between the surface and bedrock 

are computed for each of the candidate VS profiles using a MATLAB code (D. Teague, personal 

comm., 2017) and shown in Figure 3.2a (depth changes) and 2b (velocity changes) for the suite 

of VS profiles. Transfer function equations for damped, multiple horizontal soil layers over 

bedrock are used (Kramer 1996), with small strain damping ratios proposed by Darendeli, to 

calculate the TTFs (Darendeli, 2001). For comparison, the natural period (T0 =3.45 sec) of the 

site and resonant frequency for the Memphis sand layer (T1=1.28 sec) from Horizontal to 

Vertical Spectral Ratio (HVSR) measurements at the CUSSO site are plotted along with the 

TTFs (Wood and Himel, 2019). The HVSR peak periods are important to confirm that the VS 
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profiles are correctly capturing the resonates of the site. The HVSR second peak (T1) in the 

Mississippi Embayment has been shown to be caused by the shallow impedance contrast from 

the Memphis sand (Himel, 2018). Hence, T1 is the resonant period for the Memphis sand layer 

rather than an odd harmonics of the natural period. 

 

Figure 3.1 (a) Full-depth base VS profile down to bedrock from Himel and Wood (2021) along 

with suspension log Vs profile and geologic stratigraphy from Woolery et al. (2016). VS profiles 

for site response study by varying (b) the depth to the top of the Memphis sand, (c) the formation 

velocity of the Memphis sand.   

 

For the depth varied VS profiles (Figure 3.2a), the natural periods from all candidate VS 

profiles’ TTFs are almost identical with the HVSR natural period at the site. However, the 

amplitude of TTFs’ at the natural period varies. The 50 m Profile’s TTF has a 9% lower 

amplitude, whereas the 175 m Profile’s TTF has a 12% higher amplitude at the natural period 

than the base profile’s TTF. The resonant period for the Memphis sand layer from the 50 m 

Profile and 175 m Profile TTFs is 12% lower and 10% higher, respectively, than the base 

profile’s resonant period for the Memphis sand, which is in good agreement with the HVSR T1. 
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Around this period, the amplitude of 50 m Profile and 175 m Profile’s TTFs are lower than the 

amplitude of the base profile’s TTF. Other variations in both amplitude and peak period in the 

TTFs exist between 0.4-1.0 sec with variations generally being minimal below 0.4 sec. For the 

velocity varied VS profiles (Figure 3.2b), the TTFs of candidate profiles do not vary 

significantly. All three candidate VS profiles’ TTF natural period and resonant period for 

Memphis sand match well with the HVSR T0 and T1, respectively. The amplitude of 450 m/sec 

Profile’s TTF is 9% higher than the two other candidate profiles’ TTF at the natural period.   

Overall, varying the Memphis sand velocity within reasonable ranges can have 

approximately 9% impact on the amplitude of the linear site response analysis, but has little 

effect on the period ranges of amplifications. However, varying the depth to the top of the 

Memphis Sand layer with reasonable ranges has a larger impact on the site response results 

compared to the velocity varied profiles, especially around the Memphis sand's resonant period. 

Around this period, differences are observed for both period and amplitude between the depth-

varied profile's site response and base profile's site response. Changing the Memphis sand layer's 

depth did not change the fundamental peak period but significantly influenced the second peak of 

the transfer function. This confirms that the second peak amplification is due to the shallow 

impedance contrast from the Memphis sand layer. 
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Figure 3.2 Linear visco-elastic theoretical transfer functions (TTF) between the surface and the 

bedrock corresponding to VS profiles varying (a) depth to the top of the Memphis sand, (b) 

formation velocity of the Memphis sand. T0=3.45 sec and T1=1.28 sec are the fundamental period 

of site and resonant period of the Memphis sand, respectively.   

 

3.5 Non-Linear Site Response Analysis 

A deaggregation was performed to assess the seismic events that govern the seismic 

hazard at all periods at the CUSSO site. The USGS Unified Hazard Tool, Dynamic 

Conterminous 2008 v 3.3 edition was used for deaggregation. A return period of 1071 years (7% 

probability of exceedance in 75 years) hazard level specified by AASHTO (2011) guideline was 

used for the deaggregation. In this study, AASHTO (2011) code for SSGMRA is followed to 

prioritize the site response for bridge structures in continuation of the Wood and Baker (2018). 

The deaggregation results indicate a modal magnitude of 7.5~7.7 at a distance between 22 to 26 

km governs the seismic hazard at all periods. It should be noted that the mean magnitude, 

distance pairs were close to the modal pairs, indicating a reasonably symmetric hazard sources 

about the mean. Using a modal magnitude of 7~7.8 at a distance of 8~40 km, a suite of ten input 

bedrock ground motions were selected from the Nuclear Regulatory Commission Project 

(NUREG) (McGuire et al., 2001). As large magnitude ground motions (GMs) at short distances 

have never been recorded in the central United States, earthquake time histories from other 
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regions are adjusted by McGuire et al. (2001) to encompass the frequency content expected from 

an earthquake occurring in the central and eastern United States. Using the deaggregation 

characteristics, the final selection of ten input ground motions are listed in Table 3.1, showing 

the moment magnitude, distance, PGA and duration of the seed GMs.  

Table 3.1 Summary of selected input bedrock ground motions (McGuire et al., 2001). 

Record Event Magnitude Distance (km) PGA (g) Duration (sec) 

SHL090 Cape Mendocino 7.1 33.8 0.585 14.6 

SHL000 Cape Mendocino 7.1 33.8 0.648 14.4 

GBZ000 Koacaeli, Turkey 7.4 17 0.454 7.3 

DAY-TR Tabas, Iran 7.4 17 0.947 9.7 

DAY-LN Tabas, Iran 7.4 17 0.993 8.8 

GYN000 Koacaeli, Turkey 7.4 35.5 0.313 8.3 

TCU128-N Chi-Chi, Taiwan 7.6 9.7 0.305 29.9 

TCU046-W Chi-Chi, Taiwan 7.6 14.3 0.336 18.8 

TCU047-W Chi-Chi, Taiwan 7.6 33 0.7 12.9 

TCU047-N Chi-Chi, Taiwan 7.6 33 1.168 10.8 

  

The Unified Hazard Spectrum (UHS) for site class A is chosen as the design target 

spectrum at periods between 0 and 2 sec using a return period of 1071 years. The Paleozoic 

bedrock in the Mississippi Embayment has a VS > 1500 m/sec. Thus, a site class A target 

spectrum is used to spectrally match the input bedrock ground motions. The selected input rock 

ground motions must be adjusted either by scaling or spectral matching to match the seismic 

hazard consistent with the study site. In this study, the ten selected ground motions were adjusted 

by spectral matching with the design target response spectrum. RspMatch (2009 version) was 

used to spectrally match the selected ground motions to the design target spectrum. Though 

scaling is a simpler approach, previous studies have found spectral matching to be a more 

reliable adjustment method (Heo et al., 2011). The original and adjusted acceleration time 

history, and arias intensity plots were compared for all ground motions to evaluate the originality 

of the input ground motions after spectral adjustments (not shown here).    
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3.6 Simulating Shear Wave Propagation 

 To simulate the propagation of horizontally polarized shear wave through the soil 

column, the software DEEPSOIL 7.0 was utilized (Hashash et al., 2020). The Darendeli (2001) 

modulus reduction and damping curves were used along with the quadratic/ hyperbolic (GQ/H) 

model in DEEPSOIL 7.0. The modulus reduction and damping curve were fit with the University 

of Illinois at Urbana-Champaign reduction factor fitting procedure (MRDF-UIUC). Target shear 

strength values for each layer were based on Mohr-Coulomb failure criteria assuming a friction 

angle of 30° with no cohesion. A friction angle of 30° is a conservative estimate, given no actual 

laboratory test was conducted on the soil sample. These dynamic soil properties were not 

randomized as only the Memphis sand depth and velocity are varied to study their impact on site 

response. Therefore, other factors were kept as similar as possible for all the analysis.   

3.7 Non-linear Site Response Analysis Results 

For each candidate VS profile, ten site response analyses were performed (using the ten 

input motions). Each site response analysis provided a surface acceleration time history. A 5% 

damped response spectra from the surface acceleration time history is calculated to obtain the 

surface response spectra for each analysis. A log-normal-median (LNM) surface response 

spectrum for each candidate VS profile is calculated from each profile’s suite of ten surface 

response spectra. The amplification factor (AF) is calculated from the ratio of spectral 

acceleration at the surface to spectral acceleration of input motion. A LNM amplification factor 

for each candidate VS profile is calculated from each profile’s suite of ten amplification factor 

curves.      

The LNM surface response spectra and LNM AF calculated for each candidate VS profile 

are shown in Figure 3.3a and 3b, respectively. The AASHTO design response spectrum for site 
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class D and two-thirds of site class D at CUSSO are also shown in Figure 3.3a for comparison 

with the surface response spectra.  

It is observed in the surface response spectra results (Figure 3.3a) that up to 2 sec, the 50 

m Profile’s surface response spectra is higher (up to 32%), and the 175 m Profile’s surface 

response spectra is lower (up to 17%) than the base profile’s surface response spectra. The 

velocity varied 450 m/sec Profile’s surface response spectra is lower than the base profile in this 

period range (up to 10%), whereas the 650 m/sec profile’s surface response spectra is almost 

identical as the base profile’s surface response spectra. This indicates the depth and VS of the 

Memphis Sand has an effect on the site response spectrum over the peak period range (0.1-2 

secs), with the largest difference observed between 1-2 secs.  

For the AF results (Figure 3.3b), a similar trend as the surface response spectra results are 

observed. Up to a period of 2 sec, the 50 m Profile’s AF is higher (up to 32%), and 175 m 

Profile’s AF is lower (up to 17%) than the base profile’s AF. All candidate VS profiles have 

identical amplification peaks at approximately 4.5 second, which is higher than the HVSR T0. 

Like the linear site response, the 50 m Profile has the lowest amplification around this period. All 

candidate VS profiles, except the 50 m Profile, demonstrate a second amplification peak around 

2.5 second, which is greater than the HVSR T1. Similar to the linear site response TTF, the non-

linear AF for the 50 m Profile demonstrates a lower second peak period than the base profile. 

 To demonstrate the site response difference between the base profile and other candidate 

VS profiles, residuals of the varied VS profiles’ surface response spectra and AF are calculated. 

Considering the base profile results as measured and varied profile results as predicted, the 

following equation is used to calculate the residuals. The surface response spectra residuals and 

AF residuals are shown in Figure 3.3c and 3d, respectively.   
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Residual, R=ln (Sa or AF) base Profile-ln (Sa or AF) varied profile 

The residual results for the surface response spectra and AF have similar trends. Up to a 

period of approximately 2 sec, the highest negative residual is observed for the 50 m Profile with 

a maximum of -0.28 and a residual of -0.21 between 0.1-1.0 secs. The highest positive residual is 

observed for the 175 m Profile, with a maximum residual of 0.18 and most residuals being 

between 0.05-0.18. This implies that these two profiles have the highest and lowest site response 

amplification in this period range, respectively. The 450 m/s Profile has positive residuals 

ranging from 0-0.12, while the 650 m/s Profile has almost no residual. Overall, the results for 

non-linear site responses are in good agreement with the linear site response analysis. 

 

Figure 3.3 (a) LNM surface response spectra for each of the candidate VS profiles along with 

AASHTO site class D general procedure response spectra, (b) LNM amplification factor for each 

of the candidate VS profiles, (c) Spectral acceleration residuals for varied profiles, (d) 

Amplification factor residuals for varied profiles. 

 

Finally, as per AASHTO (2011) guideline, the design response spectrum is constructed 

for each candidate VS profile by multiplying the LNM AF period by period with the site class A 
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spectral accelerations. The delineated design response spectrum for each candidate VS profile is 

shown in Figure 3.4a along with the AASHTO site class D response spectrum. As the AASHTO 

code allows a 33% reduction of seismic load where appropriate, delineated design response 

spectrum for all candidate VS profiles is the same up to a period of approximately one second. 

From one to two seconds, the 50 m Profile has the highest design response spectra, and the 175 

m profile has the lowest design response spectra. A percent difference in delineated design 

response spectra for the varied profiles with respect to the base profile’s delineated design 

response spectra are calculated and shown in Figure 3.4b. For the 1-2 sec period range, the 50 m 

Profile has up to 30% higher spectral acceleration, and 175 m Profile has up to 15% lower 

spectral acceleration than the base profile. This infers that any bridges or buildings with natural 

periods of 1-2 secs could be overdesigned or under-designed, respectively, using the site 

response results from these two VS profiles. The site response results demonstrate that correctly 

resolving the depth of the Memphis Sand layer for site response within the embayment has a 

significant impact. For reasonable depths to the Memphis Sand, a 45% difference in the spectral 

acceleration in a period range (1-2 secs) is observed and is a period range often encountered in 

bridge design.  

 

Figure 3.4 (a) Delineated design response spectrum shown for the candidate VS profiles along with 

site class D design response spectrum, (b) Percent difference of delineated design response 

spectrum results for varied profiles with the base profile’s delineated response spectrum. 
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3.8 Conclusion 

In this study, a set of VS profiles were constructed from the downhole profile at the 

CUSSO site by varying the depth and the formation velocity of the Memphis sand to observe the 

impacts of incorrectly resolving this shallow impedance contrast on site response results. Linear 

and non-linear site response analyses were conducted on all candidate VS profiles. Both analyses 

methods demonstrated that varying the depth to the top of the Memphis Sand produces 

noteworthy difference up to a period of two secs with ranges in the spectral acceleration varying 

from 10 to 30% between 0 and 1.0 secs with the most significant differences occurring between 

1-2 secs with a range of 45%. However, the velocity varied profiles’ site response has less 

noteworthy differences up to a period of two second with a range of differences typically less 

than 10%. The delineated design response spectrums demonstrate the depth variation to the 

Memphis Sand has the largest impact in the 1-2 secs period range (ranges up to 45% difference). 

For bridges designed under the AASHTO guidelines, the differences can have a significant 

impact on bridges with a natural period of 1-2 secs.  Inaccurately characterizing the shallow 

impedance contrast from the Memphis sand in the Mississippi Embayment could provide seismic 

loads that could lead to overdesigning or under designing of bridges or buildings. Therefore, 

special consideration/attention should be taken to accurately resolve the depth and velocity of the 

Memphis Sand layer for site response analyses. 
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 Deep Shear Wave Velocity Profiles in the Mississippi Embayment from Surface Wave 

Measurements 

4.1 Abstract  

Local geology in the Mississippi embayment is a significant source of site effects due to 

the deep unconsolidated sediments and basin effects near the edge of the embayment. Proper 

characterization of the velocity structure of the embayment is crucial for site response and 

seismic hazard studies. In this paper, deep dynamic site characterization was conducted in the 

Mississippi embayment to develop shear wave velocity profiles down to bedrock at 24 sites 

using active and passive source surface wave methods. Study sites cover parts of Arkansas, 

Missouri, Kentucky, and Tennessee, with bedrock depths ranging from 250 – 1115 m. 

Multimodal joint inversion of surface wave data, which included both Rayleigh and Love wave 

dispersion and site fundamental frequency was utilized to develop the shear wave velocity 

profiles (VS profiles). The developed VS profiles provided reasonable site characterization 

solution and captured the site signature from experimental dispersion data and fundamental 

frequency. Average shear wave velocity down to bedrock range from 462 – 686 m/sec and 

proportionally related with the site period and depth to bedrock of the site. Average shear wave 

velocities estimated by previous studies using the resonance period-sediment thickness 

relationship tend to systematically overestimate the average shear wave velocity in the 

embayment by 25 – 40%. Formation velocities calculated for the commonly found geologic units 

in the embayment, Quaternary, Upper Tertiary, Memphis sand, Paleocene, Cretaceous, and 

Paleozoic bedrock are approximately 214, 418, 607, 665, 967, and 2211 m/sec, respectively. 

Comparison of the developed VS profiles demonstrated better agreement with related VS profiles 
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generated from direct measurements, but differences up to 30% are observed with the current 

velocity models of the Embayment. 

4.2 Introduction 

The Mississippi embayment, situated in the central United States, covers an area of about 

650,000 square kilometers encompassing parts of Arkansas, Missouri, Illinois, Kentucky, 

Tennessee, and Mississippi. The embayment is characterized geologically by deep, 

unconsolidated sediments of a few meters in the upper part near southern Illinois to a depth of 

about 1000 m near southern Memphis, Tennessee (Van Arsdale and TenBrink, 2000). This deep, 

unconsolidated sediment in the central and southern part of the embayment is an important 

source of local site effects, causing a complex mixture of amplification/deamplification of 

seismic waves at different period ranges (Hashash and Park, 2001; Wood and Baker, 2018; 

Woolery et al., 2016; Romero and Rix, 2005). Nevertheless, at the edge of the embayment where 

the sediment thickness is shallow, strong diffraction takes place due to the strong impedance 

contrast between soil column and shallow bedrock. This basin edge effect near the shallow part 

of the embayment results in longer duration ground motions (Kawase, 2003; Boore, 1999). The 

New Madrid Seismic Zone (NMSZ) is the major source of seismicity in the region, which is a 

series of three faults. Collectively, the local site effects from the deep sediments, basin edge 

effects from the shallow edges, and the presence of the NMSZ cause areas in the embayment to 

have some of the highest design ground motions in the United States (ASCE, 2017). Despite the 

NMSZ being one of the highest seismic hazard prone areas in the US, no large earthquake 

ground motions have been recorded in the embayment. In absence of locally recorded strong 

ground motions, the seismic velocity models of the embayment, especially down to bedrock 

could be helpful in understanding the spatial variability of the ground motion. Representative 
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estimates of the shear wave velocity (VS) profiles in the embayment are of utmost importance for 

ground motion studies, which include but are not limited to back analyses for replicating 

recorded ground motions, and forward analyses to predict future strong ground motions. 

Numerous site response studies have demonstrated the influence of VS profiles on the amplitude 

and frequency content of the surface ground motion (Rathje et al., 2010; Li and Assimaki, 2010).  

Despite the large variation in sediment thickness and local site effects in the embayment, 

two single reference Vs profiles developed by Romero and Rix (2005) for the lowland and 

upland areas of the embayment are used for site response studies in the embayment due to the 

lack of site-specific deep VS profiles (Hashash and Park, 2001; Romero and Rix, 2005). The 

overall site-specific VS profile database for the embayment is sparse, with the majority of the 

available VS profiles being 30 – 60 m deep (Liu et al., 1997, Street et al., 2004). Some seismic 

reflection/refraction studies are capable of capturing the velocity differences in deeper layers and 

inferring geologic layer boundaries (Street et al., 2004; Luzietti et al., 1992). However, these 

studies lack direct evidence of VS for individual soil layers exceeding 150 m depth (Street et al., 

2004). Rosenblad et al. (2010) developed eleven deep VS profiles extending down to 200 – 250 

m, characterizing down to a shallow impedance boundary in the embayment, but lacking the data 

down to the deep bedrock layer. Ramirez-Guzman et al. (2012) developed the Central United 

States Seismic Velocity Model (CUSVM) by combining results from borehole logs, and seismic 

reflection/refraction studies and extrapolated the results for the Central US, including the 

Mississippi embayment. However, below 100 m depth, reference VS profiles and site-specific 

CUSVM VS profiles show more than 50% difference (Himel and Wood, 2021a), emphasizing the 

need for additional site-specific deep Vs profiles to improve velocity models for the region and 

reduce uncertainties in modelling the deep VS structure.  
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An effort to develop a deep VS profile for the Mississippi embayment was made by 

Woolery et al. (2016) at the Central United States Seismic Observatory (CUSSO) (shown in 

Figure 4.1). A series of three boreholes with 30 m, 259 m, and 587 m depth constitutes the 

CUSSO vertical array, with accelerometers installed at the surface and at the bottom of each 

borehole. Walkaway seismic reflection/refraction, P-S suspension logging, and phase arrival 

time analysis were used to develop the VS profile at this location. However, significant 

differences are observed between the suspension log and walkaway survey. A recent study at the 

CUSSO vertical array was conducted by Himel and Wood (2021) to study the reliability of 

surface wave methods (SWM) to properly characterize the deep soil column of the embayment 

down to  bedrock. A combination of active and passive source surface wave methods were used 

to develop the SWM VS profiles. A downhole VS profile was also developed for the 587 m deep 

borehole for comparison as invasive methods are considered more reliable than the SWM. 

Despite the non-uniqueness issue of SWM (Cox and Teague, 2014), the developed SWM VS 

profiles demonstrated comparable results with the downhole VS profile and were able to capture 

site signatures from the experimental dispersion data, and fundamental period. This indicates 

SWM’s competence in developing suitable VS profiles at deep sites that can yield reasonable site 

response estimates (Griffiths et al., 2016a; Teague et al., 2018; Deschenes et al., 2018).   
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Figure 4.1 Map of the Mississippi embayment showing the 24 surface wave measurement sites 

along with the extent of lowland and upland area in the embayment, NMSZ and Crowley’s ridge. 

Location of the related Rosenblad et al. (2010) study sites are also shown. 

 

In this study, deep Vs profiles at 24 sites (including CUSSO) in the Mississippi 

embayment are developed following the SWM methodology by Himel and Wood (2021a). The 

acquisition and processing of the active and passive source surface wave data are discussed first. 

A demonstration of challenges associated with the non-uniqueness in the  inversion process 

including mode identification and elimination of effective mode data is presented for an example 

site. The theoretical dispersion curves generated from the developed VS profiles at the example 

site are compared with the recorded experimental dispersion data. Moreover, the theoretical 

ellipticity peak and theoretical transfer function (TTF) peak generated from the median VS 
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profile are compared with the fundamental period of that site from horizontal to vertical spectral 

ratio measurements. These comparisons ensure that the SWM VS profiles at the site are capable 

of capturing the site signatures. Finally, the developed SWM VS profiles for all 24 study sites are 

presented and compared with reference VS profiles, CUSVM site-specific profiles, and related VS 

profiles from the literature.  

4.3 Overview of the Mississippi Embayment Stratigraphy 

The sediments in the Mississippi embayment range in age from Paleocene to recent 

Holocene and Pleistocene. As per CUSVM, geologic units in the Mississippi embayment are 

divided as Quaternary, Upper Tertiary, Lower to Middle Claiborne (LMC), Paleocene, 

Cretaceous, and Paleozoic era bedrock (Ramirez-Guzman et al., 2012). The Quaternary layer 

houses the Holocene and Pleistocene era alluvial surface deposits. The Holocene era deposits are 

found in the lowland, while the Pleistocene deposits are found in the upland part of the 

embayment Ramirez-Guzman et al. (2012) Romero and Rix, 2005) (see Figure 4.1). The Upper 

Tertiary layer consists of the Jackson formation and Upper Claiborne group, characterized with 

silts, clay, and some lignite (Van Arsdale and TenBrink, 2000). The LMC layer, also known as 

the Memphis sand/Sparta sand (depending upon location) is part of the Tertiary aged deposit but 

differentiated due to the velocity contrast with the Upper Tertiary layer. The Memphis sand is a 

very fine to coarse grained, light gray-white sand (Van Arsdale and TenBrink, 2000). The 

Paleocene layer houses the Wilcox and Midway groups and is composed of silt, clay, fine to 

coarse grained sand, and some minor limestone (Van Arsdale and TenBrink, 2000; Brahana et 

al., 1987). The Cretaceous layer consists of McNairy sand, Demopolis formation, and Coffee 

formation, composed mainly of sand, silt, and undifferentiated limestone (Street et al., 2004). 

The Paleozoic layer bedrock is composed of Knox Dolomite and forms the major impedance 
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boundary in the embayment. Another source of impedance contrast is observed at the interface of 

the Upper-Tertiary - LMC layer. The deposits above the LMC layer have a low VS of 193 ± 14 

m/sec compared with the Memphis sand’s formation velocity of 685 ± 83 m/sec (Rosenblad et 

al., 2010). The presence of thick unconsolidated sediments along with the two impedance 

boundaries in the geologic structure adds significant uncertainty in ground motion propagation in 

the embayment (Hashash and Park, 2001). 

4.4 Testing Sites 

Surface wave measurements were carried out in two phases at 24 sites in Arkansas, 

Tennessee, Kentucky, and Missouri, as shown in Figure 4.1. In the first phase, measurements 

were made at fifteen sites non-seismic station sites, while in the second phase, measurements 

were made at seismic stations (CUSSO, HENM, PARM, PEBM, PVMO, HBAR, LPAR, LNXT, 

TUMT). The majority of the sites are situated in the lowland part of the embayment. The TUMT 

and LNXT sites are situated in the highland part. Based on similar site characterization results 

and geologic locations, the sites are divided into eight groups and shown accordingly on the map 

(see Figure 4.1). The locations of the Rosenblad et al. (2010) study sites are also shown in Figure 

4.1 as some of the related Rosenblad et al. (2010) sites are compared with the Vs profiles 

developed in this study. Table 4.1 presents the coordinates of each site along with their estimated 

bedrock depth from the CUSVM (Ramirez-Guzman et al., 2012). Sites were selected based on 

their geologic location, accessibility, sufficient space for testing, and the ability to obtain 

necessary permission for testing. At the seismic station sites, measurements were taken in close 

proximity to the seismic stations. More details regarding the exact testing locations for each site 

are provide in the electronic supplement.   
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Table 4.1 Surface wave measurement site locations along with their bedrock depth from Ramirez-

Guzman et al. (2012), except CUSSO, for which, bedrock depth sourced from Woolery et al. 

(2016). 

Group Site Name Latitude Longitude 
Bedrock 

Depth (m) 

Group I 

CUSSO 36.552 -89.329 585 

HENM 36.716 -89.472 450 

PARM 36.664 -89.752 427 

Group II 
PEBM 36.113 -89.862 764 

PVMO 36.413 -89.699 591 

Group III 

Amagon 35.568 -91.156 350 

Fontaine 36.017 -90.799 291 

McDougal 36.399 -90.388 252 

Group IV 

Bay 35.762 -90.594 587 

Harrisburg 35.566 -90.730 701 

Marmaduke 36.119 -90.313 492 

Monette 35.886 -90.335 677 

Group V 

Athelstan 35.704 -90.217 858 

HBAR 35.553 -90.654 754 

LPAR 35.602 -90.300 840 

Manila 35.853 -90.147 813 

Marked Tree 35.520 -90.436 853 

Group VI 

Aubrey 34.711 -90.944 1114 

Earle 35.259 -90.423 1018 

Greasy Corner 35.016 -90.403 1069 

Palestine 34.987 -90.911 958 

Wynne 35.188 -90.790 853 

Group VII LNXT 36.101 -89.491 845 

Group VIII TUMT 35.123 -89.933 923 

 

4.5 Testing Methodology  

Active and passive source surface wave measurements were made at all 24 sites. The 

combination of active and passive source measurements ensures retrieval of both high and low 

frequency dispersion data, which in turn assure high resolution in the near surface and deep 

penetration depth, respectively. Active MASW (Park et al., 1999) testing was conducted using a 

linear array of 24, 4.5 Hz vertical (Rayleigh) and horizontal (Love) geophones with 2 m 
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geophone spacing (46 m long array). A 5.4 kg sledgehammer source was used to generate 

Rayleigh and Love waves from vertical and horizontal strikes, respectively. Multiple source 

offsets of 5, 10, 20, and 40 m from the first geophone were used to produce high quality data and 

minimize the influence of near-field effects. At each source offset, ten sledgehammer blows were 

stacked to improve the signal-to-noise ratio. P-wave refraction utilizing the same MASW array 

was conducted using a 2 m source offset to estimate the ground water table depth at each site. At 

some select sites, active MASW was conducted utilizing the University of Arkansas Vibroseis 

truck (Industrial Vehicles International T – 15000) as the seismic source. The vibroseis source is 

capable of producing longer wavelength data than the sledgehammer. Thus, can resolve deeper 

depths compared to a sledgehammer source. Only Rayleigh wave data were retrieved using the 

vibroseis with an array length ranging from 46 m (2 m geophone spacing) to 94 m (4 m 

geophone spacing). The same source offset distances were used for the vibroseis MASW testing 

as the sledgehammer MASW testing.   

The passive source microtremor array measurements (MAM) (Tokimatsu, 1997) were carried out 

using circular arrays at all sites and L-shaped arrays in some select sites. Circular arrays of 

approximately 50 m, 200 m, and 500 m diameters were used at all sites. A 1000 m diameter 

array was used for some select sites where sufficient space was available. At the seismic station 

sites, nine three-component Trillium compact 20-sec broadband seismometers were used in each 

array, while ten seismometers were used for the non-seismic station sites. In each circular array 

configuration, one seismometer was placed in the center, and the rest of the seismometers were 

uniformly spaced around the circumference. At some sites, deviations from the typical layout 

were made due to site constraints. A centimeter accurate GPS unit was used to record the exact 

location of each seismometer. Ambient noise was recorded using each array for one hour to two 
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hours, with a longer recording time for larger diameter circular arrays. Nanometrics Centaur 

digitizers were used to record the data. The MAM data recorded using the circular array of 

seismometers were also used for the HVSR measurements. The L-array MAM measurements 

were carried out using 24, 4.5 Hz vertical geophones. A geophone spacing of 5 m was used, 

resulting in an approximate L-shaped array of 55 m × 60 m. Ambient noise for the L-array was 

recorded for 1 hour. A typical surface wave array setup is shown in Figure 4.2 for the Manila 

site.

 

Figure 4.2 A typical surface wave array setup is shown with the three circular MAM arrays (50 m, 

200 m, and 500 diameter) and active MASW array for the Manila site. 
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4.6 Data Processing  

The data processing consists  mainly of four major steps: 1) developing composite 

experimental dispersion data from active and passive SWM, 2) estimating the fundamental 

frequency of the site utilizing the horizontal to vertical spectrum ratio (HVSR) method 

(Nakamura, 1989), 3) P-wave refraction processing to estimate the water table depth, and 4) joint 

inversion of the composite experimental dispersion curves and site fundamental frequency to 

obtain Vs information. 

The active source MASW Rayleigh (both sledgehammer and vibroseis) and Love data 

with multiple source offsets were processed using the Frequency Domain Beam Former method 

(FDBF) (Cox and Wood, 2011; Zywicki, 1999). The circular (both Rayleigh and Love) and L-

array MAM data were processed using the High Resolution Frequency-Wavenumber (HRFK) 

method (Capon, 1967), and Frequency-Wavenumber (FK) method (Kelly, 1967; Harjes and 

Hanger, 1973), respectively. The circular MAM Rayleigh wave data were also processed using 

the Modified Spatial Auto-Correlation method (MSPAC) (Bettig et al., 2001). The MSPAC 

method acts as a cross-check to the HRFK and ensures reliable dispersion data estimates over a 

large frequency band (Foti et al., 2018). This method has been shown to be better capable of 

extracting low frequency data than the HRFK based methods (Foti et al., 2018). In addition, 

HRFK data can exhibit bias toward higher phase velocities when passive waves are propagating 

from a wide range of azimuths at the site (Asten and Boore, 2005). Considering advantages and 

disadvantages of HRFK and MSPAC, use of both approaches increases the confidence on 

resolved dispersion curves. In addition to use of multiple dispersion transformation methods, 

combined use the Rayleigh and Love wave data from the passive measurements ensures reduced 

non-uniqueness of shear wave velocity structure from inversion.  
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All dispersion data generally are inherently influenced by both epistemic and aleatory 

uncertainties. Understanding the intra method dispersion uncertainty along with uncertainties 

between inter method is still a topic of much ongoing research. For FK, HRFK, and FDBF, mean 

phase velocity and standard deviation at each frequency bin are calculated to estimate the intra 

method dispersion uncertainties. For MSPAC, manual selection of median, upper and lower 

bound of dispersion data phase velocities are made from a 3-D histogram of phase velocities 

created from spatial auto-correlation values. Dispersion data generated from each processing 

method are compared to observe differences and identify any potential data processing issues. 

However, given the possibility of different modes resolved by different transformation 

techniques, a direct combination of dispersion data to understand an overall uncertainty is not 

always the best approach. After carefully refining the experimental dispersion data from each 

method, individual Rayleigh and Love composite experimental dispersion data sets are prepared 

by adding all refined dispersion data. This composite experimental dispersion data set is utilized 

in the surface wave inversion. More details on the dispersion data processing and combining the 

active and passive source surface wave testing can be found in Wood et al. (2018) and Himel and 

Wood (2021).     

Ambient data collected for the circular MAM were also used in the HVSR processing to 

compute the fundamental frequency of the site. Fundamental frequencies from each 

seismometers’ HVSR peak frequencies and associated uncertainties are calculated. An average 

of all the fundamental frequencies and standard deviations are calculated to estimate a single site 

fundamental frequency and associated uncertainty. This frequency along with one standard 

deviation of uncertainty associated are utilized in the surface wave inversion for constraining the 
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bedrock depth. General guidelines from the SESAME project were followed for HVSR 

processing (SESAME, 2004).  

The P-wave refraction data was processed to estimate the ground water table depth 

following Redpath (1973). P- wave arrivals at each receiver offset as a function of time were 

estimated from the linear geophone array. The time-intercept method was used to estimate the 

depth to the water table. The estimated depth to the water table is utilized in constructing the 

parameterizations for inversion.  

A joint inversion of the fundamental frequency and composite dispersion curves was 

performed using the Geopsy software package, Dinver (Wathelet et al., 2020). Dinver utilizes a 

neighborhood algorithm method (Wathelet, 2008) to generate theoretical VS profiles within user 

defined constraints. Parameters to constrain the inversion solution contain ranges of VS, P-wave 

velocity (VP), Poisson’s ratio, density, and number/thickness of layers. The accuracy of VS 

profiles generated in the inversion is highly dependent on the parameterization used in the 

inversion (Digiulio et al., 2012). Additionally, the parameterization aids the inversion by 

reducing the size of solution space, preventing generation of extraneous profiles and decreases 

processing time. The set of parameterizations for each site in this study were developed using 

ranges of VS, Vp, Poisson’s ratio and density from previous site characterization studies in the 

embayment (Woolery et al., 2016; Rosenblad et al., 2010; Ramirez-Guzman et al., 2012; Lin et 

al., 2014). Depth to bedrock was constrained in the inversion process as per the CUSVM bedrock 

depth at each site. However, there are other sources, such as, Dart (1995) that have compiled 

bedrock depth information for the Mississippi embayment. With soil profiles extending hundreds 

of meters deep, it is very difficult to measure the depth to bedrock precisely and as a result some 

discrepancies between Dart (1995) and CUSVM bedrock depth is observed. Nevertheless, sites 
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as deep as the ones found in the Mississippi embayment are generally insensitive in site response 

to bedrock depth changes within a reasonable bound (Cox et al., 2012). Bedrock VS was allowed 

to have a parameterization range of 1600 – 3000 m/sec, which would allow the bedrock to adjust 

in conjunction with the overlying layers. This would ensure overall profile’s ability to capture 

site signatures from the experimental fundamental frequency and dispersion characteristics. In 

each inversion trial, at least 500,000 theoretical VS profiles are generated for each inversion run. 

Corresponding theoretical Rayleigh and Love wave dispersion curves generated from the 

theoretical VS profiles are compared with the experimental dispersion curves to ensure that the 

modeled profiles are capturing the dispersion characteristics at the site. At the same time, 

theoretical ellipticity peaks, generated from the trial VS profiles are compared with the 

fundamental frequency peaks from HVSR. Iterative comparison of theoretical Rayleigh 

fundamental mode ellipticity ensures that the bedrock VS is properly modeled and the overall 

profile is able to capture the site signature from the experimental fundamental frequency 

(Scherbaum et al., 2003; Arai and Tokimatsu, 2005; Parolai, 2005). At each trial inversion, 

Dinver attempts to minimize the differences between the theoretical data and experimental 

recorded data. This overall ‘closeness’ between the experimental and theoretical results are 

quantified as misfit (Wathelet et al., 2004). In the Mississippi embayment, higher modes are 

excited at low frequencies due to a shallow impedance boundary. Superposition of multiple 

modes are expected due to the potential higher modes at particular frequencies. This 

superposition of multiple modes is termed as ‘effective mode’ (Socco et al., 2010). Identification 

and removal of effective mode data is vital for the inversion process as Dinver cannot utilize 

effective mode data. The effective mode data were identified from sudden phase velocity jumps, 

comparison of dispersion data from multiple methods, a-priori knowledge of subsurface 
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stratigraphy, use of proper parameterization, and iterative comparison of theoretical and 

experimental data after each inversion run. Another challenge of deep inversion is the 

identification and correct assignment of higher modes in the inversion. Assigning the wrong 

mode to dispersion data would negatively influence the resulting VS profiles at the site. A two 

million model final inversion iteration for each site was conducted to ensure the inversion 

solution space was properly explored. A representative 1000 lowest misfit VS profiles for each 

site were selected to calculate a median VS profile for the site. This ensures a more representable 

profile is used rather than just selecting the single lowest misfit profile (Deschenes et al., 2018). 

More details on the inversion processing can be found in Himel and Wood (2021a).  

4.7 Surface Wave Inversion Results 

4.8 Manila Site   

 The Manila site is situated in Mississippi County, Arkansas with a bedrock depth of 813 

m (Ramirez-Guzman et al., 2012). Being in the lowland part of the embayment, this site has 

Holocene age deposits at the surface along with geologic units commonly found in the 

embayment. The site is affiliated with Group V in this study.  

HVSR curves calculated from the 50 m, 200 m, and 500 m arrays along with the 

calculated median HVSR curve are shown in Figure 4.3. The fundamental frequency from the 

median HVSR curve is determined to be 0.25 ± 0.02 Hz, which is associated with the 

soil/bedrock interface at this site. A secondary peak frequency around 0.8 Hz is also observed for 

this site, which is potentially associated with the shallow impedance boundary at this site (Himel, 

2018; Gueguen et al., 2000; Field and Jacob, 1993). The fundamental frequency of 0.25 Hz was 

used in the joint inversion of the dispersion data and fundamental frequency. The secondary 

HVSR peak was used as a guide for developing the parameterization and in evaluating various 
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inversion runs to insure the secondary HVSR peak was observed in the resulting theoretical 

ellipticity (Himel, 2018).  

 

 

Figure 4.3 HVSR curves calculated for the 50 m, 200 m, and 500 m array from each seismometers 

in these arrays. A median HVSR curve calculated from the array results demonstrate the 

fundamental peak frequency around 0.25 Hz and a secondary frequency around 0.8 Hz. 

 

The composite experimental dispersion data developed from surface wave measurements 

at the Manila site are shown in Figure 4.4a and b for the Rayleigh and Love wave data, 

respectively. The mean and +/- one standard deviation for each data point is shown. The array 

resolution limit (kmin/2 curve) from the 500 m circular array is also shown. The array resolution 

wavenumber limit, kmin is calculated based on the spatial distribution of sensors utilizing the 

Geopsy software package (Wathelet et al., 2008). For each frequency bin, the maximum 

resolvable phase velocity is calculated using kmin/2 (Woods and Lintz, 1973), and the results are 

shown with the kmin/2 curve.  The active and passive data are in satisfactory agreement and 
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overlap in the 5 – 20 Hz for both the Rayleigh and Love data. The overlap of active and passive 

source data ensures each array captured similar dispersive characteristics at the particular 

overlapping frequency ranges. Standard deviations at lower frequencies are higher, an indication 

of higher uncertainties characterizing deeper depths. The MSPAC data points around 1.5 Hz, 1 

Hz and 0.8 Hz exhibit flat dispersion curves, which could indicate transitioning from a 

higher/effective mode data to supposedly fundamental mode. Rayleigh and Love data 

demonstrate steep slopes around 1.8 Hz and 1 Hz, respectively. This could be an indication of 

dispersion data transitioning from fundamental to effective/higher mode data due to presence of 

a shallow stiff layer around this depth range. The estimated depth of this probable stiff layer 

from the Rayleigh data is around 130 m (500 m/sec at around 1.8 Hz)       

 

 

Figure 4.4 Composite experimental dispersion data from surface wave measurement at the Manila 

site for (a) Rayleigh and (b) Love wave. The array resolution limit for the 500 m circular (Kmin/2) 

shows the boundary for potentially less reliable data. 

 

The theoretical dispersion curves associated with the 1000 lowest misfit VS profiles 

(considered as ‘best 1000’ profiles) from the Manila site inversion results are shown for Rayleigh 
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and Love wave data in Figure 4.5a and b, respectively. Theoretical fit from the calculated median 

VS profile is also shown. The fundamental, first higher, and second higher theoretical curves for 

Rayleigh are R0, R1, and R2, respectively. In the same fashion, Love modes are denoted with 

L0, L1, and L2. Identified fundamental, first higher, and second higher experimental dispersion 

points are shown with corresponding legends along with the identified effective mode data. A 

transition from fundamental to effective mode data is observed around 1.8 Hz for the Rayleigh 

wave data as expected from the composite dispersion curve. As discussed in the data processing 

section, some MPSAC data points around 1 Hz have lower phase velocities than their 

counterpart HRFK data and were identified as fundamental mode. The Rayleigh wave data from 

around 1 – 2 Hz were identified as effective mode data, which reached the first higher mode at 

around 2 Hz. This zone of complex propagation from 1 – 2 Hz is very close to both fundamental 

and first higher. If this effective mode data were erroneously considered as fundamental mode, it 

would have resulted in a stiffer layer than the representative velocity of the material present 

around this depth range (~130 m). Overall, comparison of multi method dispersion data, velocity 

jumps, and use of iterative and proper parameterization assisted in identifying the effective mode 

data in this frequency range.   However, identification of effective mode data is still a topic of 

ongoing research. As a result, processing of surface wave dispersion data with potential effective 

mode is subjective of analyst’s expertise and prior experience. Hence, analyses of surface wave 

data demands appropriate caution, expertise and application of engineering judgement driven by 

local geology.  Another zone of complex propagation with effective mode data was identified 

from around 0.7 – 1 Hz from the HRFK Rayleigh data, which was identified as the second higher 

mode around 0.7 Hz. Some points beyond the largest array’s (500 m) resolution limit were used 

to ensure resolution at deeper depths as the resolution limits are based on conservative estimates. 
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The Love wave experimental data demonstrate a clear effective mode propagation around 1 Hz. 

The Love wave effective mode data from around 0.5 – 0.7 Hz are very close to the first higher 

Love and were attempted to be fit as the first higher mode. However, they do not fit with the first 

higher mode of propagation, which could be due to shear strength anisotropy compared to the 

Rayleigh wave measurements and would result in a lower estimated Vs from Love waves than 

Rayleigh waves. Nevertheless, use of the combination of Rayleigh and Love complements each 

other and constrains the VS model, reducing the non-unique characteristics of the surface wave 

method characterization. Dozens of inversion run iterations were carefully conducted with the 

Manila dataset considering various possible scenarios to achieve proper mode assignment and 

exclusion of effective mode data. 

 

 

 

Figure 4.5 Experimental dispersion data and multimodal theoretical fit from surface wave 

inversion results at the Manila site for the (a) Rayleigh and (b) Love wave. Theoretical dispersion 

fit for ‘1000 best’ fit VS profiles are shown along with the theoretical fit from calculated median 

VS profile. Identified fundamental, first higher and second higher Rayleigh and Love experimental 

data are shown along with the effective mode data. Calculated minimum misfit between the 

experimental and theoretical fit is 0.38 as per misfit equation from Wathelet et al. (2004).  

 

R0 R1 R2 L0 L1 L2
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VS profiles obtained from the inversion of surface wave measurements at Manila are 

shown on a depth scale of 200 m and 1000 m in Figure 4.6a and b, respectively. The 1000 lowest 

misfit inversion VS profiles, considered as the ‘best 1000’ profiles are shown along with their 5th 

and 95th percentile, and computed median from the ‘best 1000’ profiles. For comparison, site-

specific VS profile at Manila from CUSVM, Romero and Rix (2005) lowland VS profile and VS 

profiles from Rosenblad et al. (2010) Site 4 and Site 11 are also shown. Site specific geologic 

stratigraphy at Manila from CUSVM is superimposed on Figure 4.6a, and b. Reference VS 

curves from Lin et al. (2014) for different soil types are shown in Figure 4.6a for comparison. 

Standard deviation of natural logarithm of VS (σlnVS) between the developed inversion profiles 

is shown in Figure 4.6c. The σlnVS quantifies the uncertainties between the developed VS 

profiles.  
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Figure 4.6 VS profiles generated from surface wave inversion at Manila site are shown on a depth 

scale of (a) 200 m and (b) 1000 m. One thousand lowest misfit inversion VS profiles, considered 

as the ‘best profiles’ are shown along with their 5th and 95th percentile, and calculated median. Site 

specific VS profile at Manila from CUSVM, Romero and Rix (2005) lowland VS profile and 

Rosenblad et al. (2010) Site 4 and 11 VS profiles are shown for comparison. Reference VS profiles 

for different materials from Lin et al. (2014) are shown in (a). Site specific geologic stratigraphy 

at the Manila site from CUSVM is superimposed on (a) and (b). Calculated σlnVS between the 

inversion VS profiles is shown in (c) to demonstrate the uncertainties between the developed 

surface wave method VS profiles. 

 

For convenience in discussion, inversion profiles from this study, and Romero and Rix 

(2005) lowland profile would be denoted as SWM, and lowland (or highland in case of highland 

profile), respectively. Rosenblad et al. (2010) VS profiles would be denoted with their 

corresponding site number (e.g., Site 4, Site 11).  

All the developed SWM VS profiles along with their median and related VS profiles from 

the literature have similar shear wave velocities down to around 50 m. Shear wave velocities 
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stretch between the soft soil and dense sand reference curve in this depth range, which is typical 

of the surface alluvium and silt-clay mixture found in the Quaternary layer. The calculated SWM 

median and Site 4 VS profiles have velocity jump around the Quaternary – Upper Tertiary 

interface, representing similar depth for the Quaternary layer as the site specific CUSVM 

geology at this site. The lowland VS profile has a shallow impedance boundary around 70 m, 

which none of the other VS profiles resolve. The CUSVM VS profile has the impedance boundary 

from the LMC, i.e., Memphis sand around 95 m with a velocity jump from 430 to 445 m/sec. 

The SWM and Rosenblad et al. (2010) VS profiles have thicker Upper Tertiary layers and do not 

have any velocity jumps down to approximately 110 m. Shear wave velocities within this range 

lay between the dense sand and dense gravel reference curves, which is consistent with the stiff 

clay and sand formations found in the Upper Tertiary. The SWM VS profiles have a probable 

Memphis sand boundary from around 120 – 135 m, with a velocity of 600 – 660 m/sec, with the 

median VS profile being at 122 m and 640 m/sec. The Rosenblad et al. (2010) sites have a similar 

depth to the Memphis sand around 110 m with a formation velocity around 600 m/sec. Both 

SWM and Rosenblad et al. (2010) VS profiles have formation velocities at this impedance 

boundary between dense sand and dense gravel, which is consistent with the Memphis sand 

comprised of thick layers of sand mixed with gravel and clay lenses. Rosenblad et al. (2010) VS 

profiles have very stiff layers below the probable Memphis sand depth, which none of the other 

VS profiles, including the SWM VS profiles resolve. The SWM and lowland VS profiles have 

similar shear wave velocities from around 200 – 600 m. The CUSVM VS profile being 

consistently softer than any other VS profiles from around 20 – 600 m has as much as a 30% 

lower shear wave velocity over this depth range. The SWM VS profiles resolved the Cretaceous 

layer from around 620 – 680 m with a velocity of 850 – 950 m/sec. The CUSVM VS profile 
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resolved this layer interface at around 650 m with a velocity of 1000 m/sec. The bedrock depth 

being locked during inversion, SWM VS profiles have similar bedrock depth as the CUSVM VS 

profile at 813 m. However, the bedrock formation velocity of the SWM VS profiles is in the 

range of 2000 – 2150 m/sec, whereas the CUSVM VS profile has a VS of 1730 m/sec.  

The σlnVS profile (see Figure 4.6c) calculated to show the uncertainties and variabilities 

between the SWM VS profiles demonstrate uncertainties in the near surface (down to 50 m), 

probable Memphis sand boundary, and Cretaceous boundary. This confirms uncertainties in 

characterizing the layer depths and formation velocities, especially at deeper depths. However, 

maximum σlnVS values observed are below 0.15, which is a reasonable uncertainty for intra 

method comparison (Garofalo et al., 2016a).  

Comparison of the median HVSR, theoretical transfer function and theoretical ellipticity 

curves are shown in Figure 4.7. The transfer function was computed between the bedrock and 

ground surface from the median VS profile using a MATLAB code from Teague (Teague, 2017). 

Theoretical Rayleigh wave fundamental mode ellipticity curve was generated from the median 

VS profile using the Geopsy software package. The TTF and theoretical ellipticity fundamental 

peaks are in good agreement with the HVSR fundamental peak and within 4% of the 

fundamental peak frequency (0.25 Hz) at thee Manila site. Even though the HVSR second peak, 

around 0.8 Hz, was not used to constrain any shallow impedance boundaries associated with it, 

the ellipticity higher frequency peak is in reasonable agreement with the HVSR second peak. 

Theoretical ellipticity peaks being in good agreement with the experimental HVSR peaks implies 

that the depth to impedance boundaries were modeled properly in the median SWM VS profile 

(Hobiger et al., 2013).     
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Figure 4.7 HVSR curve calculated from the surface wave measurements along with theoretical 

ellipticity and theoretical transfer function generated from the median VS profile at the Manila site 

shown for comparison. Fundamental ellipticity peak and fundamental transfer function peak are 

within 4% of the HVSR fundamental peak frequency.   

 

4.9  Group VS Profiles 

The tested sites are divided into eight groups based on the sites’ similarities in geologic 

structure, shear wave velocities (especially down to the Cretaceous layer) and geologic location. 

In this section, site characterization results for one of the groups (Group V) is discussed in detail. 

Later, site characterization results for all the other groups are provided.   

Sites that are organized in the Group V are Athelstan, Manila, Marked Tree, LPAR and 

HBAR. These sites stretch from Mississippi County to Poinsett County, Arkansas in the north-

south direction and lie between Crowley’s Ridge and the Mississippi River in the east-west 

direction. All of these sites fall in the lowland part of the embayment (see Figure 4.1). Site 

characterization results from Group V sites are shown in Figure 4.8 along with the Romero and 
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Rix (2005) lowland and Rosenblad et al. (2010) Sites 4 & 11 for comparison. Reference VS 

profiles for different material types from Lin et al. (2014) are added for comparison in Figure 

5.8a.   

 

Figure 4.8 Median SWM VS profiles shown for the sites in Group V along with VS profiles from 

corresponding Romero and Rix (2005) lowland and nearby Rosenblad et al. (2010) sites are shown 

on a depth scale of (a) 200 m and (b) 1000 m. Reference VS profiles for different materials from 

Lin et al. (2014) are also shown for comparison in (a). 

 

All Group V SWM Vs profiles have shear wave velocities between the soft soil and 

dense sand curves to around 40 – 60 m depth and between dense sand and dense gravel reference 

curves down to around 100 – 125 m depth, inferring the Quaternary – Upper Tertiary and Upper 

Tertiary – LMC interfaces, respectively in these depth ranges. The Rosenblad et al. (2010) sites 
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are in good agreement with SWM profiles regarding the shear wave velocities and geologic 

layering in these depth ranges. The lowland profile also has a similar trend as the SWM and 

Rosenblad et al. (2010) profiles. However, the lowland profile has an impedance boundary 

around 70 m, which none of the other VS profiles have. The SWM VS profiles resolved the 

impedance boundary from the Memphis sand around 115 – 130 m, substantiated by the nearby 

Rosenblad et al. (2010) sites’ VS profiles. However, the Rosenblad et al. (2010) sites’ deepest 

resolved layers have very high shear wave velocities compared to the other VS profiles. All the 

SWM VS profiles and the lowland VS profile have similar trends from around 110 – 600 m. Even 

though the sites in Group V have very similar shear wave velocities and geologic layer depths in 

the probable Quaternary, Upper Tertiary, LMC, and Paleocene layers, they tend to have 

differences in formation velocities and depths to the Cretaceous and Paleozoic bedrock. 

However, this is expected as the Group V sites stretch in the east-west and north-south directions 

with variable bedrock depth from 750 to 850 m.  

Median SWM VS profiles for sites in Group I-VIII are shown in Figure 4.9a-h. Nearby 

Rosenblad et al. (2010) profiles are shown for comparison. The site-specific VS profiles from 

SWM in a group have similar shear wave velocities and layer depths for the probable 

Quaternary, Upper Tertiary, LMC, and Paleocene layer. However, shear wave velocities and 

depths to the Cretaceous and Paleozoic bedrock differed between sites in a group due to the 

depth of these layers and uncertainty in the measured data. Groups I-II and IV-VIII have VS 

profiles which have a shallow impedance boundary from the LMC layer interface. However, this 

boundary is not present in Group III sites. Some sites, such as the Harrisburg and Monette in 

Group IV and Greasy Corner in Group VI have a gradual increase of velocity rather than a sharp 

increase in Vs associated with the LMC layer depth. This may be a result of averaging 1000 VS 
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profiles to calculate the median. For all groups, the LMC or Memphis sand layer in the SWM VS 

profiles is resolved at a depth of around 50 – 175 m with an average formation velocity of 543 – 

662 m/sec.  Excluding the TUMT site in Group VIII, all other groups of VS profiles have good 

agreement with the nearby Rosenblad et al. (2010) sites’ shear wave velocities and layer depths. 

However, the deepest resolved layers at the Rosenblad et al. (2010) sites have 10 – 50% higher 

shear wave velocities than the resolved SWM VS profiles.  

Experimental site periods estimated from the HVSR test along with theoretical site 

periods from  median VS profiles’ ellipticity and transfer function  for each site are shown in 

Figure 4.10a. Average measured VS in the top 30 m (VS30) and down to the bedrock (VSavg) for 

each site are shown in Figure 4.10b. The VS30 and VSavg were calculated using the standard time-

average equation. Experimental site periods for the study sites in the embayment range from 1.6 

– 5.4 seconds, demonstrating longer periods for deeper sites. Theoretical site periods from the 

ellipticity and transfer function range from 1.6 – 5.2 and 1.5 – 5.6 seconds, respectively. 

Theoretical site periods match well with the experimental site periods for all sites, and are within 

0.3 – 3.5% and 0.7 – 10% of the experimental site period for ellipticity and transfer function, 

respectively. The VS30 for the study sites range from 167 – 306 m/sec. Except for the PEBM site, 

all other sites fall in the site class D seismic site classification when only considering Vs30. The 

calculated highest VS30 of 306 m/sec is at TUMT, which is consistent with the stiff near-surface 

layers in the upland part of the embayment (Rosenblad et al., 2010). The PEBM site being 

situated in farmland and close to the flood zone of the nearby creek causes it to have soft near-

surface sediments and results as a site class E. This is believed to be an outlier for the 

embayment in general, but consistent with the conditions at the PEBM station. The VSavg of the 
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sediments above bedrock for the study sites range from 462 – 686 m/sec, demonstrating more 

variances between site to site than the site classifications estimated from VS30.  
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Figure 4.9 Median VS profiles from SWM results shown for Group I-VIII in (a) – (h). 

Corresponding nearby Rosenblad et al. (2010) VS profiles are shown for comparison. 
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Figure 4.10 (a) Experimental site period from HVSR method with estimates of uncertainty of one 

standard deviation shown with error bars along with theoretical site periods from median VS 

profiles’ ellipticity and transfer function, (b) Time averaged VS30, and VSavg along with the C-D 

and D-E site class boundary line shown for all sites. 

 

4.10 Discussion 

This section contains the discussions on the following topics- (i) spatial variation of site 

period across the embayment and comparison of average shear wave velocities above bedrock, 

(ii) comparison of geologic formation velocities, (iii) differences observed with existing velocity 
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model and reference VS profiles, and (iv) estimating a power-law relation between bedrock depth 

and site fundamental frequency. 

4.11 Spatial variation of site period and comparison of VSavg 

To better understand the spatial variability of site period across the basin, a site period 

map for the Mississippi embayment is produced and shown in Figure 4.11a. The Kriging 

algorithm (Isaaks and Srivastava, 1989) is used for making interpolation between measured site 

periods across the embayment from this study, Himel (2018) and Langston and Horton (2014). 

Three measurement points from Langston and Horton (2014) (mk01, am03, m1es) are excluded 

from the interpolation to maintain consistency. Areas close to the western edge of the 

embayment is excluded due to limited measurement points. Overall, the site periods observed 

near the edge of the embayment are less than 2 second and gradually becomes longer for deeper 

sites towards the center of the embayment. Site periods observed in the center of the embayment 

are 4.5 – 5.4 seconds. Generally, good agreement is observed between the three data sources. 

Transition of site periods from shorter to longer are demonstrated to be closely related to the 

depth to the bedrock. However, additional measurement points are required near the embayment 

edge to accurately capture the rapid change in bedrock depth in this part.   

Average shear wave velocities of the post-Paleozoic sediment, VSavg is an important 

aspect of local seismic characteristic of the Mississippi embayment. Previous studies have used 

direct and indirect measurements to estimate VSavg across the embayment. Chen et al. (1996) has 

used travel time difference measurements of direct and converted body waves to measure VSavg at 

the PANDA station locations. Bodin et al. (2001) and Langston and Horton (2014) used linear 

and exponential models derived from the fundamental resonance period-sediment thickness 

relationship (see Equation 1), respectively to estimate VSavg. In these last two studies, Equation 1 
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is used to indirectly estimate VSavg by measuring the HVSR site period (T0) and knowing the 

height of the soil column (H). 

                                                     T0=4H/VSavg                                                               (1) 

To understand differences between the direct and indirect approaches, the VSavg contour 

map by the Langston and Horton (2014) is shown in Figure 4.11b with VSavg values directly 

calculated from the SWM median Vs profiles from this study using the travel time averaging 

method overlain on the map. Both the indirectly estimated contours and calculated VSavg have 

similar trends with increasing VSavg toward the center of the basin. This increase is associated 

with the higher overburden stresses in the unconsolidated sediments due to deeper bedrock 

depths toward the center of the basin. However, there is a systematic bias between the VSavg 

determined using each approach.  

To further investigate this bias, a comparison is made in Figure 4.12 between the VSavg 

calculated from the median SWM Vs profiles in this study and VSavg estimated using the 

Langston and Horton (2014) exponential model. In addition, VSavg estimated from Bodin et al. 

(2001) linear model is shown for comparison. The Langston and Horton (2014) and Bodin et al. 

(2001) VSavg points are calculated using the Equation 2 and 3, respectively. For calculating VSavg 

using Equation 2 and 3, similar bedrock depths used in the SWM inversion models are utilized 

for consistency.   

                                VSavg=4𝐻𝑒8.325∗10−7∗𝐻2−0.00232∗𝐻−0.01796                               (2) 

                                                VSavg=521.15+0.37459H                                           (3) 

From Figure 4.12, a consistent 30-40% bias is observed between the calculated VSavg and 

those points estimated using the Langston and Horton (2014) and Bodin et al. (2001) models. 

This overestimate of VSavg  using an indirect approach was also observed by Rosenblad et al. 
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(2010) where the Bodin et al. VSavg-sediment thickness relationship (Bodin et al., 2001) 

overestimate VSavg from 22 to 35% compared to the VSavg estimated by both Rosenblad et al. 

(2010b) and Chen et al. (1996). This systematical overestimation of VSavg by Bodin et al. (2001) 

and Langston and Horton (2014) is due to the use of an equivalent uniform layer thickness (i.e., 

assuming there is no increase in Vs with depth in the embayment) (2010b). This effect was first 

discussed by Dobry et al. (1976), who observed that the equivalent uniform layer approach does 

not consider the influence of velocity gradients in the subsurface leading to an overestimation of 

the VSavg. Therefore, this approach should not be used to determine VSavg without considering 

velocity gradients, otherwise the VSavg is overestimated in comparison to the true VSavg 

 

 

 



87 

 

 

Figure 4.11 (a) Spatial variability of site period utilizing interpolation of measured data from this 

study, Himel (2018) and Langston and Horton (2014), and (b) comparison of VSavg from surface 

wave measurements and from Langston and Horton’s exponential model. 
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Figure 4.12 Comparison of VSavg estimated from Bodin et al. (2001) and Langston and Horton’s 

(2014) exponential model to the VSavg calculated from SWM VS profiles are shown. A 30% and 

40% overestimation of each SWM VSavg point is calculated and utilized to draw and extend 30% 

and 40% overestimation lines shown with solid black and dashed black lines, respectively. 

 

4.12 Geologic Formation Velocity 

This section discusses a comparison of formation velocities for geologic units commonly 

found in the Mississippi embayment. In addition to the Rosenblad et al. (2010) and Ramirez-

Guzman et al. (2012), Gomberg et al. (2003) performed an extensive study on formation 

velocities of geologic units found in the Mississippi embayment to correlate with the lithology. 

To perform the calculations for a geologic unit in the SWM profile, the whole thickness 

of the geologic unit is divided into 0.1 m thick segments starting from the bottom of the 

preceding unit’s last layer to the top of the following unit’s first layer to calculate an average 

formation velocity. This method to calculate the formation velocity gives an overall average of 
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the whole depth range of the geologic unit as the geologic units found in the SWM VS profiles 

have multiple layers. The usual time average velocity equation is used for this purpose. 

Paleocene layers from SWM results do not show any distinguishable trend from the preceding 

LMC layer. Thus, the formation velocities of this layer are calculated by starting the 0.1 m thick 

segments from the CUSVM estimated Paleocene depths. Mathematical mean and standard 

deviation for each geologic unit’s formation velocity is calculated from the individual unit’s 

formation velocity results from all the study sites utilizing standard mathematical equations for 

mean and standard deviation. The same procedure was followed to calculate the formation 

velocities, their mean and standard deviation for the CUSVM VS profiles. For the rest of the 

studies, these information were collected from the corresponding literature. Calculated formation 

velocities of the geologic units’ from this study are shown with a box and whisker plot in Figure 

4.13. Horizontal lines in each box and whisker plot graphically depict the minimum, first 

quartile, median, third quartile, and maximum of a particular geologic unit’s formation velocity. 

Any outlier data are shown with a ‘+’ sign. The range between the minimum and maximum, 

excluding any outliers for Quaternary, Upper Tertiary, Memphis sand, Paleocene, Cretaceous, 

and Paleozoic bedrock are 166 – 259, 326 – 475, 543 – 662, 456 – 774, 670 – 1445, 1735 – 2762 

m/sec, respectively. The overlapping of the Memphis sand-Paleocene and Paleocene-Cretaceous 

layers’ formation velocities is a demonstration of the uncertainties in site characterization for 

deeper layers.   
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Figure 4.13 Formation velocities determined for the geologic layers found in the Mississippi 

embayment. 

 

A comparison of the formation velocities from this study to the formation velocities 

estimated by Ramirez-Guzman et al. (2012), Rosenblad et al. (2010), and Gomberg et al. (2003) 

is provided in Table 4.2.  

Table 4.2 Comparison of formation velocities for geologic units found in the Mississippi 

embayment with standard deviation shown in parenthesis. 

Study 

Formation velocity (m/sec) 

Quaternarya 
Upper 

Tertiaryb 

Memphi

s Sand 
Paleocene  Cretaceous 

Paleozoic 

Bedrock 

This Study 214 (26) 418 (37) 607 (31) 665 (80) 967 (200) 2211 (301) 

Ramirez et al. (2012) 239 (27) 397 (3) 497 (1) 635 (2) 1006 (96) 1824 (265) 

Rosenblad et al. (2010) 193 (14) 399 (62) 685 (83) - - - 

Gomberg et al. (2003) 171 (24) 413 (105) 530 (134) - - - 

 a Comprises of Alluvium (silt/clay, sand, sand/gravel) deposits near surface  
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 b Comprises of Jackson, Cockfield and Cook mountain formation 

 

The formation velocities determined in this study for the Quaternary and Upper Tertiary 

units are in overall good agreement with the previous studies. The Quaternary formation velocity 

(214 m/sec) falls in between the highest (239 m/sec) and lowest (171 m/sec) reported values by 

Ramirez-Guzman et al. (2012), and Gomberg et al. (2003), respectively. The Upper Tertiary 

formation velocity (418 m/sec) is 3.5% higher than the previous studies’ average. The Memphis 

sand formation velocity determined in this study (607 m/sec) falls between the highest (685 

m/sec), and lowest (497 m/sec) reported formation velocities for this unit by Rosenblad et al. 

(2010) and Ramirez-Guzman et al. (2012), respectively. As discussed previously, the Rosenblad 

et al. (2010) VS profiles encountered some sharp increase in VS within the Memphis sand unit, 

which none of the other studies observed. This has contributed to a higher average formation 

velocity for the Memphis sand unit by Rosenblad et al. (2010). The formation velocity for the 

Memphis sand reported by Ramirez-Guzman et al. (2012) is the lowest, with a very low standard 

deviation (1 m/sec) compared to the other studies. The deeper geologic units (e.g., Paleocene, 

Cretaceous, and Paleozoic bedrock) are resolved by Ramirez-Guzman et al. (2012) and this 

study. Both studies resolved these layers with reasonable average formation velocities. Overall, 

Ramirez-Guzman et al. (2012) has lower standard deviations, especially for the deeper geologic 

units in the embayment. On the other hand, average formation velocities from this study have 

increasing standard deviation with depth to the unit, which is pertinent to account for the 

uncertainties associated with the deeper unit’s site characterization.  

An interpolation of Memphis sand formation velocity using the Kriging algorithm and 

utilizing the measurement points from the study sites is carried out and shown in Figure 4.14. 

Previous work by Himel (2018) indicated the Memphis sand layer tends to become shallower 
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towards the north and west boundary of the embayment and ceases to exist at some point near 

the edge of the embayment. In this study, none of the Group III sites (Amagon, Fontaine, 

McDougal) resolved the Memphis sand layer. Therefore, areas west of the line connecting these 

sites (shown as no LMC zone in the figure) are estimated to have no Memphis sand. The upland 

area and areas in the north-west and south-west of the embayment are excluded from the 

interpolation due to limited measurements and no measurement points, respectively. The overall 

spatial variance indicates a stiffer Memphis sand formation in the central part of the embayment 

with formation velocities ranging from 600 – 650 m/sec and gradually becoming softer towards 

the boundaries of the embayment with formation velocities in the range of 490 – 525 m/sec. The 

depth to the Memphis sand layer also follows this general trend 
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Figure 4.14 Spatial variance of the Memphis sand formation velocity across the Mississippi 

embayment using the Kriging algorithm. The Upland area and areas in the north-west and south-

west of the embayment are excluded from the interpolation due to limited measurement and no 

measurement points, respectively. 

 

4.13 Comparisons with previous VS profiles 

To understand the differences between the SWM VS profiles and VS profiles from 

previous studies (Romero and Rix, 2005; Ramirez-Guzman et al., 2012), percent differences are 

calculated at every 0.1 m depth increment using the following equation:  

                                % Difference=
(𝑉𝑆 𝑜𝑓 𝑆𝑊𝑀 − 𝑉𝑆 𝑜𝑓 𝑃𝑎𝑠𝑡 𝑆𝑡𝑢𝑑𝑦)

𝑉𝑆 𝑜𝑓 𝑆𝑊𝑀
∗ 100                                 (4) 

The percent difference plots between the SWM median VS profiles and CUSVM VS 

profiles for all sites in Group I-VIII are shown in Figure 4.15a-h, respectively. Other than some 
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exceptions observed, such as for Group III, the majority of the CUSVM VS profiles have lower 

shear wave velocities than their corresponding SWM VS profiles in the Quaternary, Upper 

Tertiary, LMC, and Paleocene layer with differences as higher as 35%. However, the CUSVM 

VS profiles have higher shear wave velocities in the Cretaceous layer than the SWM resolved VS 

profiles, which is more prominent for sites in the southern part of the embayment, such as for the 

Group VI sites. Much of the bedrock shear wave velocities resolved by the CUSVM are lower 

than the SWM resolved velocities by as much as up to 50%. The McDougal and HBAR CUSVM 

VS profiles have 200% (at 13 m) and 90% (at 17 m) differences with their corresponding SWM 

VS profiles, respectively due to a very shallow Memphis sand layer at around 6 m depth in the 

McDougal CUSVM, and shallow Quaternary-Upper Tertiary interface at around 5 m in the 

HBAR CUSVM. Both McDougal and HBAR sites are situated very close to the Crowley’s 

Ridge (see Figure 4.1). As layer boundaries in the CUSVM are interpolated using the Kriging 

method (Ramirez-Guzman et al., 2012), the geologic layers’ present and their depths at the 

HBAR and McDougal sites are influenced by the nearby sites from Crowley’s Ridge. The 

Memphis sand layer resolved from the SWM VS profiles are usually deeper than the Memphis 

sand layer resolved by the CUSVM profiles, except in Group IV, where the Memphis sand layers 

were resolved at relatively similar depths as the SWM VS profiles.   

Overall, many of the differences between the site-specific SWM and CUSVM are due to 

a lack of deep Vs information utilized in creating the CUSVM. The bedrock shear wave 

velocities in the CUSVM for the whole embayment are based on a few actual measurements near 

the NMSZ and Illinois basin and extrapolated to other locations as needed (Ramirez-Guzman et 

al., 2012). The CUSVM depends on estimated VS30 from the topographic slope for the shallow 

structure if no measured VS30 data is present nearby (Gomberg et al., 2003; Allen and Wald, 
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2007). The Kriging method is utilized to extrapolate geologic boundaries based on neighboring 

measurement sites for the target site. However, the lack of neighboring site measurements and an 

abrupt change in the neighboring sites’ geology affects this process, as seen for the HBAR and 

McDougal sites. Another discrepancy observed between the SWM and CUSVM profiles is in the 

Cretaceous layer. Due to limited data on the Cretaceous layer boundaries, especially in the 

southern part of the embayment, extrapolation techniques had to be made for this layer in the 

CUSVM (Ramirez-Guzman et al., 2012). The effect of this extrapolation is seen in the percent 

differences for the Cretaceous layers, especially for the sites in the southern part (e.g., Group VI) 

where the CUSVM Cretaceous layers have a 30 – 40% higher VS. 

 To calibrate and evaluate the performance of the modeled shear wave velocity structure 

in the CUSVM, a ground motion simulation was conducted using the MW 5.4 Mt. Carmel, 

Illinois earthquake. As a result, many of the sites’ fundamental frequencies from CUSVM 

velocity structures are capable of capturing site-specific recorded fundamental frequencies. 

However, the simulation demonstrated that the sites with increasing distance from the simulated 

seismic source have a slower arrival time as much as 5 sec at distant sites. This indicates shear 

wave velocities used in the CUSVM models are typically too low. This assumption is consistent 

with the results from this study, which indicate that majority of the site-specific CUSVM profiles 

have lower shear wave velocities in the Quaternary, Upper Tertiary, LMC, and Paleocene by as 

much as 35%. Another noticeable disagreement between the CUSVM and SWM profiles is in 

the depth to the shallow impedance boundary from the Memphis sand, a proper characterization 

of which might have a significant effect in the site response of a site (Himel et al., 2021b).         
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Figure 4.15 Percent difference between SWM Median VS profiles with corresponding CUSVM 

VS profiles shown for Group I-VIII in (a) – (h), respectively. 
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In addition to comparisons with the CUSVM, the percent differences between SWM VS 

profiles and the Romero and Rix (2005) lowland, or upland profile are calculated using Equation 

4 and shown for Group I-VIII in Figure 4.16a-h, respectively. The lowland profile is in general 

agreement with most lowland SWM sites, especially in the Upper Tertiary, and Paleocene layer, 

with percent differences ranging from 5 – 30%. A consistent percent difference for all the 

lowland sites is observed around 70 m due to the presence of an impedance boundary in the 

lowland VS profile. As a result of this, all lowland SWM VS profiles, except Group III, have 30 – 

50% lower VS at around 70 m. The lowland VS profile does not resolve any distinguishable 

Cretaceous layer or any deep impedance boundaries above bedrock. Due to the absence of a 

distinct Cretaceous, and bedrock layer, all lowland SWM sites have 20 – 70% higher VS in these 

layers than the lowland VS profile. The LNXT and TUMT seismic station sites are the only study 

sites situated in the highland part. However, due to their differences in site characterization 

results, LNXT and TUMT are listed in Group VII and VIII, respectively. The highland VS profile 

has 30 – 50% higher VS than both LNXT and TUMT sites in the Upper Tertiary range. However, 

the LNXT Paleocene layer is in good agreement with the highland VS profile, whereas the 

TUMT Paleocene layer is 10 – 30% softer than the highland VS profile in this depth range. Both 

LNXT and TUMT SWM VS profiles have 20 – 60% higher VS in the Cretaceous and bedrock 

layers than the highland as the highland VS profile does not have a distinct Cretaceous and 

bedrock layer. Nevertheless, the percent differences comparison indicate a better match between 

the highland SWM VS profiles and highland VS profile in the upper Mississippi embayment, and 

a greater mismatch in the lower embayment. This issue indicates the predicament of using a 

single reference VS profile to be representative of the local geology of a large area, which can 

lead to critical misrepresentation of local site effects.    
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Figure 4.16 Percent difference between SWM Median VS profiles with the Romero and Rix (2005) 

lowland/upland VS profiles  shown for Group I-VIII in (a) – (h), respectively. 
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4.14 Fundamental frequency, f0-bedrock depth, H Relationship 

The fundamental frequency from HVSR method has been used in many studies to map 

the bedrock depth in sedimentary basins (Ibs-von et al., 1999; Parolai et al., 2002). The 

fundamental frequency, f0 and bedrock depth, H are shown to be related by a power-law function 

shown with Equation 5, where the constant a and exponent b are local geology dependent.  

     H=af0
b                                                                               (5)    

Ibs-von et al. (1999) and Parolai et al. (2002) used the power-law relationship shown in 

Equation 6 and 7 for mapping sediement thickness in the Rhine embayment (Germany) and 

Cologne area (Germany), respectively. However, no such relationships exist for the Mississippi 

embayment. A power-law fitting for Equation 5 is performed utilizing the fundamental 

frequency and corresponding bedrock depths used in this study and shown with Equation 8.   

H=108 f0
-1.551                                                                              (6)  

H=96 f0
-1.388                                                                                 (7) 

H=102 f0
-1.459                                                                               (8)  

The developed power-law function in this study along with previous studies are shown in 

Figure 4.17. The calculated goodness-of-fit (R2) between the measured and estimated points 

from power-law function demonstrate the highest R2 (0.97) for Equation 8, which emphasizes the 

importance of local measurements for fitting the f0-H power-law function. Based on the available 

measurement points, we recommend using Equation 8 for 250<H<1200 m in the Mississippi 

embayment. However, most depth to the bedrock studies in the Mississippi embayment have 

limited direct measurements and rely on interpolation between measrued bedrock depths. As a 

result, the developed power law relationship between fundamental frequency and bedrock depth 

could be refined with increasing knowledge on the depth to the bedrock in the Mississippi 

embayment.   
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Figure 4.17 Power-law relationship developed between the fundamental frequency and bedrock 

depth for the Mississippi embayment. Fundamental frequencies from the HVSR test and bedrock 

depths utilized in the VS inversion models are used here. The black solid, grey solid and grey 

dashed lines are power law fits from this study, Parolai et al. (2002), and Ibs-von Seht et al. (1999), 

respectively. The goodness-of-fit estimate (R2) is shown in parenthesis for each equation. 

 

4.15 Conclusion  

In this study, deep shear wave velocity profiles are developed at 24 sites in the 

Mississippi embayment using a combination of active and passive source surface wave methods. 

An iterative multimodal joint inversion of surface wave data and fundamental frequency was 

conducted to develop shear wave velocity profiles to bedrock at each site. Iterative inversion 

runs were conducted to correctly assign modes of propagation and eliminate any effective mode 
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data.  Parameterizations to constrain the inversion solutions were developed from a-priori related 

literature. Though not utilized in the joint inversion, a secondary HVSR peak frequency observed 

at many of the study sites were used as a guide to develop parameterization and later were used 

to evaluate VS profile’s ability to capture similar secondary peaks in the theoretical ellipticity. 

This insures the developed VS profiles’ capability to resolve any shallow impedance boundaries 

associated with the secondary HVSR peaks within reasonable bounds.     

The developed shear wave velocity profiles captured the site signature from experimental 

dispersion data and fundamental site periods. Theoretical site periods generated from the median 

VS profiles’ ellipticity and transfer function are in the range of 0.3 – 3.5% and 0.7 – 10% of the 

experimental site periods, respectively, ensuring reasonable site response from the developed VS 

profiles. Experimental site periods and estimated average shear wave velocity down to bedrock 

range from 1.6 – 5.4 second and 462 – 686 m/sec, with increasing values in the center part of the 

embayment and spatially decreasing values near the embayment border. Both site period and 

average shear wave velocity demonstrate a proportional relationship with the bedrock depth, i.e., 

deeper sites have longer site period and higher average shear wave velocity. Average shear wave 

velocities estimated based on a uniform layer resonance period tend to overestimate the average 

shear wave velocities by 25 – 40% compared to the values determined in this study. Calculated 

VS30 for the study sites range from 167 – 306 m/sec, with one exception, all study sites are in the 

seismic site class D classification. While the shallow VS30 measurements classify the majority of 

the sites in the embayment similarly, it fails to capture the overall deeper characteristics of the 

embayment sites, which changes spatially across the embayment. Average formation velocities 

for the commonly found geologic units in the embayment, Quaternary, Upper Tertiary, Memphis 
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sand, Paleocene, Cretaceous, and Paleozoic bedrock are 214, 418, 607, 665, 967, and 2211 

m/sec, respectively.  

The deep shear wave velocity profiles in this study were compared with existing VS 

profiles from Rosenblad et al. (2010), Romero and Rix (2005) and site specific CUSVM profiles 

(Ramirez-Guzman et al., 2012). The developed VS profiles had good agreement with the related 

Rosenblad et al. (2010) VS profiles for layers above and slightly below the Memphis sand layer, 

but the Rosenblad et al. (2010) VS profiles tended to overestimate the Vs compared to this study 

for layers near the max depth of their VS profiles. The Romero and Rix (2005) Lowland and 

Highland VS profile had reasonable agreement with the Vs profiles in this study with 5-30% 

differences being typical, but higher differences were observed around site specific layer 

interfaces of 20-70% due the generic natural of the Lowland and Highland VS profiles. The 

CUSVM VS profiles tended to have the largest differences between the VS profiles in this study, 

consistently under predicting VS for many sites and depths by 30% with some exceptions at 

particular sites and depths.  

Overall, the current shear wave velocity models for the embayment lack information 

from sufficient site-specific shear wave measurements, especially from the deeper part of the 

embayment. This results in discrepancies in the shear wave velocity models. The developed 

shear wave velocity profiles from this study can fill the gap for deep site characterization 

information in the embayment. Use of these developed VS profiles will be valuable in improving 

the performance of any existing velocity models, cultivating new models for the embayment, 

conducting site specific site response, and seismic hazard studies.  
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 Chapter 5: An approach for developing site signature consistent deep shear wave 

velocity profiles for the Mississippi Embayment using generalized power-law functions 

5.1 Abstract  

 

A new approach is presented to develop site signature consistent deep shear wave 

velocity profiles (VS profile) for the Mississippi embayment using generalized power-law 

functions. The approach utilizes 24 deep shear wave velocity profiles measured across the 

embayment to develop power-law shear wave velocity functions for the geologic units observed 

in the embayment. The velocity functions along with the layer interface boundaries are utilized 

to generate an initial VS profile, whose Vs is then adjusted to be consistent with the fundamental 

site frequency (i.e., the site signature). Using the developed approach, model VS profiles at 24 

sites throughout the embayment are generated and compared to the corresponding measured Vs 

profiles. All modeled VS profiles matched the site fundamental frequency within one standard 

deviation. Percent differences calculated between the modeled VS profiles and measured VS 

profiles demonstrated good agreement with less than a 10% difference at most depth ranges. 

However, differences of up to 30% are observed for near surface layers. The VSavg of the 

modeled and measured VS profiles have a strong association with a Pearson correlation 

coefficient of 0.95, while the VS30 of the modeled and measured Vs profiles have a Pearson 

coefficient of 0.49, indicating a weaker association. As an independent verification, model VS 

profiles are generated at 11 Rosenblad et al. (2010) sites and compared with the measured VS 

profiles at these sites. Percent differences calculated between the modeled and measured VS 

profiles at the Rosenblad et al. (2010) sites are below 15% at most depth ranges, with a Pearson 

correlation coefficient calculated for VS150 of 0.75, indicating a strong association. With 
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reasonable layer interface models, this new approach can be used to develop an updated 3D shear 

wave velocity model for the Mississippi embayment. 

5.2 Introduction 

Local soil conditions (seismic velocity, density, layering, damping, etc.) influence 

seismic waves as they propagate from deeper bedrock layers to the ground surface. The 

modification of seismic waves due to localized site effects is called site response. The study of 

ground motion prediction, i.e., Ground Response Analysis (GRA) due to site response is critical 

for designing seismic resistant infrastructure. In many GRA studies, seismic response at the 

surface is assessed by simulating an input motion at bedrock through the local soil profile. Many 

recent efforts to validate 1D GRA to emulate empirical results from vertical array sites 

concluded that 1D GRAs fail to accurately predict recorded site response (Afshari and Stewart, 

2019; Tao and Rathje, 2019; Teague et al., 2018). Three-dimensional GRA is believed to account 

for many of the short comings of 1D GRAs (De Martin et al., 2013). However, a 3D GRA 

requires spatial variability in shear wave velocity measurements (VS profiles) in order to account 

for the lateral heterogeneity. Technical constraints and economic considerations are major 

impediments to deriving 3D VS models for GRAs, limiting our ability to conduct 3D GRA 

studies. Vs profiles developed using any method are affected by aleatory variability and 

epistemic uncertainty. Despite this uncertainty, VS profiles which accurately represent the 

resonance frequency of the site (i.e., the site signature) have been shown to produce reliable 

estimates of site response (Griffith et al., 2016; Himel and Wood, 2021; Teague et al., 2018). As 

an example, Teague et al. (2018) showed that site signature consistent surface wave method VS 

profiles at the Garner Valley downhole array were able to predict site response more accurately 

than invasive VS profiles from downhole and P-S suspension logging. Shear wave velocity 
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models (2D/3D) are predominantly based on sparsely measured data and are therefore 

significantly affected by aleatory variability and epistemic uncertainty reducing their benefits 

over 1D Vs profiles. However, 2D/3D VS models which are adjusted to match local site 

signatures could lead to a cost-effective solution for site response studies over a large area.  

The Mississippi Embayment, occupying a substantial area in the central United States, is 

characterized by deep unconsolidated sedimentary deposits and strong impedance contrasts 

within the soil column and at the Paleozoic bedrock boundary (Van Arsdale and TenBrink, 2000; 

Himel and Wood, 2022). Due to its complex three-dimensional geology, the Mississippi 

embayment is susceptible to ground motion amplification and has some of the highest design 

peak ground accelerations (PGA) in the nation (ASCE 2017). The presence of the New Madrid 

Seismic Zone (NMSZ) in the embayment and a 25 – 40% probability of a MW 6+ earthquake in 

the next 50 years makes this region a high risk seismic hazard zone (Frankel et al., 2009).  

Regardless of high seismic hazard potential, no large earthquake ground motions have been 

recorded in the embayment. In the absence of locally recorded ground motions, reliable VS 

profiles throughout the embayment are required to understand the spatial variance of seismic 

amplification in the embayment. Due to the lack of deeper VS profiles, two reference VS profiles 

from Romero and Rix (Romero and Rix, 2005) are typically used for site response studies in the 

embayment. The Central US Seismic Velocity Model (CUSVM) alleviated this issue in part by 

providing interpolated VS profiles within the embayment and delivering continuous/3D site 

characterization information (Ramirez-Guzman et al., 2012). However, recent work by Himel 

and Wood (Himel and Wood, 2021a; Himel and Wood, 2022) conducted deep site 

characterization measurements at 24 locations across the embayment and observed up to 50% 

error between the measured and modeled shear wave velocities of different geologic units along 
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with inconsistencies in the depths to shallow impedance boundaries, leading to variability in the 

estimated local site response (Himel et al., 2021a; Himel et al., 2021b). This calls for a new 

approach to developing a 3D VS model across the embayment that can better account for the site-

specific spatial variability across the embayment. 

In general, three approaches are used to develop 3D VS models: (i) multiple spatial 

measurements, (ii) stochastic statistical models, and (iii) generalized parametric velocity 

equations. In the first approach, multiple invasive/non-invasive site characterization techniques 

are conducted and interpolated to develop a continuous 3D model. However, regardless of the 

type of direct measurements made, this approach requires a significant number of measurement 

locations, making this approach time consuming and a non-budget friendly option for 

engineering practice. The most simplistic statistical approach to account for uncertainty in soil 

properties when performing site response is to use upper and lower boundary VS profiles, usually 

+/- 20% of the measured base profile (EPRI 2012). However, blind use of boundary VS profiles 

have been shown to be ineffective for capturing site-specific site response, making this method 

inept for a 3D GRA study. More sophisticated stochastic statistical methods, such as Toro (Toro, 

1995) and Monte Carlo simulations have yielded reasonable site response analysis in some 

studies, and have been shown to reproduce wave scattering effects (Nour et al., 2003). However, 

for highly heterogeneous sites, blind use of these statistical methods have yielded unreasonable 

ground motion predictions (Griffiths et al., 2016; Nour et al., 2003). In addition, numerous 

region/site specific inputs are required for a sophisticated statistical method, such as the Toro et 

al. (1995) method (e.g., layering model parameters, l, c1, c2, c3, and velocity model parameters, 

, h0, b, etc.), rendering these methods less useful for site-specific estimates. Generalized 

parametric velocity correlations are region specific and dependent on the stiffness of materials 
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found in a particular region. These parametric velocity functions along with regional layering 

interface models are used together to generate 2D/3D velocity models for a region. Different 

forms of velocity correlation functions, mostly of polynomial and exponential forms were used 

in previous studies. A USGS velocity model for the San Francisco bay area (Rodgers et al., 

2008) and CUSVM for the central and eastern US (Ramirez-Guzman et al., 2012) utilized 

polynomial parametric velocity functions. Exponential parametric functions have been used for 

the Canterbury region, New Zealand (Deschenes et al., 2018; Lin et al., 2014) and southern 

California (Magistrale et al., 1996). However, with sufficient empirical constraints, no significant 

differences were observed between different forms of velocity functions (Thomson et al., 2020). 

Carefully curated parametric velocity correlations, though not directly generated from site 

experimental dispersion data, were observed to bear resemblance to dispersion characteristics of 

sites (Thomson et al., 2020). Apart from these aforementioned approaches, Hallal and Cox 

(Hallal and Cox, 2021) developed a method to generate pseudo 3D VS profiles utilizing a 

geostatistical approach. In this approach, continuous 3D profiles are generated around the 

vicinity of a direct measurement site by scaling the layer thicknesses of the base profile to match 

the measured fundamental frequency from horizontal to vertical spectral ratio method (HVSR) 

(Nakamura, 1989). Implementation of this method for the Treasure Island and Delaney Park 

downhole array sites demonstrated good agreement with geologic cross sections. However, this 

approach allows layer thicknesses to vary while keeping the layer velocities the same. This could 

provide good spatial variability for engineering sites (hundreds of square meters), but for a large 

regional areas, such as the Mississippi embayment, where both layer thicknesses and velocities 

vary spatially, a different approach is required.    
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Based on the discussion above, a new approach to develop a 3D VS model for the 

Mississippi embayment is described and evaluated in this article. The developed approach 

addresses the following issues: (i) development of generalized power-law velocity functions for 

local geologic units to account for the region specific material stiffness, (ii) utilizing spatially 

variable layer interfaces derived from previous studies, (iii) development of initial model VS 

profiles for specific locations based on power-law velocity functions, mean formation velocity of 

geologic units, and derived layer interfaces at each location, and (iv) adjustment of initially 

modeled VS profiles to capture the site signature. This model approach is tested at the 24 study 

locations from Himel and Wood (Himel and Wood, 2022), and 11 study locations of Rosenblad 

et al. (2010) utilizing layer interface models at these locations.  

In this article, development of the power-law velocity functions is discussed first. The 

procedure to develop an initial VS profile for one of the example sites (Athelstan) utilizing the 

developed power-law velocity functions, mean formation velocities from the Cretaceous and 

Paleozoic units, layer interfaces at the location from previous studies, and fundamental site 

frequency (f0) is detailed. A workflow to adjust the modeled initial Vs profile to produce a final 

VS profile that captures the site signature is discussed. Corresponding SH wave theoretical 

transfer function (TTF) and theoretical fundamental mode Rayleigh ellipticity (TRE) for the 

initial and final VS profiles are compared to the experimental f0 for the example site. Percent 

differences of the modeled and measured VS profiles at all 24 Himel and Wood (2022) study 

sites, and comparison of modeled and measured profiles’ time averaged shear wave velocities 

down to the bedrock and for the top 30 m are shown. A Pearson correlation coefficient between 

the time averaged VS of the modeled and measured Vs profiles are tested for this model approach 

and the CUSVM. Finally, the developed approach is utilized to generate deep VS profiles at 11 
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Rosenblad et al. (2010) sites. A comparison of the generated VS profiles and the measured 

Rosenblad et al. (2010) VS profiles are made to validate the results from the developed approach.   

5.3 Data source 

The data for this article is based on study by Himel and Wood (Himel and Wood, 2022). 

The parametric power-law velocity functions, layer interface models and mean formation 

velocities used in this article are from these studies. Details of utilized shear wave velocity data, 

adopted geologic units for the embayment and the adopted geologic interface models are 

provided below.   

5.4 Shear wave velocity data 

Twenty-four deep VS profiles from Himel and Wood (2022) are used in this article. 

Spatial distribution of the VS profiles is shown in Figure 5.1. These measurement locations were 

grouped into eight groups due to similarities regarding geologic structure, shear wave velocities 

and geologic location (Himel and Wood, 2022). The VS profiles were derived from a 

combination of active and passive source surface wave methods to ensure retrieval of both high 

and low frequency dispersion data. Active MASW using multiple shot locations for both 

Rayleigh and Love waves were used. Passive source microtremor array measurements (MAM) 

were carried out using circular and L-shaped arrays. A joint inversion of the active and passive 

dispersion data along with the site fundamental frequency was utilized to ensure that the 

generated VS profiles capture the site signatures from both local dispersion and site fundamental 

frequency. This method was validated for the downhole array situated at CUSSO (Himel and 

Wood, 2021) and extended for the rest of the study sites. As the inversion process is highly non-

unique, 1000 minimum misfit Vs profiles from a pool of 2 million inversion solutions were 

selected at each site location to calculate a median profile for that location. Each of the 



110 

 

calculated medians were tested to ensure that they captured local dispersion characteristics and 

site fundamental frequency within a reasonable uncertainty bound. For this article, the calculated 

median profiles are utilized to develop power-law velocity equations. More details regarding the 

actual measurements at these sites can be found from Himel and Wood (Himel and Wood, 2021; 

Himel and Wood, 2022).  

 

Figure 5.1 Spatial distribution of the 24 VS profiles used in this study from Himel and Wood (after 

Himel and Wood, 2022) is shown along with measurement locations from Rosenblad et al. (2010). 
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5.5 Adopted regional geologic units 

The Mississippi embayment geology is generally described as a southward plunging 

syncline along the Mississippi river, with an overall basin-like structure (Mento et al., 1986; 

Brahana et al., 1987). An idealized cross section of the Mississippi embayment in the east-west 

direction crossing the Shelby County, Tennessee is shown in Figure 5.2 (modified after Ng et al., 

1989). The structure of the embayment is well studied and described in previous studies, such as 

Brahana et al., Van Arsdale and TenBrink, and Street et al. (Brahana et al., 1987; Van Arsdale 

and TenBrink, 2000; Street et al., Street et al., 2004). Himel and Wood (Himel and Wood 2021; 

Himel and Wood, 2022) adopted the geologic units used in developing the CUSVM (Ramirez-

Guzman, 2012) to be consistent with the existing model. In this article, similar geologic units are 

adopted. The geologic units adopted are the Quaternary (QT), Upper Tertiary (UT), Lower to 

Middle Claiborne (LMC), Paleocene (PL), Cretaceous (CR) and Paleozoic (PZ) era bedrock. The 

geologic units along with their corresponding chronological geologic layers and material types 

are provided in Table 5.1. The QT unit consists of the Holocene deposits in the lowland part and 

Pleistocene deposits in the highland part of the embayment, making the surface deposit layer in 

the highland stiffer than the lowland part (see Figure 5.1 for the extent of the highland and the 

lowland regions). The UT unit consists of the Jackson, Cockfield and Cook Mountain 

formations. The LMC unit, also known as Memphis sand and Sparta sand in some parts of the 

embayment, is a stiff layer of very fine to coarse grained sand. Due to rapid change in stiffness at 

the LMC top boundary, this unit creates an impedance boundary within the soil column. The 

shallow impedance boundary created by this unit influences local site response and as a result, 

accurate modeling of the depth to this unit is critical for GRA studies (Himel et al, 2021b). The 

PL unit consists of the Wilcox and Midway groups, which are spatially made up of several 
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formations across the embayment. The CR unit, situated above the PZ bedrock, contains the 

McNairy sand, Demopolis formation and Coffee formation. The PZ bedrock acts as the basement 

of the embayment and creates a deeper impedance boundary. The geologic units adopted here are 

geochronological, i.e., these units are sequentially deposited as no significant uplift has occurred 

over the periods in consideration. Because of the basin-like structure of the embayment, the 

adopted geologic units have a thicker structure in the deeper central part of the embayment and 

gradually becomes thinner near the edge (see Figure 5.2). The LMC unit follows the same trend 

and becomes deeper near the central part of the embayment, while diminishing near the edge 

(Himel, 2018).   

 
Figure 5.2 Typical geologic cross-section of the Mississippi embayment in the east-west direction 

crossing the Shelby County, Tennessee (modified after Ng et al., 1989). 

 

Table 5.1 Adopted geologic units utilized for constructing the 3D velocity model. 

Adopted Geologic Unit Chronological Geologic 

Layer 

Material 

Quaternary (QT) Holocene/Pleistocene Alluvial surface deposits (fine to 

coarse grained quartz sand, chert 

gravel, and clay ) 

Upper Tertiary (UT) Upper to Middle Eocene Silt, clay, some seams of lignite 

Lower to Middle Claiborne 

(LMC) 

Lower Eocene Fine to coarse grained, light grey-

white sand 

Paleocene (PL) Paleocene Silt, clay, fine to coarse grained 

sand, minor limestone 
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200 m

Sea Level

1000 m

Quaternary

Upper Tertiary
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Paleocene

Cretaceous

Paleozoic Bedrock
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Adopted Geologic Unit Chronological Geologic 

Layer 

Material 

Cretaceous (CR) Cretaceous Sand, silt, undifferentiated 

limestone 

Paleozoic (PZ) Paleozoic Knox Dolomite 

 

5.6 Adopted Geologic Interface Models 

Geologic layer depths utilized in this study at the 24 Himel and Wood (2022) study 

locations are adopted from the layer interfaces resolved by Himel and Wood (Himel and Wood, 

2021; Himel and Wood, 2022). In the inversion process used in the Himel and Wood studies, 

parametrization to constrain layer interfaces with a-priori knowledge from the literature along 

with vertical uncertainty bounds were utilized. Nevertheless, at many locations, geologic 

interfaces from the inversion differed from existing 3D models of the embayment (CUSVM), 

which was attributed to lack of direct measurement points used to create the CUSVM. However, 

the developed deep site characterization surface wave method (SWM) Vs profiles by Himel and 

Wood (Himel and Wood, 2021) were validated by vertical array downhole and P-S logging 

direct measurement results at the CUSSO site. The layer interfaces and shear wave velocities 

were shown to correlate well with the borehole results.  

5.7 Development of power-law velocity equations 

To develop power-law velocity equations for the geologic units in the embayment, the 

median VS profiles at all 24 locations from Himel and Wood (2022) are utilized. Each of the 

median VS profiles is broken up according to its geologic units’ at each location. For the QT, UT, 

LMC, and PL units, shear wave velocity values at every 1 m depth increment from each of the 

median VS profiles are selected to develop the power-law fits. To formulate a fit to the shear 
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wave velocity points of each geologic unit, a power-law equation of the following form from Lin 

et al. (Lin et al., 2014) is selected: 

                    𝑉𝑆 = 𝐴𝑆 ∗ (
𝜎0

′

𝑃𝑎
)

𝑛𝑠

                                                                Equation 9 

Where, VS=Shear wave velocity in m/sec, AS=shear wave velocity corresponding to 

effective mean stress of 1 atm, 𝜎0
′=mean effective stress, Pa=Atmospheric pressure (1 

atm=101325 Pa), nS=exponent of normalized effective mean stress. 

In Equation 9, 𝜎0
′  is a function of depth and material density (i.e., stiffness) present in the 

corresponding geologic unit. Hence, this parameter accounts for the increasing confining stress 

on the soil with depth. No aging parameter is used in the fitting equation as sediments in the 

Mississippi embayment are deposited sequentially as per their geologic age. Power-law fit 

velocity equations, and selected shear wave velocity points for the corresponding geologic unit 

along with median VS profiles are shown in Figure 5.3a, b, c, and d for the QT, UT, LMC and PL 

unit, respectively. Reference VS curves from Lin et al. (Lin et al., 2014) are shown for 

comparison. Power-law fitting parameters for the QT, UT, LMC, and PL units are provided in 

Table 5.2.   

  



115 

 

 
Figure 5.3 Median VS profiles, selected shear wave velocity points at every 1 m incremental depth 

from each median VS profiles, and corresponding power law fits are shown for the (a) QT, (b) UT, 

(c) LMC, and (d) PL . For the QT unit, the discarded fit for depths less than Zcr is shown in (a). 

Reference VS profiles for different materials from Lin et al. (2014) are shown for comparison.   

 

Table 5.2 Power-law velocity equation fitting parameters for the QT, UT, LMC, and PL unit. 

Geologic Unit AS (m/sec) nS (kg/m3) 

QT 267.7 0.3242 1700 

UT 327.9 0.2213 1750 

LMC 462.7 0.115 1800 

PL 360.3 0.2015 1900 

 

As shown in Figure 5.3a, while the power-law fit corresponds well with most of the shear 

wave velocity points, it fails to accurately predict soil stiffness at very shallow depths (shown as 

the ‘discarded power-law fit in Figure 5.3). Due to the nature of a power-law fit, it decreases 

exponentially and becomes zero at surface, which is not realistic for physical shear wave 

velocity, i.e., soil stiffness. To prevent this issue, a linear fit for the very shallow shear wave 
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velocity points near the surface is introduced based on the study from Rahimi et al. (2019). In 

this linear fit, a critical depth, Zcr is defined, above which all shear wave velocity points are fit 

linearly by extrapolating the shear wave velocity at the Zcr depth from power-law fit. Equation 

10 and 3 from Rahimi et al. (2019) defines Zcr and the linear fit for VS for depths, Z<Zcr. Here, 

𝛾𝑡=total unit weight, VS0=shear wave velocity at the ground surface, VS@Zcr=shear wave velocity 

at Zcr depth from the power-law fit.  

                          Zcr =
Pa

γt
                                                               Equation 10                               

       VS = VS0 + (VS@Zcr
− VS0) ∗ (

Z

Zcr
)   for Z<Zcr                                 Equation 11 

 

The power-law fit for the QT unit is within the soft clay and dense sand reference VS 

curves from Lin et al. (2014), whereas the UT fit is between the dense sand and dense gravel 

reference curves. This is coherent with the material types constituting these two geologic units. 

The LMC and PL units’ are both stiffer than their overlain units, which is consistent with the 

idea that young geologic units should have lower average velocities. However, the LMC and PL 

units have very similar power-law fits. This is also observed by Himel and Wood (Himel and 

Wood, 2021; Himel and Wood, 2022) as the PL unit had shown indistinct differences to the 

overlain LMC unit in the inversion solutions.   

 For the CR and PZ units, good power-law fits could not be achieved. Therefore, 

for these units, the mean formation velocities calculated by Himel and Wood (2022) are used for 

their corresponding layers in developing the initial VS profile. Calculated mean formation 

velocities for the CR and PZ unit determined by Himel and Wood (2022) are 967 m/sec and 

2211 m/sec, respectively with standard deviations of 200 m/sec and 301 m/sec, respectively. A 

histogram chart of formation velocities for the CR and PZ unit from all 24 sites along with the 
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calculated mean and standard deviation from Himel and Wood (2022) (Himel and Wood, 2022) 

is shown in Figure 5.4a, and b, respectively.    

 

 

Figure 5.4 Calculated formation velocities from 24 study sites across the Mississippi embayment 

along with their mean and standard deviation shown for (a) CR unit, and (b) PZ unit (after Himel 

and Wood, 2022). 

 

5.8 Development of the Initial VS Profile  

The following inputs are used to develop an initial VS profile at a location: (i) layer 

interface model at that location, and (ii) velocity functions for the QT, UT, LMC, and PL units 

and mean formation velocities for the CR and PZ units. The first step to develop the initial 

profile is to discretize the continuous velocity functions into layers. The discretized profile will 

have multiple layers based on the geologic unit thicknesses and number of sub-layers (SL) within 

each layer. To avoid confusion, geologic unit thicknesses will be referred to as layers and 

divisions within a layer will be referred to as sub-layers hereafter. In the discretized profile, 

multiple SLs in a layer ensures gradual increase of material stiffness within a geologic unit, 

which is practical and observed in field condition as well. In this article, the following conditions 

were imposed to generate SLs within each geologic units: (i) First SL of the first layer is not 

allowed to be thinner than 1 m and a succeeding SL is made thicker than the preceding SL. (ii) A 
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layering ratio (LR) (Succeeding SL thickness/preceding SL thickness) of 1.3 for the QT, UT, and 

LMC unit and 1.5 for the PL unit is used. This allows for the shallower geologic units to have 

thinner SLs and deeper units to have thicker SLs.  (iii) Number of SLs in a layer is calculated as 

per Equation 12, which is based on a geometric series and provided below. In Equation 12, 

H0=thickness of the first SL in a layer, H=thickness of the layer, LR=layering ratio, n=number of 

SLs in the layer. For a known layer thickness (H, from the layer interface model) and LR, an 

iterative automated loop is run to calculate H0 by varying n. The lowest value of n that satisfies 

condition (i) is taken as the number of SLs (n) within a geologic unit’s layer. (iv) A single SL is 

used for the CR and PZ unit as a mean formation velocity is utilized for these two units instead 

of a velocity equation.  

 

                                             H0 = H ∗
1−LR

1−LRn                                                               Equation 12 

To calculate shear wave velocity within a SL, mean effective stress (𝜎0
′) at the middle of 

that SL is calculated and utilized in Equation 9 along with the fitting parameters of the 

corresponding geologic unit. For SLs in the QT unit situated within depth, Z<Zcr, shear wave 

velocity is calculated by Equation 11 in the middle of the SL. The calculated shear wave 

velocities at the middle of each SL are continued throughout that SL. An example of SL 

generation and assigning a shear wave velocity to an SL is provided in Figure 5.5. In this 

example, SL generation and assigning shear wave velocities based on the velocity functions at 

the middle of each SL is demonstrated for the QT unit at the Athelstan site. In the Athelstan 

geologic interface model, the QT unit is 15 m thick. Based on the conditions set to generate SLs, 

this layer is divided into 6 SLs, each thicker than the preceding SL. Shear wave velocity at the 

middle of each SL is calculated based on the corresponding velocity function. The velocity 

fitting curve (includes the linear fit down to Zcr and power-law fit for the rest of the depth) is 
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shown for comparison along with the discretized profile for the QT unit. Utilizing the above-

mentioned method, discretized profiles for the QT, UT, LMC, and PL unit is developed and 

shown in Fig. 6a, b, c, and d, respectively. All the segmental discretized profiles for the QT, UT, 

LMC, CR and PZ units are combined to form the initial VS profile. The developed initial VS 

profile following the mentioned methodology for the Athelstan site is shown in Figure 5.6e.      

 

 
Figure 5.5 Discretized VS profile derived from continuous fitting velocity functions for the QT 

unit at an example site, Athelstan. Layer thickness is divided into 6 SLs based on the preset 

conditions to generate SLs. The continuous velocity function fit is shown for comparison.  
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Figure 5.6 Discretized VS profiles and corresponding velocity equation fits shown for the (a) QT, 

(b) UT, (c) LMC, and (d) PL unit. Reference VS curves for different materials from Lin et al. (Lin 

et al., 2014) are shown for comparison. (e) Developed initial VS profile. 

 

5.9 TTF and TRE to Adjust VS Profiles  

Fundamental frequency peaks, TF0 and Ell0 from TTF and TRE, respectively are used as 

a tool to evaluate a VS profile’s performance in capturing local site response (i.e., the site 

signature from microtremor horizontal to vertical spectral ratio (MHVSR) measurements). In this 

section, discussion on adjusting the initial VS profiles to capture the site signature by using TTF 

and TRE is presented. A schematic workflow of the method is shown in Figure 5.7.  To proceed 

with the method, the characteristics of a VS profile that influences its corresponding TF0 and Ell0 

are important to discuss. For a multi-layered VS profile, the corresponding TF0 and Ell0 are 

influenced by the following factors: (I) depth of the overall profile down to the major impedance 



121 

 

boundary, (II) layer thicknesses, (III) layer seismic velocity (both VS and VP) and density, and 

(IV) impedance contrast ratio (𝐼𝐶 =
ρbedrock∗VS of bedrock

ρsoil∗VS of soil

) at bedrock. The bedrock Vs only 

influences the amplitude of TF0 and does not have any effect on the frequency of TF0 (Kramer, 

1996). However, the frequency of the fundamental Rayleigh ellipticity has a strong dependence 

on the bedrock Vs (Malischewsky and Scherbaum, 2004).  

 

For this study, the layer interface model and depth to bedrock are held constant for a 

given site and only adjustments to the VS of soil layers are made so that TF0 matches MHVSR f0. 

The Vs of each soil layer is scaled up or down based on the ratio of the initial Vs profile TF0 

frequency and the measured MHVSR f0. If the initial TF0 is within 1σ of f0, no adjustment is 

made to the Vs profile. While increasing/decreasing the shear wave velocities of each SLs, the 

change in the VS of a particular layer is limited to 2σ of the geologic unit’s formation velocity 

determined by Himel and Wood (2022). 

Here, the linear TTFs are computed between the bedrock and ground surface using a 

MATLAB code from Teague (Teague, 2017 personal Comm.). The TREs for corresponding VS 

profiles are computed in the Geopsy software package (Wathelet et al., 2008). To compute 

TREs, density, and P-wave velocity (VP) for all SLs in the corresponding VS profile is required. 

Density for a SL is taken from Table 5.2 for the SL’s corresponding geologic unit. A saturated 

soil layer VP of 1500 m/sec for SLs with VS < 750 m/sec is used. For the SLs with VS > 750 

m/sec, including the bedrock layer, VP is calculated based on corresponding VS and a Poisson’s 

ratio of 0.33. 
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Figure 5.7 Schematic of an overall workflow of the developed approach to generate site signature 

consistent pseudo VS profiles. Input for this approach are layer interface boundaries and measured 

f0 at the site. The initial VS profile is adjusted in steps 1 and 2 to match the TF0 and Ell0 to the f0, 

respectively.   

 

In the second step (see Figure 5.8), the Vs of the bedrock is adjusted so that the Ell0 of the 

Vs profile matches the MHVSR f0 at the site. Similar to the previous step, a scaling factor is used 

for the adjustment and adjustments are made till the Ell0 of the Vs profile is within 1σ of the 

MHVSR f0 at the site. When adjusting the bedrock VS, an allowable velocity range from 1700 to 

2900 m/sec is used, which is the measured bedrock VS range from Himel and Wood (Himel and 

Wood, 2022). 

5.10 Site Signature Consistent Pseudo VS Profile at Athelstan, Arkansas 

Utilizing the approach in Sections 3.3, a site signature consistent pseudo VS profile for an 

example site, Athelstan, Arkansas is developed and shown in Figure 5.8. The initial VS profile, 

SFTF = 

If SFTF <1, increase VS

above bedrock, 

otherwise, decrease VS.

SFEll = 

If SFEll <1, decrease 

bedrock VS, otherwise, 

increase bedrock VS.

Input

Step 1: TF0 

Adjustment

Step 2: Ell0 

Adjustment
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trial VS profiles from step 1 and 2, and the adjusted final profile are shown for (a) top 200 m, and 

(b) down to the bedrock in Figure 5.8. The median inversion VS profile generated at this location 

from Himel and Wood (2022) is also shown for comparison. The layer interface model used to 

generate the initial VS profile at this location is shown in Figure 8 (c). Overall, both the initial VS 

profile and final Vs profile are in good agreement with the median inversion Vs profile, with 

final VS profile within 10% of the measured profile for most depth ranges. The largest 

differences between the final and measured profiles are observed at very shallow depths and in 

the deeper CR and PZ layers up to 20%. While the median inversion profile has two SLs in the 

CR layer, one single SL is used to model the CR unit in the initial VS profile, which consequently 

rolled over to all the trial profiles and the final profile.   

 

 

Figure 5.8 The initial VS profile, trial profiles from step 1 and 2, and the final profile shown for 

the Athelstan, Arkansas site down to (a) 200 m, and (b) bedrock. Corresponding layer interface 

model used for this location is shown in (c).   
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Corresponding TF0 and Ell0 of the candidate VS profiles from Figure 5.8 are shown in 

Figure 5.9a and b, respectively. Experimental MHVSR f0 at this location is also shown for 

comparison.  

From Figure 5.9a, the TF0 corresponding to the median inversion profile, initial profile, 

and final profile are 0.22 Hz, 0.23 Hz, and 0.24 Hz, respectively, whereas the MHVSR f0 is 0.24 

Hz at this location. From Fig 9b, the Ell0 corresponding to the median inversion profile, initial 

profile, MHVSR f0 adjusted profile and the final profile are 0.25 Hz, 0.23 Hz, 0.25 Hz, and 0.24 

Hz, respectively.  

 

 

Figure 5.9 (a) TF0 and (b) Ell0 shown for the candidate VS profiles in Figure 5.9. Experimental f0 

at the site is shown for comparison. 

 

5.11 Comparison of modeled and measured VS Profiles 

To better understand the differences between the modeled and measured VS profiles, 

percent differences at every 0.1 m depth increment are calculated for all 24 Himel and Wood 

(2022) study sites using Equation 13 and are shown in Figure 5.10 a – h for the Group I – VIII, 

respectively. A similar figure was presented by Himel and Wood (2022) (Himel and Wood, 
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2022) to observe the differences between the measured inversion profiles and modeled CUSVM 

profiles at these 24 sites. 

 

                  % Difference=
(VS of measured − VS of modeled)

VS of measured
∗ 100                                   Equation 13 

Overall, percent differences between the modeled and measured profiles are within 10% 

for most of the depth ranges, while exceptions are observed for the shallow, and very deep layers 

of all groups and most depth ranges for the Group III sites. Percent differences for the shallow 

layers ranged from 5% to as much as 50% for some sites, which is reasonable as generic velocity 

equations cannot account for abrupt spatial changes in the shallow depths from site to site. For 

the deeper layers, such as the CR and PZ, percent differences ranged from 5% to 40%, which is 

attributed to the way CR is modeled with one single sublayer and a single mean formation 

velocity, and because PZ layers being adjusted to match Ell0 to the f0. For the Group III sites, 

corresponding TF0 for the sites’ inversion measurements were approximately 5% to 10% higher 

than the f0, which implies that the inversion VS profiles in this group are relatively stiffer than 

what the f0 is suggesting. This explains the higher percent differences between the modeled and 

measured sites in this group. The CUSVM modeled profiles at these sites were observed to have 

30% to 50% lower VS at most depth ranges than the measured inversion Vs profiles, indicating 

an overall spatial bias throughout the embayment (Himel and Wood, 2022). While the modeled 

VS profiles in this study have some specific differences in the shallow and deep layers, no 

generic trend of spatial bias is observed. 

 

In order to provide independent verification, the developed model approach is used to 

generate Vs profiles at 11 sites where Rosenblad et al. (2010) developed Vs profiles in the 

Embayment (see Figure 5.1). To generate model VS profiles at the Rosenblad et al. (2010) sites, 
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layer interface model information provided by Rosenblad et al. (2010) is used for the QT, UT, 

LMC and PZ unit, while information from the CUSVM is used for the PL and CR unit. Geologic 

layers Alluvium, Upper Claiborne and Memphis sand used in Rosenblad et al. (2010) are 

attributed to the QT, UT, and LMC, respectively to use in the model VS generation. While the VS 

profiles from Rosenblad et al. (2010) do not extend down to the bedrock, these site 

characterization results have been observed to be reliable down to approximately 150 m to 250 m 

(Wood et al., 2019; Himel and Wood, 2022). In order to compare results from the approach in 

this article to the Rosenblad et al. (2010) Vs profiles, model VS profiles are generated at the 11 

Rosenblad et al. (2010) sites. A percent difference between the modeled and measured VS 

profiles for Sites 1 – 11 are shown in Figure 5.11. Similar to the percent differences observed 

between the modeled and measured VS profiles for the 24 Himel and Wood (2022) study sites, 

modeled VS profiles at most Rosenblad et al. (2010) sites are within 15% of the measured Vs 

profiles, except at the deeper layers below 150 m. Exceptions to this are observed for Site 5, 8 

and 10, with differences of up to 50% at some depth ranges. Increased differences at deeper 

depths between the measured and modeled Vs profiles could be attributed to higher average 

formation velocities resolved for the Memphis sand layer by Rosenblad et al. (2010) (Himel and 

Wood, 2022). Overall, comparison between the modeled and measured VS profiles at the 

Rosenblad et al. (2010) sites show no signs of spatial bias and are in good agreement.         
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Figure 5.10 Percent differences calculated between the modeled and measured inversion profiles 

for all 24 Himel and Wood (2022) study sites grouped as Group I – VIII and shown in (a) – (h), 

respectively. 
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Figure 5.11 Percent differences calculated between the modeled and measured inversion VS 

profiles for the Rosenblad et al. (2010) study sites. 

 

To better understand the overall agreement between the modeled and measured Vs 

profiles, the time averaged shear wave velocity down to the bedrock (VSavg) and down to 30 m 

(VS30) is calculated for the modeled VS profiles and measured inversion Vs profiles. A 

comparison of VSavg and VS30 between the modeled and measured inversion Vs profiles at the 24 

Himel and Wood (2022) study sites are shown in Figure 5.12a, and b, respectively.  

From Figure 5.12a, the VSavg comparison between the modeled and measured inversion 

Vs profiles are in good agreement with most modeled VS profiles’ VSavg within 5% of measured 

VS profiles. The VSavg from the modeled profiles ranged from 445 – 700 m/sec, while it ranged 
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from 460 – 690 m/sec for the measured inversion profiles. Differences between the modeled and 

measured profiles’ VSavg ranged from 0.5 – 8.5%, with average percent difference below 4%, 

indicating a very good agreement between the modeled and measured profiles throughout the 

embayment. 

 

From Fig 12b, while the VS30 comparison between the modeled and measured inversion 

profiles are still in good agreement with average percent difference between modeled and 

measured VS30 below 8%, they are not as good as the VSavg comparisons. The VS30 from the 

modeled profiles ranged from 201 – 280 m/sec, while it ranged from 167 – 305 m/sec for the 

measured inversion profiles. Differences between the modeled and measured profiles’ VS30 

ranged from 0.3 – 44%. This broad range of differences between modeled and measured VS30 

indicates very good agreement is observed for some of the modeled sites, while some 

demonstrate significant differences. For example, the PEBM site’s modeled and measured Vs 

profiles’ calculated VS30 are 190 m/sec and 167 m/sec, respectively. The PEBM inversion 

profile’s low VS30 was attributed to the measurement site being situated in a flood zone of nearby 

creek causing it to have soft surface sediments. However, this site specific very shallow local soil 

condition is not well modeled by the generic velocity equations at this particular site. This 

suggests that the velocity equations, though able to predict general trend of shallow site 

characterization well, can fail to accurately predict some site specific soil conditions.   
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Figure 5.12 Comparison of time averaged (a) VSavg, and (b) VS30 between the modeled and 

measured inversion profiles at the 24 Himel and Wood (2022) study sites. 

 

The Pearson correlation coefficient, r, is calculated between the modeled and measured 

time averaged shear wave velocities to quantify how well the models and actual measured results 

correlate for the 24 Himel and Wood (2022) study sites. For this, Pearson correlation coefficient 

between (a) VSavg model and VSavg inversion, (b) VS30 model and VS30 inversion, (c) VSavg 

CUSVM and VSavg inversion, and (d) VS30 CUSVM and VS30 inversion are calculated and shown 

in Figure 5.13a, b, c, and d, respectively. The Pearson coefficient can range from +1 to -1, with 
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+1 implying highest positive correlation. In general, a positive Pearson coefficient above 0.5, 0.3 

– 0.5 and below 0.3 indicates very strong, medium and weak correlation, respectively. Here, the 

Pearson coefficient between the modeled and measured VSavg is 0.95, indicating a very strong 

positive correlation between the modeled and measured shear wave velocities. However, the 

Pearson coefficient between the modeled and measured VS30 is 0.49, demonstrating a weaker 

correlation than the overall profile. This illustrates that though the overall modeled and measured 

Vs profiles are very well correlated, shallow characterization of the models are not always in 

good agreement with the measured inversion results. The Pearson correlation between the 

CUSVM modeled and measured VSavg is 0.16, demonstrating a very weak association between 

these two data sets. Similarly, the Pearson coefficient between the CUSVM modeled and 

measured VS30 is 0.18. Moreover, Pearson coefficient is calculated for the Rosenblad et al. (2010) 

sites’ time averaged VS down to 150 m (VS150). The Pearson coefficient between the modeled and 

measured  VS150 at the Rosenblad et al. (2010) sites is 0.75, whereas a Pearson coefficient of 0.34 

is calculated for the CUSVM modeled Vs profiles at the same sites. These statistics suggest that 

the developed approach to model VS profiles across the embayment is correlating better with the 

measured VS profiles than the previously modeled CUSVM VS profiles.  
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Figure 5.13 Pearson correlation coefficient calculated between the (a) VSavg Model and VSavg 

inversion, (b) VS30 Model and VS30 inversion, (c) VSavg CUSVM and VSavg inversion, and (d) VS30 

CUSVM and VS30 inversion. 

 

 

5.12 Conclusion 

While accounting for 3D variability in subsurface condition in deep basin like structures, 

such as the one found in the Mississippi embayment is critical for seismic design, hazard 

assessment, and ground motion analysis, it is challenging both technologically and economically. 

In this paper, a new approach is developed to generate site signature consistent pseudo 3D VS 

profiles in the embayment. In this approach, parametric velocity functions for the geologic units 

found in the embayment are developed using data from 24 deep Vs profiles across the 

embayment. These parametric velocity functions, along with layer interface boundaries at a 

location are used to form an initial VS profile at that location. This initial VS profile is adjusted to 

capture the site signature from locally measured fundamental frequency (typically using 

MHVSR). Using the developed approach, model VS profiles at 24 Himel and Wood (2022) study 
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sites and 11 Rosenblad et al. (2010) sites across the embayment are generated using the velocity 

functions, corresponding layer interface model and locally measured fundamental site frequency. 

Comparing the modeled and measured VS profiles, following conclusions can be drawn: 

 While differences in layering and shear wave velocities may persist, the 

developed approach is capable of emulating measured VS profiles capturing the overall 

characteristics of a site. 

 Near surface characterization using generic velocity functions may not provide 

good near surface results for sites with unique conditions, such as very soft alluvial material.  

 The presented approach is capable of generating model VS profiles, which 

generally have Vs within 10% to 20% of site-specific measured Vs profiles and within 1σ of 

the measured fundamental site frequency. 

 The Pearson correlation coefficient between the model and measured Vs profiles 

indicates good association between the Vs profiles even with independently measured Vs 

profiles. 

 Better correlation with measured Vs profiles is observed for the modeled Vs 

profiles using the presented approach than CUSVM modeled Vs profiles. No particular 

spatial bias in the modeled VS profiles using this approach is observed, such as observed in 

the CUSVM VS profiles.  

Overall, this method for generating pseudo Vs profiles can be implemented in a 3D shear 

wave velocity model as the core method to generate site signature consistent VS profiles. 

Additional elements of the 3D model are a continuous layer interface model, and a measured or 
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estimated fundamental frequency. This model and velocity functions will be implemented in the 

Mississippi Embayment to develop a more accurate 3D velocity model of the Embayment. 

 Summary, Conclusion and Future Recommendation 

6.1 Summary 

6.1.1 Development of SWM technique for deep site characterization  

 A combination of active and passive source surface wave measurements were made at the 

CUSSO site. Joint inversion of the surface wave data and site fundamental frequency is 

conducted to develop a site signature consistent deep VS profile.  

 Downhole measurements at the CUSSO borehole arrays are conducted using a 

sledgehammer and vibroseis sources. A downhole VS profile at the CUSSO site is 

developed.  

 A comparison between the SWM and downhole VS profile is shown. Time averaged shear 

wave velocity calculated from the SWM, and downhole profile are 558 m/sec and 553 

m/sec, respectively, which are within 8 – 9% of the average shear wave velocity recorded 

from earthquake phase arrivals.  

 Theoretical dispersion curves associated with the SWM and downhole VS profile fit well 

with the experimental dispersion data with a misfit ranging from 0.24 – 0.57, whereas the 

CUSVM VS profile at this location has a misfit of 1.49.  

 Corresponding fundamental peaks from theoretical transfer function for the SWM and 

downhole VS profiles are within 4% of the fundamental peak from empirical transfer 

function. Fundamental Rayleigh ellipticity peaks of the corresponding candidate VS 

profiles are within 1% of the experimental HVSR f0. 
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6.1.2  Site response impact of properly characterizing the Memphis sand layer  

 A suite of pseudo VS profiles is developed by varying the Memphis sand depth and 

formation velocity from the base VS profile adopted from the downhole measurement at 

CUSSO. 

 Linear and non-linear site response analyses using the pseudo and base VS profiles are 

conducted.  

 Varying the velocity of the Memphis sand impacts the amplification of the surface motion 

up to 12%. However, no influence on the frequency/period of amplification is observed 

due to a change in the Memphis sand velocity.  

 Varying the depth to the Memphis sand layer influences the first harmonic frequency of 

resonance up to 12% from the base VS profile’s first harmonics in the linear analysis. In 

the non-linear analysis, 10 – 30% difference below 1.0 sec period is observed in spectral 

acceleration for the pseudo VS profiles and the base VS profile, whereas this difference 

increased up to 45% in the 1 – 2 sec period range.  

 

6.1.3 Deep shear wave velocity profiles at 24 study sites from surface wave measurements 

 Active and passive source surface wave measurements are conducted at 24 sites (including 

CUSSO) across the Mississippi embayment.  

 Deep VS profiles are generated at the 24 study sites using SWM. Multimodal joint 

inversion of experimental dispersion data and fundamental frequency at each site is 

conducted to develop site signature consistent VS profile. A median VS profile is calculated 

at each site from the best 1000 minimum misfit VS profiles from a pool of 2 million 

inversion solutions.  
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 All developed SWM VS profiles capture site signature from experimental dispersion data 

and fundamental frequency within one standard deviation.  

 Comparison between the CUSVM VS profiles and measured SWM VS profiles is shown. 

The modeled CUSVM VS profiles have lower shear wave velocities than their 

corresponding measured SWM VS profiles ranging from 30 – 50%, indicating spatial bias 

across the embayment.  

 Time averaged shear wave velocity down to the bedrock for the 24 developed VS profiles 

ranged from 462 – 686 m/sec, with higher average velocities for deeper sites and vice 

versa. Site periods for the 24 study sites ranged from 2 – 5 sec, with longer site periods for 

the deeper sites and vice versa.  

 Average formation velocities calculated for the geologic units Quaternary, Upper Tertiary, 

Memphis sand, Paleocene, Cretaceous, and Paleozoic bedrock are 214, 418, 607, 665, 967 

and 2211 m/sec, respectively.   

6.1.4 Approach for developing site signature consistent VS profiles from power-law 

functions 

 Power-law velocity functions for the geologic units found in the Mississippi embayment 

are developed utilizing the deep VS profiles from 24 study locations across the embayment.  

 Initial model VS profile for a location is developed utilizing the velocity functions, mean 

formation velocity of the geologic units and layer interface information at that location.  

 The initial model VS profile is adjusted by scaling up or down the layer shear wave 

velocities to match the fundamental transfer function peak to the experimental HVSR f0. 

Similarly, bedrock VS is adjusted to match fundamental peak ellipticity to the HVSR f0. 
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 All modeled VS profiles for the 24 study sites have theoretical transfer function peaks 

within one standard deviation of the measured fundamental frequency.  

 Comparison between the modeled and measured VS profiles at the 24 study sites are 

shown. Most modeled VS profiles are within 10% of the measured VS profiles at all depth 

ranges. However, differences of up to 30% are observed in near surface layers.   

 Time averaged VS  is calculated down to bedrock, VSavg and for the top 30 m depth, VS30 

for the modeled and measured VS profiles. Differences between the modeled and measured 

VSavg ranged from 0.5 – 8.5%, with average percent difference below 4%. Differences 

between the measured and modeled VS30 is very broad and ranged from 0.3 – 44%, with 

average difference below 8%.  

 Pearson correlation coefficient is calculated for VSavg and VS30 between the modeled and 

measured VS profiles. Pearson correlation coefficient for the VSavg and VS30 are 0.95 and 

0.49, respectively. For the CUSVM VS profiles, the calculated Pearson correlation 

coefficient between modeled and measured VSavg and VS30 are 0.16 and 0.18, respectively. 

 Using the developed approach, model VS profile at 11 Rosenblad et al. (2010) sites are 

generated. Most of the modeled VS profiles at the Rosenblad et al. (2010) sites are 

observed to be within 15% of the measured VS profiles at most depth ranges down to 150 

m. Time averaged VS down to 150 m, VS150, is calculated for the modeled and measured 

VS profiles at the Rosenblad et al. (2010) sites. Pearson correlation coefficient for the VS150 

between the modeled and measured Rosenblad et al. (2010) sites is 0.75. 

6.2 Conclusion 

The conclusions that are drawn from this dissertation are as following: 
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6.2.1 Utilizing SWM for deep site characterization 

While SWM site characterization is inherently non-unique, careful curation of SWM 

inversion solution combining both experimental dispersion characteristics and fundamental 

frequency can provide comparable site characterization result as invasive methods. Deep site 

characterization using SWMs is challenging due to the lack of low frequency energy, identification 

of modes of wave propagation, and presence of effective mode dispersion data. However, utilizing 

both active and passive source surface wave measurements ensures proper layer characterization 

at shallow depths and enough resolution at deeper depths, respectively. The below conclusions are 

made from the results of this dissertation: 

 Array size is a critical aspect of surface wave measurements. Previously, a passive array 

of 3 ~ 4 times the diameter of the resolved depth was suggested. Nevertheless, array size 

of 0.5 ~ 1 times the diameter of the target resolution depth is found to be sufficient when 

resolving dispersion data utilizing multiple transformation techniques, such as the MSPAC 

and HRFK. 

 While the HRFK method is capable of resolving low frequency data on the order of 0.1 

Hz, most of the very low frequency data resolved are effective or higher mode, making 

the use of this low frequency data difficult and requiring experienced analyst to 

understand. 

 Although parameterization plays an important role in SWM site characterization, both 

blind and guided approaches provides comparable results when parameters are prepared 

carefully utilizing engineering judgement and local geology.  
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 The blind approach of developing SWM parameterizations might not be able to detect 

velocity reversals in very deep layers. Iterative parameterization should be used when  

velocity reversals are likely.  

 If available, a-priori information should be utilized to prepare parametrization. This could 

lead to less computational effort in the inversion process. 

 The SH wave transfer function and fundamental mode Rayleigh ellipticity works as a tool 

to assess a VS profile’s capacity of capturing the local site signature. Regardless of the 

SWM’s non-uniqueness, filtering out inversion VS profiles based on their theoretical peaks 

provides robust and comparable results as invasive methods.  

6.2.2 Site response impacts of shallow impedance boundary  

The shallow impedance boundary found in the Mississippi embayment from the Memphis 

sand has a variable depth to the layer across the embayment. Depending on the over-consolidation 

stress above the Memphis sand layer, velocity variation is also observed. While shallow impedance 

boundaries are observed to be responsible for seismic amplifications at particular frequencies, the 

Memphis sand is still poorly characterized. Based on the results of this dissertation, following 

conclusions are made regarding this issue: 

 Shear wave velocity of the Memphis sand layer primarily influences the first harmonic 

peak amplification and does not affect the frequency range of the amplification. Incorrect 

assignment of shear wave velocity to this layer will result in inappropriate amplification 

due to the shallow impedance boundary.  

 Depth to the Memphis sand layer has a more significant impact on site response than the 

shear wave velocity of this layer as varying the depth influences both the frequency range 

for amplification and surface spectral acceleration. 
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 Varying the depth or shear wave velocity of the Memphis sand layer has greater influence 

in periods ranging from 1 – 2 second. This implies that poor characterization of the 

Memphis sand layer would have adverse affect on important infrastructure, such as public 

transportation bridges and skyscrapers with natural frequency within 1 – 2 second range 

and may lead to inaccurate seismic design loads. Therefore, careful characterization of the 

shallow impedance boundary is essential for avoiding potential hazardous or economic 

penalties due to under-designing or over-designing of infrastructure.  

6.2.3 Deep VS profiles in the Mississippi embayment  

While the CUSVM model provided a 3D model of the Mississippi Embayment, differences 

in layer velocity and layer interface depths are observed between the measured SWM VS profiles 

and CUSVM VS profiles. Based on the results of this dissertation following conclusions are made 

on this issue: 

 Deep VS profiles modeled by the CUSVM tend to have lower shear wave velocities for 

deeper layers, particularly for layers below the Upper Tertiary unit. Due to a lower overall 

stiffness of the CUSVM VS profiles, when used in site response analysis, they can result 

in lower surface spectral acceleration due to higher damping.  

  Modeled VS profiles from the CUSVM tend to have differences in layer interface depths 

when compared to the measured inversion profiles, particularly for the Memphis sand 

layer. Overall, CUSVM VS profiles have shallower Memphis sand layer depths than the 

measured SWM inversion VS profiles. Inaccurate characterization of the Memphis sand at 

shallower depths might lead to over-prediction of surface spectral acceleration below a 2 

second period and under-prediction above a 2 second period as per the results from chapter 

3, which could lead to over-designed or under-designed structures, respectively.  
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6.2.4 Approach to develop 3D model for the Mississippi embayment  

Conclusions from the results of modeled VS profiles from the developed approach are as 

following: 

 Velocity functions for geologic units can provide valuable information regarding geologic 

layer stiffness if sufficient data is used to develop the velocity functions. However, 

velocity functions may have limited applicability outside a region as they are derived from 

regional material stiffness data. Velocity functions developed in this dissertation from 24 

deep VS profiles are observed to emulated measured VS profiles when used in conjunction 

with representative layer boundaries.  

 A layering ratio approach to define sublayers within each geologic layer prevented 

development of any velocity contrasts within the layer. Layering ratio of 1.3 and 1.5 were 

used in this dissertation for the shallow and deep layers, respectively, which is observed 

to fit very well with measured SWM VS profiles in the Mississippi embayment.  

 Modeling of the near surface layers using the generalized velocity functions is not always 

fruitful. Velocity functions bearing general trend of geologic unit’s stiffness may fail to 

accurately characterize the very shallow layers with specific conditions as observed in the 

results of this dissertation.     

 While the models from the developed approach might have differences in layering and 

shear wave velocities compared with the measured VS profiles, the overall modeled VS 

profile has same linear site response as the measured VS profile. 

 Modeled VS profiles from the developed approach are better correlated to the measured 

VS profiles than the CUSVM VS profiles, indicating a need to develop a new 3D shear 

wave velocity model for the Mississippi embayment.    
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6.3 Recommendations for Future Research  

While this dissertation details many issues regarding surface wave methods and deep site 

characterization, more research is needed in regards to the surface wave method technique, layer 

interface models, and 3D shear wave velocity models for the embayment. Proposed topics for 

future study are as follows:  

 Surface waves at very low frequency is often propagated with effective/higher modes, 

identification of the correct mode is critical for inversion process but difficult. 

Identification of the effective and higher mode data is still subjective and requires prior 

experience. A systematic investigation of mode identification method is required to 

eradicate subjectivity of analyst.  

 Deep site characterization using SWM is often limited by the availability of low frequency 

energy and relies on the quality of resolved dispersion characteristics at low frequencies. 

Reliability of the resolved low frequency energy and their dependence on the 

transformation technique is crucial for representative site characterization. A future study 

could be conducted to examine the performance of different broadband sensors’ capability 

capturing low frequency energy as well as different transformation techniques’ resolving 

the low frequency dispersion data. 

 Parameterization is critical for deriving representative site characterization solutions from 

surface wave inversion. In this dissertation, comparable results were achieved for both the 

guided and blind approach parameterization. However, a velocity reversal was not 

detected in the blind approach. Research to develop systematic parameterization in 

absence of a-priori knowledge is crucial for surface wave methods’ universal applicability. 
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This future research could include dispersion curve’s features, such as gradient, phase 

velocity range, frequency range of interest while developing a systematic approach.  

 The developed approach in this dissertation to model site signature consistent deep VS 

profiles requires further study to implement this approach in a new 3D velocity model for 

the embayment. In addition to the developed approach, elements of this new 3D model 

could be a continuous layer interface model and a mesh of fundamental frequency to 

enable the model to interpolate fundamental frequency and layer interfaces at any target 

location within the Mississippi embayment. This fundamental frequency and layer 

interface will be used in conjunction with the developed approach to generate a site 

signature consistent pseudo deep VS profile at a target location. Depending on availability, 

following user inputs could be allowed in the 3D model to have more site-specific 

characteristics in the developed VS profiles: layer interface model/fundamental 

frequency/VS measurement of top 30 m.    
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