
University of Arkansas, Fayetteville University of Arkansas, Fayetteville

ScholarWorks@UARK ScholarWorks@UARK

Graduate Theses and Dissertations

8-2022

Deep Learning Applications in Industrial and Systems Engineering Deep Learning Applications in Industrial and Systems Engineering

Winthrop Harvey
University of Arkansas, Fayetteville

Follow this and additional works at: https://scholarworks.uark.edu/etd

 Part of the Artificial Intelligence and Robotics Commons, Industrial Engineering Commons, Remote

Sensing Commons, and the Systems Engineering Commons

Citation Citation
Harvey, W. (2022). Deep Learning Applications in Industrial and Systems Engineering. Graduate Theses
and Dissertations Retrieved from https://scholarworks.uark.edu/etd/4671

This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for
inclusion in Graduate Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more
information, please contact scholar@uark.edu, uarepos@uark.edu.

https://scholarworks.uark.edu/
https://scholarworks.uark.edu/etd
https://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F4671&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.uark.edu%2Fetd%2F4671&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/307?utm_source=scholarworks.uark.edu%2Fetd%2F4671&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1192?utm_source=scholarworks.uark.edu%2Fetd%2F4671&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1192?utm_source=scholarworks.uark.edu%2Fetd%2F4671&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/309?utm_source=scholarworks.uark.edu%2Fetd%2F4671&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/etd/4671?utm_source=scholarworks.uark.edu%2Fetd%2F4671&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu,%20uarepos@uark.edu

Deep Learning Applications in Industrial and Systems Engineering

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy in Industrial Engineering

by

Winthrop Harvey
Amherst College

Bachelor of Science in Mathematics, 2013

August 2022
University of Arkansas

This dissertation is approved for recommendation to the Graduate Council.

Chase Rainwater, Ph.D.
Committee Chair:

Ed Pohl, Ph.D.
Committee Member

Xiao Liu, Ph.D.
Committee Member

Jackson Cothren, Ph.D.
Committee Member

Abstract

Deep learning - the use of large neural networks to perform machine learning - has

transformed the world. As the capabilities of deep models continue to grow, deep learning

is becoming an increasingly valuable and practical tool for industrial engineering. With its

wide applicability, deep learning can be turned to many industrial engineering tasks, includ-

ing optimization, heuristic search, and functional approximation. In this dissertation, the

major concepts and paradigms of deep learning are reviewed, and three industrial engineer-

ing projects applying these methods are described. The first applies a deep convolutional

network to the task of absolute aerial geolocalization - the regression of real geographic co-

ordinates from aerial photos - showing promising results. Next, continuing on this work,

the features and characteristics of the deep aerial geolocalization model are further studied,

with implications for future applications and methodological improvements. Lastly, a deep

learning model is developed and applied to a difficult rare event problem of predicting failure

times in oil and natural gas wells from process and site data. Practical details of applying

deep learning to this sort of data are discussed, and methodological principles are proposed.

ACKNOWLEDGEMENTS

Thank you to the University of Arkansas and the department of Industrial Engineering

for being a home for these last four years and making this possible. A special thanks to my

advisor, Chase Rainwater, for his mentorship, guidance, and understanding.

TABLE OF CONTENTS

Abstract .

Table of Contents .

1 Introduction . 1
1.1 Deep Learning in Industrial and Systems Engineering 1

2 A Brief Overview of Modern Deep Learning: Methods and Concepts 3
2.0.1 Deep Neural Network Overview . 3
2.0.2 Important Neural Network Concepts 7
2.0.3 Major Neural Network Architecture Types 11
2.0.4 Closing Remarks . 14

3 Direct Aerial Visual Geolocalization Using Deep Neural Networks 16
3.1 Introduction . 17
3.2 Methods and Results . 23

3.2.1 Data Choice and Processing . 23
3.2.2 Network Architecture Selection . 25
3.2.3 Field of View Comparison . 27
3.2.4 Loss Function Comparison . 27
3.2.5 Training Replicability . 29
3.2.6 AVL Results . 29
3.2.7 Uncertainty Calibration . 30

3.3 Discussion . 32
3.3.1 Accuracy and Loss Function Choice 32
3.3.2 Uncertainty Calibration . 34
3.3.3 Computational Considerations . 35
3.3.4 Input and Output Choices . 35
3.3.5 Future Directions for AVL Deep Models 37

3.4 Conclusions . 39
3.5 Appendix . 42

3.5.1 Neural Network Implementation Details 42
3.5.2 Data Set Characteristics . 43

4 Expanding Deep Learning for AVL . 47
4.1 Introduction . 47

4.1.1 Methods Applicable to All Experiments 47
4.1.2 Interpreting Results Between Experiments 48

4.2 Network Architecture and Training Approaches 49
4.2.1 Introduction . 49
4.2.2 Methods . 50
4.2.3 Results and Discussion . 52

4.3 Network Parameter and Region of Interest Scaling/Specificity 55
4.3.1 Introduction . 55
4.3.2 Methods and Results . 56
4.3.3 Discussion . 58

4.4 Training Data Requirement . 60
4.4.1 Methods and Results . 61
4.4.2 Discussion . 61

4.5 Model Distribution Calibration . 62
4.5.1 Introduction . 62
4.5.2 Methods and Results . 66
4.5.3 Discussion . 68

4.6 Occlusion and Orientation Error . 71
4.6.1 Introduction . 71
4.6.2 Methods . 72
4.6.3 Results . 72

4.7 Direct Raster Training Pipeline . 75

4.7.1 Methods, Results, and Discussion . 75

5 Deep Learning for Repairable System Reliability Prediction 78
5.1 Problem Introduction . 78
5.2 Deep learning approaches to tabular data literature 79

5.2.1 General Tabular Data Problems . 79
5.2.2 Deep Learning On Time-Series Data 82
5.2.3 Deep Learning Approaches to Rare-Event Problems 83
5.2.4 Non-Deep Approaches . 85
5.2.5 Deep Learning Approaches to Repairable Systems Literature 86

5.3 Methods Introduction . 86
5.3.1 Feature/Label Considerations . 86
5.3.2 Architecture . 88
5.3.3 Feature Embedding . 90
5.3.4 Regularization . 91
5.3.5 Measuring Model Performance . 91
5.3.6 Class Balancing . 92

5.4 Methods Specification . 93
5.5 Results . 95
5.6 Discussion . 96

5.6.1 Model Performance . 96
5.6.2 Data Troubles - Is the problem possible? 97
5.6.3 Future Work . 102
5.6.4 Conclusion . 102
5.6.5 Acknowledgements . 103

6 Conclusion . 105

Published Works in this Dissertation

Chapter 3, published 2021, cited as: Harvey W, Rainwater C, Cothren J. Direct Aerial
Visual Geolocalization Using Deep Neural Networks. Remote Sensing. 2021; 13(19):4017.
https://doi.org/10.3390/rs13194017

1 Introduction

1.1 Deep Learning in Industrial and Systems Engineering

Over the last decade machine learning has come to occupy an increasingly important

role in our society, with broad applications in diverse fields of human endeavor. One of the

major drivers of this increased importance has been the continual development and success

of deep neural networks (DNNs). Much of the research and development of these algorithms

has come from the field of computer science. However, algorithms and heuristic methods

have long been a major field in industrial and systems engineering. Accordingly, researching

improvements and novel applications of DNNs in the context of industrial engineering has

already begun to come into its own as a major field of focus. In this document, the use

of newly developed machine learning techniques is investigated in the context of several

different systems engineering problems. It comprises a body of work contributing effective

new approaches, and proposes additional research to further advance each application.

Chapter 2 establishes some of the terminology and methodology of modern deep

learning, introducing concepts and tools that are used throughout the remaining chapters.

Chapter 3 discusses the development of a convolutional neural network (CNN) based

approach to the task of Absolute Visual Geolocalization (AVL). AVL, or frame-to-reference

geolocalization, compares current visual data from an aircraft to a trusted geographic refer-

ence in order to determine the aircraft’s current location. Compared to relative or frame-to-

frame methods of localization, AVL is not susceptible to drift in location estimate. Neural

networks are particularly attractive for this task because of their robustness to differences

between input images and reference images, as well as their computational efficiency. This

efficiency is of particular importance for AVL applications on unmanned aerial vehicles where

resources are often limited. This work is complete and was recently published[2] in the jour-

nal Remote Sensing as “Direct Aerial Visual Geolocalization Using Deep Neural Networks.”

Chapter 4 extends and expands the work presented in Chapter 3. Organized into six

groups of experiments, this chapter dives deep into the questions and hypotheses that the

work in Chapter 3 introduces. Model performance is tested under a variety of configurations,

leading to improved understanding of what characteristics of a deep learning model are

1

important to performance. Furthermore, methodological improvements are developed and

tested to improve model calibration and the ease of data preprocessing.

Chapter 5 discusses the investigation of DNN based methods on a data set of fail-

ure times of 8,232 oil and natural gas wells. Liu and Pan [3] first presented this data set,

alongside a novel algorithm RF-R (random forests for repairable system reliability analy-

sis) for handling the dataset’s large size and special characteristics. Although DNN based

approaches have shown large gains over traditional machine learning approaches in fields

such as computer vision and natural language processing, their relative performance on tab-

ular data is poorer. This data set, which is also time series based and is an example of a

rare-event problem (since failures are rare compared to non-failures), is particularly chal-

lenging for standard DNN approaches. Tabular data is incredibly important and makes up

the majority of business data sets. The continued and growing demand for better ML ap-

proaches to tabular data is highlighted by the popularity of applications such as Google’s

AutoML Tables[1]. Time series and rare-event problems are also commonly encountered.

Thus, the development of improved methods of approaching these types of problems can

provide substantial value in many contexts beyond failure detection in oil and natural gas

wells. This project is part of the Arkansas DART (Data Analytics that are Robust and

Trusted) initiative.

References

[1] E. Bisong. “Google AutoML: Cloud Natural Language Processing”. In: Building Ma-
chine Learning and Deep Learning Models on Google Cloud Platform. Springer, 2019,
pp. 599–612.

[2] W. Harvey, C. Rainwater, and J. Cothren. “Direct Aerial Visual Geolocalization Using
Deep Neural Networks”. In: Remote Sensing 13.19 (2021), p. 4017.

[3] X. Liu and R. Pan. “Analysis of large heterogeneous repairable system reliability data
with static system attributes and dynamic sensor measurement in big data environ-
ment”. In: Technometrics 62.2 (2020), pp. 206–222.

2

2 A Brief Overview of Modern Deep Learning: Methods and Concepts

2.0.1 Deep Neural Network Overview

Deep learning is a subset of machine learning using deep neural networks. It is a

heuristic1 functional approximation procedure that is widely applicable and produces state-

of-the-art results over a wide variety of problem domains. It is a heavily data driven ap-

proach known for producing extraordinary results given large enough data sets to train on.

Already, deep learning has transformed many industries. As our world becomes increasingly

data driven, the influence of deep learning is only going to increase, and the demand for

knowledgeable practitioners and researchers with it. As a type of heuristic algorithm that is

broadly applicable to many systems and industrial applications, deep learning is becoming a

leading tool for many systems engineers and a frequent topic of operations research. In this

chapter, basic concepts, definitions, and equations that underlie deep learning are presented.

Artificial neural networks (ANNs) produce outputs from some (fixed) number of in-

puts by progressing through a network of computational nodes (also called neurons or hidden

units). At each node, the input has some computation performed on it (the specific opera-

tion is determined by the node’s type which is designed in advance), and the result is then

multiplied by trainable weights (also known as a parameters) before serving as input for

other nodes in the next layer. The output from each layer forms the input for the next, until

the output layer is reached. The term “deep” refers to the fact that in most modern neural

networks there are a large number of nodes and layers. The goal of the training process

is to find a set of weights which closely approximates the true function relating inputs to

outputs over the entire input domain. In equation form, we are seeking weights w such that

the overall function defined by the neural network, f̂(x;w), closely approximates some target

function f(x) over the set of all inputs x in the domain. That is, for a feedforward neural

network, we want to find w such that

1Although there are some theoretical guarantees on model convergences under for specific
architectures (e.g. a multi-layer perceptron under plain gradient descent with no regularizers
or other complicating factors) and long timespans, in practice most deep learning applications
are heuristic methods

3

f̂(x;w) ≈ f(x)

for all x in the domain.

The simplest deep neural network architecture, known as a multilayer perceptron,

consists of several layers of nodes where each node is connected to every node in the next layer

(these layers are therefore also known as dense layers). Each connection has an associated

weight, as described above, which multiplies the output. Each node also (usually) has a

bias weight which directly adds to its input. Finally, each node has an associated activation

function which also modifies its output.

In equation form, the input to a node, z, with n nodes in the previous layer is

z = b +
n∑

i=1

oi ∗ wi

where oi is the output associated with the ith node in the prior layer, and wi is the weight from

the ith node to the current node. This input is then modified by the nodes activation function

to serve as that node’s output into the next layer. Any almost-everywhere differentiable

function can be used as an activation function. Typically, a simple nonlinear activation

function is used. The nonlinearity of the activation function is important for being able to

approximate nonlinear functions, as will be discussed shortly. By way of example, one of the

most commonly used activation functions in deep neural networks is the ReLU (Rectified

Linear Unit) function:

f(x) =

0 for x < 0

x for x ≥ 0

which simply makes the output zero if the input is below 0, and otherwise is the identity

function.

The importance of having nonlinear activation functions, as well as the fundamental

property that makes neural networks effective, comes from their ability to serve as universal

function approximators. It has been proven [6] that multilayer feedforward neural networks

are capable of approximating any function to arbitrary precision, provided that they use

4

nonlinear activation functions, and are of sufficient size (have enough parameters).

Given that any function can be approximated by a neural network, the next question

is how to find the weights that best approximate the desired function. A simple but effective

method of is to perform gradient descent relative to a loss function. The loss function should

be minimized when the function defined by the neural network matches the target function

- in other words, when the output of the neural network matches the target label. For

regression problems, the loss function can be an error measure such as mean squared error.

Next, we compute the gradient of the loss relative to every weight in the network through

a chain differentiation procedure known as backpropagation. Then taking a small step in

the direction of loss reduction, the neural network will reduce its error for that input-output

pair, as that input should now produce a reduced loss. The update rule for backpropagation

for a specific weight w is:

wnew = wold − η
∂L

∂w

where L is the loss, wnew is the updated weight, wold is the old weight, and η is a constant

called the learning rate which controls how large the gradient descent steps are. The partial

derivatives for the weights of the output layer are immediately calculable using the derivative

of the activation function and the weight. From these derivatives, the derivatives of the next

interior layer can be calculated in a similar manner using the chain rule, thereby propagating

the loss backwards (backpropagation). In practice, it is not necessary to explicitly calcu-

late the derivatives of activation functions as modern deep learning libraries use automatic

differentiation.

Performing backpropagation for one input will reduce the loss on that input. However,

the goal is to minimize the loss across all possible inputs in the input domain. If we had the

capability to train the network on all possible inputs, we could train it until we were sure it

was highly correct on every one. In real-world problems where we cannot present all possible

inputs, we instead settle for exposing the neural network to as broad a variety of input-

output pairs as possible, so that it gradually learns a generalized functional relationship

that approximates the target function. This requires knowledge of the output label for each

input (labeled data), and so is a type of supervised learning. One iteration over all available

training data is called an epoch. The generalization capability of a neural network is usually

5

evaluated on a test set, which is simply a set of data from the input domain that was not used

during training. This process of updating the weights for each presentation of input using

backpropagation is known as stochastic gradient descent (SGD). It is stochastic because each

individual weight update may not be beneficial. However, in practice, over time networks

trained using SGD usually progress towards better performance. Many alternatives to SGD

have been developed, usually adapting gradients on specific weights based on the history

of the training process and heuristic rules. A popular and successful example is Adam [8],

which modifies the learning rate of each weight based on estimates of their first and second

moments.

One important note about loss functions is that they are often not the metric we are

trying to optimize towards. For example, if we want to maximize the accuracy of a classifier,

we can’t directly use accuracy as a loss function as accuracy only has meaning over sets of

inputs, and therefore can’t be calculated/differentiated from a single input sample. Even

when the desired metric for optimization can be used directly as a loss function, it will not

necessarily achieve the best results. This is because a neural network does not simply opti-

mize weights relative to a loss function. Rather, a neural network uses the loss function as

part of a highly stochastic process to navigate a complicated high-dimensional loss surface.

As an example, in reinforcement learning direct policy gradient methods are unstable and

tend to have poor performance2. Proximal Policy Optimization [10], which uses a modified,

clipped form of the policy gradient loss function, is highly successful. The significant take-

away is that a modified form of the loss function can achieve better performance than the

original loss function even as measured by the original function. This is a major reason deep

learning is better thought of as a heuristic approach than a type of optimization method.

2 This is because of the reciprocal dependence of actions determining the feedback from
the environment, while the feedback from the environment determines the actions to be
taken, leading to vicious cycles where the agent becomes stuck in a local optimum, but
because it is stuck does not get feedback enabling it to learn to take the actions that would
allow it to leave the local optimum

6

2.0.2 Important Neural Network Concepts

Regularization

A universal functional strategy that works on any finite input set is a lookup table

(memorization). Since input data sets are finite in practice, this is a major problem for

neural networks. Memorization allows for perfect accuracy on any input in the training

set. However, it does not generalize at all beyond this. Since the goal of deep learning

applications is to learn a general functional relationship that works over the entire input

domain, including those inputs that were not used in training, it is important to take steps

to encourage generalization. The terminology for the phenomenon of a neural network

overspecializing on its training set to the detriment of performance on data in the test

set is known as overfitting. Collectively, methodologies to reduce overfitting are known as

regularization methods.

Some of the most important regularization techniques are parameter reduction, early

stopping, weight decay, batch normalization, and dropout.

• Parameter reduction is restricting the size of the neural network so that its expressivity

(representational capacity) is reduced. For simple problems, few hidden units are

needed to effectively capture the relationship between input and output. If the network

is larger than required, the extra capacity is usually used to memorize specific inputs.

Thus, a method to reduce overfitting is to ensure that the neural network used is not

larger than necessary for the problem. This also saves on computation.

• Early stopping is ending training of a network when it is noticed that the network has

begun overfitting, and test set performance is dropping. Networks often learn general

relationships first and then begin to learn more specific memorization based strategies

later, so this is a common pattern to encounter.

• Weight decay adds a penalty term to network weights encouraging them to remain

closer to zero. This favors simpler functional relationships which are more likely to

generalize. Memorization strategies are very parameter intensive due to their high

informational requirements. There are many different types of weight decay penalties

7

that can be applied at varying intensities, with different mathematical properties and

effects on network training.

• Batch normalization rescales and recenters batches of inputs at internal points in the

network. The exact reason for batch normalization’s effectiveness as a regularization

technique are not clear and this is still a matter of active research and debate. However,

batch normalization is often one of the most effective regularization techniques in

practice and is widely used.

• Dropout randomly excludes certain nodes during each training step. This encourages

robustness and discourages memorization as the network must learn to be accurate even

using a random subset of its nodes. Additionally, it is unlikely to have the same nodes

active when presented with the same input again on subsequent epochs. Conceptually,

this turns a single network into an ensemble of networks during training.

Hyperparameter Tuning

In addition to the parameters that are determined by training (the weights), neural

networks also have a large number of parameters that are not trained but rather determined

ahead of time by the practitioner. These are called hyperparameters. Examples of hyperpa-

rameters include the number of layers in a network, the number of hidden units per layer,

the choice of activation function, the learning rate and its evolution over time, the choice of

learning algorithm, parameter levels of various regularization techniques like weight decay,

levels and types of data augmentation and their associated parameters, how input data is

preprocessed and presented, the train/test split, and even the random seed. This is only

a small sample of the number of possible hyperparameters - and each represents a decision

that a deep learning practitioner must make. Unfortunately, there are largely no a priori

way to determine optimal hyperparameter settings. Therefore, practitioners must rely on

rules-of-thumb and empirical hyperparameter optimization techniques. Fortunately, many

such rules and hyperparameter optimization methods have emerged. Finding more efficient

ways to set hyperparameters remains a major area of research, as hyperparameter tuning

can be highly time and resource intensive.

8

Data Preprocessing

Neural networks are fundamentally mathematical constructs and are sensitive to the

numerical properties of the input data. As a simple example, suppose you were to apply

a neural network to a problem of predicting three different quantities, and you used mean-

squared error as the loss functions. If one of the three quantities had a much larger scale

than the others, it would also generate more loss, and the majority of learning in the network

would go towards optimizing estimates of this one quantity even at the expense of the other

two. Another common issue arises with large categorical inputs, where simple encoding

techniques may cause issues during training by generating large sparse inputs. Because most

architectures can only accept fixed size inputs, they struggle heavily with missing data. A

neural network can’t accept non-numerical input, so any record with missing data must

either be removed or processed to assign the missing data some numerical value (the choice

of which can introduce bias). Because of issues like this, data inputs into neural networks

must undergo careful preprocessing.

Data Augmentation

Deep learning approaches are data hungry. However, in most real-world problems the

amount of data that is available or is feasible to gather is limited. Consequently, methods

of data augmentation, where additional unique input samples are generated, are important

in many deep learning projects. Typically, data augmentation techniques work by observing

some transformation of the available data that changes it, but does not affect the label (or

affects it in some known way). An example would be turning a picture of a dog upside-down.

It is still a picture of a dog, but nearly every pixel value has changed. Additionally, rotation

is a reasonable transformation that might occur on real pictures of dogs. A transformation

should be plausible and relationship preserving in order to be considered as a candidate for

data augmentation.

Unsupervised and Semi-supervised Learning

The discussion above has assumed that the training data consists of input-output

pairs with known labels, thereby allowing supervised learning. However, neural networks

9

are also highly capable in unsupervised (where there are no labels, as in autoencoders that

reproduce input), and semi-supervised tasks (where some labeled data serves as a starting

point to bootstrap classification on a larger number of unlabeled samples). These techniques

can reach impressive accuracies on extremely limited amounts of labeled data. For example,

Albert et al. achieved error rates of only 8.46% on the CIFAR-10 dataset using just one

(carefully chosen) labeled datum per classification category.

Computational and Training Efficiency

Because of the very large number of training examples that need to be presented

to train a neural network, as well as the large number of parameters for many state of

the art models, computational and training efficiency are a major area of concern. Once

fully trained, neural networks are very fast at doing only inference (no backpropagation).

Computational efficiency can be further improved by a variety of methods, such as parameter

pruning where weights that are not influential (e.g. they have value zero and so carry no

information) are removed from the network.

Neural networks typically require a large amount of matrix operations, which can be

parallelized. In general, we want to exploit parallelization as much as possible by increasing

the number of training samples presented during each training step (batch size). However,

care should be taken that batch size does not become large relative to the data set, as

this can create additional problems. Graphics/Tensor Processing Units are hardware that

are specialized for highly parallel matrix operations and are therefore extremely effective

at training and running neural networks. The increased demand for deep learning powered

applications in portable contexts has lead to the development of mobile GPUs/TPUs that

can fit into even small devices, allowing deep models to be deployed more widely than ever

before.

For training efficiently, we want to avoid bottlenecks where the GPU is idle due to

waiting for input data. Thus, data preprocessing and loading pipelines must be designed to

be fast enough to always have data ready for the GPU. As GPUs have increased in speed

tremendously, it is increasingly the case that training speed is limited by CPU bound data

preprocessing or data access. To avoid this, techniques such as data preloading (preparing

10

and caching the next set of data inputs while the GPU is working), and offline preprocess-

ing/caching should be used.

Interpretability

Deep neural networks are highly complex with very large numbers of parameters.

This makes the internal operation of the network difficult to analyze, leading to a problem

of interpretability - what some call the ”black box” problem. You can use the box, but you

can’t see inside it to see how it works. As deep learning plays an increasingly large role in

our society, the need for accountability and explainability in neural networks has also grown.

To this end, an entire field of neural network interpretability research as emerged. A popular

example is the method of integrated gradients [11], which computes the effect of inputs on

outputs relative to a baseline input. This gives a better picture of which inputs were most

influential in causing the output. Another technique is to include probability distributions

including estimates of uncertainty explicitly in the network’s output.

2.0.3 Major Neural Network Architecture Types

In addition to the basic multilayer perceptron, there are many other types of neural

network architectures that have been developed with various specialties. I will briefly cover

some of the major archetypes that see use today.

Convolutional Neural Networks

Convolutional neural networks (see [9] for the first major paper applying backpropaga-

tion trained CNNs to image processing) use convolutional layers to process input, typically

images. Inspired by image processing techniques, these convolutional layers have kernels

(also known as filters) which translate over the input producing output at each step. This

enables efficient image processing as filters can learn to respond to input no matter where

it is in the image. It also improves computational efficiency relative to fully dense networks

as it has far fewer parameters to train. The fundamental insight behind CNN’s success is

that nearby pixels have far more inter-relationships than distant pixels. However, in a dense

network processing image input, every single pixel is equally connected to every other pixel

in terms of the network architecture. By doing away with many of the superfluous weights,

11

CNNs are able to far more effectively process image data. CNNs form the backbone of almost

every major deep learning computer vision application today and demonstrate the strength

of incorporating domain knowledge into the model architecture.

Residual Neural Networks

As networks become larger and deeper, they become more difficult to train not only

because of the increase in the dimensionality, but also because the successive modification

of gradients by many layers often leads to either vanishing or exploding gradients: gradients

that become very close to 0 or very large. Very small gradients lead to stagnating training,

whereas very large gradients lead to high instability. Residual Neural Networks [4] address

this problem through the presence of skip connections which bring inputs (and therefore

gradients) directly from early layers to later layers skipping the layers in-between. This

method has proven to be extremely effective and skip connections are now a common feature

in many types of deep neural networks. Convolutional neural networks, as well as other types,

can easily incorporate skip connections and also be a residual neural network.

Recurrent Neural Networks

Unlike feedforward neural networks where all connections move from input to output,

recurrent (or stateful) neural networks also have connections backward. Since this creates

loops in the computational graph, to avoid an infinite regress these backwards connections

typically only output once per training step, with their output based on the previous input(s).

What this causes is a dependence in the output not only on the current input, but also the

sequence of inputs before it. This is desirable for sequence data such as time-series data

or in natural language processing. A famous example is the Long Short-Term Memory [5]

network, which is a recurrent neural network that also learns to retain or forget certain

information.

Recurrent neural networks can be very effective, but they have a major weakness:

the dependence of the output on the sequence of inputs means that training cannot be fully

parallelized. Every input sequence must be handled in order. Recently, attentioned-based

networks such as Transformer models have shown great success on sequence data while

12

still allowing for parallelization, leading to a shift away from recurrent neural networks.

However, LSTM networks still maintain advantages over Transformers on very long sequences

(Transformers are not stateful and can’t maintain context outside of their input window)

and on smaller datasets (Transformers are considered more data hungry).

Generative Adversarial Networks

In a Generative Adversarial Network [2], two networks are trained. One, the genera-

tor, must create convincing output from a latent distribution (typically Gaussian noise) in

order to fool a discriminator. The other, the discriminator, must learn to determine when

it is presented with a real sample and when it is presented with a sample generated by the

other network. Ideally, the two networks train together until the generator can produce out-

put that is extremely difficult to distinguish from the real-world training data. This can be

used to, for instance, generate convincing photographs of people who do not actually exist.

GANs can be highly effective, but the min-max nature of the training problem can lead to

high instability and problems such as mode collapse where the two networks hyperspecialize

against each other, but fail to achieve the goal of diverse output. As an example for how

the min-max problem can lead to training instability, consider what happens when the dis-

criminator becomes too effective against the generator, a common problem early in training.

If every output the generator is capable of producing is always identified as generated, the

generator gets the same feedback on everything it produces and fails to learn which attempts

are closer to being successful. Training GANs is a careful balancing act, but they can pro-

duce incredible results at their best. Most deep learning image generation applications are

powered at some level by GANs.

Attention-Based Networks

Attention-Based Networks learn to ”attend” to different parts of the input based

on context. This attention is not just numerical, but computational. Input that garners

attention undergoes more processing, while input that is not undergoes less. The network

learns where to prioritize its own computational resources. At this time, Attention-Based

Networks are practically synonymous with Transformer-based networks [12] which dominate

13

the field. Transformer based architecture have vastly expanded the capabilities of natural

language processing deep models and have also shown state-of-the-art capabilities on a va-

riety of other tasks. Transformer architectures are highly parallelizable, making them quick

to train relative to other models that achieve similar performance.

Transformer based models are an incredibly exciting development as they seem to

be a major step forward for neural network on a variety of different tasks. A major thrust

of deep learning research at the current time is applying Transformer based architectures

to novel tasks and improving Transformer architectures to address their weaknesses. De-

spite their state-of-the-art performance, default Transformer networks do have some large

downsides. First, the computational and memory requirements grow quadratically with in-

put size, limiting the size of the input window, especially in applications where hardware

resources are limited. Transformer models are also generally slower at inference than LSTM

based models. Transformer models are not stateful, so they cannot maintain context over

long sequences (though see [7][1] for examples of introducing statefulness to Transformer

model for long input sequences). Transformer models are also considered to be very data

hungry (even relative to other deep models) and difficult to train, though approaches are

being developed to alleviate this, see [3] for an example.

2.0.4 Closing Remarks

The common thread across my work has been the development and implementation

of deep models. In the remaining chapters, concepts and tools presented is this chapter are

used in research projects involving two very different tasks. In Chapter 3, the application of

CNNs to direct Absolute Visual Localization are investigated. This research takes an unusual

approach of using a distributional layer with negative log-likelihood as the loss function and

achieve good results that demonstrate the feasibility of direct AVL using the approach. In

Chapter 4, the models and ideas introduced in Chapter 3 are further developed and explored,

leading to deeper understanding of how deep learning can best be leveraged for AVL tasks.

In Chapter 5, a deep learning approach for a case study problem whose characteristics make

it particularly challenging for deep approaches is developed. The chapter offers a model

blueprint based on principles of data preprocessing, CNN architecture, data augmentation,

14

and data regularization to address the special characteristics of the case study.

References

[1] Z. Dai, Z. Yang, Y. Yang, J. Carbonell, Q. V. Le, and R. Salakhutdinov. “Transformer-
xl: Attentive language models beyond a fixed-length context”. In: arXiv preprint
arXiv:1901.02860 (2019).

[2] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.
Courville, and Y. Bengio. Generative Adversarial Networks. 2014. arXiv: 1406.2661
[stat.ML].

[3] A. Hassani, S. Walton, N. Shah, A. Abuduweili, J. Li, and H. Shi. “Escaping the
big data paradigm with compact transformers”. In: arXiv preprint arXiv:2104.05704
(2021).

[4] K. He, X. Zhang, S. Ren, and J. Sun. “Deep residual learning for image recognition”.
In: Proceedings of the IEEE conference on computer vision and pattern recognition.
2016, pp. 770–778.

[5] S. Hochreiter and J. Schmidhuber. “Long short-term memory”. In: Neural computation
9.8 (1997), pp. 1735–1780.

[6] K. Hornik. “Approximation capabilities of multilayer feedforward networks”. In: Neural
networks 4.2 (1991), pp. 251–257.

[7] A. Katharopoulos, A. Vyas, N. Pappas, and F. Fleuret. “Transformers are rnns: Fast
autoregressive transformers with linear attention”. In: International Conference on
Machine Learning. PMLR. 2020, pp. 5156–5165.

[8] D. P. Kingma and J. Ba. “Adam: A method for stochastic optimization”. In: arXiv
preprint arXiv:1412.6980 (2014).

[9] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D.
Jackel. “Backpropagation applied to handwritten zip code recognition”. In: Neural
computation 1.4 (1989), pp. 541–551.

[10] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. “Proximal policy
optimization algorithms”. In: arXiv preprint arXiv:1707.06347 (2017).

[11] M. Sundararajan, A. Taly, and Q. Yan. “Axiomatic attribution for deep networks”.
In: International Conference on Machine Learning. PMLR. 2017, pp. 3319–3328.

[12] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin. “Attention is all you need”. In: Advances in neural information
processing systems. 2017, pp. 5998–6008.

15

3 Direct Aerial Visual Geolocalization Using Deep Neural Networks

Direct Aerial Visual Geolocalization Using

Deep Neural Networks

Winthrop Harvey 1, Chase Rainwater 1 and Jackson Cothren 2

1 Department of Industrial Engineering, University of Arkansas, Fayetteville

2 Department of Geosciences, University of Arkansas, Fayetteville

Abstract

Unmanned aerial vehicles (UAVs) must keep track of their location in order to main-
tain flight plans. Currently, this task is almost entirely performed by a combination of
Inertial Measurement Units (IMUs) and reference to GNSS (Global Navigation Satellite
System). Navigation by GNSS, however, is not always reliable, due to various causes both
natural (reflection and blockage from objects, technical fault, inclement weather) and ar-
tificial (GPS spoofing and denial). In such GPS-denied situations, it is desirable to have
additional methods for aerial geolocalization. One such method is visual geolocalization,
where aircraft use their ground facing cameras to localize and navigate. The state of the
art in many ground-level image processing tasks involve the use of Convolutional Neural
Networks (CNNs). We present here a study of how effectively a modern CNN designed
for visual classification can be applied to the problem of Absolute Visual Geolocalization
(AVL, localization without a prior location estimate). An Xception based architecture is
trained from scratch over a >1000 km2 section of Washington County, Arkansas to directly
regress latitude and longitude from images from different orthorectified high-altitude survey
flights. It achieves average localization accuracy on unseen image sets over the same region
from different years and seasons with as low as 115 meters average error, which localizes to
.004% of the training area, or about 8% of the width of the 1.5x1.5km input image. This
demonstrates that CNNs are expressive enough to encode robust landscape information for
geolocalization over large geographic areas. Furthermore, discussed are methods of providing
uncertainty for CNN regression outputs, and future areas of potential improvement for use
of deep neural networks in visual geolocalization.

This work was published as: Harvey, W., Rainwater, C., & Cothren, J. (2021). Direct
Aerial Visual Geolocalization Using Deep Neural Networks. Remote Sensing, 13(19), 4017.

16

3.1 Introduction

Pilotage or piloting is the practice of using vision to navigate an aircraft, usually by

reference to terrain and landmarks. This is in contrast to flying by instrument. Modern

aircraft instruments enable navigation even in the absence of vision. However, vision and

visual flight remains immensely valuable to pilots when it is available, both in improving

navigation quality and as a check against instrument error. Despite possessing cameras,

automated drones are not currently capable of navigating using vision, even in clear weather

conditions. Thus, a valuable source of navigation capability and backup instrumentation

is currently not being utilized. This is of particular concern in the context of security and

reliability, when external navigational aids may not always be available or reliable [4].

Navigating by sight is a complex task that requires the ability to recognize and con-

textualize terrain features from images under a wide variety of conditions. A recent review of

the field by Couturier and Akhloufi [8] divides current approaches into two broad categories:

Relative Visual Localization (RVL or frame to frame localization), which aims to update

location by calculating movement when comparing one image frame to the next, and Abso-

lute Visual Localization (AVL or frame to reference localization), which aims to determine

location by comparing UAV/aircraft imagery to trusted georeferenced imagery, commonly

from high-altitude survey flights or satellites. Of the two approaches, AVL has the notable

advantage of being free from drift while RVL approaches tend to be more accurate than AVL

approaches over short distances. Over longer distances, errors compound, as each error in

estimating movement from the last frame adds to the error in estimating current location.

AVL, however, can provide estimates of location that are independent of prior estimates.

AVL, then, can be used as a complement to RVL. RVL provides high accuracy over short

distances, while AVL provides periodic, independent estimates of location to prevent drift.

This is similar to how GPS and IMUs work together, where IMUs provide high accuracy over

short distances, while GPS provides periodic independent location information to prevent

drift. Preventing drift is particularly important for long duration flights over large distances,

typically made at high altitude. However, most prior work on AVL has focused on lower

altitude flights by small UAVs, highlighting a need for investigation of AVL using higher

altitude imagery.

17

Since AVL involves image processing, it is natural to investigate how the current

state of the art in ground level image processing techniques performs when applied to this

task. One of the most successful modern techniques for complex visual processing tasks

is the Convolutional Neural Network (CNN). CNNs are very effective at learning complex

relationships between input images and outputs. Furthermore, although the computational

and memory resources needed to train a CNN are high, a fully trained model can be deployed

at a considerably reduced cost, which is a desirable feature for UAVs whose computational

resources may be limited.

Many frame-to-reference AVL approaches require the aerial platform to locally store

reference imagery which must be retrieved during localization, meaning that storage and

computational costs rapidly increase with the area of flight operation. Additionally, such

AVL approaches that seek to increase accuracy/robustness by comparing to multiple refer-

ence data sets increase their storage and computational costs proportionally. In contrast, a

pure neural network approach only requires the storage of the model parameters, and does

not need to scale with the number of data sets used during training, and does not directly

scale with the size of the ROI (larger ROIs will require larger networks with more param-

eters to encode information about locations in the ROI. It would take more parameters to

encode a state than a county. However, because neural networks are known to be effective

at efficiently encoding data (for example, in autoencoders), the size of the network needed

to localize over a given ROI should not be directly proportional to the ROI’s area). Finally,

although neural networks have large requirements for data and computation during train-

ing, the speed of inference on a trained neural network is quick. This makes a pure neural

network approach highly desirable if it can achieve useful accuracy over a large area. This

paper aims to address the question of how effectively a modern CNN architecture that has

been successfully used on ground-level imagery tasks can be repurposed for AVL.

When making neural networks for tasks involving recognizing objects at the ground

level, there exist many high-quality pretrained models that can be used as a starting point.

Unfortunately, there do not currently exist large, pretrained deep learning models for aerial

imagery feature detection. In contrast to most prior work in the field (see Related Work

section for details), we fully train our own model. This requires a large and varied data set.

18

Although large quantities of location-tagged aerial imagery exist, organizing and processing

them for use in training a neural network remains an ongoing challenge. For this study,

publicly available high-altitude images were used. Images are precropped and downscaled to

allow for input into a CNN. Additional random crops augment the training data. One of the

challenges of AVL is that the photographic properties of the input may vary considerably

due to factors such as time of day, season, year, weather, and the properties of the camera

used. This study therefore trains and tests on different image sources that vary by as many

of these factors as possible.

Several configurations of CNNs were trained from scratch to regress latitude and lon-

gitude coordinates from high-altitude photographs (covering 1.5 × 1.5 km each) over the

region of interest (ROI, the selected area within which localization was assessed), a ∼32.2

by 32.2 km section of Washington County encompassing urban, suburban, and rural areas.

The best performing architecture, Xception [6], was investigated further. An investigation

into the use of probability distribution parameters as outputs in order to quantify model

uncertainty was performed. The final models were trained on 12 data sets and tested on a

13th, with a separate model being trained with each data set acting as a holdout set to act

as cross-validation. Performance was robust across all cross-validation training runs, and

performance was high relative to the area of the ROI and size of the input images, where

average errors were as low as .004% of the ROI’s area and 8% of input image width, respec-

tively. Future directions to improve CNN performance on this task, and better incorporate

them into overall UAV navigation models, are discussed.

Related Works

Visual localization can be split into two broad categories: relative visual localization

(RVL) or frame-to-frame localization, and absolute visual localizationn (AVL) or frame-to-

reference localization. Although this paper is addressing the problem of AVL, RVL is the

more mature field and the field of AVL has developed primarily out of a need to address drift

in RVL approaches. Because RVL provides a location relative to the last location estimate,

error inevitably compounds no matter how accurate the technique (unless the error is zero—

a very high bar to cross!). Thus, even the most accurate RVL techniques have unbounded

19

error over long enough timescales. In application, AVL is best used together with RVL, with

RVL providing high accuracy over short distances and AVL preventing drift from becoming

unbounded. Additionally, RVL can only provide relative position updates - it cannot localize

when there is no initial estimate of position, while AVL can.

The most straightforward type of RVL is visual odometry (VO) [19]. VO compares

the current and prior observation, compares them, and then determines the movement of

the platform based on differences. VO approaches evolved out of feature-based detection

algorithms such as SIFT [16] (Scale-invariant Feature Transform), where certain features,

crafted to be robust to image transformations caused by camera pose, are extracted from

each image and then matched across images. The difference in the locations and orientations

of these features within each image can then be used to estimate camera movement. Feature

extraction and matching is computationally intensive, leading to interest in VO methods

that do not use feature extraction (see [10] for an example). Additionally, some approaches

now also incorporate additional information from IMUs to increase accuracy, an approach

called Visual Inertial Odometry [15].

Because VO updates position from prior estimates, it is susceptible to drift over time.

If the aircraft loops over prior locations (loop closure), then if the previously visited location

is recognized the aircraft can reconcile its current and past location estimates, eliminating

drift. This is approach taken in Simultaneous-Localization And Matching (SLAM) [9], where

a map of prior visited locations is constructed simultaneously with location estimation. How-

ever, in the absence of loop closures (such as in straight-line flight), or if it fails to recognize

a prior location, SLAM is still susceptible to drift. Additionally, SLAM requires additional

computational resources to store and query its map of prior locations - and this cost increases

over operation time as the number of prior locations grows. Thus, although effective, SLAM

does not solve the problem of location drift in all situations, highlighting the need for AVL

approaches. In contrast to RVL, which updates position based on a prior estimate, AVL

compares the operational imagery during flight to a trusted reference to produce a loca-

tion estimate. Since each comparison to the reference is made independently, each location

estimate is independent of previous estimates and is not susceptible to compounding drift.

Couturier and Akhloufi recently published an excellent review of AVL [8] which covers

20

much of the recent publications in the field. From this review, it is seen that the most popular

and currently most successful AVL methods use template or feature points matching, with

only a minority opting to use deep learning techniques, and even then often only using

deep learning techniques as a supplement to another matching technique. This is despite

deep learning being the leading method in various ground-based tasks, including analogous

problems such as self-driving cars. Neural networks are also being successfully applied to

the related problem of cross-view geolocation, where ground level pictures of locations must

be matched to aerial pictures of the same location (see for example Hu et al. [14]).

There are two major difficulties facing researchers attempting to leverage deep learn-

ing on aerial photographs: lack of existing models, and difficulty in obtaining sufficient

train/test data. Although it is still possible to use the early layers of models trained on

ground level imagery tasks, it is likely that the filters learned when training on ground level

imagery are inefficient when applied to aerial imagery, especially high-altitude imagery, due

to the vast difference in image scale and perspective. Nonetheless, because of the difficulties

in training a deep model from scratch, most papers using them to-date have opted to fine-

tune existing pre-trained ground-level models [see, e.g., [7, 1, 18, 11]]. Unlike our approach,

none of these works attempt to directly determine location using a deep model, but instead

use neural networks as steps along a template or segment matching pipeline. Thus, the

potential of a purely CNN based AVL procedure remains unknown.

Additionally, because of the large computational cost of matching over a large area,

many models employ some level of search space reduction such as a sliding window [11] or

constant registration of the current position [18]. This presents a problem if the error in the

estimate of position ever becomes too large: the reduced search space may no longer include

the true position. In other words, these systems can suppress small-scale drift, but are still

susceptible to drift resulting from larger errors. They also cannot localize without some

estimate of initial position. Thus, they are susceptible to outlier estimates, system memory

failure, and are unsuitable for recovering from an extended navigation blackout (e.g., flying

through an extended fogbank or cloud in a GPS-denied environment).

Schleiss et al. [21] fully train a generative adversarial network, but use this to convert

input images into a semantically segmented (to roads, buildings, and none) map-like image

21

to template match to an also segmented reference map (in this case, from OpenStreetMap,

OSM). They do not employ any search space reduction, but their test area is only 560 m long

and 680 m wide. Because their template matching technique uses a sliding window approach,

it would likely require some form of search space reduction to remain computationally fea-

sible over a larger area. Notably, they train and test on different (though geographically

nearby) regions. The ability for this technique to generalize outside of the trained area is a

considerable benefit, as it means that it is not necessary to train a model over the opera-

tional area specifically. However, the fact that the model must segment the image to match

to a specific reference map creates two possible issues. First, as demonstrated in the paper,

the model cannot differentiate areas with limited texture of the selected semantic categories

(for example, a forest with no structures or roads). Second, although one can apply this

technique to regions not trained on, the technique does require an accurate reference map

segmented in the same manner as the model was trained on. In this case, the model could

only be applied to where OSM has an accurate segmentation of the local terrain already

available.

To our knowledge, only one other published work on AVL to-date has trained a deep

CNN from scratch for direct regression AVL. Marcu et al. [17] trained a multi-stage multi-

task architecture for simultaneous geolocalization and semantic segmentation. Their best

approach uses a model that treats AVL as an image segmentation problem, and combines

this with a simultaneous semantic segmentation that is then used to fine tune the image

correspondence by matching identified roads. They also train one branch of their network

for direct regression of latitude and longitude. However, the output of the direct regression

branch is not the focus of their paper, and results are only reported in a single histogram

(thus average error is not known). Additionally, although different train and test images

are used, they appear to be from a common source and therefore have similar photographic

qualities. Learning to identify locations across multiple photographic sources which may

differ in time of day, season, year, and photographic platform is a considerably more difficult

challenge.

22

3.2 Methods and Results

3.2.1 Data Choice and Processing

An effective deep learning approach to AVL should be robust to factors such as time

of day, season, year, altitude, weather, angle of approach, and the camera used, maintaining

accuracy under as many different conditions as possible. Producing robustness to these

factors in a neural network requires large, high quality input data that includes the full

range of plausible scenarios within it. Furthermore, all of these data must be georeferenced

accurate to the desired scale. Unfortunately, such data is not readily available to the public

in an organized form, which has hampered research efforts in this field.

Georeferenced imagery from satellite and high-altitude survey flights, however, are

readily available, and serve as a reasonable proxy to high-altitude UAV images (indeed, an

increasing number of such image sets are from high-altitude UAVs). In total, 13 data sets

over Washington County, Arkansas were acquired (see Appendix 3.5 for detailed information

on data sets and links to source data). These data sets differ in year taken (from 2006 to

2020), season, time of day, and camera used. All image sets used are from clear weather,

daytime flights due to the vast majority of georeferenced, publicly available data being of

this type. The data sets are also orthorectified using a mixture of digital elevation models

- some from national elevation datasets and others from elevation data produced from the

aerial triangulation results. For high altitude flights this alteration is relatively minor as the

photographs are already taken nearly vertical angles and the terrain effects in this area are

minimal at the flown altitudes. See Figure 3.1 for examples of 3 × 3 km crops and how they

vary between a few of the datasets.

Since the data sets did not all completely cover Washington County, a 34.2 by 34.2 km

square patch included in all data sets was chosen as the ROI within which localization would

be assessed. This area includes both the urban centers of Fayetteville and Springdale, as

well as the suburban and rural areas around them. The presence of highly varied terrain

and land use - including both developed and undeveloped areas - makes this an especially

good test of our approach’s robustness to terrain character.

From each data set, 2000 3 × 3 km random crops and their locations were taken

23

Figure 3.1: Example images from different data sets, illustrating the visual changes to two
locations, one rural and one suburban, over different years and seasons.

from the ROI and downsampled to 1000 × 1000 pixels for speed of image loading and

manipulation. During training of the neural network, each one of these crops is randomly

cropped again to 1.5 × 1.5 km and downsampled to 224 × 224 pixels. Thus, a full epoch

of training exposes the network to 2000 images from each data set, each of which is at least

slightly novel due to random cropping. The labels for the network are the latitude and

longitude of the image centers (in implementation the upper left-hand corner location was

used as the label, as this is the native format of world files. Because all images are North–

South aligned, the image center is always 750 m down and to the right of the upper-left

hand corner, and so determining the location of the corner also determines the location of

the image center), with locations adjusted as needed during cropping, scaled first to a range

between 0 and 1 using a min-max scaler. The scaling applied is such that, over the entire

dataset, the minimum latitude and longitude is 0 and the maximum is 1. Since the coordinate

system used during processing increases in the west–east, south–north directions, the bottom

left (southwest) corner of the ROI has coordinate (0,0), and the top-right (northeast) corner

has coordinate (1,1) (thus the ROI is normalized to the unit square). When adjusting labels

during random crops, the flat world assumption is used, which is justified because the images

are high-altitude and orthorectified vertical. This also justifies the conflation of image centers

and UAV location; for a camera looking straight down they will be approximately the same.

24

See Figure 3.2 for a visual overview of the image processing pipeline.

The offline initial crop and downsampling is done using bicubic interpolation, however

the online resizing for loading into the neural net is done using bilinear interpolation to reduce

computational time. The image crops are saved as jpegs to reduce file size. Although both

resampling and jpeg compression can introduce artifacts in images, both training and test

images go through the same downsampling process, so these artifacts are consistent at train

and test time. Pilot runs (data not shown) showed no significant difference in final model

accuracy from using different common resizing methods.

3.2.2 Network Architecture Selection

For initial selection of network architecture, we decided to test a variety of architec-

tures already available in Keras[5] as built-in models (see Appendix /refappa for detailed

information on implementation and hyperparameter choice. Model references: EffNet[24],

ResNet [13], VGG [22], MobileNetv2 [20], Inception [23], Xception [6]). These include many

of the most successful models for various classification data sets and competitions over the

last decade. Because we were only interested in comparing the models, the data set used for

classification was a limited one where training and test was restricted to only one data set

(ADOP2017). Furthermore, fine tuning for each architecture was minimal, so this compar-

ison should not be taken as a final verdict on model performance. Performance is reported

in mean absolute error on the x, y in the converted coordinate scheme as this test was solely

intended for a preliminary model comparison. Models were given 500 epochs to train. See

Appendix 3.5 for further implementation details.

Results are shown in Table 3.1. Based on Xception’s high performance and rela-

tively small model size, it was selected as the model of choice for further experiments. For

subsequent experiments, Xception was modified to include additional fully connected and

dropout layers before the output layer in order to provide additional regularization and

capacity (these modifications are similar to some of the configurations used in [6]).

25

Figure 3.2: Figure demonstrating cropping setup. The transparent square over the county
represents the ROI. The green squares are individual 3km x 3km image chips extracted from
the base data set. 2,000 random chips are taken from each data set to ensure overcoverage,
with different random chips for each data set. The final step before use in network training
is a random crop from each chip, shown in red. Downsampling occurs at both the chipping
and cropping stages. Chipping is an offline step performed once. Cropping is an online step
performed during every epoch with different random crops.

26

Model NMAE

EffNetB4 .25
EffNetB7* .25
EffNetB0 .18

Resnet152V2 .09
VGG16 .08
VGG19 .08

VGG16Conv** .07
Resnet152V2 .07
MobileNetv2 .06

Inception .05
Xception .04

Table 3.1: Model comparison for various built-in Keras models. Error is given as mean
absolute error over the test set in normalized coordinates (NMAE). Note that performance
should be about .25, the average distance to the center along either axis, if the model
solely guesses (.5,.5), the middle of the ROI, as an output. *EffNetB7 became overfitted
extremely early in training. **VGG16Conv was a custom modification of a smaller VGG-
type architecture where pooling layers were replaced with strided convolution layers.

3.2.3 Field of View Comparison

As the altitude of an aerial platform increases, the field of view, and therefore the

number of features that can be seen and used to navigate, increases. However, distance

also decreases the ability to resolve smaller objects, and fine features are lost. In order to

investigate this tradeoff within a CNN context, different field of views for the input images

were tested while holding the input size fixed at 224 × 224 pixels. At the time this experiment

was performed, the data set only had 11 of the 13 data sets in it. Holdout data set was held

constant as the ADOP2006 data set for comparison. Training was performed for 250 epochs.

See results in Table 3.2. Results are reported in normalized RMSE (NRMSE) for

simple comparison. Within the range studied, it was found that increasing field of view

increased performance. There is a confounding factor that due to the processing pipeline,

very large fields of view had fewer unique crops (that is, cropping a greater percentage of

the source image reduces the difference between crops), however, this would be expected to

decrease performance due to producing less varied training data.

3.2.4 Loss Function Comparison

For regression tasks there are numerous loss functions available to train a neural

network. Since backpropagation training of neural networks is not a straightforward opti-

mization relative to the loss function, it is not the case that using the desired metric as a

27

Input Width/Height NRMSE

.25km .3013
.5km .2770
1km .0671

1.5km .0269
2km .0171
3km .0165

Table 3.2: Field of view comparison. Absolute accuracy improved as field of view increased
despite loss in visual resolution and confounding factors that favored smaller fields of view.
Error is given as RMSE in normalized coordinates (NRMSE).

loss function will lead to the best results as measured by that metric. That is, if our desired

metric is to minimize the Euclidean distance between the predicted and actual location, the

loss function that produces the best model may not be the Euclidean distance itself. It

is therefore necessary to investigate loss functions and empirically observe their impact on

model training.

For this experiment, three loss functions were investigated. First, mean squared

error, which is the most common loss function used for regression tasks. Secondly, Euclidean

distance (typically, Euclidean distance is used only as a metric, however it can be used as a

loss function. RMSE and Euclidean distance are of the same degree with regards to the error,

and differ only by the averaging operation in RMSE. When the number of dimensions and

batch size are fixed, this difference will be a constant multiplicative factor. That is, RMSE

and Euclidean distance produce the same pattern of losses differing only in scale, which

can be changed by altering the learning rate), which is our desired metric to minimize.

Thirdly, the output layers are changed to be the mean and standard deviation of a normal

distribution, and the loss function is the negative log-likelihood. This would allow the model

to output a quantity related to its confidence in the prediction at a small computational

cost.

Each model was trained for 500 epochs. Because of the difference in gradients due to

choice of loss function, learning rate was individually tuned for each model based on pilot

runs (data not shown). See Appendix 3.5 for implementation details.

Since the distribution-output model trained with negative log-likelihood trained more

quickly, had a higher accuracy, and gave additional information in the form of the output

distribution’s standard deviation, it was selected as the model of choice for subsequent ex-

28

Loss Function Normalized Mean Euclidean Error

NegLogLikelihood .0041
MSE* .0198

Euclidean Distance* .0232

Table 3.3: Loss function comparison. Holdout set was help constant as AO15. Error is the
average distance error over the entire holdout set in normalized distances.

AO20 Run NRMSE

1 .0556
2 .0474
3 .04811
4 .0530
5 .0541

Table 3.4: Run replicability experiment results. Results are given in RMSE of the normalized
error distances (NRMSE).

periments.

The results are shown in Table 3.3.

3.2.5 Training Replicability

To help estimate the effects of stochasticity during training on the final accuracy,

five runs of the exact same model were trained for the same number of epochs and their

accuracies compared. See Table 3.4. Results showed reasonably low inter-run variation,

which suggests that training results are replicable.

3.2.6 AVL Results

The Xception-based model was trained on 12 data sets and tested on one holdout

dataset. Each dataset was used as a holdout set in a separate training run to cross-validate

the results. Models were trained with both independent normal and bivariate normal dis-

tributions as the final layer, with the negative log-likelihood used as training loss. On the

validation step, since it was noticed that the random cropping in the data pipeline would

lead to occasional sampling outside of the ROI and to undersampling of edge regions during

training, the ROI was shrunk slightly by ∼5% on each side. Since the input images are 1.5

km a side, this shrinks the ROI to about 32.2 km a side or ∼1036 km2. The second cropping

step during validation was always taken from the upper-left corner of the input image so

that the validation input images were the same for direct comparison.

29

Average Error
Test Set Independent Normal Bivariate Normal

ADOP2006 188.2m 214.4m
ADOP2017 172.7m 206.8m
NAIP2006 189.2m 215.9m
NAIP2009 323.8m 320.2m
NAIP2010 146.4m 160.2m
NAIP2013 129.9m 164.8m
NAIP2015 173.4m 185.0m
CAST2008 183.4m 251.3m

AO15 124.3m 168.9m
AO16 115.5m 156.5m
AO17 127.6m 169.3m
AO19 141.6m 174.1m
AO20 148.7m 166.4m

Table 3.5: Xception results on different holdout sets. Models were trained for 500 epochs.
Error is reported in Euclidean distance.

See Table 3.5 for results. See Figure 3.3 for a visual representation of error scale

relative to ROI for one representative model. Results were small relative to the ROI and the

input’s geographic size of 1.5 × 1.5 km. Results were largely robust to choice of holdout set.

The larger error of the NAIP2009 holdout set was driven by cloud cover in part of the data

set.

3.2.7 Uncertainty Calibration

One of the advantages of using a distribution output layer and a likelihood based log

function is that the network produces an additional output related to prediction confidence:

the standard error of the output normal. We did find that the standard deviation was

correlated with error size for predictions. However, as model accuracy increased, standard

deviations did not shrink at the same rate as the error sizes, leading to underconfidence, see

Figure 3.4. A similar pattern of underconfidence was observed for both bivariate (bivariate

confidence intervals were calculated jointly, using a Chi-square distribution, whereas the

independent normal CIs were calculated independently for X and Y axes) and independent

normal runs.

30

Figure 3.3: Figure demonstrating 100 sample errors of one of the runs (WaCo2020). Green
is the true location, blue is the prediction, where predictions are connected to their true
location by a red line. The background is of the holdout data set over the ROI.

31

(a) Calibration of Overconfident, Accurate Model (b) Scatter Plot of Errors, Overconfident Model

(c) Calibration of Less Accurate Model (d) Scatter Plot of Errors, Inaccurate Model

Figure 3.4: Comparison of uncertainty calibration between an accurate model and a less
accurate model. The units in b and d are normalized over the unit square ROI. The first
model, shown in parts a and b, had an average error of ∼149m. It has poor uncertainty
calibration; more of the true centers are contained in a given percent confidence interval
than expected, meaning the model is underconfident. The second model, shown in c and d,
was incompletely trained, and only achieved an average error of 965m. However, it showed
better uncertainty calibration. Note, however, that some of the error sizes are unrealistically
large given the standard errors, indicating the true uncertainty distribution is not Gaussian.

3.3 Discussion

3.3.1 Accuracy and Loss Function Choice

This paper sought to investigate how suitable CNNs that have been successful on

ground level tasks are for the purpose of aerial AVL. Results were highly encouraging. With

limited tuning, and using only 12 training data sets, we were able to train Xception to

successfully localize over a >1000 km2 geographic area. Our best model was able to localize

with an average error as small as 115.5m on 1.5x1.5km input images. Although the absolute

size of this error is larger than many methods previously reported, the error relative to the

input size of the image and the ROI is small. Moreover, we were able to include an additional

measure of prediction uncertainty in the form of the output distribution’s standard error.

Not only did this inclusion not reduce performance, switching to a distribution output with

32

negative log likelihood loss actually increased accuracy while decreasing training time.

This was a surprising result, as we expected the increase in output complexity to

decrease accuracy. We hypothesize that the decreased training time and increased accuracy

may be due to the sharper gradient increase with error distance attributable to the likelihood

loss model. That is, because likelihood scales sharply to zero with error size when using a

normal distribution as the output distribution, the negative log-likelihood gradient scales

enormously with error size, far more so than for MSE where it only grows quadratically.

Overfitting also was observed to be less severe in the probabilistic models. Because of the

potential for large gradients, it was necessary to cap gradient size whenever we trained the

distribution output models, or it was extremely likely to produce NaN loss at some point

due to overflow. This was especially important in bivariate models. The bivariate models,

while theoretically more expressive than the models with two independent normals, were

slightly less accurate overall, indicating that the gain in model expressivity was not worth

the increase in model complexity. Future work may wish to investigate choice of output

distribution further. Multi-modal distributions, as in mixture density networks, may be able

to better encapsulate uncertainty caused by distant locations being visually similar.

Results were robust to choice of holdout set, with the caveats that the error was

slightly lower for the grouping of AO datasets, likely due to the larger number of similar

datasets in the training set, and a slightly worse accuracy when using the NAIP2009 dataset.

Upon further investigation, the source of this increased error was traced to a cloud covered

region in the NAIP2009 dataset where the model performed poorly, as it was not trained on

any cloudy data sets. In future studies, it would be beneficial to try and train over a variety

of weather conditions if appropriate data sets can be found or artificially generated (e.g., by

randomly adding various levels of cloud cover). Another approach would be to mask clouds

in the training data as a preprocessing step.

Differences in choice of image and region domain make direct comparisons between

different AVL methods difficult. The absolute error of our is large compared to those reported

by most prior works, while the relative error compared to the geographic size of the ROI and

the input images is small. That is to say, an error of 50 m while operating at low altitudes

may mean that the location estimation is entirely outside of the image field of view, and

33

the UAV is in serious danger of becoming lost. On the other hand, an error of 50 m while

operating at a height of several km may mean that the estimated location was only a few

pixels away from the true center of the input image.

However, this paper is not seeking to promote this particular model as a ready-to-

implement solution, but rather to see whether a very simple approach using solely CNNs

and image inputs could be successful on this task. Undoubtedly, with additional tuning

and training examples, the current results could be significantly improved upon. Moreover,

overfitting was a large issue during training and had to be aggressively controlled with

dropout and L1/L2 regularization methods. This is encouraging because it suggests that

the models are not utilizing their full expressive capability. This suggests that models of

Xception’s size are capable of performing AVL over a considerably larger geographic area

than the ROI here. Or, alternatively, a considerably smaller model could be used without

greatly affecting accuracy, saving on computation.

3.3.2 Uncertainty Calibration

The standard deviations produced by the model do correlate with error size. However,

they are too conservative. This miscalibration tended to increase with model accuracy. Un-

certainty miscalibration increasing with accuracy is a known problem with deep networks[12].

However, in classification problems models have tended to become overconfident at high ac-

curacy, whereas here the model becomes underconfident. This may be due to the choice of

a normal distribution to model the uncertainty. Since you can have visually similar regions

that are geographically distant, the true uncertainty distribution should be multi-modal.

The Gaussian distribution has very thin tails that cause the likelihood of outliers to

fall rapidly. In this case, if the true uncertainty has more probability mass at long distances

from the mean than a Gaussian distribution can represent (which seems likely), then we

should expect the standard deviations to be conservative. This is because the occurrence of

occasionally large errors due to multi-modality will drive the standard deviation estimate up

substantially. This explanation would also explain why the underconfidence increases with

training. Notice that even in the undertrained, better-calibrated model, the error vs. SE plot

shown in Figure 3.4d shows some >10σ events - which would be virtually impossible if the

34

error landscape was truly Gaussian and the model was correctly calibrated. The calibration

of model uncertainty remains an area for future investigation.

3.3.3 Computational Considerations

A large issue for many current AVL techniques is computational load. In this domain,

we believe deep learning offers many advantages. Although deep models take considerable

computational resources to train, when put into production where they are only doing for-

ward passes on single samples they are efficient. The Xception architecture is on the smaller

end of famous architectures, weighing in at about 88 MB compared to VGG16’s 528 MB

(from https://keras.io/api/applications/, accessed on Oct 7, 2021 This is parameter

storage size, not required memory for deployment, and does not include the fully connected

layers we included in our Xception model.). On a device with a GPU, which can easily be fit

into larger drones, a forward pass of Xception takes under 10 milliseconds [2]. Even without

a GPU, a single forward pass of Xception is only on the order of ∼1s or less, depending on

the CPU used (from personal experience), which is still feasible for navigation use at higher

altitudes where views change more slowly.

As GPUs and TPUs are increasingly being incorporated into mobile devices, even

smaller drones would be able to take advantage of this speed. Xception only requires 1–

2 GB of memory [2] for inference, making it it plausible to run it on mobile devices. A

larger savings comes from system memory and storage; rather than having to store an entire

database of template images to match to, which may also need to be partially loaded into

memory, the drone would only have to store a single trained model. Furthermore, in a

production setting, techniques are available to compress/prune trained networks to greatly

reduce their size while minimally impacting their performance, yielding further speed and

memory improvements (see, e.g., [3] for a recent overview of pruning techniques).

3.3.4 Input and Output Choices

The current CNN only addresses obtaining horizontal coordinates from nadir images.

The reason we chose to focus on this is because we feel this is the core challenge of AVL.

Full six degree-of-freedom pose estimation is undoubtedly extremely important. However,

35

four of those parameters (roll, pitch, and yaw angles and flying height) can be obtained from

instruments directly without reference to any external systems. While it would certainly

be beneficial to also have an estimate of pitch, yaw, roll, and altitude from vision, it is not

as pressing since internal systems are much less susceptible to interference. You cannot,

for instance, spoof Earth’s gravity to deceive an accelerometer. For this reason, we focus

solely on the challenge of horizontal positioning. This is the heart of visual localization, and

requires more than creating better, more reliable sensors.

Similarly, we did not concern ourselves here with input images of different scales

or rotational orientation. In an applied setting, this would need to be dealt with, either

by training on such data, or more simply by preprocessing image inputs to the appropriate

orientation and scale, which can be done if we assume that the UAV has at least a rough idea

of its orientation, altitude, and camera position. Fortunately, as discussed above, these can

all be tracked solely by internal systems such as a compass or altimeter, which are cheaply

available and nonreliant on external systems. Since this preprocessing can be performed after

downsampling, its computational cost would be small. It is worth noting that, although all

data sets were downsampled to the same size and covered the same geographic extent, their

differing initial ground sample distance (GSD) would still have an effect on the final input

images. However, the model proved capable of generalizing across data sets with different

initial GSDs.

A more complicated issue is that of image obliqueness. Especially at low altitudes,

image features will look very different based on the angle of the object to the camera. We

kept the problem as simple as possible, opting to use high-altitude orthorectified vertical

imagery on a projected surface. Such imagery is also far more widely available than low-

altitude imagery. For images that are not extremely oblique, orientation angle can be used to

convert images to their nadir view with only some non-correctable terrain distortions (e.g.,

minor occlusion) remaining, standardizing the input. Addressing the additional challenges

of extremely oblique input imagery that cannot be converted to nadir view easily remains

for future work.

The height experiment presented here suggests that the problem becomes more diffi-

cult as geographic field-of-view decreases, even though resolution increases. This is expected

36

as a larger field of view means more opportunities to include relevant identifying features.

However, the decrease in accuracy, especially at the 0.5 km and 0.25 km levels, is so extreme

as to suggest other factors are also at work. Although the higher resolution of a smaller

field-of-view might allow the discrimination of finer features, these smaller features are more

likely to be transient (e.g., cars, shadows, foliage patterns) and therefore not robust. CNN

architectures have a built-in sensitivity to features of a certain size due to their architectures.

For lower altitude images, the most identifying features of a location may be quite large rel-

ative to the size of the image, and therefore difficult for CNNs optimized for detecting more

local features to use. It is notable that the Xception and Inception architectures, which

performed the best in the architecture comparison, are designed to include filters of multiple

different sizes to detect features at varying scales.

A future experiment would be to compare increases in resolution while holding geo-

graphic field-of-view constant. However, it is difficult to compare this in a principled manner

since model size increases with input size unless modifications are made, but such modifica-

tions also have implications on the model’s performance. The fact that increasing field-of-

view increases AVL performance suggests that, in models capable of handling multiple scale

inputs, a navigation strategy would be to raise altitude and increase field-of-view as much

as possible. This is a strategy that humans also use.

3.3.5 Future Directions for AVL Deep Models

The current results are encouraging but also highlight the need for the development of

architectures specifically suited for the problem domain. Many aspects of architectures built

for ground-level classification tasks are ill-suited for AVL. A pressing example is that most

such architectures specifically aim for a high level of translational invariance in their results.

This is because in ground-level classification tasks the specific location of objects in location

is often irrelevant (a dog remains a dog where ever in the image it is). In AVL, however,

the location of features in the image is critical to precise localization. Pooling layers, which

reduce the resolution of input, are known to promote translational invariance.

To illustrate the issue, consider that the Xception model has four max-pooling layers,

each of which approximately halves the spatial resolution. Thus, we can roughly estimate

37

that the spatial resolution of the model before the dense layer may be on the order of 1/16th

the input resolution. Given the input resolution of 224 × 224 px for a 1.5 × 1.5 km, this

would suggest a final spatial resolution on the order of 100 m for the Xception model, which

our best models approach in accuracy. Although this should not be taken as a hard limit

on the model’s possible accuracy, since information can combine across filters and areas, it

does suggest that improving accuracy beyond this point will be more difficult for the model.

Thus, reducing the level of pooling, or otherwise increasing spatial resolution, may lead to

improved model performance on AVL. However, pooling layers also play an important role

in reducing model size to manageable levels, and regularizing the network against overfitting

on fine features that are unlikely to be robust. Model size also increase quickly with input

resolution. The problem of designing architectures optimized for AVL is not a simple one,

and requires additional investigation.

Secondly, a major weakness of the CNN-only method is the necessity of training

directly over the area of operation. However, this is a weakness shared by many other

proposed AVL techniques. Even those techniques which are based on template-matching

must always have templates of their full area of operation loaded into memory in order

to match. Indeed, the CNN only method can be conceptualized as an implicit template-

matching method. It is matching against representations of locations contained implicitly

within the model’s weights. When thought of in this way, the CNN training process is a way

of efficiently encoding all location templates so that they can all be matched against quickly

every time an image is presented. Notably, this approach does not require an increase in

model size to incorporate additional datasets into the training process.

The issue of needing to gather data and devote computational resources to train a

model for each new area of operation, however, remains a serious issue. This highlights the

need for established, quality models specifically designed for AVL. If such models existed for

any region, then the early layers could be used pre-trained. Adapting the model for a new

region would be then be a fine-tuning task. This would greatly reduce the training time and

amount of data needed for use in new areas. One of the most pressing needs right now is

an established, standardized, high-quality large data set to use as a benchmark for AVL.

Because publicly available image sets favor good visual conditions, finding data sets for poor

38

visual conditions such as inclement weather or at night is especially challenging.

Finally, most prior work using deep models on this problem have combined them with

other techniques. Although we do not do so here, we believe that this is a sound technique.

Our approach of a pure CNN model has the advantage of not requiring any prior estimate of

location to work. In an applied setting, we think that our approach would be most useful as a

periodic check for drift on some other technique, or a way to initialize the position estimate.

Currently, visual location techniques tend to be split into two broad categories: techniques

that are precise over short distances but susceptible to drift (RVL), and techniques that

are less precise but are not susceptible to drift (AVL). A hybrid approach that uses RVL

over short distances while periodically checking and rebasing with AVL can combine these

strengths, in a manner analogous to how IMUs and GPS work together synergistically.

3.4 Conclusions

A pure neural network approach was shown to be viable for AVL over a large geo-

graphic area. First, several architectures that had previously shown success at ground-based

classification tasks were tested, with the Xception model showing the best performance. The

Xception model was then modified to output parameters of a normal distribution describing

the location estimate, training with the negative log-likelihood as the loss function. Sub-

sequently, a modified Xception-based model achieved an average error of ∼166.5 m across

13 different cross-validation training runs on different holdout sets. This is good accuracy

compared to the 1.5 km × 1.5 km size of the input images, and the ∼32.2 by 32.2 km ROI.

Additionally, modifying the model to output parameters of a normal probability distribution,

and training with negative log-likelihood loss, not only did not decrease performance, but

increased model accuracy. The standard deviations of the resulting distributions did corre-

late with error variance, showing potential usefulness as a measure of estimate uncertainty,

although the fully trained models were underconfident.

The direct neural network approach presented here presents several attractive proper-

ties from a computational and performance standpoint. First, the storage requirements are

minimal, requiring only the trained model parameters to be onboard the platform. Second,

inference is fast and consistent (every forward pass requires the same number of operations,

39

there is never a possibility of needing to expand operations as with some other approaches

that can fail to produce a match/estimate). Third, computational requirements during flight

do not grow proportionally with the amount of datasets used for training, or with the area

of the ROI being considered. This third property is especially important, as it means that

this approach is potentially scaleable to much larger areas of operation with a proportionally

minor increase in model size required.

In order to move from concept to application, more work has to be done on optimizing

the neural network architecture, incorporating other techniques for fine tuning of position

estimation, and, especially, the development of appropriate data sets for training and testing.

This study shows that a neural network AVL models can be trained to be robust to time of

day, season, camera characteristics, and even year that the data set was gathered. However,

the ability of existing models to generalize across different camera angles, as well as to

operate during night-time or during inclement weather, has yet to be demonstrated. To train

models to attempt to solve these problems will take a substantial effort in data gathering

and acquisition.

Author Contributions

Conceptualization, J.C. and C.R.; Investigation, W.H. and C.R.; Methodology, W.H.,

J.C. and C.R.; Software, W.H., Validation, W.H., J.C., and C.R.; Resources, J.C. and C.R.,

Data Curation, W.H.; Writing—Original Draft Preparation, W.H.; Writing—Review and

Editing, W.H., J.C., and C.R.; Visualization, W.H.; Supervision and Project Administration,

C.R. All authors have read and agreed to the published version of this manuscript.

Data Availability

Details on all data sets used in this study are available, with means of public access,

in the Appendix..

Acknowledgments

The authors would like to acknowledge CAST, the Center for Advanced Spatial Tech-

nologies, the Arkansas DART (Data Analytics that are Robust and Trusted) project, and

40

the University of Arkansas, Fayetteville.

Abbreviations

The following abbreviations are used in this manuscript:

MDPI Multidisciplinary Digital Publishing Institute

UAV Unmanned Aerial Vehicle

IMU Inertial Measurement Units

GNSS Global Navigation Satellite System

GPS Global Positioning System

CNN Convolutional Neural Network

AVL Absolute Visual Localization

RVL Relative Visual Localization

OSM OpenStreetMap

ROI Region Of Interest

VO Visual Odometry

SLAM Simultaneous-Localization And Matching

GSD Ground Sample Distance

RMSE Root Mean Squared Error

NRMSE Normalized Root Mean Squared Error

MAE Mean Average Error

NMAE Normalized Mean Average Error

GPU Graphics Processing Unit

CPU Central Processing Unit

TPU Tensor Processing Unit

41

3.5 Appendix

3.5.1 Neural Network Implementation Details

Final AVL Runs

Both the bivariate and independent normal implementations were trained on an Xcep-

tion architecture with no top layers as implemented in Keras in Tensorflow 2.4. On top of

this implementation, we added global average pooling and two fully-connected layers with

4096 hidden units each, a configuration described in the Xception publication. Regular-

ization was extremely important to prevent overfitting, so we added 3 dropout layers with

dropout set to 0.5, one after the global average pooling layer and the other two after the

fully connected layers.

All models were trained with the Adam optimizer with initial learning rate 1 ×10−4,

with a gradient clipvalue of 5. Because the probability mass of the normal distribution falls

off very rapidly with distance from the mean, NLL gradients can become exceedingly large

when the model makes a large error. Thus, for the negative log-likelihood models, gradient

clipping is very important. The loss function was negative log-likelihood. The validation

metric was RMSE on the holdout set. l1 and l2 regularization were set to 1×10−5 and 1×10−3,

respectively, and applied to all eligible layers. Learning rate was decreased by a factor of

0.7 every 50 epochs, and an additional 0.7 every 70 epochs without improvement on the

validation set (this rarely occurred in practice). Models were trained for 600 epochs or 3 days

on a single Nvidia V100 GPU (in practice, models typically achieved about 540 epochs). The

best epoch performance on the validation set was reported. Models typically had plateaued

but not reached full convergence by 540 epochs, but it was decided not to commit more

computational resources for possibly marginal improvements. The main bottleneck was

image loading/processing for input into the model, so this training time may be greatly

improvable.

Other Runs

The loss function experiment settings and data set was identical to the AVL experi-

ment, except that MSE and EDL had a learning rate of 1×10−3, and of course had as their

42

output simple dense layers instead of dense layers that fed into distribution layers.

The height experiment was run on an earlier form of the final data set which was

unbalanced in number of samples per input data set. Most data sets had 1250 image inputs,

but a few had more. Settings were identical to the AVL run except for the following: the

optimizer was stochastic gradient descent with 0.9 Nesterov momentum, the initial learning

rate was 4×10−4, except for the first 30 epochs burnin period where it was 1 ×10−4 to

avoid early exploding gradients as at this time no gradient clipping was used. The learning

rate decayed by 0.7 every 35 epochs without improvement in the validation set RMSE. The

validation set was always ADOP2006.

The stochasticity experiment was performed with the same settings as the height

experiment, with the following differences: initial learning rate after the first 30 epochs for

the 2 km, 3 km, and 0.25 km experiment was 7 ×10−4, and their burnin period was 20 epochs

instead of 30. The other experiments in this series have a longer burnin and lower initial

learning rate because they had to be restarted due to initial run attempts repeatedly ending

in NaN training losses.

The architecture experiment had all architectures in their default configuration in tf-

nightly version 2.3.0.dev20200611, include top = true, except for VGG16Conv which differed

from VGG16 by reducing depth and replacing max pooling layers with strided convolutions.

The optimizer was stochastic gradient descent with 0.9 Nesterov momentum, initial lrate

0.001, lrate decay of 0.7 every 100 epochs, 500 epochs training time with best validation

result taken as final result. As mentioned, this run was done on a benchmark data set where

train and test data were both from ADOP2017 crops. In this data set, which was from a

slightly differently positioned and larger square region of Washington County, there were

10,000 images. Train/test split was 80%/20%.

3.5.2 Data Set Characteristics

ADOP URLs: https://gis.arkansas.gov/programs/arkansas-digital-ortho

-program-adop/, on Oct 7, 2021. http://geostor-imagery.geostor.org.s3.amazonaws

.com/index.html?prefix=State/ADOP/, accessed on Oct 7, 2021. NOTE: 2001 ADOP is

false color infrared! Orthophoto ground sample distance (GSD) is 1 m for 2006; 0.3 meters for

43

Test Set Name Source Foliage Season Source GSD

ADOP2006 Arkansas Digital Ortho Program Spring/Summer 1m
ADOP2017 Arkansas Digital Ortho Program Winter/Fall 1m
NAIP2006 National Agriculture Imagery

Program
Spring/Summer 2m

NAIP2009 National Agriculture Imagery
Program

Spring/Summer 2m

NAIP2010 National Agriculture Imagery
Program

Spring/Summer 2m

NAIP2013 National Agriculture Imagery
Program

Spring/Summer 2m

NAIP2015 National Agriculture Imagery
Program

Spring/Summer 2m

CAST2008 Center for Advanced Spatial
Technologies

Mixed Foliage Summer/Fall 0.3m

AO15 Washington County Assessor’s
Office

Winter/Fall .3m

AO16 Washington County Assessor’s
Office

Winter/Fall 0.15m/0.23m

AO17 Washington County Assessor’s
Office

Winter/Fall 0.23m

AO19 Washington County Assessor’s
Office

Winter/Fall 0.15m

AO20 Washington County Assessor’s
Office

Winter/Fall 0.15m

Table 3.6: Data set table.

2017 2006 is three-band true-color and three-band color-infrared, 2017 is true-color. NAD83

datum and UTM Zone 15 projection.

NAIP URLs: https://www.fsa.usda.gov/programs-and-services/aerial-phot

ography/imagery-programs/naip-imagery/, accessed on Oct 7, 2021. http://geostor-

imagery.geostor.org.s3.amazonaws.com/index.html?prefix=State/USDA/, accessed

on Oct 7, 2021.

This data set contains imagery from the National Agriculture Imagery Program

(NAIP). NAIP acquires digital ortho imagery during the agricultural growing seasons in

the continental U.S. NAIP provides four main products: 1 m ground sample distance (GSD)

ortho imagery rectified to a horizontal accuracy of within +/− 5 m of reference digital or-

tho quarter quads (DOQQ’s) from the National Digital Ortho Program (NDOP); 2 m GSD

orthoimagery rectified to within +/− 10 m of reference DOQQs; 1 m GSD ortho imagery

rectified to within +/− 6 meters to true ground; and, 2 m GSD ortho imagery rectified

to within +/− 10 m to true ground. The tiling format of NAIP imagery is based on a

3.75’ × 3.75’ quarter quadrangle with a 300 m buffer on all four sides. NAIP quarter quads

are formatted to the NAD83 datum and UTM Zone 15 projection.

44

CAST2008 URLs: Collected for the Washington County Assessors office by Pictom-

etry (now EagleView). 0.30 cm GSD. This was an early collection that drove the standards

for the later sets from AO. Collected July 2008. Available on request from the authors.

NAD83 datum and UTM Zone 15 projection.

AO URLs: Imagery is publicly served as basemaps at: https://arcserv.co.washi

ngton.ar.us/portal/apps/webappviewer/index.html?, accessed on Oct 7, 2021. Inquire

at Assessor’s Office about access to source rasters: https://www.washingtoncountyar.g

ov/government/departments-a-e/assessor, accessed on Oct 7, 2021.

Collected for the Washington County Assessors office by Pictometry (now EagleView).

Has the following GSDs: 2015, 12in; 2016, 6/9in depending on area; 2017, 9in; 2019, 6in;

2020, 6in. NAD83 datum and UTM Zone 15 projection.

References

References

[1] K. Amer, M. Samy, R. ElHakim, M. Shaker, and M. ElHelw. “Convolutional neural
network-based deep urban signatures with application to drone localization”. In: Pro-
ceedings of the IEEE International Conference on Computer Vision Workshops. 2017,
pp. 2138–2145.

[2] S. Bianco, R. Cadene, L. Celona, and P. Napoletano. “Benchmark analysis of repre-
sentative deep neural network architectures”. In: IEEE Access 6 (2018), pp. 64270–
64277.

[3] D. Blalock, J. J. G. Ortiz, J. Frankle, and J. Guttag. “What is the state of neural
network pruning?” In: arXiv preprint arXiv:2003.03033 (2020).

[4] C. Bonebrake and L. Ross O’Neil. “Attacks on GPS Time Reliability”. In: IEEE Se-
curity Privacy 12.3 (2014), pp. 82–84. doi: 10.1109/MSP.2014.40.

[5] F. Chollet et al. Keras. https://keras.io. 2015.

[6] F. Chollet. “Xception: Deep Learning with Depthwise Separable Convolutions”. In:
CoRR abs/1610.02357 (2016). arXiv: 1610.02357. url: http://arxiv.org/abs/
1610.02357.

[7] D. Costea and M. Leordeanu. “Aerial image geolocalization from recognition and
matching of roads and intersections”. In: arXiv preprint arXiv:1605.08323 (2016).

[8] A. Couturier and M. A. Akhloufi. “A review on absolute visual localization for UAV”.
In: Robotics and Autonomous Systems 135 (2021), p. 103666.

[9] M. Dissanayake, P. Newman, S. Clark, H. Durrant-Whyte, and M. Csorba. “A solu-
tion to the simultaneous localization and map building (SLAM) problem”. In: IEEE
Transactions on Robotics and Automation 17.3 (2001), pp. 229–241. doi: 10.1109/
70.938381.

[10] C. Forster, M. Pizzoli, and D. Scaramuzza. “SVO: Fast semi-direct monocular vi-
sual odometry”. In: 2014 IEEE International Conference on Robotics and Automation
(ICRA). 2014, pp. 15–22. doi: 10.1109/ICRA.2014.6906584.

[11] H. Goforth and S. Lucey. “GPS-denied UAV localization using pre-existing satellite
imagery”. In: 2019 International Conference on Robotics and Automation (ICRA).
IEEE. 2019, pp. 2974–2980.

45

[12] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger. “On calibration of modern neural
networks”. In: International Conference on Machine Learning. PMLR. 2017, pp. 1321–
1330.

[13] K. He, X. Zhang, S. Ren, and J. Sun. Identity Mappings in Deep Residual Networks.
2016. arXiv: 1603.05027 [cs.CV].

[14] S. Hu, M. Feng, R. M. H. Nguyen, and G. H. Lee. “CVM-Net: Cross-View Matching
Network for Image-Based Ground-to-Aerial Geo-Localization”. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 2018.

[15] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Furgale. “Keyframe-based
visual–inertial odometry using nonlinear optimization”. In: The International Journal
of Robotics Research 34.3 (2015), pp. 314–334. doi: 10.1177/0278364914554813.

[16] D. G. Lowe. “Distinctive image features from scale-invariant keypoints”. In: Interna-
tional journal of computer vision 60.2 (2004), pp. 91–110.

[17] A. Marcu, D. Costea, E. Slusanschi, and M. Leordeanu. “A multi-stage multi-task
neural network for aerial scene interpretation and geolocalization”. In: arXiv preprint
arXiv:1804.01322 (2018).

[18] A. Nassar, K. Amer, R. ElHakim, and M. ElHelw. “A deep cnn-based framework
for enhanced aerial imagery registration with applications to uav geolocalization”. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops. 2018, pp. 1513–1523.

[19] D. Nister, O. Naroditsky, and J. Bergen. “Visual odometry”. In: Proceedings of the 2004
IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
2004. CVPR 2004. Vol. 1. 2004, pp. I–I. doi: 10.1109/CVPR.2004.1315094.

[20] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen. MobileNetV2: Inverted
Residuals and Linear Bottlenecks. 2019. arXiv: 1801.04381 [cs.CV].

[21] M. Schleiss. “Translating aerial images into street-map-like representations for visual
self-localization of UAVs”. In: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci
(2019), pp. 575–578.

[22] K. Simonyan and A. Zisserman. Very Deep Convolutional Networks for Large-Scale
Image Recognition. 2015. arXiv: 1409.1556 [cs.CV].

[23] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the Inception
Architecture for Computer Vision. 2015. arXiv: 1512.00567 [cs.CV].

[24] M. Tan and Q. V. Le. EfficientNet: Rethinking Model Scaling for Convolutional Neural
Networks. 2020. arXiv: 1905.11946 [cs.LG].

46

4 Expanding Deep Learning for AVL

4.1 Introduction

In Chapter 3, it was shown that a pure deep learning approach is viable for aerial

geolocalization. Although this is an important result, many more questions must be answered

before practitioners, industry, and other organizations will want to invest in their own models.

In this chapter, a series of different experiments are performed aimed at further explicating

the practical properties of deep learning approaches to AVL, with the aim of improving

our understanding of how these models operate, what characteristics are important to their

performance, and how they can be improved. This chapter is divided into 6 different sections.

These are:

• Network Architecture and Training Approaches

• Network Parameter and Region of Interest Scaling/Specificity

• Training Data Requirement

• Model Distribution Calibration

• Occlusion and Orientation Error

• Direct Raster Training Pipeline

4.1.1 Methods Applicable to All Experiments

A variety of different deep learning experiments were performed on the geolocaliza-

tion dataset introduced in Chapter 3. Because of the overlap in methods, for conciseness the

baseline model in use across all experiments is described here and is used unless otherwise

noted. The baseline configuration uses the same data and preprocessing pipeline as in Chap-

ter 3, and the same Xception based model with distributional outputs. Hyperparameters

and settings: Input size 224x224 pixels and 1500mx1500m real width, WaCo15 test set with

1500m edge validation padding, all other datasets training set; batch size 128, Adam opti-

mizer with 2e-4 initial learning rate, dropping % every 250 epochs1, 1e-5 L2 regularization

1this is a very minor amount of decay, following the suggestion that due to Adam’s
adaptive gradient estimation learning rate decay is not as necessary or effective

47

and 1e-3 L1 regularization on all applicable layers except the final output layer, .5 dropout

in MLP head, batch size 128, best model reported based on validation set RMSE. Outputs

were independent normal distributional layers for the x and y coordinates trained with neg-

ative log-likelihood loss and a clipvalue of 1. Default training time was up to three days on

a single node at the Arkansas High Performance Computing Center’s GPU72 partition or

until convergence (this is more than adequate time for convergence, as most models tested

here converge well within 24 hours). At time of training, one node uses a single NVidia V100

Tesla GPU and two Xeon Gold 6130 processors. More details on the model architecture and

training setup can be found in Chapter 3’s methods and appendix – any details omitted here

can be assumed to match the configurations used in Chapter 3.

4.1.2 Interpreting Results Between Experiments

Unfortunately, several experiments in this section were affected by a coding error

which caused labels in the training set to have a bias not present in the validation set. This

error causes the label adjustment in the y coordinate during the cropping step to be in the

wrong direction, introducing a positive error to the y label on the training set that is uni-

formly distributed from 0 to 1500 meters, or an average shift of 750 meters north (∼.0219 in

the converted unit space). Since the validation set is not cropped, it is not affected. This dis-

crepancy between the training and validation set necessarily implies an RMSE accuracy cap

equaling the error. Fortunately, the experiments in this section are interested in comparative

rather than absolute results and use the same setup within experiments. Meaningful conclu-

sions can still be drawn between two different models equally affected by the bug. However,

caution must be taken in comparing results between experiments if one is affected by the bug

and the other is not. Throughout this section, experiment names that are marked with a †

are affected. Additionally, depending on the aim of the experiment models were either run

for a limited number of epochs or short wall clock2, or were allowed to run until convergence.

Using wall clock time or a limited number of epochs allows networks that train more quickly

a chance demonstrate this benefit, which is hidden when training to convergence. Contrast-

2Using wall clock time does introduce an additional external variable. Depending on
demand and which nodes are in use, different HPC runs, even those performed at the same
time, may have some differences in computational resources available and may therefore run
at different speeds. From personal experience, however, these differences are usually small.

48

ingly, training to convergence allows “slow and steady” models that ultimate train to higher

accuracy to show their strength. Both aspects are important to practitioners and are worth

investigating – however it is important to not compare models run for a limited time for

the purpose of comparison to models that were run to full convergence for the purpose of

assessing maximum performance.

4.2 Network Architecture and Training Approaches

4.2.1 Introduction

Neural network architectures are extremely variable, with new architectures and

paradigms constantly being introduced. In Chapter 3, a variety of historically successful

CNN architectures were compared, out of which Xception [3] seemed to provide the best

results on the aerial geolocalization task. Although Xception gave good results and was

superior to several other models, due to time and resource limitations only a small number

of different architectures could be tested, and opportunities for tuning were limited. Thus,

it remains an open question whether there are other, more effective or efficient architectures

for this problem. It is especially interesting to see if new paradigms in computer vision,

such as transformer-based models like Vision Transformer[7], will also prove effective. An-

other popular newer model is the improved version of EfficientNet[19], EfficientNetv2 (or

EffnetV2), which seeks to mitigate issues in the original Effnet, particularly with regard to

training time[18]. Additionally, given that Xception was designed for ground-level classifica-

tion problems, it is likely that it is still unoptimized for aerial geolocalization. In particular,

the multiple pooling layers of Xception might make it difficult to effectively transmit lo-

cation and fine feature information through the convolutional layers of the network. AVL

differs from ground level classification tasks in many ways, not least of which is that the pre-

cise location of features in the input image is extremely important for AVL while it is often

unimportant for RVL. This has led to an intentional cultivation of translational invariance in

CNNs for ground-based classification tasks, under the assumption that translated or shifted

imaged should largely elicit the same response from the neural network. In AVL, however,

since translations directly alter the location of objects in the image and hence the locational

labeling of the image, translational invariance is undesirable. The degree of translational

49

invariance in many CNN models can make them unexpectedly fail at even trivial problems

like regressing the x and y pixel coordinate of a single white pixel, but this can be alleviated

by explicitly encoding positional information in the neural network, as used in the Coord-

Conv[12] approach. There is therefore a possibility that the Xception architecture can be

adapted to make it more effective by either reducing positional information loss or including

additional position information in the model.

Alongside new architectures, recent years have also seen the introduction of innova-

tions in training techniques. AdamW[14] is an adjusted version of the Adam cite optimiza-

tion algorithm that incorporates built-in weight decay that is decoupled from the algorithm’s

adaptive per-parameter learning rates. Learning rate schedules like one cycle[17] or other

cyclical learning rates have also been shown to reduce training time and increase performance

on many problems. Even something as fundamental as the ReLU activation function has seen

improvement, with the everywhere differentiable GELU[9] becoming the activation function

of choice for many groundbreaking models, including the famous GPT-3[2] and BERT[5]

language models. Therefore, AdamW and GELU are also tested as possible improvements.

4.2.2 Methods

The following subexperiments were performed according to the described methods.

Baseline: This was the baseline Xception model using all settings from above, for

comparison.

No Global Average Pooling: As baseline, except that the Global Average Pooling

layer before the MLP head was replaced by a flatten layer instead (which does not reduce

the outputs of the convolutional layers). To maintain rough parameter parity and keep the

model tractable, the number of hidden units in the MLP head had to be reduced to 240 from

4096.

CoordConv: The Xception model, except that all 2d convolution layers input had

CoordConv filters added to them them.

CoordconvNoPool: The CoordConv Xception model with removed average pooling

as in the No Global Average Pooling model.

EffnetBase: Tensorflow’s (TF version 2.9.0) included implementation of the Effi-

50

cientNetB4 model. The B4 size was selected as a basis for comparison as it is the closest in

parameter count to Xception.

Effnetv2Base: Tensorflow’s EfficientNetV2S model. As with EfficientNet, Efficient-

Netv2 comes in several different configurations with varying parameter counts. The S size

model (22 million parameters in the convolutional layers) was selected as a basis for com-

parison it is the closest in parameter count to Xception.

Effnetv2Coordconv: The EfficientNetV2S model, as above, with input and output

block 2d convolutional layers having CoordConv layers added in front. Squeeze and excite

block convolutions were not modified, as although these are technically 2d convolutions they

are better understood as channel pooling/weighting operations.

Vision Transformer: This test uses the Vision Transformer[7] architecture. The

specific implementation can be found at [20], accessed 3/20/2022. Input configuration

was selected based on the original publication and to maintain rough parameter parity

with the Xception model: patch size=28, num layers=6, d model=1024, num heads=16,

mlp dim=2048, dropout=0.1. No class pooling token.

ViTCoordconv: ViT does not use 2d convolutions, however CoordConv layers can

still be applied after the input to add additional location encoding to the network, which is

done here. Input configuration as above.

GELU: All Relu activations in the Xception architecture and MLP head were re-

placed with GELU activations instead.

Xception Strided: All max pooling layers in the Xception model were removed,

instead being replaced with increased stride in the preceding convolution layers, following

the ideas of CITE

Xception Average Pool: All max pooling layers in the Xception model were re-

placed with average pooling layers.

Increased Resolution: Increased the input resolution of the images from 224 to

299 (which is the originally published Xception input size).

EffnetV2 Retuned: The EfficientNetV2S model as above, but with initial learning

rate reduced to 1e-4 (from 2e-4), and weight decay parameters decreased by a factor of 10

to 1e-6 L1 and 1e-4 L2.

51

Experiment Name NLL RMSE

Xception Baseline -6.1296 .0047
Xception NoPool -3.5826 .0418

GELU -5.7968 .0071
CoordConv -6.0429 .0050
EffnetBase -4.4474 .0280
EffnetV2 -4.9261 .0080

EffnetV2 CoordConv -5.1013 .0075
ViT* 12.7244 .1932

ViT CoordConv* 25.5106 .1480
Xception AdamW† -4.8077 .0283

Xception Avg. Pool† -4.8937 .0263
EffnetV2 Tuned -5.8576 .0044

GELU Run Tuned -6.3626 .0055
Xception Strided† -4.7526 .0271

ViT CC AdamW** 1.1599 .2297
Increased Resolution† -4.7637 .0268

Table 4.1: Table of Results for the Architecture and Training Methods experiments. *Both
ViT models severely overfit. ViT had training loss and RMSE of NLL: -6.2845 and RMSE:
.0170. ViTCC NLL: -7.1584 - RMSE: .0082. **Although still overfitting, the performance of
the ViT model degraded to a NLL -1.1887 RMSE .1438 on the train set in the second run.

GELU Retuned: Gelu, as above with the same changes to learning rate and weight

decay.

ViTCCAdamW: The CoordConv ViT experiment was repeated, but trained with

the AdamW algorithm and a cyclical learning rate, and a dropout of .3. Trained for 500

epochs. Initial minimum learning rate 1e-4 rising to a maximum of 1e-2 over a triangular

cycle of size 120,0003 steps. 1% decay in learning rate per cycle.

4.2.3 Results and Discussion

The results of the experiments described above are summarized in Table 4.1. Results

are reported in Negative Log-Likelihood (NLL) and Root Mean Squared Error (RMSE) over

the validation set.

The most immediate finding was that no method definitively dethroned Xception,

but there is a contender. The original Effnet continued to lag behind, and EffNetv2 with

the baseline settings also underperformed. It was observed that EffnetV2 had converged

very early, indicating overregularization and too high learning rate, so these were retuned

downward for a second run. Retuned, EffnetV2 showed results that were comparable to the

baseline model. Since the overall configuration was tuned on Xception, this is a very favor-

3This value is larger than intended - it should be divided by the batch size of 128.

52

able finding for EffnetV2. The original EfficientNet was designed to maximize a particular

definition of efficiency based on parameter count. As the authors noted in their followup

paper introducing EfficientNetV2, pursuing only parameter count was too shallow a measure

of efficiency. In particular, EfficientNet utilizes specialized convolutional layers that, while

parameter efficient, are slow to compute. EfficientNetv2 was designed with a more holistic

view of efficiency, including training time. Here, EfficientNetv2 had an average epoch time

of around 200 seconds compared to the baseline model’s ∼2504. Vision Transformer actually

trained even faster, at ∼150 seconds per epoch, despite having a slightly larger parameter

count than Xception, demonstrating the transformer architecture’s reputation for ease-of-

parallelization in training computation. Unfortunately, ViT’s performance did not match its

speed. The presence of overfitting in the initial run inspired the followup experiment using

AdamW, which implements decoupled weight decay for regularization. However, without

overfitting the performance collapsed, indicating a limited ability to generalize on this prob-

lem. Considerable effort at tuning the hyperparameters of both AdamW and ViT did not

improve performance notably past that reported here (results not shown). This was a sur-

prising result given ViT’s good results on classification problems. A bug in the configuration

of the AdamW experiments meant that the cycle of the cyclical learning rate was larger

than intended, but it is not clear if a smaller cycle would have helped performance. After

all, 1cycle[17], which achieves good results, has only one cycle per epoch. However, 1cycle

has a different cycle pattern than the triangular one used here – although both use an initial

increase followed by an eventual decrease.

It was notable that CoordConv improved the performance of ViT but not any other

model it was tested on. For the CNNs, this indicates that positional information is being

effectively propagated through the network even without CoordConv. This challenges the

hypothesis that CNN performance was being limited by an inability to encode and retain

detailed spatial information. While it may still be true that spatial information is lost

by many operations throughout Xception’s architecture, this at least does not seem to be

limiting performance. That CoordConv improved ViT’s performance is not surprising. The

defining feature of transformer models is the attention mechanism which compares tokens

4As mentioned, variability in the HPC’s compute nodes makes this necessarily an informal
comparison

53

to each other to generate context. However, without a form of positional encoding, the

relative locations of the tokens are lost. This is precisely why the authors of the original ViT

paper included a specialized positional embedding in their latest followup[1]. CoordConv

fills a similar role in a simpler way by attaching positional channels to each patch/token

directly. The stride and average pooling experiments were inspired by the same hypothesis

that allowing additional information through the network, especially positional information,

may improve performance. However, the results were consistent with that of CoordConv

– no improvement – further indicating that loss of positional information is not a limiting

factor of the model. The NoPooling model had noticeably degraded performance, but this

is not surprising given the massive decrease in the MLP hidden unit size necessary to keep

parameter parity. However, the results of the parameter scaling experiment (reported ahead)

indicate that the model is massively overspecified and that hidden unit parameter loss alone

cannot explain the amount of decreased performance. With this in mind, perhaps the greater

reason for the decrease in performance was simply the loss of the global average pooling itself.

Pooling not only keeps the network size small, but it selectively removes less important

information and activations, effectively filtering out noise and redundant information. In the

future, rather than reducing, it might be more effective to increase pooling for AVL deep

models. GELU did not seem to improve the model, though it did change the dynamics

enough to require some hyperparameter tuning. The first run using GELU converged early,

so as with Effnetv2 it was rerun with new parameters. Once the early convergence was

addressed, its performance improved to nearly match the base Xception model. This is not

sufficient to recommend GELU for AVL, since GELU is computationally more expensive

than ReLU activation. Surprisingly, increasing the resolution of the input image did not

improve performance at all – in fact, performance seemed to slightly decrease. Although it

might seem intuitive that increasing the amount of information in the input should increase

performance, there are many reasons why this might not occur. One possible reason was

already discussed in Chapter 3: it is likely that the most permanent, and therefore most

identifying, features of an aerial image are large. In addition, many small features like cars

and people frequently change and therefore their inclusion in the input makes generalization

more difficult. As increasing the input resolution also increased the amount of high-frequency

54

features in the input, to the extent that these features are transient their inclusion can only

help the model overfit, not generalize to unseen data. This finding suggests that increasing

input resolution is not an effective approach to improving deep models on AVL, and may

actually be detrimental. A next step would be to see how much the input resolution could

be decreased without hampering performance.

4.3 Network Parameter and Region of Interest Scaling/Specificity

4.3.1 Introduction

Deep networks can be very efficient at storing complex information and relationships

in their parameters. However, neural networks are not infinite in their storage capacity,

and as they are required to encode larger amounts of information they must increase in

size. Hoffman et al. [10] that, at least in the context of large language models, the amount

of training tokens and the parameter size of the model should scale equally for compute-

optimal training. In Chapter 3, it was hypothesized that the architecture used was larger

than necessary for the geographic size of the region of interest. To investigate this claim

further, the model was tested with reduced parameter count and with a reduced region of

interest (reducing the region of interest increases the ratio of parameters to geographic area

without intractably increasing the network size). That is, the aim is to investigate the effect

of the ratio of model size (as measured by parameter count) and the geographic area aiming

to be localized over.

Another question relating the real-world characteristics of the input data and the

effective of the deep geolocalization model is whether different types of terrain are more

or less difficult to localize. It is likely that regions without distinctive, permanent features

(such as open ocean) will be much more difficult to localize over. Although it is beyond

the scope of this investigation to assess the difficulty of localization over all possible biome

and terrain types, Washington County contains a varied mix of rural, suburban, and urban

developed areas. Thus, a brief experiment was performed to see if different regions of the

same geographic area would show significant variance in validation accuracy.

55

Figure 4.1: Figure illustrating the RoIs for the reduced RoI experiment. The background
is the original RoI, while each blue square represents one of the scaled down RoIs. From
smallest to largest, the scaled down RoIs have widths of .15, .25, .5, and .75 of the original
RoI.

4.3.2 Methods and Results

The model was applied to train and test sets on a restricted region of the original

RoI. Valid padding was kept constant at 500m to avoid edge effects, which would become

more prominent for smaller regions as a greater percentage of the total area is near an edge.

Learning rate decay was not used, as the different sized regions have very different epoch

sizes. The setup for the data is shown in Figure 4.1. The results are shown in Table 4.2.

56

Figure 4.2: Figure illustrating the RoIs for the specific region experiment.

Experiment Name NLL RMSE Scaled RMSE

.15 -7.1826 .0012 .0080

.25 -7.5376 .0019 .0076

.50 -6.5951 .0043 .0086

.75 -5.9168 .0073 .0097
1.0 -5.3008 .0109 .0109

Table 4.2: Table of results for RoI scale comparison.

For the region specificity experiment, the RoI was divided into a 3x3 grid. A baseline

Xception model was trained over each grid square. Grid locations are as shown in Figure.

Edge padding for the validation set was 1000m. No learning rate decay was used. Figure

4.2 shows the partitioning of the RoI. Results are shown in 4.3.

57

Grid Location RMSE
1 .00073
2 .00083
3 .00082
4 .00079
5 .00077
6 .00081
7 .00079
8 .00080
9 .00082

Table 4.3: Table of results for the different grid locations.

In order to investigate the relationship between model size and performance, several

downscaled models were trained over the full RoI. Models were downscaled by multiplicative

factors reducing the number of filters in convolutional layers, and hidden units in dense layers

(except for the output layer). Note that all models were affected by the y-coordinate error

bug described in the general methods. Results are shown in table 4.4.

Filter Scale MLP Scale Params NLL RMSE

1 1 45,997,356 -4.8280 .0262†

.75 .75 25,975,034 -4.7525 .0267†

.5 .5 11,607,576 -4.6343 .0280†

1 .5 29,207,852 -4.6917 .0284†

.5 1 26,272,600 -4.7083 .0271†

.0625 1.0 17,424,055 -3.2428 .0530†

1 .0625 21,452,844 -4.0264 .0298†

.0125 .0125 754,571 -4.0849 .0309†

.0625 .0625 201,315 -3.1389 .0521†

Table 4.4: Table of results for parameter count scaling experiment.

4.3.3 Discussion

RoI Downscaling

At first glance, the finding that accuracy improves as the ROI decreases might seem

to indicate that the model is being limited by its ability to encode the entire region, and

reducing the size of the region is freeing up this bottleneck. However, in smaller regions the

overall scale of the labels is reduced. At half the width, the average distance between any two

labels is also halved. Thus as the scale of the label space decreases we should expect to see a

proportional reduction in error size. Because of this fact, the normalized distances per region

are also reported, which allows direct comparison of the relative error. When the scale of the

errors is standardized in this way, it is apparent that accuracy is not being limited by the size

58

of the RoI being too large in the baseline model. The very slight decrease in performance on

the two largest regions seems to be due to the 12 hour time limit on training – training takes

longer to converge on the longer regions, and these models had not quite finished converging.

An interesting follow-up experiment might be to measure how quickly a model converges over

a region of a given size, or with a given number of parameters. In this experiment, the smaller

regions and models converged noticeably more quickly, which is expected. However, to truly

quantify the difference in convergence would require a specialized setup that equalized other

time affecting factors in training. For example, in the current setup because the number

of image chips within smaller regions is reduced, the size per epoch is also reduced. This

increases the time cost of between epoch operations such as shuffling and saving. The overall

effect of the epoch-based learning rate decay schedule is also dramatically increased when

epochs are small and short. A quantitative estimate of how model convergence time scales

with region size would certainly be of interest to anyone looking to build a production level

AVL model.

Region Specificity

It was expected that the specific region experiment would show some variability in

results. Because the middle and top middle grid square, encompassing Fayetteville and

Bentonville, are far more developed than the rest of the RoI, it was thought they would

show different results from the more rural squares. However, the results were quite similar

across all 9 subregions despite large differences in level of development. This seems to indicate

that, at least for the sort of undeveloped terrain in the mountainous Washington County,

less developed areas are not more difficult to localize.

Parameter Reduction

The model proved to be remarkably robust to loss in parameter count, indicating

that it was heavily overparameterized in its default configuration. This is a favorable finding

for deep learning applications to aerial geolocation, as it indicates that the size of the model

can be considerably smaller with minimal loss in performance, allowing for faster training

and inference as well as deployment on more platforms. Alternatively, a far larger region of

59

interest can be encoded by our baseline model. Performance only noticeably degraded at

very high reductions in filter or hidden unit count. Overall, the model was slightly more

sensitive to loss in filter count than to loss in hidden units, indicating that the convolutional

portion of the network is more important than the MLP head. This is consistent with the

literature – it is even possible to completely dispense with the MLP head, creating what is

known as a fully convolutional network[13], while still obtaining good results. Future work

could see if this approach would be effective for AVL.

It does seem to be the case that NLL was more sensitive than RMSE. A model with

the same RMSE but higher NLL is less well calibrated. The likely cause of this is that

since the NLL is much more sensitive to the estimate of mean than the estimate of standard

deviation, when parameter resources become constrained, performance on estimating scale

is sacrificed to increase performance on estimating the mean. This is not a bad property

to have, since the accuracy is indeed more important than calibration (you can get perfect

calibration with no dependence on the data – estimate the mean every time and set the

standard deviation to the population standard deviation – but this is obviously not a useful

model). See the Model Distribution Calibration experiments in the next section for further

discussion.

4.4 Training Data Requirement

In the experiments in Chapter 3, all available data was used, and a good result was

obtained despite the relatively low number (13) of total datasets. Obtaining and curating

data is often the most challenging and most important part of training a deep neural network.

Thus, data efficiency is of paramount practical importance. To this end, this experiment

investigates how geolocalization accuracy is impacted by restricting the amount of training

datasets. It further investigates how similarity of the training and validation data impacts

accuracy. For example, whether or not additional datasets in the training set of a different

foliage season (that is, leaf on or leaf off) from the test set impact accuracy on the test set.

60

4.4.1 Methods and Results

A total of eleven models varying the training and test sets were trained. All settings

were in the default configuration described, except that L1/L2 regularization was not added

to the Xception layers5. Models were run for 3 days wall time, with the lowest RMSE

validation epoch being chosen as the final result. The experiments and their results are

summarized in Table 4.5.

Exp. # Train Sets Test Sets Train Fo-
liage

Test Fo-
liage

Train
RMSE

Test
RMSE

1 ADOP2017 WaCo15 Off Off .0484 .2702
2 NAIP2006 ADOP2006 On On .8620 .2519
3 NAIP2015 WaCo15 On Off .0211 .2642
4 NAIP2006

NAIP2015
AO15 On Off .0291 .2821

5 NAIP2006
NAIP2015

ADOP2006 On On .1443 .2539

6 NAIP2006
NAIP2015
ADOP2017
AO19

WaCo2015 2 On, 2
Off

Off .0193 .0528

7 All WaCo sets,
ADOP2017

NAIP 2015 Off On .0198 .2295

8 All leaf off sets,
ADOP2006

NAIP2015 6 Off 1
On

On .0195 .1155

9 All leaf off sets,
ADOP2006,
NAIP2006

NAIP2015 6 Off 2
On

On .0198 .0364

10 WaCo2016 WaCo2015 Off Off .0189 .1556
11 NAIP2006

NAIP2015
NAIP2009 On On 4.428 .2552

Table 4.5: Table of results for the training set experiments.

4.4.2 Discussion

In order for a model to learn to generalize effectively, it has to see at least a sufficient

number of different examples with the same labels to learn some sort of generalized function

connecting input to the labels. It is therefore unsurprising that in Experiments 1, 2, and

3, where there is only one training dataset, and therefore only one example for each piece

of terrain, we receive a result of .25. This score is approximately the error a model would

achieve by outputting the middle of the RoI - .5, .5 - on every image. This is no better

5There is no particular reason for this, but I audited every file in this project while
writing it up and it happens to be true. The lack of additional regularization makes gener-
alization harder and thus the results here are worse than they would be otherwise, but since
the purpose of the experiment set is comparative and all the experiments have the same
configuration it doesn’t change any conclusions.

61

than a baseline mean model –there is no generalization at all. The only experiment with one

training set that did better than the baseline was Experiment 10, which specifically trained

and tested on the most similar pair of datasets available, but results were still poor. It is

interesting that the NAIP2006 dataset also had low train accuracy as well, indicating that

the dataset is more difficult to learn locations from. Two train datasets were also insufficient

to learn to generalize, even if foliage matched, as evidenced by Experiments 4 and 5 and 116.

Experiment 6, with four total train datasets, finally shows some generalization capability –

however, the model still overfits to the train datasets. Experiment 7 uses 6 datasets to train,

but none are matched to the leaf type of the test set. With the color balance completely

different between train and test, the model does not learn to generalize to the different

foliage. The addition of even one matching foliage dataset in Experiment 8 allows the model

to generalize better than baseline, but still at a poor level. It is interesting to note that this

is still much better performance than Experiment 5, which had two foliage matched training

sets – indicating that the non-foliage matched sets, despite having a completely different

color balance, are helping the model learn to generalize given the presence of at least one

foliage matched sample. This is an important finding as it suggests that we need not worry

about balancing the distribution of our input datasets to our expected use – all the data

should be used. The addition of one more leaf-matched set provides a massive boost in

performance in Experiment 9 indicating that large gains can be achieved from the addition

of even one dataset in the right circumstances. Overall, these experiments highlight and

confirm the need for multiple and varied datasets to achieve effective generalization.

4.5 Model Distribution Calibration

4.5.1 Introduction

As discussed in Chapter 3, a major issue with most deep learning regression is that

they only output a prediction alone, with no easy way to assess the prediction’s certainty.

This is in contrast to classification where the relative scores of the predictions across classes

can give a built-in measure of model certainty. A variety of methods for different use cases

6Experiment 11 was run as a follow-up to experiment 5, due to concerns that ADOP2006,
being late summer and having browning leaves and grass, was a bad example of a leaf-on
dataset. However, it turned out to make no difference even if the vibrantly green NAIP2009
set was used instead.

62

have been developed to try and address this problem. For example, the popular method of

Monte Carlo Dropout[8] uses a model’s existing dropout layer to get an empirical estimate

of model uncertainty. It has the advantage of being applicable post-hoc, but a major dis-

advantage is that it requires running the model inference step numerous times to generate

a statistically relevant amount of samples. The approach used for the model presented in

Chapter 3 was to have the output layers of the output parameters defining a probability

distribution (such as the Gaussian). This approach goes by several names in the literature,

being variously called a probabilistic neural network, a heteroscedastic neural network, a

heteroscedastic probabilistic neural network, or simply a neural network with distributional

outputs7. Since the model in this approach outputs parameters defining a probability dis-

tribution, rather than a single point estimate, it becomes possible to directly quantify the

model’s uncertainty 8. However, a measure of uncertainty is less useful – even misleading –

if it is miscalibrated. A probability distribution is considered well calibrated if the predicted

distributions closely match the true distributions of the outputs. For example, an outputted

normal distribution can be considered well calibrated if, for all proportions X, approximately

X proportion of the true labels are contained within an X proportion confidence interval. At

a confidence level of 5%, 5% of the true labels should be inside the 5% confidence intervals

of the distributions produced by the model. Likewise, at a confidence level of 95%, 95% of

the true labels should be inside the 95% confidence intervals of the distributions produced

by the model. While confidence intervals are an easily understandable and visualizable mea-

sure of calibration, they are difficult to calculate, or even ill-defined, for models that are

nonsymmetrical or multimodal[11]. Thus, when comparing across models that have these

properties, we resort to different metrics. A widely applicable one that also allows direct

comparison between different distributions is simply the likelihood. This also happens to be

the loss function used to train out model (in the form of negative log-likelihood), so it is

used here to compare across models. The downside is that this measure does not indicate

whether a model is over/underconfident.

7Many of these names are also used for related but distinct approaches in, for example,
Bayesian neural networks. For this reason, the less ambiguous terminology of distributional
outputs is used here.

8Naturally, this can only quantify the model’s uncertainty within the bounds of the chosen
output distribution, and does not estimate higher-order uncertainties – uncertainty about
the uncertainty

63

Figure 4.3: Figure illustrating the difference between the training and validation calibration.
The green line is the calibration over the training set, while the orange line is the calibra-
tion over the validation set. These calibrations were taken from the baseline model in the
architecture experiment.

In Chapter 3, it was found that the models produced were underconfident. Subsequent

analysis showed that this underconfidence was only present on the validation data, while the

model was well calibrated on the training set (see Figure 4.3). This is unlikely to be simply

overfitting as the models did not show overfitting on RMSE. Furthermore, if the model

was overfitting to the training data then the trained standard deviations would become

small, which would produce overconfidence on the validation set instead of the observed

underconfidence. An alternative explanation might be that the model’s calibration is being

impacted by an overly large amount of weight decay. The model’s weight decay parameters

were tuned using RMSE as the metric, without regard to the NLL. In general, the model’s

mean parameters have a much greater impact on the NLL loss than its scale parameters.

Thus, gradients are higher from the mean, so a level of weight decay that might not negatively

impact the mean estimation – and therefore not show when model performance is measured

by RMSE – might still be too high for proper calibration on the standard deviation. Several

models are trained with less weight decay to investigate this possibility. Another possibility,

64

also investigated here, is that the larger gradients associated with the mean simply mean that

the mean parameters converge more quickly than the scale parameters. Thus, models that

seem to have converged in terms of RMSE might actually not have reached convergence in

NLL. For this reason, longer training of models where convergence is assessed by validation

NLL are tested.

Another possible source of poor calibration could be the use of a normal distribution to

model the output uncertainty. Since the true uncertainty landscape of the output conditioned

on the input is likely not normal, this might lead to poor calibration. For example, if there

are two visually similar regions separated by geographic distance, and the true probability

distribution the normal distribution cannot represent this type of uncertainty. Additionally,

modeling the X and Y coordinates Gaussian distribution makes other assumptions: that

the true distribution has infinite range, it is symmetric, it is independent for the X and Y

coordinates, and the tails of the distribution are thin. The first assumption is certainly false,

and the remaining three are likely also false to at least some extent. Of these assumptions,

the only one investigated in Chapter 3 was the independence of the X and Y coordinate.

Since the only the X and Y coordinate as a pair uniquely define a particular location, the true

distribution is certainly not independent in the location coordinates. However, in Chapter 3

it was found that using a bivariate normal to model the output enhanced neither the accuracy

nor the validation calibration, indicating that this dependence is not critical to include in

the model. Whether or not the other assumptions made by using a normal distribution

are negatively impacting model performance and calibration remains to be tested. Various

alternative distributions are tested as possible outputs of the model, to see if they improve

either calibration or performance.

Finally, if model calibration between the training set and validation set cannot be

equalized during initial training, it may still be possible to mitigate the model post-hoc. A

large literature of such methods has been developed, though techniques for calibrating regres-

sion models have been less investigated than techniques for calibrating classification models.

Cui et al.[4] investigated several post-hoc calibration methods for heteroscedastic neural net-

works, ultimately recommending a second training phase using maximum mean discrepancy

on samples to calibrate the model after initial training using negative log-likelihood, which

65

is implemented and tested in this section. Palmer et al.[16] also propose post-hoc calibra-

tion for Gaussian outputs. However, rather than modifying the entire network, they aim to

only adjust the scale parameter, optimizing under the assumption of a linear transformation.

Their technique is tested here as well. The assumption of a linear transformation on the

scale parameter is limiting. To investigate whether alternative functional forms can produce

better results, an experiment using a secondary calibration neural network is also performed,

as neural networks are known to be able to express many different functional types.

4.5.2 Methods and Results

Throughout this section, the best epoch was selected based on validation NLL loss

as opposed to the validation RMSE as in other experiments, as the aim was to analyze

overall calibration over accuracy. However, since NLL is a combined measure of accuracy

and calibration, it is usually the case that the best RMSE and the best NLL epoch are the

same or very close.

Methods: Several models were trained with different distributions being predicted

by the output layer. The include the normal distribution (same as baseline), a truncated

normal, a truncated Cauchy distribution, a Laplace distribution, a mixture distribution of

two normals, and a mixture distribution of three normals. In addition, the Xception model

was trained with low regularization (reduced L1/L2 regularization by a factor of 10, .3

dropout) and very low regularization (no L1/L2 regularization, .1 dropout).

A model was also trained using the AdamW algorithm, which is simply the Adam

optimizer with weight decay. The AdamW model uses a cyclical learning rate schedule with

a triangular shape, starting at the minimum learning rate. A factor is chosen to multiply the

initial learning rate by to determine the max learning rate of the cycle. The tuned values

and ranges were as follow: learning rate, 1e-6 to 1e-3 with log sampling; learning rate factor

1 to 100, log sampling; weight decay 1e-7 to .1, log sampling, cycle length 60000 to 260000,

with step size 40,0009 The values returned by the search and used in the model were: initial

learning rate 3.866e-4, max learning rate 4.298e-3, cycle length 14,000, weight decay 2.169e-

9These values should have been divided by the batch size but were not. Thus, they are
all 128 times larger than intended and the cyclical learning rate only completes a few cycles
over training.

66

6. Because the AdamW model has its own weight decay, L1/L2 regularization is removed

from the Xception model. L1/L2 was also removed from only the Xception filters during

continued training, under the hypothesis that reduced regularization might be helpful for

calibration.

The Baseline model from the Architecture Experiment is loaded for continued training

using either the same Adam optimizer as baseline or the Maximum Mean Discrepancy loss

according to the procedure described by Cui et al.[4]. Learning rate was increased to 1e-3

and weight decay parameters were decreased by a factor of 10 to compensate for the lower

scale of MMD loss.

The results of all these configurations are summarized in Table 4.6

Exp Name NLL RMSE
Normal† -4.8376 .0252

TruncNorm† -2.2282 .0275
TruncCauchy† -1.96160 .0263

Laplace† -2.2301 .0246
Mixture2† -5.0827 .0269
Mixture3† -5.4924 .0266
LowReg† -5.4217 .0268

Very Low Reg† -5.7685 .0276
AdamWTuned† -4.8884 .0251
Cont. Training* -2.4136 .0303

MMD Post-Train* 9.67e9 .2458

Table 4.6: Table of results for calibration experiments. *The continued training experiment
produced a severe degradation of the saved model in the first epoch.

The results of the lower regularization runs are summarized in Figure ??

Two post-hoc calibration techniques were tested. One is based on Palmer et al. [16]

using standard optimization techniques to fit a linear transform that minimizes calibration

error, the other is an original approach that fits a secondary deep model to attempt to

transform the standard deviations to minimize negative log-likelihood. First, the predicted

means and standard deviation from the baseline model in the architecture experiment on

the validation set are split 70-30 into a train and test set. Then, in the first method, the

parameters of a linear transformation on the standard deviations are optimized using the

Nelder–Mead [15] method on the calibration error10. In the second method, a small neural

network is trained minimizing the negative-log-likelihood over a normal distributional output,

10In this case, simply the area between the observed calibration and the ideal calibration
on the calibration curve.

67

Figure 4.4: Figure illustrating the effect of lowering regularization on the calibration. Cal-
ibration for the validation set is shown for the low regularization (orange) and very low
regularization (green). The blue line represents perfect calibration.

with the means of the output forced to be the means of the input (so that only the standard

deviation can be trained). This network takes as inputs the means and standard deviations

of the AVL model, and outputs new standard deviations. The results are summarized in

Figure 4.5.

4.5.3 Discussion

The two techniques that improved calibration as measured by NLL were lowering the

regularization and the use of the multi-modal mixture density distribution. This provides

support for the hypotheses introduced in the introduction of this section that regulariza-

tion impacts scale parameters more, and that the ability to model multi-modal uncertainty

would help overall calibration. It’s worth noting that the lower regularization models went

from being mostly underconfident to mostly overconfident, with the very low regularization

model having worse overall calibration. This suggests that regularization techniques should

be tuned carefully to avoid miscalibration. The other models generally had worse NLL than

the baseline model. This is not all that surprising for the Cauchy and Laplace models, as

68

Figure 4.5: Figure illustrating the relative effectiveness of the two post-hoc calibration meth-
ods. The orange line is the calibration across the entire validation set. The green line is the
calibration across the part of the calibration set withheld out for testing. The red line is the
calibration of the withheld testing set post-recalibration. The blue line represents perfect
calibration.

69

although they have fat tails (which is why they were selected for testing), they are distribu-

tions that don’t arise naturally as often as the Gaussian. The fact that the truncated normal

distribution did so poorly, however, was unexpected and warrants further investigation.

Continued training using the same settings (sans regularization on the filters) did not

improve calibration, indicating that the previous models had indeed reached convergence

even on the scale parameters. With the above results on regularization, it is likely that the

baseline settings did not allow for good calibration at convergence, and this remained true

even with the L1/L2 regularization only being applied on the MLP head.

Cui et al.’s idea of post-training on MMD loss to directly optimize for calibration is

intriguing, however it has a major flaw. While training on MMD loss, there is no direct factor

encouraging accuracy, and the post-training can and will alter the model’s mean predictions

as well as standard deviation. On an overconfident model, this might not be too catastrophic

– the only two ways to improve the MMD loss are to either improve the prediction or to better

calibrate the scale, both of which are favorable. Our models, however, are underconfident.

And there is a very easy way to make underconfident models better calibrated – decrease

their accuracy. From the perspective of pure MMD loss, there is no difference between

adjusting the scale to be well calibrated with the predicted means, and adjusting the means

to be well calibrated with the predicted scale. The fact that the RMSE loss is the baseline

value of .25 suggests that the MMD training has accomplished exactly that – by outputting

the mean of the input distribution always regardless of input, all the model has to do is

estimate the population standard deviation every time and it will be perfectly calibrated.

Clearly, however, this is not a worthy trade off.

The issue of post-training destroying the estimates to achieve better calibration can be

easily solved, however, if we lock the location estimates and only adjust the scale parameters.

This is exactly the approach taken by Palmer et al [16]. They assume a simple, fixed

linear transformation of the scale parameter can improve calibration, and then just use

the Nelder-Mead [15] algorithm to optimize the parameters of the linear transformation.

The top of Figure 4.5 shows the results of this methodology when applied to our own ill-

calibrated model, which is very good. However, it is possible that there is some nonlinear

transformation that might perform even better. To investigate this, an experiment was

70

performed that used deep learning to find an appropriate transformation for the standard

deviation to improve calibration. In this approach, a secondary deep model is trained to

adjust the scale parameter. Using the predictions of the baseline model as inputs, it is

tasked to transform only the scale parameter to produce an output normal distribution that

minimizes the NLL. This model also has the advantage of seeing the estimates for both x

and y in the inputs, so it can potentially model and exploit covariance. The bottom of

Figure 4.5 summarizes the results, which were very good and quite comparable to the linear

transformation approach. However, the linear approach is simpler and easier to compute,

and so is recommended. One remaining question is whether this sort of optimization would

work equally well on validation sets containing multiple datasets, or if the would require

separate tuning per dataset. Overall, these experiments show that the calibration of the

model can be substantially rectified at low cost, with positive overall implications for deep

approaches to aerial geolocalization.

4.6 Occlusion and Orientation Error

4.6.1 Introduction

The data for the AVL came from survey flights which were all performed in clear

weather conditions. Clearly, in practice we cannot always rely on good weather conditions.

Clouds commonly obscure portions of the ground from an aerial vantage. Thus, the robust-

ness of the deep learning based geolocalization model to visual obstructions such as clouds

is of great practical importance. In addition, an aerial platform will take pictures at many

different orientations. While these can then be processed into a canonical (e.g. north-south)

orientation, the correction may be imperfect (due to, for example, inaccuracy in the com-

pass which can have numerous causes). Thus, investigation of the robustness of the model

to rotational perturbation is also of interest. The removal of rectangular sections from input

images in deep learning is also known at Cutout [6]. Cutout is a method of regularization for

image datasets, designed to be an image analog of dropout, where rectangular regions are

removed from the input images at random. In their paper, names showed that cutout was

an effective regularizing technique, improving performance on a variety of computer vision

tasks by reducing the model’s ability to overfocus on small parts of an image. An important

71

caveat to Cutout training is that in order to see benefits the model must still occasionally

see some unoccluded images. Therefore, the minimum number of rectangle cutouts was set

to zero at all occlusion levels to ensure that this could occur. Note that in order for the

probability of any given pixel to be covered by a rectangle to be uniform, the center of a

rectangle can be outside of the image’s boundaries.

Rotation can be clockwise or counterclockwise, using bilinear interpolation, with lost

corner pixels being filled black. When rotation and masking was combined, rotation was

applied second. Average occlusion was determined by a Monte Carlo sample over 1,000

images. During training, validation was done on the unmodified validation set. At the end

of training, the final model (based on best validation RMSE) was test on the validation set

modified by the light, moderate, and severe occlusion settings.

4.6.2 Methods

The base model was modified to allow for rotation as well as the positioning of random

black rectangular masks. Settings for the experiments are summarized in Table 4.7, where

the side lengths are in pixels. See Figure 4.6 for a visual example of the occluded images.

Exp. Name Max Rect. Min Side Max Side Max Rot. Average Cover

Baseline† 0 NA NA 0° 0%
Light Occlusion† 10 20 80 0 deg 22.88%

Moderate Occlusion† 13 40 100 5° 42.18%
Severe Occlusion† 16 80 120 10°6 65.97%
Rotation Only† 0 NA NA 10° 3.9%
High Rotation† 0 NA NA 90° 11.6%
Full Rotation† 0 NA NA 180° 11.7%

Table 4.7: Table of configurations for the occlusion experiments.

4.6.3 Results

The results of the experiments are summarized in Table 4.8. The columns represent

the setting of the validation data - e.g. the row labeled Baseline and the column labeled

Severe Occlusion mean the model trained on baseline images assessed on severely occluded

validation images.

72

Figure 4.6: Figure demonstrating the occlusion modification. Images on the right were
generated using the heavy occlusion settings, while images on the left were generated using
the light occlusion settings.

73

Experiment Name Baseline Light Occlusion Moderate Occlusion Severe Occlusion
Baseline† .02442 .2083 .2326 .2694

Light Occlusion† .0252 .0497 .0911 .1722
Moderate Occlusion† .02543 .0311 .0491 .1055

High Occlusion† .0253 .0288 .0385 .0858
Rotation Only† .0251 .1089 .2169 .3034
High Rotation† .0421 .0744 .1152 .2239
Full Rotation† .0766 .1228 .1458 .2011

Table 4.8: Table of results for the occlusion experiments.

Discussion The first finding is that the baseline model, which has never encountered

missing data during training, is unsurprisingly brittle to even mild occlusion. However,

models trained on occluded training sets were much more resilient while also not sacrificing

performance on the unoccluded validation set. This is an encouraging finding as it indicates

that the model can become robust without trading off accuracy. This is also in line with

expectations, as the simulated occlusion is similar to applying Cutout regularization. It

is especially interesting that performance by the models trained with high and moderate

occlusion outperformed the model trained on light occlusion on the light occlusion validation

set. Likewise, the high occlusion trained model outperformed the moderate occlusion trained

model on the moderate occlusion validation set. This suggests that to improve performance

on a target level of occlusion, we should actual not train on that level of occlusion, but

a greater one. Overall, the fact that performance either stayed the same or improved on

less occluded images when training was done on occluded images suggests that training

with random occlusion should be a standard practice for AVL. The model proved to be quite

robust to low levels of rotation. However, performance on the baseline validation set degraded

substantially for higher rotation levels in training. This is in sharp contrast to the results

for occlusion, where baseline performance was not negatively impacted by training on the

augmented dataset. This is unsurprising as navigation relies heavily on the true orientation

of features – if you are trying to find North College Avenue, which runs North-South, and

you fly over an East-West road you know you are not in the right location. Unfortunately,

this means that it is not viable to simply train on randomly rotated images and achieve

robustness to poor compass calibration. On the other hand, small orientation deviations as

might occur even on a well-calibrated compass will not affect model accuracy.

74

4.7 Direct Raster Training Pipeline

In most deep learning computer vision tasks, the typical data pipeline involves numer-

ous individual image files each associated with a label. Following this paradigm, in the work

in Chapter 3 an offline image chipping process was performed to produce small raw images

which could be loaded with their associated label. It is easy to see, however, that this is in-

efficient and introduces additional sources of bias. It is inefficient because the preprocessing

step duplicates much image information due to overlapping images, and because subsequent

cropping or resizing is computationally expensive. It introduces a potential source of bias

because the locations chosen for image chips during the offline step are fixed and constant in

every epoch instead of being randomized throughout training, and thus certain regions will,

by chance, be oversampled or undersampled consistently during training (that is, regions

which by chance are included in more chips are trained on more often). Additionally, the

offline chipping process makes altering the data input characteristics cumbersome. If, for

example, a practitioner wanted to change some aspect of the chips, such as their orientation,

they would need to re-chip every dataset, produce labels for these new chips, then transfer

all of these new chips to whatever platform they are training their model on. A superior

approach would be to draw the chips directly from their source rasters during training. If

this can be done efficiently, this would remove the abovementioned issues. One thing to

note is that it is still desirable to perform at least one offline step reducing the raster to

the desired input resolution. This is necessary to avoid a computationally costly resizing

operation during training that is unavoidable if the input raster images are of a different

resolution than the desired input resolution.

4.7.1 Methods, Results, and Discussion

A generative image pipeline that produces image crops and labels directly from raster

source files was developed and tested. Aside from the image loading, all settings were

baseline. The direct loading trained at the same speed as the old data pathway after caching,

but without the caching or preprocessing step being needed. It is not surprising that the

time per epoch is the same – in the original pathway, after chips are loaded and resized they

are cached in a serialized file for rapid loading so as to not repeatedly resize the same images.

75

However, this cache file is quite large – about 50 gigabytes – and takes time in the first epoch

to create. The new pathway therefore saves time and storage space (the total size of the low

res rasters used for input is only 3 gigabytes). In addition, the new pathway is much easier

to alter without time consuming offline preprocessing.

References

[1] L. Beyer, X. Zhai, and A. Kolesnikov. “Better plain ViT baselines for ImageNet-1k”.
In: arXiv preprint arXiv:2205.01580 (2022).

[2] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, et al. “Language models are few-shot learners”. In:
Advances in neural information processing systems 33 (2020), pp. 1877–1901.

[3] F. Chollet. “Xception: Deep learning with depthwise separable convolutions”. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition. 2017,
pp. 1251–1258.

[4] P. Cui, W. Hu, and J. Zhu. “Calibrated reliable regression using maximum mean
discrepancy”. In: Advances in Neural Information Processing Systems 33 (2020),
pp. 17164–17175.

[5] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. “Bert: Pre-training of deep bidirec-
tional transformers for language understanding”. In: arXiv preprint arXiv:1810.04805
(2018).

[6] T. DeVries and G. W. Taylor. “Improved regularization of convolutional neural net-
works with cutout”. In: arXiv preprint arXiv:1708.04552 (2017).

[7] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M.
Dehghani, M. Minderer, G. Heigold, S. Gelly, et al. “An image is worth 16x16 words:
Transformers for image recognition at scale”. In: arXiv preprint arXiv:2010.11929
(2020).

[8] Y. Gal and Z. Ghahramani. “Dropout as a bayesian approximation: Representing
model uncertainty in deep learning”. In: international conference on machine learning.
PMLR. 2016, pp. 1050–1059.

[9] D. Hendrycks and K. Gimpel. “Gaussian error linear units (gelus)”. In: arXiv preprint
arXiv:1606.08415 (2016).

[10] J. Hoffmann, S. Borgeaud, A. Mensch, E. Buchatskaya, T. Cai, E. Rutherford, D. d. L.
Casas, L. A. Hendricks, J. Welbl, A. Clark, T. Hennigan, E. Noland, K. Millican,
G. v. d. Driessche, B. Damoc, A. Guy, S. Osindero, K. Simonyan, E. Elsen, J. W. Rae,
O. Vinyals, and L. Sifre. Training Compute-Optimal Large Language Models. 2022.
doi: 10.48550/ARXIV.2203.15556. url: https://arxiv.org/abs/2203.15556.

[11] O. Kesemen, B. Tiryaki, E. Özkul, and Ö. Tezel. “Determination of the Confidence
Intervals for Multimodal Probability Density Functions”. In: Gazi University Journal
of Science 31.1 (2018), pp. 310–326.

[12] R. Liu, J. Lehman, P. Molino, F. Petroski Such, E. Frank, A. Sergeev, and J. Yosinski.
“An intriguing failing of convolutional neural networks and the coordconv solution”.
In: Advances in neural information processing systems 31 (2018).

[13] J. Long, E. Shelhamer, and T. Darrell. “Fully convolutional networks for semantic
segmentation”. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. 2015, pp. 3431–3440.

[14] I. Loshchilov and F. Hutter. “Decoupled weight decay regularization”. In: arXiv
preprint arXiv:1711.05101 (2017).

[15] J. A. Nelder and R. Mead. “A simplex method for function minimization”. In: The
computer journal 7.4 (1965), pp. 308–313.

76

[16] G. Palmer, S. Du, A. Politowicz, J. P. Emory, X. Yang, A. Gautam, G. Gupta, Z.
Li, R. Jacobs, and D. Morgan. “Calibration after bootstrap for accurate uncertainty
quantification in regression models”. In: npj Computational Materials 8.1 (2022), pp. 1–
9.

[17] L. N. Smith. “A disciplined approach to neural network hyper-parameters: Part
1–learning rate, batch size, momentum, and weight decay”. In: arXiv preprint
arXiv:1803.09820 (2018).

[18] M. Tan and Q. Le. “Efficientnetv2: Smaller models and faster training”. In: Interna-
tional Conference on Machine Learning. PMLR. 2021, pp. 10096–10106.

[19] M. Tan and Q. V. Le. EfficientNet: Rethinking Model Scaling for Convolutional Neural
Networks. 2020. arXiv: 1905.11946 [cs.LG].

[20] V. V. Tu. Keras Implementation of Vision Transformer (An Image is Worth 16x16
Words: Transformers for Image Recognition at Scale). 2020. url: https://github.
com/tuvovan/Vision_Transformer_Keras.

77

5 Deep Learning for Repairable System Reliability Prediction

5.1 Problem Introduction

DNNs have played a transformative role in the recent explosion of ML into nearly all

spheres of industry and human endeavor. In diverse fields ranging from image generation to

natural-language processing, DNNs have redefined what is possible with machine learning.

Among these successes, it stands out that on structured or tabular data – such as one might

find in any business database or spreadsheet – DNNs are typically not the ML method

of choice. Certainly, one culprit is that non-DNN ML methods excel on tabular data. For

practical reasons, most historical ML research was on structured data. Thus, there are many

techniques specifically designed for tabular data that are not easily applicable to problems

such as image processing – for example, tree-based methods. However, there is also a strong

argument, as evidenced by a large and growing amount publications on this problem, that

there remain many substantial methodological and technical advancements that could greatly

improve the performance of DNNs on structured data. The possibilities for improvement

are especially great on problems whose structure makes standard deep learning approaches

ineffective, as is the case for the case study considered in this chapter.

The problem considered here consists of system attributes, operational data, and

failure times from 8,232 oil and natural gas wells. The goal is to predict the frequency and

(if possible) the specific timing of failures in the wells. Ideally, the prediction would apply

both to novel wells not in the training data, as well as future times on wells already in the

training set. This problem and dataset were presented previously by Liu and Pan [21], who

developed an effective random forest based algorithm for predicting failure frequency. Each

oil and gas well has an associated record of failure times, as well as a right censoring time

past which data is not available. The data for each well consists of 8 static covariates, which

do not vary with time but do vary by well, and 7 dynamic covariates which vary in time such

as torque, load, and stress. The average observation period for a well is ∼1823 time steps,

and the average number of failures per well during the observation period is ∼4.8, ranging

from 0 to 22. The overall data size is quite large, at 15,007,949 (of which 39,604, or .26%,

are labeled as faults) time points each with 7 data points recorded variables recorded.

78

Failures in oil and gas wells are often costly and dangerous, and developing more

precise means of predicting their occurrence has substantial value. However, in addition to

being an important economic problem, this case study is a useful case study for method-

ological research on DNNs as it incorporates many challenging characteristics into a single

problem. The problem is large, contains heterogeneous tabular data, is a time-series, has

multiple subdivisions (wells), is right-censored per well, is in a domain where predictability

is low, and is an extreme rare-event problem as well.

5.2 Deep learning approaches to tabular data literature

5.2.1 General Tabular Data Problems

Before moving into more specific problem domains, it is well worth looking at the state

of the art on deep learning approaches to various tabular data challenges. For tabular data in

general, a recent survey of the field by Borisov et al. [4] divides current approaches into three

broad categories: data encoding approaches, architectural approaches, and regularization

approaches. Data encoding approaches aim to improve model performance by transforming

the format of input/output data. Architectural approaches aim to create neural network

architectures that are specialized for handling tabular data. Regularization approaches aim

to develop specialized regularization methods that better address the unique data challenges

often present in tabular data (e.g. heterogeneous data). In practical applications, these

approaches are not mutually exclusive and can be applied together - though the optimal

combination of approaches for a given problem is something that must be experimentally

determined.

Data Encoding

Data encoding is important to all neural networks, but the features of many tabular

data sets provide a particular challenge and many possible choices. First, tabular data is

typically heterogeneous, which means that the input and output features may vary widely

in their type and statistical distribution. Continuous, integer-ordinal, and categorical data

often coexist in the same tabular data set. Categorical data with a very large number of

categories present special difficulties for neural networks which will be discussed shortly.

79

Second, neural networks typically only allow fixed-size inputs, which makes tabular data

sets with varying feature amounts (common due to missing data) challenging to process.

Third, it is often difficult to know in advance which variables are likely to have the most

important interactions, which makes computation saving methods such as the convolutions

used in CNNs difficult to find and design. For this reason, a large body of work has developed

that aims to improve data encoding for deep learning on tabular data, of which only a few

major developments and trends can be included here.

As mentioned, data with large numbers of categories can pose a problem for deep

learning. One of the most common encoding technique for categories, ”one-hot” encoding,

does not scale well to variables with many possible categories. One-hot encoding creates a

new feature column for each category, using a 1 or 0 to indicate whether the current item

belongs to that category or not. In the case of many categories, this generates hundreds

or even thousands of extra columns where almost every entry is 0. In addition to being

extremely inefficient in terms of memory and computation, these large sparse inputs have

been shown to severely inhibit the ability of deep learning models to learn effectively. A

successful and increasingly popular method of dealing with these broad categorical variables

are learned multi-dimensional embeddings. Originally conceived as a way to encode the large

vocabularies of language models [3], this technique converts each category to an encoded form

in a smaller, dense matrix. Crucially, the embedding itself is susceptible to learning, and so

the model can learn more efficient and informative encoding over time. Dense embeddings

are an essential part of the success of Transformer models on NLP tasks.

Specialized Architectures

With the enormous success of convolutional neural networks (CNNs) on image pro-

cessing tasks, some authors have attempted to convert tabular data into images in order to

use CNNs directly. CNNs exploit the inductive bias that pixels near each other in an image

have more salient relationships than pixels that are further away. Thus, in order to usefully

apply CNNs, the image conversion for tabular data must ensure that nearby pixels in the

image are related to each other informationally. An informative example is the image gen-

erator for tabular data (IGTD) technique [30], which calculates distances between features

80

before converting them to pixels in an image to ensure that similar features are grouped

together in the converted image. However, keep in mind that it is trivial to come up with

distance measures which might make two features seem very closely linked when they are

actually completely independent as far as influence on the problem task is concerned.

Finding effective neural network architectures for tabular data is an ongoing challenge.

As seen above, one approach is to convert tabular data into forms that enable the use of

effective architectures from other contexts, such as CNNs in image processing. In this case,

the data is being made to match the architecture. The obvious alternative approach is to

make the architecture match the data - and this is where specialized architectures for tabular

data emerge. The large diversity and special challenges inherent in heterogeneous tabular

data sets makes this a difficult task. One approach is to take successful non-deep methods

and combine them with deep learning techniques. One of the more recent success stories

is Neural Oblivious Decision Ensembles (NODE) [25] which combines a random decision

forest algorithm with differentiable end-to-end deep learning. Among pure neural network

approaches, Gorishny et al. [15] recently surveyed many different popular architectures on a

variety of different tabular data sets and found that the two most effective approaches were

a ResNet based model and a Transformer based model. The recent success of Transformer

based models has also led to the development of several implementations for use on tabular

data, such as TabNet [2].

Regularization

Finally, we come to regularization. In practice, many tabular data sets have prop-

erties (small size, input signatures that can easily uniquely identify records, lack of general

augmentation strategies, imbalanced classes) that make them extremely vulnerable to over-

fitting. This makes regularization - always important - even more central to successfully

implementing a deep learner on tabular data than in other applications. Kadra et al. [18]

find that even multilayer perceptrons can achieve state-of-the-art performance on a wide

variety of tabular data tasks when properly regularized by a ”cocktail” of 13 different regu-

larization techniques. However, it should be noted that not all regularization techniques can

be applied to all problem types, and that most have at least one tunable parameter which

81

adds to the already large burden of hyperparameter tuning.

5.2.2 Deep Learning On Time-Series Data

Time-series data is a commonly encountered subtype of tabular data that presents

unique deep learning challenges. The first challenge is how to handle input given that time

series extend over time yet neural networks only admit a fixed size input. The simplest

approach is to select some window size of time units and use that number of time units as

a block of input. However, such an approach can never incorporate any information beyond

its input window (consider, however, that Transformers achieve state-of-the-art performance

on many sequence tasks yet use a window approach). Increasing the size of the window can

provide more information, but it also increases the size of the network, and allows for more

opportunities to overfit. One way to deal with this issue is to use stateful recurrent neural

networks that can store information over long periods of time. The canonical example is

the Long Short Term Memory network [16], which contains trainable memory and forgetting

functions. LSTMs and other stateful approaches can be very effective, but they are difficult

to train due to their strict requirements on data presentation order. Pertaining to the case

study data set, the presence of 8,232 different subsequences would require stateful approaches

to clear their memory many times per epoch, as the presentation order of the wells themselves

should not be allowed to affect the results.

An alternative to both window and stateful approaches is to encode portions or even

the entirety of a time series into some other format, such as an image. Since trends in

time-series data are often visually distinguishable by human inspection, a deep learning

image processing algorithm might also be able to perform this task. The intuition behind

convolutions, that nearby pixels are generally more related to each other than further pixels,

also applies to temporal adjacency in time-series data, making the direct use of CNNs on

time-series data a natural extension. Convolutional kernels can be applied across multivariate

time-series with little modification, using filters sizes that extend over some number of rows

(time steps), as in [9]. Alternatively, standard 2-dimensional kernel sizes can be used if the

data is encoded into an image format that converts temporal adjacency into spatial adjacency

in the image. See [12] for a recent deep learning application comparing six different time-

82

series to image encodings. For the case study data set, the division of the time series

into 8,232 subsequences provides natural breakpoints for a per well image encoding scheme,

however the different sizes of the subsequences require special handling to ensure consistent

input sizes.

Perhaps the largest challenge for neural networks on time-series data is extrapola-

tion. Neural networks are notoriously poor at extrapolating beyond their training domain.

However, the most commonly desired task with time-series data is to predict the future. As

an example, consider that if absolute time is included as an explicit variable and encoded

naively, this can lead to bad results on test data because the time inputs for test data will

be outside the training set domain. Adding to this, most common neural network architec-

tures do not easily encode cyclical features and thus will only fit cyclical curves within their

training domain. Some ways to mitigate this concern include special encoding rules for time,

from the simple (e.g. encode time as time-to-next-input, explicitly variablize relevant time

periods such as weekends, night/day, seasons) to the complex (e.g. dense joint time-event

embeddings [20]). Other ways involve modifying the network architecture to make encoding

of cyclical functions natural, such as by using sinusoidal activation functions [13].

5.2.3 Deep Learning Approaches to Rare-Event Problems

Rare-event problems are a particular challenge for supervised data. The first hurdle

is simply to ensure there are enough unique examples of the rare event in the training set

to make supervised learning feasible. In the case study problem considered here, although

failures make up only ∼.26% of the total data, the large overall data size means that there are

39,582 unique examples of failures available to train on. Next, even with sufficient samples,

the highly imbalanced nature of the data will lead networks to ignore the rare event. This is

problematic when failure to predict the fault (false negative) is more costly than erroneously

predicting a fault (false positive). A number of different approaches have been suggested

and developed to attempt to rectify this issue. The core of most approaches involve either

modifying losses (class weighting), or over/undersampling. An alternative line of thought,

however, is that class rebalancing is not necessary. Instead, decision-threshold-invariant

metrics should be used which are not sensitive to class imbalance.

83

Class Weighting

Class weighting simply increases the gradient for the underrepresented class. This

works well for mildly imbalanced data, but poorly for rarer events. In extremely unbalanced

scenarios, the gradient adjustment necessary to create class parity over an epoch is very

large. Consequently, the gradient descent steps taken when presenting the rare class become

extremely large. Because the gradient constantly changes in the loss surface, gradient descent

relies on taking relatively small steps where the calculated gradient is still (usually) a valid

direction of improvement. Taking very large steps will easily take the model outside of

the region where the calculated gradient of improvement was valid, leading to unstable and

nonimproving models.

Over/undersampling

An alternative approach is to increase the frequency at which examples of the rare

class are presented to the model, or reduce the frequency with which the common class

is presented (oversampling and undersampling respectively). This works better in cases of

extreme class imbalance due to avoiding the pitfall of overly large gradient steps. However,

in cases of extreme class imbalance, simple oversampling means that the same rare class

training examples will be presented to the model many times, creating an easy opportunity

for overfitting. Simple undersampling throws out a significant quantity of data. More so-

phisticated oversampling techniques such as SMOTE [6] create novel minority class samples

by making partial interpolations of similar class members. This works well so long as the

assumption that small interpolated perturbations of similar samples still maintain the identi-

fying data characteristics of the minority class. In general, it is not possible to know whether

this assumption holds a priori, but the technique often shows good results in practice (de-

pending on the metric), and has been successfully applied in deep learning contexts (see [29]

for an example). However, as mentioned, when assessed using threshold-invariant metrics,

class rebalancing techniques often provides no benefit and can even be detrimental. Thus

they should be avoided unless absolutely necessary (for example, when using techniques that

only produce a decision and not a probability or continuous score).

84

Anomaly Detection

Anomaly detection is an important subfield of rare-event problems. Within the litera-

ture, supervised deep anomaly detection methods are directly comparable to rare-event deep

learning methods already discussed. The major differences between rare-event problems in

general and anomaly detection problems specifically tend to be the level of labeled anomalous

event data available, the breadth of anomalous events to be detected, and the desire to be

able to identify novel anomalous events outside of the training data. In anomaly detection

problems, it is common for the level of labeled anomalous data to be too small to effectively

train in a supervised approach, for the goal to be to catch many types of anomalies, and for

the model to have some capacity to flag anomalies even that it has never been trained on

(which requires unsupervised learning). As an example of a common unsupervised deep ap-

proach, consider an autoencoder that is trained solely on non-anomalous examples. A poor

reconstruction score, then, may indicate an anomaly in the input. See [1] for an example

of autoencoder based anomaly detection model, and [24] for an up-to-date survey of deep

anomaly detection methods.

5.2.4 Non-Deep Approaches

As mentioned, a major reason that deep learning approaches often do not exceed

non-deep approaches on tabular data is the great strength of the non-deep methods in

this domain. The current non-deep state-of-the-art for problems such as the case study,

gradient boosted decision tree techniques such as XGBoost ([7]), are extremely powerful.

They continue to see more research and development of specialized and improved methods

for specific problem types such as CatBoost for categorical data [11]. This work would not

exist if not for the work of Liu and Pan [21] who proposed a specialized and effective random

forest algorithm for this large and challenging data set. Even if deep learning eventually

supplants non-deep techniques on large-scale tabular data problems, non-deep methods will

still have many advantages due to having a lighter computational footprint and much smaller

data and development/tuning requirements. Because of these advantages, it will always be

good practice to try non-deep methods on tabular data problems first before investing time

into developing a deep learning model.

85

5.2.5 Deep Learning Approaches to Repairable Systems Literature

Finally, we come to the most directly applicable body of literature: other applications

of deep learning techniques to repairable system problems. Although a relatively special-

ized subfield, the many challenges that these types of problems pose to standard approaches

has led to great diversity of approaches in the literature. Yousefi, Tsianikas, and Coit[28]

approached a multi-system maintenance model from an agentic standpoint, using reinforce-

ment learning to learn an effective repair policy. Chen et al.[8] used a similar strategy on

a multi-state repairable system problem. Nguyen, Khanh, and Medjaher [23] use an LSTM

based network to predict failure times. However, they take the additional step of quantifying

and modeling the costs of imperfect predictions, and what maintenance strategies should be

taken in the face of uncertain information. Wang, Taylor, and Rees [27] performed a recent

two-part review of the field and concluded that the most repairable systems data sets are

too small for DL models to perform strongly, particularly as data is especially in demand

due to imbalanced data where faults are rare. The case study data set, being very large

relative to many data sets that have been so-far published in the literature, is an exciting

opportunity to see if DL methods can overcome the difficulties of the problem domain given

enough data. There is some precedence - NLP deep learning models showed rather stagnant

performance for a long time. Then, they dramatically scaled up in capabilities with larger,

more efficient models trained on more data. It is possible that we might see similar jumps

in performance from other problem domains as we scale up data and model size/efficiency.

5.3 Methods Introduction

5.3.1 Feature/Label Considerations

Perhaps the most important consideration, aside from the gathering of data itself,

when approaching a problem in machine learning is how that data will be defined and

formatted into inputs and outputs. For some problems, such as image labeling, this is very

simple as there are only a few logical arrangements. For problems such as the that described

in this chapter, there may be many valid ways of organizing the data into inputs and outputs

with advantages and disadvantages to each. The choice of output format also constrains and

guides the choice of loss function, the choice of which can easily be the difference between

86

successful or unsuccessful applications.

In this problem, we wish to determine the frequency or time of system failures. The

most direct format for our output then would be to simply categorize each time point as

either failure or non-failure. If this could be done directly with high accuracy, we would

certainly have achieved our goal. However, some thought reveals that this labeling scheme

may be suboptimal from both an algorithmic and practical perspective. Consider that under

such a scheme incorrectly predicting that a failure would happen 1 time step before a real

failure actually occurred, and 1,000 time steps in advance of the nearest failure, are both

equally wrong as measured by the loss function. Clearly, however, the temporal distance

of a failure prediction to an actual failure will be of importance to owners and operators of

repairable systems. Furthermore, since the problem is time-series data, we should expect

temporal patterns in the data leading up to a failure. That is, we should expect data leading

up to a failure event to be similar to each other, and different from data not leading up to

a failure event, in some way that allows prediction of failures to be possible. If we don’t

believe this is true, then we don’t believe that failure prediction from the data is possible in

principle and should move on to another problem. All of this is to say that if we expect that

the data characteristics of time leading up to a failure to differ from data characteristics in

time not leading to a failure, the labeling scheme should reflect this.

However, even acknowledging this we have an infinite variety of differing possible

labeling schemes. For example, we could use the time until next failure, or perhaps the time

until nearest failure, as a label. However, this approach suffers from a different challenge.

Previously, the problem was that the data labeling did not properly account for the expected

presence of detectable (in principle) similarities near to failure events. Now, it fails to account

for the expected similarity of data far from failure events. That is, we do not expect failures

to be predictable an arbitrary amount of time in advance. Suppose for the sake of discussion

that failures were only predictable n time units in advance. If this is the case, then the

characteristics of the input data for any time point more than n units in advance of a failure

should be the same (at least as far as predictive power for the time of the next failure is

concerned). However, using a time-to-next-failure labeling scheme these statistically identical

time points may have very different labels.

87

This brings us to the general principle that should inform any decision for format-

ting data, whether features or labels: data should reflect the functional relationship between

inputs and outputs. Deep neural networks are fundamentally a method of functional approx-

imation. They are themselves deterministic functions connecting inputs to outputs. What

defines a functional relationship is that the same inputs should always have the same out-

puts. When we choose a labeling scheme, we should always try, to the best of our ability,

to choose one that maps similar inputs to consistent outputs. If we fail to do this, we have

given our network an impossible task: if, in the training data, the same input corresponds

to two different outputs, no function can ever be found to map that relationship exactly.

A big problem for DNNs on tabular data is that we often don’t know to what extent

there even is a functional relationship between the input data and the desired labels. This

is in contrast to problems in, for example, computer vision. Although we might not be sure

of what it is, we can be confident that a function exists mapping images of dogs and cats to

labels of dogs and cats. After all, we ourselves can perform that task. Coming back to our

case study, we do not know in advance to what extent the task is even possible, and this adds

considerable complexity to the problem of applying DNNs. For example, it could be the case

that some failures are predictable from the data, and some failures are not. If this is true,

the presence of the non-predictable failures in the same data class as the predictable failures

is effectively noise in the input data that may interfere with learning to predict those failures

that are predictable. But even if we knew this were true, how would we go about separating

non-predictable failures from predictable failures before we had trained a predictive model?

In this work, both time-to-failure and distance-to-failure auxiliary labels are imple-

mented and assessed.

5.3.2 Architecture

A CNN based deep learning method was designed and implemented. CNNs are a

simple and effective architecture for any data with a spatial or temportal structure. In this

case, 1d convolutions are used over the temporal dimension of the dynamic features (treating

the dynamic features as a very tall, single channel image). Padding can be utilized to allow

for inputs of variable length or forecasting. Since the most recent time points are expected to

88

be the most informative of the future, their order is reversed to keep them stationary in the

input. This is so that they are in a constant location from sample to sample, allowing weights

to train more effectively. Static covariates are input in a separate, non-convolutional branch,

then concatenated to the CNN branch’s output before a final MLP head that outputs the

various losses. The target output label will be the next time step’s dynamic covariates, as

well as the direct failure label and the chosen auxiliary label. See Figure 5.1 for an overview

of data organization.

Predicting the next time step, though not the primary goal, is generally useful for

several reasons. Firstly, as shown in [26], auxiliary reconstructive losses can improve model

performance on other labels by enforcing additional information to be carried through the

network. Valuable information is thus potentially made available to the classifier. Addi-

tionally, the ability to predict the next time step may in and of itself produce value, if the

predicted variables are of interest. Lastly, predicting the full next time step makes arbi-

trary forecasting possible, as the current prediction can be used as input for predicting the

next. When using regularization techniques such as weight decay, or adaptive optimizers

such as Adam, the weights of your model used for classification are in competition with the

weights of the model used for other things. Thus, the label losses are weighted so that the

classification loss is never overwhelmed by other losses.

89

Figure 5.1: A diagram illustrating the basic organization of the approach. Dynamic covari-
ates are input with a variable size wi, up to a maximum window size wm, where any extra
space in the input is padded. The most recent timestep (T-1) is always presented first so as
to keep it static in the computation graph. In addition to the dynamic covariates z, and the
fault status y, the auxiliary labels are also used. The dynamic variables are processed by 1d
convolutions, illustrated by the red dotted square. Static and dynamic inputs are combined,
and the outputs consist of the predicted input for the next step, plus the labels and auxiliary
labels.

5.3.3 Feature Embedding

Recently, Gorishny, Rubachev, and Babenko[14] showed that trainable embeddings

of numerical features could have a substantial impact on performance. To see why numer-

ical embedding can improve the model, consider it as akin to an additional preprocessing

transformation. We observe that transforming one number into a mathematically related

number, such as centering a variable around zero and normalizing its variance, can improve

performance. But why not allow the model to learn its own data transformations? This is

exactly what neural networks are always doing – transforming inputs into very large matrices

using learned weights. The novelty is in the type of embedding, and in applying embedding

immediately after input even if you’re using other architectures. For this project, the PLR

– periodic, linear, relu – style of embedding introduced by Gorishny et al. is used. This was

found to be the best overall performer in their study, and periodic activations are particular

90

appropriate for time-series data[13].

5.3.4 Regularization

Regularization is an extremely important aspect of neural networks in general and

on tabular data especially. Neural networks are especially prone to overfitting on tabular

data, leading to an entire body of research into regularization techniques for training neural

networks on tabular data. For example, Kadra et al. [18] investigate a “cocktail” of 13

different regularization techniques, finding that a tuned, regularized multiplayer perceptron

is capable of outperforming XGBoost. However, the reason regularization is so important

to most tabular data problems is that, generally, tabular datasets are small. In this case,

with over 15,000,000 samples, regularization is likely to be less of important, especially if the

data has any random augmentations. Therefore, the model implemented here uses only a

few different regularization techniques: a low level of dropout, model ensembling via moving

average, and the weight decay of AdamW [22].

5.3.5 Measuring Model Performance

Binary classification is a very common problem type, so it is not surprising that

many different metrics to assess classifiers under different criteria. For severely unbalanced

datasets, however, many traditional metrics become misleading. The simplest example is

the accuracy, where simply predicting the majority class all the time leads to a very high

accuracy. If pure accuracy is all one is looking for, this is fine. But in most rare event

problems the detection of the rare event is far more valuable – and missing it far more costly

– than detecting true positive and finding false positives. To accommodate this fact, we

can take any existing classifier that outputs probabilities and simply change the threshold

at which we classify something in the positive class. But this will radically change most

metrics, despite the fact that nothing has changed about the predictive model. What is

required is a method to assess model performance without dependence on a particular choice

of threshold – a threshold independent evaluation metric. One of the most widely used and

best studied such metrics is the Area Under the Curve or AUC, as applied to the Receiver

Operator Characteristic (ROC) curve or the Precision Recall (PR) curve. Briefly, the AUC

91

method integrates the chosen curve over all choices of threshold. Because it integrates over

all threshold values, it is not dependent on any particular one. The ROC curve is the true

positive rate over the false positive rate and has the property that it is insensitive to class

imbalance. A random classifier achieves an ROC AUC score of .5, while a perfect classifier

achieves a score of 1. The PR curve is, as the name suggests, a curve of precision over

recall. Precision is the fraction of all positive predictions that are true, while recall, or

sensitivity, is the fraction of all positive cases that are identified correctly. Although PR

is threshold independent, it is not insensitive to class imbalance. The PR AUC score of a

random classifier is the percentage of positive samples in the population, while the PR AUC

score of a perfect classifier is also 1. Because the two scores measure different things, both

are used here to assess model performance.

5.3.6 Class Balancing

This project does not use class rebalancing methods. In the planning phase for this

project, class weights and undersampling/oversampling were suggested to address the heavy

class imbalance of the data set. These methods are simple to implement and can give appar-

ently great performance improvements on many metrics that are sensitive to data skew. They

are correspondingly extremely popular. However, as discussed above, all of these gains can

also be had by simply setting an appropriate decision threshold, without needing to change

the model at all. The only time these methods produce true value is if you are bound to use

the decisions output by a model directly with no choice of threshold – which can be the case

for certain types of classifiers that only output a decision and not a score. However, in any

case where you can simply choose the threshold, weight scaling is very much equivalent to

simply choosing a different threshold. And when using a metric that is insensitive to skew, as

suggested by Jeni et al.[17], it is quickly found in practice that class rebalancing techniques

provide little benefit or even some detriment. Consider that none of these techniques add

any information to the model. Undersampling even removes data, and oversampling/weight

scaling distort true and useful information on the base rates of classes, which can lower PR

score. To the extent that class imbalance is a true fact about the world, it is information

the model should actually use. Thus, despite the large body of literature on them and their

92

frequent usage, the vast majority of class imbalance mitigation techniques may be worse

than useless. Class imbalance is only a problem when it leads to an insufficient amount of

samples of your minority class, so that generalization is impossible. The solution is getting

more data, not trying to distort existing data. There is one exception to the rule, which

are those methods such as SMOTE (Synthetic Minority Oversampling TEchnique)[5] that

can add additional information to the model. SMOTE produces its samples through com-

binations/interpolations of existing minority class samples. But the value SMOTE brings,

when it brings value, comes from data augmentation, not from correcting the class imbal-

ance. And in fact, when used as a pure data augmentation technique, SMOTE can just as

easily be applied to the majority class as well. It will actually work better because the larger

number of majority class members means that nearest neighbors are usually closer together,

and interpolations are more likely to produce in-distribution synthetic members. But even

SMOTE, when measured using threshold insensitive metrics, rarely significantly improves

models. This is because if the assumptions behind SMOTE are false (that is, if the chosen

interpolations/combinations of samples create out-of-distribution examples), then SMOTE

makes the model worse; and if the assumptions are true, then interpolation works, and an

effective classifier will discover this and already score points in the interpolated region as the

correct class when the threshold is set correctly. In other words, by design SMOTE produces

the most likely to be in-distribution examples – these are safely inside regions of the input

space that are already correctly classified. SMOTE rarely produces the sorts of close-to-the-

boundary examples that actually help clarify decision boundaries, and by flooding the input

with safe picks SMOTE may actually encourage overfitting, pushing the decision boundary

away from the true manifold and worsening generalization outside of the training set. As a

result of these issues and many pilot runs (data not shown) where various imbalance correc-

tion techniques did not improve the model as measured by threshold-invariant metrics, the

final model does not use any kind of over/undersampling or class weights.

5.4 Methods Specification

Several deep learning binary classification models were trained on the data. Labels

were 1 for failures and 0 for non-failures. Samples were prepared via the sliding window

93

method, with the chosen window size being seven based on pilot runs. The time gap for

prediction was 0 (that is, we attempt to predict the label of the next point with no other

points in between). None values (only present in the static covariates at low rates) were

replaced with . For the marked variable input experiment, the input had varied forecast

from 0 to 4 timesteps and varied sequence input length from 1 to 20, zero padding used

as described above to fill the sequence. The dataset was split 80-20 into train-test datasets

either according to time or to sites. The model also was trained using auxiliary labels, which

were either time-to-failure or distance-to-failure. Auxiliary labels were scaled uniformly to

be between 0 and 1, and also inverted so that failure is the positive class. Both distance and

time-to auxiliary labels were capped at a maximum size – this maximum size was also used to

fill any time points where calculation of the true auxiliary label was impossible (e.g. at sites

with no failures, time-to-failure and distance-to-failure are ill-defined). In addition, model

also predicts the next time point features for all dynamic features. Losses used were mean

squared era for all outputs except the labels, which use binary crossentropy. The auxiliary

label and label losses are further scaled relative to the other losses. The AUC of the ROC

and PR curves are used as metrics for both types of labels.

The deep learning architecture utilized the periodic-linear-relu embedding as intro-

duced by Gorishny at al. [14]. The architecture was as follows: on the dynamic inputs

branch, periodic-linear-relu embedding on the inputs, followed by 3-layer 1-d convolutional

blocks optionally ending with pooling (final model had no pooling). Padding was employed

to maintain input size. The static inputs were concatenated to the output of the convolu-

tional block before being flattened. A final 2-layer MLP block follows before the output.

Activation of all dense and convolutional layers except the outputs was the Gelu activation

function. The model has 351,318 trainable parameters. Hyperparameters were determined

using hyperband[19] search (factor 6, max epochs 500, labels AUC as metric) in Keras tuner.

The final values also received some final manual tuning after the tuner search. The model

was trained using the AdamW cite optimizer, which also provides weight decay. The model

also employed model averaging using the moving average with .99 decay. Batch size was

2048. Models were trained to convergence (4-6 epochs). Additionally, XGBoost[7] models

were trained on the data for comparison. Due to computational constraints, only a limited

94

amount of manual tuning was performed on the XGBoost model, the parameters of the best

performing model were as follows: learning rate=.01; n estimators=5,000; max depth=4;

min child weight=6; gamma=0; subsample=.8;colsample bytree=.8; reg alpha=.005; 1.

Hyperparameter Possible Values Searched Final Model

Linear Embed Dims 1 to 8 3
Conv Layer Filters 8 to 256, step 16 152
Conv Filter Size 1 to 7, 3 160
Learning Rate .01 or .001 .001

Number Conv Blocks 1 to 2 1
Conv Pooling Max, Avg, or None None

MLP Hidden Units 128 to 256, step 16 160
Label Loss Scale 25 to 85, step 30 250
Aux Loss Scale .1 to 1 4
Weight Decay 3e-9 to 3e-3, log sampling .0

PLR Periodic Dim 1 to 24 11
Embedding Type PLR, LR, None PLR

Dropout .1 to .5 .1
PLR Sigma .1 to 10, log sampling 27616

Table 5.1: Table showing search space and results of hyperparameter tuning. Some final
values fall outside the search range due to manual tuning afterwards. *Auxiliary label
scaling was implemented after the search, requiring this to be changed manually.

5.5 Results

See Table 5.2 for a summary of the results of the model under different data config-

urations. Table 5.3 further shows the AUCs for the auxiliary labels - note that these are

calculated using the binary labels as the true values, but the auxiliary label predictions as

the prediction. See Table 5.4 for results of additional models and experiments. The static

only model has only the static covariates as input, while the dynamic only model has only

the dynamic covariates. Figure ?? shows the representative ROC and PR curves for some

of the models - the curves of models not shown with similar ROC and PR AUC values have

similar shapes.

Aux Type Data Split Max Aux Value ROC AUC PR

Time-to-failure Time 20 .5784 .0036
Distance-to-failure Time 20 .5795 0.0036
Distance-to-failure Site 20 .5720 .0034
Distance-to-failure Time 10 .5792 .0036

Table 5.2: The results of different data configurations for the deep model.

1For any parameter not noted, the default value was used, see
https://xgboost.readthedocs.io/en/stable/parameter.html for a full list of parameters.
Accessed 7/19/2022.

95

Aux Type Data Split MaxAux Value Aux ROC AUC Aux PR AUC

Time-to-failure Time 20 .5476 .0032
Distance-to-failure Time 20 .5722 .0035

Table 5.3: Table showing the distance between the results of the two auxiliary labeling
scheme assessed using the auxiliary labels as the classifier score.

Experiment Aux Type Data Split Max Aux Value ROC AUC PR

Random Seq/Forecast Distance Time 20 .5700 .0033
Static Cov. Only Distance Time 20 .5801 .0036

Dynamic Cov. Only Distance Time 20 .4981 .0026
XGBoost Default NA Time NA .5595 .0033
XGBoost Tuned NA Time NA .5727 .0035

Table 5.4: Table of results for additional models and configurations.

Figure 5.2: A figure displaying representative curves for the models. The black line represents
chance performance.

5.6 Discussion

5.6.1 Model Performance

While not good in absolute terms, the final deep learning model achieved results that

were noticeably above a random model (on PR AUC a random classifier scores .0026). This

96

is a good result when considering how challenging the dataset is expected to be. This is a

problem and dataset where the predictive power of the features on the labels is unknown.

Therefore, any result that is better than random chance is a potentially valuable finding,

indicating that the features do, in fact, have at least some predictive value. Frustratingly, for

datasets like this it is impossible to know just how much predictive power the features have

until a model is made. Achieving a given level of predictive power in a model shows that the

features have at least that much predictive value, but it is not possible to definitively say

how much more accurate a model is possible. Thus, the model produced here could be very

close to the best possible model for the given features, or very far. But, since machine failure

is a highly complex stochastic process with many factors leading to it, it seems unlikely that

input data that consists of only 7 dynamic process variables and 8 static site variables could

pin it down with high precision (and high recall2).

XGBoost achieved comparable ROC and PR AUC scores to the deep learning model.

Of course, the results shown can not definitely show that XGBoost, much less gradient

boosted tree methods in general, can not do better than the deep model. Although XGBoost

usually compares favorably to deep learning models in terms of speed of training, in this case

the opposite was true due to the massive 15,000,000 sample dataset. XGBoost trains quite

a bit more slowly than the deep learning model - which converges in just a few epochs -

making tuning extremely costly in terms of time - the best performing tuned model took 12

hours to train. Because XGBoost was not the focus of this project, it was decided not to

spend much time tuning it.

5.6.2 Data Troubles - Is the problem possible?

Performance was largely unchanged whether the training and test data was split

by site or by time. Theoretically, it would be expected that site based splitting would be

more difficult than time based splitting, as the network would be unable to learn patterns

specific to the sites in the validation set it had never encountered. The lack of difference

could be explained in two ways. First sites could just be an unimportant factor, so no

difference is expected. Second, they could be an important factor, but in a way that is

2I apologize for this joke.

97

well captured by the static covariates so that the model can learn to generalize to new

sites. However, experimentally removing static covariates from the input showed a dramatic

decrease in performance, suggesting their importance. Thus, it seems that while site is an

important factor, its importance can be well-characterized by the static covariates. The drop

in performance without the static covariates was nearly to chance, suggesting that much of

the predictive power of the model comes from the static covariates which do not vary over

time (e.g. sites vary in overall rate in a way determined by the static covariates, but the

dynamic covariates over time are not very informative).

This is an extremely troubling finding - if it is the case that the dynamic covariates

have no or little impact on the rate of failure, then the dataset is not very valuable as a test

case. It turns the problem from a time series problem with >15,000,000 data points into a

much less interesting per-site failure rate regression problem with only 8,232 examples.

The random forecast and sequence length model did not cause much performance loss

despite the problem possibly becoming harder due to variable length prognostication and

inputs. However, when we consider the finding above that the static covariates are providing

most of the predictive value, it becomes unsurprising. After all, the static covariates are

time insensitive, so if all the predictive power of the model is based on them it does not

matter how many dynamic time steps are included or how many time steps in the future

the model is predicting. Unfortunately, because it uses random augmentation of the data,

offline preprocessing and caching was not nearly as applicable to this approach. As a result,

it trained significantly more slowly than any other model (6 times), and so was not used for

tuning or comparative experiments. Additionally, as is the case with the auxiliary labels,

there isn’t a clear equivalent when training a gradient boosting tree to training a deep

learning model with random augmentations or regularization. It is impractical to try and

generate every possible result of a random input transformation to use in a gradient boosted

tree model, but also unclear how many would need to be used to have a fair comparison to

a deep learning model trained with such data.

The design and tuning of the deep learning model was informative, but also tarnished

by the issues with the dynamic covariates. The periodic-linear-relu embedding from Gorishny

et al.[14] seemed effective, but as the embedding was only applied to the dynamic covariates,

98

which may be unimportant, it’s possible that this improvement was an artifact of some

kind. The best model was not very large nor very deep, perhaps due to the limited size

of the input data (a window of 7 on 7 dynamic covariates, plus 8 static, for a total of 57

inputs; in contrast, the single channel 28x28 MNIST [10] images produce 784 inputs), or

simply the limited predictive power of the features. Other factors, however, led to more

surprising findings. Firstly, in contrast to Kadra et al.[18], high regularization ended up

being unimportant if not detrimental to model performance - the best parameter for weight

decay during tuning was so low that it was decided to discard it entirely. This contrasting

finding is probably due to two factors. First, the very large size of the dataset relative to

the parameter count. With 15 million inputs samples and only around 300,000 trainable

parameters, it is difficult to overfit on specific samples. Second, the weak signal of the data

and the rare event nature of failures. If the predictive power of the model comes largely

through the time-insensitive static covariates, then the model must accumulate statistical

information on the rates of failures given certain values of the covariates over the entire very

large data set. With weight decay on every step, it becomes extremely difficult for the model

to properly accrue accurate statistics over 15,000,000 data points as data representations are

constantly being decayed. Although extensive regularization cocktails proved unnecessary,

a small dropout value and moving weight averaging was still useful. However, the lack of

regularization might have prevented beneficial output interactions from arising.

Auxiliary Label Discussion Barring perfect classification, the ideal form of a classifier

should take the form of a well calibrated probability of failure at each time point. The

ideal training data for such a classifier would be the true probability of failure at each point.

However, since this is unknown, the next-best training data is the closest approximation that

can be made. From this perspective, treating time points as if they have point probabilities

of 1 or 0 as actual ground truth probabilities is extremely unrealistic. This is the inspiration

for alternative labeling schemes. What we would like to do is replace the point labeling

scheme with a different one that more closely approximates the true probabilities of failure

at each time point. The challenge faced here is to try and estimate the probabilities of a

nonhomogeneous Poisson process where the rate is a function not of time, but the observed

99

process data3.

In the very likely case where certain signifiers in the data make a failure more likely

to occur, but not deterministically at a certain time, binary labels are unrealistic. That is

to say, a failure happens at a certain specific time t. However, it was probably also very

nearly as likely to have happened at time t-1 or t+1. If this is the case, it does not make

sense to label t-1 and t+1 with the complete opposite class as t, considering that they have

nearly the same chance of failure. This issue is exacerbated the more fine grained the time

steps are. Consider the same exact log of a machine operating normally for 10 hours with

one failure. If the log is recorded in hours, there is 1 failure for 9 non-failure time points. If

the log is recorded in minutes, then there is 1 failure for 599 non-failure time points. One

unfortunate aspect of this data set is that it is not known exactly on what time scale it was

recorded.

What properties does the rate function have? One possibility is that the rate is mostly

driven by wear and tear. In this model, the probability of failure rises over time in some

manner until a failure happens. Then, maintenance of at least some parts occurs, and the

machine is restarted. After restarting, the probability of failure is at some reduced level due

to the maintenance. A good labeling scheme should be time to next failure as it has many

of the same properties. It decreases (indicating rising probability of failure) as we approach

a failure, then resets afterwards to a high level (decreased probability). The most significant

part of this model is that the probability of failure over time is discontinuous. The time

points after a failure label should have decreased probability of failure, and the time points

before a failure label should have an increased probability of failure.

An alternative model is to think that the failure pdf is mostly defined by transient

phases in operation or environment. That is, the true probability of failure is driven by things

like the current speed we are running the drill, or perhaps the type of soil we are drilling

through, or if it is a pump what part of the pumping cycle, or any other sorts of operational

characteristics we can image. Or perhaps restarting a well is a high-stress operation for the

equipment. The key difference from the above model is that under this sort of scheme the

3To further connect the idea the NHPP vs. binary classification: a binary labeling scheme
is equivalent to asserting that the rate of the NHPP is 1 for the time step a failure occurs
and 0 everywhere else. Of course this is not true which is exactly why we want better labels.

100

rate function over time mostly looks like a series of peaks and valleys, and restarting the

machine after a failure does not reset the probability of failure to a lower level. Under this

model, the time points immediately after a failure still likely have an elevated chance of

failure. A good choice of labeling scheme, then, would be something like distance to failure.

Under a distance to failure labeling scheme, points before and after failures are considered

to have an increased probability of failure.

It seems likely that both of these models are at least partially true. However, despite

this, no auxiliary labeling schemes performed better than binary labels. Given the results

of the static covariate experiments, it seems likely that the dynamic covariates are actually

uninformative about the rate. Thus, almost all of the above chance performance of the model

is just from time-insensitive rate estimates arising from the static covariates. Since the entire

point of the alternative labeling scheme was to more realistically model the relationship of

the rate function and the dynamic covariates over time, if there is no relationship in the

first place it is unsurprising that there is no improvement. However, the distance labels

performed noticeably better than the time-to-failure labels. It’s possible that this indicates

that the rate of failure does not decrease after a failure, or it may be due to time-to-failure

not being centered around the failure labels (introducing a bias to predict labels too early).

Throughout various configurations during the tuning process (data not shown), no

evidence was seen of substantial interaction between the different prediction variables - that

is, the inclusion of additional losses didn’t seem to affect the final scores of the other losses

at convergence either positively or negatively. This is in contrast to the finding of many

other papers using auxiliary losses (see, for example, [26]). Ideally, the different outputs

and losses should result in intertwining flows of information within the model that augment

each other. In practice, this did not occur. Certainly, and especially given the finding with

static covariates, a major possibility is that there may genuinely not be very many genuine

relationships between the different inputs and outputs of the model. Another possibility

is that this is due to the lack of any weight decay or penalty. Weight penalties/decay

encourages weight sparsity, thereby driving the model to use the same weights for multiple

purposes when possible, increasing interaction between different parts of the model. Since

the final model had no weight decay, it has no incentive in early training to share weights

101

over different sections of the model. During early training, the different loss gradients likely

segregate into disjoint model flows for the different output predictions. During the later

phases of training, interactions would be unlikely to arise as the different loss prediction

pathways are already well established and independent, so there is little gradient crossover.

5.6.3 Future Work

Unfortunately, as far as can be determined from the models attempted here, the

dynamic covariates have very little bearing on failure rate. If this is true, there is not much

more to be done with it. Despite having some favorable properties as an experimental dataset

due to its large size, if there is no relationship between the dynamic variables and the labels

there is little reason to continue to develop models based on this data.

Training and computation limits were also an issue with the random prognostication

and sequence length input data. While this model did seem promising, in that it maintained

relatively close performance to the fixed window models while enabling inputs of different

sizes and predictions at various points in the future, it was much more time consuming

to train due to the need to dynamically generate and modify input data. This is a very

attractive property, and also a major advantage over many tree-based models, where such

capability would require training different models for each input length and advance forecast

time. Methodological improvements that make training on this type of input more efficient

would enable better exploration of these types of models.

5.6.4 Conclusion

A deep learning approach to a difficult failure prediction problem on a real-world

dataset was developed and applied. The final model matched or exceeded the performance

of XGBoost, a powerful tree-based method often providing state-of-the-art performance for

tabular data classification problems, in a small test. However, since tuning of both models

was limited by computational capacity, further investigation is needed to better establish

the relative performance of the different approaches.

The results of the developed models seem to suggest that the dynamic covariates are

not very useful for predicting the failure rate, and that most of the predictive power came

102

from the static covariates. Unfortunately, this indicates that predicting the failure rates from

the features of this dataset in a time-sensitive manner is fundamentally not an achievable

goal.

5.6.5 Acknowledgements

This material is based upon work supported by the National Science Foundation

under Award No. OIA-1946391.

Any opinions, findings, and conclusions or recommendations expressed in this material

are those of the author(s) and do not necessarily reflect the views of the National Science

Foundation.

References

[1] J. An and S. Cho. “Variational autoencoder based anomaly detection using reconstruc-
tion probability”. In: Special Lecture on IE 2.1 (2015), pp. 1–18.

[2] S. O. Arık and T. Pfister. “Tabnet: Attentive interpretable tabular learning”. In: arXiv
(2020).

[3] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin. “A neural probabilistic language
model”. In: Journal of machine learning research 3.Feb (2003), pp. 1137–1155.

[4] V. Borisov, T. Leemann, K. Seßler, J. Haug, M. Pawelczyk, and G. Kasneci. “Deep
neural networks and tabular data: A survey”. In: arXiv preprint arXiv:2110.01889
(2021).

[5] K. W. Bowyer, N. V. Chawla, L. O. Hall, and W. P. Kegelmeyer. “SMOTE: Synthetic
Minority Over-sampling Technique”. In: CoRR abs/1106.1813 (2011). arXiv: 1106.
1813. url: http://arxiv.org/abs/1106.1813.

[6] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. “SMOTE: synthetic
minority over-sampling technique”. In: Journal of artificial intelligence research 16
(2002), pp. 321–357.

[7] T. Chen, T. He, M. Benesty, V. Khotilovich, Y. Tang, H. Cho, et al. “Xgboost: extreme
gradient boosting”. In: R package version 0.4-2 1.4 (2015), pp. 1–4.

[8] Y. Chen, Y. Liu, and T. Xiahou. “A Deep Reinforcement Learning Approach to Dy-
namic Loading Strategy of Repairable Multistate Systems”. In: IEEE Transactions on
Reliability (2021).

[9] Z. Cui, W. Chen, and Y. Chen. “Multi-scale convolutional neural networks for time
series classification”. In: arXiv preprint arXiv:1603.06995 (2016).

[10] L. Deng. “The mnist database of handwritten digit images for machine learning re-
search”. In: IEEE Signal Processing Magazine 29.6 (2012), pp. 141–142.

[11] A. V. Dorogush, V. Ershov, and A. Gulin. “CatBoost: gradient boosting with categor-
ical features support”. In: arXiv preprint arXiv:1810.11363 (2018).

[12] G. R. Garcia, G. Michau, M. Ducoffe, J. S. Gupta, and O. Fink. “Time series to im-
ages: Monitoring the condition of industrial assets with deep learning image processing
algorithms”. In: arXiv preprint arXiv:2005.07031 (2020).

[13] L. B. Godfrey and M. S. Gashler. “Neural decomposition of time-series data for effective
generalization”. In: IEEE transactions on neural networks and learning systems 29.7
(2017), pp. 2973–2985.

103

[14] Y. Gorishniy, I. Rubachev, and A. Babenko. On Embeddings for Numerical Features
in Tabular Deep Learning. 2022. doi: 10.48550/ARXIV.2203.05556. url: https:
//arxiv.org/abs/2203.05556.

[15] Y. Gorishniy, I. Rubachev, V. Khrulkov, and A. Babenko. “Revisiting Deep Learning
Models for Tabular Data”. In: arXiv preprint arXiv:2106.11959 (2021).

[16] S. Hochreiter and J. Schmidhuber. “Long short-term memory”. In: Neural computation
9.8 (1997), pp. 1735–1780.

[17] L. A. Jeni, J. F. Cohn, and F. De La Torre. “Facing Imbalanced Data–Recommendations
for the Use of Performance Metrics”. In: 2013 Humaine Association Conference on
Affective Computing and Intelligent Interaction. 2013, pp. 245–251. doi: 10.1109/
ACII.2013.47.

[18] A. Kadra, M. Lindauer, F. Hutter, and J. Grabocka. “Well-tuned Simple Nets Excel
on Tabular Datasets”. In: Thirty-Fifth Conference on Neural Information Processing
Systems. 2021.

[19] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar. “Hyperband:
A novel bandit-based approach to hyperparameter optimization”. In: The Journal of
Machine Learning Research 18.1 (2017), pp. 6765–6816.

[20] Y. Li, N. Du, and S. Bengio. “Time-dependent representation for neural event sequence
prediction”. In: arXiv preprint arXiv:1708.00065 (2017).

[21] X. Liu and R. Pan. “Analysis of large heterogeneous repairable system reliability data
with static system attributes and dynamic sensor measurement in big data environ-
ment”. In: Technometrics 62.2 (2020), pp. 206–222.

[22] I. Loshchilov and F. Hutter. Decoupled Weight Decay Regularization. 2017. doi: 10.
48550/ARXIV.1711.05101. url: https://arxiv.org/abs/1711.05101.

[23] K. T. Nguyen and K. Medjaher. “A new dynamic predictive maintenance framework
using deep learning for failure prognostics”. In: Reliability Engineering & System Safety
188 (2019), pp. 251–262.

[24] G. Pang, C. Shen, L. Cao, and A. V. D. Hengel. “Deep learning for anomaly detection:
A review”. In: ACM Computing Surveys (CSUR) 54.2 (2021), pp. 1–38.

[25] S. Popov, S. Morozov, and A. Babenko. “Neural oblivious decision ensembles for deep
learning on tabular data”. In: arXiv preprint arXiv:1909.06312 (2019).

[26] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich. “Going deeper with convolutions”. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. 2015, pp. 1–9.

[27] W. Wang, J. Taylor, and R. J. Rees. “Recent Advancement of Deep Learning Appli-
cations to Machine Condition Monitoring Part 1: A Critical Review”. In: Acoustics
Australia (2021), pp. 1–13.

[28] N. Yousefi, S. Tsianikas, and D. W. Coit. “Dynamic maintenance model for a repairable
multi-component system using deep reinforcement learning”. In: Quality Engineering
(2021), pp. 1–20.

[29] H. Zhang, L. Huang, C. Q. Wu, and Z. Li. “An effective convolutional neural network
based on SMOTE and Gaussian mixture model for intrusion detection in imbalanced
dataset”. In: Computer Networks 177 (2020), p. 107315.

[30] Y. Zhu, T. Brettin, F. Xia, A. Partin, M. Shukla, H. Yoo, Y. A. Evrard, J. H. Doroshow,
and R. L. Stevens. “Converting tabular data into images for deep learning with con-
volutional neural networks”. In: Scientific reports 11.1 (2021), pp. 1–11.

104

6 Conclusion

As our world becomes more and more data-driven, machine learning will continue to

have a greater and greater role to play in our society. When it is successful, deep learning has

the ability to produce powerful models from data without requiring any knowledge of what

functions connect the data to the desired output. The extraordinary potential of this power

is only beginning to be unleashed. Deep learning straddles many areas traditionally in the

domain of industrial engineers and is applicable to a wide variety of industrial and systems

engineering problem domains. In this dissertation, several different applications of deep

learning applied to practical and theoretical industrial engineering problems are presented.

First, in the domain of absolute visual geolocation from aerial photography, a convolutional

neural network model is successfully developed and applied. Then, that model was refined

and thoroughly investigated, ultimately yielding techniques and suggestions to improve its

capacity, accuracy, calibration, and practicality. Lastly, a deep learning model was applied to

a complex and extraordinarily challenging dataset matching the performance of state-of-the-

art methods like XGBoost, and although it ultimately revealed that the dataset was not well

suited to the task, this too is a finding. Above all, the process of developing and applying the

techniques and methodologies described in these projects, even when they did not produce

the desired result, has expanded my capacity as an industrial and systems engineer.

105

	Deep Learning Applications in Industrial and Systems Engineering
	Citation

	tmp.1671480363.pdf.rNHMU

