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Abstract 

Networks provide a variety of critical services to society (e.g.  power grid, 

telecommunication, water, transportation) but are prone to disruption. With this motivation, we 

study a sequential decision problem in which an initial network is improved over time (e.g., by 

adding or increasing the reliability of edges) and rewards are gained over time as a function of 

the network’s all-terminal reliability.  The actions during each time period are limited due to 

availability of resources such as time, money, or labor. To solve this problem, we utilized a Deep 

Reinforcement Learning (DRL) approach implemented within OpenAI-Gym using Stable 

Baselines. A Proximal Policy Optimization (PPO) was used to identify the edge to be improved 

or a new edge to be added based on the current state of the network and the available budget. To 

calculate the network’s all-terminal reliability, a reliability polynomial was employed. To 

understand how the model behaves under a variety of conditions, we explored numerous network 

configurations with different initial link reliability, added link reliability, number of nodes, and 

budget structures.  We conclude with a discussion of insights gained from our set of designed 

experiments. 
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Introduction  

Networks are used in all facets of our lives. Ensuring networks operate properly is critical 

so that everyone can go about their daily activities such as driving on a network of roads, 

utilizing a communication network, and using appliances in their house which are supplied by 

the power network. These are just a few of the infrastructure networks on which everyone 

depends. If they are not reliable, many people will suffer the consequences.  

Historically, many failures in infrastructure have occurred which have caused issues for 

many people. One well-known example is the 2003 Northeast blackout. According to 

History.com [13], This blackout was caused by a software issue and affected fifty million people 

in the United States and Canada. Other failures in infrastructure networks include the nuclear 

disaster at Three Mile Island in Pennsylvania and the levee failure in Louisiana during Hurricane 

Katrina. The Three Mile Island disaster was caused by a failure in one of the components in the 

plant and it caused the rest of the system to shut down. According to the U.S. NRC [44], this 

component failure caused a partial nuclear meltdown which affected thousands of people in the 

area surrounding the plant. According to Pruitt [34], the levees in Louisiana were not adequately 

prepared to handle the water from Hurricane Katrina, thus, they breeched due to the pressure and 

caused much of New Orleans to flood. These are just a few examples of the many infrastructure 

failures in the United States. Infrastructure failures are very serious to the people affected as they 

can cause serious injury or death in some cases. These examples show us how essential it is to 

ensure infrastructure networks are reliable. 

A network in its simplest form is a collection of nodes which are connected by edges. 

Many of the everyday items we use are connected in a network. Different network types 

according to Newman [32] are detailed in Table 1. 
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Network Type Description Examples 

Technological The physical infrastructure 

networks that form the 

backbone of our society 

Internet (physical 

connections), infrastructure 

networks (i.e. transportation, 

telephones, power grid) 

Information Networks of data linked 

together 

World Wide Web (web pages 

are nodes and links are edges) 

Social A network of people 

connected through modes 

such as friendship 

Social Media Platforms 

Biological Networks occurring naturally 

in biology 

Food webs and neural 

networks 

 

Table 1: Types of Networks 

 

Networks can either be directed or undirected. Directed networks have a specified 

direction of travel. They only allow one-way travel along the links. Undirected networks do not 

have the one-way travel restriction directed networks have. Examples of undirected networks 

include social networks and most transportation systems such as highways. Directed networks 

include the World Wide Web and food webs or a system of food chains. Figures 1 shows an 

undirected network, so information can travel in any direction along the links. Figure 2 shows 

the exact same network structure, but the links are directed, so the flow is limited to the direction 

of the arrows. 
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Figure 1: An undirected network   Figure 2: A directed network 

 

Networks are widely used to model infrastructure systems to help make them easier to 

understand. Milanovic & Zhu [31] use complex network theory to model the cyber-physical 

network. Goldbeck et al. [16] modeled the optimal response to disruptions in infrastructure 

systems by simulating the network and its assets. Because of the complexity of infrastructure 

systems, modeling them using networks allows them to be explained more easily. This is 

especially important when trying to calculate system reliability. The network reliability is the 

probability a network is performing its intended function at a given point in time. Hui [19] 

describes two-terminal reliability, the most basic measure of network reliability, as the 

probability of having at least one operational path between two nodes. In any system where 

failures occur, studying network reliability is useful and sometimes vital to guarantee safety is 

the top priority. Ensuring a network will perform its intended function is critically important for 

most systems especially infrastructure networks which control the everyday functioning of our 

lives. 

 Network reliability has been studied in detail for a variety of applications and using many 

different techniques. Network reliability was initially studied on a small scale using simpler 
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techniques which did not present much of a challenge computationally. As the networks being 

studied became more complex, more sophisticated techniques were developed to handle the 

more computationally intensive networks. Each of the techniques used provide either the exact 

reliability or an approximation. Some of the most popular techniques used to study network 

reliability are Monte Carlo Simulation (MCS), complete or partial enumeration of path sets and 

cut sets, artificial neural networks, and bounding the reliability of the system. These techniques 

will be discussed in more detail in the literature review.  

 Calculating the all-terminal reliability of a basic network is relatively simple for a series-

parallel network such as the one in Figure 3. However, it becomes much more complicated for 

other types of networks and when more nodes and links are added. Figure 3 shows a basic 

network with four nodes and five links. For each of the links, a reliability is shown. To calculate 

the all-terminal reliability, we calculate the probabilities of the network for all network states 

where all nodes remain connected. For example, the probability of the system for the state where 

all edges are working is 0.85*0.8*0.95*0.9*0.75 = 0.43605. Table 2 below has the rest of the 

calculations. When we sum all the probabilities, we get that the all-terminal network reliability is 

0.9414. 

Figure 3: An example of a two-terminal network 
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Configuration Probability 

All working 0.43605 

1-3 failed 0.07695 

3-4 failed 0.109013 

1-4 failed 0.02295 

1-2 failed 0.04845 

2-4 failed 0.14535 

1-3, 1-4 failed 0.00405 

1-3, 1-2 failed 0.00855 

1-3, 2-4 failed 0.02565 

3-4, 1-4 failed 0.005738 

3-4, 1-2 failed 0.012113 

3-4, 2-4 failed 0.036338 

1-4, 1-2 failed 0.00255 

1-4, 2-4 failed 0.00765 

 

Table 2: Reliability Calculations 

 

One of the biggest issues when analyzing network reliability is the vastness of the 

networks. As the size of networks grows, analyzing them efficiently becomes more difficult. 

Existing techniques do not possess the capabilities to compute network reliability in a timely 

manner. Previous research has also examined the difficulty of synthesizing reliable networks. 

This problem is more complex as it requires repeated evaluation of network reliability. 
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Motivated by this limitation, machine learning techniques have been developed for the purpose 

of optimizing network reliability. One machine learning approach which may be able to help 

solve this problem is reinforcement learning (RL). Reinforcement learning makes decisions 

based on a rewards system for taking certain actions. The actions we will take aim to improve the 

reliability of the network over time. This improvement over time is known as reliability growth. 

Studying the effects of certain actions on the reliability growth of the network will be an 

important aspect of our research. 

 

Research Motivation 

The objective of this research is to apply reinforcement learning to optimize the 

allocation of resources to improve the reliability of infrastructure networks. Financial constraints 

are a challenge for every network, but they are especially prevalent when designing 

infrastructure networks. The limitations these resource constraints present makes the process of 

designing reliable networks more difficult. In our research, analogous to a reliability growth 

paradigm, we develop an approach to improve the network reliability of an infrastructure system 

and evaluate the optimal way to allocate the resources available to maximize the all-terminal 

reliability of the network. Adding the challenge of optimizing our resource allocation makes an 

already challenging reliability evaluation problem even more difficult. By undertaking this 

challenge, our research aims to optimize the available resources to make the networks more 

reliable in the future.  
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Literature Review 

 A literature review was performed to explore previous research in the areas of network 

reliability, machine learning, and reliability growth. The literature review highlights different 

approaches for finding network reliability, details the numerous difficulties for solving these 

problems, and hones in on a specific approach which appropriately fits our research problem. 

1. Network Reliability 

 To establish the type of network we are interested in exploring, we can classify networks 

into different groups. Ball [4] discusses network reliability models and their varying levels of 

complexity. The complexity depends heavily on the connectivity of the network. There are three 

main types of network reliability problems:  2-terminal, k-terminal, and all-terminal. The 2-

terminal and all-terminal cases are special cases of the k-terminal problem. The k-terminal 

reliability problem has k terminal nodes and a root node, s. In general, the reliability of a k-

terminal system is the probability that the root node is connected to every other terminal node. 

For 2-terminal reliability, the system has only two nodes and the reliability of the system is the 

probability they are connected. All-terminal simply means every node is connected to every 

other node. The reliability is the probability the system is fully connected. Calculating the 

reliability of the system becomes computationally challenging the more nodes and links are 

added to the network, making all-terminal reliability problems the hardest. 

 Provan & Ball [33] found the all-terminal network reliability calculation to be a #P-

complete problem meaning the computational difficulty grows exponentially when more nodes 

and links are added to the network. To help analyze this problem, numerous methods for 

calculating network reliability have been used. These methods provide either an exact value or 

an estimate of the reliability. Examples of these methods are artificial neural networks, 
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estimating bounds, Monte Carlo simulation, optimization, time exponential and polynomial time 

algorithms, and state enumeration. The following discussion explains how most of these methods 

work and explores previous research on these methods to characterize their capabilities and 

limitations. 

In their survey of network reliability methods, Ball et al. [5] summarizes exact methods 

for calculating network reliability such as exponential time exact algorithms for general networks 

and polynomial time exact algorithms for restricted classes of networks, as well as other methods 

such as bounds on network reliability, and Monte Carlo simulation. Gaur et al. [15] also detailed 

many different network reliability methods including state enumeration, minimum cut 

enumeration, and neural networks, and they discussed the limitations involved with each method. 

According to Su et al. [42], a minimum cut set is a set of system components which, 

when failed, causes failure of the system. Minimum cut sets do not contain any other subsets of 

cuts which would cause the system to fail. Minimum cut enumeration methods compute network 

reliability by enumerating the reliability of all minimum cut sets and using these individual 

reliabilities to calculate the reliability of the network. Cut enumeration is an exact method for 

calculating network reliability. It is very useful for small networks, but it reaches its limitations 

very quickly. According to Gaur et al. [15], cut enumeration is most effective for two-terminal 

reliability problems. However, as the network grows, the number of cut sets grows 

exponentially. This makes calculating all possible combinations for two-, k-, and all-terminal 

reliability calculations time consuming. 

 Monte Carlo simulation (MCS) methods choose a random sample of states to explore and 

estimate the network reliability as the proportion of sampled states in which the network is 

functioning properly. Karger [25] utilized MCS to simulate edge failures by checking to see if 
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the randomly selected edge caused the network to fail. He found one of the flaws of the MCS 

approach to be that it is very slow when the probability of failure is very low. Cardoso et al. [8] 

studied Monte Carlo simulation in conjunction with neural networks to investigate the structural 

reliability of different structures. MCS only allows one network structure to be calculated at a 

time, so it can be very time consuming to calculate the reliability. To combat this issue, they 

combined neural networks with MCS which allowed them to save computation time and obtain 

more precise reliability measurements. 

Artificial neural networks (ANNs) are based on the biological neural networks within the 

human body. Just like the brain, the components of ANNs work together in parallel and series to 

learn based on experiences. This learning occurs using a training set which is a set of inputs with 

known, target outputs. According to Jain & Mao [21], a few of the main uses of ANNs are 

pattern recognition, prediction, optimization, associative memory, and control.  

Srivaree-ratana et al. [41] used an artificial neural network to estimate network reliability. 

In their study, they trained the ANN using a set of network topologies and link reliabilities. They 

then used the ANN to estimate the network reliability based on the link reliabilities and the 

topology to find the optimal network topology. They finally used the chosen topologies and 

calculated the exact reliability for each of them. They demonstrate that their estimation performs 

well empirically through comparisons to an exact approach, which is computationally intensive, 

as well as to an upper bound derived from a polynomial time algorithm. 

An alternative approach to exact and approximate reliability calculations is to find 

bounds for the network reliability. The method of finding bounds is advantageous because it is 

not as computationally intensive as the other methods, but it is also not as accurate since it only 

provides bounds rather than a specific reliability. Sebastio et al. [37] created an algorithm to find 
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bounds for a two-terminal network reliability problem. In their algorithm, the user specifies the 

execution time. In their algorithm, they analyze minpaths and mincuts. A minpath is the path 

between nodes wherein if one of the links was removed, the network would not be connected 

anymore. Their algorithm searches the network to find the most important minimum paths and 

minimum cuts that reduce the reliability between the upper and lower bounds.  Satitsatian & 

Kapur [36] discussed a different use for bounds. They found a lower bound for network 

reliability to compute the exact reliability and reliability bounds. They created an algorithm to 

find a subset of lower boundary points to help them obtain the lower reliability bound with less 

computational effort. 

Ramirez-Marquez & Rocco [35] presented a new algorithm for solving all-terminal 

network reliability allocation problems (RAP). For their problem, their goal was to minimize 

cost for the network subject to a reliability constraint. They created an algorithm that had three 

steps which are: generate network configurations, obtain the reliability for each of them using 

MCS and penalize the networks if they do not meet the reliability constraint, and rank the 

networks from highest to lowest. They found solutions with their algorithm that were on at worst 

7% lower cost and at best 21% lower cost than previous solutions from the literature. Yeh et al. 

[46] also proposed a method for allocating resources using Monte Carlo Simulation. Their 

method proposed the use of a particle swarm optimization (MCS-PSO). They aimed to minimize 

the cost of components while meeting the reliability constraints. They found their method to be 

more efficient and better at approximating reliability than MCS alone. 

Others have presented different approaches for synthesizing reliable networks. Mettas 

[30] studied the reliability allocation problem at the component level for general systems. His 

work estimated the minimum reliability for multiple components to meet the minimum system 
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reliability. Both Jan et al. [22] and AboElFotoh & Al-Sumait [1] utilized methods to study 

network topology. They sought to find the optimal topological layout of links which minimized 

cost and met the minimum network reliability requirement. Jan et al. [22] utilized a 

decomposition method based on a branch and bound method. Their method divides the network 

into subproblems based on link number which could be solved by their branch and bound 

algorithm. AboElFotoh & Al-Sumait [1] solved the same problem using an ANN.  

2. Reinforcement Learning 

Machine learning has numerous different approaches which are classified based on how 

the algorithm learns. One of these approaches is reinforcement learning. Zhang [47] defines 

reinforcement learning as a type of machine learning that uses a training data set that is 

comprised of rewards and punishments which is given as feedback to the machine. The machine 

uses this feedback to improve the performance of the task. The reinforcement learning algorithm 

randomly chooses an action, and the value of the action is calculated. The value of the actions 

stems from an immediate reward as well as the value of ending up in a different state. By 

repeatedly applying this process, reinforcement learning aims to learn the value of optimal 

state/action combinations thereby maximizing the total reward gained. 

 Reinforcement learning (RL) has many different applications. One of the first 

applications for RL was in video games. In many video games, the player makes decisions for 

the character. RL treats the decisions they make as the actions. Using RL, researchers were able 

to explore many different scenarios and allow the algorithm to learn what the best actions are for 

a given state. Lin et al. [27] approached the video game problem for two different games, Flappy 

Bird and Breakout. They trained both games using reinforcement Q-learning with a neural 
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network and without a neural network. They found the time it took to completely train the model 

was much faster when using a neural network than without it.  

 There are other applications of reinforcement learning that involve networks. Yang et al. 

[45] created a deep reinforcement learning model to study strategies for allocating resources in a 

computing network. Their goal was to maximize the reliability of the system from end-to-end. 

They employed a Q-learning algorithm to help the system decide where to allocate resources to 

prevent the quality of the channels in the system from being below their set standards. Their 

study found the Q-learning system to be successful after being trained for approximately 100 

trials. 

 Gottesman et al. [17] studied the use of Artificial Intelligence including RL in healthcare 

systems. Decisions regarding when to do certain tasks in a hospital setting are critically 

important to the well-being of patients. RL studies the results of the decisions which are made 

and after being trained, it can help healthcare professionals determine the optimal treatment plan 

for a patient given the initial state of the patient. RL in healthcare has been used to optimize the 

sequence of care for patients. 

3. Reliability Growth 

 Reliability growth is a technique utilized to improve a systems reliability during its 

design, development, and operation. The basic approach is to test a system, identify failures, and 

then make design changes to reduce the likelihood of those failures occurring again in the future, 

and hence improving the overall reliability of the system. Reliability growth modeling is used to 

improve in the reliability of the system as a result of a design changes over time. Duane [12] was 

one of the earliest researchers to study reliability growth. He found electromechanical and 

mechanical systems to have similar rates of reliability improvement during system development. 
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His work focused on studying the learning curve for the systems to predict reliability at certain 

points in time. He found the logarithm of cumulative failure rate to have close to a linear 

relationship with the logarithm of cumulative operating hours. Crow [10] later studied reliability 

as it pertains to system age. In his study, he proposed the Army Material Systems Analysis 

Activity (AMSAA) model. According to Kurtz et al. [26], “The AMSAA Reliability Growth 

Guide summarized the benefits of reliability growth management in finding unforeseen 

deficiencies, designing improvements, reducing risk, and increasing the probability of meeting 

objectives.” He proposed a nonhomogeneous Poisson process model with a Weibull intensity 

function to study the age-dependent reliability.  

According to Cahoon et al. [7], for a general system, there are three ways reliability 

growth models are used. These are planning the system’s reliability improvement, tracking the 

improvement, and ensuring the project is on-track to achieve its goals. Another practical use for 

reliability growth modeling is in Department of Defense (DoD) system testing. The DoD uses 

two types of reliability growth models which are system-level models which use 

nonhomogeneous Poisson processes (NHPPs) and competing risk models which analyze multiple 

failure modes operating in series. NHPP models allow for keeping track of the number of failures 

over time and the time between failures. The competing risk models study the system as a set of 

components operating in series. This means all components must be working for the system to 

operate.  

There are two main types of reliability growth models: discrete and continuous. 

Continuous reliability growth models use continuous data such as time. Some examples of 

continuous growth models are [10, 12, 23, and 43]. Discrete reliability growth models use 

countable data [e.g. 14, 38, 40]. 
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Reliability growth modeling has been studied in-depth for software development [3, 9, 

24] and hardware testing [2, 11, 28]. In software development, reliability growth helps predict 

and assess product quality, release time, and the cost of testing and debugging. Cinque et al. [9] 

discussed how reliability growth can be used to maximize the efficiency of the improvement in 

reliability of the system following debugging. Hussin et al. [20] provided insight into how 

reinforcement learning can be used to improve reliability of a distributed system which has both 

hardware and software components. They developed a RL-based resource management approach 

to improve network reliability by making design changes. They concluded RL is an effective 

agent for optimizing reliability growth in large systems. 

 Infrastructure networks provide numerous opportunities to analyze reliability and make 

design changes to improve reliability over time. Networks such as telecommunication systems, 

transit systems, and energy systems are faced with problems which can be studied and improved 

using machine learning techniques such as RL as well as following the reliability growth 

paradigm for modeling design improvements to the system over time. Mahmoodzadeh et al. [29] 

examined gas pipelines and the issues they face. Their goal was to minimize cost of the 

maintenance they had to perform. Rather than performing periodically scheduled maintenance, 

they utilized RL to analyze when maintenance should actually be performed based on the 

condition of the pipeline. Serrano [39] discusses the advancement of infrastructure and how all 

types of AI, specifically RL, can be used to help make infrastructure more intelligent. Intelligent 

infrastructure is a developing technology which adds sensors, an ability to communicate 

information, and analysis capabilities to structures such as bridges and buildings. It allows the 

infrastructure to monitor, protect and repair itself. Serrano [39] used RL to help the sensors in an 
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intelligent infrastructure network make predictions about the future needs of the system based on 

the current conditions it is experiencing. 

 Acevedo et al. [2] studied reliability growth in telecommunication systems. They 

specifically utilized accelerated life testing (ALT) to evaluate critical hardware in these systems 

to find flaws early in the development cycle. Dempsey & Sheng [11] studied wind turbines and 

their premature component failures. They also tested component prototypes at a test facility to 

find flaws. Additionally, they developed a condition-monitoring system to detect damage to 

components. Similarly, Kurtz et al. [26] studied reliability issues at hydrogen stations. They 

utilized prognostics and diagnostics that have been used in wind turbines to improve station 

availability and decrease operating and maintenance costs. 

 Properly allocating available resources over time to improve system reliability is 

important for the success of networks. As the technology has become more intelligent, the size of 

networks which are being studied has grown significantly. This growth highlights the importance 

of having intelligent software which can keep up with the network size. Machine learning, 

specifically reinforcement learning, has been proven to be an effective means for optimizing 

reliability growth in large systems. This thesis addresses the need to continuously improve 

network reliability by utilizing a reliability growth paradigm by allocating resources to make 

design changes to the network to improve system reliability, emphasizing the impact resource 

allocation will have on an infrastructure network over a period of time. 
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Methodology 

Reinforcement learning (RL) has been used to solve many different problems in a variety 

of areas. Its sophistication and ability to quickly solve complex problems makes it a good option 

to help solve a complex network reliability synthesis problem such as the one we are studying. 

As stated above, RL has been used to optimize performance in video games, communication 

systems, and healthcare. However, there appeared to be an opportunity to use RL to improve the 

reliability of complex networks. 

We will explore the use of RL to assist us in determining the appropriate resource 

allocation strategy in order to achieve a specific reliability improvement goal. Every year, 

infrastructure systems are allocated a certain number of resources such as their budget and labor. 

For these resources, decisions must be made to decide how to allocate their resources to help 

improve the system. For our research, we will modify an existing reinforcement learning model 

built in Python to accommodate the specific complexities and tradeoffs associated with our 

problem of interest. The specific details of this model are explained below.  

There are two possible ways the network can be made more reliable and they are adding 

links or dedicating resources to enhance the reliability of existing links. The existing model 

focused solely on exploring the reliability improvement when adding links. 

Reliability improvement through optimal resource allocation is the focus of this research. 

We will make trade-offs between the different possible actions with the goal of maximizing 

reliability. Specifically, we will evaluate the network reliability in every state and make 

decisions based on the available budget. This approach follows the idea of sequential decision-

making models where the decisions made in one state may affect decisions and rewards in the 
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future states. To calculate the reliability of different states, a reliability polynomial was 

employed. This polynomial is constructed by estimating the coefficients. 

For our problem, we will be using a network where the topology changes only if a new 

edge is added. However, the reliability of the links will increase as resources are allocated to 

them. 

General Model Formulation 

 Our problem considers an initial network with n nodes and a given set of 𝑛𝑛 − 1 edges. 

We consider a sequential decision problem with 𝑚𝑚 time periods, where in each time period 𝑡𝑡 =

1,2, … ,𝑚𝑚 we can make limited investments to add potential edges from the set 𝐸𝐸 = {{𝑖𝑖, 𝑗𝑗}: 𝑖𝑖 =

1,2, … ,𝑛𝑛 − 1; 𝑗𝑗 = 𝑖𝑖 + 1,2, … ,𝑛𝑛} to the network and/or upgrade the reliability of existing edges. 

An edge {𝑖𝑖, 𝑗𝑗} ∈ 𝐸𝐸 that has been added to the network and improved 𝑧𝑧𝑖𝑖𝑖𝑖 times is assumed to have 

reliability 𝑘𝑘𝑖𝑖𝑖𝑖 + 𝑧𝑧𝑖𝑖𝑖𝑖𝑙𝑙𝑖𝑖𝑖𝑖, where 𝑘𝑘𝑖𝑖𝑖𝑖 and 𝑙𝑙𝑖𝑖𝑖𝑖 are parameters.  

  Ultimately, we wish to maximize the cumulative discounted reward obtained over time 

periods 𝑡𝑡 = 0,1, … ,𝑚𝑚 − 1, where the reward obtained in time period 𝑡𝑡 is a function of the 

network’s all-terminal reliability immediately after the time period. A fixed budget 𝐵𝐵𝑡𝑡 is made 

available at the beginning of each time period 𝑡𝑡 = 0,1, … ,𝑚𝑚 − 1 and can either be used for either 

immediate actions or carried forward to use in future periods. Parameters 𝑐𝑐𝑖𝑖𝑖𝑖 and 𝑝𝑝𝑖𝑖𝑖𝑖 respectively 

describe the cost to add an edge {𝑖𝑖, 𝑗𝑗} ∈ 𝐸𝐸 and to improve an existing edge {𝑖𝑖, 𝑗𝑗} ∈ 𝐸𝐸. 

The state of the network 𝑠𝑠 before any time period is defined by the tuple 

𝑠𝑠 = (𝑡𝑡,𝑅𝑅,𝛽𝛽), 

where 𝑡𝑡 ∈ {0,1, … ,𝑚𝑚 − 1} is the number of time periods already completed, 𝑅𝑅 is an |𝐸𝐸|-vector 

specifying the reliability of each edge in the network, and 𝛽𝛽 is the remaining budget.  Let the 
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elements of 𝑅𝑅 be denoted by 𝑟𝑟𝑖𝑖𝑖𝑖 , {𝑖𝑖, 𝑗𝑗} ∈ 𝐸𝐸, where 𝑟𝑟𝑖𝑖𝑖𝑖 = 0 if edge {𝑖𝑖, 𝑗𝑗} has not been added to the 

network.  

In state 𝑠𝑠 = (𝑡𝑡,𝑅𝑅,𝛽𝛽), an action is defined by 𝑎𝑎 = (𝑋𝑋,𝑌𝑌) where 𝑋𝑋 and 𝑌𝑌 are |𝐸𝐸|-vectors. 

The vector 𝑋𝑋 consists of elements 𝑥𝑥𝑖𝑖𝑖𝑖 , {𝑖𝑖, 𝑗𝑗} ∈ 𝐸𝐸 , where 𝑥𝑥𝑖𝑖𝑖𝑖 = 1 if edge {𝑖𝑖, 𝑗𝑗} is added to the 

network; 0 otherwise. The vector 𝑌𝑌 consists of elements 𝑦𝑦𝑖𝑖𝑖𝑖, {𝑖𝑖, 𝑗𝑗} ∈ 𝐸𝐸, where 𝑦𝑦𝑖𝑖𝑖𝑖 = 1 if an 

existing edge {𝑖𝑖, 𝑗𝑗} is improved; 0 otherwise. The action with 𝑥𝑥𝑖𝑖𝑖𝑖 = 𝑦𝑦𝑖𝑖𝑖𝑖 = 0 for all {𝑖𝑖, 𝑗𝑗} ∈ 𝐸𝐸 

represents deciding to move to the next time period without adding or improving any additional 

edges. The set of feasible actions in state 𝑠𝑠 = (𝑡𝑡,𝑅𝑅,𝛽𝛽), are defined by the equations: 

∑ �𝑥𝑥𝑖𝑖𝑖𝑖 + 𝑦𝑦𝑖𝑖𝑖𝑖�{𝑖𝑖,𝑗𝑗}∈𝐸𝐸 ≤ 1                                            (1) 

∑ �𝑐𝑐𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖 + 𝑝𝑝𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖�{𝑖𝑖,𝑗𝑗}∈𝐸𝐸  ≤   𝛽𝛽                                                 (2) 

𝑥𝑥𝑖𝑖𝑖𝑖 = 0,∀{𝑖𝑖, 𝑗𝑗} ∈ 𝐸𝐸: 𝑟𝑟𝑖𝑖𝑖𝑖 > 0                                                  (3) 

𝑦𝑦𝑖𝑖𝑖𝑖 = 0,∀{𝑖𝑖, 𝑗𝑗} ∈ 𝐸𝐸: 𝑟𝑟𝑖𝑖𝑖𝑖 = 0                                                (4) 

𝑟𝑟𝑖𝑖𝑖𝑖 + 𝑘𝑘𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖 + 𝑙𝑙𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖 ≤ 1, ∀{𝑖𝑖, 𝑗𝑗} ∈ 𝐸𝐸                                                (5) 

Equation (1) limits the number of actions we can take during a time period to either zero or one, 

and Equation (2) requires the actions that are taken to be less than or equal to the remaining 

budget for the period. Note that any unused budget in time period 𝑡𝑡 may be carried forward for 

use in future time periods; therefore, it may be desirable to choose to move to the next period 

even when adequate resources are available to perform one of the other actions. Equation (3) 

requires 𝑟𝑟𝑖𝑖𝑖𝑖 = 0 for action 𝑥𝑥𝑖𝑖𝑖𝑖 = 1 to be feasible, thus specifying that an edge {𝑖𝑖, 𝑗𝑗} ∈ 𝐸𝐸 cannot 

be added if it is already in the network. Equation (4) requires 𝑟𝑟𝑖𝑖𝑖𝑖 > 0 for action 𝑦𝑦𝑖𝑖𝑖𝑖 = 1 to be 

feasible, imposing that an edge {𝑖𝑖, 𝑗𝑗} ∈ 𝐸𝐸 can only be improved if it was previously added to the 

network. The feasible actions take one of three forms: improving an edge (i.e., 𝑦𝑦𝑖𝑖𝑖𝑖 = 1 for some 
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{𝑖𝑖, 𝑗𝑗} ∈ 𝐸𝐸), adding an edge (i.e., 𝑥𝑥𝑖𝑖𝑖𝑖 = 1 for some {𝑖𝑖, 𝑗𝑗} ∈ 𝐸𝐸), or choosing to move into the next 

period (i.e., 𝑥𝑥𝑖𝑖𝑖𝑖 = 𝑦𝑦𝑖𝑖𝑖𝑖 = 0 ∀{𝑖𝑖, 𝑗𝑗} ∈ 𝐸𝐸). Note, taking an action with 𝑥𝑥𝑖𝑖𝑖𝑖 = 1 or 𝑦𝑦𝑖𝑖𝑖𝑖 = 1 for some 

{𝑖𝑖, 𝑗𝑗} ∈ 𝐸𝐸 does not indicate we will be moving into a new time period, only that the state 

variables 𝑅𝑅 and 𝛽𝛽 have changed. Equation (5) ensures an edge cannot be upgraded to a reliability 

value greater than 1. 

 We now define the state transition function, (𝑡𝑡′,𝑅𝑅′,𝛽𝛽′) = 𝑔𝑔(𝑠𝑠, 𝑎𝑎) given an action 𝑎𝑎 =

(𝑋𝑋,𝑌𝑌) performed in state 𝑠𝑠 = (𝑡𝑡,𝑅𝑅,𝛽𝛽).  If 𝑥𝑥𝑖𝑖𝑖𝑖 = 𝑦𝑦𝑖𝑖𝑖𝑖 = 0 ∀{𝑖𝑖, 𝑗𝑗} ∈ 𝐸𝐸, the new state is defined by 

𝑡𝑡′ = 𝑡𝑡 + 1,                                                                (6) 

𝑅𝑅′ = 𝑅𝑅,                                                                   (7) 

𝛽𝛽′ = 𝛽𝛽 + 𝐵𝐵𝑡𝑡+1.                                                             (8) 

Equation (6) states the time period, 𝑡𝑡′, after a state transition is one period later than the previous 

time period, 𝑡𝑡. Equation (7) states that the reliability of the network remains the same during a 

state transition. Equation (8) states the budget in the new state after the transition is a function of 

the remaining budget from the previous state plus the fixed budget for the new period.  If 𝑥𝑥𝑖𝑖𝑖𝑖 = 1 

or 𝑦𝑦𝑖𝑖𝑖𝑖 = 1 for some {𝑖𝑖, 𝑗𝑗} ∈ 𝐸𝐸, the new state is defined by  

𝑡𝑡′ = 𝑡𝑡                                                                    (9) 

𝑟𝑟𝑖𝑖𝑖𝑖′ =  𝑟𝑟𝑖𝑖𝑖𝑖 + 𝑘𝑘𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖 + 𝑙𝑙𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖 ,∀{𝑖𝑖, 𝑗𝑗} ∈ 𝐸𝐸,                                         (10) 

𝛽𝛽′ = 𝛽𝛽 − ∑ �𝑐𝑐𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖 + 𝑝𝑝𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖�{𝑖𝑖,𝑗𝑗}∈𝐸𝐸 .                                            (11) 

Here, Equation (9) represents the time period of the network remaining the same while actions 

are being taken. Equation (10) represents the updated reliability, 𝑟𝑟𝑖𝑖𝑖𝑖′, of each link after an action 

has been taken. It states the updated link reliability, 𝑟𝑟𝑖𝑖𝑖𝑖′, is equal to the current link reliability, 𝑟𝑟𝑖𝑖𝑖𝑖, 

plus any additional reliability that is added for an action (𝑥𝑥𝑖𝑖𝑖𝑖 or 𝑦𝑦𝑖𝑖𝑖𝑖). Equation (11) states the new 
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budget, 𝛽𝛽′, after an action is taken, is equal to the current budget, 𝛽𝛽, less the cost of the action 

taken. 

 For a state 𝑠𝑠 = (𝑡𝑡,𝑅𝑅,𝛽𝛽) and action 𝑎𝑎 = (𝑋𝑋,𝑌𝑌) that results in a transition to state 

(𝑡𝑡′,𝑅𝑅′,𝛽𝛽′) = 𝑔𝑔(𝑠𝑠,𝑎𝑎), we now define the reward function 𝑓𝑓(𝑠𝑠, 𝑎𝑎). The rewards we receive are a 

function of the action we take and the previous state of the network. The new edge reliabilities, 

𝑅𝑅′, determine the new all-terminal reliability which determines the rewards we receive. For our 

problem the reward is received immediately after transitioning into a new state. Taking action 

𝑎𝑎 = (𝑋𝑋,𝑌𝑌) in state 𝑠𝑠 = (𝑡𝑡,𝑅𝑅,𝛽𝛽) and then transitioning into state 𝑔𝑔(𝑠𝑠,𝑎𝑎) = (𝑡𝑡′,𝑅𝑅′,𝛽𝛽′) results in 

an immediate reward of 𝑓𝑓(𝑅𝑅′), where 𝑓𝑓(𝑅𝑅′) is defined as the current state we are in and value of 

the action we just took. The value of the 𝑓𝑓(𝑅𝑅′) is determined by the improvement in the all-

terminal reliability with respect to edge reliabilities,  𝑅𝑅′. These rewards are awarded after every 

state change rather than in-between periods. Note, there may be multiple state changes that take 

place within the same time period. 

Under a given policy for selecting actions in each state, let 𝑉𝑉𝑡𝑡 denote the reward 

accumulated during time period 𝑡𝑡 = 0,1, … ,𝑚𝑚 − 1.  We seek to identify a policy that maximizes 

the discounted reward function, 𝐺𝐺 =  ∑ 𝛾𝛾𝑡𝑡𝑉𝑉𝑡𝑡𝑚𝑚−1
𝑡𝑡=0 , where 𝛾𝛾 (0 < 𝛾𝛾 ≤ 1) is a discount factor 

parameter that specifies how much we care about immediate rewards versus future rewards. A 

value closer 0 means we value immediate time periods more, while a value of 1 means we value 

immediate and future time periods equally.  

The initial conditions for the network when 𝑡𝑡 = 0 are defined by the network consisting 

of 𝑛𝑛 nodes and 𝑛𝑛 − 1 edges with equivalent initial reliabilities, 𝑅𝑅. An episode of the network 

terminates immediately after leaving a state in which (i) the only feasible action is 𝑥𝑥𝑖𝑖𝑖𝑖 = 𝑦𝑦𝑖𝑖𝑖𝑖 =

0 ∀{𝑖𝑖, 𝑗𝑗} ∈ 𝐸𝐸 or (ii) the all-terminal reliability is 1.  
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Initial Model Experimentation and Analysis 

 In order to train our model, we utilized a standard implementation of the RL problem as 

defined in [6] and implemented it in Python using the OpenAI stable baselines. The OpenAI 

package contains a set of reliable implementations of reinforcement learning algorithms. Each 

implementation contains a pre-trained RL agent who learns from observations, actions, and 

rewards. 

 For our research, we used Python version 3.8.15. We ran stable baselines OpenMPI to 

support all algorithms. Stable baselines required us to specify the number of training episodes for 

our models. For all models, we used 5000 episodes. 

For our experiments, a Maskable Proximal Policy Optimization (M-PPO) algorithm was 

utilized [18]. This algorithm limits the action space to only feasible actions based on the defined 

problem constraints. For our specific problem, this means it limits the action space to adding 

edges that are not within the network, improving edges that are in the network, and ensuring 

these actions are within budget.  The algorithm also uses a mask which is a vector that keeps 

track of valid actions. This will limit the actions that are included in the 𝑋𝑋 and 𝑌𝑌 vectors. 

 Utilizing an iterative approach to developing and analyzing our network, we began by 

creating an initial model which only allowed one decision per period. This initial model only 

allowed one kind of action, which was dedicating resources to existing edges in the network to 

improve their reliabilities. This initial model was created to ensure the model and RL 

implementation were working properly. We then expanded the model to be more complex to 

allow us to make multiple decisions in each period and perform different kinds of actions (edge 

improvement, addition of new edges). 
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 The initial model focused on improving one of the edges in the network. This model 

takes rewards which are initially arbitrarily assigned to each edge and determines the next best 

improvement to make. These rewards are expressed as reliability improvements that result from 

an upgrade to the chosen edge. This upgrade makes future rewards for this edge have a lower 

value. This initial model has a budget of 1000 units per time period, and each of the edges also 

has a cost of 1000 units to improve. We utilized the RL algorithm to evaluate each of the 

possible edges which could be improved, and it chooses the one with the highest immediate 

reward. The specific network used was the same as Figure 4 for the initial calculation of 

reliability in the methodology section. Because the model was limited to only choosing one edge 

to improve, this model runs very quickly. However, as it becomes more complex in future 

problem instances, we will start seeing the impact it has on the decision-making space and 

process. 

 After we analyzed the initial models, we expanded the model to also include the addition 

of two other action types: adding edges and choosing to move into a new period. We also gave 

the model a larger budget for each period so more improvements could be made. This larger 

budget allowed the network to choose more actions to take during a period. These additions 

made this new model substantially more computationally intensive than the basic model. We 

explored the decisions this model made in the designed experiments section.  

Designed Experiments 

In this section, we construct and evaluate a detailed set of experiments based on the 

insights gained during our preliminary analysis.  The goal is to explore how the RL algorithm 

performs for a broadly defined design space. Table 3 lists the different parameters which were 

used for the testing. The improvement of edge reliabilities in each set of instances is specified by 
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two parameters, the initial reliability (which specifies the starting reliability of edges present in 

the initial network) and new link reliability (which specifies the common value of 𝑘𝑘𝑖𝑖𝑖𝑖 for all 

edges {𝑖𝑖, 𝑗𝑗} that are not in the initial network). For all sets of instances, we define 𝑙𝑙𝑖𝑖𝑖𝑖 = 0.05 as 

the increase to the reliability of edge {𝑖𝑖, 𝑗𝑗} as a result of improvement. For each of these sets, 

tests were performed using a network with 5-, 7-, and 10- nodes. For these tests, the number of 

periods, 𝑚𝑚, was set as either 3, 5, or 7, the reward ratio was set as either 2:1, 1:1, or 1:2, and the 

budget at the beginning of a period was 1000, 2000, or 3000. With these parameters, we ran a 

total of 243 tests. For all of these tests, we used the same costs to improve and add links as we 

did in the initial model which were 𝑝𝑝𝑖𝑖𝑖𝑖 = 500 and 𝑐𝑐𝑖𝑖𝑖𝑖 = 2000, respectively. Table 3 below 

outlines the different parameters we used. The results of the tests can be found in Tables 7-15 in 

the Appendix. 

Table 3: Experimental design parameters 

Initial/New Link 

Reliability 

0.7/0.8 0.8/0.85 0.9/0.9 

Number of Nodes  5 7 10 

Number of Periods 3 5 7 

Reward ratio 

Immediate/future 

2:1 1:1 1:2 

Budget per Period 1000 2000 3000 

 

To determine which of the parameters may have been the best indicators of what actions 

the model would choose, we performed sensitivity analysis on the problem instances. We first 

analyzed the how the model responded to different levels of initial and new link reliabilities. We 

found that in general, the model trended towards favoring more improvements of existing links 
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rather than adding new links as the initial and new link reliabilities increased. The problem 

instances with initial link reliability of 0.7 and new link reliability, 0.8 cared more about adding 

links while the instances with initial and new link reliability, 0.9 cared more about improving 

links. For the lowest reliability combination of 0.7/0.8, we found problem instances wanted to 

add as many links as possible before improving links. However, as the reliability combinations 

increased to 0.8/0.85 and 0.9/0.9, the model chose to improve more links, and it also improved 

links earlier. In multiple instances of the highest reliability network (i.e. 7, (2:1), 3000 and 5, 

(1:1), 2000), improvements were the first action taken. Figure 5 below shows the rise of 

improvements as the link reliabilities increase. 

 

  

Figure 5: # of Links vs. Reliability Graph 

 We also analyzed the different reward ratios to see if they had an effect on the decisions 

the model made. During our analysis, we found that when the ratio was more favorable for 

immediate rewards, the model chose to improve more links, but when the ratio was more 
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favorable for long-term rewards, the model chose to add more links. Figure 6 shows the trend in 

regard to the rewards ratio. 

 

Figure 6: # of Links vs. Rewards Ratio Graph 

 We also found many instances where the model found better solutions for networks with 

lower budgets or fewer periods. These results may have been due to the training of the model. If 

the model had more training episodes, it may have been able to find better solutions for the larger 

networks. For example, in the five-node network with initial and new link reliabilities of 0.9/0.9, 

the problem instance with five periods, a 1:2 rewards ratio, and a per period budget of 3000 

resulted in a final all-terminal reliability of 1.0 whereas the problem instance with seven periods, 

a 1:2 rewards ratio, and a per period budget of 3000 resulted in a final all-terminal reliability of 

0.9995. 

 The networks with the highest reliabilities were typically 5-node networks because the 

total possible links in those networks was much lower than for 7- or 10- node networks. There 

were four networks with final reliabilities of 1.0, but not all of them were the largest networks 
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only had five periods. Another interesting find was a model with five periods and a budget of 

2000 had a final reliability of 0.9999. This was better than many other models with more periods 

and larger total budgets. Additionally, we found the final two entries in this table were both 

seven node networks. Table 4 lists with the networks with the ten highest reliabilities. 

Table 4: Highest All-Terminal Reliabilities 

Problem Instance (# 

Periods, Rewards 

Ratio, Budget) 

Final All-

Terminal 

Reliability 

Total 

computation 

time (min) 

Initial Link 

Reliability 

New Link 

Reliability 

Nodes 

7, (2:1), 3000 1.0 1.08 0.9 0.9 5 

5, (1:1), 3000 1.0 1.1 0.9 0.9 5 

7, (1:1), 3000 1.0 1.15 0.9 0.9 5 

5, (1:2), 3000 1.0 0.8 0.9 0.9 5 

5, (2:1), 3000 0.9999 0.93 0.9 0.9 5 

7, (1:2), 3000 0.9999 1.55 0.9 0.9 5 

7, (1:2), 2000 0.9999 1.07 0.9 0.9 5 

5, (2:1), 2000 0.9999 0.82 0.9 0.9 5 

7, (2:1), 3000 0.9999 1.52 0.8 0.85 5 

7, (1:1), 3000 0.9997 740.07 0.9 0.9 7 

7, (1:2), 3000 0.9997 717.55 0.9 0.9 7 

The networks with the lowest reliabilities were all 10-node networks. The first nine 

networks had the lowest initial and new link reliabilities of 0.7/0.8 while the last one had 

reliability combination of 0.8/0.85. These results were not as interesting as the highest reliability 

table as all of the problem instances with the fewest periods, smallest budgets, and lowest 
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reliability combinations were the ones included in the results. Table 5 below shows the models 

that had the lowest reliabilities. 

Table 5: Lowest All-Terminal Reliabilities 

Problem Instance (# 

Periods, Rewards 

Ratio, Budget) 

Final All-

Terminal 

Reliability 

Total 

computation 

time (min) 

Initial Link 

Reliability 

New Link 

Reliability 

Nodes 

3, (2:1), 1000 0.1337 1.22 0.7 0.8 10 

3, (1:1), 1000 0.1349 1.2 0.7 0.8 10 

3, (1:2), 1000 0.1726 1.13 0.7 0.8 10 

5, (2:1), 1000 0.2289 5.6 0.7 0.8 10 

5, (1:2), 1000 0.2635 2.08 0.7 0.8 10 

5, (1:1), 1000 0.2684 2.07 0.7 0.8 10 

3, (1:1), 2000 0.2825 8.33 0.7 0.8 10 

3, (2:1), 2000 0.2889 9.6 0.7 0.8 10 

7, (1:2), 1000 0.2968 18.73 0.7 0.8 10 

3, (1:2), 1000 0.3114 1.07 0.8 0.85 10 

 

For the 5-node networks, we found multiple instances where the final all-terminal 

reliability was 1.0. The example of the problem instance with initial and new link reliabilities of 

0.9, five periods, a 1:1 rewards ratio, and a per period budget of 5000 is shown below. Figure 7 

(a) shows the initial network configuration. Figure 7 (b) shows the configuration after four links 

have been added which is indicated by a red link and one has been improved which is indicated 

by a blue link.  Figure 7 (c) shows the network in its final configuration where five links have 
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been added and ten have been improved. Even though ten links have been improved, some of 

them were improved more than once which is indicated by a green link. Three other problem 

instances also finished with a final all-terminal reliability of 1.0 and they can be found in Table 

13 in the Appendix. These problem instances were the only ones in our modeling that did not use 

the entire budget.  

 

                   (a)                     (b)               (c) 

Figure 7: Iterations of Best 5-node network 

 A final all-terminal reliability of 1.0 is typically surprising because edges are usually 

upgraded by a percentage rather than a whole value. Because of this, we wanted to see what 

would happen if we increased the edge values by 5% for the 5-node networks with a reliability 

pair of 0.9/0.9. The results of this experimentation are shown in Table 16 in the Appendix. We 

did find that none of the networks reached a reliability of 1.0, but some of them came very close. 

The best 7-node network had an all-terminal reliability of 0.9999. The problem instance 

which resulted in this reliability had initial and new link reliabilities of 0.9/0.9, seven periods, a 

1:2 rewards ratio, and a per period budget of 7000. The model chose to add nine links and 

improve six. The iterations of different configurations of this network are shown in Figure 8. 

Green indicates links that have been improved more than once. 
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(a)                                (b)                                 (c)                                    (d) 

Figure 8: Iterations of Best 7-node network 

 The best 10-node network had an all-terminal reliability of 0.9885. This problem instance 

had initial and new link reliabilities of 0.9/0.9. It had five periods, a rewards ratio of 1:1, and a 

per period budget of 3000. The configuration of the network is shown below. The iterations of 

this are shown below in Figure 9. The model chose to add seven links and make two 

improvements to the same edge to reach this reliability. 

 

(a)                                           (b)                                          (c) 

Figure 9: Iterations of Best 10-node network 

 Computation time was one of the biggest issues we faced when running the model. All of 

the five-node networks were very easy to compute as they all took less than two minutes. As 

expected, the computation time grew as we added nodes and increased the number of periods and 

budget. For the seven-node network, twenty-three of the eighty-one problem instances took over 

sixty minutes to complete. For the ten-node network, this number grew even more as thirty-eight 
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of eighty-one took more than an hour. These averages were heavily affected by the largest 

networks with five or seven periods and budgets of 2000 or 3000. For each of the largest 10-node 

networks with seven periods and a budget of 3000, it took more than twenty-two hours to run the 

model. Table 6 below shows the ten longest computation times and their associated problem 

instances. More results showing the issues with computational time are in the appendices.  

Table 6: Highest Computation Times 

Problem Instance (# 

Periods, Rewards 

Ratio, Budget) 

Final All-

Terminal 

Reliability 

Total 

computation time 

(min) 

Initial 

Link 

Reliability 

New Link 

Reliability 

Nodes 

7, (1:1), 3000 0.9233 1432.02 0.8 0.85 10 

7, (2:1), 3000 0.9257 1422.15 0.8 0.85 10 

7, (2:1), 3000 0.9965 1416.03 0.9 0.9 10 

7, (1:2), 3000 0.7870 1408.95 0.7 0.8 10 

7, (1:1), 3000 0.9973 1403.75 0.9 0.9 10 

7, (1:1), 3000 0.7633 1400.05 0.7 0.8 10 

7, (1:2), 3000 0.9438 1398.35 0.8 0.85 10 

7, (1:2), 3000 0.9982 1390.8 0.9 0.9 10 

7, (2:1), 3000 0.7910 1385.2 0.7 0.8 10 

5, (2:1), 3000 0.987 1057.08 0.9 0.9 10 
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Future Work 

 Our research focused on building 5-, 7-, and 10- node networks which were built using 

the same costs for adding and improving links. To further explore the model’s decisions to add 

or improve links, different combinations of addition and improvement costs should be studied. 

Our research also only focused on three network sizes, this proved to be quite computationally 

expensive as the networks grew, so more research should be performed to create a model is able 

to make decisions more quickly. Although there are many sources of complexity that may have 

contributed to the long run-times, one opportunity for improvement is to replace the current 

reliability-polynomial procedure for evaluating network reliability with an alternative procedure 

that scales better for larger instances. 

 Additionally, for our research, the network was allowed to carry resources over to future 

periods. Further research could be conducted to see study the behavior of the model if the 

number of resources that could be carried into the next period was limited or eliminated 

completely. The model we used continuously chose to carry forward resources to add a new link 

even though the resources available could have been used to improve links in the previous 

period. Studying the effects of limiting resources would be valuable for this model. 

 For our research, we did not use the traditional reliability growth approach of test, 

analyze, fix. Instead, we used a cognate approach which still aimed to optimize resource 

allocation to improve the network over time. Future work can be done to investigate the 

feasibility of using reinforcement learning to see what decisions would be made in the traditional 

reliability growth model. In this model, the network would fail due to links degrading over time 

as they do in infrastructure networks. 
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 One issue with our model was that it was set up to improve the links by a whole number 

rather than a percentage of the current reliability. We did some research into how making this 

change would affect the results, but future work should only focus on percentage changes. 

Another change we would make to the model is to give the links diminishing returns after they 

reach a certain reliability threshold. This would make the model want to choose many different 

links to add or improve rather than focusing on a select few.  

 We also made many assumptions regarding the initial link reliabilities, new link 

reliabilities, amount to improve, cost to add and improve, and rewards. These assumptions 

limited the results we got from our experimentation, so future work should focus on creating 

more models with less restrictive assumptions. 
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Appendices 

Table 7: Problem Instances with Initial Link Reliability 0.7, New Link 0.8, Nodes 5 

Problem 

Instance (# 

Periods, 

Rewards Ratio, 

Budget) 

# of 

edges 

added 

# of 

edges 

improved 

Total 

Budget 

Used 

Final All- 

Terminal 

Reliability 

Total 
Computation 
Time (min) 

3, (2:1), 1000 1 2 3000 0.6194 0.65 

5, (2:1), 1000 2 2 5000 0.7244 0.683 

7, (2:1), 1000 3 2 7000 0.8442 0.783 

3, (1:1), 1000 1 2 3000 0.6194 0.667 

5, (1:1), 1000 2 2 5000 0.7260 0.7 

7, (1:1), 1000 3 2 7000 0.8371 0.767 

3, (1:2), 1000 1 2 3000 0.6115 0.667 

5, (1:2), 1000 2 2 5000 0.7244 0.667 

7, (1:2), 1000 3 2 7000 0.8545 0.767 

3, (2:1), 2000 2 4 6000 0.7605 0.717 

5, (2:1), 2000 4 4 10000 0.9440 0.983 

7, (2:1), 2000 5 8 14000 0.9782 1.23 

3, (1:1), 2000 3 0 6000 0.8274 0.75 

5, (1:1), 2000 5 0 10000 0.9611 1.02 

7, (1:1), 2000 6 4 14000 0.9922 1.25 

3, (1:2), 2000 3 0 6000 0.8520 0.767 
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5, (1:2), 2000 5 0 10000 0.9562 1.02 

7, (1:2), 2000 6 4 14000 0.9922 1.32 

3, (2:1), 3000 4 2 9000 0.9270 0.95 

5, (2:1), 3000 6 6 15000 0.9908 1.43 

7, (2:1), 3000 6 18 21000 0.9982 1.43 

3, (1:1), 3000 4 2 9000 0.8818 0.967 

5, (1:1), 3000 6 6 15000 0.9930 1.32 

7, (1:1), 3000 6 18 21000 0.9978 1.45 

3, (1:2), 3000 4 2 9000 0.9306 0.933 

5, (1:2), 3000 6 6 15000 0.9925 1.28 

7, (1:2), 3000 6 18 21000 0.9971 1.43 
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Table 8: Problem Instances with Initial Link Reliability 0.7, New Link 0.8, Nodes 7 

Problem 

Instance (# 

Periods, 

Rewards Ratio, 

Budget) 

# of 

edges 

added 

# of 

edges 

improved 

Total 

Budget 

Used 

Final All- 

Terminal 

Reliability 

Total 
Computation 
Time (min) 

3, (2:1), 1000 1 2 3000 0.3445 0.817 

5, (2:1), 1000 2 2 5000 0.5540 1.12 

7, (2:1), 1000 3 2 7000 0.6382 1.92 

3, (1:1), 1000 1 2 3000 0.3445 0.833 

5, (1:1), 1000 2 2 5000 0.5066 1.1 

7, (1:1), 1000 3 2 7000 0.7010 1.85 

3, (1:2), 1000 1 2 3000 0.3345 0.867 

5, (1:2), 1000 2 2 5000 0.5299 1.13 

7, (1:2), 1000 3 2 7000 0.6465 1.82 

3, (2:1), 2000 3 0 6000 0.6629 1.58 

5, (2:1), 2000 5 0 10000 0.8194 9.72 

7, (2:1), 2000 7 0 14000 0.9243 70.98 

3, (1:1), 2000 3 0 6000 0.5595 1.45 

5, (1:1), 2000 5 0 10000 0.7833 9.33 

7, (1:1), 2000 7 0 14000 0.9270 71.32 

3, (1:2), 2000 3 0 6000 0.6384 1.62 

5, (1:2), 2000 5 0 10000 0.8659 7.88 
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7, (1:2), 2000 7 0 14000 0.9375 63.7 

3, (2:1), 3000 4 2 9000 0.7246 4.97 

5, (2:1), 3000 6 6 15000 0.9150 101.03 

7, (2:1), 3000 5 22 21000 0.8930 706.8 

3, (1:1), 3000 4 2 9000 0.7832 5.05 

5, (1:1), 3000 7 2 15000 0.8650 98.77 

7, (1:1), 3000 10 2 21000 0.9754 713.02 

3, (1:2), 3000 4 2 9000 0.7953 4.58 

5, (1:2), 3000 7 2 15000 0.9439 101.48 

7, (1:2), 3000 9 6 21000 0.9615 714.65 
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Table 9: Problem Instances with Initial Link Reliability 0.7, New Link 0.8, Nodes 10 

Problem 

Instance (# 

Periods, 

Rewards Ratio, 

Budget) 

# of 

edges 

added 

# of 

edges 

improved 

Total 

Budget 

Used 

Final All- 

Terminal 

Reliability 

Total 
Computation 
Time (min) 

3, (2:1), 1000 1 2 3000 0.1337 1.22 

5, (2:1), 1000 2 2 5000 0.2289 5.6 

7, (2:1), 1000 3 2 7000 0.3388 23.47 

3, (1:1), 1000 1 2 3000 0.1349 1.2 

5, (1:1), 1000 2 2 5000 0.2684 2.07 

7, (1:1), 1000 3 2 7000 0.3948 20.05 

3, (1:2), 1000 1 2 3000 0.1726 1.13 

5, (1:2), 1000 2 2 5000 0.2635 2.08 

7, (1:2), 1000 3 2 7000 0.2968 18.73 

3, (2:1), 2000 3 0 6000 0.2889 9.6 

5, (2:1), 2000 4 4 10000 0.5394 96.83 

7, (2:1), 2000 7 0 14000 0.7347 580.42 

3, (1:1), 2000 3 0 6000 0.2825 8.33 

5, (1:1), 2000 4 4 10000 0.4769 93.2 

7, (1:1), 2000 7 0 14000 0.7313 598.33 

3, (1:2), 2000 3 0 6000 0.3158 8.3 

5, (1:2), 2000 5 0 10000 0.5515 86.72 
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7, (1:2), 2000 7 0 14000 0.7439 548.15 

3, (2:1), 3000 4 2 9000 0.4238 61.87 

5, (2:1), 3000 5 10 15000 0.6780 976.65 

7, (2:1), 3000 7 14 21000 0.7910 1385.2 

3, (1:1), 3000 4 2 9000 0.4667 60.90 

5, (1:1), 3000 6 6 15000 0.6820 843.4 

7, (1:1), 3000 9 6 21000 0.7633 1400.05 

3, (1:2), 3000 4 2 9000 0.4187 59.47 

5, (1:2), 3000 6 6 15000 0.6531 978.05 

7, (1:2), 3000 10 2 21000 0.7870 1408.95 
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Table 10: Problem Instances with Initial Link Reliability 0.8, New Link 0.85, Nodes 5 

Problem 

Instance (# 

Periods, 

Rewards Ratio, 

Budget) 

# of 

edges 

added 

# of 

edges 

improved 

Total 

Budget 

Used 

Final All- 

Terminal 

Reliability 

Total 
Computation 
Time (min) 

3, (2:1), 1000 1 2 3000 0.8026 0.85 

5, (2:1), 1000 2 2 5000 0.8711 0.83 

7, (2:1), 1000 3 2 7000 0.9436 0.9 

3, (1:1), 1000 1 2 3000 0.8026 0.85 

5, (1:1), 1000 2 2 5000 0.8699 0.92 

7, (1:1), 1000 3 2 7000 0.9412 0.9 

3, (1:2), 1000 1 2 3000 0.8026 0.82 

5, (1:2), 1000 2 2 5000 0.8915 0.97 

7, (1:2), 1000 3 2 7000 0.9109 0.87 

3, (2:1), 2000 2 4 6000 0.8874 0.68 

5, (2:1), 2000 4 4 10000 0.9827 0.95 

7, (2:1), 2000 6 4 14000 0.9968 1.17 

3, (1:1), 2000 3 0 6000 0.9321 0.73 

5, (1:1), 2000 5 0 10000 0.9861 1.00 

7, (1:1), 2000 6 4 14000 0.9980 1.25 

3, (1:2), 2000 3 0 6000 0.9321 0.72 

5, (1:2), 2000 5 0 10000 0.9861 0.95 
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7, (1:2), 2000 6 4 14000 0.9980 1.25 

3, (2:1), 3000 3 6 10000 0.9860 0.92 

5, (2:1), 3000 6 6 15000 0.9972 1.28 

7, (2:1), 3000 4 26 21000 0.9999 1.52 

3, (1:1), 3000 4 2 9000 0.9767 0.93 

5, (1:1), 3000 6 6 15000 0.9977 1.47 

7, (1:1), 3000 6 18 21000 0.9993 1.48 

3, (1:2), 3000 4 2 9000 0.9807 0.92 

5, (1:2), 3000 6 6 15000 0.9985 1.32 

7, (1:2), 3000 7 14 21000 0.9999 1.55 
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Table 11: Problem Instances with Initial Link Reliability 0.8, New Link 0.85, Nodes 7 

Problem 

Instance (# 

Periods, 

Rewards Ratio, 

Budget) 

# of 

edges 

added 

# of 

edges 

improved 

Total 

Budget 

Used 

Final All- 

Terminal 

Reliability 

Total 
Computation 
Time (min) 

3, (2:1), 1000 1 2 3000 0.5734 0.87 

5, (2:1), 1000 2 2 5000 0.7110 1.3 

7, (2:1), 1000 3 2 7000 0.8610 1.9 

3, (1:1), 1000 1 2 3000 0.6357 0.87 

5, (1:1), 1000 2 2 5000 0.7426 1.2 

7, (1:1), 1000 3 2 7000 0.8521 1.85 

3, (1:2), 1000 1 2 3000 0.6396 0.97 

5, (1:2), 1000 2 2 5000 0.7591 1.13 

7, (1:2), 1000 3 2 7000 0.8237 1.77 

3, (2:1), 2000 3 0 6000 0.8496 1.53 

5, (2:1), 2000 5 0 10000 0.9080 7.88 

7, (2:1), 2000 6 4 14000 0.9740 55.92 

3, (1:1), 2000 3 0 6000 0.8372 1.83 

5, (1:1), 2000 5 0 10000 0.9274 8.36 

7, (1:1), 2000 7 0 14000 0.9735 62.63 

3, (1:2), 2000 3 0 6000 0.8259 1.68 

5, (1:2), 2000 4 4 10000 0.9069 8.02 
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7, (1:2), 2000 7 0 14000 0.9442 60.17 

3, (2:1), 3000 4 2 9000 0.9216 4.72 

5, (2:1), 3000 6 6 15000 0.9707 91.17 

7, (2:1), 3000 8 10 21000 0.9975 755.25 

3, (1:1), 3000 4 2 9000 0.9195 4.62 

5, (1:1), 3000 7 2 15000 0.9515 86.13 

7, (1:1), 3000 10 2 21000 0.9962 787.82 

3, (1:2), 3000 4 2 9000 0.8936 4.58 

5, (1:2), 3000 7 2 15000 0.9696 88.43 

7, (1:2), 3000 10 2 21000 0.9963 728.95 
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Table 12: Problem Instances with Initial Link Reliability 0.8, New Link 0.85, Nodes 10 

Problem 

Instance (# 

Periods, 

Rewards Ratio, 

Budget) 

# of 

edges 

added 

# of 

edges 

improved 

Total 

Budget 

Used 

Final All- 

Terminal 

Reliability 

Total 
Computation 
Time (min) 

3, (2:1), 1000 1 2 3000 0.3574 1.02 

5, (2:1), 1000 2 2 5000 0.5293 1.87 

7, (2:1), 1000 2 6 7000 0.5940 8.03 

3, (1:1), 1000 1 2 3000 0.3435 1.08 

5, (1:1), 1000 1 6 5000 0.4483 2.28 

7, (1:1), 1000 2 6 7000 0.5822 7.27 

3, (1:2), 1000 1 2 3000 0.3114 1.07 

5, (1:2), 1000 2 2 5000 0.4041 2.38 

7, (1:2), 1000 3 2 7000 0.5394 7.33 

3, (2:1), 2000 3 0 6000 0.6571 5.15 

5, (2:1), 2000 5 0 10000 0.8089 90.22 

7, (2:1), 2000 6 4 14000 0.8504 579.60 

3, (1:1), 2000 2 4 6000 0.5461 6.07 

5, (1:1), 2000 4 4 10000 0.6698 90.8 

7, (1:1), 2000 7 0 14000 0.8555 574.28 

3, (1:2), 2000 2 4 6000 0.5411 5.32 

5, (1:2), 2000 4 4 10000 0.7164 97.05 
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7, (1:2), 2000 7 0 14000 0.9042 619.7 

3, (2:1), 3000 3 6 9000 0.6775 55.35 

5, (2:1), 3000 6 6 15000 0.8643 981.1 

7, (2:1), 3000 8 10 21000 0.9257 1422.15 

3, (1:1), 3000 4 2 9000 0.7044 57.82 

5, (1:1), 3000 7 2 15000 0.8891 997.4 

7, (1:1), 3000 9 6 21000 0.9233 1432.02 

3, (1:2), 3000 4 2 9000 0.6499 59.55 

5, (1:2), 3000 6 6 15000 0.8764 948.7 

7, (1:2), 3000 10 2 21000 0.9438 1398.35 
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Table 13: Problem Instances with Initial Link Reliability 0.9, New Link 0.9, Nodes 5 

Problem 

Instance (# 

Periods, 

Rewards Ratio, 

Budget) 

# of 

edges 

added 

# of 

edges 

improved 

Total 

Budget 

Used 

Final All- 

Terminal 

Reliability 

Total 
Computation 
Time (min) 

3, (2:1), 1000 1 2 3000 0.9477 0.85 

5, (2:1), 1000 1 6 5000 0.9900 0.83 

7, (2:1), 1000 2 6 7000 0.9801 0.8 

3, (1:1), 1000 1 2 3000 0.9477 0.75 

5, (1:1), 1000 2 2 5000 0.9696 0.75 

7, (1:1), 1000 3 2 7000 0.9871 0.83 

3, (1:2), 1000 1 2 3000 0.8748 0.7 

5, (1:2), 1000 2 2 5000 0.8690 0.57 

7, (1:2), 1000 3 2 7000 0.9368 0.67 

3, (2:1), 2000 2 4 6000 0.9882 0.73 

5, (2:1), 2000 3 8 10000 0.9999 0.82 

7, (2:1), 2000 6 4 14000 0.9966 1.1 

3, (1:1), 2000 3 0 6000 0.9295 0.62 

5, (1:1), 2000 3 8 10000 0.9990 0.9 

7, (1:1), 2000 5 8 14000 0.9988 1.13 

3, (1:2), 2000 3 0 6000 0.9281 0.62 

5, (1:2), 2000 5 0 10000 0.9872 0.83 
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7, (1:2), 2000 2 20 14000 0.9999 1.07 

3, (2:1), 3000 4 2 9000 0.9813 0.77 

5, (2:1), 3000 4 14 15000 0.9999 0.93 

7, (2:1), 3000 3 25 18500 1.0000 1.08 

3, (1:1), 3000 4 2 9000 0.9792 0.83 

5, (1:1), 3000 5 10 15000 1.0000 1.1 

7, (1:1), 3000 5 22 21000 1.0000 1.15 

3, (1:2), 3000 4 2 9000 0.9806 0.78 

5, (1:2), 3000 3 12 12000 1.0000 0.8 

7, (1:2), 3000 5 22 21000 0.9995 1.17 
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Table 14: Problem Instances with Initial Link Reliability 0.9, New Link 0.9, Nodes 7 

Problem 

Instance (# 

Periods, 

Rewards Ratio, 

Budget) 

# of 

edges 

added 

# of 

edges 

improved 

Total 

Budget 

Used 

Final All- 

Terminal 

Reliability 

Total 
Computation 
Time (min) 

3, (2:1), 1000 1 2 3000 0.8267 0.8 

5, (2:1), 1000 2 2 5000 0.9324 1.07 

7, (2:1), 1000 3 2 7000 0.9536 1.88 

3, (1:1), 1000 1 2 3000 0.8267 0.85 

5, (1:1), 1000 2 2 5000 0.9123 1.12 

7, (1:1), 1000 3 2 7000 0.9719 1.72 

3, (1:2), 1000 1 2 3000 0.8857 0.83 

5, (1:2), 1000 2 2 5000 0.9330 1.05 

7, (1:2), 1000 3 2 7000 0.9654 1.77 

3, (2:1), 2000 2 4 6000 0.9441 1.47 

5, (2:1), 2000 5 0 10000 0.9681 6.67 

7, (2:1), 2000 5 8 14000 0.9988 51.28 

3, (1:1), 2000 2 4 6000 0.9179 1.62 

5, (1:1), 2000 5 0 10000 0.9844 7.2 

7, (1:1), 2000 7 0 14000 0.9965 53.57 

3, (1:2), 2000 3 0 6000 0.9396 1.58 

5, (1:2), 2000 5 0 10000 0.9681 7.78 
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7, (1:2), 2000 7 0 14000 0.9966 56.87 

3, (2:1), 3000 4 2 9000 0.9664 4.72 

5, (2:1), 3000 6 6 15000 0.9978 84.37 

7, (2:1), 3000 8 10 21000 0.9990 743.15 

3, (1:1), 3000 4 2 9000 0.9743 4.48 

5, (1:1), 3000 6 6 15000 0.9988 81.6 

7, (1:1), 3000 9 6 21000 0.9997 740.07 

3, (1:2), 3000 4 2 9000 0.9839 4.43 

5, (1:2), 3000 7 2 15000 0.9977 90.95 

7, (1:2), 3000 9 6 21000 0.9999 717.55 
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Table 15: Problem Instances with Initial Link Reliability 0.9, New Link 0.9, Nodes 10 

Problem 

Instance (# 

Periods, 

Rewards Ratio, 

Budget) 

# of 

edges 

added 

# of 

edges 

improved 

Total 

Budget 

Used 

Final All- 

Terminal 

Reliability 

Total 
Computation 
Time (min) 

3, (2:1), 1000 1 2 3000 0.7705 1.12 

5, (2:1), 1000 2 2 5000 0.8519 2.17 

7, (2:1), 1000 3 2 7000 0.8960 6.08 

3, (1:1), 1000 1 2 3000 0.6457 1.08 

5, (1:1), 1000 2 2 5000 0.8519 2.27 

7, (1:1), 1000 3 2 7000 0.9074 6.47 

3, (1:2), 1000 1 2 3000 0.6887 1.05 

5, (1:2), 1000 2 2 5000 0.8063 2.23 

7, (1:2), 1000 3 2 7000 0.8454 6.18 

3, (2:1), 2000 2 4 6000 0.8839 4.68 

5, (2:1), 2000 4 4 10000 0.9021 89.92 

7, (2:1), 2000 6 4 14000 0.9591 650.92 

3, (1:1), 2000 3 0 6000 0.8996 4.6 

5, (1:1), 2000 4 4 10000 0.9167 107.15 

7, (1:1), 2000 7 0 14000 0.9585 618 

3, (1:2), 2000 3 0 6000 0.8585 8.68 

5, (1:2), 2000 5 0 10000 0.9264 86.43 
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7, (1:2), 2000 7 0 14000 0.9712 598.85 

3, (2:1), 3000 3 6 9000 0.8942 54.27 

5, (2:1), 3000 5 10 15000 0.9870 1057.08 

7, (2:1), 3000 6 18 21000 0.9865 1416.03 

3, (1:1), 3000 4 2 9000 0.9108 53.78 

5, (1:1), 3000 7 2 15000 0.9885 1035.55 

7, (1:1), 3000 7 14 21000 0.9773 1403.75 

3, (1:2), 3000 4 2 9000 0.9272 57.58 

5, (1:2), 3000 6 6 15000 0.9601 1037.98 

7, (1:2), 3000 8 10 21000 0.9772 1390.8 
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Table 16: Problem Instances with Initial Link Reliability 0.9, New Link 0.9, Nodes 5 using 5% 

increase 

Problem 

Instance (# 

Periods, 

Rewards Ratio, 

Budget) 

# of 

edges 

added 

# of 

edges 

improved 

Total 

Budget 

Used 

Final All- 

Terminal 

Reliability 

Total 
Computation 
Time (min) 

3, (2:1), 1000 1 2 3000 0.9454 0.72 

5, (2:1), 1000 2 2 5000 0.9687 0.75 

7, (2:1), 1000 3 2 7000 0.9950 0.8 

3, (1:1), 1000 1 2 3000 0.9454 0.72 

5, (1:1), 1000 2 2 5000 0.9687 0.7 

7, (1:1), 1000 3 2 7000 0.9852 0.8 

3, (1:2), 1000 1 2 3000 0.9454 0.73 

5, (1:2), 1000 2 2 5000 0.9693 0.75 

7, (1:2), 1000 3 2 7000 0.9852 0.82 

3, (2:1), 2000 2 4 6000 0.9711 0.8 

5, (2:1), 2000 4 4 10000 0.9982 1.08 

7, (2:1), 2000 4 12 14000 0.9989 1.17 

3, (1:1), 2000 3 0 6000 0.9842 0.77 

5, (1:1), 2000 4 4 10000 0.9985 0.97 

7, (1:1), 2000 4 12 14000 0.9990 1.13 

3, (1:2), 2000 3 0 6000 0.9842 0.78 
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5, (1:2), 2000 5 0 10000 0.9977 1.05 

7, (1:2), 2000 6 4 14000 0.9995 1.23 

3, (2:1), 3000 4 2 9000 0.9977 0.97 

5, (2:1), 3000 4 14 15000 0.9998 1.25 

7, (2:1), 3000 5 22 21000 0.9999 1.42 

3, (1:1), 3000 4 2 9000 0.9966 0.92 

5, (1:1), 3000 4 14 15000 0.9999 1.27 

7, (1:1), 3000 5 22 21000 0.9999 1.38 

3, (1:2), 3000 4 2 9000 0.9977 0.97 

5, (1:2), 3000 6 6 15000 0.9998 1.22 

7, (1:2), 3000 6 18 21000 0.9999 1.35 
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