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Abstract

In this dissertation, we have thoroughly studied the effect of chemical and charge doping

on ferroelectrics (PbTiO3 and BaTiO3) and Rashba type semiconductor (BiTeI). In the first

project, We investigate the polar instability and soft modes in electron-doped PbTiO3 using

linear-response density functional calculations. Because, metallicity and ferroelectric-like

polar distortion are mutually non-compatible, and their coexistence in the same system is

an intriguing subject of fundamental interest in the field of structure phase transition. How-

ever, it is unclear what mechanism may extend the limit of metallicity that allows polar

distortion. We find that ferroelectric instability can remarkably sustain up to an electron

concentration of ne=0.7 per unit cell, which is beyond the limit that causes the polar catas-

trophe in LaAlO3/SrTiO3. Our study further reveals two unusual discoveries: (i) Electron

doping can turn non-soft mode into soft mode, which leads to different microscopic mecha-

nism for ferroelectricity when system is strongly metallic; (ii) The frequency change ∆ω/∆ne

is surprisingly flat at large ne, which is pivotal for the persistence of soft mode and polar dis-

tortion at high metallicity. We also provide an interesting physical origin—which is caused

by the strong mode-mode interaction—to explain these phenomena, and the finding of this

origin may further extend the limit where metallicity and polar distortion coexist. In the

second project, after we understood the existence of polar-metal characteristics in PbTiO3

under electron doping, we extend our study to a more complex system of supercell PbTiO3

under chemical doping and the application of biaxial compressive strain to find room temper-

ature polar-metal. Polar metals offer a wide range of useful properties in superconductivity,

magnetoelectricity, photovoltaics, and mutli-ferroic sensors. The realization of a room tem-

perature polar metals would be an ideal candidate for such versatile applications. Hence,

using liner-response density functional calculations, we have investigated Nb-doped PbTiO3,

which is under four different biaxial compressive strains (η=0%, -1%, -2%, and -3%) to alter

the minimum energy of its polar mode (A2u(TO1)). We find from the total density of states of



-2% biaxially strained Nb-doped PbTiO3 that the frequencies of most phonon modes are less

than 300 cm−1. We also find that the extra electron acquired due to Nb-doping is localized

and form small polarons around Nb site, which can be thermally actuated into a conduction

state. This electron partially screens out the internal dipole moment existed in pure (without

Nb-doping) PbTiO3, and preserves the ferroelectric instability. The double well potential

depth of A2u(TO1) display stability under room temperature condition (KBT∼25 meV) for

η=-2% and η=-3%, because the depth of the potential well for these two strains are -29.51

and -39.56 meV, respectively. However, the depth of the potential well of A2u(TO1) for un-

strained (η=0%) Nb-doped PbTiO3 is -0.095 meV, which is unstable at this condition. We

therefore demonstrated that metallic Nb-doped PbTiO3 can be transformed into polar metal

by the application of biaxial compressive strain. As a result, strain play a prominent role

to tune the physical and chemical properties of polar metals in addition to doping. Finally,

in the third project, we investigate the effect of electron and hole doping on the spin-orbit

interaction and electron-phonon coupling constant of BiTeI. The spin-splitting of bands by

spin-orbit interaction (SOI) in systems that lack inversion symmetry have paramount im-

portance in spin-polarized field effect transistor, magnetoelectric effect, Edelstein effect and

spin Hall effect. We have performed first principle calculation to study the effect of charge

doping (electron and hole) on the SOI and electron-phonon coupling constant (λ) of BiTeI.

The Rashba parameter is tuned up to a maximum value of 7.46 and 6.32 eVÅ for the valance

and conduction bands, respectively. The valance band Rashba parameter is so far the high-

est we have recognized in any work. λ of BiTeI is 0.46, and this value is almost the same as

that of Al and Mo. However, the critical temperature (TC) of BiTeI in this study is 0.7 K,

which is very small for practical application.
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1 Origin of the persistence of soft modes in metallic ferroelectrics

1.1 Introduction

1.1.1 Polar Metals

Coexistence of metallicity and ferroelectric-like polar distortion, namely that a solid is simul-

taneously metallic and polar as suggested first by Anderson and Blount [1], is an intriguing

phenomenon of fundamental interest, since the two properties are mutually incompatible

and should not occur in the same system [2]. For decades, the long-range Coulomb interac-

tion was known to favor ferroelectricity (FE) by causing atoms to move off-center and thus

developing polarization [3–6]. On the other hand, the mobile carriers (electrons or holes) ex-

isting in metallic materials tend to annihilate (by charge screening) the asymmetric charge

distribution and electric dipole if ferroelectricity is to persist. Consequently polar metals

with simultaneous occurrence of both metallicity and polar distortion were conceived to be

paradoxical and interesting.

Technologically, the peculiar coexistence offers an interesting possibility of using conduc-

tivity and polarity as two different routes to tune material properties. Metals exhibit good

transport such as superconductivity [7] and quantum Hall effects [8], while ferroelectrics

provide other superior properties [9], such as ultrahigh electromechanical response [10, 11],

interesting morphotropic phase boundary [12, 13], exceptional dielectric coefficient [14], large

proximity effect [15], unusual phase transitions [16, 17], and strong coupling between rotation

and polarization [18–21]. The intriguing interplay between two drastically different fields is

largely unknown. Polar metals may also replace normal metal electrodes for better func-

tionality and enhanced performance [22]. Furthermore, the presence of polar axis in polar

metals breaks the inversion symmetry and introduces a non-vanishing spin-orbit coupling

[23], which causes detectable band splitting in the natural gyrotropy and spin susceptibility

of superconductors CePt3Si, UIr, and KOs2O6 [24, 25]. Moreover, electrical current in polar

1



metals may induce a spin magnetization proportional to P⃗ × J⃗ (where P⃗ is the unit vector

along the polar axis and J⃗ is the current density), which may lead to novel magnetoelectric

effect [25] and double circular refraction by Faraday and Kerr rotations [26].

Polar metals are realized either by undoped nature materials [2, 27–30], or by doping

ferroelectrics with conducting electrons [31, 32]. Shi et al. demonstrated experimentally that

metallic LiOsO3 undergoes at 140K a ferroelectric phase transition from the centrosymmetric

R3c to non-centrosymmetric R3c structure [27], which supports the existence of polar metals.

Polar axis also occurs in metal SrCaRu2O6 [33]. Although the mechanism of polar metals

is still largely unknown, the existing studies point to the possibility that the short-range

interaction, in addition to the long-range interaction, may stabilize ferroelectricity [28–32].

Many profound issues on polar metals remain to be understood. Questions of fundamental

relevance are: (i) To what extent can the ferroelectric instability be sustained in metals, in

terms of the concentration of conducting electrons? (ii) What is the mechanism for causing

ferroelectric instability when metallicity is strong? (iii) Do soft modes at high conductivity

resemble those at low conductivity? Could it be possible that they may drastically differ?

(iv) How do the non-soft modes respond to metallicity besides the soft modes? Answers to

these questions would not only provide a better understanding of polar distortions in metals,

but also open new prospects for designing polar metals.

In this project we study how, and why, polar instability may exist when metallicity is par-

ticularly strong, by investigating the structural instability and soft modes in centrosymmetric

PbTiO3 under electron doping. By carefully mapping out the evolution of soft modes as a

function of electron doping, we are able to determine accurately how each mode is formed and

evolves when metallicity is changing. We find that ferroelectric instability persists robustly

up to an unusually-high electron-doping concentration (ne) of 0.7e per unit cell. Further-

more, the microscopic mechanism of forming FE under high metallicity is demonstrated

to differ drastically from that under low metallicity. Moreover, we provide an interesting

and previously less explored origin, caused by strong mode-mode interaction, to explain the
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unusual persistence of polar instability under high metallicity.

1.2 Methods

1.2.1 Density functional theory (DFT)

Density functional theory (DFT) within the local-density approximation [34, 35], as imple-

mented in Quantum Espresso [36, 37], is used to determine total energy, atomic force, and

optimal structure. Norm-conserving pseudopotentials are used [38]. Semicore 3s and 3p

states of Ti are treated as valence states to ensure better accuracy [39, 40]. The energy cut-

off for the plane-wave expansion of singleparticle states is 90 Ry. 6×6×6 Monkhorst-Pack

k-mesh is used.

1.2.2 Density functional perturbation theory (DFPT)

The linear-response density functional perturbation theory (DFPT) is employed to compute

the phonon frequencies and eigenvectors [41–43]. When atoms vibrate, the shifts of atoms

induce a deformation potential ∆V (r) of bare ions, which is treated as perturbation. The

linear response of electron state ∆ψn(r) is computed [41, 42] by solving the Sternheimer

equation:

(Hscf − εn)|∆ψn⟩ = −(∆Vscf −∆εn)|ψn⟩ (1.1)

where Hscf is the Kohn-Sham Hamiltonian, εn the eigenvalue of Hscf , ∆Vscf (r) = ∆V (r) +

e
∫ ∆n(r′)

|r−r′| dr′ +
dvxc(n)

dn

∣∣∣
n=n(r)

∆n(r) the first-order correction to the Vscf (r) potential, and

∆εn=⟨ψn|∆Vscf (r)|ψn⟩ is the first-order correction to eigenvalue εn. The variation of electron

state ∆ψn(r) is computed by solving the Sternheimer equation [44].

For ferroelectric (i.e., non-centrosymmetric) PbTiO3 with P4mm symmetry, our struc-

tural optimization yields an inplane lattice constant a=3.85 Å and tetragonality c/a=1.047.

These values are in agreement with previous results [45] of a=3.87 Å and c/a=1.040. Our

calculated phonon frequencies in ferroelectric PbTiO3 are 81 cm−1 for E(TO1) mode and 616

cm−1 for A1(TO3) mode, which compare well with other computed values of 82 cm−1 and
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623 cm−1, respectively [46]. These results show that our calculations are reliable.

For centrosymmetric PbTiO3, atoms are placed at their high-symmetric positions in the

tetragonal lattice so that the solid exhibits ferroelectric instability. Different amount of

electron per unit cell, denoted as ne, is added to the system which now becomes metallic.

The doped electrons will mainly occupy the Ti orbitals and change the charge state of Ti

atoms from Ti4+ to Ti(4−δ)+ because the electron states at the bottom of the conduction

bands are largely Ti 3d orbitals. We perform electron doping by changing the number of

electrons in the system while adding the charge-compensating jellium background in order to

avoid the diverging Coulomb energy in a charged periodic system [47]. The dipole correction

is small and is not considered, since this correction is inversely proportional to the static

dielectric constant of the solid and since the static dielectric constant is large in ferroelectric

materials (e.g., about 2000 at low temperature in BaTiO3). We investigate by DFPT the

phonon frequencies and eigenvectors when the system is under different doping concentration

ne.

1.3 Results and Discussions

1.3.1 Persistency of soft modes at high ne

According to the group theory [48], the normal modes in centrosymmetric PbTiO3 are

5Eu

⊕
4A2u

⊕
B2u. Eu modes are doubly degenerate and vibrate along the ab plane of

perovskites, while A2u and B2u modes are singly degenerate and vibrate along the c axis.

The calculated phonon frequencies for centrosymmetric PbTiO3 under different doping

concentration ne (i.e., the number of doped electrons per 5-atom unit cell) are shown in the

4th to 6th columns in Table 1.1. For undoped PbTiO3 (ne=0), it is no surprise that soft

modes should occur since centrosymmetric PbTiO3 is not stable [49]. Indeed, for ne=0, our

results in Table 1.1 show that the low-frequency modes A2u(TO1) and Eu(TO1) are soft with

imaginary frequencies of -241 and -135 cm−1, respectively (see the 4th column in Table 1.1).

Interestingly, we find that, when doping concentration is increased to ne=0.6, three (i.e.,
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Table 1.1: Phonon frequencies (ω) at Γ point in centrosymmetric PbTiO3 under different
doping concentration (ne) are reported in the 4th to 6th columns. Furthermore, for the
undoped case (ne=0), the mode order, mode label, and slope ∆ω/∆ne of frequency change
(in cm−1) are listed in the 1st, 2nd, and 3rd columns, respectively. Imaginary frequencies of
soft modes are given as negative values. Three trivial acoustic modes with zero frequency
are not included.

ne=0 ne=0.3 ne=0.6
Order Mode label ∆ω/∆ne ω (cm−1) ω (cm−1) ω (cm−1)
1 A2u(TO1) 690.6 -241 -59 -39
2,3 Eu(TO1) 617.9 -135 -50 -45
7 A2u(TO2) 141.9 83 205 247
8,9 Eu(TO2) 456.2 111 233 270
10 B2u 150.8 199 227 310
11,12 Eu(TO3) 32.2 244 276 334
13 A2u(TO3) 60.5 441 464 479
14,15 Eu(TO4) 130.8 497 554 587

more than one) modes in the sixth column of Table 1.1 remain soft with imaginary frequen-

cies. Note that ne=0.6 corresponds to a doped-electron concentration of ∼1028 electrons/m3,

which is exceptionally high in normal semiconductors [50]. Results in Table 1.1 thus demon-

strate that soft modes exist despite strong metallicity, which is rather remarkable. To further

illustrate how strong the metallicity is in PbTiO3 with ne=0.6 per unit cell, we note that

this ne value exceeds the charge transfer of ne=0.5 per unit cell from LaAlO3 to SrTiO3, and

the charge transfer of ne=0.5 in the latter case is sufficient to cause a strong metal/insulator

transition in the LaAlO3/SrTiO3 system [51]. Our calculations thus reveal that ferroelectric

soft modes in PbTiO3 can persist under strong metallicity.

The existence of soft modes at ne=0.6 is not accidental, and it also occurs at another

concentration ne=0.3 (the fifth column in Table 1.1). The persistence of ferroelectric soft

modes at different levels of electron doping unambiguously proves that polar metals indeed

exist.

1.3.2 Unusual behaviors of soft modes in doped PbTiO3

To obtain a microscopic understanding of polar distortion in metallic systems, we now ex-

amine the phonon eigenvector of the lowest-frequency soft mode (LFSM), which is shown
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in Figure 1.1 for different doping concentrations. For ne=0 in Figure 1.1(a), the LFSM

mainly originates from the opposite displacements of Ti and O atoms, which is a Slater

mode [52, 53]. Pb atoms also have a sizable contribution in Figure 1.1(a).

Figure 1.1: Phonon eigenvector of the lowest-frequency soft mode (LFSM) at different ne:
(a) ne=0.0; (b) ne=0.3; (c) ne=0.6. The phonon eigenvector of the non-soft A2u(TO2) mode
at ne=0 is shown in (d). Arrow and its length indicate the vibration direction and amplitude,
respectively.

As ne is increased to 0.3, we find that the LFSM in Figure 1.1(b) is intriguingly different

from the one in Figure 1.1(a): (i) For the LFSM in Figure 1.1(b), Ti and O atoms are not

moving along opposite directions, and instead they move along the same direction. The

LFSM at ne=0.3 thus becomes a Last mode [54], not a Slater mode as in Figure 1.1(a).

Figure 1.1(b) reveals that the Ti-O opposite displacement is no longer responsible for the
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ferroelectricity in PbTiO3 at ne=0.3. (ii) In Figure 1.1(b), the Pb contribution is drastically

enhanced, and the Pb and O atoms are displaced along opposite directions. Therefore

ferroelectric instability in PbTiO3 polar metal at ne=0.3 originates mainly from the relative

motion of Pb and O atoms, unlike in undoped PbTiO3. We thus discover that ferroelectricity

in undoped and doped PbTiO3 has different microscopic origins.

When ne is further increased to 0.6, the LFSM in Figure 1.1(c) is also unexpected.

Unlike either Figure 1.1(a) or Figure 1.1(b) (where atoms vibrate along the c axis), the

LFSM at ne=0.6 now vibrates on the ab plane, suggesting that ferroelectricity occurs within

the inplane direction, caused by high carrier concentration. To further confirm that the

LFSM at ne=0.6 in Figure 1.1(c) will indeed cause structural instability, we have performed

structural optimization by relaxing the cell shape and atomic positions. We find that the

ground state of ne=0.6 is a monoclinic MA-like structure where there is a sizable tetragonal

distortion. Meanwhile, the Ti atom moves along the ab plane as well as along the c-axis, since

soft mode Eu(TO1) leads to a displacement along the ab plane and another competing soft

mode A2u(TO1) leads to a displacement along the c-axis. Again, the relative displacements

of Ti and O atoms cease to be the origin of ferroelectricity since they move along the same

direction in Figure 1.1(c). The large and opposite Pb-O displacement in Figure 1.1(c) is the

reason responsible for the ferroelectricity. Figure 1.1(b) and Figure 1.1(c) thus reveal that

ferroelectric instability in polar metals is rich and interesting, tunable by the concentration

of conducting carriers.

1.3.3 Mode evolution and doping-induced frequency change ∆ω/∆ne

The mode frequencies in Table 1.1 at the three doping concentrations (ne=0, 0.3, 0.6) are

plotted in the inset of Figure 1.2. From the inset it is hard to see how modes at one ne

evolve into modes at another ne, particularly when several modes are clustered with similar

frequencies. Here we use two tactics to solve this evolution problem. First, we perform

calculations for more doping concentrations. Second, we utilize a mode-projection method
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(which is described below) to determine quantitatively the relation among modes at different

ne.

Figure 1.2: Phonon frequencies at Γ point as a function of ne in electron-doped PbTiO3.
Symbols are the results directly obtained from DFPT calculations; lines that depict the mode
evolution between different ne are obtained by mode projection. Labels of normal modes are
given near each curve. The inset shows the mode frequencies for three ne (i.e., 0, 0.3, 0.6)
considered in Table 1.1.

Denote the mth zone-center phonon eigenvector at doping concentration ne as |ϵiαm(ne)⟩,

where i is the atom index and α the direction index. Eigenvector |ϵiαm(ne)⟩ is related to the

phonon displacement |uiαm(ne)⟩ by |ϵiαm(ne)⟩ =
√
Mi|uiαm(ne)⟩, where Mi is the mass of atom

i.Since phonon eigenvectors at a given wave vector form a complete basis set, we can thus

use the phonon eigenvectors at one doping concentration ne1 as bases to expand the phonon

eigenvectors at another doping concentration ne2,

|ϵiαl (ne2)⟩ =
∑
m

pml |ϵiαm(ne1)⟩ , (1.2)

where pml=
∑
iα

⟨ϵiαm(ne1)|ϵiαl (ne2)⟩. Quantity pml describes the correlation between mode m at

ne1 and mode l at ne2, establishing the correspondence among modes at different ne.
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Eq.(1.2) is rigorous since phonon eigenvectors at one doping concentration are complete

bases for a given phonon wave vector. This equation does not apply to the force constant

matrices because the force constant matrix at one doping concentration does not form a

complete basis set. Also, the relation between phonon eigenvectors and force constant ma-

trices cannot be formulated analytically in a simple manner, which makes it hard to apply

Eq.(1.2) to the force constant matrices.

The DFPT-calculated phonon frequencies for more doping concentrations are plotted as

the symbols in Figure 1.2. We then perform the mode projection and determine the evolution

for phonon modes between two neighboring ne. The evolution is given by the solid lines in

Figure 1.2. Determination of the continuous evolution of modes is important, since it allows

us (i) to understand the origin of each mode, and (ii) to compute quantitatively how the

frequency of a specific mode changes with ne.

It is interesting to examine how frequency (ω) of individual mode depends on ne. At a low

doping concentration when ne is less than 0.1, we find that frequency ω in Figure 1.2 depends

on ne in a linear manner. The linear slope ∆ω/∆ne at ne=0 is determined and given in the

third column in Table 1.1. Table 1.1 shows that (i) soft mode A2u(TO1) and Eu(TO1) each

has a giant ∆ω/∆ne, which is 690.6 and 617.9 cm−1, respectively; (ii) Interestingly, some

non-soft phonons such as modes 8 and 9 [i.e., Eu(TO2)] also demonstrate a surprisingly large

slope of 456.2 cm−1, showing that assumption of small ∆ω/∆ne for non-soft phonons cannot

be justified; (iii) Even for the silent B2u mode (mode 10 in Table 1.1), the slope ∆ω/∆ne

is nonzero, revealing a broad impact caused by metallicity on lattice vibration. Silent B2u

mode involves only the oxygen atoms on the base plane of an oxygen octahedron, where two

opposite oxygen atoms move upward along the c-axis while another two oxygen atoms move

downward.

Using the ∆ω/∆ne slope in Table 1.1, one may estimate the critical doping concentration

nc
e at which a soft mode will disappear. nc

e is found to be nc
e=0.35 for soft mode A2u(TO1).

In other words, A2u(TO1) will no longer be soft after nc
e=0.35. However, this does not occur
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in reality, and as a matter of fact, in the 6th column of Table 1.1, mode A2u(TO1) continues

to be soft at ne=0.6, which is much larger than nc
e. This is rather astonishing, and indicates

that interesting phenomena must happen at high doping concentration.

Indeed, Figure 1.2 shows that frequency change ∆ω at high ne is completely different from

that at low ne. In particular, the ∆ω/∆ne slopes of the two lowest curves [i.e., A2u(TO1) and

Eu(TO1)] in Figure 1.2 are remarkably flat when ne ≥0.3. The flat ∆ω/∆ne slope of the soft

mode is unusual and interesting for two reasons: (i) Most of the other modes do not have

a flat ∆ω/∆ne slope at large ne as shown in Figure 1.2; (ii) The flat ∆ω/∆ne slope reveals

that increasing ne does not change significantly the frequency of the soft mode, and thus

allows the soft mode to persist at high ne (which is critical for the persistence of soft mode

and polar instability to sustain up to ne=0.7 in electron-doped PbTiO3). Also, it worths

mentioning that the mode sequence (i.e., the ordering of modes according to frequencies) is

very different at ne=0.7 than at ne=0; for instance, at ne=0.7, the silent B2u now becomes

the lowest non-soft phonon (Figure 1.2).

1.3.4 Origin of the persistence of polar instability in doped PbTiO3

The discoveries of (i) the persistence of soft modes up to a high doping concentration of

ne=0.7, (ii) the unusual alternation of the LFSM in Figure 1.1, and (iii) the drastic change

in ∆ω/∆ne at low and high metallicity in Figure 1.2, are all interesting. In the following we

attempt to find the physical origin explaining these behaviors.

First we intend to provide quantitative evidence showing that electron doping (and metal-

licity) causes a strong mode-mode interaction. For this purpose, we investigate where the

LFSM at ne=0.3 originates from, by projecting the eigenstate of this mode onto the phonon

eigenstates of undoped PbTiO3 [namely using the phonon states of undoped PbTiO3 as the

bases in the right side of Eq.(1.2)]. This reveals which modes at ne=0 interact in order

to form the LFSM at ne=0.3. The calculated projection coefficients |pml|2 are depicted in

Figure 1.3(a).
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Figure 1.3: Projection magnitude |pml|2 for: (a) the LFSM at ne=0.3, (b) the LFSM at
ne=0.6. In both cases, the phonon eigenvectors of undoped PbTiO3 are used as the bases
(i.e., the horizontal axis) in the mode projection.
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Figure 1.3(a) shows that the LFSM A2u(TO1) at ne=0.3 comes from two modes in un-

doped PbTiO3: 30% from undoped A2u(TO1) and 70% from undoped A2u(TO2). Therefore,

electron doping causes a mixing of undoped A2u(TO1) and A2u(TO2) modes, and it is this

mixing that forms the LFSM at ne=0.3. Furthermore, since the majority contribution to the

LFSM at ne=0.3 comes from the undoped A2u(TO2) mode, the former must be similar to the

latter in terms of eigenstate. This is indeed confirmed by comparing the phonon eigenvector

of the LFSM at ne=0.3 [shown in Figure 1.1(b)] with the eigenvector of undoped A2u(TO2)

[shown in Figure 1.1(d)], where, for both modes, Ti and O atoms move in the same direction

while Pb atoms move oppositely. The mode projection thus reveals an interesting finding,

namely that the non-soft mode A2u(TO2) in undoped PbTiO3 becomes a soft mode after

electrons are doped into the system. Electron doping is thus found to turn a non-soft mode

into a soft mode, which is in agreement with the result in Ref.[31].

The mode mixing caused by metallicity is general. For instance, mode mixing is also

critical in forming the LFSM at higher ne=0.6, which vibrates along the inplane direction.

In Figure 1.3(b), projection coefficients |pml|2 of this LFSM are plotted, again using the

phonon eigenvectors of undoped PbTiO3 as bases. We see in Figure 1.3(b) that the LFSM

at ne=0.6 originates from the mixing of two undoped modes: 42% from Eu(TO1) and 58%

from Eu(TO2). The two contributions are nearly 50% each, indicating that the mixing is

strong.

The reason that electron doping causes mode mixing can be intuitively understood. It

is known that electric field in ferroelectrics generates a strong mode mixing, which leads

to the large LO/TO splitting [55, 56]. By introducing additional charges in the system,

electron doping alters the long-range Coulomb interaction and behaves like electric field,

hence creating the mode mixing. Electron doping also reduces the LO/TO splitting [57].

After having established that electron doping mixes different modes, we now show that

the mode-mode interaction is the origin responsible for the unusual persistence of soft modes.

(i) First we recognize in Figure 1.2 that, according to the group theory, modes A2u(TO1)
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and A2u(TO2) interact when concentration ne varies, as witnessed by the fact that these

two modes anti-cross near ne=0.2. The anti-crossing bends downward the ω∼ne curve of

A2u(TO1), and meanwhile lowers the frequency of this mode, which favors the persistence

of soft mode to a high doping concentration. If the above anti-crossing had not occurred,

the frequency of A2u(TO1) may have exceeded zero—and polar instability may thus have

disappeared—near ne=0.35. (ii) In Figure 1.2, the slopes of the ω∼ne curves, for A2u(TO1) at

high doping concentration ne ≥ 0.3 and for A2u(TO2) [not A2u(TO1)] at low concentration

ne < 0.05, are interestingly similar and are both flat. This again results from the mode

interaction since, according to our projection results in Figure 1.3(a), the LFSM A2u(TO1)

at ne=0.3 has a large contribution of 70% from A2u(TO2) at ne=0. The markedly flat ω ∼ ne

slope for A2u(TO1) after anti-crossing allows this mode to remain soft at high ne. Therefore,

the anti-crossing between modes is pivotal in the persistence of ferroelectric instability at

high ne.

The fundamental reason behind flat ω ∼ ne curve is the delicate balance between the

following two factors. On the one hand, the electron doping generally increases the mode

frequency by altering the Coulomb interaction. On the other hand, the electron doping in-

troduces the mode-mode interaction (i.e., the anti-crossing between modes), which decreases

the frequency of the soft mode by bending downward its ω ∼ ne curve. The delicate balance

of these two factors leads to the possible existence of a flat ω ∼ ne curve and thus the unusual

persistence of soft mode in electron-doped PbTiO3.

Once the importance of the mode-mode interaction is revealed, we now explain why the

LFSM transforms from Figure 1.1(a) to Figure 1.1(b) and finally to Figure 1.1(c) as ne varies.

The strong coupling between A2u(TO1) [i.e., the mode in Figure 1.1(a)] and A2u(TO2) [i.e.,

the mode in Figure 1.1(d)], as witnessed by the anti-crossing between them near ne=0.15

in Fig.1.2, causes these two modes to mix. As a consequence of this mixing, the LFSM

at ne=0.3 (i.e., after anti-crossing) assumes the character of A2u(TO2), and will resemble

the A2u(TO2) mode at ne=0, which is indeed confirmed by comparing Figure 1.1(b) with
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Figure 1.1(d). This leads to the transformation of the LFSM from Figure 1.1(a) to Figure

1.1(b). In other words, the coupling between the mode in Figure 1.1(a) and the mode in

Figure 1.1(d) leads to the LFSM mode in Figure 1.1(b). Transformation from Figure 1.1(b)

to Figure 1.1(c) occurs as follows. As shown in Figure 1.2, the slope ∆ω
∆ne

of the A2u(TO1)

curve is notably larger than the slope of the Eu(TO1) curve when ne < 0.3. Therefore,

when ne increases, the frequency of A2u(TO1) rises faster than that of Eu(TO1). As a result,

Eu(TO1) becomes the lowest-frequency soft mode at ne=0.6, and thus the LFSM transforms

from Figure 1.1(b) to Figure 1.1(c). It is also useful to mention that the distortions in Figure

1.1(b)-(d) are ferroelectric (not anti-ferroelectric), since they all correspond to phonon modes

at the zone center q=0. Anti-ferroelectric modes occur instead at the zone boundary.

Our results provide new insight into the persistence of soft modes in electron-doped

PbTiO3 polar metal. Previously the persistence of soft modes was attributed to the lone-

pair of Pb and the pseudo Jahn-Teller effect which involves only one phonon mode[58] (not

the mode-mode interaction as we discover in our study). In contrast, we investigate the mode

mixing caused by electron doping, and we find that the unusual persistence of soft modes

originates from the strong mode-mode interaction which must involve two phonon modes.

Furthermore, driven by the strong mode-mode interaction mechanism, two more unusual

discoveries are made in this study, namely (a) electron doping can turn non-soft mode into

soft mode, and (b) the frequency change ∆ω/∆ne of soft mode is remarkably flat at high ne.

Meanwhile we should mention that, while we examine the effects of doping on the phonon

instability at the zone center, electron doping may also alter the phonon frequencies and

change the polar distortion throughout the other part of Brillouin zone [59].

To investigate whether our theory applies to other materials, we have performed calcu-

lations for BaTiO3 (which is another important ferroelectric) under different concentrations

of electron doping, and the calculation results are given in Figure ??.

Figure 1.4 shows that (i) soft mode in BaTiO3 disappears at a critical doping concen-

tration nc
e=0.14, which is much smaller than nc

e=0.7 in PbTiO3; (ii) the coupling strength
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Figure 1.4: Phonon frequencies at Γ point as a function of ne in electron-doped BaTiO3.
Symbols are the results directly obtained from DFPT calculations; lines that depict the mode
evolution between different ne are obtained by mode projection. Labels of normal modes are
given near each curve. The inset shows the anti-crossings between A2u(TO1) and A2u(TO2)
modes near ne=0.2 and between Eu(TO1) and Eu(TO2) near ne=0.17.
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between A2u(TO1) and A2u(TO2), as measured by the smallest anti-crossing phonon gap of

these two modes, is weak and merely ∼14 cm−1 for BaTiO3 in Figure 1.4 (see the inset of

this figure), as compared to the coupling strength of ∼238 cm−1 for PbTiO3 in Figure 1.2.

The reason that the soft mode disappears at a lower nc
e in BaTiO3 can be explained by the

fact that the weak coupling strength between A2u(TO1) and A2u(TO2) in BaTiO3 does not

bend the A2u(TO1) curve downward strongly and does not push the A2u(TO1) frequency to

be below zero in Figure 1.4. The results thus further confirm our main conclusion that the

strong mode-mode coupling is the key mechanism which causes the unusual persistence of

ferroelectricity in electron-doped PbTiO3.

Mode mixing and mode coupling are equivalent since two modes mix with each other

generally when there is an interaction between them. Mode mixing (or mode coupling) is a

rather universal phenomena which can occur in many systems such as in the systems with

trilinear coupling [18, 20] and in LaSrMnO3/LaNiO3 superlattice where a hidden phonon

mode comes from multi-mode coupling [60]. Our theory can thus be applied to many systems.

Meanwhile we find that the coupling need be strong in order for the soft mode to persist

at high electron doping as shown in Figure 1.2 for PbTiO3, in contrast with Figure 1.4 for

BaTiO3 where coupling is weak.

1.4 Conclusions

In summary, we have studied ferroelectric instability in metallic and doped PbTiO3. We

found (i) the instability is remarkably preserved to a high electron concentration of ne=0.7.

(ii) In metallic PbTiO3 under electron doping, the mechanism for generating ferroelectricity

is predicted to differ from that in undoped system, and Ti-O opposite motion is no longer a

valid mechanism. Instead, ferroelectricity in metallic PbTiO3 is caused by the Pb-O opposite

motion. (iii) Intriguingly, electron doping is discovered to turn the non-soft A2u(TO2) mode

into a soft mode. (iv) The slope ∆ω/∆ne is revealed to be markedly flat for the soft modes

at high ne, which is critical for the sustaining of FE soft modes under metallic condition.
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(v) The strong mode-mode interaction, caused by electron doping, is the origin responsible

for the unusual persistence of polar instability in doped PbTiO3. Engineering the mode

interaction may extend the limit of metallicity that allows FE. These results yield new

knowledge and insight into polar metals and may open future possibility to utilize them for

novel applications.
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2 Strain-driven metal to polar-metal transition in Nb-doped PbTiO3

2.1 Introduction

2.1.1 Effect of strain on ferroelectrics and polar-metals

Polar metals have dual properties of conductivity and polarity. However, they are rare in

nature, because the free electrons screen out the internal dipoles which break the inversion

symmetry of the crystal lattice. The first polar metal experimentally discovered by Shi et

al. is LiOsO3 and it changes from centrosymmetric R3c structure to non-centrosymmetric

R3c structure at 140 K while keeping its metallic state [27]. After this discovery, different

theoretical and experimental research groups have been using distinct methods to create

a new polar metal. One of such method is doping insulating ferroelectric materials with

conducting electrons [31, 32, 58, 61]. Whereas, the other method is a natural selection

process without doping where geometric constrains are applied to preserve polar distortion

(decoupling of itinerant electron at the Fermi level from soft transverse optical phonons which

causes polar distortion) [2, 28, 30, 57] and a proposal of short-range interaction mechanism

rather than the well know long-range Coulomb interaction to stabilize ferroelectricity (FE)

[29].

As we know, the text book definition of ferroelectric is a material owning a spontaneous

polarization that can be reversed by the application of an electric field. To claim polar

metals as ferroelectric their polarity must be reoriented by applying an electric field. This

requirement is yet to be verified experimentally, specially for bulk and superlattice crystalline

structure. However, in WTe2, which is a thin two dimensional layered topological semimetal,

the polarity is reversed by an external field [62]. The additional polar character distinguish

polar metals from an ordinary metals since it couples with electric, magnetic, and orbital

degrees of freedom to provide versatile application in unusual optical response, supercon-

ductivity, magnetoelectricity, thermoelectricity, ultra-fast Mott based devices, non-volatile
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memories, photovoltaics, and multi-ferroic sensors [20, 24, 58, 63, 64].

In addition to chemical doping, strain has been one of the most important parameter to

tune the physical and chemical properties of perovskite oxides [65–71]. For example, SrTiO3

does not display a ferroelectric structure for any range of temperature, however, when a 1%

biaxial tensile strain induced by DyScO3 substrate is applied, it transforms from a paraelectric

to a ferroelectric state at 294 K [72]. PbTiO3 (PTO) is a ferroelectric material that undergoes

a single phase transition from cubic to tetragonal structure at Tc=490 K. But, the biaxial

compressive strain applied on PTO thin film due to SrTiO3 substrate up on which it is grown

significantly change the Tc value to 813 K [73]. Unlike PTO, the ferroelectric instability of

BaTiO3 (BTO) is suppressed by doping [31, 32, 74, 75]. However, using X-ray diffraction

and second harmonic generation measurement, Takahashi et al. observed a low temperature

non-polar to polar structural phase transition of La-doped BTO while the doping level of

La increased. Moreover, metallicity of the polar phase advances down to 100 K despite the

small doping value of La, which is n = 1.0×1014 electrons/m3. This result is tied to the

compressive biaxial strain applied on La-doped BTO when it is epitaxially grown on GdScO3

substrate [76]. Therefore, strain is also an effective way of tuning the properties of polar

metals at a wide range of temperature.

Recently, PbTi1−xNbxO3 films fabricated using laser molecular epitaxy technique exhibit

a ferroelectric-like polar distortion at room temperature. Using piezoresponse force mi-

coscopy (PFM), Gu et al. observed macroscopic ferroelectric hysteresis loops in these films

without any saturated state due to heavy leakage current. As Nb concentration varies from

0.04 to 0.12, the temperature dependent transport properties of these films show a transition

from insulator to semiconductor, and from semiconductor to metallic state. Furthermore,

Nb doping has a very small effect on the dipoles in the unit cell regardless of the doping

concentration; its sole effect rather is to provide free electrons [77]. However, in Gu et al.

computational study the effect of strain, structural stability, and polar mode of Nb-doped

PTO are not investigated in detail to complement the experimental probe. Hence, more
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computational studies are necessary to better understand the polar metal characteristics of

Nb-doped PTO on the fundamental level. In particular, since structural stability of PTO

is governed by its phonon frequencies at the Γ point, it is realistic to analyze the phonon

frequencies and polar mode of Nb-doped PTO. Therefore, this paper will give emphasis on

those topics and examine the effect of biaxial compressive strain (η) on the polar mode of

Nb-doped PTO.

In this study, employing density functional theory (DFT) and density functional pertur-

bation theory (DFPT), we studied how the polar mode (A2u(TO1)) of Nb-doped PTO at

the Γ point can be tuned under different biaxial compressive strain. Our study shows that

A2u(TO1) became stable when -2% and -3% biaxial strains are applied on Nb-doped PTO,

i.e., its energy changes dramatically from -0.095 meV to -29.51 and -39.56 meV, respectively.

As a result, Nb-doped PTO could be used as a room temperature polar metal. We also

found out that the wave function of the additional electron achieved when Ti is replaced

by Nb is localized and form small polarons state since the electron density (n) is 2.16×1021

cm−3, which is one order of magnitude greater than 1020 cm−3 [78]. This state can be ther-

mally triggered into a conductive state. Moreover, the slope of the average potential graph

indicates that the extra electron partially screens out the electric field existed in the pure

PbTiO3 (i.e., without Nb doping).

2.2 Methods

We combined eight bulk cubic (a=3.88 Å) PTO to create a 1×1×8 supercell (SC) of 40 atoms

(a=3.88 Å and c/a=8), and then one tetravalent Ti atom is substituted by pentavalent Nb

atom to make the system metallic. Because, TiO2 has zero net charge, whereas NbO2 has a

net charge of -e. Therefore, Nb-doped PTO has one extra electron. Due to the comparable

atomic radius of Ti (r=0.64 Å) and Nb (r=0.61 Å), the lattice mismatch introduced by

this substitution is very small [79]. We choose to work on Nb-doped PTO since it can be

experimentally synthesized employing epitaxy techniques [77].
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2.2.1 Density functional theory (DFT)

We use Density functional theory (DFT) within the local-density approximation [34, 35]

as implemented in the plane wave pseudopotential code of Quantum Espresso [36, 37] to

compute total energy, atomic force, and optimal structure. The energy cutoff for the plane-

wave expansion of single-particle states is 100 Ry and 6×6×2 Monkhorst-Pack k-mesh is

used to sample the Brillion zone. Norm-conserving pseudopotentials are used [38]. Semicore

3s and 3p states of Ti are treated as valence states to ensure better accuracy [39, 40].

2.2.2 Density functional perturbation theory (DFPT)

We relaxed the atomic structure while keeping centrosymmetry to ensure the existence of

ferroelectric instability; the phonon frequencies and eigenvectors are computed using the

linear-response density functional perturbation theory (DFPT) [41–43]. When atoms vibrate,

the shifts of atoms induce a deformation potential ∆V (r) of bare ions, which is treated as

perturbation. The linear response of electron state ∆ψn(r) is computed [41, 42] by solving

the Sternheimer equation:

(Hscf − εn)|∆ψn⟩ = −(∆Vscf −∆εn)|ψn⟩ (2.1)

where Hscf is the Kohn-Sham Hamiltonian, εn the eigenvalue of Hscf , ∆Vscf (r) = ∆V (r) +

e
∫ ∆n(r′)

|r−r′| dr′ +
dvxc(n)

dn

∣∣∣
n=n(r)

∆n(r) the first-order correction to the Vscf (r) potential, and

∆εn=⟨ψn|∆Vscf (r)|ψn⟩ is the first-order correction to eigenvalue εn. The variation of electron

state ∆ψn(r) is computed by solving the Sternheimer equation [44].

The minimum energy (Emin) of A2u(TO1) without any strain is -0.095 meV, which is not

stable under ambient temperature (KBT∼25 meV). Hence, -1%, -2%, and -3% biaxial strain

are applied to alter this energy. Note that, tensile strain will eliminate Emin and that is why

we used compressive strain instead of tensile strain. Then, we relaxed the supercell structure

to find optimal atomic positions and c/a values for each η.
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Table 2.1: Crystal structure Nb-doped PTO and its soft mode (A2u(TO1)) frequencies under
different η. The imaginary frequencies of the soft mode are given as negative freqencies.

η (%) a (Å) c/a c (Å) Unit cell volume (Å 3) ω (cm−1) of A2u(TO1) Emin of A2u(TO1) in meV
0 3.88 8.0000 31.04 467.29 -13.82 -0.095
-1 3.84 8.2245 31.58 465.67 -56.31 - 18.26
-2 3.80 8.4080 31.95 461.36 -70.86 -29.51
-3 3.76 8.5869 32.29 456.50 -78.81 -39.56

2.3 Results and Discussions

2.3.1 Crystal structure of Nb-doped PTO

A 1×1×8 supercell consists of 40 atoms is constructed by combining eight bulk cubic cen-

trosymmetric PTO, which has a lattice constant of a = 3.88 Å. Then, Ti is replaced by Nb to

make the SC metallic, and we relaxed this structure with fixed in-plane lattice constant a =

3.88 Å and tetragonality c/a = 8.00 while keeping centrosymmetry; otherwise, ferroelectric

instability is not guaranteed. The minimum energy of the polar mode for this particular

structure is -0.095 meV, which is unstable under room temperature condition. Hence, we

applied strain to tune the minimum energy of this mode; detail analysis about the ploar

mode is given later.

Similarly, by fixing the in-plane lattice constant a after applying -1%, -2%, and -3%

strain to Nb-doped PTO, the SC structure is relaxed to find the optimal values of c and

final atomic positions for each strain. The optimal value of c is given on the fourth column

of Table 2.1. When the in-plane lattice constant a shrinks due to the biaxial compressive

strain, the tetragonality c/a elongates. Furthermore, the unit cell volume decreases while η

increases as shown on the fifth column of Table 2.1.

2.3.2 Partial and total phonon density of states (DOS) of pure and Nb-doped

PTO

After calculating the phonon frequencies employing DFPT, we further analyze the partial and

total phonon DOS for pure and Nb-doped PTO to understand individual phonon frequency

contribution from each atom, and how the substitution of Ti by Nb affect the polar mode. The
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word polar mode and soft mode are used interchangeably throughout this project. Phonon

frequencies are computed using the optimized lattice vectors of -2% biaxially strained Nb-

doped PTO, i.e., the in-plane lattice constant a and tetragonality c/a are 3.80 Å and 8.4080,

respectively. The partial and total phonon DOS of pure and Nb-doped PTO are illustrated

in Figure 2.1. We have applied acoustic sum rule (ASR) for all phonon frequencies to exclude

the trivial three acoustic modes with zero frequency (due to translational invariance of space)

and to account for the long range nature of interatomic force constants due to the dipole-

dipole interaction at the Γ point. Hence, these modes are not included in Figure 2.1 and

Figure 2.2. The total DOS is given by

D(ω) =
∑
s,q

δ(ω − ωs,q) =
∑
s

Ds(ω) , (2.2)

where s, q, and Ds(ω) are phonon modes, phonon wavevector, and partial DOS, respectively.

Each mode s can contribute Ds(ω) to the total DOS D(ω).

It is inferred from Figure 2.1(a) and (b) that the phonon modes extend up to 706.64

and 688.38 cm−1 for pure and Nb-doped PTO, respectively. When Ti is substituted by

Nb, the number of soft mode decreased from two to one, and the frequency of this mode

became less negative due to the screening effect of the additional electron on the long-

range Coulomb interaction. The soft mode frequencies of pure PTO are -102.35 and -70.44

cm−1, whereas the soft mode frequency of Nb-doped PTO is -70.86 cm−1. Therefore, the

effect of Nb doping is just to partially screens out the internal dipoles, and the ferroelectric

instability is preserved in Nb-doped PTO. In fact, in our previous study, we have showed

that the ferroelectric instability of bulk PTO (5 atoms per unit cell) can be sustained up to

an electron concentration of ne=0.7 per unit cell [75]. Furthermore, this substitution does

not significantly affect ω as shown in from Figure 2.1(b): the shift of ω from left to right for

the soft modes and from right to left for non-soft modes phonon is about less than 40 and

20 cm−1, respectively.
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Figure 2.1: Partial and total phonon density of states of (a) Nb-doped PTO and (b) pure
PTO at the Γ point. The contributions from each atom to the total DOS is designated with
atomic symbols at the right hand side of this figure for both pure and Nd-doped PTO. The
same range of frequencies on the x-axis are used for the sake of convenience and comparison,
and 2% biaxial compressive strain is applied for both pure and Nb-doped PTO.
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The soft mode frequency is predominantly due to Pb and O as shown in Figure 2.1. Even

if Ti contribution to the soft mode is not clearly seen on Fig. 2.1 due to the scale used for

DOS, it has a very small involvement which can not be neglected as depicted in Figure 2.3(a).

Hence, the ferroelectric instability of Nb-doped PTO is caused by antiparallel displacement

of both Pb-O and Ti-O atoms unlike the electron doped bulk PTO, where only the opposite

displacement of Pb and O drives the ferroelectric instability [75].

The total DOS illustrates that the phonon modes ω of pure and Nb-doped PTO con-

glomerate approximately into three groups (excluding the soft modes) with frequencies 0-110,

110-300, and > 300 cm−1. As a result, the frequency bands are divided more or less into

three bands in both cases: high, medium, and low frequency bands. O, Ti-O, and Pb-O are

participated in high, medium, and low range of ω, respectively for both pure and Nb-doped

PTO as can be seen from the partial DOS in Figure 2.1. This is because of the difference in

atomic masses of the constitute elements and the electro static Coulomb interaction of Pb-O

and Ti-O .

2.3.3 Phonon mode average distance from Nb and localized phonon modes

Denote the zone-center phonon eigenvector as |ϵiα⟩, where i is the atom index and α is the

direction index. Eigenvector |ϵiαm⟩ is related to the phonon displacement |uiαm⟩ by |ϵiαm⟩ =
√
Mi|uiαm⟩, where Mi is the mass of atom i. To locate each phonon mode’s position from Nb,

we have calculated the phonon mode average distance from Nb along the z direction in Å as

rα =
∑
i

Wi |r⃗iα − r⃗Nb,α| , (2.3)

where Wi=
∑
α

|ϵiα|2. The phonon mode average distance from Nb is shown in Figure 2.2.

There are two localized phonon modes (mode 36 and 119) as indicated in Figure 2.2. Lo-

calized phonon modes are defined as phonon modes which are located very close to Nb site.

Mode 36 and 119 are at a distance of 0.07 and 0.04 Å from Nb, respectively.

Furthermore, most phonon modes are within 7-11 Å from Nb, and these are predomi-
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Figure 2.2: Mode average distance from Nb in the Z direction of -2% strained Nb-doped
PTO. Localized phonon modes are identified with their mode numbers. Most phonon modes
are within 7-10 Å from Nb, and it is apparent that the frequency of most phonon modes are
less than 300 cm−1.
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nantly low and medium frequency modes (ω< 300cm−1); which is in agreement with Figure

2.1. Mode localization is associated with the application of biaxial compressive strain, be-

cause unstrained (η=0%) Nb-doped and pure PTO have similar Z̄ vs ω graph. The existence

of most phonon modes within 7-11 Å from Nb is mainly associated with the breaking of trans-

lational symmetry by the impurity atom Nb, in addition to biaxial compressive strain, and

thereby alter the interatomic interactions, which in turn governs the lattice dynamics.

2.3.4 Soft, localized, and impurity phonon modes

The phonon eigenvector of A2u(TO1) is depicted in Figure 2.3(a), and the dynamical po-

larization is due to the opposite displacement of Pb-O and Ti-O atoms. However, Pb-O

displacement is larger than Ti-O; in particular, Pb atomic displacement is larger than Ti.

This result is in agreement with the DOS analysis; Pb participates at low ω range since its

atomic mass is the heaviest of the rest of the atoms, and the frequency of A2u(TO1) is -70.86

cm−1.

localized phonon mode 36 is shown in Figure 2.3(a). Impurity phonon mode is defined

as a phonon mode with heavy participation of impurity Nb, and this can be distinguished

by large displacement of Nb in the phonon eigenvectors. Indeed, the phonon eigenvector of

impurity phonon modes support the presence of such displacement. Metals like Pb and Nb

have strong electron-phonon interaction [80]; since the extra electron in Nb-doped PTO is

localized at Nb site, the presence of impurity phonon modes might facilitate the electron-

phonon coupling mechanism of superconductivity in this system.

Localized phonon modes have one large peak at Nb-O2 plane, and the analysis of their

phonon eigenvectors confirms that all of them have one common feature, i.e., their eigen-

vectors are preponderantly due to either the in-plane or out of plane opposite displacement

of oxygen atoms that are on the plane of Nb-O2. When O atoms that are on the edge of

octahedral moving antiparallel in the Z-axis, Nb displacement is entirely zero. Because, it

can not move along this axis without interacting with nearby O and Ti atoms, which cost
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Figure 2.3: Phonon eigenvector of -2% strained Nb-doped PTO: (a) soft mode (b) localized
mode, and (c) impurity mode. Arrow and its length indicate the vibration direction and
amplitude, respectively.
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more energy than the in-plane antiparallel displacement of O atoms, where Nb has small

displacement due to the electrostatic attractive Coulomb interaction between O and Nb ions.

However, the displacement of O is more than 50% to that of Nb.

2.3.5 Average potential (V̄ ) and ∆ρ in one and two dimensions

The extra electron provided by the Nb doping does alter the frequency of the soft mode; the

frequency of this mode becomes less negative when Nb is replaced by Ti. This electron also

changes (V̄ ) as shown in Figure 2.4(a). From Coulomb electrostatic equation we know that

the electric field (E) is given by E = −∇V̄ . Hence, Fig. 2.4(a) illustrates that there is a

clear distinction between the slope of V̄ for pure and Nb-doped PTO: the slope of V̄ of the

former one is larger than the latter one. As a result, E of Nb-doped PTO is smaller than

E of pure PTO. The difference in the trend of V̄ is due to the screening effect of the extra

electron on the long range Coulomb interaction. The slope of V̄ is shown on Figure 2.4(a)

with red and black dashed lines for pure and Nb-doped PTO, respectively. Nb-doping has

also an effect on the charge density, and it will be discussed below.

To understand whether the free carrier is localized or delocalized, its effect on the charge

density of Ti, and how this varies on the x-z plane; we have computed the difference in

charge density as ∆ρ(Z) = [ρd(Z) − ρp(Z)] in 1D and ∆ρ(X, Z) = [ρd(X, Z) − ρp(X, Z)] in

2D. Where, d and p stand for Nb-doped and pure PTO, respectively. Then, we have plotted

the line and contour charge density (n) for 1D and 2D, respectively. The 1D charge density

is achieved by integrating the 3D charge density over dx and dy, whereas the 2D charge

density is achieved by integrating the 3D charge density over dy.

For the 1D charge density, Figure 2.4(b) illustrated that the wavefunction of the charge

density is localized in the vicinity of Nb and dies out abruptly away from it. Moreover,

n is negative at the site of Nb, which implies the presence of excess electron. However, n

is positive at the site of O (the two peaks with positive value of ∆ρ), which implies the

deficiency of electron. The charge density n of -2% strained Nb-doped PTO is 2.16×1021
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Figure 2.4: (a) Average potential (V̄ ) of -2% strained PTO. The red and black colors with
solid lines are used for V̄ of pure and Nb-doped PTO, respectively. The slopes of V̄ for pure
and Nb-doped PTO are schematically drawn with red and black dashed lines, respectively.
(b) The difference in charge density: ∆ρ(Z) = [ρd(Z) − ρp(Z) of -2% biaxially strained PTO.
Subscript d and p stand for Nb-doped and pure PTO, respectively. The wavefunction of ∆ρ
is localized in the vicinity of Nb. (c) The difference in charge density: ∆ρ(X, Z) = ρd(X, Z)
− ρp(X, Z) of -2% biaxially strained PTO. Subscript d and p stand for Nb-doped and pure
PTO, respectively. Nb and Ti sites are labelled with their symbol. To access the values of
∆ρ at all Ti sites, its range is restricted in between 0.03 and −0.002. The 3dxz orbital of
Ti atom has asymmetric charge distribution, and the value of ∆ρ is given on the righthand
side of this figure.
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cm−3, and according to Ref. [78], if n of a system is greater than 1020 cm−3, the electrons

will be localized and form small polarons; these electrons could be thermally triggered into

a conductive state. However, if n less than 1020 cm−3, the electrons will be delocalized and

form large polarons. Indeed, our result is in agreement with this study: the extra electron

in Nb-doped PTO is localized near Nb.

For the 2D charge density, Figure 2.4(c) depicted that the 3dxz orbitals of Ti atom has

asymmetric charge distribution, in particular those two 3dxz orbitals below and above Nb.

This asymmetricity is not only due to the electrostatic Coulomb interaction of the 5s orbital

of Nb atom with the 3dxz orbital of Ti atom but also due to the application of biaxial

compressive strain on Nb-doped PTO. Because, even if we are not included the figure here,

the 2D charge density of unstrained Nb-doped PTO reveal less charge asymmetricity of Ti

3dxz orbitals. Away from Nb, charge asymmetricity decreases since the strength of Coulomb

interaction decreases as the distance between charges increases.

The magnitude of charge at the site Nb is larger than to that of Ti sites. For example,

the white shaded area at Nb site represent a magnitude of charge larger than 0.03. Note

that, the range of ∆ρ is restricted in between 0.03 and −0.002 to see the charge density on

all Ti sites as clearly as possible. But, if a range of −0.656 ≤ ∆ρ ≤ 0.1060 is used, the white

shaded area is exactly 0.106 and large negative value of ∆ρ at the site of Nb with values −0.5

and −0.6 to list some can be shown. Hence, the localization of electron is further supported

by the existence of more negative charge at the site of Nb. The charge density on Ti site

corresponding to yellow shaded area is about 0.008.

2.3.6 Double well potential depth (E vs λ) of A2u(TO1)

Potential well of a prototype ferroelectric material in harmonic approximation, which un-

dergoes a second-order phase transition when T < T0 (T0∼Tc) has two equivalent minimum

energies corresponding to opposite polarization that can be reversed by an application of

external field [6, 81]. The potential well depth of unstrained Nb-doped PTO is -0.095 meV,
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which is unstable under room temperature condition. Because, KBT∼25 meV is much greater

than 0.095 meV, and thus the unstrained Nb-doped PTO will not show polar character when

the temperature is elevated to 300 K. Therefore, we have applied -1%, -2%, and -3% biaxial

strain on Nb-doped PTO to tune the depth of the potential well energy.

New atomic positions |r⟩ is used to find the total energy E, by scaling the old atomic

position |r0⟩ with a parameter λ as

|r⟩ = |r0⟩+ λ|u⟩ , (2.4)

where |u⟩ is the eigendisplacement of A2u(TO1), and λ is varied in an interval of 0.02. Note

that, A2u(TO1) is a soft mode as shown on the sixth column of Table 2.1.

E vs λ of A2u(TO1) at three different η is shown in Figure 2.5. The double well potential

depth of -1% biaxially strained Nb-doped PTO has Emin of -18.26 meV. Hence, an energy

gain of 18.17 meV is achieved by applying -1% biaxial strain on Nb-doped PTO; which is a

remarkable energy gain given Emin of unstrained Nb-doped PTO is -0.095 meV. Moreover,

there is an energy gain of about 10 meV when η is increasing from -1% to -2%, and from

-2% to -3%. By comparing Emin with 25 meV, -2% and -3% biaxially strained Nb-doped

PTO could be considered as a room temperature polar metal. Since, the energy of those

two systems are greater than 25 meV, and the polar character would be preserved at room

temperature. To change the direction of polarization, an energy greater than 29.51 and 39.56

meV should be supplied to overcome the energy barrier of -2% and -3% biaxially strained

Nb-doped PTO, respectively.

The polar instability of A2u(TO1) is increasing while η is increasing: Emin of the double

well potential becomes more negative when this strain is increasing. Furthermore, the fre-

quencies of A2u(TO1) mode, which is given in the sixth column of Table 2.1 becomes more

negative when the value of η is increasing; this confirms the enhancement of polar instability

in Nb-doped PTO as η increases. Therefore, a transitions from metal to polar metal in Nb-
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doped PTO is achieved by applying biaxial compressive strain, which tune Emin of A2u(TO1)

mode to a desirable value.

2.4 Conclusions

In conclusion, we have studied polar metal properties of Nb-doped PTO under -1%, -2%, and

-3% biaxial strain. The dopant Nb solely provides a free carrier to make the system metallic.

We found (i) the biaxial compressive strain enhance the localization of phonon modes, and

the eigenvector of these modes are predominantly due to the opposite displacement of oxygen

atoms. (ii) ω of most phonon modes of -2% biaxially strained Nb-doped PbTiO3 are less

than 300 cm−1. (iii) The unit cell volume decreases when η increases, and ω of A2u(TO1)

becomes more negative as η increases. (iv) The wavefunction of the free carrier is localized

in the vicinity of Nb and form a small polaron state, which can be thermally excited into a

conduction states. (v) The asymmetry of the 3dxz orbitals of Ti atom reveal the existence of

polar character in Nb-doped PTO (vi) Remarkably, the metal to polar metal transition in Nb-

doped PTO is driven by the application of biaxial compressive strain since the unstrained

Nb-doped PTO shows unstable potential well; -2% and -3% biaxially strained Nb-doped

PTO can be considered as a room temperature polar metal, because the potential well is

stable, and their Emin is greater than 25 meV. Therefore, engineering perovskite oxides with

both dopant and strain would give a material with new physical and chemical properties,

which can have versatile application in science and technology. It is our hope that this study

render new insight about the discovery of room temperature polar metal.
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3 Tuning Rashba interaction and electron-phonon coupling in BiTeI by charge

doping

3.1 Introduction

Interaction of electron spin with its orbital angular momentum is crucial in spin-polarized

field effect transistor and spin Hall effect, and it is a dominant contribution to the spin-

splitting of bands in a narrow band semiconductors [82]. BiTeI is one of such system with

a band gap of 1.2 eV, which shrinks to 0.3 eV when spin-orbit interaction (SOI) is included

[83]. Moreover, BiTeI is a non-centrosymmetric semiconductor. The spin-splitting of bands

in systems that lack an inversion symmetry due to strong SOI leads to many novel phys-

ical phenomena such as the spin Hall effect [84], the Edelstein effect [85], magnetoelectric

effect [86], the spin Galvanic effect and non-centrosymmetric superconductivity [87–91]. In

a conventional superconductors ( Pb, Al, Nb, and Nb3Sn,), the crystal has an inversion sym-

metry, and this leads to the classification of superconductors by the parity of the pair state

as spin-singlet (even parity) and spin-triplet (odd parity) under the sign change of momen-

tum. In unconventional superconductors (UBe13, UPt3, MnSi, and CePt3Si) however, the

crystal lacks an inversion symmetry. As a result, the above classification is no longer valid

when the SO interaction is strong enough to mix the two states [92–97]. Spin Hall effect is

observed experimentally using Kerr rotation microscopy in GaAs and InGaAs even though

the magnitude of spin polarization was small [82]. For two band Rashba Hamiltonian, the

SO interaction can be written as,

HR = αR
−→σ ·

−→
k ×−→e 3 , (3.1)

where αR is the Rashba parameter, −→σ are the Pauli matrices, and
−→
k is crystal momentum

[83, 98].

Electron-phonon interaction (EPI) plays an indispensable role in condensed matter physics,
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and is observable in many phenomena, such as phonon-assisted optical transition [99], elec-

tron mobility in monolayer and bilayer MoS2 [100], high-temperature superconductivity in

compresses H3S [101], temperature dependent photoluminescence in hybrid perovskites [102],

electron mass enhancement in MgB2 [103], electrical resistivity and superconductivity [104],

Khon effect [105], and Peierl’s instability [106, 107]. Unlike intrinsic semiconductors and

insulators, EPI is well defined for metals, and its strength can be quantified by the electron-

phonon coupling constant (λ). λ is a dimensionless quantity, and its typical value ranges in

between 0 and 2. Larger λ corresponding to stronger EPI. Thus the study of EPI in doped

BiTeI is crucial to look for possible superconductivity.

Chemical and charge doping are used to manipulate the physical and chemical properties

of a material. For example, doping SrTiO3 with small amount of Nb changes it from insulator

to a conductor, ferromagnetic, and even superconductor [78, 108]. Introducing electrons or

holes by charge doping also changes ferroelectrics to polar-metals [31, 32, 75]. The spin

precession angle in a field effect spin transistor is proportional to αR=2ER/KF , which is

controlled by a gate voltage (Vg) in InGaAs/InAlAs quantum well [82]. Furthermore, as Vg

becomes more negative, αR increased and vice versa; because, the increase of negative Vg

leads to the decrease of carrier concentration (electrons) and pushes down the Fermi wave

number, kF . Therefore, in this paper, we investigate thoroughly how the Rashba energy

(ER), Rashba momentum (KR), Rashba parameter (αR), and λ of BiTeI can be tuned when

different electron and hole concentrations (ne) are introduced to the system. We showed

that ER, KR, and αR varied in a wide range of doping level. In general, hole doping is larger

than electron doping for the aforementioned physical quantities. Hence, it is fair to say

that BiTeI could be a potential candidate for hole-based spintronics device and p-n junction

transistors. λ shows different behavior for electron and hole doping. The former one has

a minima, whereas the later one increase monotonically with hole concentration. For EF

= 4.5 eV, the value of λ and the critical temperature (TC) are found to be 0.44 and 0.7

K, respectively. TC is somehow small compared with other systems, however, λ of BiTeI is
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comparable to Al and Mo [109].

3.2 Methods

We use Density functional theory (DFT) within the local-density approximation [34, 35] as

implemented in the plane wave pseudopotential code of Quantum Espresso (QE) [36, 37]

to compute total energy, atomic force, and optimal structure. The energy cutoff for the

plane-wave expansion of single-particle states is 40 Ry and 6×6×4 Monkhorst-Pack k-mesh

is used to sample the Brillion zone. BiTeI is a polar semiconductor, and it has a trigonal

symmetry with a space group of p3m1 in which Bi, Te, and I are stacking along c axis

alternatively. Our structural optimization yields an inplane lattice constant a=4.27 Å and

out of plane lattice constant c=6.63 Å. These values are in good agreement with not only

previous theoretical result of a=4.31 Å and c=6.64 [98] but also with experimental result of

a=4.34 Å and c=6.85 [110].

For the band structure calculation, we have employed 12×12×8 Monkhorst-Pack k-mesh

to obtain the charge density. This choice of k-mesh is used to offset the small degauss (σ)

value of 0.006 Ry. σ = 0.006 Ry provides the correct band structure with respect to electron

and hole doping. For example, without doping, the EF lies in between the conduction band

minimum (CBM) and the valance band maximum (VBM), which is the correct position of

EF since BiTeI is a semiconductor material. Other choice of σ provide inconsistent results:

i.e., EF is either above or below CBM and VBM, respectively. In this case, BiTeI is no longer

a semiconductor material.

For the EPI calculation, we have resorted to Electron-phonon Wannier (EPW) [111,

112] module that is integrated with QE package, because this package alone can’t handle

EPI computation with SOI and magnetization simultaneously. EPW make use of Density

Functional Perturbation Theory and Maximally Localized Wannier Functions (MLWF) to

compute different properties of EPI. This interaction requires a very dense K and q mesh

points to accurately describe its matrix element, and MLWF decreases the computational
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cost to do so by converting Bloch state to Wannier using Fourier interpolation. Because,

Wannier functions (wnR) are spatially localized functions centered on a lattice vector R,

whereas Bloch states are extended states all over the lattice.

wnR(r) =
V

(2π)3

∫
BZ

[∑
m

Uk
mnψmk(r)

]
e−ik·Rdk (3.2)

The EPI matrix elements are give by

gvmn(k, q) =< ψmk+q|∂qv|ψmk >, (3.3)

where ψmk is the electronic wavefunction for band m and wavevector k. ∂qv is the

derivative of the Kohn-Sham self-consistent potential associated with a phonon wavevector

q, branch index v, and frequency ωqv .

Mode resolved electron-phonon coupling constant (λqv) is give by

λqv =
1

NFwqv

∑
m

wk|gvmn(k, q)|2δ(ϵnk)δ(ϵmk+q) (3.4)

where wk is the weight of the k points. The total λ is computed by adding together λqv

over the phonon wavevector q and branch v as

λ =
∑
qv

wqλqv (3.5)

where wq are the weights of the phonon wavevectors q.

After testing the convergence criteria of λ for different values of nkf and nqf , we have

selected nkf = 60×60×48 the fine electron grids and nqf = 16×16×12 for the fine phonon

grids. These fine grids are used to compute the superconductivity characteristics of BiTeI.

Supplemental information about convergence criteria are given on the Appendix.
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3.3 Results and Discussions

3.3.1 Electronic structure of BiTeI

We have calculated the electronic band structure of BiTeI for electron doping of ne=-0.0125,

-0.025, -0.05, and -0.1. For hole doping, we have used the same concentration of ne=0.0125,

0.025, 0.05, and 0.1. For the sake of clarity, we have chosen the electronic band structure

for three different doping cases as shown on Figure 3.1, and the spin splitting of bands

is evident from this figure and Figure 3.2 (a). Due to strong SOI and since BiTeI lacks

inversion symmetry, the degenerate electronic bands are lifted except at k = 0 point, which

is protected by time invariance symmetry. As can be seen from Figure 3.1 (a), EF is located

at the middle of CBM and VBM when neither electrons nor holes are doped to the system.

This is in consistent with the semiconductor property of BiTeI: i.e., for a typical intrinsic

semiconductor, the Fermi energy is located in between CBM and VBM at zero temperature.

When ne=-0.1 is doped to BiTeI, EF is shifted to the conduction band as shown in Figure 3.1

(b). More specifically, it is located above the crossing point. Note that, bands that fall below

EF are full of electrons, and in this case the system is metallic because electrons are present

in the conduction bands in addition to the valance bands. In the case of hole doping as

shown in Figure 3.1 (c), when ne=+0.1 is doped to BiTeI, EF is moving down to the valance

band. The displacement of EF with ne is in agreement with rigid band approximation, and

similar results are found to the rest of electronic band structures which are not shown here.

The curvature of the band within 2 eV of EF at the Gamma point is flat compared to

other high symmetric points. Therefore, this region has high electron density which facilitate

EPI. Table I shows the band gap at four different high symmetric points as a function of

three doping concentration, namely, ne=0.00, -0.1, and +0.1. Comparing the second, third,

and fourth column of Table 3.1, one can see that the band gap at M and H decreasing

while it is increasing and stays constant at Γ and A, respectively. Even though we have not

calculated the transition matrix element for the possible optical transitions in these band
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Figure 3.1: Electronic band structure of BiTeI at three different carrier concentration. (a)
ne=0.0 (Undeoped BiTeI), where EF is located exactly in the middle of CBM and VBM. (b)
ne=-0.1 doped BiTeI, where EF is shifted towards the conduction band. (c) ne=0.1, where
EF is shifted towards the valance band.
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Table 3.1: Band gap of BiTeI at four high symmetric points for ne=0.00, -0.1, and 0.1.
Eg (eV) ne=-0.1 ne=0.00 ne=0.1
M 1.473 1.397 1.238
Γ 1.059 1.274 1.475
H 1.867 1.516 1.300
A 0.603 0.497 0.483

gaps, it is good to talk about qualitatively about this phenomena.

There are possible optical transitions at M, G, H, and A points in the infrared regime.

Because, the wavelength associated with the energy gap lies within 0.7-10 µm, which is

the energy range of infrared electromagnetic specturum. However, at H point of ne=-0.1

the band gap energy is 1.867 eV, and its wavelength (664nm) is smaller than the infrared

regime. Therefore, the optical transition in this case is that of visible light. Doping BiTeI

with electrons and holes minimally alter the optical transition energy. Out of the four high

symmetric points, A has the smallest band gap energy as shown on the last row Table 3.1.

We have noticed a band gap closing and opening phenomena at the A point for electron

doping when the concentration of free carriers are increasing. Note that, what we mean

by A point is to the right of it; because of the Rashba SOI, the CBM and VBM of the

spin-splitting bands are found to be shifted from A. The minimum band gap (band closing)

of 8 meV is observed when BiTeI is doped with 0.025 electron. Hence, BiTeI is transformed

from semiconductor to semi-metal at ne=0.025. Moreover, it is a direct band gap at the A

point since the change in momentum is negligibly small at this point.

3.3.2 Variation of Rashba energy, momentum, and parameter under electron

and hole doping

The Rashba energy, momentum, and parameter are related with each other by a simple

mathematical formula, αR=2ER/KR. Where αR, ER, and KR are Rashba parameter, Rashba

energy, and Rashba momentum, respectively. Figure 3.2 depicts the behaviour of these

quantities under electron and hole doping for the valance and conduction bands indicated

as v and c on the superscript notation, respectively. The Rashba energy for the conduction
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band ( Ec
R ) is defined as the energy difference between the CBM and crossing point-the

point at which the spin-splitting bands cross each other, whereas the Rashba energy for

the valance band ( Ev
R ) is defined as the energy difference between the VBM and crossing

point. Similarly, the Rashba momentum for the conduction band ( Kc
R ) is defined as the

momentum difference between the CBM and crossing point, whereas the Rashba momentum

for the valance band ( Kv
R ) is defined as the momentum difference between the VBM and

crossing point. These definitions are shown schematically in Figure 3.2 (a).
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Figure 3.2: Rashba energy, Rashba momentum, and Rashba parameter at different ne. (a)
The definition of Rashba energy and Rashba momentum for the valance and conduction
bands along H-A-L direction. (b) Rashba energy as a function of ne. (c) Rashba momentum
as a function of ne. (d) Rashba parameter as a function of ne. The maximum of αv

R and αc
R

occurred at ne=-0.025.

As depicted in Figure 3.2 (b), Ev
R and Ec

R resemble similar behavior for hole doping: both

of them decrease monotonically from ne=0.00 to ne=0.1. However, they show quite different
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behavior for electron doping, specially after ne=-0.025; Ev
R increases for electron doping,

whereas Ec
R increases up to ne=-0.025 and it decreases sharply afterwards. Furthermore,

∆Ev
R is increased by 103 meV (40%) from ne=0.1 to ne=-0.1, and ∆Ec

R is increased by 63

meV (34%) from ne=0.1 to ne=-0.0125. Therefore, Rashba energy is significantly tuned by

the application of electrostatic doping. Kv
R and Kc

R are constant from ne=0.0125 to ne=-

0.025, which are shown clearly in Figure 3.2 (c). However, ∆Kv
R from ne=-0.025 to ne=-0.1

is increased by 0.0153 Å−1, and ∆Kc
R from ne=0.1 to ne=0.025 is increased by 0.0076 Å−1.

In general, ∆Ev
R is greater than ∆Ec

R and ∆Kv
R is greater than ∆Kc

R.

The Rashba parameters for conduction and valance band have extrema as illustrated on

Figure 3.2 (d) at ne=-0.025. Since the spin splitting of CBM and VBM is due to the second

order perturbative correction in energy of the k.p model, the band gap must have a minimum

value at this electron concentration [113]. This is indeed confirmed in our result and depicted

in Figure 3.3. More specifically, the minimum value of the band gap is 8 meV. The maximum

values of αv
R and αc

R are 7.46 and 6.32 eVÅ, respectively. αv
R = 7.46 eVÅ is the largest value

that we have noticed so far. Moreover, ∆αv
R is increased by 2.38 eVÅ (31%) from ne=0.1 to

ne=-0.025 while ∆αc
R is increased by 1.59 eVÅ (25%) from ne=0.1 to ne=-0.025. To the right

and left of the maxima, both αv
R and αc

R are decreasing sharply as the concentration of holes

and electrons are increasing, respectively. The Rashba energy, momentum, and parameter

are larger for valance band(hole) than conduction band (electron). Therefore, BiTeI could

be a potential candidate for hole-based spintronics device. However, it can also be used

for a p-n junction transistors since both electrons and holes are involved in the transport

properties of semiconductors.

Doping a material with electron causes a volume expansion, whereas doping a material

with holes causes a volume contraction [32, 58, 74, 114]. This phenomena is indeed confirmed

in our result. Figure 3.3 (a) and (b) shows that electron doping increases the lattice vector

a and c, however, hole doping decreases both of them. Hence, the presence of strong SOI in

BiTeI does not influence the change of volume with respect to doping. The band gap closing
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gap which is 8 meV occurs at ne=-0.025.
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and opening phenomena is clearly illustrated in Figure 3.3 (c). The band gap increases for

hole doping while it decreases with a minimum value of 8 meV and then increases for electron

doping.

3.3.3 Electron phonon coupling constant (λ) under electron and hole doping

The electron phonon coupling constant (λ) is mostly used to determine the transition temper-

ature of superconductors by using semiempirical McMillan formula [115]. We have calculated

λ for different values of energy corresponding to EF as shown on Figure 3.4. Since the effect

of electron or hole doping on EF is to shift its original value up or down in the conduction or

valance band respectively, we have used the electronic band structure of ne=-0.0125 doped

BiTeI and vary only the value of the energy. Figure 3.4 (a) shows the electronic band struc-

ture of ne=-0.0125 doped BiTeI together with the values of energies (EF ) used to compute

λ. These are E1= 5.15, E2= 5.275, E3= 5.4, E4= 5.5, and E5= 5.6 eV for the conduction

band, and E
′
1= 4.95, E

′
2= 4.8, E

′
3= 4.7, E

′
4= 4.6, and E

′
5= 4.5 eV for the valance band. The

density of state (DOS), which is useful to understand λ is depicted in Figure 3.4 (b). Figure

3.4 (c) and (d) show λ as a function of E−ECBM and E−EV BM , respectively. ECBM and

EV BM are 5.095 and 5.018 eV, respectively. In the following paragraphs we discuss in detail

the behavior of λ for both electron and hole doping.

Surprisingly, λ has very different characteristics for electron and hole doping as shown

on Figure 3.4 (c) and (d), respectively. For electron doping, λ starts to decrease from

E1 to E2 and then it increases from E3 to E5. Hence, λ vs E−ECBM graph has some

type of bell shaped structure with a minimum value of 0.05. For hole doping, however, λ

increases monotonically as the concentration of holes increase. The behavior of λ can easily

be understood using Figure 3.4 (b). Generally speaking, λ increases with DOS, i.e., large

value of DOS corresponding to large value of λ except when the energy (EF ) is near to the

crossing point, and in this case the superconductivity is low. This is applied for electron

doping only. For example, the energies located in between E2 and E3 are near to the crossing
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Figure 3.4: Electron phonon coupling constant (λ) under electron and hole doping. (a)
Electronic band structure of ne=-0.0125 doped BiTeI within 4-6 eV. The values of energy
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superscript for conduction bands. (b) Density of state(DOS) of the aforementioned band
structure. (c) λ vs E−ECBM , where ECBM is the energy of conduction band minimum. (d)
λ vs EV BM , where EV BM is the energy of valance band maximum.
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point of the conduction band and their λ are small ( the existence of minima on Figure 3.4

(c) ) compared with E1, E4, and E5, which are a bit far from the crossing point.

The maximum value of λ for hole doping employing anisotropic Eliashberg equations

from EPW module is 0.46, which corresponds to E
′
5= 4.5 eV. Furthermore, the estimated

Allen-Dynes critical temperature, logarithmic frequency (ωlog), and BSC superconducting

gap are 0.7 K, 7 meV, and 0.1 meV, respectively. The critical temperature (TC) is calculated

with a Coulomb pseudopotential of 0.1. The value of TC is somehow small, however, λ of

BiTeI is comparable to Al and Mo. Note that, we have not included the polar characteristics

of BiTeI when we compute λ. Hence, we expect λ to be different from what we have found

if this property is incorporated in the EPI by the flag lpolar = true, which take into account

the long-range contribution to the electron-phonon matrix element.

3.4 Conclusions

In this paper, we have extensively investigated the effect of electron and hole doping on the

spin-splitting of valance and conduction bands in BiTeI, which is characterized by the Rashba

energy, Rashba momentum, and Rashba parameter. Furthermore, we have studied the same

effect on the e-ph coupling constant (λ) of BiTeI. These quantities can be tuned in a wide

range of values using doping (electrons and holes) as a parameter. ∆Ev
R is increased by 103

meV (40%) from ne=0.1 to ne=-0.1, and ∆Ec
R is increased by 63 meV (34%) from ne=0.1 to

ne=-0.0125. However, ∆Kv
R from ne=-0.025 to ne=-0.1 is increased by 0.0153 Å−1, and ∆Kc

R

from ne=0.1 to ne=0.025 is increased by 0.0076 Å−1. αv
R and αc

R has maximum value of 7.46

and 6.32 eVÅ, respectively. αv
R = 7.46 eVÅ is the largest value that we came across in any

literature review. Moreover, ∆αv
R is increased by 2.38 eVÅ (31%) from ne=0.1 to ne=-0.025

while ∆αc
R is increased by 1.59 eVÅ (25%) from ne=0.1 to ne=-0.025. In general, EV

R >

Ec
R, K

V
R > Kc

R, and αv
R > αc

R. Therefore, BiTeI could be used for hole-based spintronics

device. λ of electrons is completely unique than holes. The former one has a minima while

the later one increase monotonically as the concentration of holes increase. The calculated
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value of λ corresponding to E
′
5= 4.5 eV is 0.46, and its associated TC is 0.7K. These values

are very small to be used for practical application, and further study is necessary to better

understand potential superconductivity characteristics of BiTeI.
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4 Summary and Outlook

Polar-metals could be artificially created using doping as a mechanism of tuning the electric

and vibrational properties of ferroelectrics. Centrosymmetric tetragonal PbTiO3 has ferro-

electric instability (existence of soft modes) at the Γ point, and surprisingly this instability

persist up to an electron concentration of n=0.7 e/u.c (electron per unit cell). Electron

doping significantly changes the normal modes of vibration and enhances mode interaction

and mixing; strong mode-mode interaction between A2u(TO1) and A2u(TO2) is the primary

reason why we have the persistence of soft modes at high electron doping. As a result,

metallicity and ferroelectricity coexist in an electron doped PbTiO3 . The polarity is due

to the presence of ferroelectric instability and the metallicity is due to the charge carries

introduced in the system by doping. Despite the long range Coulomb interaction is affected

by the free electron, the existence of ferroelectric instability supports the idea that the short

range interaction (particularly the Pb-O interaction) is the predominant factor of developing

ferroelectricity in highly-doped PbTiO3. However, in undoped PbTiO3, the ferroelectricity

is due to Ti-O interaction. In BaTiO3, the interaction between A2u(TO1) and A2u(TO2) is

very weak that the ferroelectric instability cease to exist at a critical electron concentration

of n=0.14 e/u.c. We belive that mode-mode interaction is a universal phenomena and it can

be generalized to other ferroelectric materials. Therefore, our results give important insight

about polar-metal characteristics of electron doped PbTiO3 and may be useful in terms of

opening future investigation to utilize this material for novel applications, such as capacitors,

superconductors, and photovolatics, .

Strain is as important as doping to tune the physical and chemical properties of perovskite

oxides. Perovskite oxides are a class of ferroelectric materials which have ABO3 chemical for-

mula. A can be monovalent or divalent cation and B can be tetravalent or pentavalent metal.

Therefore, it would be advantageous to use both to find a useful material that can operate

at room temperature. PbTiO3 is a well known perovskite ferroelectric material. Doping
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PbTiO3 with Nb changes it from ferroelectric to metal. Since Nb has five valance electrons,

substituting Ti (which has four valance electrons) by Nb in PbTiO3 leads to one extra elec-

tron. The double potential well of Nb-doped PbTiO3 has a minimum energy of -0.095 meV,

which is unstable under ambient temperature (KBT∼25 meV). To overcome this condition

1%, 2%, and 3% an in-plane compressive strain is applied to Nb-doped PbTiO3, and the

minimum energy is shifted to -18.3, -29.5, and -39.7 meV, respectively. Therefore, PbTiO3

transforms from metal to polar-metal. More specifically, it is now a room temperature polar

metal (KBT∼25 meV < 29.5 and 39..7 meV).

BiTeI is a non-centrosymmetric semiconductor with a band gap of 0.3 eV when spin-

orbit(SO) interaction is included. The spin-splitting of bands in systems that lack an in-

version symmetry due to strong SO interaction leads to many novel physical phenomena in

which spin Hall effect and superconductivity are two of them. Doping BiTeI with electrons

and holes change significantly not only the Rashba energy, momentum, and parameter but

also the electron-phonon coupling constant (λ). ∆Ev
R is increased by 103 meV from ne=0.1

to ne=-0.1, and ∆Ec
R is increased by 63 meV from ne=0.1 to ne=-0.0125. Similarily, ∆αv

R is

increased by 2.38 eVÅ from ne=0.1 to ne=-0.025 while ∆αc
R is increased by 1.59 eVÅ from

ne=0.1 to ne=-0.025. Furthermore, the Rashba parameters for conduction and valance band

have extrema value of 7.46 and 6.32 eVÅ, respectively at ne=-0.025. Most values Rashba

parameters in a literature are less than our findings. Therefore, our results are unique and

yet to be verified by experiment. λ of electrons has a minima while for holes it increases

monotonically with the concentration of holes. The calculated critical temperature (TC =

0.7K) is very small for practical application, and our study open up future investigation to

increase this value.

The followings are main research questions for future work:

* How to increase the efficiency of a memory device from the usual perovskite oxides of

the form ABO3 by using chemical or charge doping?

* While changing ferroelectrics into polar-metals employing structural constraints (natu-
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ral method) and chemical or charge doping (artificial method), which families of ferroelectrics

could have feasible application for superconductivity?

* How can one increase the critical temperature of Rashba type semiconductors (BiTeI,

BiTeBr, and BiTeCl) and non-centrosymmetric superconductor (CePt3Si) employing chem-

ical or charge doping and without the application of pressure?
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B Band structure comparison of QE and EPW

Comparison of the electronic band structure of ne=-0.0125 doped BiTeI with QE and EPW.

The EPW band structure is the same as QE. Therefore, the calculation we have performed to

find different physical quantities describing superconductivity is accurate. The same initial

projections are used to compute maximally-localized Wannier functions (MLWF) for Bi, Te,

and I. These are S, P, and dZ2 orbitals.

0
1
2
3
4
5
6
7
8
9

10

0
1
2
3
4
5
6
7
8
9

10

E
 (

e
V

)

EPW

E
 (

e
V

)

QE

53



C Determination of convergence criteria for the fine nkf1 mesh

The electron phonon coupling constant (λ) versus nkf1 is shown on the figure below for fixed

nqf1×nqf2×nqf3 = 8×8×4, and λ is converged for nkf1 = 60. Hence, nkf1×nkf2 = 60×60

are chosen due to the symmetry of BiTeI crystal structure; the in-plane lattice vectors are

equal (a=b) for trigonal BiTeI. Therefore, nkf1 = nkf2.
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D Determination of convergence criteria for the fine nkf3 mesh

The electron phonon coupling constant (λ) versus nkf3 is shown on the figure below for fixed

nqf1×nqf2×nqf3 = 8×8×4, and λ is converged for nkf3 = 50. Hence, nkf1×nkf2×nkf3 =

60×60×48 are chosen to determine nqf1×nqf2×nqf3.
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E Determination of convergence criteria for the fine nqf1 mesh

The electron phonon coupling constant (λ) versus nqf1 is shown on the figure below for

fixed nkf1×nkf2×nkf3 = 12×12×12, and λ is converged for nqf1 = 12. Hence, nqf1×nqf2 =

12×12 are chosen due to the symmetry of BiTeI crystal structure.
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F Determination of convergence criteria for the fine nqf3 mesh

The electron phonon coupling constant (λ) versus nqf3 is shown on the figure below for fixed

nkf1×nkf2×nkf3 = 12×12×12, and λ is converged for nqf3 = 8. Hence, nqf1×nqf2×nqf3 =

12×12×8 are chosen to compute the superconducting properties of BiTeI.
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