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Abstract 

An estimate of the gross primary productivity (GPP) of rice fields can be instrumental to 

understand their harvest yield and to fulfill an array of agricultural monitoring needs. One of the 

most common satellite-based models to estimate GPP is the vegetation photosynthesis model 

(VPM). In this study, we use the VPM model for rice cropland in Arkansas and validate our 

findings against 16 site-years in-situ data (eddy covariance (EC)). At the site scale, results 

validated against 16 site-years have shown that the VPM with site information (R2 = 0.71, 

MAE = 2.90 g C m-2day- 1, and RMSE = 4.04 g C m-2day-1) outperforms VPM based on spatial 

information (R2 = 0.59, MAE = 4.9 g C m-2day-1, and RMSE = 3.48 g C m-2day-1). At the state 

scale, in the timeframe between 2008 to 2020, the mean photosynthetic carbon uptake of Arkansas 

rice fields was 1563.81± 129.09 g C m-2 season-1. The spatial distribution of GPP has shown that 

rice fields located between 33.5° N and 34.5° N have higher GPP values 

(1840.40 ± 8.34 g C m- 2 season-1) than other rice regions of Arkansas. At the county-scale, GPP 

has shown an R2 value of 0.07 against reported yield obtained from an agricultural survey. This 

GPP dataset will help to identify its underlying meteorological and soil factors, derive a 

relationship with yield, and investigate crop responses to a changing climate.  
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1. Introduction 

Knowledge about gross primary productivity (GPP), defined as the photosynthetic carbon 

uptake by terrestrial plants at the ecosystem scale, can provide a useful framework to find regions 

that need urgent crop management. Continuous spatiotemporal GPP data helps to predict crop 

yield (Xin et al., 2020), investigate crop response to changing climate (Flach et al., 2018; Y. Wang 

et al., 2020), identify the factors driving site carbon dynamics (Sun et al., 2018), and render a 

benchmark for validating prediction output from different environmental models (Schaefer et al., 

2008). Additionally, this data helps to understand plant productivity across different land use 

management practices, improve agricultural statistical data, and develop better carbon budgets and 

crop stewardship. Given its crucial role in food security and the carbon cycle, it is important to 

have a clear understanding of GPP’s spatiotemporal patterns, especially for the top rice-producing 

state of the United States (USA), Arkansas (Hardke et al., 2022). Arkansas contributes 47.5% of 

total rice production in the United States (Hardke et al., 2022). Rice has an economic impact of 

over $1.7 billion in Arkansas (Alhassan et al., 2019). There have been limited regional and local 

studies on the quantification of the GPP of rice in this region (Runkle et al., 2017; Reba et al., 

2019a). Developing a quantification technique for the state’s- rice GPP can be a useful way to 

overcome the constraints of data scarcity.  

Geospatial maps can be a powerful tool to understand processes from large sets of data 

(Robinson et al., 2017). They can be used to make better climate-smart decisions which farmers 

can rely on.  Looking into large spatial data, different analysis can be performed on the relationship 

between water use or rice irrigation system and gross primary productivity (Xie et al., 2021; Xin 

et al., 2020). A spatially organized dataset is a foundational need on which to research how 
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different agronomic practices viz., landform formation and management or cultivar use have any 

relationship with GPP.   

To estimate GPP for a large areal coverage (i.e., at the regional or global scale), remotely 

sensed data have been used in various satellite-based model frameworks. Due to the simple 

structure and availability of data, one of the widely used methods for measuring GPP using satellite 

images is the vegetation photosynthesis model (VPM). The VPM is based upon the light use 

efficiency concept and has been widely applied to estimate the GPP at global and different 

ecosystem scales (Running et al., 2004; Xiao, 2004; Jin et al., 2013; Wang et al., 2016; Xin et al., 

2017; Zhang et al., 2017). The model estimates 8-day mean GPP as the product of light use 

efficiency (LUE (Ɛg)) and absorbed photosynthetically active radiation by the canopy 

(APARcanopy). GPP (GPPEC) data derived from eddy covariance (EC) stations have been used as 

reasonable validating ground-based measurements to validate and further calibrate the satellite-

based model to a site-specific regional model. 

Our overarching goal in this study is to estimate the trends and patterns of GPP of rice in 

Arkansas. To check the effectiveness of the model we are comparing the VPMsite (based on site 

information) and VPMspatial (based on satellite and spatial information) at both site and state scales. 

The results from this study will tackle the limitations of state-scale rice GPP data scarcity and aid 

us to better understand the carbon dynamics and driving mechanisms of GPP of rice paddies in 

Arkansas. 
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2. Materials and Methods 

2.1 Workflow 

Our work is divided into two scales: (i) site-scale estimation of GPP and (ii) state-scale 

estimation of GPP. In the first scale, we use the VPM to estimate GPP at site-scale and validate 

our results against GPP measured from EC towers. Root Mean Squared Error (RMSE), R2, and 

Mean Absolute Error (MAE) were used to assess the two models’ predictive performance. We use 

VPMspatial to derive an estimate for the state-scale analysis.  

After validating our results against EC data, we estimate state-scale rice GPP using satellite 

images and satellite climatological data. The satellite image analysis and statistical analysis were 

carried out in Google Earth Engine (GEE) (Gorelick et al., 2017), and data visualizations were 

carried out in R studio platform (RStudio Team, 2020; Wickham, 2016). In this study, the temporal 

domain of all data was aggregated to 8-day bin, and the spatial domain of all data was aggregated 

to 500 m resolution, which was consistent with the MODIS image collection date.  

Abbreviation 

DOP Day of planting 

DOH Day of harvest 

VPMsite VPM based on site information 

VPMspatial VPM based on satellite climatological data and modeled DOP and DOH 

GPPEC GPP data from the eddy covariance stations 

 

 2.2 Study Sites 

In this study, we brought together the GPP data collected over a selection of EC towers 

employed in rice fields in Arkansas. This dataset comprises 16 total seasons from among 10 rice 

fields. The sites are located in the Northeastern and central part of Arkansas (Fig. 1).  Table 2 

summarizes the planting and harvesting information of rice plants, data availability and 
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environmental characteristics including mean annual temperature, precipitation and soil 

classification. Rice is generally planted in April and harvested between the end of August or early 

September. For additional site information and a description of the instruments we refer to our 

previous research for US-HRA and US-HRC (Reavis et al., 2021; Runkle et al., 2019; Suvočarev 

et al., 2019); for US-BDA and US-BDC (Reba et al., 2019b) and for US-OF1, US-OF2, US-OF3, 

US-OF4, US-OF5 and US-OF6 sites (Massey et al., 2022).  

 

Figure 1: Regional map of the site locations colored by red dots. Eight sites are located in 

Northeastern Arkansas and two sites (US-HRA and US-HRC) are in central Arkansas. The base 

rice map in green is derived from the Cropland Data Layer (CDL) for the year 2015 (USDA 

National Agricultural Statistics Service, 2017) 
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Table 1: Description of the sites. MAT and MAP data were taken from the Parameter-elevation 

Relationships on Independent Slopes Model (PRISM) dataset (Daly et al., 2008, 2015).  

Site Id Management Planting 

date 

Harvesting 

date 

Lat (ºN) Lon (ºE) MAT 

(ºC) 

MAP 

(mm) 

US-HRA DF 04-08-2015 08-19-2015 34.585 -91.751 17.6 1422.3 

AWD 04-25-2016 09-11-2016 

DF 04-10-2017 08-26-2017 

US-HRC AWD 04-07-2015 08-19-2015 34.588 -91.751 17.6 1422.3 

AWD 04-23-2016 09-13-2016 

DF 04-09-2017 08-27-2017 

US-OF1 AWD 04-01-2017 09-06-2017 35.7370 -90.049 16.9 1325.9 

US-OF2 MIRI 04-01-2017 09-06-2017 35.740 -90.048 16.9 1325.9 

US-OF3 FIR 04-01-2017 09-18-2017 35.7372 -90.049 16.9 1325.9 

US-OF4 FIR 04-09-2018 08-28-2018 35.734 -90.038 16.9 1775.3 

US-OF5 MIRI 04-09-2018 08-28-2018 35.733 -90.040 16.9 1775.3 

US-OF6 AWD 04-09-2018 08-28-2018 35.730 -90.040 16.9 1775.3 

 US-BdA AWD 04-09-2015 08-27-2015 35.809 -90.327 16.7 1372.2 

DF 04-09-2016 08-27-2016 

US-BdC 

 

DF 04-09-2015 08-27-2015 35.809 -90.028 16.7 1372.2 

DF 04-09-2016 08-27-2016 

DF = Delayed flooding, AWD = Alternate wetting and drying, MIRI = multiple-inlet rice 

irrigation, FIR = Furrow irrigated rice, MAT = Mean annual temperature, MAP = Mean annual 

precipitation. DOP and DOH are the planting and harvesting date (MM-DD-YYYY). 
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2.3 Site-scale data:  

Site-scale information includes CO2 flux and climatological data. Data collected from field 

instruments gives us the opportunity to test the accuracy and calibrate satellite-based models at the 

site scale and renders its applicability at the state scale. 

2.3.1 CO2 flux measurements 

EC data were collected across the 16 field-seasons in the 10 sites. In the pre-processing 

stage, the high-frequency raw data were corrected based on transducer shadowing (Horst et al., 

2015) and converted to half-hourly fluxes of CO2 using EddyPro software (LI-COR, Inc., 2021). 

After processing the raw data on EddyPro software, the 30-min fluxes were corrected based on 

quality flags and wind direction. On the post-processing stage, the u* threshold correction was 

applied and GPP and respiration (Reco) were partitioned from the net ecosystem exchange of CO2 

following Reichstein et al. (2005). For better understanding about the flux data correction and gap-

filling method we refer to (Tajfar et al., 2023 under preparation).  

2.3.2 Site climatological data 

Air temperature data was recorded using humidity and temperature probe (HMP 60, 

Vaisala, Vantaa, Finland). Photosynthetically active radiation (PAR) data was recorded using LI-

190 SL quantum sensor (LI-COR, Lincoln, NE, US). The half-hourly averaged temperature and 

PAR data from 1 Hz data were averaged to an 8-day period to be consistent with the MODIS 8-day 

composite. Site daily downward shortwave radiation (site DSWR) were measured using a 4-

component net radiometer (CNR4 radiometer, Kipp and Zonen, Netherlands).  
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2.4 Satellite data 

2.4.1 Satellite reflectance data 

 The land surface reflectance was taken at 8-day intervals at 500-meter resolution from the 

MODIS data (MOD09A1 Version 6). Poor-quality data were masked out for pixels affected by 

cloud, cloud shadow, and aerosol interference using the quality assurance (QA) layer. The bands 

(Near Infrared (NIR) (841-876 nm), Red (620-670 nm), Blue (459-479 nm) and Short-wave 

Infrared (SWIR) (1628-1652)) were scaled using a scaling factor 0.0001 and were used to estimate 

the vegetation indices, enhanced vegetation index (EVI) and land surface water index (LSWI) 

using equations (1) and (2) respectively. The missing values were gap-filled and smoothed using 

the traditional smoothing algorithm of the Savitzky-Golay filter (Savitzky & Golay, 1964; Chen 

et al., 2021).  

 The MODIS pixels for the 10 rice fields were selected based on the targeted flux footprint 

from each EC tower, given that some pixels did not cover the total footprint area or covered some 

additional area apart from the area of interest.  

𝐸𝑉𝐼 = 2.5 ×
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 6 × 𝑅𝑒𝑑 − 7.5 × 𝐵𝑙𝑢𝑒 + 1
 

(1) 

𝐿𝑆𝑊𝐼 =
𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅

𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅
 

(2) 

2.4.2 Satellite Climatological Data 

Climate data for deriving a state-scale estimate (temperature and DSWR) were derived 

from the National Centers for Environmental Prediction (NCEP) Climate Forecast System (CFS) 

dataset (Kalnay et al., 1996). NCEP provides data at 6 hourly temporal intervals, and to keep the 

data consistent with MODIS data, it was aggregated to an 8-day bin period and resampled over the 
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MODIS 500m resolution. We use the average of temperature at 2m and maximum temperature at 

2m to estimate the mean temperature (Zhang et al., 2017). We used a conversion factor of 0.9 to 

reduce the bias of the satellite DSWR data, determined from the scatter plot of satellite DSWR and 

site DSWR data (see section 2.3.2). The downward shortwave radiation (DSWR) (Wm-2) was 

converted to photosynthetic active radiation (PAR) (µmol m-2 s-1) using a conversion factor of 2.02 

following (Mavi & Tupper, 2004).  

 

2.5 Model Description 

2.5.1 Vegetation Photosynthesis Model (VPM) 

Building upon the concept of light use efficiency, the VPM framework provides GPP data 

as the product of LUE and APARcanopy (Eq. 3). LUE was estimated using equation 8 multiplying 

potential Ɛ0 with Ts and Ws. (GPPVPM = Ɛg × APARcanopy), where APARcanopy is the product of 

photosynthetically active radiation (PAR) and the fraction of absorbed photosynthetic active 

radiation (fPARcanopy).  fPARcanopy is measured as a linear function of EVI (Eq. 6).  In this model, 

the Ɛg is measured as the product of apparent quantum yield or maximum light use efficiency (Ɛ0), 

Tscalar, and Wscalar (Eq. 8), which are the downward-regulation scalars for the influence of 

temperature and water on light use efficiency, respectively. Tscalar is calculated using the parameter 

optimum temperature (Topt), the variable mean temperature (T) and the constants of minimum 

temperature (Tmin) (0 ºC)  and maximum temperature (Tmax) (48 ºC) (Xin et al., 2017) (Eq. 4). 

Wscalar is the measure of the effect of drought stress on plants is measured using LSWI index (Eq. 

5). In the VPM, we used rice-specific constant values for Ɛ0 (0.05 mol CO2 mol-1 PPFD) and Topt 

(30 ºC) (Xin et al., 2017; Huang et al., 2021). The method to estimate state-scale PAR was 

described in section 2.3. 
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GPPVPM = Ɛg × APARcanopy (3) 

𝑇𝑠 =
(𝑇 − 𝑇𝑚𝑖𝑛)(𝑇 − 𝑇𝑚𝑎𝑥)

(𝑇 − 𝑇𝑚𝑖𝑛)(𝑇 − 𝑇𝑚𝑎𝑥) − (𝑇 − 𝑇𝑜𝑝𝑡)
2 

(4) 

𝑊𝑠𝑐𝑎𝑙𝑎𝑟 =
1 + 𝐿𝑆𝑊𝐼

1 +  𝐿𝑆𝑊𝐼𝑚𝑎𝑥
 

(5) 

𝑓𝑃𝐴𝑅𝑐ℎ𝑙 = (𝐸𝑉𝐼 − 0.1) × 1.25 (6) 

APARcanopy= fPARcanopy × PAR (7) 

Ɛg = Wscalar × Tscalar × Ɛo (8) 

 

2.5.2 Estimating state-scale gross primary productivity of rice   

At the state scale, we implement VPM using satellite reflectance data (section 2.3.2) and 

satellite climatological data (section 2.3.2).  

We derived rice planted areas for the state of Arkansas for each year from 2008 to 2020 

from the CropScape cropland data layer website (USDA National Agricultural Statistics Service 

Cropland Data Layer, 2022). We run the VPM within the geographic boundaries of the rice planted 

areas in Arkansas using the satellite data for each year in the GEE platform. Later we retrieve the 

images into the RStudio platform for further geospatial analysis and visualization.  

To understand the relationship between GPP and yield we plot the yearly GPP data against 

yield of 26 counties where rice is grown. The GPP data which was calculated at 500m resolution 

was aggregated to county-scale resolution. The county yield data were obtained from USDA 

National Agricultural Statistics Service, Quick Stats website (USDA National Agricultural 

Statistics Service, 2017).  
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3. Results 

3.1 Site-scale performance of the two models  

3.1.1 Model  

In all site-years, VPM explained 58-70% of the seasonal variation in the GPP derived from 

EC stations. Across 16 site-years data, the VPMsite model has an overall RMSE = 4.05 g C m-2 day-

1, R2 = 0.7, MAE = 3.5 g C m-2day-1, making it the better of the two models.  The VPMspatial model 

has performance of RMSE = 4.92 g C m-2 day-1, R2 = 0.58, MAE = 3.50 g C m-2 day-1. In that 

evaluation, we find GPP estimated using the VPMsite outperforms GPP estimated using the 

VPMspatial model. At site-scale, across 16 site-years data, the parameters Ts and Ws had mean values 

of 0.98 (range: 0.86-1, standard deviation: 0.02) and 0.83 (range: 0.53-1, standard deviation: 0.14) 

respectively. We use the Taylor diagram to evaluate the performance of the two models (Fig. S1). 

The Taylor diagram shows that the VPM models are able to capture more than 70% of the 

correlation. The variation of the GPP data generated by VPM is less than the EC data. The standard 

deviation of GPP data from 16 site-years is 7 g C m-2 day-1 whereas the standard deviation of the 

VPM models is around 6 g C m-2 day-1. The centered root means square errors for VPMsite and 

VPMspatial are 3.8 g C m-2 day-1 and 4.6 g C m-2 day-1 respectively. The residual plots of the models 

show that there is a higher degree of residuals between 50-100 days after planting (Fig. S2). This 

highlights that the models are not able to capture the magnitude at the mid-season period of 

growing season. The percent residual plot (Fig. S2 (B and D)) normalizes the residual by dividing 

the residual by the observed values. The percent residual plot shows a higher percentage of residual 

at the start of the season. 
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Figure 2: Comparison of two GPP estimates using two different data sources. EC data (GPP EC) 

on the x axis has been used as the observed value here and is used as a comparison to: (a) GPP 

from the VPM using site information and observed DOP and DOH and GPP EC, (b) GPP from the 

VPM using satellite information. The points are colored based on the day of the year. The red 

dashed line denotes the 1:1 relationship and the blue line denotes the fitted regression line. 

3.1.2 Temporal pattern of GPP across the growing season.  

The temporal nature of GPP from the two models and EC stations is broadly consistent 

(Fig. 3). However, there is a disagreement between the GPPEC and the VPM models on the timing 

of the peak. A later peak and rise are observed in the case of the VPMsite and the VPMspatial. Both 

VPMsite and VPMspatial seem to underestimate the magnitude of GPP, and they peak later than the 

observed values. At the start of the growing season, the measured GPP values from EC stations 

are closer to 0 g C m-2day-1, afterwards they reach the peak value of approx. 22 g C m-2day-1 around 

80 days after planting and drop to 0 g C m-2day-1 after 150 days of planting.  
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Figure 3: Temporal pattern of GPP derived from two models and EC tower for all 16 site-years. 

The color and shape of the dots represent the source or model of the data. The regression line of 

each model or data source has been derived using loess fitting and used to aid in identifying the 

seasonal pattern of GPP. The grey shaded area is the 95% confidence level interval for the 

predictions from the loess fitting.  

3.2 GPP estimated at state scale 

3.2.1 Spatial variability of GPP of rice layer in Arkansas 

We implemented the VPMspatial model at the state-scale covering all the rice fields in 

Arkansas. Fig 4 shows the spatial distribution of 13 years averaged cumulative GPP across the 

whole rice layer in Arkansas. By calculating the latitudinal average of GPP using GAM regression, 

we see differences in GPP across the state. The GPP values are higher between 33.5° N and 34.5° 

N (1840.40. ± 8.34 g C m-2 season-1) latitude. In terms of GPP, these regions can be attributed as 

the most productive rice growing regions in Arkansas. On the contrary, lower GPP values (1433.61 

± 4.07 g C m-2 season-1) were observed around 36° N. From 36° N, the GPP value increases with 

the decrease in latitude however the value decreases after the peak around 34° N.  We observe low 

GPP values, less than 800 g C m-2 season-1, around the riverine regions of Arkansas. These values 
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may derive from mixed pixel effects where riverine regions share the same pixel with rice or are 

mislabeled entirely.   

 

 

Figure 4: Spatial profile of mean annual GPP across the state from the VPMspatial model. (A) Map 

of the mean cumulative GPP (2008-2020) of the rice layer in Arkansas.  (B) Mean latitudinal 

distribution of mean cumulative GPP (2008-2020), created with a GAM regression to demonstrate 

the spatial dynamics of the mean cumulative GPP, where the shaded line defines the 95% 

confidence level interval for the predictions from the loess fitting.  

 

3.2.2 Annual variability of GPP of rice layer in Arkansas 

We averaged all the pixels of the rice layer for each year (Figure 5: Inter-seasonal 

variability of mean cumulative GPP in the rice growing season in Arkansas.).  We found that while 

there has been an apparent increase in the average annual GPP of rice in Arkansas, the increase is 

not statistically significant (p > 0.01). Moreover, the Mann Kendall test failed to confirm the 

significance of time series change of GPP (p = 0.28). In the timeframe between 2008 to 2020, the 

mean photosynthetic carbon uptake of Arkansas rice fields was 1563.81± 129.09 g Cm-2 season- 1. 

The lowest GPP was observed in the year 2011 (1317.63 ± 391.25 g C m-2 season-1) followed by 

2015 (1375.08 ± 366.06 g C m-2 season-1), and 2010 (1454.72 ± 403.55 g C m-2 season-1). On the 
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other hand, years 2012 (1776.09 ± 377.32 g C m-2 season-1), 

2017  (1712.35 ± 339.14 g C m- 2 season- 1), and 2020 (1654.91 ± 384.84 g C m-2 season-1) showed 

higher magnitude of GPP.   

 

Figure 5: Inter-seasonal variability of mean cumulative GPP in the rice growing season in 

Arkansas. Error bars reflect standard deviation of the mean cumulative GPP across the spatial 

extent of rice croplands.  

 

3.3 GPP Harvest Relationship 

In order to test the relationship between GPP and rice yield we plot the mean cumulative 

GPP against the yield at the county-scale from the year 2008 to 2020 (Figure 6: County-scale 

relationship between mean cumulative GPP and reported yield.  Each scatter represents a county-

year.). Overall, across 13 years of data, the GPP-yield relationship shows a positive and significant 

correlation based on the slope (0.092), RMSE (61 g m-2 season-1), and R2 value (0.07) (p <0.001). 

The yield and GPP values were higher in the later years than the yield and GPP values from earlier 

years. The yield values ranged from 600-900 g m-2 season-1. 
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Figure 6: County-scale relationship between mean cumulative GPP and reported yield.  Each 

scatter represents a county-year. 

 

4. Discussion 

4.1 VPM model based on site information performs better than satellite information 

Statistical metrics show the superiority of VPMsite over VPMspatial. VPMsite has higher R2, 

lower RMSE and MAE than the VPMspatial. Moreover, VPMsite better captures the seasonal 

variation. These results indicate that site information performs better than satellite information. 

The models capture more than 70% of the correlation. These models can show guidance on gap 

filling missing GPP values at annual scale.  

4.2 Uncertainties of the model and future work and improvements  

One of the sources of error working with satellite data, especially with MODIS’s 500-meter 

resolution, is the mixed pixel effect (Bandaru et al., 2013). Rice field pixels are influenced by the 

surrounding land cover. The mixed-pixel effect can be reduced through selecting a homogenous 
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land cover (Chen et al., 2018). The mixed pixel effect might be less in the case of rice in Arkansas 

since most of the rice fields are concentrated in eastern regions and adjacent to each other. 

However, surrounding dense vegetation and riverine regions added some negligible errors in the 

state-scale estimation.  

Several sources of error may have affected the results of this study. The spatial GPP data 

was derived from multiple spatial data sources. Satellite-based climatological datasets are mostly 

derived from weather station datasets and may not capture fine-scale variation for some variables, 

such as shortwave radiation (Cui et al., 2012). Eddy covariance data is a widely used technique, 

but there may be some sources of error in the data generated from the sensors. There may be some 

degree of noise due to the precision of calibration in the sensors (Baldocchi, 2003). Some of the 

main sources of EC system are (i) lack of adequate fetch, (ii) flow distortion due to other sensors 

and (iii) buoyancy effect (Chi et al., 2016; Waldo et al., 2016). The first error has minimum effect 

in the zero grade rice field if the direction of wind covers the fetch. To avoid the second error all 

other meteorological sensors were set parallel to the EC system rather than in the area of fetch. 

Lastly, the WPL correction was applied through EddyPro software to reduce the buoyancy effect. 

However, there can be uncertainties from gap filling the missing and filtered out low quality 

observations. In future this issue can be addressed through understanding the level of uncertainties 

using Monte Carlo approach (Richardson & Hollinger, 2007). Lastly, the residual plots indicate 

that there is a need to consider phenological-based parameters in the model to improve accuracy. 

4.3 State-scale GPP and potential application of this dataset 

Having explained the better accuracy of the VPM at site-scales, we use the VPM 

(VPMspatial) to derive a state-scale estimation of rice plants in Arkansas. The spatial pattern of GPP 

shows that rice grown in regions between 33.5° N and 34.5° N latitude have higher magnitude than 
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other regions. The higher magnitude of GPP can be attributed to factors like elevated precipitation, 

medium temperature and radiation ranging from 500-600 Wm- 2 (Anav et al., 2015). The lower 

magnitude of GPP in the years 2010 and 2011 may be driven by high nighttime temperatures. 

Arkansas rice fields have observed higher nighttime temperatures and reduced yield in the years 

2010 and 2011 compared to other years (Nalley et al., 2016). Higher nighttime temperature has 

been linked with lower rice yield (Peng et al., 2004). Higher nighttime temperature causes higher 

respiration rate and weak membrane stability which ultimately leads to lower yield (Mohammed 

& Tarpley, 2009). A similar pattern has been seen in our study where the cumulative GPP in the 

year 2010 and 2011 were lower, suggesting that the processes that control yield also control GPP 

and GPP can be a powerful tool to predict and understand yield dynamics. Studies have also found 

that higher nighttime temperature caused lower quality of rice grain and increased the level of 

chalk in the year 2010 (Lanning et al., 2011).  

GPP has a positive and significant relationship with yield and can explain 7% of variation 

of yield at county scale, but there are some years (2009, 2018, and 2019) that showed weak positive 

relationships. This different relationship across different years may suggest that rice plants have 

shown either different autotrophic respiration leading to different carbon use efficiency levels or 

have different harvest index values. GPP alone cannot explain these factors on a county-scale and 

a full explanation might require other agronomic and climatological variables. Overall, from 2008 

to 2020 on a state-wide basis, there has been an increase of 14% and 11% in both mean cumulative 

GPP and yield respectively. This increase in yield in US rice production has been mostly driven 

by precision land-leveling and hybrid rice varieties, and regions like Arkansas have achieved 

higher yield magnitude by adopting hybrid and herbicide-resistant varieties of rice (Espe et al., 

2016).   
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Our study can benefit the implementation of nature-based climate solutions (NbCS) and 

greenhouse gas budget accounting. First, the method of developing VPMspatial can be an example 

of a practical deployment of NbCS which is the upscale component (deriving flux measurements 

across a larger spatial scale) (Hemes et al., 2021). The GPP dataset will ultimately help to achieve 

one of the major goals of NbCS, i.e., to derive baseline GPP datasets, which focuses on harnessing 

the power of photosynthesis to sequester the carbon back into the soil (Runkle, 2022). This baseline 

dataset can provide answers to the questions in identifying the specific agronomic practices 

(fertilization or irrigation techniques) or climatological factors that drive the spatial variation of 

GPP. In terms of greenhouse budgeting, this improved dataset will enable us to derive an estimate 

of net biome productivity (NBP) which can be derived through subtracting autotrophic and 

heterotrophic respiration, crop yield, and other terms such as dissolved carbon in water, fire-based 

emissions, and carbon introduced through fertilizer applications from the GPP. Through 

incorporating net CH4 and NO2 emissions this data can contribute to a holistic assessment of the 

greenhouse gas budget of Arkansas’s rice production region. Policy makers can then make better 

decisions to support optimal irrigation and fertilization techniques for sequestering long term 

carbon in the rice ecosystem.  

Additionally, the state-scale GPP dataset can be used with other models to estimate the 

state-scale methane budgets of rice fields in Arkansas and gain better understanding about the 

biogeochemistry of the rice system at a larger spatial scale. GPP is one of the main variables in 

predicting methane because 50% of the GPP in the growing season gets assimilated to the soil 

labile carbon pool which further used as a substrate by the methanogen to produce methane 

(Pendall et al., 2004; Oikawa et al., 2017). Thus, this improved dataset can act as a baseline to 

derive an improved estimate of the state’s methane budget. 
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5. Conclusion 

We aimed to derive a state-scale GPP estimation of rice in Arkansas. To develop this dataset, we 

use VPM model at site and state scle. At the site scale, we found that the VPM model with site 

information (R2 = 0.71, MAE = 2.90 g C m-2 day-1, and RMSE = 4.04 g C m-2 day-1) outperformed 

the VPM model without site information (R2 = 0.59, MAE = 4.9 g C m-2day-1, and 

RMSE = 3.48 g C m-2day-1). At the state scale, we found that the mean photosynthetic carbon 

uptake of Arkansas rice fields was 1563.81± 129.09 g C m-2season-1. The spatial distribution of 

GPP showed that rice fields located between 33.5° N and 34.5° N have higher GPP values 

(1840.40.  ± 8.34 g C m- 2  season-1) than other rice regions of Arkansas. At the county-scale, we 

found that GPP has an R2 value of 0.07 against reported yield obtained from an agricultural survey. 

This dataset aids us to more understand greenhouse gas budgets to make better climate smart 

decisions at larger spatial scale. However, like most other models there is an opportunity for 

improvement and the accuracy of this model can be improved through incorporating phenological 

information.  
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8.  Appendix 

 

 

Fig. S1: Tailor diagram of the performances of the models VPMsite (highlighted as bullet 

point) and VPMspatial.(highlighted as asterisk). The contour lines show the centered root 

mean squared errors.  
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Fig. S2: Residual plots of the models VPMsite (A) and VPMspatial (C). Percent residual plots 

of the models VPMsite (B) and VPMspatial (D) (absolute values were taken to calculate the 

percent residual plots). 
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