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ABSTRACT 

A decline in the number of construction engineers and inspectors available at State 

Transportation Agencies (STAs) to manage the ever-increasing lane miles has emphasized the 

importance of workforce planning in this sector. One of the crucial aspects of workforce 

planning involves forecasting the required workforce for any industry or agency. This thesis 

developed machine learning models to estimate the person-hour requirements of STAs at the 

agency and project levels. The Arkansas Department of Transportation (ARDOT) was used as a 

case study, using its employee data between 2012 and 2021. At the project level, machine 

learning regressors ranging from linear, tree ensembles, kernel-based, and neural network-based 

models were developed. At the agency level, a classic time series modeling approach, as well as 

neural networks-based models, were developed to forecast the monthly person-hour 

requirements of the agency. Parametric and non-parametric tests were employed in comparing 

the models across both levels. The results indicated a high performance from the random forest 

regressor, a tree ensemble with bagging, which recorded an average R-squared value of 0.91. 

The one-dimensional convolutional neural network model was the most effective model for 

forecasting the monthly person requirements at the agency level. It recorded an average RMSE 

of 4,500 person-hours monthly over short-range forecasting and an average of 5,000 person-

hours monthly over long-range forecasting.   These findings underscore the capability of 

machine learning models to provide more accurate workforce demand forecasts for STAs and the 

construction industry. This enhanced accuracy in workforce planning will contribute to improved 

resource allocation and management. 
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Chapter 1. Introduction 

State transportation agencies (STAs) are currently grappling with the challenges of 

meeting their workforce requirements. In recent years, the maintenance and management of an 

increasing number of state-managed lanes have been entrusted to a dwindling number of 

engineers and inspectors within STAs (Taylor & Maloney, 2013). To address this issue, STAs 

must engage in effective workforce planning, which heavily relies on the ability to accurately 

forecast future workforce needs. The adequate planning of STA workforce is crucial for ensuring 

cost-effectiveness, quality, and safety in construction projects. 

Previous studies on forecasting the construction engineering workforce have 

predominantly focused on econometrics approaches such as vector error correction, Box-Jenkins 

Autoregressive Integrated Moving Average (ARIMA), labor multiplier approach, and simple 

linear regression models. There have been limited studies on the strength of machine learning 

algorithms in predicting the workforce needed. This study uses the Arkansas Department of 

Transportation (ARDOT) case study to investigate the applicability of machine learning 

regressors and neural network-based time series models in predicting the workforce requirements 

for the agency. Workforce forecasting is carried out at different levels, which include 

international, national, industrial, regional, agency, and project levels (Laslett R. E., 1972). This 

thesis primarily focuses on forecasting the workforce at the project and agency levels, which 

refer to the workforce needed for individual construction projects within a state agency and the 

overall workforce required for the state agency to effectively carry out all its projects. 

Previous efforts in employing advanced machine learning techniques in this area have 

been limited, with only a few research publications considering these methods (Choudhury et al., 

2002). This study makes several notable contributions to the existing literature. Firstly, it 
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evaluates the performance of machine learning regression models in predicting person-hour 

requirements at the project level, exploring their differences in terms of accuracy, model training 

time, and prediction time. Secondly, it develops neural network-based time series models for 

agency-level forecasting of person-hour requirements. The time series models are also tested for 

their ability to forecast further into the future by examining their longer-range forecasting 

capabilities. 

This thesis consists of five sections: the introduction is followed by a detailed literature 

review on the previous studies based on past methodologies that have been explored in 

forecasting workforce requirements across the construction industry and state transportation 

agencies. Then, the data and methodology of the study are presented in the third section. The 

fourth section describes the results of the forecasts from the machine learning models. Finally, 

the thesis concludes with a summary of some of the significant findings, limitations, and 

directions for future research. 
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Chapter 2. Literature Review 

Workforce forecasting and planning have a rich historical background dating back to the 

1940s, with evidence of its significance in military, industrial, and civilian contexts (Pate, 1943). 

Its practical application has spanned various industries, including medicine, construction, 

technology, and aviation (Azimi Nayebi et al., 2019; Benitez et al., 2013; Chung et al., 2010; 

Park et al., 2008). Accurate prediction of workforce requirements has yielded numerous benefits 

across industries, such as enhanced risk management, productivity, and cost-efficiency (Collings 

& Mellahi, 2009; Garza et al., 2013). Prior research has synthesized reviews on general 

workforce forecasting methods (Edwards, 1983; Safarishahrbijari, 2018), as well as industry- or 

occupation-specific approaches (Lomas et al., 1985; Prescott P. A., 1991; J. M. W. Wong et al., 

2004; Y. Zhao et al., 2022). Notably, the most recent review by Y. Zhao et al., 2022, focused on 

the construction industry, critically examining previous forecasting methods and addressing their 

limitations. A significant finding of their study highlighted the unsuitability of many forecasting 

methods in scenarios involving sudden changes in workforce requirements. Additionally, this 

review emphasized Hong Kong as the leading contributor to the literature in this field, 

accounting for over 60% of the research efforts (Y. Zhao et al., 2022). Building upon these 

studies, the forecasting methods can be broadly classified into qualitative and quantitative 

models (Safarishahrbijari, 2018; Y. Zhao et al., 2022), which are further discussed in this section. 

2.1 Qualitative Models 

Qualitative models, which are valuable in situations where empirical data is lacking, and 

are widely employed by human resources personnel, as demonstrated in previous studies 

(Hagopian et al., 2012; Lagarde & Blaauw, 2009; Shemin et al., 2002). Among the various 

qualitative models available, the Delphi method stands out as one of the most popular and 
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suitable for the construction industry (Safarishahrbijari, 2018; Y. Zhao et al., 2022). The Delphi 

method involves engaging a panel of experts to provide responses to a series of questionnaires. 

Through multiple rounds of questionnaire iterations, a consensus is reached among the 

participants (Bryant et al., 1973). In cases where unknown parameters are a consideration, the 

Delphi method has been combined with other models (Safarishahrbijari, 2018). Based on the 

original Delphi method, several other forms of Delphi models have been proposed, which 

include the policy Delphi and modified Delphi, among others (Dalkey & Helmer, 1963; Gordon 

& Helmer, 1964; Stitt-Gohdes & Crews, 2004). A modified Delphi method was developed to 

forecast long-term workforce needs in the tourism industry, where industry experts ranked the 

importance of factors affecting the workforce based on existing literature (Vázquez-Ramos et al., 

2007). Similarly, Kwak et al., (1997) utilized the Delphi technique to identify factors impacting 

workforce demand and supply in urban academic health centers, and further assigned importance 

to these factors using the analytic hierarchy process (AHP) model, considering their criticality. 

Although the Delphi method offers advantages when certain factors are difficult to 

quantify or when empirical data is lacking, it does have limitations. As the method relies on 

subjective responses from a panel of experts, and often involves multiple rounds of 

questionnaires, it is prone to bias and may not always yield accurate results (Hsu & Sandford, 

2007; Linstone & Turoff, 1975; Parker & Caine, 1996; Y. Zhao et al., 2022). 

2.2 Quantitative Models 

Quantitative models, which encompass mathematical representations of systems or 

processes, constitute the majority of methods employed for forecasting workforce needs 

(Safarishahrbijari, 2018). These models can be further classified into distinct groups, each 

characterized by its unique strengths and weaknesses. 
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2.2.1 Time Series Models 

Time series models are statistical models used to predict future values based on the 

analysis of a sequence of data collected at equally spaced points in time (Box et al., 2008; Martin 

et al., 2012). These models rely exclusively on historical data to estimate future trends and make 

forecasts. Various time series methods have been applied to forecast workforce requirements in 

the construction industry, including vector error correction (VEC), Box-Jenkins, exponential 

smoothing, and the Markov processes (Y. Zhao et al., 2022). For instance, J. M. W. Wong et al., 

(2011) presented the performance of VEC in estimating the short to medium-term construction 

workforce demand. Although the VEC was found to be inferior to the log-linear regression 

approach, it outperformed the Box-Jenkins approach, highlighting its strength in capturing the 

causal relationship between workforce demand and associated factors in the construction 

industry. Other time series approaches, such as exponential smoothing, have also been presented 

and compared with the VEC and log-linear regression (J. M. Wong et al., 2009). However, these 

time series models have limitations as they rely solely on past data, which might only be 

sufficient for short-term forecasting (Y. Zhao et al., 2022). Additionally, these econometric 

methods are also known to be sensitive to changes in data and can potentially result in inaccurate 

forecasts (Hyndman & Athanasopoulos, 2018a).   

2.2.2 Regression Models 

Several studies have proposed regression-based models for forecasting workforce needs 

in varying industries (Bell et al., 2003; Khali Persad & Varghese, 1995). These models estimate 

the workforce needs based on some independent variables and provide insights into the influence 

of these variables. Kim et al., (2016) presented the linear regression model for establishing the 

relationship between workforce requirements and project details such as the cost, type and 
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degree of urbanization. The study revealed the relationship between the workforce requirements 

(in terms of person-hours) and the independent variables, with certain capacity improvement 

projects requiring up to 4.45 times the person-hours compared to pavement projects. The 

estimated regression model exhibited a goodness of fit of approximately 0.74. Other studies (Bell 

et al., 2003; Khali Persad & Varghese, 1995; J. M. W. Wong et al., 2011; Yang & Kim, 2019) 

have presented univariate and multivariate regression methods for estimating the workforce 

needs in project-level contexts. However, this approach has limitations, particularly when 

dealing with missing parameters of interest and its inability to capture dynamic systems 

(Safarishahrbijari, 2018). 

2.2.3 Analytical stock-and-flow Models 

The stock-and-flow model describes system behavior by incorporating stocks (fluctuating 

variables) and flows (changes over time) (Forrester, 1958). In the context of workforce 

forecasting, stocks refer to the workforce level, while flows capture workforce changes such as 

job promotions, recruitments, and rotations. This modeling approach enables the incorporation of 

time concepts into the model and offers the advantage of interpretability, making it accessible to 

policymakers(Safarishahrbijari, 2018).  

Sing et al., (2012) developed a labor supply model for the construction industry using the 

stock-flow approach. The model's performance was evaluated using Hong Kong census statistics 

and data from 3,000 construction workers. The model was employed to determine future aging 

distribution trends and workforce supply across different trades. Stock-and-flow models have 

also found applications in the medical industry, specifically in the long-term projection of crucial 

health workers like surgeons (Crettenden et al., 2014; Fraher et al., 2013). 
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2.3 Summary 

In addition to the previously discussed models, several other models have also proved to 

be particularly effective in estimating the workforce in the construction industry. Some of these 

include the labor multiplier method (Chan et al., 2006), which assumes a direct relationship 

between the staff-hour and the cost of the project, and the gray model (Benitez et al., 2013), 

which is a model based on the first order differential equation. Most of the models come with 

certain limitations. Most proposed models' prediction accuracy has yet to be tested to verify the 

models' strength (Y. Zhao et al., 2022). Also, the models do not adapt well to dynamic changes, 

which could be mitigated by machine learning and AI prediction technology (Y. Zhao et al., 

2022). 

  



8 
 

Chapter 3. Data and Methodology 

3.1 Data 

The data utilized in this study was obtained from ARDOT. The dataset is comprised of 

historical records encompassing employee information and projects details spanning a period of 

10 years, between 2012 and 2021. Two distinct files were acquired: the employee data file 

containing relevant information about the employees’ work hours, and the project details data 

file documenting records of previous project details. 

3.1.1 Employee data 

This data contains logged information about the total number of working hours/days for 

construction engineers and inspectors working on various projects within the STA. The dataset 

includes a total of 1,070,643 records that were retrieved for all employees over the study period 

of 10 years. Each record provides relevant details of the employee at the time of data entry, such 

as job title position, total time spent on activities for the logged data, and project identifier for the 

specific project on which activity was carried out for the day. Initial exploration revealed some 

inconsistencies over the duration covered by the data, such as changes to job title descriptions 

and incorrectly filled data, which were all reconciled. 

Furthermore, a closer analysis revealed significantly lower person-hours recorded for 

projects in the first year of the dataset (2012). With proper follow-up on this discrepancy with 

the relevant agency, it was discovered that the introduction of a new data recording system 

during that period could potentially account for this problem. As a precautionary measure to 

avoid incomplete person-hour records, all projects from the first year were excluded from the 

analysis. Consequently, approximately 14.9% of projects were omitted, as they were presumed to 

have less reliable and incomplete person-hour records.  
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3.1.2 Project details data 

While the employee data provides valuable insights into the workforce, it lacks specific 

information about the corresponding projects. To address this gap, additional data focusing on 

the projects themselves were collected. This project details data encompassed essential 

information about the projects over the same 10-year period as the employee data. 

A total of 3,910 projects were gathered, representing a diverse range of 23 different 

project types. Alongside each project, the data included the respective project's cost, which 

denotes the total awarded sum for its completion and is assumed to reflect the overall execution 

expenses. Furthermore, the "Let year," signifying the year in which the project was awarded, was 

also recorded. Given that projects were both awarded and executed over an extended period, it 

was necessary to adjust the project costs to a common base year to account for inflation. 

Therefore, the project costs were adjusted based on the "Let year," which represents the year 

when the project was awarded, and cost estimation was conducted. In this study, a common base 

year of 2011 was selected as the earliest project in the dataset was awarded during this year. 

In addition to cost and "Let year," the project details data encompassed other significant 

features. These include the project's start and end dates, status (indicating its progress or 

completion), and descriptions of activities associated with the project. Collectively, these details 

provide a comprehensive overview of the projects considered in the analysis. 

3.2 Data Cleaning 

In this section, the raw data obtained from the ARDOT were subjected to further 

processing and cleaning to facilitate the forecasting at both the project level and agency level. 

The details regarding these levels of data cleaning are discussed below. 
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3.2.1 Project level data 

The project level forecast aims to estimate the total person-hours required for the 

completion of a specific project. To achieve this, a regression problem was formulated, with the 

project details serving as independent variables and the total person-hours as the target variable. 

To establish the relationship between project attributes and person-hours, it was necessary to 

merge the "employee data" and "project details data" files. The unique project identifier present 

in both datasets served as the primary key for this merging process. However, it was observed 

that a portion of the projects were still ongoing, and hence, the total person-hours required for 

their completion were not recorded. These ongoing projects accounted for 16.1% of the entire 

dataset and were subsequently excluded from the project level dataset. 

Upon initial exploration of the project data, it was noted that certain projects exhibited 

unusually low person-hours. Correspondence with the concerned agency revealed that these 

projects might have involved the use of external consultants, whose hours were not accounted for 

in the employee data. As a result, extreme values were removed from the dataset under the 

assumption that such projects included unaccounted consultant hours. After these exclusions, 

1,490 projects were retained for project level forecasting. 

To develop the regression model for project level forecasting, independent variables, also 

known as predictor variables, were selected based on existing literature and the available project 

attributes. Specifically, the project type, year difference, and adjusted award amount were chosen 

as the independent variables (Bell et al., 2003; Khali Persad & Varghese, 1995). The project type 

represents the category under which the construction project is classified, indicating similarities 

in terms of scope, complexity, and required workforce. The adjusted award amount refers to the 

project contract amount adjusted for inflation, as no information on the actual execution costs 
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were available. Past studies have demonstrated that the project cost serves as an effective 

predictor of total person-hours (Bell et al., 2003; Chan et al., 2006; Kim et al., 2016). 

Additionally, an ordinal variable representing the reference base year was included to account for 

differences due to technological advancements and changing practices over time, which may 

influence workforce requirements for different projects. 

The target variable for the machine learning problem at the project level is the total person-hours 

required to complete the project. This includes the cumulative sum of all employee person-hours 

logged on the project from the start date to the end date, encompassing various job titles except 

for resident and assistant resident engineers. 

𝒚𝑻 = [𝑦", 𝑦#, … , 𝑦$]	

𝑿 = 	 *

𝑥%,", 𝑥',", 𝑥(,"
𝑥%,#, 𝑥',#, 𝑥(,#

⋮
	𝑥%,$, 𝑥',$, 𝑥(,$

- 

Where 𝑦$ represents the total person-hours for the mth project, and 𝑥%,$, 𝑥',$, 𝑥(,$ represents the 

cost, type and year difference of the mth project. 

3.2.2 Agency level data 

The agency level forecasting pertains to the estimation of the future workforce required 

by the agency. This can be measured over different durations, such as daily, weekly, monthly, 

quarterly or yearly intervals (P. H. K. Ho, 2010; J. M. W. Wong et al., 2007). The monthly 

workforce requirement was adopted for this study. This includes all person-hours expended on 

the projects undertaken by the agency within a given month. 

Upon initial exploration of the monthly person-hours data, notable anomalies were 

observed in the year 2012 and the last month of the final year, 2021. These months were 
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excluded, to ensure that only months with complete and reliable data were utilized in the 

forecasting process. Figure 1 illustrates the monthly hour requirements of all construction 

engineers and inspectors at ARDOT over the years 2013 through 2021. It is important to note 

that the person-hour requirements encompass all hours worked on both completed and ongoing 

projects, except the months with incomplete data, such as July 2021. 

 
Figure 1: Monthly engineering person-hours between 2013 and 2021 

In order to assess the effectiveness of the forecasting models across different time ranges, 

the data were divided into multiple sets using a train-test split approach. In this context, short-

range forecasting refers to the prediction of values that are relatively close in the future, typically 

less than one year. Conversely, long-range forecasting involves predicting time points 

significantly farther into the future, extending beyond the one-year threshold. To accommodate 

both short-range and long-range forecasts within the dataset, separate train-test sets were defined. 

The short-range set reserved one year of data for testing the model's performance, while the long-

range set reserved two and a half years of data for testing the model's effectiveness in longer-

term predictions. Consequently, a train-test ratio of 7.5:1 was established for the short-range 
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forecast, and a ratio of 2.5:1 was employed for the long-range forecast. The breakdown of this 

division is presented in Table 1. 

Table 1: Time series train-test split for short- and long-range forecasting 

 Train data Test data 
Short Range Jan-2013 – July-2020 Aug-2020 – July-2021 
Long Range Jan-2013 – Feb-2019 Mar-2019 – July-2021 

 
 

3.3 Project level regression models 

This section provides a comprehensive description of the statistical and machine learning 

algorithms explored for the purpose of forecasting the total person-hours required for 

construction engineers and inspectors in specific projects. The objective was to develop accurate 

and reliable models that can estimate the workforce needs for individual construction projects. 

Various statistical and machine learning techniques were considered in this study to 

identify the most effective approach for project level forecasting. These algorithms were selected 

based on their proven applicability in similar domains and their ability to handle regression 

problems, where the total person-hours serve as the target variable. 

The investigated algorithms encompass a range of methodologies, including linear 

regression, decision trees, random forests, support vector regression (SVR), and neural networks. 

Each algorithm offers distinct advantages and capabilities, and their suitability for the task at 

hand was evaluated based on their ability to capture the relationships between project attributes 

and total person-hours. 

By employing these algorithms, the aim was to develop forecasting models that can 

accurately predict the workforce requirements for construction projects. The insights gained from 
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these models will assist in resource planning, scheduling, and overall project management, 

enabling more efficient allocation of human resources and improved project outcomes. 

In the subsequent sections, the details of each algorithm, including their underlying 

principles, implementation strategies, and evaluation techniques are included. By 

comprehensively investigating these statistical and machine learning approaches, an attempt was 

made to identify the most effective model for project level forecasting of total person-hours for 

construction engineers and inspectors. 

3.3.1 Linear Regression   

Linear regression attempts to model the linear relationship between independent and 

target variables. While regression models with just one independent variable are referred to as 

simple linear regression, the ones that employ two or more independent variables are called 

multiple linear regression models. It is by far the most widely used prediction algorithm and is 

one of the few techniques that has been adopted in the forecast of person-hour requirements for 

transportation construction projects (Bell et al., 2003; Khali Persad & Varghese, 1995; Kim et 

al., 2016). Several variations of the linear regression have been developed to curb the limitations 

of the classic regression model (Hoerl & Kennard, 1970; Lukman et al., 2019; Swindel, 1976; 

Tibshirani, 1996). Three variations of these models were employed in addition to the classic 

ordinary least squared regression model. 

3.3.1.1 Ordinary Least Squared Regression 

This is one of the previously used methods for predicting employee person-hours for state 

transportation agencies (Bell et al., 2003; Khali Persad & Varghese, 1995; Kim et al., 2016). It 

estimates the relationship between independent variables and the target variable (person-hours) 

by minimizing the sum of the squares of differences between the variables. As a linear model, 
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one of its basic assumptions is the linear relationship between the independent variables and the 

target variable. One of the reasons why it is widely used and preferred is its interpretability and 

prediction accuracy. However, some tasks require less interpretability, and the emphasis lie more 

on the model's prediction strength, such as in the case of person-hour forecasting. A general 

representation of the model is shown in equation 3.1. Where 𝑦 represents the target variable, 𝑥" 

through 𝑥) represents the independent variables in the model and 𝛽* through 𝛽) represents the 

estimated coefficients for the model. 

𝑦 = 𝛽* + 𝛽"𝑥" + 𝛽#𝑥# + 𝛽)𝑥)…+ 𝜀 (3.1) 

Studies by (Khali Persad & Varghese, 1995; Kim et al., 2016) have shown a linear 

relationship between the log transformation of the project cost and the total person-hours. The 

transformation scales the data values, and hence, the same transformation can be employed for 

other machine learning models. A representation of the linear model is as shown in Equation 3.2, 

where 𝑥'!+ , 𝑥'"+ , … , 𝑥'#+ 	represents the indicator variables of project type 𝑡" through 𝑡,, for all 

observations 𝑗, 𝑥% 	represents the cost of the project, 𝑥( represents the year difference from the 

base year,	𝑦 represents the target variable (total person-hours for given project), 𝛽 also represents 

the coefficients of the respective variables. 

log	(𝑦+) = 𝛽* + 𝛽%log	(𝑥%+) + 𝛽'!𝑥'!+ + 𝛽'"𝑥'"+ +⋯+ 𝛽'#𝑥'#+ + 𝛽(𝑥(+ …+ 𝜀 (3.2) 

𝒚𝑻 = [log(𝑦") , log(𝑦#) , log(𝑦-) , … , log	(𝑦,)] 

𝑿 =	

⎣
⎢
⎢
⎢
⎡ 1, log=𝑥%,"> , 𝑥'!,", 𝑥'",", … , 𝑥'#,", 𝑥(,"
1, log=𝑥%,#> , 𝑥'!,#, 𝑥'",#, … , 𝑥'#,#, 𝑥(,#

⋮
1, log=𝑥%,$> , 𝑥'!,$, 𝑥'",$, … , 𝑥'#,$, 𝑥(,$⎦

⎥
⎥
⎥
⎤
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𝜷𝑻 = [𝛽*, 𝛽% , 𝛽'! , 𝛽'" , … , 𝛽'# , 𝛽(] 

𝒚 = 𝑿𝜷 + 𝜺 (3.3) 

Given that the estimated parameters are represented by 𝜷D and e refers to the residual vector of 

the model, 

𝒚 = 𝑿𝜷D + 𝒆 

F𝒆+# = 𝒆.𝒆 = =𝒚 − 𝑿𝜷D>
.
=𝒚 − 𝑿𝜷D> 

∂∑𝒆+#

∂𝜷D
= −2𝑿.𝒚 + 2𝑿.𝑿𝜷D 

𝑿.𝑿𝜷D = 𝑿.𝒚 

𝜷D = (𝑿.𝑿)/"𝑿.𝒚 (3.4) 

3.3.1.2 Lasso Regression 

Lasso regression, another variation of linear regression models, incorporates an additional 

element called L1 regularization. Unlike ordinary least squares regression, lasso regression 

includes a penalty term that shrinks the estimated coefficients towards zero. This regularization 

technique has been widely used to improve the accuracy and reliability of the classic linear 

regression method and has demonstrated effectiveness in specific problem domains (Tibshirani, 

1996). One notable advantage of lasso regression is its performance on small sample sizes, 

making it well-suited for datasets with limited observations (Tibshirani, 1996; Zou, 2006). In the 

context of the given problem, where the number of projects is relatively small, lasso regression 

holds promise. While several advanced techniques and improvements were proposed in recent 

years (Jarret et al., 2022; Yamada et al., 2014), the classic lasso regression technique was 

adopted for this study. Estimating the coefficient for lasso regression is shown in Equation 3.5. 
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𝜷D01223 = arg	min
4

P𝒚 − 𝑿𝜷DP
#
+ 𝝀R𝜷DR (3.5) 

Where 𝜆 is a non-negative parameter for regularization, the second term is the L1 

regularization, and other variables remain as previously defined. The lasso regulates the 

coefficients, allowing the possibility of ~0 value when such a feature is not important to the 

model.  

3.3.1.3 Ridge Regression 

The ridge regression is another variation of the classic linear regression model, having an 

L2 regularization incorporated into it. Like the lasso regression, the regularization term serves as 

a penalty function to the estimated coefficients, regulating its values. The ridge regression has an 

advantage regarding its computational cost, as it converges faster when its regularization 

parameter is utilized (Hoerl & Kennard, 1970). In addition, it has the benefit of handling 

multicollinearity better, penalizing inefficient coefficients and shrinking their value. Here, this 

approach might offer speed in terms of training time and better coefficient estimates.  

𝜷D56789 = arg	min
4

P𝒚 − 𝑿𝜷DP
#
+ 𝝀R𝜷DR

#
 (3.6) 

The 𝜆 in Equation 3.6 is the non-negative regularization parameter, and the second term, 

𝝀R𝜷DR
#
 is referred to as the L2 regularization.  

3.3.1.4 ElasticNet Regression 

The elastic net regression combines the power of both the lasso and ridge regression by 

incorporating the L1 and L2 regularization penalties into the existing linear model. It is mostly 

famous for its control on overfitting the data and helps reduce variance in the model while 

maintaining high predictive power (Zou & Hastie, 2005). It assumes a linear relationship 
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between the target and independent variables and fits the model by minimizing the penalized 

least squares objective function. Utilizing both regularizations into its model encourages sparsity 

in its coefficients, as some of its values could be reduced to ~0, hence, simulating feature 

selection in the model(Zou & Hastie, 2005). In addition, the L2 regularization helps improve the 

model's stability as it penalizes the model for large coefficients.  

𝐿=𝜆", 𝜆#, 𝜷D> = P𝑦 − 𝑋𝜷DP
#
+ 𝜆"P𝜷DP + 𝜆#P𝜷DP

#
 

𝜷D3)' = arg	min
4

V𝐿=𝜆", 𝜆#, 𝜷D>W (3.7) 

As seen in Equation 3.7, both L1 and L2 are combined into the linear model. The ability 

of the model to adapt to nonlinearity is another advantage it offers to the problem set (Wei et al., 

2019). It explores possible nonlinear relationships within the independent cost and project type 

variables with the target variable of person-hours for projects. 

3.3.2 Tree Ensemble Models 

Tree ensemble models refer to ensemble models that utilize decision trees as their base 

learners. Ensembles, in general, are a collection of predictive models that are combined to 

provide a single prediction (Kocev et al., 2013). Past studies have demonstrated the superiority 

of tree ensemble models amongst machine learning models for prediction (Breiman, 2001; 

Hastie et al., n.d.; Murphy, 2012). These models leverage the power of decision trees and their 

ability to capture complex relationships between variables. 

The essence of tree ensemble models lies in combining the predictions of multiple 

decision trees. By aggregating the predictions, the ensemble model aims to reduce variance and 

improve overall accuracy beyond what each individual tree could achieve. This is achieved 

through a combination of techniques known as "bagging" and "boosting" (Oza & Russell, 2001). 
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Bagging, short for bootstrap aggregating, involves the creation of multiple bootstrap 

training sets by resampling the original training data. Each bootstrap sample is then used to train 

an individual decision tree, collectively forming the ensemble (Bbeiman, 1996). By generating 

diverse training sets through resampling, bagging reduces overfitting and enhances the model's 

generalization ability. Conversely, boosting is more involved and generates a series of base 

models learned from a weighted training set using decision trees. The models' weights are 

determined by the error of the preceding model (Freund & Schapire, 1997). Boosting aims to 

build a strong ensemble by sequentially improving upon the weaknesses of each base learner. 

3.3.2.1 Random Forest 

The random forest is a classic type of tree ensemble. In this model, diversity in the 

predictors uses bootstrap replicates similar to bagging and changing the set of descriptive 

attributes while learning (Breiman, 2001). The bootstrap samples are obtained through the 

random sampling of the training dataset (with replacement) until there is an equal number of 

samplings contained in the training set. For each node of the decision tree built using the 

bootstrap replicates, a random subset of the descriptive attributes is extracted, and the best 

attributes are selected from the subset (Breiman, 2001). This technique is a powerful one for 

predicting person-hour requirements as several decision trees are based on the attributes of the 

project.  
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Figure 2: Illustration of the Random Forest Tree Ensemble 

A random forest of ensemble n trees {𝑇"(𝑿), 𝑇#(𝑿), 𝑇-(𝑿)… , 𝑇,(𝑿)}, where 𝑿 are 

vectors of bootstrap sample replicates from the training set. Ensemble output produces 𝑛 outputs 

{𝑦\" = 𝑇"(𝑿), …	𝑦\, = 𝑇,(𝑿)}. The final prediction of the random forest model is the average of 

the predictions 𝑦\ = "
,
∑ 𝑦\6,
6:" . In the context of forecasting total person-hour requirements for 

construction engineers and inspectors, the random forest algorithm is deemed valuable due to its 

ability to capture complex relationships between project attributes and the target variable. By 

leveraging the collective knowledge of an ensemble of decision trees, the random forest holds 

promise in delivering accurate and reliable predictions. 

3.3.2.2 Gradient Boosting 

The gradient boosting technique uses ensemble decision trees and is famous for 

classification and regression problems. Distinguished from the random forest's utilization of 

bagging, gradient boosting leverages the boosting technique to construct an ensemble of decision 

trees. This iterative process involves sequentially incorporating weak learners into the base 

learner, with each subsequent learner trained to rectify the errors made by its predecessors 

(Freund & Schapire, 1997; Friedman Jerome H., 2001). By minimizing the loss function with 
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gradient descent and taking advantage of the collaborative effort of the weak learners, gradient 

boosting creates an ensemble of models with superior predictive performance. This has proven to 

be effective, and they offer the additional advantage of being interpretable (Friedman Jerome H., 

2001). 

Given the problem set as, 

𝒚 = 𝐺"(𝑿) + 𝒆" (3.8) 

Where 𝒚 is the target variable, 𝑿 is the vector of the independent variables, and 𝐺"(𝑿) is 

a weak learner unable to capture the relationship between 𝑿 and 𝒚 fully. This implies that the 

residual error, 𝒆", will have some correlation with the target variable, 𝒚. 

𝒆" = 𝒚 − 𝐺"(𝑿) 

𝒆" = ℎ"(𝑿) + 𝒆# 

Where ℎ"(𝑿) is another weak learner. The ensemble of the two weak learners would 

yield an estimate of, 

𝒚_ = 𝐺#(𝑿) = 𝐺"(𝑿) + ℎ"(𝑿) + 𝒆# (3.9) 

Combining several weak learners over n iterations:  

𝐺,(𝑿) = 𝐺,/"(𝑿) + ℎ,/"(𝑿) (3.10) 

The weak learner ℎ,/"(𝑿) can be any model, such as linear regression, neural networks, 

or decision trees. The tree-based model is the most common learner adopted (Zhang et al., 2019) 

and used in this study. The model attempts to minimize the residual error given by the loss 

function 𝐿(𝒚, 𝒚_), and this function is minimized by the gradient descent technique to estimate the 

optimal parameters. 
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The gradient descent helps to find the minimum of a function and is a first-order iterative 

optimization algorithm (Freund & Schapire, 1997; Ruder, 2016). While the conventional 

approach for gradient descent is to estimate the gradient with respect to the parameters of the 

model, the gradient boosting calculates the gradient with respect to the predicted value 

(Friedman Jerome H., 2001; Zhang et al., 2019). 

In the context of this study, the application of gradient boosting holds significant promise 

in forecasting the total person-hour requirements for construction engineers and inspectors. By 

harnessing the power of ensemble learning and leveraging the strengths of weak learners, 

gradient boosting presents a robust and interpretable approach to accurately predict workforce 

demands for transportation construction projects. 

Table 2: Gradient boosting pseudocode 

Pseudocode  

Initialize the model 𝐺*(𝑿) =
∑𝒚
𝑛  

Estimate the gradient 𝑔𝑟𝑎𝑑, = d
∂𝐿[𝒚, 𝐺,/"(𝑿)]
∂𝐺,/"(𝑿)

e 

Fit weak learners to residuals 𝛾, =
ℎ,(𝑿) ∙ [𝒚 − 𝐺,/"(𝑿)]

ℎ,(𝑿)#
 

Update model 𝐺,(𝑿) = 𝐺,/"(𝑿) + 𝛾, ∙ ℎ$(𝑿) 

3.3.2.3 Catboost regression 

The catboost regression is an ordered boosting algorithm designed to solve the overfitting 

problem of boosting algorithms. In ordered boosting, the ensemble trains a model for estimating 

the residual error from limited data and makes predictions based on the entire data with the 

ensemble. Furthermore, random permutation is added to the ordered boosting, which helps it 

overcome overfitting issues. The training speed of the algorithm is improved via feature 
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combinations where groups of variables with the same information gain are combined in a group. 

In addition, the catboost algorithm requires minimal parameter tuning for maximum performance 

in terms of prediction accuracy (Prokhorenkova et al., 2017). The original model proposed has 

two modes: plain and ordered. The plain mode implements the regular gradient boosting, while 

the ordered mode takes advantage of the ordered boosting proposed. The categorical variable for 

implementing the catboost regression needs not to be encoded as it was developed based on 

categorical features. 

In the context of this study, the categorical variables used in the CatBoost regression do 

not require explicit encoding. The algorithm incorporates categorical features natively, allowing 

the input vector to represent these features as a single variable (Prokhorenkova et al., 2017). The 

encoding of categorical variables is described in Equations 3.11 and 3.12, which facilitate the 

utilization of CatBoost regression for forecasting total person-hour requirements.  

𝒚𝑻 = [log(𝑦") , log(𝑦#) , log(𝑦-) , … , log	(𝑦,] (3.11) 

𝑿 =	

⎣
⎢
⎢
⎢
⎡ 1, log=𝑥%,"> , 𝑥',", 𝑥(,"
1, log=𝑥%,#> , 𝑥',#, 𝑥(,#

⋮
1, log=𝑥%,$> , 𝑥',$, 𝑥(,$⎦

⎥
⎥
⎥
⎤
 (3.12) 

Where 𝑥' is a categorical encoded feature referring to different project types, and other notations 

remain as previously defined. 

By leveraging the strengths of ordered boosting, random permutation, feature 

combinations, and automatic handling of categorical features, CatBoost regression offers a 

specialized and effective approach for predicting workforce demands in transportation 

construction projects. Its ability to address overfitting, enhance training speed, and handle 
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categorical variables seamlessly makes it a valuable addition to the ensemble of models 

employed in this study. 

3.3.3 Support Vector Regression 

Support Vector Regression (SVR) is a powerful algorithm that builds upon the principles 

of Support Vector Machines (SVM) to address regression problems. SVMs are renowned for 

their effectiveness in both linear and nonlinear classification tasks, and SVR extends this 

capability to predict continuous target variables (Drucker et al., 1996). Its main working 

principle is to find an optimal hyperplane which best fits the training data while maximizing the 

margin around the predicted values. The model aims to identify a regression hyperplane that 

closely matches the training instances, known as support vectors, while simultaneously 

minimizing the prediction error and maintaining a balance between a narrow margin and 

tolerance for deviations from the actual values. SVR formulates the problem as a convex 

optimization task and maximizes the margin with minimum tolerance for deviations from actual 

values. Regularization parameters are incorporated into the SVR to keep the tolerance under 

control and allow users control over the parameters to strike a balance between underfitting and 

overfitting the model (Drucker et al., 1996; Smola et al., 2004). This regularization helps prevent 

over-reliance on specific training instances and promotes generalization to unseen data. 

Furthermore, SVR has the capability of addressing nonlinear relationships by employing 

the use of kernel functions. The functions transform the original space into higher dimensional 

space allowing the SVR to capture more intricate patterns and integrate nonlinear boundaries 

into the model. Some kernel functions include polynomial, sigmoid, or radial basis functions 

(RBF) (Hofmann et al., 2008; Smola et al., 2004). Its versatility makes it valuable in several 

domains, including finance, environment, traffic forecasting, economics, and clinical research, 
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where precise and reliable regression predictions are essential (Alwee et al., 2013; Drucker et al., 

1996; Hong et al., 2011; Law & Shawe-Taylor, 2017; Simian et al., 2020). The data modification 

established for the linear models formulation was maintained for the SVR as it attempts to 

predict the person-hours required to complete given projects. 

Given 𝒚 = 𝑓(𝑿) = 〈𝒘 ∙ 𝑿〉 + 𝑏, 

Minimize "
#
‖𝒘‖# 

Subject to d𝒚 −
〈𝒘 ∙ 𝑿〉 − 𝑏 ≤ 𝜀

〈𝒘 ∙ 𝑿〉 + 𝒃 − 𝒚 ≤ 𝜀 

Where 𝒘 is the weight vector and 𝑏 is the bias term. 

3.3.6 Decision Trees 

Decision trees are very widely used and one of the most popular machine learning 

techniques for regression problems. They have also served as the base learner in some of the 

previously described models. The decision trees partition the feature space based on the values of 

input features, creating a hierarchical structure that resembles a tree (Breiman et al., 1984). Every 

internal node of the "tree" represents a decision based on a specific feature, while the end nodes, 

called "leaf" nodes, are the predicted continuous values. They provide an intuitive and 

interpretable representation of the decision-making process, making them popular for 

understanding the relationships between the independent and target variables in regression 

problems. 

Decision trees are suitable for tasks that involve both categorical and numerical features. 

In addition, they can capture nonlinear relationships and interactions within the variables, 

making it possible to model complex regression patterns (Murphy, 2012). The trees are also 

robust to outliers and can work well in missing data, as it simply makes decisions based on the 

available features (Rokach & Maimon, 2007). While they may be susceptible to overfitting when 
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the trees are more extensive than is required, techniques such as pruning and restricting the tree 

size and complexity help to curb this in the machine learning technique (Quinlan, 1986).  

Decision tree classifiers work by finding a feature split that reduces the impurities in the 

child nodes the most. For classification problems, this is defined by the Gini impurity or entropy. 

However, for regression problems, such as in the case of the prediction of person-hours, the 

mean squared error is used to define the impurity at each feature split (Sebastian Raschka & 

Vahid Mirjalili, 2019). This is defined as: 

𝐼(𝑡) = 𝑀𝑆𝐸(𝑡) =
1
𝑁'
F(𝒚' − 𝒚_')#
6∈<$

 (3.13) 

 
Where 𝑁' , 𝐷' , 𝑦'_  refers to the number of training observations, all training subsets and the 

predicted value at node t. 

3.3.7 Neural Networks 

Artificial neural networks (ANN) are some of the most widely used machine learning 

methods with several real-world applications. They are the heart of deep learning algorithms, 

which have taken the forefront in several research areas, from recommendation algorithms and 

self-driving cars to language translations and developing novel drugs for the treatment of 

diseases (Babu Naik et al., 2022; Tsuji et al., 2021; Uszkoreit, 2017). Basic artificial neural 

networks are built upon the hypotheses and models of how the human brain works and processes 

complex information (Sebastian Raschka & Vahid Mirjalili, 2019). They consist of 

interconnected nodes, which are called neurons and are organized in layers. A typical neural 

network comprises at least three layers: the input layer, one or more hidden layers, and an output 

layer. They excel at learning intricate patterns and relationships within data, and their strength 

lies in their capability to process raw data with minimal manual feature engineering. 
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There are various approaches to which ANNs are trained where weights are adjusted 

based on the data passed through the network. In order to introduce nonlinearity into the 

network, activation functions are used in the networks, giving ANNs the ability to capture and 

process nonlinear relationships within the data. Beginning from the input layer, the training 

dataset propagates through the network generating an output in a process called "forward 

propagation." The network weights are adjusted to minimize a predefined loss function through 

an optimization algorithm such as stochastic gradient descent in a process known as 

backpropagation.  

Given an input matrix of 𝐴(6,), ∅ is the activation function, the hidden layer is estimated as, 

𝑨(?) = ∅(𝑨(6,)𝑾(?)) 

Each additional hidden layer serves as an input to the next layer. The final output layer is 

estimated as follows: 

𝑨(3@') = ∅(𝑨(?)𝑾(3@')) 

The activation function employed in this study is the reLu activation. 

𝑟𝑒𝐿𝑈 = 𝑓(𝑥) = 𝑚𝑎𝑥{0, 𝑥} 

Depending on the number of hidden layers, neural networks can be "shallow" or "deep." 

While shallow neural networks have only one hidden layer, deep neural networks have multiple 

hidden layers and require a larger amount of data (Goodfellow et al., 2016). In this study, 

different neural network architectures were experimented with, and the best results were 

obtained using an ensemble of two deep neural networks combined with XGBoost. This finding 

is consistent with previous research, which has shown that ensemble deep learning models tend 

to outperform individual deep learning models with tabular dataset (Shwartz-Ziv & Armon, 

2022).  
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The first model is a deep neural network of six hidden layers, each with an activation 

function of reLu. The number of neurons on the first hidden layer is 32, while the remaining five 

layers have 64 neurons each. The second model has two hidden layers with 32 neuron and 64-

neuron layers. The XGBoost model used to combine the predictions was a simple model with a 

maximum depth of 3 and learning rate of 0.01. An illustration of the architecture is as shown in 

Figure 3. 

 
Figure 3: Ensemble Neural Networks layer architecture 

3.4 Agency level forecasting models 

This section provides a comprehensive description of the Box-Jenkins ARIMA, Long 

Short-Term Memory (LSTM), and 1-D Convolutional Neural Network (CNN) algorithms, 

specifically applied to forecast monthly person-hours as a univariate time series. The focus of 

this analysis is on selecting the most suitable techniques to accurately predict future values based 

on historical data. 
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3.4.1 Autoregressive Integrated Moving Average (ARIMA) 

The ARIMA model has been the default model for solving time series forecasting 

problems for several decades (S. L. Ho et al., 2002). It is a statistical model and a generalization 

of autoregressive (AR) and moving average (MA) models. The AR part of the model forecasts 

the future based on historical values, while the MA uses the errors from previous predictions. 

The application of the model typically involves the Box-Jenkins (Box & Jenkins, 1976) method, 

which includes identification of the order of the model, estimation of the parameters of the 

model, diagnostic checking of the model and finally, forecasting of future values (Hyndman & 

Athanasopoulos, 2018b). The order of the model can be denoted as ARIMA (𝑝, 𝑑, 𝑞) where p, d, 

q, refers to the orders of the autoregressive, differencing and moving average polynomials 

respectively. When accounting for seasonality, the order becomes denoted as ARIMA 

(𝑝, 𝑑, 𝑞)(𝑃, 𝐷, 𝑄) where P, D, Q represents the seasonalcomponent of the orders.  

One of the conditions for using the ARIMA model is the need for stationarity in the time 

series data. This could be inspected visually and tested using the Augmented Dickey-Fuller 

(ADF) test (Dickey & Fuller, 1979) to determine if the time series data is indeed stationary. 

Adfuller test carried out on the data and its visual observation reveals that it is nonstationary, at a 

p-value of 0.727. Therefore, the data had to be transformed to achieve stationarity. Differencing 

is a commonly used technique to address nonstationarity in time series data, involving the 

subtraction of successive time periods in the series. Multiple differencing operations can be 

performed until stationarity is achieved. In our analysis, first differencing was sufficient to 

achieve stationarity for the monthly person-hour data. Figure 4 displays a plot of the differenced 

series, clearly showing a constant mean across the series. The ADF test conducted on the 

differenced series confirmed stationarity with a p-value of approximately 0.  
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Figure 4: First differencing of monthly person-hours between 2013 and 2021 

Determining the orders of the model could be done in a variety of ways, and a stepwise 

search using the Akaike information criterion (AIC) was used to select the model for the problem 

at hand. The most appropriate model was established to be one of order ARIMA(2,1,2)(1,0,1)12. 

The paramters for the model were estimated using the training data and are included in the 

appendix. The seasonal decomposition of the model can also be seen in Figure 5. 

 
Figure 5: Decomposition of the time series 
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3.4.2 Long Short-Term Memory  

Long short-term memory (LSTM) neural networks are a type of recurrent neural network 

(RNN) that is widely used in the field of deep learning (Cho et al., 2014; Hochreiter & 

Schmidhuber, 1997). They have been specially designed to address the limitations of traditional 

RNNs by capturing long-term dependencies in sequential data. This is achieved through memory 

cells and gating mechanisms that enable the network to retain and selectively update information 

over a long period. The critical feature of LSTMs is their ability to learn when to forget or 

remember specific information, making them supper effective for time series prediction. The 

architecture of the LSTM network consists of interconnected memory cells, each with an input, 

forget and output gate. The gates control the flow of information and allow the flow of 

information while filtering out noise and irrelevant inputs. The input gate decides the part of the 

information to be added while the forget gate selectively discards information (Gers et al., 2000). 

The forget gate, 𝑓', input gate, 𝑖', and output gate, 𝑜', are as estimated in the equations below 

(Sebastian Raschka & Vahid Mirjalili, 2019). 

𝒇' = 𝜎=𝑾AB𝒙(') +𝑾?B𝒉('/") + 𝒃B> 

𝒊' = 𝜎=𝑾A6𝒙(') +𝑊?6𝒉('/") + 𝒃6> 

𝒐6 = 𝜎=𝑾A3𝑥(') +𝑾?3𝒉('/") + 𝒃3> 

The combination of the gates and memory cells helps the LSTM overcome the vanishing 

(exploding) gradient problem known to plague the traditional RNNs (Hochreiter & Schmidhuber, 

1997). Other methods of solving this problem include gradient clipping and truncated 

backpropagation through time (TBPTT); however, the LSTM has proved superior to these other 

methods (Sebastian Raschka & Vahid Mirjalili, 2019). LSTM has demonstrated astonishing 

performance in a wide range of real-world applications, making them an excellent tool for 



32 
 

modeling complex sequential data like time series data (Chen et al., 2015; Urgen Schmidhuber et 

al., n.d.; Yunpeng et al., 2017). They excel at learning and utilizing seasonality information over 

time, which is advantageous for forecasting tasks. Moreover, LSTMs are robust enough to 

handle noisy data, a common characteristic of time series data. 

 
Figure 6: LSTM neuron 

Several parameters of the LSTM architecture were experimented with, and the best-

performing network was observed to have four hidden layers. A single layer with 32 LSTM 

neurons yielded optimal results, as increasing the number of LSTM neurons only increased 

network size and required more iterations to converge. The remaining three hidden layers were 

fully connected layers with regular neurons, each activated with the rectified linear unit (ReLU) 

function, and comprised 64, 32, and 16 neurons, respectively. Figure 7 provides an illustration of 

the LSTM network architecture. Notably, this network consistently produced the best fit for the 

time series data, irrespective of the forecast range. 



33 
 

 
Figure 7: LSTM Architecture for time series forecasting 

3.4.3 One-dimension Convolutional Neural Networks (1-D CNN) 

Convolutional Neural Networks (CNN) are renowned for their image-processing 

capabilities. Initially inspired by the operation of the cortex of the human brain in recognizing 

objects, they have been widely successful in computer vision (Fukushima, 1980; Hubel & 

Wiesel, 1959; Sebastian Raschka & Vahid Mirjalili, 2019). Its one-dimensional form, however, 

has gained significant attention in recent years due to its effectiveness in processing sequential 

data. Some of its applications are in audio signals (Mustaqeem & Kwon, 2019), natural language 

processing (Xiang & Song, 2020) and time series (B. Zhao et al., 2017) related tasks. A typical 

CNN model consists of convolutional and related layers, as well as fully connected MLP 

(Multilayer Perceptron) layers. The convolutional layers extract essential features from the raw 

input data, which are then fed into the MLP layers for classification or regression.. 
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The complete neural network architecture starts with the input layer. This layer contains 

𝑁 × 𝑘 neurons, where 𝑘 refers to the number of features and 𝑁, the input length fed into the 

network at each instance. 𝑘 assumes the value of 1 for a univariate time series, leaving the input 

layer with a total 𝑁 neurons. The input layer is directly connected to the convolutional layer. 

This layer performs convolution operations with filters of predefined size,	𝑙. Other parameters 

required for the convolution include the stride, 𝑠, which refers to the number of units through 

which the filter slides over the layers, and the padding, 𝑑, which helps to control the size of the 

output layer from the convolution operation. The output neurons after each convolution can be 

estimated by equation 3.14. The output of the convolution operation is passed to the pooling 

layer, which down samples the convolutional layer. The pooling layer reduces the extracted 

feature's dimensionality and helps maintain only the most essential details in the network. This is 

usually achieved by estimating the average of the neurons or selecting the maximum value 

within sets of neurons. Typical CNN architectures are made of several convolutional and pooling 

layers. The final output from these layers is consolidated into a feature layer that the fully 

connected MLP can easily process. 

𝑛3@' = �
𝑛6, + 2𝑝 − 𝑙

𝑠 � + 1 (3.14) 

The MLP layers are regular neural networks receiving their input from the feature layer 

of the convolutional network. Like several deep learning architectures, it can have several hidden 

layers with varying activation functions before finally being connected to the output layer that 

gives the final prediction. 

Several experimentations were carried out with the 1-D CNN, and the best-performing 

network is shown in Figure 8. As illustrated, two sets of convolutional layers were included with 

pooling layers before the result is fed into the fully connected layers of neural networks. The 
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convolutional layers were made up of 1-dimension 128 neurons and 64 neurons, respectively. 

The fully connected layers following this was a single layer of 100 neurons with an activation 

function of reLu which was connected to a linear output of a single neuron. 

 

Figure 8: 1-D CNN model architecture for time series forecasting 

3.5 K-Fold cross-validation 

This technique was used for the project level model as the agency level data are 

sequential. The machine learning regression models employ the K-fold technique which ensures 

the model generalizes and does not just perform well on just one test set. The K-fold technique 

works by portioning the data into K folds, training the model on "K minus one" folds of the 

entire dataset and testing the remaining single fold. This is repeated K times with a different set 

used as the test set at each instance. The final performance of the model is the average score 

across the K folds. The choice of K usually depends on the dataset size and computational 

resources available. Popular values of 5 or 10 are usually used, and a value of 10 folds was 
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employed for this study, given the dataset size. A choice value of 10 also ensures enough output 

samples for hypothesis tests.  

 

Figure 9: 10-Fold cross-validation train/test set 

3.6 Hyperparameters Tuning 

Hyperparameter tuning plays an essential role in evaluating the machine learning models 

utilized. It involves searching for optimal values for the hyperparameters used in each model. 

Unlike model parameters, which are learned from the data during training, hyperparameters are 

predefined settings that affect the model's behavior. Common examples of these parameters are 

the learning rate, regularization parameters, number of trees in tree-based models and many 

more. Several techniques are used for tuning parameters ranging from the manual tuning of the 

parameters based on previous literature to automated techniques via search algorithms. The 

Bayesian optimization, which is efficient, especially when the search space is large, and complex 

is one of the methods used for tuning. Other optimization techniques for selecting 

hyperparameters, such as grid search and random search methods were also considered where the 



37 
 

Bayesian optimization might not be favorable. These methods explore the parameter space in a 

brute-force approach which can be limited in its searches. The best parameters for the models 

were considered regardless of the tuning approach and the search space and best tuning methods 

for each model is as detailed in the appendix. 

Additionally, to ensure unbiased evaluation during testing using the K-Fold method, a 

random selection process was employed to determine the project used as the validation set for 

tuning project level models, while training set of the agency data was further split into train-

validate set using 20% of the later dates for validation. Careful selection of the validation set 

helped minimize bias during model testing and ensures a fair assessment of their performance. 

3.7 Accuracy Metrics 

This study considers five metrics for evaluating the accuracy of the models compared. 

These metrics include the Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), 

Median Absolute Percentage Error (MAPE), Max Error (ME) and goodness of fit (R2). 

3.7.1 Root Mean Squared Error (RMSE) 

This is one of the widely used metrics for regression models. It is estimated as the square 

root of the average squared difference between actual target values and estimated values. RMSE 

assigns more weight to more significant errors making it sensitive to outliers in evaluating 

regression models. It is estimated by taking the square root of the sum of the square of the 

residuals of each estimation divided by the total number of observations. 

𝑅𝑀𝑆𝐸 = �1
𝑁F

(𝒚 − 𝒚_)# 
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3.7.2 Mean Absolute Error (MAE) 

The mean absolute error estimates the average absolute difference between the actual 

target values and the estimated value from regression models. Unlike the root mean squared 

error, this metric is less sensitive to outliers. It is obtained by summing the absolute residuals and 

dividing the resulting sum by the number of observations. 

𝑀𝐴𝐸 =
1
𝑁F

|𝒚 − 𝒚_| 

3.7.3 Median Absolute Percentage Error (MAPE) 

This is predominantly used for forecasting models. It measures the median percentage 

difference between the forecasted value and the actual value with respect to the actual value of 

such measurement. This form of metrics is resistant to outliers and provides a percentage-based 

value, making it relatively easier to read and interpret. It is calculated by taking the median of 

absolute percentage errors. 

𝑀𝐴𝑃𝐸 = 𝑀𝑒𝑑𝑖𝑎𝑛 d�
𝑦\ − 𝑦
𝑦 �e 

3.7.4 Goodness of fit (R2) 

The model's goodness of fit is measured by the coefficient of determination (R2), and it 

assesses the proportion of the variance in the dependent variable, which is explained by the 

independent variables in a regression model. The possible values for the coefficient of 

determination range between 0 and 1, where 0 indicates a model poorly explains the variance, 

and 1 shows a model that is a perfect fit. R2 is estimated by comparing the sum of squares of 

residuals to the total sum of squares. 

𝑅# = 1 −
𝑆𝑆𝑅
𝑆𝑆𝑇 
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𝑆𝑆𝑅 =F(𝒚 − 𝒚_)# 

𝑆𝑆𝑇 =F(𝒚 − 𝒚�)# 

3.8 Hypothesis Testing 

In this study, hypothesis testing was conducted to compare the performance of machine 

learning algorithms. Non-parametric tests were used to test the project-level machine learning 

models as demonstrated in past studies (García et al., 2010; Khadse et al., 2020; Luengo et al., 

2009; Trawinski et al., 2012). Although a high number of samples could validate the use of 

parametric tests due to central limit theory, the samples for project-level models with a k-fold of 

10 prediction samples would not meet such requirements. Friedmann's test was therefore 

conducted on the output to test the significance difference across the models used. The agency-

level forecasting has a significant number of outputs to satisfy the central limit theory; hence, 

parametric testing was considered for testing its results.  

3.9 GPU implementation 

The total run time of the model training and prediction depends on the computation 

machine's performance. All models were trained using the same computer with a consistent 

configuration. Training of deep learning models took advantage of parallel computing by 

enabling libraries such as PyTorch. NVIDIA GeForce GTX 1660 SUPER with 6.0GB dedicated 

GPU memory and 16.0GB shared GPU memory. The computer processor is an Intel Core i7-

10700K running at 3.80GHz with 32.0 GB memory.  



40 
 

Chapter 4. Results and Discussion 

4.1 Project-level forecasts 

 

Figure 10: Mean Squared Error of machine learning algorithms 

4.1.1 Accuracy 

Figures 10 to 14 show the boxplot depicting the performance metrics of the various 

models in term of prediction accuracy. Each metric is unique and focuses on various strengths of 

the model. Friedman tests show statistical significance differences in the performance of all 

models at the 95% significance level. This indicates that at least one of the models performed 

significantly better or worse than some of the other models. 

The linear models’ performance are comparable, with each model showing similar 

variance and accuracy across the metrics. The ordinary least squared regression shows some 

outlier errors, which was not observed in the other modelsand can be attributed to the presence of 



41 
 

the regularization parameters in the models. Further investigation into these error predictions 

indicate its occurrence across models with low representation in the dataset.  

 

Figure 11: Maximum Error of Machine Learning Algorithms 

The tree ensemble models performed best with the random forest model, exceeding every 

other model across all accuracy metrics. In addition, the variance in its accuracy is relatively 

small compared to other models, showing stability in its performance. The R-squared value 

achieved by the random forest model (0.91) exceeds all other models and those established with 

regression methods in previous studies (Khali Persad & Varghese, 1995).  

Single deep learning models and shallow neural networks performed poorly on this 

tabular dataset. However, the ensemble model of multiple deep neural networks proved effective, 

as presented by (Shwartz-Ziv & Armon, 2022). Attempts to increase accuracy by adding more 

deep-learning models to the ensemble yielded only a marginal result, leaving the ensemble 
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model with two neural networks as the best performing ensemble. Across the accuracy metrics, it 

can also be seen to achieve the second-best result with a mean R squared of 0.80. 

 

Figure 12: Mean Absolute Error Across Machine Learning Models 

Regarding hyperparameter tuning, a combination of automated tuning methods, such as 

grid search and Bayesian optimization, was used. Interestingly, some parameters optimized 

through grid search outperformed those optimized using Bayesian optimization, contrary to 

previous studies. The best-performing parameters were selected regardless of the tuning method. 

For more detailed information on the hyperparameters and parameter search space, you can refer 

to the Appendix, which provides additional information on the range of parameters used for 

tuning. 
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Figure 13: Mean Absolute Percentage Error Across Machine Learning Models 

 

Figure 14: Goodness of Fit across Machine Learning Models 
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4.1.2 Model training time 

Results for the modeling time of the models are shown in Figure 15. As expected, the 

time taken for the ensemble neural network models to model the data is significantly higher than 

that for the other models. This is due to the processes involved in training a neural network, 

having to go through multiple iterations of forward and backward propagation over the entire 

dataset. The other models are comparable in terms of the time required for training the models. 

On average, the linear models can be seen to perform significantly better than the other models. 

This might be due to the simple technique involved in their mode of operation, especially when 

compared to other models like tree ensembles which relies on training multiple decision trees in 

its algorithm. 

 

Figure 15: Training Time Across All Models 
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4.1.3 Prediction Time 

The prediction time for the ensemble neural networks takes significantly longer time for 

its output. While some other machine learning models are ensembles themselves, the neural 

network takes significantly higher time due to the size of the models involved. On average, the 

next model with a high prediction time is the random forest model, which is also an ensemble 

model. This could explain why it takes more time to generate a prediction, as all the ensemble 

trees need to generate their predictions first. However, with a prediction time of about 0.012 sec 

for predicting 10% of the total dataset projects, its superior accuracy made it more desirable 

regardless of its comparatively slow prediction time.  

 

Figure 16: Prediction Time Across All Models 
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4.2 Agency level 

In the agency level forecast analysis, multiple runs of neural network-based models were 

conducted to generate forecasts. These runs produced varying results due to randomizations 

present in the models' operations, even when given the same input. To ensure statistical 

significance in comparing the models, fifty model runs were performed for each model, 

providing enough samples for parametric test comparisons. While non-parametric tests are 

suitable for comparing machine learning models, parametric tests would be sufficient when there 

are enough samples due to the central limit theory (Trawinski et al., 2012). Each model was 

tested based on their forecasting accuracy over a short-range period of 1 year and a longer-range 

period of 2.5 years. Two sample t-tests show significant differences between the model output of 

the LSTM and 1-D CNN at the 99% confidence level. 

4.2.1 ARIMA 

The ARIMA model yields a consistent result, hence, does not require multiple runs for its 

predictions. The trend in the short-range forecasting was impressive and captured the variability 

through the 1-year period. Its average MAE was 3,885 person-hours, which, compared to the 

average monthly person-hour requirements, yields about 4.98% error. Also, regarding the RMSE 

metric, its error is about 6.45%, which indicates that the predictions are consistent with little 

outlier predictions, which would have given rise to a much higher RMSE score. However, 

compared to its long-range prediction, the ARIMA does not perform as much. It fails to capture 

the variability of the actual forecasts beyond a certain threshold, as seen in Figure 22. This might 

be due to the limitations of the traditional models, as the longer-range forecast involved making 

predictions based on fewer data points with the train-test ratio for the long-range forecast being 

2.5 to 1. As the forecast timeline extended, the model tended to produce constant predictions 
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over time. The MAE for the error in long-range forecasting was larger compared to the short-

range forecast, reflecting the greater extent of the forecast and the challenges faced by the 

ARIMA model in capturing long-term variability. 

 
Figure 17: Short-range average accuracy metrics 

 
Figure 18: Long-range average accuracy metrics 
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4.2.2 LSTM 

The LSTM model result predictions resulted in the highest error in terms of accuracy. 

The prediction graph shows significant variability as it attempts to forecast varying results for 

each time point. The high variance depicted in the distribution of the forecasting error of the 

model (Figure 19 & 20) indicates it is less stable for forecasting. The average MAE shows 

5.57%, while the RMSE gives an error of 7.03% over the short-range forecasting error.  

Similar to the other models, the accuracy metrics for the short-range forecasting were 

better when compared to the longer-range forecasting. Also, regarding the variability of the 

results, a similar variance was recorded across both forecasting ranges. This might be a result of 

the best-performing model architecture for both ranges being similar, with the short-range model 

having an additional hidden layer in its fully connected layer architecture. 

 
Figure 19: Box plot for short-range forecasting error 

4.2.3 1-D CNN 

The 1-D CNN model demonstrated the best performance among the models, with 

minimal variance in its predictions as shown in Figures 20 and 21. Short- and long-range 
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forecasting accuracy measures were less than 5% for the MAE metrics, with values of 4.60% and 

4.87%, respectively. Regarding the RMSE metrics, its forecasting error was 5.85% and 6.39% 

over short-range and long-range, respectively. 

The low standard variation of the model's accuracy, at 124.41 person-hours, indicates that 

the predictions were consistently close to the actual values. The coefficient of variation, 

calculated as the ratio of the standard deviation to the mean, was 0.0016, indicating a very low 

level of variability in the model's accuracy. 

Compared to the LSTM model, the 1-D CNN model had a different architecture and 

input configuration. The 1-D CNN model utilized double the input for prediction in its optimized 

model, which may have contributed to its better stability. Additionally, the ability of CNN 

models to detect patterns and serve as feature engineers likely played a significant role in its 

success in accurately forecasting the monthly person-hour requirements. 

 
Figure 20: Boxplot showing long-range forecasting error 
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Figure 21: Short-range forecasting error comparison 

 
Figure 22: Long-range forecasting error comparison  



51 
 

Chapter 5. Conclusion 

Summary 

This thesis compared the performance of machine learning models and classic statistical 

methods in forecasting the level of workforce at the project and agency level. The goal of the 

thesis is to provide stronger forecasting alternatives for engineers and planners at STAs for their 

planned projects. To fulfill this objective, data from ARDOT, a STA case study containing 

information about the employee person-hour details and project details were utilized in building 

forecasting models for the project-level and agency-level forecasting.  

5.1 Project-level  

This study developed selected machine learning models to compare their performance 

across various metrics to forecast person-hour requirements in transportation projects at the 

project level. Ten Models were developed, which include the ordinary least square regression, 

Lasso regression, Ridge regression, Random Forest regressor, Support Vector Regressor, 

Gradient Boost Regressor, Catboot Regressor, Decision Tree regressor and an ensemble deep 

neural network. Each model uses project attributes such as the project type, cost, and year to 

predict the total person-hours that would complete such project. Ten-fold cross-validation was 

conducted to assess the performance of the model's accuracy, training time and prediction time.  

The random forest regressor, a tree ensemble model, outperforms the other models with 

an average MAPE of 4.75% and R squared value of 0.91 due to its superior modeling capability 

of learning important features to forecast the person-hour requirements of transportation projects. 

It can also be seen to be stable as there is less variance across the accuracy of the predictions 

generated by the model. This could be due to the attribute of the random forest model to average 

its variance based on the results from multiple decision tree. The training time required to model 
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the data is comparable to the other models with an average time of less than one tenth of a 

second. The prediction time, when compared to the other model, is quite higher except for the 

ensemble neural networks; however, this is of less importance as it takes less than one-hundredth 

of a second to make its prediction on 10% of the project data.  

All linear models all gave similar results regarding their accuracy performance, modeling 

time and prediction time. However, the ordinary least squared regression performed worse 

compared to the other linear models particularly on underrepresented project types. The other 

linear models seem to address this issue with the presence of regularizers, which controls the 

coefficients for such projects. Methods used in previous studies using linear regression involve 

training different linear regression models for different types of projects (Bell et al., 2003; Kim 

et al., 2016), which would not take the advantage of shared properties across the project types 

and less accurate models for project types with less historical projects.  

The ensemble neural networks model performed reasonably well, having the second-best 

average goodness of fit of 0.80, after the random forest model. While deep neural networks are 

known to have subpar performance with tabular data, the ensemble neural networks, as proposed 

in (Shwartz-Ziv & Armon, 2022), proved to be applicable to predicting the person-hour 

requirements for STAs. The downside of this, however, is the long training time which is 

significantly higher than that of the other model. While its prediction time takes the most time, it 

is still under two-tenths of a second. Possible improvement might be obtained from the model if 

given more training data, as the dataset used for this study might be insufficient for such deep 

neural networks model. 

The results could serve as a guidance for STAs in other cities, states, and municipalities 

for building forecasting tools at the project level. It could help guide the selection of appropriate 
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models and as a starting basis for building software tools for the forecast of the amount of 

person-hours required for projects. This would yield an improved workforce planning across the 

agencies in allocating resources. 

5.2 Agency level  

Several time series approaches, such as the vector error correction and the box Jenkins 

ARIMA have been previously used to forecast construction engineer person-hours on the 

national and agency level workforce forecasting. Very little has been attempted to implement a 

more complex approach to the time series modelling of the workforce in the construction 

industry. This thesis presents a univariate time series forecasting of the monthly person-hours 

requirements of construction engineers and inspectors in a STA over short- and long- range time 

periods. Neural network based models were compared to the classic box Jenkins ARIMA 

approach in terms of accuracy. 

The ARDOT case study data was transformed into a monthly person-hour time series 

spanning across almost ten years. Test data was reserved for both short- and long- range 

forecasting strength purpose and the models developed using the training set. Due to the 

randomness introduced by the neural networks based models, multiple runs of the optimized 

models were trained for a more accurate representation of the models. 

Amongst the neural network-based models, the 1-D CNN performed better across all 

metrics and forecasting ranges with a RMSE of 5.85% and 6.39% across the short- and long- 

range tests. The variance noted across its forecasting error was relatively small compared to the 

LSTM model, making it more desirable for such forecasting. The LSTM did not perform as 

expected and this might be as a result of the limited dataset limiting its use of its memory. Also, 

while the LSTM produced a worse forecasting error than the ARIMA, it can be seen that the 
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model continues to capture the variability of monthly forecasts over the long- range unlike the 

ARIMA model. The CNN architecture performs better in extracting essential features from the 

data, which might have been an edge in its forecasting capability. Similar CNN models could be 

adopted by STAs across cities, states and municipalities for a more accurate workforce forecast. 

This provides valuable insight for human resource departments and planners to quickly prepare 

for future workforce needs adequately with a more reliable forecast.  

5.3 Limitations and Future Research 

While this study demonstrated the strength of machine learning models in forecasting 

STA construction engineer and inspector needs, it comes with some limitations. The data size 

used for each model is limited to the 1,490 projects collected from ARDOT. Some of the models 

compared would perform significantly better when more data are used for its training. An 

example of such a model is the neural network ensemble model for the project-level and the 

LSTM model for the agency level. Also, this study considered only data from one STA, and 

might be insufficient to generalize the results from this study across all STAs. However, the 

demonstrated accuracy of the models show their potential across the industry, and more research 

into its application across several STAs could validate the findings in this research. 

Furthermore, details about the project were limited, as more attributes, such as the 

project's complexity, would provide more features for the machine learning models to learn 

from. This could be a new feature defined by STAs for describing projects depending on how 

complex the operations are, regardless of the project type. It should also be noted that the 

modeling time compared does not consider the level of effort put into tuning the model's 

hyperparameters which affects the performance of each model. While some models are relatively 

easier to tune and take less time, others require combining multiple techniques to tune their 
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parameters and obtain the best-performing optimized parameters. Future research could also 

adopt interpretable machine learning methods to better understand how the project attributes 

affect the level of workforce required for its completion. Insights gained here would be useful to 

planners and engineers in the timely execution of their projects. 

The agency level forecast shows a significant improvement with the 1-D CNN, but other 

models that use the combined power of the 1-D CNN and LSTM have not been considered. 

Studies (Moskolai et al., 2020; Wahid et al., 2022; Zaheer et al., 2023) have shown the accuracy 

of such models and this could serve as a great starting point for future research. While CNN 

helps to extract and maintain the essential features of the network, the LSTM helps to retain 

long-term information relevant to forecasting. Additionally, the current study focused on 

univariate time series models for the agency level forecast, which consider only a single variable 

(person-hour requirements) for forecasting. Future research could extend the analysis to include 

multivariate time series models. By incorporating additional relevant variables, such as project 

characteristics, economic indicators, or weather data, the forecasting models can capture the 

influence of multiple factors on person-hour requirements. This can result in more 

comprehensive and accurate predictions, enabling better decision-making in workforce planning 

and resource allocation. 
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Appendix 

 
Figure 23: Short range 1-D CNN MAE distribution 

 

 
Figure 24: Long range 1-D CNN MAE distribution 
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Figure 25: Short range 1-D CNN RMSE distribution 

 

 
Figure 26: Long range 1-D CNN RMSE distribution 
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Figure 27: Short range LSTM MAE distribution 

 
Figure 28: Long range LSTM MAE distribution 
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Figure 29: Short range LSTM RMSE distribution 

 
Figure 30: Long range LSTM RMSE distribution 
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Table 3: Hyperparameters for machine learning models 
Model Hyperparameter Search space Tuning technique 
RF Number of estimators 

Min. Sample Split 
Max. depth 
Max features 

10 – 1000  
2 – 6 
3 – 10 
sqrt, log2 

Grid search 

SVR Kernel 
Degree 
Gamma 
Epsilon 
Max iteration 

linear, poly, rbf, sig 
2 – 5 
Scale, auto 
0.01 – 0.1 
100 – 20000  

Bayesian Opt. 

GBR Learning rate 
Number of estimators 
Criterion 
 
Min sample split 
Max. depth 
Alpha 

0.001 – 0.1 
100 – 10000  
Friedman_mse, mse, squared 
error 
0 – 0.5 
1 – 10  
0 – 0.5  

Bayesian Opt. 

DT Criterion 
 
Max depth 
Min sample split 
Min sample leaf 
Max features 
Max leaf nodes 

Squared error, friedman, 
poisson 
3 – 50  
2 – 10 
1 – 100 
Log2, sqrt 
5 – 20  

Grid Search 

NN Batch size 
Learning rate 
Optimizer 
Num of Layers 
Hidden layer size 

32 – 128 
0.001– 0.1 
Adam, AdamW 
2 – 12  
16 – 256  

Manual, 
Bayesian Opt. 

RR Alpha 
Solver 

0 – 100 
‘auto’, ‘svd’, ‘lbfgs’, 
‘lsqr’, ‘sag’, ‘saga’ 

Grid Search 

EN Alpha 
Max iteration 
L1 ratio 

0 – 100  
100 – 5000  
0 – 1  

Grid Search 

LR Alpha 
Max iteration 

0 – 100 
100 - 5000 

Grid Search 
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Table 4: Arima model coefficient 

 coef std err Z P > |z| [0.025 0.975] 
ar.L1 0.4367 0.386 1.132 0.257 -0.319 1.193 
ar.L2 0.5550 0.376 1.478 0.139 -0.181 1.291 
ma.L1 0.0455 0.367 0.124 0.901 -0.675 0.766 
ma.L2 -0.6015 0.156 -3.859 0.000 -0.907 -0.296 
ar.S.L12 0.9706 0.126 7.710 0.000 0.724 1.217 
ma.S.L12 -0.8593 0.340 -2.527 0.011 -1.526 -0.193 
sigma2 8.998 e+07 5.94e-09 1.52e+16 0.000 9e+07 9e+07 

 

Table 5: Average Model performance for project-level models 

 ME RMSE MAE MAPE R2 
OLS Reg. 23489.6 2503.373 778.3936 0.079852 0.780971067 
RidgeNet Reg. 11913.1 1710.173 683.967 0.073116 0.768877511 
ElasticNet Reg. 11506.1 1677.375 672.1263 0.073462 0.766620213 
Lasso Reg. 11506.1 1677.375 672.1263 0.073462 0.766620213 
Gradient Boost Reg 11393.13 1647.381 673.4282 0.073779 0.774220435 
CatBoost Reg. 12994.39 1752.818 697.4843 0.076279 0.758206156 
Random Forest 9063.574 1203.836 468.412 0.047472 0.907965659 
Decision Tree 11693.41 1703.9 710.1871 0.079046 0.745708195 
Support Vector Reg. 11523.79 1661.664 673.4373 0.073399 0.770317195 
Neural Nets. 11163.85 1609.595 659.4853 0.075067 0.799918486 

 

 
Figure 31: Sample loss per epoch (1-D CNN) 
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Figure 32: Sample loss per epoch (LSTM) 
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