
University of Arkansas, Fayetteville University of Arkansas, Fayetteville

ScholarWorks@UARK ScholarWorks@UARK

Graduate Theses and Dissertations

8-2023

Comparing Predictive Performance of GARCH and Stochastic Comparing Predictive Performance of GARCH and Stochastic

Volatility Models Volatility Models

Swapnaneel Nath
University of Arkansas, Fayetteville

Follow this and additional works at: https://scholarworks.uark.edu/etd

 Part of the Statistics and Probability Commons

Citation Citation
Nath, S. (2023). Comparing Predictive Performance of GARCH and Stochastic Volatility Models. Graduate
Theses and Dissertations Retrieved from https://scholarworks.uark.edu/etd/4881

This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion
in Graduate Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more
information, please contact uarepos@uark.edu.

https://scholarworks.uark.edu/
https://scholarworks.uark.edu/etd
https://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F4881&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/208?utm_source=scholarworks.uark.edu%2Fetd%2F4881&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/etd/4881?utm_source=scholarworks.uark.edu%2Fetd%2F4881&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:uarepos@uark.edu

Comparing Predictive Performance of GARCH and Stochastic Volatility Models

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science in Statistics and Analytics

by

Swapnaneel Nath
Drury University

Bachelor of Business Administration in Economics, 2017
Drury University

Bachelor of Arts in Mathematics, 2017

August 2023
University of Arkansas

This thesis is approved for recommendation to the Graduate Council.

Giovanni Petris, Ph.D.
Thesis Director

Avishek Chakraborty, Ph.D.
Committee Member

Sean Plummer, Ph.D.
Committee Member

Abstract

This paper compares the predictive performance of two commonly used financial

models, the Generalized Auto-Regressive Conditional Heteroskedasticity (GARCH)

model, and the Stochastic Volatility model. Both techniques are used in the finance

literature to model returns on an asset; the main difference between the two is that

the former holds volatility as deterministic, whereas the latter treats it as a stochastic

component.

Three 10-year periods (2006-15, 2008-17, and 2010-19) of returns of the S&P-500

Index are used to train the two models. The parameter estimation is done using

Hamiltonian Monte Carlo. Then, using Sequential Monte Carlo updates, returns for

2016, 2018, and 2020 are predicted, and their performance over different time frames—

one month, one quarter, and one year—are compared using sum of squared errors

(SSE). In addition, the percentage of observed returns for the three years that are

captured between the 2.5 percentile and the 97.5 percentile of the predictions are

compared. The results of the two models are practically indistinguishable by both

criteria.

Acknowledgements

I would like to thank my professors and friends for the wonderful time I have had

at University of Arkansas. Thanks, in particular, to Dr. Giovanni Petris for guiding

me over the last year through the process of building this thesis.

Table of Contents

1 Introduction 1

2 Time Series Models 2

3 Methodology 6

3.1 Research Questions . 6

3.2 Data . 6

3.3 Models . 7

3.3.1 GARCH(1,1) . 7

3.3.2 Stochastic Volatility . 10

3.4 Hamiltonian Monte Carlo — Motivation . 11

3.5 Hamiltonian Monte Carlo — Method . 13

3.6 Parameter Estimation . 15

3.7 Parameter Updates . 16

3.8 Prediction and Propagation . 17

3.9 Performance Comparison . 17

4 Results 18

4.1 GARCH Parameter Estimates . 18

4.2 Stochastic Volatility Parameter Estimates . 18

4.3 Comparing Sum of Squared Errors of Estimated Returns 25

4.4 Comparing Capture in 95 Percent Band . 27

5 Discussion 28

6 Further Studies 30

A Codes 32

A.1 Data Preparation and Exploration . 32

A.2 Stan Models . 33

A.3 Fitting . 36

A.4 Prediction . 37

A.5 Performance Comparison . 45

References 52

1 Introduction

The aim of the paper is to implement two time series models, namely, the Generalized Auto-

Regressive Conditional Heteroskedasticity (GARCH) and the Stochastic Volatility models,

and compare their predictive performances. The models are trained on S&P-500 Index (SPX)

returns data from 2006-15, 2008-17, and 2010-19 and tested on observations from the year

immediately succeeding the training years: 2016, 2018, and 2020.

Section 2 provides a brief overview of some of the time series models discussed in the

finance literature. Section 3 discusses the research questions, data, and the model specifica-

tions. Theoretical and implementation details with regards to the models are also discussed

here. In particular, sections 3.4 and 3.5 elaborate on Hamiltonian Monte Carlo (HMC), the

MCMC technique used to estimate the parameters of the two time series models. Section 3.6

discusses additional implementation details associated with the initial estimation of param-

eters. This is followed by a discussion of sequential updates to the estimates in section 3.7.

Sections 3.8 and 3.9 respectively delineate the method deployed to generate distributions of

predictions and the criteria used to evaluate the performance of the models.

Section 4 presents the results of running the abovementioned procedures. Sections 4.1

and 4.2 detail the HMC parameter estimates for the GARCH and the Stochastic Volatility

models respectively. Section 4.3 compares the outputs using the criterion of sum of squared

errors (SSE) while section 4.4 compares the outputs based on the predictive accuracy of the

95% prediction bands.

Section 5 disserts upon the figures stated in the previous section and their implications.

Finally, suggestions for future studies are listed in section 6. The codes for the implementa-

tion of the techniques described in this paper are in Appendix A.

1

2 Time Series Models

Complex systems (such as the markets) produce observations that stem from a myriad of

(often hidden and interacting) underlying phenomena, complex in and of themselves, and

changing over time. Various nonlinear time series models have been developed to capture

the essence of these systems and represent them concisely.

A feature noted in many time series data is the presence of autocorrelation: observations

are correlated to other observations that have occured in the previous (recent) time periods.

Autoregressive models have been proposed to model these data. The simplest of these models

is the first-order autoregressive model, or the AR(1) model, wherein the observation at time

t is influenced by the observation from the immediately prior time period [Paolella, 2018].

yt = α + βyt−1 + z (1)

Here, α and β are constants. The noise term z in the AR(1) process is independent and

identically distributed, but does not need to be Gaussian. For a Gaussian AR(1) model, z

would be normally distributed with a mean of zero and standard deviation σ.

z ∼ Normal(0, σ) (2)

Equations (1-2) can be compressed into the following form.

yt ∼ Normal(α + βyt−1, σ) (3)

The first-order autoregressive model can be generalized to the autoregressive model of order

p in the following manner. Now, yt draws information from p prior observations. Assuming

2

Gaussian noise, we get the following characterization for the AR(p) model.

yt ∼ Normal
(
α +

p∑
i=1

βiyt−i, σ
)

(4)

While the AR(p) model uses previous observations to predict the current observation,

the moving average model uses previous errors for this prediction. Observation at time t in

moving average model of order q, MA(q) model, depends on errors, zi from the previous q

observations and is given by the following, with a suitable distribution for zt [Bergomi, 2015;

Box et al., 2015].

yt = α + zt +

q∑
i=1

γizt−i (5)

Equation (5), under the assumption of normality, can be rewritten as follows.

yt ∼ Normal
(
α +

q∑
j=1

γjzt−j, σ
)

(6)

The two models above can be combined into the autoregressive moving average model for

greater flexibility. Observation at time t in the Gaussian ARMA(p,q) model is given thus.

yt ∼ Normal
(
α +

p∑
i=1

βiyt−i +

q∑
j=1

γjzt−j, σ
)

(7)

The assumption of homoskedasticity, or constant variance, is built into the models de-

scribed so far. However, this assumption is violated by many real-world processes. Variance

in a particular time period often depends on variance in previous time periods. To account for

temporal movements in variance, autoregressive conditional heteroskedastic (ARCH) mod-

els have been developed [Engle, 1982]. The ARCH(q) model, where the variance at time

t depends on the variances at q prior times, is given as follows. Here, we assume that the

3

observations are normal.

σ2
t = δ0 +

q∑
j=1

δjz
2
t−j (8)

yt ∼ Normal(α, σt) (9)

The Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model expands

the ARCH model by making the current variance depend on previous errors and their vari-

ance [Bergomi, 2015; Bollerslev, 1986]. In the GARCH(p,q) model, we have the following

characterization for variance.

σ2
t = δ0 +

q∑
j=1

δjz
2
t−j +

p∑
i=1

ϵiσ
2
t−i (10)

The observations in GARCH(p,q) are governed by (9), under assumption of normality. The

GARCH(1,1) model will be deployed later in this paper.

Various extensions of the GARCH models exist in the time series literature. These

include Threshold GARCH [Wu, 2010], Exponential GARCH [Hansen & Huang, 2016], and

Persistent GARCH [Lanne & Saikkonen, 2005], among various others.

In the models described above, the variance in a given time period is perfectly determined

by observations in previous periods. There also exist a class of models called stochastic

volatility models in which the variance is nondeterministic [Hull & White, 1987; Bergomi,

2015]. Kim et al. [1998] presents a Stochastic Volatility model in which the observations are

given by the following.

yt = ξeλt/2ϵt (11)

λt = η + ϕ(λt−1 − η) + ζtτ t > 1 (12)

λ1 ∼ Normal
(
η,

τ√
1− ϕ2

)
(13)

4

The model uses log of variance, λt, instead of variance. Parameters ϵt and ζt are normally

distributed. A modified version of this model will also be tested later. Variants of the

Stochastic Volatility model include the Heston [1993] model and the Stochastic Alpha, Beta,

Rho (SABR) model [Hagan et al., 2015], among others.

5

3 Methodology

3.1 Research Questions

This paper asks the following question: which of the two models, GARCH or Stochastic

Volatility, performs better? Do the results hold at different periods and for different time-

frames? The performance is measured in terms of the sum of squared errors (SSE), which

is calculated by taking the cumulative squared difference between the observation at time t

and the prediction at time t over T time periods.

SSE =
T∑
t=1

[
Observationt − Predictiont

]2
Lower SSE is preferred as it implies that the predicted values were generally closer to the

observed values. SSE is compared across three different time frames: one month, one quarter,

and one year.

Additionally, the paper compares how the two models perform when prediction bands

(instead of point estimates) are used to predict returns. The prediction bands used below

check if the observed returns fall within the 2.5 percentile and the 97.5 percentile of the

predictions.

The performance is also compared for three different time periods: 2016, 2018, and 2020.

2016 had the lowest volatility while 2020 had the highest.

3.2 Data

The models below are trained on the S&P-500 Index (SPX) returns data from the following

three 10-year periods. The SPX historical data from 2000 to 2022 are retrieved from the

Wall Street Journal [n.d.].

1. 2006-15 containing 2517 observations with minimum -0.0934, maximum 0.1158, mean

0.0002, and standard deviation 0.0130.

6

2. 2008-17 containing 2518 observations with minimum -0.0903, maximum 0.1158, mean

0.0003, and standard deviation 0.0128.

3. 2010-19 containing 2516 observations with minimum -0.0666, maximum 0.0495, mean

0.0004, and standard deviation 0.0093.

Returns are normalized: they are calculated by taking the difference between the closing

price for a day and the closing price for the previous day, and dividing it by the closing price

of the previous day. The code for the data manipulation and setup is available in Appendix

A.1.

Returnt =
ClosingPricet − ClosingPricet−1

ClosingPricet−1

The models are tested against data from the year immediately following the training

period, that is, years 2016, 2018, and 2020. The 2016 test set has 252 observations with

minimum -0.0359, maximum 0.0247, mean 0.0003, and standard deviation 0.0082. The 2018

test set has 251 observations with minimum -0.0409, maximum 0.0495, mean -0.0001, and

standard deviation 0.0107. The 2020 test set has 253 observations with minimum -0.1198,

maximum 0.0938, mean 0.0008, and standard deviation 0.0216.

3.3 Models

The two models are specified below. The Stan model codes are available in Appendix A.2.

Both contain a log of volatility term, which is simply a transformation of variance.

λt = ln(σ2
t) =⇒ σt = exp(λt/2) (14)

3.3.1 GARCH(1,1)

The Generalized Autoregressive Conditional Heteroskedasticity model used here is specified

below. This is a GARCH(1,1) model: it uses the return and volatility from one period prior

7

Figure 1: Training Data

8

Figure 2: Testing Data

9

to compute the volatility for the current period. Let rt denote the return at time t, which

depends on µ, the mean return, and λt, the log of volatility (variance) at time t. Furthermore,

α0, α1, and β1 are all positive, and α1 + β1 < 1.

rt ∼ Normal
(
µ, exp(λt/2)

)
(15)

µ ∼ Cauchy(0, 10) (16)

λ1 ∼ Cauchy(0, 10) (17)

λt = ln
[
α0 + α1r

2
t−1 + β1 exp(λt−1)

]
(18)

α0 ∼ LogNormal(0, 1) (19)

α1 ∼ Uniform(0, 1) (20)

β1 ∼ Uniform(0, 1− α1) (21)

The key parameters of the model are µ, α0, α1, and β1. These are used to predict λt,

which is then used to estimate rt.

3.3.2 Stochastic Volatility

The Stochastic Volatility model is specified below. The return, rt, depends on the mean, µ,

and log volatility, λt = ln(σ2
t). Persistence of volatility is given by ϕ, which is between -1 to

1, and the white noise scaling factor is given by τ .

10

rt ∼ Normal
(
µ, exp(λt/2)

)
(22)

µ ∼ Cauchy(0, 10) (23)

λ1 ∼ Normal(η, τ) (24)

λt ∼ Normal
(
η + ϕ(λt−1 − η), τ

)
(25)

η ∼ Cauchy(0, 10) (26)

τ ∼ Cauchy(0, 10) (27)

ϕ ∼ Uniform(−1, 1) (28)

The parameters of the model µ, η, τ , and ϕ are used to find λt, which is then used

to estimate rt. A key difference between the two approaches is that GARCH provides a

deterministic representation of λt, whereas the Stochastic Volatility model provides, as the

name suggests, a stochastic representation of λt.

Both models are coded in the probabilistic programming language Stan, which uses the

adaptive variant of Hamiltonian Monte Carlo (HMC) called the No U-Turn Sampler (NUTS)

proposed by Hoffman & Gelman [2014]. Stan is designed to facilitate Bayesian inference for

continuous-variable models using Monte Carlo methods [Carpenter et al., 2017].

3.4 Hamiltonian Monte Carlo — Motivation

Questions in statistics such as calculating means, medians, variance, and other higher mo-

ments involve computing expectations, which necessarily require solving some integration

problem. Simple integrals have analytical solutions; but, often we need to integrate over

complex distributions, and these integrals do not yield to closed forms. Markov Chain Monte

Carlo (MCMC) methods are often used in these instances to derive sampling distibutions,

which can then be used to approximate the required integrals.

MCMC algorithms typically use some transition operator satisfying the reversibility con-

11

dition to move through the space of possible points from the target distribution. The operator

specifies the transition probabilities between two points in the distribution. The algorithm

is used to take a point θprevious to the next point θcurrent, which is then appended to the

Markov Chain. The algorithm is repeated multiple times, each time appending a point to

the chain. The reversibility condition guarantees that the chain will eventually reach a sta-

tionary distribution, and beyond that, the chain, as it grows, will continue to remain within

the stationary distribution. This stationary distribution is the target distribution (by design

of the transition operator). Thus, as the chain grows longer, the values of the points in the

chain begin to approximate the target distribution.

Different MCMC techniques exist for exploring the target distribution. Common MCMC

methods include Random Walk Metropolis Sampling (RWMS) and Gibbs Sampling. These

algorithms are simple to implement, however, in high dimesional parameter spaces with cor-

related parameters, RWMS and Gibbs Sampling prove to be inefficient as they make too

many poor proposals (proposals that are accepted but too close to the current parameter

value, or those that are distant from the current parameter value but from regions with

low or no probability mass and hence rejected). In these cases, RWMS and Gibbs Sampling

would require the Markov Chains to be inordinately long to sufficiently explore the regions of

the target distribution where the probability mass is concentrated, and achieving this length

would be computationally prohibitive. If, on the other hand, to make the chain computa-

tionally manageable, the algorithm is stopped before sufficient exploration, the expectations

derived from the samples would be severely biased.

In high dimensional parameter spaces that are continuous and differentiable (as is the

case with the two models specified above), Hamiltonian Monte Carlo (HMC) provides a

solution to this exploration issue. The HMC Markov Chains are very efficient as consecutive

points in each chain tend to be both far apart in the parameter space and from regions

with high probability mass. The presence of high correlation between parameters does not

hinder the exploration process of this MCMC algorithm. And while the generation of each

12

new point in the sampling distribution involves more computation than in RWMS or Gibbs

Sampling, many fewer points need to be generated to sufficiently cover the target space,

leading to overall computational savings [Neal, 2011; Betancourt, 2017].

The general idea for HMC is as follows. We augment the b-dimensional parameter space

with another set of b auxiliary variables, one for each parameter. In this augmented 2b-

dimensional parameter space, the algorithm traverses from one point to another by following

a long trajectory governed by Hamiltonian dynamics. This new point is then projected

down to the original b-dimensional parameter space. The projected point is located in a

region of high probability mass within the original parameter space, and yet is far away

from the projection of the point that began the trajectory. This process is repeated and an

efficient representative sample in the b-dimensional parameter space is derived [Neal, 2011;

Betancourt, 2017].

3.5 Hamiltonian Monte Carlo — Method

For the GARCH model, θ = (µ, α0, α1, β1, λ1, λ2, ..., λT) where T is the number of days in

the training set for which we have a return value. Here, the dimension of the parameter

space is b = 4 + T .

Likewise, for the Stochastic Volatility model, θ = (µ, η, τ, ϕ, λ1, λ2, ..., λT) where T is the

number of days in the training set for which we have a return value. Again, the dimension

of the parameter space is b = 4 + T .

Details of the Hamiltonian Monte Carlo algorithm that follow are adaped from Neal

[2011] and Betancourt [2017]. The HMC algorithm requires us to provide two functions: the

natural logarithm of the joint distribution of the parameters, ln π(θ), and the gradient of

this function in all directions, ∂ lnπ(θ)
∂θ

. This gradient (upon some modification) will guide the

trajectory of the exploration. The subsequent steps in the HMC algorithm are as follows.

1. We augment θ with auxiliary variables m. Each parameter in θ has a corresponding

auxiliary variable. Thus, Dim(θ) = Dim(m), say b. The augmented parameter space,

13

(θ,m) is 2b-dimensional. It is in this extended space that the algorithm will traverse.

2. Next, we define the Hamiltonian function, H(θ,m) as the negative of the natural

logarithm of the joint density of the parameters and the auxiliary variables, that is,

the augmented parameter space.

H(θ,m) := − lnπ(θ,m) (29)

3. The Hamiltonian function decomposes as follows.

H(θ,m) = − ln π(θ,m) (30)

= − ln[π(m|θ).π(θ)]

= − ln π(m|θ)− lnπ(θ)

Let K(m, θ) := − lnπ(m|θ) and V (θ) := − ln π(θ). Note V (θ) follows from the spec-

ification of the target distribution. Any choice for the distribution of π(m|θ) would

make the HMC valid. However, for simplicity and efficiency, the standard multivariate

normal distribution is often chosen. Stan performs Euclidean HMC, which uses the

standard multivariate normal distribution for π(m|θ) as well.

4. The evolution of θ and m is governed by the following Hamilton’s equations.

dθ

dι
=

∂H(θ,m)

∂m
(31)

=
∂[K(m, θ) + V (θ)]

∂m

=
∂K(m, θ)

∂m

14

dm

dι
= −∂H(θ,m)

∂θ
(32)

= −∂[K(m, θ) + V (θ)]

∂θ

= −∂K(m, θ)

∂θ
− ∂V (θ)

∂θ

Here ι is an imaginary time-step. ∂V (θ)
∂θ

follows from the gradients provided to the HMC

function. The differential equations in (31) and (32) together define a vector field, the

contours of which align with the high mass regions in the parameter space.

Stan uses autodifferentiation [Carpenter et al., 2015] to construct the derivatives above.

In addition to the two functions, the implementation of HMC in Stan requires two other

quantities: stepsize and number of leapfrog steps. The stepsize governs the length of the

imaginary time-step mentioned in step (4). The number of leapfrog steps governs how many

imaginary time-steps forward the parameter is propagated in order to arrive at the new

proposed parameter.

In practice, depending on the terrain of the joint posterior, for certain values of stepsize

and number of leapfrog steps, it is possible for the algorithm to generate trajectories that

loop back to or near the starting point, and hence be inefficient. The right selection of

stepsize and number of leapfrog steps is important for efficient exploration.

Stan uses the adaptive variant of HMC called the No U-Turn Sampler (NUTS) to avoid

these inefficiencies. The NUTS algorithm uses iterations in the warmup period to automat-

ically test various stepsizes and number of leapfrog steps and optimize these two quantitites

[Carpenter et al., 2017].

3.6 Parameter Estimation

For the GARCH model, 50,000 iterations are run on 4 chains each. 50% of the iterations are

used for warmup, resulting in a posterior sample of 100,000 points in total.

For the Stochastic Volatility model, 1,000,000 iterations are run on 4 chains for 100,000

15

iterations each. Half of the iterations are used up in the warmup phase, and one out of 20

successive points is selected resulting again in 100,000 points from the posterior distribution.

More iterations and thinning are used in this model to compensate for slower convergence

and higher autocorrelation in parameters ϕ and τ .

The code used for fitting the models is available in Appendix A.3.

3.7 Parameter Updates

Updating parameters involves the Sequential Monte Carlo step of assigning weights to each

of the 100,000 points from the posterior distribution and then resampling (with replacement)

as many points according to these weights whenever the Effective Sample Size (ESS) drops

under an acceptable threshold (set, here, at 0.9). Details of this method are listed in Cappé

[2007].

The Effective Sample Size (ESS) quantifies the amount of independent information or

effective data points in a sample. In Markov Chain Monte Carlo procedures (including

Hamiltonian Monte Carlo, the procedure used in this paper), the goal is to generate a

sequence of correlated samples from a target distribution to estimate various properties of

interest. However, due to the inherent correlation between successive samples in the chains

generated, the effective amount of independent information is typically lower than the actual

sample size. The ESS is calculated as follows.

ESS =
N

1 + 2
∑∞

t=1 ρt
(33)

Where N is the number of iterations, and ρt is the autocorrelation corresponding to a lag of

t time units.

The weights are determined using the Gaussian density function on the predicted return

at each point. That is, given the mean and standard deviation (a tansformation of lambda)

corresponding to a point, the point will have a higher weight if the Gaussian density for its

16

predicted return is higher, and vice versa. The weights are normalized by the sum of all the

weights. Whenever, over the course of iterated propagation (described in section 3.8 below),

the ESS falls below the specified threshold, the cloud of 100,000 points are resampled with

replacement according to these normalized weights.

Appendix A.4 provides the code for assigning weights and resampling.

3.8 Prediction and Propagation

Using the parameters found above, each point at time t is used to predict the point at time

t+ 1. Lambda at time t+ 1 is estimated first using the parameters at time t, and then λt+1

(along with other parameters) is used to generate return at time t+ 1.

“Propagation” refers to moving the cloud of 100,000 points one step forward. Before each

propagation, we check the effective sample size and resample if necessary. The propagation

is done for each month, each quarter, and for the whole year, for the years 2016, 2018, and

2020.

Appendix A.4 contains the code for prediction and propagation.

3.9 Performance Comparison

After the predicted returns are calculated by both models for the three different time-frames,

the results are tested against the returns data for 2016, 2018, and 2020 using the sum of

squared errors. The empirical distributions of predictions are used to compute the fraction

of the observed returns data that fall within the 2.5 percentile and the 97.5 percentile of the

predicted returns.

Appendix A.5 provides the performance comparison code.

17

4 Results

4.1 GARCH Parameter Estimates

Figures 3-5 below contain the histograms of the 100,000 point posterior samples generated

from the GARCH model. Table 1 contains the mean of the parameter estimates.

2006-15 2008-17 2010-19
µ 0.0006 0.0006 0.0008
α0 0.0000 0.0000 0.0000
α1 0.1235 0.1475 0.1871
β1 0.8502 0.8300 0.7621
λT -9.1817 -10.6268 -10.3061

Table 1: Mean of GARCH parameter estimates

4.2 Stochastic Volatility Parameter Estimates

The histograms of the 100,000 point posterior samples generated from the Stochastic Volatil-

ity model are shown in figures 6-8. Table 2 contains the means of the parameter estimates.

2006-15 2008-17 2010-19
µ 0.0008 0.0008 0.0009
η -9.4503 -9.3779 -9.8949
ϕ 0.9798 0.9785 0.9469
τ 0.2190 0.2560 0.3366
λT -9.2065 -11.0425 -10.8228

Table 2: Mean of Stochastic Volatility parameter estimates

18

Figure 3: GARCH posterior samples for 2006-15 training data.

19

Figure 4: GARCH posterior samples for 2008-17 training data.

20

Figure 5: GARCH posterior samples for 2010-19 training data.

21

Figure 6: Stochastic Volatility posterior samples for 2006-15 training data.

22

Figure 7: Stochastic Volatility posterior samples for 2008-17 training data.

23

Figure 8: Stochastic Volatility posterior samples for 2010-19 training data.

24

4.3 Comparing Sum of Squared Errors of Estimated Returns

The parameter estimates obtained above for the GARCH and the Stochastic Volatility mod-

els are used to (a) estimate the hidden variable, lambda, and (b) predict the return, for the

next time step. This is done for the entire cloud of 100,000 points. Then, the parameters are

updated using the parameter update step described above. Next, the estimation of lambda

and prediction of return for the subsequent time step are done. The execution details are in

Appendix A.4.

The code in Appendix A.4 generates predictions for the years 2016 (a low volatility

year), 2018 (medium volatility year) and 2020 (a high volatility year). These predictions

are compared against the test data from 2016, 2018 and 2020 using sum of squared errors.

Appendix A.5 contains the corresponding comparison code. Tables 1-3 present the SSE for

the two models for the three years along with an indicator for which model has the lower

SSE.

GARCH SV Result
Month 1 0.0047 0.0047 Equal
Month 2 0.0027 0.0027 Equal
Month 3 0.0006 0.0006 Equal
Month 4 0.0009 0.0009 Equal
Month 5 0.0008 0.0008 Equal
Month 6 0.0028 0.0028 Equal
Month 7 0.0004 0.0004 Equal
Month 8 0.0002 0.0002 Equal
Month 9 0.0016 0.0016 Equal
Month 10 0.0003 0.0003 Equal
Month 11 0.0009 0.0009 Equal
Month 12 0.0005 0.0005 Equal
Quarter 1 0.0082 0.0082 Equal
Quarter 2 0.0046 0.0046 Equal
Quarter 3 0.0024 0.0024 Equal
Quarter 4 0.0018 0.0018 Equal
Full Year 0.0171 0.0171 Equal

Table 3: Sum of Squared Errors for 2016

25

GARCH SV Result
Month 1 0.0007 0.0007 Equal
Month 2 0.0056 0.0056 Equal
Month 3 0.0037 0.0037 Equal
Month 4 0.0017 0.0017 Equal
Month 5 0.0009 0.0009 Equal
Month 6 0.0005 0.0005 Equal
Month 7 0.0006 0.0006 Equal
Month 8 0.0004 0.0004 Equal
Month 9 0.0002 0.0002 Equal
Month 10 0.0045 0.0045 Equal
Month 11 0.0028 0.0028 Equal
Month 12 0.0069 0.0069 Equal
Quarter 1 0.0100 0.0100 Equal
Quarter 2 0.0032 0.0032 Equal
Quarter 3 0.0012 0.0012 Equal
Quarter 4 0.0144 0.0144 Equal
Full Year 0.0290 0.0290 Equal

Table 4: Sum of Squared Errors for 2018

GARCH SV Result
Month 1 0.0011 0.0011 Equal
Month 2 0.0078 0.0078 Equal
Month 3 0.0724 0.0724 Equal
Month 4 0.0129 0.0129 Equal
Month 5 0.0032 0.0032 Equal
Month 6 0.0071 0.0071 Equal
Month 7 0.0015 0.0015 Equal
Month 8 0.0006 0.0006 Equal
Month 9 0.0049 0.0049 Equal
Month 10 0.0035 0.0035 Equal
Month 11 0.0025 0.0025 Equal
Month 12 0.0006 0.0005 SV is lower
Quarter 1 0.0814 0.0813 SV is lower
Quarter 2 0.0233 0.0233 Equal
Quarter 3 0.0071 0.0071 Equal
Quarter 4 0.0066 0.0066 Equal
Full Year 0.1185 0.1185 Equal

Table 5: Sum of Squared Errors for 2020

26

4.4 Comparing Capture in 95 Percent Band

The empirical distributions of the predicted returns for 2016, 2018, and 2020 are used to

find the predictions at the 2.5 percentile and the 97.5 percentile for both models in each day

of the three years. For the GARCH model, the 95 percent prediction band captured 238

out of 252 observations in 2016; 243 out of 251 observations in 2018; and 206 out of 253

observations in 2020. For the Stochastic Volatility model, the 95 percent prediction band

captured 237 out of 252 observations in 2016; 242 out of 251 observations in 2018; and 203

out of 253 observations in 2020. The corresponding code is in Appendix A.5.

27

5 Discussion

In terms of SSE, both models perform nearly identically across all time-frames and in all

three time periods. Small differences in the sum of squared errors arise, usually, in the ten-

thousandths place or later. These small differences can be attributed to the monte carlo

errors associated with the computations.

Out of the twelve month long time-frames assessed for 2016, the GARCH and the Stochas-

tic Volatility results are indistinguishable in every month. These SSEs range from a low of

0.0002 to a high of 0.0047 for both estimates. The highs and the lows occur on the same

months for both the models.

Out of the twelve month long time-frames assessed for 2018, the GARCH and the Stochas-

tic Volatility results are indistinguishable in every month. These SSEs range from a low of

0.0002 to a high of 0.0069 for the both estimates. The highs and the lows occur on the same

months for both the models.

Out of the twelve month long time-frames assessed for 2020, the GARCH results are

indistinguishable from the Stochastic Volatility results on 11 occasions. The only small

noticeable difference occur in month 12, for which the Stochastic Volatility estimate shows

a lower sum. These SSEs range from a low of 0.0006 to a high of 0.0724 for the GARCH

estimates, while for the Stochastic Volatility estimates, they range from a low of 0.0005 to a

high of 0.0724. The highs and the lows occur on the same months for both the models.

Out of the four quarters assessed for 2016, GARCH and Stochastic Volatility perform

equally well in every quarter. These SSEs range from a low of 0.0018 to a high of 0.0082 for

both estimates. The highs and the lows for both models occur in the same quarters.

Out of the four quarters assessed for 2018, GARCH and Stochastic Volatility perform

equally well in every quarter. These SSEs range from a low of 0.0012 to a high of 0.0144 for

both estimates. The highs and the lows for both models occur in the same quarters.

Out of the four quarters assessed for 2020, GARCH and Stochastic Volatility are indis-

28

tinguishable in every quarter except the first. In quarter 1, the sum for Stochastic Volatility

is slightly lower. The SSEs range from a low of 0.0066 to a high of 0.0814 for the GARCH

estimates, while for the Stochastic Volatility estimates, they range from a low of 0.0066 to a

high of 0.0813. The highs and the lows for both models occur in the same quarters.

For every full year assessed, the GARCH and the Stochastic Volatility models deliver

identical results. For 2016, the full-year SSE is 0.0171. For 2018, the full-year SSE is 0.0290.

For 2020, despite small differences in monthly or quarterly results, the full-year SSE is 0.1185

for both models.

In general, we notice that the models have the least SSE in the low volatility year (2016)

and the highest SSE in the high volatility year (2020). The differences in the predictive

performance between the two models are not practically significant. When one model has

low SSE, the other model has low SSE too, and when one has high SSE, the other shows

similar effect. The small differences that arise can be attributed to the randomness involved

in the prediction process.

The 95 percent prediction bands perform similarly for both models as well. In 2016,

the prediction bands for the GARCH model capture 238 out of 252 observations (94.44%

accuracy) while those for the Stochastic Volatility model capture 237 out of 252 observations

(94.04% accuracy). In 2018, they capture 243 out of 251 observations (96.81% accuracy)

for GARCH, and 242 out of 251 observations for Stochastic Volatility (96.41% accuracy).

Finally, in 2020, they capture 206 out of 253 observations for GARCH (81.42% accuracy), and

203 out of 253 observations for Stochastic Volatility (80.23% accuracy). While the GARCH

model is slightly more predictive in each year above, they differ by only one day. Also, in

the high-volatility year of 2020, the predictive accuracy of both models reduce significantly.

Hence, in practical terms, both models are indistinguishable.

29

6 Further Studies

This paper uses various ten-year daily returns of the S&P-500 Index from 2006 to 2020 to

make parameter estimates and predictions. Sections 4.1 and 4.2 provide the distributions of

the parameter estimates for the GARCH and Stochastic Volatility models, but immediately

reduce the results to point estimates for subsequent analysis. The distributions themselves

remain under-explored. Further studies might take into account the full distributions of

these parameters for generating predictions.

The compression of distribution-based outputs to single points can be seen again in

section 4.3 where the computation of SSE necessitates the use of the mean of the daily

predicted return values. This has the effect of producing results nearly identical to those

obtained simply by computing SSEs with the fixed µs generated by each HMC simulation

but at significantly higher computational costs. While section 4.4 makes use of the empiri-

cal distribution of the predictions to ascertain whether the observations fall within the 2.5

percentile and the 97.5 percentile of predicted returns for each day of the test years, the

distribution properties of the predictions remain under-utilized.

Further study could include an analysis of distribution-based properties such as the width

of the prediction bands and the thickness of the tails. For instance, the outputs of the

Stochastic Volatility models generally result in greater kurtosis in all three test years. (In

2016, the skewness of the distribution of kurtosis of the daily predicted returns for the

GARCH model is 0.1964 as opposed to 1.0573 for the Stochastic Volatility model. This

implies that the kurtosis of daily returns is more right-skewed for the Stochastic Volatil-

ity model, further implying that the distribution of predicted returns from the Stochastic

Volatility model is thicker-tailed. This result holds for 2018 with the skewness of the kurtosis

at 1.0021 for GARCH and 4.8058 for Stochastic Volatility; and for 2020 with the skewness of

kurtosis at 1.9687 and 4.4532 for GARCH and Stochastic Volatility respectively. Appendix

A.5 contains the corresponding code to generate these results.) An exploration of the pro-

30

cess resulting in these differences and their implications might be of interest, especially when

the analysis is done from a risk-management/ruin-avoidance framework (as in Taleb [2020])

rather than a prediction-oriented framework.

Probabilistic forecasting is another approach that may be taken to make claims about

the returns predictions. In this case, probabilistic forecasting would generate various ranges

of returns and the associated probabilities for observing returns in those ranges. Gneiting &

Katzfuss [2014] describes the method of probabilistic forecasting in further details.

Certain parameters of the models, namely, µ and λ1 for GARCH, and µ, η, and τ for

Stochastic Volatility begin with noninformative Cauchy(0, 10) priors. While this lack of

previous information allows for a derivation of the distributions solely based on the training

data, the convergence can be vastly sped up by the use of informative priors. The posterior

sampling distributions generated in this paper may be used to generate priors in future

studies.

Moreover, the methodology used in this paper may also be used on assets other than the

S&P-500 Index. It would be interesting to see how different the results are and whether the

prediction accuracy holds for the other assets.

Finally, an aspect of modeling this paper does not cover is computation time. In this

study, the parameter estimation for Stochastic Volatility took several times as long as the

parameter estimation for GARCH, and yet resulted in similar outputs. Further studies could

involve more optimization of the code, closer monitoring of the estimation and prediction

times, and use of other software.

31

A Codes

A.1 Data Preparation and Exploration

library(here)

library(tidyverse)

library(vroom)

library(lubridate)

library(ggplot2)

library(ggthemes)

data = vroom(here("SPX_from_2000_to_2022.csv"))

data = data %>%

mutate(Date = mdy(Date)) %>%

arrange(Date) %>%

mutate(Returns = (Close - lag(Close))/lag(Close)) %>%

select(c(Date, Returns))

data0615 = data %>% filter(Date > "2005-12-31" & Date < "2016-01-01")

data16 = data %>% filter(Date > "2015-12-31" & Date < "2017-01-01")

data0817 = data %>% filter(Date > "2007-12-31" & Date < "2018-01-01")

data18 = data %>% filter(Date > "2017-12-31" & Date < "2019-01-01")

data1019 = data %>% filter(Date > "2009-12-31" & Date < "2020-01-01")

data20 = data %>% filter(Date > "2019-12-31" & Date < "2021-01-01")

32

png("plot0615.png")

ggplot(data0615, aes(x=Date, y=Returns)) +

geom_point(alpha=0.25, color = "black") +

scale_x_date() +

ylim(-0.12, 0.12) +

theme(plot.background = element_rect(colour = "grey50")) +

ggtitle("Daily S&P500 Returns (2006-2015)")

dev.off

png("plot16.png")

ggplot(data16, aes(x=Date, y=Returns)) +

geom_line(color = "black") +

scale_x_date() +

ylim(-0.12, 0.12) +

theme(plot.background = element_rect(colour = "grey50")) +

ggtitle("Daily S&P500 Returns (2016)")

dev.off

#repeat for other years

A.2 Stan Models

install.packages("rstan",

repos = "https://cloud.r-project.org", dependencies=TRUE)

33

library(rstan)

Stan Models

GARCH Model:

model_G <- "data {

int<lower=0> T;

real r[T];

}

parameters {

real mu;

real<lower=0> alpha0;

real<lower=0, upper=1> alpha1;

real<lower=0, upper=(1-alpha1)> beta1;

real lambda1;

}

transformed parameters {

real lambda[T];

lambda[1] = lambda1;

for (t in 2:T) {

lambda[t] = log(alpha0

+ alpha1 * pow((r[t - 1] - mu), 2)

+ beta1 * exp(lambda[t - 1]));

}

}

model {

for (t in 1:T) {

34

r[t] ~ normal(mu, exp(lambda[t]/2));

}

lambda1 ~ cauchy(0,10);

alpha0 ~ lognormal(0,1);

alpha1 ~ uniform(0,1);

beta1 ~ uniform(0, 1 - alpha1);

mu ~ cauchy(0, 10);

}"

Stochastic Volatility Model:

model_SV <- "data {

int<lower=0> T;

real r[T];

}

parameters {

real mu;

real eta;

real<lower=-1, upper=1> phi;

real<lower=0> tau;

real lambda[T];

}

model {

phi ~ cauchy(0, 10);

tau ~ cauchy(0, 10);

mu ~ cauchy(0, 10);

eta ~ cauchy(0, 10);

lambda[1] ~ normal(eta, tau);

35

for (t in 2:T) {

lambda[t] ~ normal(eta + phi * (lambda[t - 1] - eta), tau);

}

for (t in 1:T) {

r[t] ~ normal(mu, exp(lambda[t] / 2));

}

}

"

A.3 Fitting

set.seed(2023)

#libraries

install.packages("rstan", repos = "https://cloud.r-project.org",

dependencies=TRUE)

library(rstan)

data = data0615 # or data0817,1019 as appropriate

len = nrow(data)

Model Fitting

The following will generate 100,000 points each.

GARCH

st_G = Sys.time()

fit_G <- stan(model_code = model_G, data = list(T = len, r = data$Returns),

36

iter = 50000, chains = 4, cores = 4)

ed_G = Sys.time()

tt_G = ed_G - st_G

Stochastic Volatility

st_SV = Sys.time()

fit_SV <- stan(model_code = model_SV, data = list(T = len, r = data$Returns),

iter = 1000000, chains = 4, cores = 4, thin = 20)

ed_SV = Sys.time()

tt_SV = ed_SV - st_SV

Saving results (Rename accordingly with 0615, 0817, or 1019)

saveRDS(fit_G, file=’fit_G0615.rds’)

saveRDS(fit_SV, file=’fit_SV0615.rds’)

Extracting Parameters

parameters_G = extract(fit_G) # contains mu, alpha0, alpha1, beta1, lambdas

parameters_SV = extract(fit_SV) # contains mu, eta, tau, phi, lambdas

A.4 Prediction

set.seed(2023)

#libraries

library(here)

library(tidyverse)

37

library(lubridate)

library(ggplot2)

library(ggthemes)

install.packages("rstan", repos = "https://cloud.r-project.org",

dependencies=TRUE)

library(rstan)

Select appropriate dataset

data = data18

Read appropriate fit file, 0615, 0817, or 1019

fit_G = readRDS(file = "fit_G0817.rds")

fit_SV = readRDS(file = "fit_SV0817.rds")

Parameter extraction

parameters_G = extract(fit_G) # contains mu, alpha0, alpha1, beta1, lambdas

parameters_SV = extract(fit_SV) # contains mu, eta, phi, tau, lambdas

Creating initial dataframe

df_G = data.frame("mu" = parameters_G$mu, "alpha0" = parameters_G$alpha0,

"alpha1" = parameters_G$alpha1,"beta1"=parameters_G$beta1,

"lambda_t" = parameters_G$lambda[,nrow(data)])

38

df_SV = data.frame("mu" = parameters_SV$mu, "eta" = parameters_SV$eta,

"phi" = parameters_SV$phi, "tau"= parameters_SV$tau,

"lambda_t" = parameters_SV$lambda[,nrow(data)])

pred_returns_G = mapply(function(mean, sd) {rnorm(1, mean, sd)}, df_G$mu,

exp(df_G$lambda_t/2))

pred_returns_SV = mapply(function(mean, sd) {rnorm(1, mean, sd)},

df_SV$mu, exp(df_SV$lambda_t/2))

this has the same effect as

###for (i in 1:nrow(df_G)) {

pred_returns[i] = rnorm(1, mean=df_G$mu[i], sd=exp(df_G$lambda_t[i] / 2))

###}

df_G = cbind(df_G, "pred_returns" = pred_returns_G)

df_SV = cbind(df_SV, "pred_returns" = pred_returns_SV)

Assigning Weights

Weights_G = function(df_G){

takes df with garch parameters and pred_returns, outputs normalized weights

weights = mapply(function(return, mean, sd) {dnorm(return, mean, sd)},

df_G$pred_returns, df_G$mu, exp(df_G$lambda_t / 2))

weights = weights / sum(weights)

return(weights)

39

}

Weights_SV = function(df_SV){

takes df with SV parameters and pred_returns, outputs normalized weights

weights = mapply(function(return, mean, sd) {dnorm(return, mean, sd)},

df_SV$pred_returns, df_SV$mu, exp(df_SV$lambda_t / 2))

weights = weights / sum(weights)

return(weights)

}

Effective Sample Size

= Number of Iterations / (1 + sum of Autocorrelations from lag 1 to infinity)

#ess = nrow(df) / (1 + 2*(sum(acf(df$lambda_t, plot = FALSE)$acf)-1))

Resampling

Resample = function(df, weights) {

ess = nrow(df) / (1 + 2*(sum(acf(df$lambda_t, plot = FALSE)$acf)-1))

threshold = .9

if (ess < threshold*nrow(df)) {

new_df = df[sample(seq_len(nrow(df)), nrow(df),

replace = TRUE, prob = weights),]

print("resampled")

return(new_df)

} else {

print("same sample")

40

return(df)

}

}

Point parameter estimates for the GARCH model

mu_G = mean(parameters_G$mu)

alpha0 = mean(parameters_G$alpha0)

alpha1 = mean(parameters_G$alpha1)

beta1 = mean(parameters_G$beta1)

lambdaT_G = mean(parameters_G$lambda[,ncol(parameters_G$lambda)])

Point parameter estimates for the Stochastic Volatility model

mu_SV = mean(parameters_SV$mu)

eta = mean(parameters_SV$eta)

phi = mean(parameters_SV$phi)

tau = mean(parameters_SV$tau)

lambdaT_SV = parameters_SV$lambda[,ncol(parameters_G$lambda)]

Prediction and Propagation

(prediction: single point 1 step forward,

propagation: n points 1 step forward)

Predict_G = function(prev_lambda, prev_return){

pred_lambda = log(alpha0

+ alpha1 * ((prev_return - mu_G)^2)

41

+ beta1 * exp(prev_lambda))

pred_return = rnorm(1, mean=mu_G, sd=exp(pred_lambda / 2))

return(c("pred_lambda" = pred_lambda, "pred_return" = pred_return))

}

Predict_SV = function(prev_lambda){

pred_lambda = rnorm(1, eta + phi * (prev_lambda - eta), tau)

pred_return = rnorm(1, mean = mu_SV, exp(pred_lambda/2))

return(c("pred_lambda" = pred_lambda, "pred_return" = pred_return))

}

Propagate_G = function(df) {

new_df = df

for (i in 1:nrow(new_df)){

result = Predict_G(df$lambda_t[i], df$pred_returns[i])

new_df$lambda_t[i] = result[1]

new_df$pred_returns[i] = result[2]

}

return(new_df)

}

Propagate_SV = function(df) {

new_df = df

for (i in 1:nrow(new_df)){

result = Predict_SV(df$lambda_t[i])

new_df$lambda_t[i] = result[1]

new_df$pred_returns[i] = result[2]

42

}

return(new_df)

}

Execution

T = nrow(data) # time steps (select appropriate year)

SMC Propagation with Resampling

df_G and df_SV are the initial inputs

list_G = list(df_G)

df = df_G

st_G = Sys.time()

for (t in 1:T) {

df = Resample(df, weights = Weights_G(df))

mu_G <<- mean(df$mu)

alpha0 <<- mean(df$alpha0)

alpha1 <<- mean(df$alpha1)

beta1 <<- mean(df$beta1)

lambdaT_G <<- mean(df$lambda_t)

df = Propagate_G(df)

list_G = append(list_G, list(df))

}

43

ed_G = Sys.time()

tt_G = ed_G - st_G

list_SV = list(df_SV)

df = df_SV

st_SV = Sys.time()

for (t in 1:T) {

df = Resample(df, weights = Weights_SV(df))

mu_SV <<- mean(df$mu)

eta <<- mean(df$eta)

phi <<- mean(df$phi)

tau <<- mean(df$tau)

lambdaT_SV <<- mean(df$lambda_t)

df = Propagate_G(df)

list_SV = append(list_SV, list(df))

}

ed_SV = Sys.time()

tt_SV = ed_SV - st_SV

saveRDS(list_G, file=’list_G18.rds’)

saveRDS(list_SV, file=’list_SV18.rds’)

#list_G and list_SV will contain the predicted returns (inter alia)

#for each time step. These lists contain one too many elements.

#The prediction begins from the second element on.

44

Save lists with predictions, change name number as necessary.

saveRDS(list_G, file=’list_G18.rds’)

saveRDS(list_SV, file=’list_SV18.rds’)

A.5 Performance Comparison

set.seed(2023)

library(here)

library(tidyverse)

library(lubridate)

library(ggplot2)

library(ggthemes)

install.packages("rstan", repos = "https://cloud.r-project.org",

dependencies=TRUE)

library(rstan)

library(reshape2)

library(moments)

Select appropriate dataset

data = data20

Read appropriate list, 16, 18, or 20

list_G = readRDS(file = "list_G20.rds")

list_SV = readRDS(file = "list_SV20.rds")

45

Performance comparison

T = nrow(data)

GARCH returns

pred_returns_G = rep(0, T)

for (t in 1:T) {

pred_returns_G[t] = mean(list_G[[t+1]]$pred_returns)

}

SV returns

pred_returns_SV = rep(0, T)

for (t in 1:T) {

pred_returns_SV[t] = mean(list_SV[[t+1]]$pred_returns)

}

Squared Errors

se_G20 = ((pred_returns_G - data$Returns)^2)

se_SV20 = ((pred_returns_SV - data$Returns)^2)

Sum of Squared Errors

per = 4 #number of periods 12, 4, 1, for months, ...

perlen = 252/per

for (b in (1:per)) {

begin = 1 + (b-1)*perlen

#print(begin)

46

end = begin + perlen -1

#print(end)

print(sum(se_SV16[begin:end])) #choose appropriate se

}

data = cbind(data, "pred_returns_G" = pred_returns_G,

"pred_returns_SV" = pred_returns_SV)

data = melt(data, id.vars = "Date")

ggplot(data, aes(Date, value, col=variable)) +

geom_line()

g = data.frame("pred" = list_G[[200]][["pred_returns"]])

s = data.frame("pred" = list_SV[[200]][["pred_returns"]])

plot_G = ggplot(g, aes(x = pred)) + geom_histogram()

plot_SV = ggplot(s, aes(x = pred)) + geom_histogram()

results in 95% band

inrange = rep(0, length(data16$Returns))

for (i in (1:length(data16$Returns))) {

inrange[i] =

(quantile(list_G16[[i+1]]$pred_returns, .025,

47

names=F) < data16$Returns[i]) *

(quantile(list_G16[[i+1]]$pred_returns, .975,

names=F) > data16$Returns[i])

}

sum(inrange)/length(data16$Returns)

0.9444444

for (i in (1:length(data16$Returns))) {

inrange[i] =

(quantile(list_SV16[[i+1]]$pred_returns, .025,

names=F) < data16$Returns[i]) *

(quantile(list_SV16[[i+1]]$pred_returns, .975,

names=F) > data16$Returns[i])

}

sum(inrange)/length(data16$Returns)

0.9404762

inrange = rep(0, length(data18$Returns))

for (i in (1:length(data18$Returns))) {

inrange[i] =

(quantile(list_G18[[i+1]]$pred_returns, .025,

names=F) < data18$Returns[i]) *

(quantile(list_G18[[i+1]]$pred_returns, .975,

names=F) > data18$Returns[i])

}

sum(inrange)/length(data18$Returns)

0.9681275

48

for (i in (1:length(data18$Returns))) {

inrange[i] =

(quantile(list_SV18[[i+1]]$pred_returns, .025,

names=F) < data18$Returns[i]) *

(quantile(list_SV18[[i+1]]$pred_returns, .975,

names=F) > data18$Returns[i])

}

sum(inrange)/length(data18$Returns)

0.9641434

inrange = rep(0, length(data20$Returns))

for (i in (1:length(data20$Returns))) {

inrange[i] =

(quantile(list_G20[[i+1]]$pred_returns, .025,

names=F) < data20$Returns[i]) *

(quantile(list_G20[[i+1]]$pred_returns, .975,

names=F) > data20$Returns[i])

}

sum(inrange)/length(data20$Returns)

0.8142292

for (i in (1:length(data20$Returns))) {

inrange[i] =

(quantile(list_SV20[[i+1]]$pred_returns, .025,

names=F) < data20$Returns[i]) *

(quantile(list_SV20[[i+1]]$pred_returns, .975,

49

names=F) > data20$Returns[i])

}

sum(inrange)/length(data20$Returns)

0.8023715

kurtosis

kurtlist = rep(0, length(data16$Returns))

for (i in (1:length(data16$Returns))) {

kurtlist[i] = kurtosis(list_G16[[i+1]]$pred_returns)

}

hist(kurtlist, breaks=100)

skewness(kurtlist)

0.1964309

for (i in (1:length(data16$Returns))) {

kurtlist[i] = kurtosis(list_SV16[[i+1]]$pred_returns)

}

hist(kurtlist, breaks=100)

skewness(kurtlist)

1.057357

kurtlist = rep(0, length(data18$Returns))

for (i in (1:length(data18$Returns))) {

kurtlist[i] = kurtosis(list_G18[[i+1]]$pred_returns)

50

}

hist(kurtlist, breaks=100)

skewness(kurtlist)

1.002122

for (i in (1:length(data18$Returns))) {

kurtlist[i] = kurtosis(list_SV18[[i+1]]$pred_returns)

}

hist(kurtlist, breaks=100)

skewness(kurtlist)

4.805871

kurtlist = rep(0, length(data20$Returns))

for (i in (1:length(data20$Returns))) {

kurtlist[i] = kurtosis(list_G20[[i+1]]$pred_returns)

}

hist(kurtlist, breaks=100)

skewness(kurtlist)

1.698721

for (i in (1:length(data20$Returns))) {

kurtlist[i] = kurtosis(list_SV20[[i+1]]$pred_returns)

}

hist(kurtlist, breaks=100)

skewness(kurtlist)

4.453255

51

References

Papers

Bergomi, L. (2015). Stochastic volatility modeling. CRC press.

Betancourt, M. (2017). A conceptual introduction to Hamiltonian Monte Carlo. arXiv

preprint arXiv:1701.02434.

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of

econometrics, 31(3), 307-327.

Box, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis:

forecasting and control. John Wiley & Sons.

Cappé, O., Godsill, S. J., & Moulines, E. (2007). An overview of existing methods and

recent advances in sequential Monte Carlo. Proceedings of the IEEE, 95(5), 899-924.

Carpenter, B., Hoffman, M. D., Brubaker, M., Lee, D., Li, P., & Betancourt, M. (2015).

The Stan math library: Reverse-mode automatic differentiation in C++. arXiv preprint

arXiv:1509.07164.

Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., ... &

Riddell, A. (2017). Stan: A probabilistic programming language. Journal of statistical

software, 76(1).

Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the

variance of United Kingdom inflation. Econometrica: Journal of the econometric society,

987-1007.

Gneiting, T., & Katzfuss, M. (2014). Probabilistic forecasting. Annual Review of Statistics

and Its Application, 1, 125-151.

52

Hagan, P., Lesniewski, A., & Woodward, D. (2015). Probability distribution in the SABR

model of stochastic volatility. Large deviations and asymptotic methods in finance (pp.

1-35). Springer International Publishing.

Hansen, P. R., & Huang, Z. (2016). Exponential GARCH modeling with realized measures

of volatility. Journal of Business & Economic Statistics, 34(2), 269-287.

Heston, S. L. (1993). A closed-form solution for options with stochastic volatility with

applications to bond and currency options. The review of financial studies, 6(2), 327-343.

Hoffman, M. D., & Gelman, A. (2014). The No-U-Turn sampler: adaptively setting path

lengths in Hamiltonian Monte Carlo. J. Mach. Learn. Res., 15(1), 1593-1623.

Hull, J., & White, A. (1987). The pricing of options on assets with stochastic volatilities.

The Journal of Finance, 42(2), 281-300.

Kim, S., Shephard, N., & Chib, S. (1998). Stochastic volatility: likelihood inference and

comparison with ARCH models. The review of economic studies, 65(3), 361-393.

Lanne, M., & Saikkonen, P. (2005). Non-linear GARCH models for highly persistent

volatility. The Econometrics Journal, 8(2), 251-276.

Neal, R. M. (2011). MCMC using Hamiltonian dynamics. Handbook of markov chain

monte carlo, 2(11), 2.

Paolella, M. S. (2018). Linear models and time series analysis: regression, ANOVA, ARMA

and GARCH. John Wiley & Sons.

Taleb, N. N. (2020). Statistical consequences of fat tails: Real world preasymptotics,

epistemology, and applications. arXiv preprint arXiv:2001.10488.

The Wall Street Journal (n.d.). S&P 500 Index Historical Prices.

https://www.wsj.com/market-data/quotes/index/SPX/historical-prices

Wu, J. (2010). Threshold GARCH model: Theory and application. The University of

Western Ontario, 1-42.

53

https://www.wsj.com/market-data/quotes/index/SPX/historical-prices

Systems

This document has been created using LATEX[https://www.latex-project.org/].

The code is written in R [https://www.r-project.org/].

The GARCH and Stochastic Volatility models are written in Stan [https://mc-stan.org/].

The models have been run on Arkansas High Performance Computing Center (AHPCC)

nodes. AHPCC is funded through multiple National Science Foundation grants and the

Arkansas Economic Development Commission. https://hpc.uark.edu/hpc-about/index.php

54

https://www.latex-project.org/
https://www.r-project.org/
https://mc-stan.org/
https://hpc.uark.edu/hpc-about/index.php

	Comparing Predictive Performance of GARCH and Stochastic Volatility Models
	Citation

	Contents
	Introduction
	Time Series Models
	Methodology
	Research Questions
	Data
	Models
	GARCH(1,1)
	Stochastic Volatility

	Hamiltonian Monte Carlo | Motivation
	Hamiltonian Monte Carlo | Method
	Parameter Estimation
	Parameter Updates
	Prediction and Propagation
	Performance Comparison

	Results
	GARCH Parameter Estimates
	Stochastic Volatility Parameter Estimates
	Comparing Sum of Squared Errors of Estimated Returns
	Comparing Capture in 95 Percent Band

	Discussion
	Further Studies
	Codes
	Data Preparation and Exploration
	Stan Models
	Fitting
	Prediction
	Performance Comparison

