
University of Arkansas, Fayetteville University of Arkansas, Fayetteville

ScholarWorks@UARK ScholarWorks@UARK

Graduate Theses and Dissertations

8-2023

Achieving High Renewable Energy Integration in Smart Grids with Achieving High Renewable Energy Integration in Smart Grids with

Machine Learning Machine Learning

Yaze Li
University of Arkansas, Fayetteville

Follow this and additional works at: https://scholarworks.uark.edu/etd

 Part of the Electrical and Computer Engineering Commons

Citation Citation
Li, Y. (2023). Achieving High Renewable Energy Integration in Smart Grids with Machine Learning.
Graduate Theses and Dissertations Retrieved from https://scholarworks.uark.edu/etd/4901

This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for
inclusion in Graduate Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more
information, please contact scholar@uark.edu, uarepos@uark.edu.

https://scholarworks.uark.edu/
https://scholarworks.uark.edu/etd
https://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F4901&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=scholarworks.uark.edu%2Fetd%2F4901&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/etd/4901?utm_source=scholarworks.uark.edu%2Fetd%2F4901&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu,%20uarepos@uark.edu

Achieving High Renewable Energy Integration in Smart Grids with Machine Learning

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy in Engineering with a concentration in Electrical Engineering

by

Yaze Li
Tsinghua University

Bachelor of Science in Electronic Engineering, 2017

August 2023
University of Arkansas

This dissertation is approved for recommendation to the Graduate Council.

Jingxian Wu, Ph.D.
Dissertation Director

Jeff Dix, Ph.D.
Committee member

Roy McCann, Ph.D.
Committee member

Qinghua Li, Ph.D.
Committee member

Yanjun Pan, Ph.D.
Committee member

ABSTRACT

The integration of high levels of renewable energy into smart grids is crucial for

achieving a sustainable and efficient energy infrastructure. However, this integration presents

significant technical and operational challenges due to the intermittent nature and inherent

uncertainty of renewable energy sources (RES). Therefore, the energy storage system (ESS)

has always been bound to renewable energy, and its charge and discharge control has become

an important part of the integration. The addition of RES and ESS comes with their complex

control, communication, and monitor capabilities, which also makes the grid more vulnerable

to attacks, brings new challenges to the cybersecurity. A large number of works have been

devoted to the optimization integration of the RES and ESS system to the traditional grid,

along with combining the ESS scheduling control with the traditional Optimal Power Flow

(OPF) control. Cybersecurity problem focusing on the RES integrated grid has also gradually

aroused researchers’ interest.

In recent years, machine learning techniques have emerged in different research field

including optimizing renewable energy integration in smart grids. Reinforcement learning

(RL), which trains agent to interact with the environment by making sequential decisions

to maximize the expected future reward, is used as an optimization tool. This dissertation

explores the application of RL algorithms and models to achieve high renewable energy

integration in smart grids.

The research questions focus on the effectiveness, benefits of renewable energy integra-

tion to individual consumers and electricity utilities, applying machine learning techniques

in optimizing the behaviors of the ESS and the generators and other components in the grid.

The objectives of this research are to investigate the current algorithms of renewable en-

ergy integration in smart grids, explore RL algorithms, develop novel RL-based models and

algorithms for optimization control and cybersecurity, evaluate their performance through

simulations on real-world data set, and provide practical recommendations for implementa-

tion.

The research approach includes a comprehensive literature review to understand the

challenges and opportunities associated with renewable energy integration. Various optimiza-

tion algorithms, such as linear programming (LP), dynamic programming (DP) and various

RL algorithms, such as Deep Q-Learning (DQN) and Deep Deterministic Policy Gradient

(DDPG), are applied to solve problems during renewable energy integration in smart grids.

Simulation studies on real-world data, including different types of loads, solar and

wind energy profiles, are used to evaluate the performance and effectiveness of the proposed

machine learning techniques. The results provide insights into the capabilities and limitations

of machine learning in solving the optimization problems in the power system. Compared

with traditional optimization tools, the RL approach has the advantage of real-time im-

plementation, with the cost being the training time and unguaranteed model performance.

Recommendations and guidelines for practical implementation of RL algorithms on power

systems are provided in the appendix.

ACKNOWLEDGEMENTS

I would like to express my gratefulness to my advisor, Dr. Jingxian Wu, for providing

me the opportunity to finish this Ph.D. program. In many ways, I was not the excellent

student he expected, but he always inspired and supported me to be a professional researcher

and a mature person. I would like to also thank Dr. Yanjun Pan, for supporting me with

my research during our weekly meetings.

I would like to thank Dr. Jeff Dix, Dr. Qinghua Li, and Dr. Roy McCann for serving

in my dissertation committee. I appreciate their time and kindness during the busy schedules

in summer.

I feel really honored to work with nice and talented people like Dr. Zuoen Wang, Dr.

Israel Akingeneye, Dr. Samrat Nath, and Dr. Tanny Chavez Esparza. Without their help,

suggestion, and previous hard work, this dissertation could not have been accomplished. I

am grateful to Md Abul Hayat and Asif Emon who have accompanied me and helped me

during my first year of Ph.D.

I would like to thank my Chinese friends Hui Wang, Nan Lin, Hao Chen, and Zhe

Zhao, with whom I celebrated Chinese Festivals here. I would also thank Yujie Sude and

Zachary Tipton for treating me as their little brother. I am grateful to Andong Zhou for

her company and support during my depression and stressful time. I am fortunate to have

Junning Fu as my soulmate and support me.

I would like to express my deepest appreciation to my mother: Xiuping Li, and my

father: Yuejun Li for their love, care, support, and sacrifices in educating me and providing

me a better life. I would like to also thank my wife, Yanchu Zhang, for her understanding,

trust, tolerance and support.

TABLE OF CONTENTS

1 Introduction . 1

1.1 Background and Motivation . 1

1.1.1 ESS-assisted PV system . 1

1.1.2 Grid-Connected ESS-assisted RES . 2

1.1.3 Cybersecurity of Grid with RES . 3

1.2 Research Objectives . 4

1.3 Dissertation outline . 4

2 Literature Review . 6

2.1 Research on optimum ESS-assisted PV system design and scheduling 6

2.2 Research on real-time ESS-assisted PV system scheduling 7

2.3 Research on OPF for system with RES and ESS 8

2.4 Research on OPF for system with RES and MEC 9

2.5 Research on Cybersecurity for PV farms . 10

2.6 Research on Cybersecurity for Smart Grids 11

2.7 Research Gaps . 12

3 Optimum Integration of Solar Energy With Battery Energy Storage Systems . . . 14

3.1 Problem formulation . 14

3.1.1 Battery Model . 14

3.1.2 Power from the grid . 16

3.1.3 Objective function . 16

3.2 Different approaches . 18

3.2.1 Mixed Integer Linear Programming 18

3.2.2 Dynamic Programming . 20

3.3 Case studies . 27

3.3.1 Simulation Environment . 27

3.3.2 One-Year Results with MILP . 28

3.3.3 Comparison between results from MILP and DP 31

3.3.4 Ten-Year results with DP . 33

3.4 Conclusion . 36

4 Reinforcement Learning Based On-Line Battery Energy Storage System Schedule

Optimization . 37

4.1 Problem formulation . 37

4.1.1 Battery Model . 37

4.1.2 Power from the grid . 38

4.1.3 Objective function . 38

4.2 Deep Deterministic Policy Gradient approach 39

4.2.1 Markov Decision Process . 39

4.2.2 Reinforcement Learning . 40

4.2.3 Deep Q-learning Network . 42

4.2.4 Deep Deterministic Policy Gradient 44

4.3 Case studies . 49

4.3.1 Data System Setup . 49

4.3.2 DDPG and DQN Training and Testing 52

4.3.3 Testing Results . 52

4.4 Conclusion . 55

5 Intelligent Optimal Power Flow Control for Wind-Powered Microgrid with Deep

Reinforcement Learning . 56

5.1 Problem formulation . 57

5.1.1 Single-period Optimal Power Flow 57

5.1.2 Multi-period Optimal Power Flow . 61

5.2 Different approaches . 65

5.2.1 Multi-period Optimal Power Flow with Model Predictive Control . . 65

5.2.2 Multi-period Optimal Power Flow with DDPG 67

5.3 Case study . 73

5.3.1 Data source and setup . 73

5.3.2 Simulation results . 77

5.4 Conclusion . 80

6 Optimum Scheduling of Truck-based Mobile Energy Couriers Using Deep Deter-

ministic Policy Gradient . 82

6.1 Problem formulation . 86

6.1.1 Transportation Network Model . 87

6.1.2 AC Multi-period Optimal Power Flow 89

6.2 DDPG approach . 92

6.2.1 DDPG formulation for MEC Control 92

6.2.2 DDPG framework . 94

6.2.3 DDPG agent for MEC control . 96

6.3 Case Studies . 96

6.3.1 Simulation Environment . 97

6.3.2 Simulation results . 102

6.4 Conclusion . 104

7 Low Latency Attack Detection with Dynamic Watermarking for Grid-Connected

Photovoltaic Systems . 106

7.1 Problem formulation . 107

7.1.1 PV model . 107

7.1.2 State-Space model . 108

7.1.3 Attack models . 109

7.2 State Estimation . 110

7.2.1 Kalman filter . 110

7.2.2 Dynamic watermarking . 112

7.3 Low Latency Detection with Dynamic Watermarking 115

7.3.1 Post-Attack Distributions and KL Divergence 115

7.3.2 Low Latency Attack Detection . 118

7.4 Simulation results . 119

7.4.1 Performance under different attacks 120

7.4.2 Detector performance . 128

7.5 Conclusion . 130

8 Low Latency Cyberattack Detection in Smart Grids with Deep Reinforcement

Learning . 131

8.1 Problem formulation . 132

8.1.1 System model . 132

8.1.2 Attack model . 132

8.2 Dynamic state estimation . 134

8.2.1 Extended Kalman filter . 134

8.2.2 Forecasting-Aided State Estimation 135

8.2.3 Hypothesis Test . 137

8.3 DQN approach . 138

8.3.1 DQN formulation for Quickest Change Detection 138

8.3.2 Complexity Analysis . 143

8.4 Simulation results . 145

8.4.1 System Setup . 145

8.4.2 Training Results . 146

8.4.3 Testing Results . 147

8.5 Conclusion . 151

9 Conclusion and Future Work . 153

Bibliography . 155

A Bellman equation (4.13) derivation . 169

B Kalman filter equations derivation . 170

B.1 Covariance Update Equation Derivation . 170

B.2 Kalman Gain Equation Derivation . 171

C Post-attack distribution derivation . 173

C.1 Proof of equation (7.42) and (7.43) . 173

C.2 Proof of equation (7.45) and (7.46) . 174

C.3 Proof of equation (7.50) . 178

D Description of Softwares . 180

D.1 Optimization and simulation of power system in Matlab 180

D.1.1 CVX Toolbox . 180

D.1.2 MATPOWER . 180

D.1.3 Power System Toolbox . 181

D.2 Optimization and simulation of power system in Python 181

D.2.1 PYPOWER . 181

D.2.2 Pandapower . 182

D.3 Reinforcement learning in Python . 182

D.3.1 OpenAI Baselines . 182

D.3.2 Stable Baselines . 182

D.3.3 Stable Baselines3 . 183

E All Publication Published, Submitted, and Planned 184

E.1 Journals . 184

E.2 Conference . 184

E.3 Posters presentation . 185

LIST OF FIGURES

Figure 3.1: ESS assisted PV system . 15

Figure 3.2: Snap shot of 1-day energy usage on July 1st. 30

Figure 3.3: Snap shots of 1-week energy usage in the first weeks of June and Decem-
ber, respectively. 30

Figure 3.4: Comparison of monthly electricity bill with different scheduling approaches
(q=10 kWh). 32

Figure 3.5: Time to run the MILP and DP (q = 10, 50, 100 kWh). 33

Figure 3.7: Change of total cost under different unit price of the battery and solar
panel . 35

Figure 4.1: The training process of the actor and critic networks in DDPG. 45

Figure 4.2: The energy bought from the utility on the first week of January, 2017. . 53

Figure 4.3: The SOC of the battery on the first week of January, 2017. 53

Figure 4.4: The energy bought from the utility on the second week of July, 2017. . . 53

Figure 4.5: The SOC of the battery on the second week of July, 2017. 53

Figure 5.1: Distribution network with WT . 61

Figure 5.2: Framework of MPC-based RT-OPF . 65

Figure 5.3: Framework of DDPG-based OPF . 71

Figure 5.4: The modified IEEE 14-bus case with ESS and WT. 73

Figure 5.5: The active load profile at buses 10, 12, 13, 14. 74

Figure 5.6: 1 hour ahead active load prediction at bus 14. 76

Figure 5.7: 1 hour ahead wind prediction at bus 14. 76

Figure 5.8: The storage schedule results at bus 3, 6, 8, 11. 78

Figure 5.9: The active power generated at bus 1, 2, 3. 79

Figure 5.10: The active power generated at bus 1, 2, 3. 80

Figure 6.1: A distribution grid with both MEC and RES. 87

Figure 6.2: Diagram of DDPG training in MEC environment. 95

Figure 6.3: Diagram of DDPG testing in the MEC environment. 96

Figure 6.4: Sioux Falls Transportation Network. 98

Figure 6.5: Sioux Falls O-D Demands. 99

Figure 6.6: Typical hourly traffic demand proportion. 99

Figure 6.7: Modified IEEE 14-bus System. 100

Figure 6.8: The single load profile on July 1st, 2021. 101

Figure 6.9: The single renewable energy profile on July 1st, 2021. 101

Figure 6.10: The training curve of DDPG agent. 103

Figure 6.11: Simulation results of MECs on July 1st, 2021. 104

Figure 7.2: System model . 111

Figure 7.3: State estimation . 112

Figure 7.4: Kalman filter diagram . 113

Figure 7.5: The voltage frequency (top) and magnitude (bottom) measurement under
deterministic FDI attack on the PV system at 4.5s 120

Figure 7.6: The detector statistic under deterministic FDI attack on the PV system
at 4.5s . 121

Figure 7.7: The voltage frequency (top) and magnitude (bottom) measurement under
noise FDI attack on the PV system at 4.5s 122

Figure 7.8: The detector statistic under noise FDI attack on the PV system at 4.5s . 123

Figure 7.9: The voltage frequency (top) and magnitude (bottom) measurement under
replay attack on the PV system at 4.5s 124

Figure 7.10: The detector statistic under replay attack on the PV system at 4.5s . . . 125

Figure 7.11: The voltage frequency (top) and magnitude (bottom) measurement under
destabilization attack on the PV system at 4.5s 126

Figure 7.12: The detector statistic under destabilization attack on the PV system at
4.5s . 127

Figure 7.13: The PFA-ADD curve under the deterministic FDI attack and destabiliza-
tion attack on the PV system . 128

Figure 7.14: The PFA-ADD curve under noise FDI attack and replay attack on the
PV system . 129

Figure 8.1: Stage transitions . 141

Figure 8.2: 13-bus Two Area System [1] . 145

Figure 8.3: Learning curve for ϕ = 0.1 and different w 147

Figure 8.4: Performance of DQN detector (w = 2) and Normalized Rao-CUSUM
detector [2] under FDI attack . 149

Figure 8.5: Performance of DQN detector (w = 2) and Normalized Rao-CUSUM
detector [2] under DoS attack . 150

Figure 8.6: The real power at bus 14 with FDI at 0.25 < t < 0.6 151

LIST OF TABLES

Table 3.1: TOU rate in San Francisco . 28

Table 3.2: Times of the year and times of the day 28

Table 3.3: Annual utility bill under different configurations 29

Table 3.4: Error of DP for different step size . 32

Table 3.5: Utitlity and system cost under 10-year horizon 34

Table 4.1: Desired actions for training . 48

Table 4.2: Battery and solar parameters . 50

Table 4.3: DQN and DDPG parameters . 51

Table 4.4: Monthly Bill in 2017 . 54

Table 5.1: Summary of notations . 63

Table 5.2: Generator parameters for OPF . 75

Table 5.3: 1 hour ahead load prediction performance 77

Table 5.4: DDPG parameters . 77

Table 5.5: Average hourly operation result using different methods 79

Table 6.1: Bus to node mapping and load type . 100

Table 6.2: DDPG parameters . 102

Table 6.3: Simulation result . 103

Table 7.1: KL-divergence between distribution of r before and after attack. 129

Table 8.1: Number and complexity of vector and matrix operations 145

Table 8.2: FDI Testing results (PFA, ADD) . 149

1 Introduction

1.1 Background and Motivation

The increasing global concerns over climate change and the depletion of fossil fuel

resources have propelled the rapid development and adoption of renewable energy sources.

Electricity generated from renewable energy sources (RES) surpassed coal in the US for the

first time in 2022 [3]. Solar and wind power, in particular, have witnessed significant growth

in recent years.

1.1.1 ESS-assisted PV system

Solar power is a clean, inexpensive, and renewable energy source that is widely

adopted around the world. One of the most efficient ways to harness solar power is through

photo-voltaic (PV) cells, or solar panels, which convert light directly into electricity using

photoelectric effects. The state of California in the United States mandates solar panels

on the roofs of all new homes starting in 2020 [4]. The growing popularity and constantly

increasing demands of solar energy necessitate optimum designs of PV system that can be

seamlessly integrated in power grids and achieve maximum savings in energy and overall

system cost.

However, the variability, uncertainty, and non-synchronous generation of PV power

sources impose numerous challenges on the large-scale and cost-effective deployment of PV

systems [5]. The intermittent and stochastic nature of solar energy creates an imbalance

between energy supplies and demands, which has to be compensated by integrating PV

system with energy storage system (ESS).

In addition to environmental considerations and the balance of supply and demand,

economic benefits are also a major reason for individual electricity consumers to purchase

solar panels. By storing excessive solar energy during off-peak hours and discharging the

stored energy during high demand hours, ESS-assisted PV system can save the electricity

bill significantly. However, many factors such as system costs, battery and solar panel aging,

electricity cost inflation and long-term returns need to be considered when design such system

for a long-term use. The user needs to know in advance whether the installation of this

1

system can obtain long-term economic returns for his electricity consumption, what are the

optimal system parameters, and what is the specific economic return. Even if an optimum

ESS-assisted PV system is designed and installed, in actual use, users still need to know

what is the optimum real-time battery charging and discharging strategy under the system

parameters and real-time power consumption, or the ESS provides such scheduling algorithm

inside, so as to achieve the expected economic return before purchasing and installing this

system.

1.1.2 Grid-Connected ESS-assisted RES

Like solar energy, wind energy is affected by wind speed and has a time-varying and

stochastic nature. The integration of high levels of renewable energy into existing power

grids poses substantial technical and operational challenges [6]. The intermittent nature

of renewable energy sources, coupled with their inherent uncertainty, demands innovative

solutions to ensure grid stability, reliability, and optimal utilization of these clean energy

resources. Similar to the local ESS-PV system, the ESS-RES in the grid again can be used

to store excess energy during periods of high production and release energy during periods

of high demand, which can stablize the grid and improve the reliability of the RES [7].

Traditional economic dispatch (ED) and optimal power flow (OPF) controllers are

designed to minimize the grid operation cost by optimizing power generation schedules at

each generator over a single time period [8]. However, the integration of ESS asks the grid

controller to consider the storage behavior over multiple time periods [9]. In addition, it

is shown that for power system with ESS, multi-period OPF provides a more economical

control solution [10].

Another important requirement of the grid control algorithms is to make real-time de-

cisions on the generation and the ESS schedule given the real-time load profile and uncertain

RES profile. Therefore, real-time control that extends the traditional OPF to multi-period

OPF and schedule the ESS is needed.

There is a growing interest in incorporating mobility into ESS to achieve mobile energy

storage, which offers numerous advantages compared to stationary energy storage systems

(SESS). These advantages include enhanced flexibility, rapid deployment, redundancy, re-

duced infrastructure costs, and environmental benefits. Mobile energy storage systems can

be easily transported to different locations as needed, providing greater flexibility compared

2

to their static counterparts [11]. They can also be swiftly deployed in response to emer-

gencies or to support temporary events. In situations where static energy storage systems

have failed or are unavailable, mobile energy storage ensures a continuous supply of power,

serving as backup energy [12]. Moreover, mobile energy storage has the potential to reduce

the necessity for costly grid infrastructure upgrades and can be utilized to power electric

vehicles, contributing to the reduction of greenhouse gas emissions and air pollution [13].

The control and scheduling of a distribution grid with mobile energy storage are

complex and challenging due to the dynamic and uncertain nature of both the transportation

networks and the RES, as well as the need to minimize operational costs while ensuring

efficient and reliable energy distribution over the entire grid. This requires a comprehensive

system model that combines the scheduling of both transportation network and power flow.

Again, such control algorithm needs to perform in real-time.

1.1.3 Cybersecurity of Grid with RES

Smart grids, equipped with advanced sensing, communication, and control technolo-

gies, have emerged as a promising framework for addressing these challenges [14]. The

supervisory control and data acquisition (SCADA) system, an integral part of a smart grid,

plays a crucial role in monitoring and controlling power grid operations through remote

terminal units (RTUs). However, the vulnerability of SCADA systems to cyberattacks is

a significant concern. A notable example is the cyberattack that occurred on December

23, 2015, targeting the SCADA system in the power grid of Kiev, Ukraine, resulting in a

widespread blackout [15].

One prevalent form of attack is the false data injection (FDI) attack, which tar-

gets different layers and systems within the smart grid [16]. The primary objective of an

FDI attack is to manipulate SCADA measurements, thereby undermining the accuracy of

state estimation (SE) and leading to unreliable power system operations [17]. Additionally,

denial-of-service (DoS) attacks pose another significant risk. A DoS attack disrupts SCADA

system operations by obstructing communication links between devices or rendering certain

measurement devices inaccessible [18].

Achieving high levels of renewable energy integration in smart grids necessitates in-

teroperable distributed energy resource (DER) grid-support functions with advanced control

and communication capabilities. However, the introduction of these complex capabilities

3

also increases the vulnerability of renewable energy systems (RES) and exposes them to

potential cyberattacks [19]. Such cyberattacks have the potential to disrupt normal grid

operations and induce system instabilities, including line overloads, frequency and voltage

violations, reverse power flow, and voltage collapse, particularly during periods of heavy

load [20, 21]. Consequently, there is a pressing need to develop cybersecurity technologies

capable of detecting and mitigating the adverse impacts of these cyber threats.

While numerous studies have focused on the cybersecurity of energy systems, their

attention primarily centers around grid operations utilizing measurements obtained from

supervisory control and data acquisition (SCADA) systems, remote terminal units (RTUs),

and the underlying communication network of the grid [2, 22]. While these measurements

serve as crucial indicators for grid operations, they prove inadequate as attacks can also

target local measurements derived from RES sensors and actuators or the local control

policies governing RES operations. Therefore, a comprehensive approach is required to

address the cybersecurity challenges posed by potential attacks on both grid-level and local

RES components.

Moreover, machine learning techniques, capable of analyzing vast amounts of data and

making intelligent decisions, offer great potential in optimizing renewable energy integration

in smart grids.

1.2 Research Objectives

This dissertation aims to explore the application of machine learning algorithms and

models for achieving high renewable energy integration in smart grids. In specific, to develop

machine learning approaches to model the RES and ESS behaviors in power systems at

individual consumer’s end and, most importantly the controller of the power system at the

utility’s end, to provide optimum design of integration of RES and make real-time decisions

to control the behavior of the components in the system, detect the cyberattacks in the

system, in order to save the operation cost and increase the reliability of the RES.

1.3 Dissertation outline

This dissertation is organized as follows: Chapter 2 gives an literature review on

topics that are discussed in this dissertation. Chapter 3 and 4 focus on the optimal design of

ESS-assisted PV system and the optimal control . A Dynamic Programming solution for ESS-

4

assisted PV system design has been proposed in Chapter 3. The DP algorithm starts as an

suboptimal approach for long-horizon optimizations, and then the idea of Bellman equations

and action-value functions are moved to a Markov Decision Process (MDP) formulation of

the real-time ESS-assisted PV scheduling problem in Chapter 4.

Chapter 5 and 6 focus on the optimal control of the generators and ESS in the grid

integrated with renewable energy. We develop a model to extend traditional OPF to multi-

period with wind energy to minimize the operation cost of the new system in Chapter 5.

The model has combines the OPF with ESS schedule by reinforcement learning techniques

that follows the MDP framework. The agent trained by the environment, thus is able to

control the generations of the grid and the ESS schedule in real-time without any prediction

model. The model is extended in Chapter 6 by replacing the stationary ESS into mobile

energy carriers. The transition network and traffic model are combined with the original

model, the agent trained by this new environment is able to control the MEC scheduling

and assignment, along with the generations of the grid in real-time.

Finally, to face the cyberattacks in the smart grid with RES, a dynamic watermark

algorithm is used to detect attacks on measurements of local PV farms in Chapter 7, and a

reinforcement learning based detection algorithm is proposed to detect attacks on measure-

ments from the SCADA in Chapter 8.

Chapter 9 provides a concluding remark and major contributions of this dissertation

and propose possible future work for continued research.

5

2 Literature Review

2.1 Research on optimum ESS-assisted PV system design and scheduling

There have been growing interests in the optimum designs and scheduling of energy

systems with energy storage devices (ESS). Most designs aim at minimizing the energy cost

or operating cost through optimum scheduling of energy generation and/or storage. In [23],

the optimum scheduling of a pump-storage hydro power station is formulated as a mixed

integer linear programming (MILP) problem, where the non-linearity of power generation

in hydro-turbines is approximated by a piecewise linear function. In [24], the optimum

scheduling of distributed energy resources (DER) is formulated as a linear programming

(LP) problem to reduce operation cost and to shave peak demands. In [25], the optimum

scheduling of behind-the-meter ESS is formulated as a mixed integer non-linear programming

(MINLP) problem, and the problem is equivalently transformed into a LP by introducing

auxiliary variables. The complexity of LP-based approaches scales in general in polynomial

time with respect to the number of decision variables and constraints. The complexity could

be prohibitively high when the number of decision variables is large.

Optimum ESS scheduling can also be solved by using dynamic programming (DP),

which relies on Bellman’s principle of optimality to decompose the original problem into

a sequence of simpler subproblems in a recursive manner [26], [27], [28], [29], [30], [31].

In the optimum designs of ESS systems, the state variables are usually states of charge

of the ESS, which often need to be discretized for efficient solution [26]. For utility bill

minimization, the demand charge introduces a supremum term in the objective function,

which violates Bellman’s principal of optimality necessary for DP. This problem is solved by

using the concept of forward separable function with augmented state variables in [31], or

multi-objective DP in [29]. The integration of ESS system with renewable energy sources

adds new degrees-of-freedom that can further improve the efficiency of energy usage. The

optimum design of power systems with both ESS and renewable energy sources are discussed

in [28,32], which consider the interactions of a variety of renewable energy sources and ESS

devices, including PV panels, wind turbines, hydroelectric plants, pumping stations, etc.

The operation cost and wear-out cost of the system are included in the formulations

in [24, 25, 28]. However, the initial procurement and installation costs are not considered in

6

those works.

In addition to system cost, the optimum design should also consider aging effects

of the devices, where the efficiencies and/or capacities of both solar panels and batteries

degrade gradually over time [33]. To accurately model the aging effects, the optimization

needs to be performed over a time horizon over the entire life cycles of batteries and solar

panels. However, the time horizon in many existing works are one day [34], and multi-day

costs are obtained by multiplying the daily cost by the number of days [32, 35]. A 24-

month dataset is used in [36], but with the assumption that the battery is fully charged at

the beginning of each day. Thus the optimization horizon is still within one day. In [23]

and [25], the time horizon is extended to one month. A one-year optimization horizon is

considered in [37] without considering the aging effects. In [38], the design is performed over

a 3-year optimization period, which is still shorter than the device life cycles, and it only

considers the battery cycling aging effects.

2.2 Research on real-time ESS-assisted PV system scheduling

Online energy management for systems with renewable energy sources depends crit-

ically on load and renewable energy generation forecasting. The auto-regressive moving

average (ARMA) model is a powerful tool for short-term load forecasting [39]. In [40], the

load and PV generation forecast is performed by using a recurrent neural network (RNN)

with long short term memory (LSTM). The deep learning based LSTM method is used in

combination with auto-regressive integrated moving average (ARIMA) model for load fore-

casting in [41], where ARIMA model captures the stationary pattern of load segments, and

LSTM extracts the non-linear relations of load segments.

Load forecasting and energy management can be combined into an integral process

under the framework of reinforcement learning (RL) [42]. RL-based methods learn the op-

eration environment of the energy system and model it as a Markov decision process (MDP)

without explicitly identifying environment parameters such as transition probabilities. En-

ergy management can then be optimized by applying deep neural network (DNN) to learn

the inherent patterns of renewable energy generations and grid operations [43]. Value-based

RL algorithms such as Q-learning [44] and policy-based actor-critic approach [45] have been

successfully used to solve battery scheduling problems. A deep Q-learning (DQN) method

is proposed in [46] to optimize battery scheduling for a microgrid with PV sources. DQN-

7

based solutions require discretizations of the originally continuous action and/or state spaces.

Discretization causes inevitable performance losses, and the complexity grows exponentially

with the increase of the discretization levels.

Deep policy gradient (DPG) based RL methods can be applied to operation envi-

ronment with continuous action/state spaces [47] and [48]. Deep deterministic policy gra-

dient (DDPG) is an off-policy version of DPG [49]. DDPG has been applied to various

resource allocation problems in a wide range of applications, such as wireless communica-

tions [50] and [51], energy management for electrical vehicles [52], battery scheduling in

smart homes [53], and scheduling in battery swapping stations [54], etc.

2.3 Research on OPF for system with RES and ESS

In order to cope with the increased integration of DER in power systems, a large num-

ber of OPF algorithms have been developed to achieve real-time responses, mainly through

the tradeoff between complexity and performance. In [55], wind power forecast is performed

by considering multiple possible scenarios, and individual OPFs are solved in paralle for each

possible scenario. The results are provided in the form of a lookup table as a reference for

grid operations. In [56], the single-period OPF is transformed into a multi-period OPF algo-

rithm by separating a longer time horizon into sub-intervals. An online gradient projection

algorithm is developed to solve real-time OPF (RT-OPF) for a power grid without RES or

ESS [57]. An iterated single-period OPF approach is developed to solve RT-OTF by using

a quasi-Newton method [58]. Linear relaxation of the AC OPF is often used in these works,

and the optimization can be solved by algorithms such as alternating direction method of

multipliers (ADMM) [59] or stochastic dual dynamic programming (SDDP) [60].

In addition to the efforts made to bring real-time response to single-period OPF,

another notable solution for multi-period OPF can be achieved through model predictive

control (MPC), which adopts predictive models to represent the dynamic behaviors of RES

[61]. In [62], the multi-period OPF for a power grid with RES and ESS is formulated as a

mixed-integer linear programming (MILP) by using a novel sparse formulation of the affinely

adjustable robust counterpart (AARC). Heuristic tools such as particle swarm optimization

(PSO) and genetic algorithm (GA) are often used when ESS scheduling is optimized along

with power flow [63–65].

Recently a large number of works have resorted to machine learning (ML) algorithms

8

to solve RT-OPF due to its fast response and lower complexity. Fully connected neuron

(FCN) network is trained as energy manage system (EMS) for RT-OPF in [66]. Deep re-

inforcement learning (DRL) algorithms such as Deep Q-Networks (DQN) [67] and Double

DQN (DDQN) [68] have been employed to optimize power dispatching problems in power

grids. A Lagrangian based deep deterministic policy gradient (DDPG) agent is trained to

solve RT-OPF for a power grid without RES [69].

2.4 Research on OPF for system with RES and MEC

Various design and scheduling techniques have been proposed to optimize power grids

with mobile energy storage systems. In [70], a mixed integer linear programming (MILP)

algorithm is proposed to solve the mobile energy storage scheduling problem, which is formu-

lated to minimize overall system cost by considering energy demand, energy production, and

transportation constraints. The results in [70] are extended into a stochastic programming

framework that incorporates uncertainties in renewable energy production and various loads

in the grid [71]. In [72], the system is designed by minimizing the total cost associated to the

energy loss in the power and transportation networks with MILP. A suboptimal two-stage

solution is given in [73], where the power flow is solved on an instantaneous transit sys-

tem by solving a mixed-integer second-order cone programming (SOCP), and transportation

problem of mobile energy storage is solved by using the particle swarm optimization (PSO)

algorithm. In addition to the financial benefits, the employment of MEC can improve the

flexibility and resilience of power systems. For example, the worst-case weighted sum of

survived loads is used as the design objective to improve the power grid resilience in disaster

recovery [74], and the total load supported by mobile energy storage is maximized to improve

system flexibility in [75].

Recently, reinforcement learning (RL) has been applied to optimize the decision-

making process in both energy and transportation systems [47] and [76]. RL is a promising

machine learning technique that involves learning through trial and error by maximizing

a reward function, and it has shown great potential in solving complex decision-making

problems. Moreover, deep reinforcement learning (DRL) algorithms have been proposed to

make sequential decisions in complex systems. DRL is a sub-field of RL that leverages deep

neural networks (DNN) to approximate the optimum policy. One of the most widely used

DRL algorithms is the deep deterministic policy gradient (DDPG) algorithm, which has

9

shown remarkable performance in solving complex continuous control problems [49]. DDPG

is a model-free, actor-critic RL algorithm that uses two DNNs, an actor network and a critic

network, to learn an optimal policy. The optimal electrical vehicle (EV) charging in urban

transportation networks considering uncertainties in wind power output and traffic demands

is solved by DDPG in [77].

2.5 Research on Cybersecurity for PV farms

The rapid advancement of machine learning (ML) during the past decade has driven

the development of ML-based cyberattack detection methods. Most of the ML-based meth-

ods are data-driven, and they do not require physical models of the system. Various data-

driven ML algorithms, such as one-class support vector machines (OCSVMs), random forests

(RFs), and principal component analysis (PCA) were applied to multiple sources of time-

series data for distributed anomaly detection on a single solar panel [78]. Deep neural

networks (DNN) with long short-term memory (LSTM) were applied to detect data in-

tegrity attacks by using the Northeast Solar Energy Research Center (NSERC) solar farm

dataset [79]. Raw data collected from micro PMU (µPMU) were used for the detection of

cyberattacks on photovoltaic (PV) farms by using data-driven methods such as decision tree

(DT) and K-nearest neighbor (KNN) [80]. Most ML approaches require a large amount

of data during the offline training stage, and sometimes it might be difficult to obtain a

sufficient amount of training data from cyber-physical systems (CPS).

In contrast to pure data-driven methods, model-based methods utilize the underlying

physical models of CPS to monitor system operations. The knowledge of the physical model

can help improve detection accuracy and reduce the amount of training data. For example,

measurement results can be compared to state estimations in a smart grid, and the residues

can then be used for anomaly detection [81, 82]. The detection can be performed by using

either a single measurement or a sequence of historical measurements, such as the windowed

χ2 detector [83]. All these detection methods can be classified as passive methods. One of

the limitations of the passive methods is that they might not be able to detect cyberattacks

designed by using full knowledge of the system model, as the adversary can use the knowledge

of the physical model to match the attacked data with state estimation results.

Dynamic watermarking is an active defense method that adds a small random signal,

i.e., “watermark", to the input of the controller [84]. The power of the random signal is

10

small such that it does not disturb normal system operations, and the detector can utilize

the statistical distributions of the watermark signal to test the operation conditions of the

CPS. Dynamic watermarking was first proposed to improve the performance of χ2 detector

[84,85]. However, it is unable to detect attacks with post-attack distributions fitting historical

measurements, such as the replay attack. This problem can be solved by using two actuator

tests with respect to the covariance of the residuals and the correlation between the residuals

and watermarks [86]. The two-test dynamic watermarking scheme is used as the active

defense method for the automatic generation control (AGC) of a power system, and to detect

attacks applied to voltage and current measurements of a grid-connected PV system [87]. The

two-test dynamic watermarking algorithm is later extended to general linear time invariant

(LTI) systems with a single statistical test based on the Wishart distribution [88], and to

linear time varying systems and nonlinear systems in [89].

2.6 Research on Cybersecurity for Smart Grids

A plethora of algorithms have been developed for cyberattack detection by using

power system state estimations, where the measurement results can be compared to estima-

tion results to identify the presence of anomalies. Many algorithms are developed by using

static state estimation (SSE) with a simplified DC system model due to its low computa-

tional complexity [90–92]. However, SSE cannot capture the dynamic state transitions in

power systems, and it is in general not suitable for real-time monitoring of power system

operations. Dynamic state estimation (DSE) with Kalman filter (KF) and its derived algo-

rithms are widely used for power system estimation and intrusion detection [93]. A KF-based

DSE algorithm is used to detect FDI in automatic generation control (AGC) system in [94].

Distributed Kalman filter (DKF) was used in [95] to reduce the computation complexity

for attack detection, and extended Kalman filter (EKF) was used in [96, 97] to model the

nonlinear measurement function of AC power system model for FDI attack detection. A

robust Cubature Kalman Filter (RCKF) based approach is proposed for systems with power

generators under cyberattacks [98]. In [99], a correlation-based DSE is proposed to detect

DoS attacks.

With the recent rapid advances in artificial intelligence (AI) and machine learning

(ML), there have been growing interests in applying ML algorithms for intrusion or cyberat-

tack detection in smart grids. In [100], a real time FDI detection algorithm is developed by

11

performing robust principal component analysis (PCA). Various deep learning algorithms,

such as deep belief network (DBN) [101, 102], recurrent neural network (RNN) [103], and

deep neural network (DNN) [104], are developed for FDI detection. Reservoir computing

(RC) is an extension framework of NN. It consists of three parts: a feed-forward NN as the

input layer, an RNN as the middle layer, and a weighted adder as the output layer [105]. A

delayed feedback RC is used for detecting dynamic attacks in smart grids [106, 107]. These

algorithms utilize a data-driven approach, that is, the input to the neural networks are

measurements from the power system, and the output are detection results. Preprocessing

of the measurements can be done to make the training more efficient, such as the wavelet

transform in [108]. A state–action–reward–state–action (SARSA) algorithm based on re-

inforcement learning (RL) is developed for FDI detection in [109]. A Q-Learning method

with nearest sequence memory is adopted to detect FDI attack to automatic voltage control

(AVC), where the values of the Q-function are discretized and stored in a lookup table [110].

In [111], a deep Q-network (DQN) is designed to defend FDI in power grids, and it utilizes

a DNN with discrete states to approximate the Q-function required for Q-learning.

2.7 Research Gaps

Although researchers adopt many techniques for high renewable energy integration

in smart grids, there are some fundamental gaps in the existing literature. The gaps are

described below:

• For the ESS-assisted PV system design, the optimizations in most existing works are

performed by assuming a fixed-sized ESS. In the design of battery-assisted PV systems,

the optimum capacity of BESS and the number of solar panels are important decision

parameters, and their optimum values are in general not readily available before hand.

The costs of solar panels and BESS accounts for a large amount of initial investment.

The optimum designs need to ensure that the cost saving due to ESS and renewable

energy sources can outweigh the system cost in the long run, thus the system cost

should be a critical parameter in the system design. The optimization horizon in most

existing works are too short.

• For the OPF control problem, the popular MPC approach requires muti-period pre-

diction and multi-period optimization in real-time, which leads to a high computing

complexity and long responding time.

12

• For the OPF control with MEC, the transportation models used for dispatching the

MEC are very complex. One approach to dispatching problem is the transit delay

model (TDM), which records the delay and location of each MESS at each sample

time [73]. The transit delay depends on both the distance and the traffic congestion

delay. The latter depends on not only the location but also the time because of the

traffic flow. Most research assumes a static traffic demand based on historical data

and stores the transit delay in a location-location-time tensor. The other is the Time-

space Network (TSN), which requires less number of decision variables and constraints.

However, a MINLP is still unavoidable [?].

• Most existing detection methods focus on detection accuracy, with no or little attention

to detection delay. Detection delay is critical to the cybersecurity of energy systems

as a shorter delay means a timely response that can minimize the negative impacts of

the attacks. Quickest change detection (QCD) aims at minimizing the detection delay

subject to constraints on detection accuracy. QCD is usually implemented by means

of sequential analysis such as the sequential probability ratio test (SPRT) [112], the

cumulative sum (CUSUM) [92, 113], generalized likelihood ratio (GLR) testing [114],

etc. Most algorithms require perfect knowledge of the post-change distribution [115],

which is usually difficult, if not impossible, to obtain [116].

13

3 Optimum Integration of Solar Energy With Battery Energy Storage

Systems

The intermittent and stochastic nature of solar energy creates an imbalance between

energy supplies and demands. Such an imbalance can be partly compensated by integrating

the PV system with ESS. The ESS can store excessive solar energy during off-peak hours

and discharge the stored energy during high-demand hours, such that both energy usage and

peak demands can be significantly reduced.

In this chapter, we propose to perform optimum designs of battery-assisted PV sys-

tems by including system costs, aging effects of batteries and solar panels, inflation of elec-

tricity costs, and discounted long-term returns as design parameters. The whole system

design and optimization will stand at the consumers’ (commercial or residential users) point

of view as a starting point, therefore the power grid is not modeled in this section.

3.1 Problem formulation

Consider a user who installs the PV system with ESS as shown in Fig. 3.1.

3.1.1 Battery Model

The time is divided into short non-overlapping windows with duration ∆t each, e.g.,

∆t = 1 hour. The state of charge (SOC), or the energy stored in the battery, can be described

by the following difference equation:

ct+1 = ct + qctγe −
qdt
γe

(3.1)

where t is the time window index, ct denotes the energy stored in the battery at the beginning

of the t-th time window, qct and qdt are the energy charged to and discharged from the battery

at time window t, respectively, and γe denotes the energy efficiency, which represents the

energy loss in the battery. We have γe = γinv
√
γbatt, where γinv is the inverter efficiency and

γbatt is the battery round-trip efficiency [117].

Due to the physical limits of the battery, the average charging and discharging rates

at any time window are limited by the number of batteries and the physical limit of each

14

Figure 3.1: ESS assisted PV system

battery, as

0 ≤ qct ≤ nbq
max
c ∆t, ∀t ∈ T (3.2)

0 ≤ qdt ≤ nbq
max
d ∆t, ∀t ∈ T (3.3)

where nb is the number of batteries, qmax
c and qmax

d are the maximum charging and dis-

charging rate of a single battery, respectively, T = {1, 2, · · · , T} is the time horizon under

consideration, with T being the total number of time windows.

In addition to the charging and discharging limits, the SOC at any time is limited by

the total capacities of the battery as

0 ≤ ct ≤ nbc
max[1− α · (m− 1)0.75 − β

√
m− 1] (3.4)

where cmax is the initial battery capacity, or the maximum energy, of a single battery, α and

β are the calendar aging and cycling aging coefficients of the battery described in months,

respectively, and m is the age of the battery in months [118]. The aging coefficient models

the phenomenon that the battery capacity becomes smaller over a long period of time.

15

3.1.2 Power from the grid

Denote qnet
t as the energy bought from the utility at time window t. Then we have

qnet
t = qld

t − qsol
t + qct − qdt (3.5)

where qld
t denotes the actual load at time window t, and qsol

t denotes the PV energy collected

from the solar panels at time window t. The PV energy can be modeled as

qsol
t = nsq

0
t γ

m−1
s (3.6)

where ns is the number of solar panels, q0t is the PV energy collected by a single panel at

time window t, γs is the efficiency of the solar panel described in months, m is the age of

the solar panel in months. The solar panel efficiency describes the aging effect of the solar

panel over time.

3.1.3 Objective function

The total cost of the system consists three parts: energy charge, power or demand

charge, and system cost.

Energy charge

Time-of-Use (TOU) is a rate plan that is determined by both the amount of energy

bought from the utility and the time when the energy is consumed. Despite slight differences

in rate between utilities, most TOU plans divide days into peak hours, part-peak hours, and

off-peak hours. Similarly, weeks are divided into weekdays and weekends; years are divided

into summer months and winter months.

Define the set of peak hours, part-peak hours, and off-peak hours as Hpk, Hpp, and

Hop, respectively. Denote the electricity cost during these three sets of hours as Ppk, Ppp,

and Pop, respectively. Considering the effects of inflation, the unit price ($ per kWh) at time

window t is given by:

pt =

Ppk(1 + r

⌊ t−1
W

⌋
infl), t ∈ Hpk

Ppp(1 + r
⌊ t−1

W
⌋

infl), t ∈ Hpp

Pop(1 + r
⌊ t−1

W
⌋

infl), t ∈ Hop

(3.7)

16

where rinfl is the annual inflation rate of electricity cost, W is the total number of windows

in one year, and the floor operator ⌊a⌋ returns the largest integer that is less than or equal

to a.

Define Hm as the set of time window indices that belong to the m-th month, and

assume there are M months in the time horizon T , that is, T =
⋃

m∈MHm. The energy

charge with the given TOU is:

CE =
∑
m∈M

∑
t∈Hm

pt max
(
qnet
t , 0

)
. (3.8)

whereM = {m|Hm ⊆ T } is the set of indices of months in the optimization time horizon.

Demand charge

The demand charge is proportional to the highest average power in each month.

Considering the effects of inflation, denote the demand charge at the m-th month

Dmax,m = D0 · (1 + r
⌊m−1

12
⌋

infl) (3.9)

where D0 is the initial demand charge in the unit of $ per kW.

The total demand charge can be calculated as

CD =
M∑

m=1

Dmax,m max
t∈Tm

qnet
t

∆t
(3.10)

System cost

The costs of solar panels and batteries include the costs for product procurement,

installation, and maintenance. It is assumed that the total cost is proportional to the

number of solar panels and batteries, as

CS = Psns + Pbnb (3.11)

where Ps and Pb are the unit costs (including procurement and installation) of solar panels

and batteries, respectively, and ns and nb are the number of solar panels and batteries,

respectively.

The objective of the problem is to minimize the long term total cost of the system

by identifying the optimum number of solar panels and batteries required for the system.

The optimum identification of the solar panels and batteries depends on the charging and

17

discharging schedule, thus the charging and discharging rates, qct and qdt , for all t ∈ T , will

also be considered as optimization variables.

Since the optimum design is performed off-line before system installation, the load

information, qld
t , and the solar energy, qsol

t , are unknown during the design phase. However,

the optimum design can be performed by using known historical data given that the load

and weather for a given location do not change dramatically from year to year [25]. Thus

the known historical data of qld
t and qsol

t are used in the optimum design as in [25].

Based on the above models and analysis, the optimization problems can be formulated

as

min . CE + CD + CS (P1)

s.t. (6.12)− (3.6),

ns, nb ∈ Z+, (3.12)

ns ≤ Ns, (3.13)

nb ≤ Nb, (3.14)

where Z+ is the set of non-negative integers, Ns and Nb are the maximum number of solar

panels and batteries allowed in the system, respectively, and the optimization is performed

with respect to the following variables: {qct , qdt }t∈H, ns, and nb. The values of Ns and Nb are

usually determined by the area of installation.

The above problem is a MINLP problem. The non-linearity comes from the maximum

term in both the energy charge CE in (4.5) and the demand charge CD in (4.6). The problem

is in general NP-hard.

3.2 Different approaches

3.2.1 Mixed Integer Linear Programming

In this section, we transform (P1) into an equivalent MILP problem [33], which can

be optimally solved by using the branch-and-bound (B&B) algorithm [119].

Since the non-linearity in (P1) comes from the maximum term in the objective func-

tion, we can equivalently convert it to a linear objective function by introducing new vari-

18

ables [120]. Define two new variables, qnet
+,t and qnet

max,m, with the following new constraints

qnet
t ≤ qnet

+,t, ∀t ∈ T (3.15)

qnet
t ≤ qnet

max,m, ∀t ∈ Hm (3.16)

qnet
+,t ≥ 0, ∀t ∈ T (3.17)

qnet
max,m ≥ 0, ∀m ∈M (3.18)

Based on the above definition and constraints, the energy charge and demand charge

can be upper bounded, respectively, by

C̄E =
∑
m∈M

∑
t∈Hm

ptq
net
+,t (3.19)

C̄D =
1

∆t

∑
m∈M

Dmax,mq
net
max,m (3.20)

The MINLP problem (P1) can now be equivalently converted to a new problem as

min . C̄E + C̄D + CS (P2)

s.t. (6.12)− (3.6), (3.12)− (3.18)

where the optimization variables are: {qct , qdt , qnet
+,t}t∈T , {qnet

max,m}m∈M, ns, and nb. Compared

to (P1), (P2) has two new groups of optimization variables, {qnet
+,t}t∈T and {qnet

max,m}m∈M. The

energy and demand charges in (P1) are replaced in (P2) with their respective upper bounds,

which are linear functions of the optimization variables. As a result, the non-linearity in

(P1) is removed and (P2) is an MILP.

The equivalence between (P1) and (P2) is established in the following lemma.

Lemma 1. The optimum solution to (P2) is also the optimum solution to (P1).

Proof. Denote the optimum cost functions from (P1) and (P2) as C∗
E + C∗

D + C∗
S and C̄†

E +

C̄†
D + C†

S, respectively. Since CE ≤ C̄E and CD ≤ C̄D by definition, we have C∗
E ≤ C̄†

E and

C∗
D ≤ C̄†

D.

Next we will show that C∗
E = C̄†

E and C∗
D = C̄†

D by using contradiction. Assume

C∗
E < C̄†

E and C∗
D < C̄†

D, then we can always make C̄†
E and C̄†

D smaller by letting

qnet
+,t = max(0, qnet

t) (3.21)

qnet
max,m = max

t∈Hm

qnet
t (3.22)

19

while keeping all other variables unchanged to satisfy all constraints. Thus we must have

C∗
E = C̄†

E and C∗
D = C̄†

D, and the equality is achieved when (3.21) and (3.22) are satisfied.

That is, (3.21) and (3.22) give the optimum values of qnet
+,t and qnet

max,m in (P2)

Substituting the optimum values of qnet
+,t and qnet

max,m given in (3.21) and (3.22) into

(P2), we can see that (P2) is exactly the same as (P1). Thus the optimum solutions to the

two problems are equivalent. This completes the proof.

The MILP problem in (P2) is still non-convex due to the integer constraints. The

MILP can be optimally solved by using the B&B algorithm [119], which performs systematic

enumeration of subsets (branches) of the feasible region by iteratively dividing the current

branch into two branches based on solutions of relaxed integer linear program in the current

branch. The solution in each branch are compared to estimated upper and lower bounds of

the optimal value, and a branch is discarded if it cannot outperform the best result found

so far by the algorithm.

The B&B algorithm can obtain the globally optimum solution to (P2) with a com-

plexity that is much lower than exhaustive search. The calculation in each branch requires

solving a LP problem.

To accurately account for the aging effects of the battery and solar panel, the opti-

mization needs to be performed over the entire life cycle of the battery and/or solar panels.

As a result, the optimization time horizon is in the order of years or longer. For example, if

the expected life cycle of a battery is 10 years and we use 1-hour windows, then there are a

total of H = 87, 648 hours and M = 120 months if include two leap years. As a result, the

total number of optimization variables are 3H +M + 2 = 263, 066. Even though LP can be

solved in polynomial time, the large number of optimization variables makes the complexity

extremely high and requires very long optimization time. In the B&B algorithm, relaxed LP

needs to be performed in each branch, and this further improves the computation complexity.

3.2.2 Dynamic Programming

In this section, we propose to solve (P1) by developing a low complexity algorithm

with the help of dynamic programming (DP).

The optimization variables in (P1) include the charging/discharging schedule, {qct , qdt }t∈T ,

and the number of batteries and solar panels, ns and nb. In order to implement DP, (P1)

is decomposed into two sub-problems by separating the dynamic variables, {qct , qdt }t∈T , and

20

static variables, {ns, nb}, as

min
{qct ,qdt }t∈T

CED ≜ CE(ns, nb) + CD(ns, nb) (P1a)

s.t. (6.12)− (3.6),

min
{ns,nb}

C∗
ED(ns, nb) + CS(ns, nb) (P1b)

s.t. ns, nb ∈ Z+,

ns ≤ Ns,

nb ≤ Nb,

where C∗
ED(ns, nb) is the optimum solution to (P1a) given ns and nb.

In (P1a), we first fix the static variables ns and nb, and minimize the energy and

demand charges by identifying the optimum dynamic variables {qct , qdt }t∈T . Under a fixed ns

and nb, the cost of battery and solar panels are fixed, so CS is excluded from the objective

function in (P1a). In the objective function, the energy and demand charges are expressed

as explicit functions of ns and nb. With the optimum scheduling obtained from (P1a), we

can then identify the optimum values of ns and nb in (P1b). (P1a) can be solved by using

DP, and (P1b) can be solved through coordinate descent with binary search.

Solving (P1a) with DP

DP is based on Bellman’s principle of optimality, which states that the state and

decision at the current moment fully determine the optimum policy in the future. However,

Bellman’s principle of optimality cannot be readily applied to (P1a), mainly due to the form

of the demand charge CD in its objective function.

In the calculation of the objective function, the summation in CE is performed on

the time scale of small time windows (e.g. hours), yet the summation in CD is performed

on the time scale of months, and the maximum operator in CD is performed over all the

time windows within a month. Such maximum operations cannot be readily described by

the Bellman equation. Thus we need to transform the calculation of CD such that it has

the same time scale as the calculation of CE, and then transform (P1a) into an equivalent

problem that satisfies Bellman’s principle of optimality.

21

Denote the indices of the first and last time windows in Hm as tm1 and tm2, respec-

tively. Then we define a new state variable ϕ
(m)
t as

ϕ
(m)
t =

0, t < tm1

max(ϕ
(m)
t−1, q

net
t), t ∈ Hm

maxt∈Hm qnet
t , t > tm2

(3.23)

Based on the above definition, the demand charge in the m-th month can be calculated

as

C
(m)
D =

Dmax,m

∆t

∑
t∈Hm

(
ϕ
(m)
t − ϕ

(m)
t−1

)
(3.24)

The total demand charge can then be calculated as

CD =
∑
m∈M

C
(m)
D =

1

∆t

∑
m∈M

Dmax,m

∑
t∈Hm

(
ϕ
(m)
t − ϕ

(m)
t−1

)
(3.25)

From (3.23), we have

CD =
1

∆t

∑
m∈M

Dmax,m

∑
t∈Hm

max(0, qnet
t − ϕ

(m)
t−1) (3.26)

The cost function in (P1a) can then be rewritten as

CE + CD =
∑
m∈M

∑
t∈Hm

[
pt max(0, qnet

t) +
Dmax,m

∆t
max(0, qnet

t − ϕ
(m)
t−1)

]
(3.27)

The cost function in (3.27) can help us convert (P1a) into an equivalent problem that

satisfies Bellman’s principal of optimality. For the optimization problem, the action variable

at t ∈ Hm is at = {qct , qdt }, and the state variables are βt = {St, ϕ
(m)
t−1}. To facilitate analysis,

for t ∈ Hm, define

r(βt, at) = pt max(0, qnet
t) +

Dmax,m

∆t
max(0, qnet

t − ϕ
(m)
t−1) (3.28)

With the above definition, (P1a) can be equivalently converted to

min
{qct ,qdt }t∈T

∑
m∈M

∑
t∈Hm

r(βt, at) (P3)

s.t. (6.12)− (3.6), (3.23)

In (P3), the cost function is decomposed as the summation of r(βt, at), which depends

solely on the current state variable βt and action variable at. Constraints (6.12) and (3.23)

22

describes the evolution of the state variables; constraints (3.2)-(3.6) specify the boundaries

of the state and action variables. Thus (P3) satisfies Bellman’s principal of optimality. The

Bellman equation of (P3) can be written as

V0(β0) = min
{qc0,qd0}

r(β0, a0)= 0

Vt(βt) = min
{qct ,qdt }

[r(βt, at) + Vt−1(βt−1)] , 1 ≤ t ≤ T, (3.29)

Specifically, the objective is to find at each time window i the optimum value function

Vt(βt) that corresponds to the optimum cost in the time horizon between [1, t]. In the above

notation, β0 denotes the initial state at t = 0, J = VT (βT) is the optimal cost from the initial

state to the finial state.

The optimum schedule qct and qdt can be obtained by solving the Bellman equation in

(5.40) through forward recursion based on following equations:

(sβt , aβt) = argmin
(s,a)∈Ωβt

[r(βt, a) + Vt−1(s)] , (3.30)

where Ωβt is the space that contains all state and action pairs, (s, a), such that we can reach

state βt from βt−1 = s by taking action a. At time t, aβt gives the optimum action to reach

state βt by minimizing the accumulated cost from the initial state to the current state βt;

correspondingly, sβt is the state preceding βt with the action aβt . Then the value function

Vt(βt) can be updated by

Vt(βt) = r(βt, aβt) + Vt−1(sβt) (3.31)

However, there is in general no closed-form solution to the Bellman equation for arbi-

trary state βt. We can numerically solve the Bellman equation by using algorithms such as

relative value iteration algorithm (RVIA) [121], the Viterbi algorithm [122], or the Bellman-

Ford algorithm [123]. The implementation of these algorithms requires the discretization

of the continuous state variables and action variables. A larger discritization step size can

reduce complexity at the cost of a lower precision, and vice versa. The tradeoffs between

complexity and accuracy have been studied in [124], [125], [126], [127]. The impacts of dis-

cretization step are studied with numerical examples in the next section, and it will be shown

that appropriate discretization step can be chosen to achieve negligible approximation errors

while maintaining low complexity of the algorithm.

23

The action space contains two variables, qct and qdt . Thus the size of the action space

grows quadratically with the number of discretization levels of the charging/discharging

action. Since the complexity of the DP algorithm is directly proportional to the size of the

action and state spaces, we propose to reduce the dimension of the action space by replacing

the two action variables qct and qdt in (P3) with a single variable, qnet
t , as

min
{qnet

t }t∈T

∑
m∈M

∑
t∈Hm

r(βt, q
net
t) (P4)

s.t. (6.12)− (3.6), (3.23)

The equivalence between (P3) and (P4) is established in the following lemma.

Lemma 2. The optimum solution to (P4) is also the optimum solution to (P3).

Proof. For a given pair {qct , qdt }, qnet
t is uniquely determined according to (4.4). On the other

hand, for a given qnet
t , we may have multiple {qct , qdt }. To prove the equivalence between

(P3) and (P4), it is sufficient to show that the optimum {qct , qdt } for (P3) can be uniquely

determined by the optimum {qnet
t } for (P4), that is, there is a bijective relationship between

the optimum solutions between (P3) and (P4).

Assume there are two different pairs of action variables, a1t = (qc1t , qd1t) and a2t =

(qc2t , qd2t), which provide the same transition from β(i − 1) to βt in the discretized state

space. By definition:

qc1t γe −
qd1t
γe

= qc2t γe −
qd2t
γe

= ct − ct−1 (3.32)

then we have:

(qc1t − qc2t)γe =
qd1t − qd2t

γe
(3.33)

Without loss of generality, assume qc1t > qc2t . Given the fact that 0 < γe < 1, we have,

qc1t − qc2t > qd1t − qd2t

qc1t − qd1t > qc2t − qd2t

qnet1
t > qnet2

t

Based on (3.28), we have

r(βt, a
1
t) > r(βt, a

2
t) (3.34)

24

Then according to (3.30), a1t cannot be the optimum solution. Thus an optimum qnet
t corre-

sponds to one unique pairs of (qct , qdt). This above analysis proves the bijective relationship

between the optimum qnet
t and (qct , q

d
t). This completes the proof.

Based on the equivalence between (P3) and (P4), we can solve (P4) by using the scalar

variable qnet
t as the action variable during the numerical solution of the Bellman equation with

(3.30) and (3.31). The Bellman equation is solved with a modified Bellman-Ford algorithm,

and details are given in Algorithm 1.

Algorithm 1 Modified Bellman-Ford algorithm
Require: Step size q, discretized state space S, discretized action space A, cost function

r(s, a),∀s ∈ S, a ∈ A.

1: Initialization: set the initial state β0 = 0, the initial value function V0(β0) = 0.

2: for t = 1 to T do

3: for βt ∈ S do

4: Find the optimal (previous state, action) pair that can reach βt:

(sβt , aβt) = argmin
(s,a)∈Ωβt

[r(βt, a) + Vt−1(s)]

5: Compute the value function

Vt(βt) = r(βt, aβt) + Vt−1(sβt)

6: end for

7: end for

8: Identify the optimum ending state β∗
T = argminβT∈S VT (βT)

9: Identify the optimum actions and states at each iteration by tracing back from the the

optimum ending state

a∗t−1 = aβ∗
t
, β∗

t−1 = sβ∗
t
, for t ∈ {T, T − 1, · · · , 2}

Ensure: Optimum policy a∗t , for t ∈ {1, 2, · · · , T − 1}.

25

Solving (P1b) with Coordinate Descent

The coordinate descent (CD) algorithm is used to solve the optimum values of nb and

ns by using the results of the DP algorithm in the previous subsection. The CD algorithm

is implemented by using relaxed integer programming (RIP) of (P1), where we remove the

integer constraint nb, ns ∈ Z+. The integer-relaxed version of (P1) forms a convex problem,

because it contains only linear and maximum operators of the optimization variables: ns, nb,

and {qct , qdt }t∈T .

The CD algorithm is summarized in Algorithm 2. In the algorithm, C∗
ED (ns, nb) is

the optimum solution to (P1a) according to Algorithm 1.

Algorithm 2 CD algorithm to compute nb and ns

Require: Step size q.

1: Initialization: Iteration counter k ← 0, and n0
b ← Nb, n0

s ← Ns.

2: repeat

3: Identify the value of n(k+1)
s : using binary search to solve

n(k+1)
s = argmin

ns

{
C∗

ED

(
ns, n

(k)
b

)
+ Psns + Pbn

(k)
b

}

4: Identify the value of n(k+1)
b : using binary search to solve

n
(k+1)
b = argmin

nb

{
C∗

ED

(
n(k+1)
s , nb

)
+ Psn

(k+1)
s + Pbnb

}

5: k ← k + 1.

6: until |n(k+1)
b − n

(k)
b | < 1 and |n(k+1)

s − n
(k)
s | < 1.

7: Rounding the solution n†
s = n

(k+1)
s and n†

b = n
(k+1)
b to their nearest integer values.

Ensure: The optimal size n†
b and n†

s, the total cost C∗
ED

(
n†
s, n

†
b

)
+ Psn

†
s + Pbn

†
b

Since the integer relaxed version of (P1) is convex, it is convex in each individual

variable. Thus CD can be performed to identify the integer-relaxed optimum solution of ns

and nb by successively minimizing along coordinate directions. In each iteration, we fix the

value of one variable and identify the optimum value of the other. Given the fact that the

objective function is convex in ns and nb, the optimization in each direction can be performed

by using binary search. The implementation of binary search requires an upper bound on

26

the values of nb and ns, and both can be upper bounded by the area of installation as in

(3.13) and (3.14).

Due to the convexity of the integer-relaxed optimization problem, the CD algorithm

will converge to the integer-relaxed optimum solutions upon convergence. Denote the opti-

mum solution to the integer-relaxed optimization problem as n†
s and n†

b. Then the integer

solution can be obtained by rounding n†
s and n†

b to their nearest integer values. It should be

noted that the final integer solution might be suboptimum due to rounding of the solution

of RIP.

3.3 Case studies

Simulation results are presented in this section to demonstrate the performance of

the proposed optimum designs of PV system with BESS. The MILP is solved by CVX, a

package for specifying and solving convex programs [128]. Both MILP and DP are solved in

MATLAB. All simulations are performed on a workstation with a 6-core Intel Core i7-5820K

CPU operating at 3.3 GHz, NVIDIA GeForce GTX 950 GPU, and 32 GB of random access

memory (RAM).

3.3.1 Simulation Environment

The designs are performed by using load data from a public database provided by the

Office of Energy Efficiency and Renewable Energy (EERE) at the United States Department

of Energy (DOE) [129]. The database provides hourly load data in one year from different

types of buildings at various locations. The data from a large hotel building in San Francisco

in 2004 are used in this paper. The energy provided by solar panels is estimated by using

the PVWatts calculator [130] from National Renewable Energy Laboratory (NREL). The

utility charges are calculated by using the TOU rate (pt, D0) of Pacific Gas and Electric

Company (PG&E) in Table 3.1, along with the time division in Table 3.2 [131]. The size of

the time window is set at ∆t = 1 hour. The inflation rate of electricity cost is rinfl = 2%.

The batteries are modeled by using Tesla Powerwall, which has a charging/discharging

rate of qmax
c = qmax

d = 5 kW, and a capacity of cmax = 13.5 kWh, at a price of Pb = $5, 900

each. Based on the datasheet [132] and calculation, the energy efficiency of the batteries is

γe = 94%. According to the warranty on the data sheet, the calendar aging coefficient is

α = 0.0036, and the cycling aging coefficient is β = 0.0155. The initial SOC of battery in

27

Table 3.1: TOU rate in San Francisco

Total Energy Rates ($ per kWh) Peak Part-Peak Off-Peak

Summer 0.15384 0.11333 0.08651

Winter - 0.10779 0.09317

Total Demand Rates ($ per kW) 16.08

Table 3.2: Times of the year and times of the day

Service Time Summer (5/1 to 10/31) Winter (11/1 to 4/30)

Peak 13:00 to 19:00 -

Part-Peak 10:00 to 13:00 and 19:00 to 22:00 10:00 to 22:00

Off-Peak 22:00 to 10:00

the system is 0.

The price of a 10kW solar panel is set at Ps = $6, 400, including the price of products

and installation. A maximum of Ns = 120 panels can be installed on the hotel rooftop

limited by the area. Similarly, it is assumed that a maximum of Nb = 100 batteries can be

installed in the system. The storage efficiency for solar panels described in month is set at

γs = 99.96% [133].

To evaluate the profitability, the savings in monthly bills are discounted with an

annual interest rate (rintr) of 4% to calculate the net present value (NPV) up to the M -th

month:

NPV =
M∑

m=1

Csaving(m) · (1 + rintr)
⌊m−1

12
⌋ (3.35)

The break-even point is defined as the month up to which the NPV of savings covers the

total system cost for the first time.

3.3.2 One-Year Results with MILP

We first study the optimum designs of the PV system with MILP. Due to the high

complexity of MILP, the design is restricted to a time horizon of one year. Optimum designs

28

Table 3.3: Annual utility bill under different configurations

System Battery-assisted PV PV-only

Utility bill ($) 361,030 446,413

Savings in bill ($) 252,561 167,178

Reduction in bill 41.2% 27.2%

Electricity bill without PV ($) 613,591

with longer time horizons will be performed by using DP and CD later this section. Due

to the short time horizon, the unit prices for solar panels and batteries are prorated to one

year in the cost function. That is, based on the assumption of a 10-year life cycle of the

solar panels and batteries, the unit price used in the cost function in the one-year study is

obtained by dividing their actual prices by a factor of 10. The optimization is performed

by solving the MILP defined in (P2). The optimization results indicate that the optimum

performance can be achieved by using n∗
b = 90 Tesla Powerwall batteries and n∗

s = 120 10

kW solar panels in the PV system. The total saving in annual utility bills after optimization

are shown in Table 3.3. For reference, we also compare the performance of a system with

solar panels but without batteries. The proposed optimum design of the battery-assisted PV

system can achieve a 41.2% reduction in utility bills. For the PV-only system, the saving in

utility bill drops to 27.2%.

Fig. 3.2 shows a snapshot of energy usage on a single day, July 1st, with or without

the proposed PV system. The top figure shows the net load qnet(i), which is the actual

amount of energy bought from the utility at the i-th hour; the bottom figure shows the

battery SOC s(i). Both are shown as functions of the hour of the day. Throughout the

day, the proposed system with both PV and battery has the lowest net load, followed by

the PV-only and conventional systems, respectively. The largest energy saving is achieved

between 10:00 to 16:00, where the net load drops to zero because the generated solar energy

exceeds the actual load. During this time period, the extra energy is charged to the battery.

During the evening hours between 19:00 to 24:00, the battery is gradually discharged in the

proposed system, which maintains a steady net load at 450 kWh. The battery is depleted at

24:00 because of the low energy usage after that. On the other hand, for the conventional or

PV-only systems, the load is peaked at 780 kW at 21:00. Therefore, a considerable amount

29

0 5 10 15 20

0

200

400

600

800

N
e
t
lo

a
d
 q

n
e

t (i
)

(k
W

h
)

Without PV or Battery With PV With PV and Battery

0 5 10 15 20

Time (hour)

0

0.5

1

B
a
tt
e
ry

 S
O

C
 s

(i
)

(M
W

h
)

Figure 3.2: Snap shot of 1-day energy usage on July 1st.

0 20 40 60 80 100 120 140 160

Time (hour)

-100

0

100

200

300

400

500

600

700

800

900

1000

N
e

t
lo

a
d

 q
n
e
t (i

)
(k

W
h

)

No PV or Battery

PV-only

Battery-assisted PV

(a) First week of June

0 20 40 60 80 100 120 140 160

Time (hour)

-100

0

100

200

300

400

500

600

700

800

900

1000

N
e

t
lo

a
d

 q
n
e
t (i

)
(k

W
h

)

No PV or Battery

PV-only

Battery-assisted PV

(b) First week of December

Figure 3.3: Snap shots of 1-week energy usage in the first weeks of June and December,

respectively.

of energy is saved with the proposed optimum design.

Figs. 3.3a and 3.3b show one-week snapshots of energy usage during the first week

of June and December, respectively. Due to the relatively mild weather in San Francisco,

the loads in June and December are similar. There are usually two peaks in one day: the

early one is around 08:00 and the later one is around 20:00. The loads with PV in summer

is much lower than it is in winter especially on the early peak. The integration of solar and

30

PV can achieve significant peak shaving. In both months, the peak of the original load is

around 780 kW, and it is shaved to 480 kW and 510 kW in June and December, respectively.

Even though employing PV without batteries can achieve similar performance as the battery

integrated PV system during day time, the omission of batteries results in the same peak as

the conventional system in the evening hours, when the energy demand is the highest.

Both figures have a significant peak shaving phenomenon after using batteries. The

difference between the peaks of PV-only and battery-integrated PV systems corresponds to

batteries’ discharging rate. In these two figures, the load difference is about 300kW, which

is smaller than the maximum discharging rate of 90 Tesla Powerwall batteries. The area

between the curves of battery-integrated PV system and PV-only system is equal to the

amount of energy discharged from the batteries.

3.3.3 Comparison between results from MILP and DP

Next we compare the results obtained from MILP and DP in terms of both accuracy

and complexity. Due to the high complexity of MILP, the comparison is performed by

optimizing the system over a time horizon of one year. Since DP relies on discretization

of the battery capacity and RIP is employed in CD, the results in DP are suboptimum

compared to their MILP counterparts.

Fig. 3.4 shows monthly bills in a year with optimizations performed by using MILP

and DP, respectively. In DP, the battery capacity is discretized by using a step size of

q = 10 kWh. Both MILP and DP obtain the same optimization results for the number of

Tesla Powerwall batteries, n∗
b = 90, and the number of 10 kW solar panels, n∗

s = 120. The

scheduling results of DP and MILP are different due to the discretization approximation

employed by DP. The results obtained from DP and MILP are very close to each other. It

should be noted that the bills obtained by MILP in some months are higher than those from

DP, but the results from MILP always yield the lowest annual bill, which is the objective

function of MILP.

We can increase the precision of DP by reducing the step size q, at the cost of a higher

complexity. Thus the tradeoff between accuracy and complexity of DP can be adjusted by

tuning the discretization step size q. Table 3.4 shows the percentage error of the DP results

compared to the MILP results under different step size q. The percentage error increases in

q as expected. Using a step size of q = 10 kWh or less can ensure that the approximation

31

Month

1 2 3 4 5 6 7 8 9 10 11 12

E
le

c
tr

ic
it
y
 c

o
s
t

($
)

×104

0

1

2

3

4

5

6

7
Monthly Electricity Bill in the 1st year

Without ESS, Annual=$613.59k

With ESS MILP, Annual=$361.03k

With ESS DP, Annual=$371.26k

Figure 3.4: Comparison of monthly electricity bill with different scheduling approaches

(q=10 kWh).

Table 3.4: Error of DP for different step size

Step size q (kWh) 5 10 20 25 50 100

Annual bill (k$) 365.45 371.56 372.61 373.49 375.59 395.83

Percent error (%) 1.22 2.92 3.21 3.45 4.03 9.64

error is below 3%. With 90 Tesla Powerwall batteries and q = 10 kWh, the battery capacity

is discretized into 90× 13.5/10 = 121 states.

Fig. 3.5 compares the complexity of MILP and DP algorithm as a function of the

number of months in the optimization horizon. The complexity is measured as the amount

of time (in seconds) required to solve the optimization problem. The complexity of MILP

scales exponentially with m, the number of months in the time horizon. The complexity

quickly becomes prohibitively high when the optimization horizon is long. On the other

hand, the complexity of DP scales linearly with the number of months in the optimization

horizon. The slope of the linearly scaled complexity increases as the step size q decreases.

For a time horizon of 20 months, the optimization time required by MILP and DP with

q = 10 kWh is 500.5 and 1833.0 seconds, respectively. The complexity difference will further

32

0 5 10 15 20

number of month

0

200

400

600

800

1000

1200

1400

1600

1800

2000

ti
m

e
 t
o
 r

u
n
 t
h
e
 a

lg
o
ri
th

m

Time comparison of MILP and DP in different time horizon

MILP

DP (step=100)

DP (step=50)

DP (step=10)

Figure 3.5: Time to run the MILP and DP (q = 10, 50, 100 kWh).

increase over longer time horizons.

3.3.4 Ten-Year results with DP

In this subsection, optimizations are performed over a time horizon of 10 years with

the DP algorithm, and this corresponds to T = 87, 648 hours. A period of 10 years is roughly

on the same time scale as the life cycle of solar panels and batteries. Consequently, results

obtained by optimizing over a 10-year time horizon can be better tuned based on the aging

effects of the solar panels and batteries. However, the complexity of MILP is prohibitively

high over a 10-year period, so only results from DP are shown. In DP, the step size is set at

q = 10 kWh to achieve a balanced tradeoff between complexity and accuracy. Based on the

optimization results, n∗
b = 96 Tesla Powerwall batteries and n∗

s = 120 10 kW solar panels

are required for the PV system. Compared to the one-year optimization results, 6 more

Tesla Powerwall batteries are required to compensate for the decrease in both efficiency and

storage capacity. The number of solar panels remains unchanged at the maximum number

allowed by the area of the installation site.

The total utility bills under different system configurations over the 10-year period

are shown in Table 3.5. The corresponding system costs are also shown in the table. If we do

not consider the system cost, the battery-assisted PV system and PV-only system achieve a

33

Table 3.5: Utitlity and system cost under 10-year horizon

System Battery-assisted PV PV-only

Utility bill ($) 3,665,409 5,075,923

Savings in bill ($) 3,402,434 (48.1%) 1,991,920 (28.2%)

System cost ($) 1,334,400 768,000

Break-even point (month) 66 51

Total cost (utitlity + system) ($) 4,999,809 5,843,923

Total saving (utitlity + system) ($) 2,068,034 (29.3%) 1,223,920 (17.3%)

Electricity bill without PV ($) 7,067,843

48.1% and 28.2% reduction in the total utility bills, respectively. The savings are substantial

and much greater than the cost of solar panels and/or batteries. The battery-assisted PV

system and the PV-only system achieve the break-even points at the 66th and 51st month,

respectively.

In addition, the battery-assisted PV system significantly outperforms the PV-only

system, and the extra savings in utility bill due to the addition of batteries far exceed the

cost of batteries. For example, the battery-assisted PV system costs $566,400 more than

the PV-only system, yet it can achieve an additional $1,410,514 saving in the 10-year utility

bill. The total costs, which include both utility bill and system cost, of the battery-assisted

PV and PV-only systems are $4,999,809 and $5,843,923, respectively, which are 29.3% and

17.3% lower than the total cost of the system without PV.

The impacts of the cost of batteries and solar panels are studied in Figs. 3.6 and

3.7. Fig. 3.6 shows the optimum number of solar panels as a function of the PV unit price,

under various values of BESS unit price. When the PV unit price is low, e.g., under $4,000

per panel, then the system always selects the maximum number of solar panels allowed by

the system to take advantage of low cost solar energy. The optimum number of solar panels

decreases as the PV unit price increases. Under a given PV unit price, a higher battery unit

price results in more solar panels, because the system needs more solar energy to compensate

for the smaller battery capacity due to higher batter cost. Similar trends are also observed

for the optimum number of batteries, which decreases in battery unit price but increases in

34

0 2000 4000 6000 8000 10000 12000 14000

Unit price of solar panel (Ps)

95

100

105

110

115

120

125

O
p
ti
m

a
l
P

V
 s

iz
e
 (

n
s
)

The optimal PV size under different system unit price

Pb = 11200

Pb = 8400

Pb = 5600

Pb = 2800

Figure 3.6: Change of solar panels under different unit price

0 2000 4000 6000 8000 10000 12000 14000

Unit price of battery (Pb)

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

T
o
ta

l
1
0
-y

e
a
r

c
o
s
t
($

)

106 The optimal cost under different system unit price

Ps = 12800

Ps = 9600

Ps = 6400

Ps = 3200

Figure 3.7: Change of total cost under different unit price of the battery and solar panel

PV unit price.

Fig. 3.7 demonstrates the impacts of PV and battery prices on the total 10-year

cost of the system. Under a given battery unit price, the total 10-year cost increases almost

linearly with the PV unit price. The rate of increasing is not affected by the battery unit

price. Similar linear relationship is also observed between the total cost and battery unit

35

price under a fixed PV unit price.

3.4 Conclusion

The optimum designs of photo-voltaic systems with battery energy storage systems

have been studied in this paper. In order to accurately model and quantify the impacts of

aging effects of solar panels and batteries, the optimum designs were performed over a long

time horizon covering the entire life cycles of the battery-assisted PV systems. MILP- and

DP-based methods have been proposed to solve the optimization problem. The MILP-based

solution can obtain the globally optimum solution, but with prohibitively high complexity

over long optimization time horizon. The DP-based solution provides a balanced tradeoff

between accuracy and complexity. Case studies with real world data demonstrated that

employing batteries in a PV system can achieve significant peak shaving and energy saving.

Over a ten-year period, the total costs of a battery-assisted PV system and PV-only system

are 29.3% and 17.3% lower than a conventional system without PV.

36

4 Reinforcement Learning Based On-Line Battery Energy Storage System

Schedule Optimization

The last chapter has discussed the feasibility of saving electricity bill by storing the

excessive solar energy during off-peak hours and discharging it during peak hours. It guides

the consumers on investing a battery assisted PV system as an outlook of the whole off-line

optimization problem, but does not provide an on-line ESS scheduling algorithm.

In this chapter, we propose a new DDPG-based online scheduling algorithm for a

given PV systems with BESS. In specific, we propose a new DDPG reward function that

can learn from the actions of an off-line non-causal optimum scheduling algorithm from last

chapter. The new reward function can guide the learned strategy to achieve peak shaving

and load shifting through a balanced process of exploration and exploitation. The newly

proposed algorithm can minimize overall energy cost through online scheduling of BESS

systems by learning the behaviors of renewable energy generation and grid operations.

4.1 Problem formulation

The same system in Fig. 3.1 is considered for this problem. However, the problem

formulation needs to be slightly changed.

4.1.1 Battery Model

Based on the proof in the last chapter, the two action variables qct and qdt are replaced

by a single variable qt represents the amount of energy change due to battery charging or

discharging at time slot t, with qt > 0 for charging and qt < 0 for discharging. The battery

dynamics can be described by the following difference equation,

ct+1 =

ct + qtγe, qt > 0,

ct, qt = 0,

ct + qt/γe, qt < 0,

(4.1)

then the constraint on charging and discharging is changed correspondingly to:

−nbq
min ≤ qt ≤ nbq

max (4.2)

37

where qmin and qmax are the maximum discharging and charging rate. The SOC constraint

remains the same:

0 ≤ ct ≤ nbc
max[1− α · (m− 1)0.75 − β

√
m− 1] (4.3)

4.1.2 Power from the grid

Now we have the energy bought from the utility:

qnet
t = qld

t − qsol
t + qt, (4.4)

4.1.3 Objective function

The objective of this problem is changed to minimize the expected monthly electricity

bill by identifying the optimum charging and discharging schedule based on stochastic load

and PV information in a given month.

With the same Time-Of-Use (TOU) rate plan and time division as the last chapter,

the definitions of the energy charge and demand charge are restricted to the m-th month.

The energy charge with the given TOU in the m-th month is:

CE =
∑
t∈Hm

ptq
net
t (4.5)

where Hm is the time slots in the m-th month. The demand charge in the m-th month can

be calculated as:

CD = Dmax
t∈Hm

qnet
t (4.6)

where D is the unit demand charge in the unit of dollar per kWh.

The optimization problem can be formulated as:

min
{qt}t∈Hm

E(CE + CD) = E

[∑
t∈Hm

ptq
net
t +Dmax

t∈Hm

qnet
t

]
, (P1)

s.t. (4.1)− (4.4),

where the expectation is performed with respect to the distributions of the load and PV

information. Given the stochastic nature of the load and PV, the problem will be formu-

lated under the framework of Markov decision process (MDP) in this section. The MDP

formulation enables the RL-based solution to be presented in the next section.

38

4.2 Deep Deterministic Policy Gradient approach

4.2.1 Markov Decision Process

An MDP is a discrete time stochastic control process that consists of a 5-tuple

(S,A,P ,R, γ), where S is the set of states,A is the set of possible actions, P = {P(st+1|st, at)}
is the set of state transition probabilities, with P(st+1|st, at) being the probability of tran-

sitioning from state st ∈ S to state st+1 ∈ S with action at ∈ A, rt = r(st, at) ∈ R is the

immediate scalar reward or cost by applying action at ∈ A to state st ∈ S, and 0 < γ ≤ 1

is the discount factor. The learner or the decision maker is called the agent, and everything

beside the agent in the system is called the environment E. Based on the system model

of the PV-assisted energy storage system, we can formulate the problem under the MDP

framework as follows.

State Space S

The state at time window t includes the hourly index in a day ht ∈ H, the load qld
t ,

the solar energy qsol
t , the state of charge ct. Thus st = {ht, q

ld
t , q

sol
t , ct}. The TOU rate pt is

not included here because pt is a deterministic function of the hour index t. The system has

causal knowledge of qld
t and qsol

t , but their future values are unknown.

Action Space A

The actions or decisions that can be made at t is the battery charging/discharging

amount qt. The possible actions should always meet the constraint in (??). MDP with

constraints can be modeled as a constrained MDP and solved by adding a safety layer

as [134]. A similar method is adopted in the RL-based solution proposed in this paper and

details are given in the next section.

Transition Probability P

Given the current state st = {ht, q
ld
t , q

sol
t , ct}, the action at = qt only affects the

transition of the state-of-charge ct. Other transitions of load and solar energy are unknown

and are affected by weather in the real world. Specifically, the transition of the hour index

is deterministic as follows

ht+1 = mod (ht + 1, 24) (4.7)

39

where mod stands for the modulo operator. The transition of state of charge is described

in the battery dynamics in (4.1). To deal with the unknown transition probability of load and

solar energy, one method is to discretize the possible states, and obtain the corresponding

transition probabilities of discrete states by using historical data. However, the method

in [135] cannot deal with continuous states such as the solar and load data used in this

paper. Instead of explicitly identifying the transition probabilities, the problem can also be

solved by using RL, where the agent can interact with the environment and implicitly learn

the transition probability from past experiences. The MDP formulation presented in this

section can also be applied to RL algorithms.

4.2.2 Reinforcement Learning

Policy and Reward

The agent chooses actions based on a policy. A stochastic policy, π(st) = {P(at|st)|at ∈
A}, defines the probability distribution of choosing different actions from the current state

st ∈ S. A deterministic policy function, denoted by µ(st), specifies the action to choose

when in state st, that is, at = µ(st). The deterministic policy is adopted in this paper such

that a certain action qt can be taken given the current system state st = {ht, q
ld
t , q

sol
t , ct}.

Define the long-term discounted reward starting from time t as

Rt =
∞∑
i=t

γi−tr(si, ai). (4.8)

The discounted reward Rt is a random variable, the distribution of which depends on the

stochastic nature of the environment and policy. The general objective of MDP is to find

the optimal policy π∗ or µ∗ that will maximize the long-term expected discounted reward

over an infinite time horizon:

R̄0 =
∞∑
t=0

E
[
γtr(st, at)

]
, (4.9)

where the expectation is performed with respect to both the environment and policy. For a

system with a deterministic policy, the expectation in (4.9) is performed with respect to the

environment only.

An episodic MDP is considered in this paper since the agent-environment interaction

breaks naturally into months. Episodic MDP can be regarded as a special case of MDP, and

40

it considers episode termination as an absorbing state that transits only to itself with zero

rewards [136].

Next we will reformulate the objective function in (P1) in the form of an episodic

MDP. Define ϕt = max(qnet
t , ϕt−1) with ϕ0 = 0. The long-term expected reward in (4.9) with

γ = 1 can be expressed as

R̄0 =
∑
t∈Hm

E(rt), (4.10)

where

rt = −
[
ptq

net
t +D · (ϕt − ϕt−1)

]
. (4.11)

In regular MDP, setting γ < 1 is used to ensure the convergence of the expected long

term reward over an infinite horizon. In episodic MDP the reward is calculated over a finite

horizon, thus we can set γ = 1. In this case, the expected reward is the same as the expected

electricity bill. All the following discussions are still applicable to γ < 1.

Reward functions of RL systems are often carefully designed to achieve a balanced

tradeoff between exploration and exploitation. The original reward function under the MDP

framework might not be suitable for this role. Detailed reward function design for RL will

be discussed in the next section.

Action-Value functions

The general action-value function used in MDP and RL is the expected discounted

return after taking an action at from the state st by following a policy and reward. Both the

policy and the reward could be stochastic.

Qπ(st, at) = Eri≥t,si>t∼E,ai>t∼π [Rt|(st, at)] (4.12)

where the expectations are performed with respect to ri≥t, si>t, ai>t. The current and future

reward and the future state depend on the environment, and the future action depends on the

policy. Rt is the long-term discounted reward starting from t as defined in (5.36). Denoting

expectations with respect to rt, st ∼ E, at ∼ π as Ert,st,at , the action-value function in (4.12)

can be expressed recursively as the Bellman equation,

Qπ(st, at) = Ert,st+1

[
r(st, at) + γEat+1Q

π(st+1, at+1)
]

(4.13)

41

The detailed derivation of (4.13) is given in the Appendix A.

For a system with a deterministic policy µ and a deterministic reward function

r(st, at), the action-value function, or Q function, is:

Qµ(st, at) = Esi>t
[Rt|st, µ(st)] , (4.14)

where the expectations are performed with respect to the future states, si>t. The future

actions, current and future rewards are all determined by the future states. The action-value

function in (4.14) can be expressed in the recursive Bellman equation form as,

Qµ(st, at) = Est+1 [r(st, at) + γQµ(st+1, µ(st+1))] . (4.15)

If the optimal action-value function Q∗(s, a) is known, then the optimal policy can

be obtained as,

µ∗(s) = argmax
a∈A

Q∗(s, a). (4.16)

On the other hand, for a given optimal policy µ∗, the optimal action-value function Q∗(s, a)

can be obtained by applying the optimal policy to the action-value function. In practice,

neither the optimal policy nor the optimal action-value function is known, thus they need to

be estimated. Given the complexity of the problem formulated in this paper, it is difficult,

if not impossible, to directly solve the Bellman equation either analytically or numerically.

To solve the Bellman equation, most MDP algorithms discretize the state spaces into

finite states. For example, MDP with policy iteration updates to a better policy in each

iteration by exhaustively searching and evaluating all possible policies (actions) along the

state transition trellis [137]. MDP with value iteration is a special case of policy iteration

where the policy is evaluated only once in one sweep [136]. Both algorithms suffer from the

curse of dimensionality and incur prohibitive complexities when the size of the state space

and/or action space is large. In addition, the discretization of the state or action space leads

to loss in model accuracy.

4.2.3 Deep Q-learning Network

Q-learning is an RL algorithm that can learn the policy and update the Q function

in an iterative manner. It does not need an explicit model of the environment, such as the

transition probabilities in the MDP formulation. Since the expectation in the action-value

42

function in (4.15) is not taken with respect to the policy, the optimal deterministic policy

µ∗ can be learned by transitions obtained by following other policies, i.e. Q-learning is an

off-policy algorithm [136].

Q-learning uses an ε-greedy policy. At the beginning of the learning process, the

action-value function Q(s0, a0) can be initialized to an arbitrary value. Then the action-

value function in the t-th iteration can be updated as:

Q(st, at)← (1− ε)Q(st, at) + ε[r(st, at) + γmax
at+1

Q(st+1, at+1)], (4.17)

where ε ∈ [0, 1] is the learning rate.

In Q-learning, the action is chosen to maximize the estimated expected discounted

return for a given state s as

λ(s) = argmax
a∈A

Q(s, a). (4.18)

Simple Q-learning approximates the action-value function by a lookup table (LUT).

However, the LUT-based Q-learning method cannot be applied to complex environments be-

cause large non-linear approximators make the algorithm unstable. Deep Q-learning Network

(DQN) uses the deep neural network (DNN) to estimate Q(s, a), which can be parameterized

as the DNN weight coefficients θQ. The parameterized Q-function is updated to the target

value as

yt = r(st, at) + γmax
at+1

Q(st+1, at+1|θQ). (4.19)

then the parameters θQ are learned by minimizing the following loss function:

L(θQ) = Est+1

[(
Q(st, λ(st)|θQ)− yt

)2]
. (4.20)

The expectation operation in the above equation can be approximated by using a size-|R|
replay buffer R, which stores the previous |R| transitions before the current time slot t,

that is (si, ai, ri, si+1)i∈{t−|R|+1,...,t−1,t}. During the time slot t, a mini-batch M ⊂ R with

|M| transitions (si, ai, ri, si+1)i∈I(M) are randomly sampled from R by following a uniform

distribution without replacement, where I(M) is the time index of transitions in the mini-

batchM. The expectation in (4.20) can then be approximated by averaging over the mini-

batchM. Then the weights are updated to minimize the following loss function,

θQ ← θQ + l∇θQ
1

|M|
∑

i∈I(M)

(
Q(si, ai|θQ)− yi

)2
, (4.21)

43

where l is the learning rate of the DQN agent.

In addition to the DNN with parameter θQ, a target network parametrized by θQ
′ is

updated every k iterations. This prevents the network from propagating too fast and reduces

the risk of divergence since the target values are kept for k iterations.

Despite the success of DQN, it still suffers from the curse of dimensionality because

of the discrete action space, where the action in each iteration is selected by exhaustively

searching all possible actions. For systems with continuous actions, the action space has to

be discretized in DQN to approximate the continuous actions, and this results in a loss of

precision. We propose to solve this problem by adopting the DDPG approach, which can

operate directly on a continuous action space.

4.2.4 Deep Deterministic Policy Gradient

We propose to use the DDPG learning method to solve the ESS scheduling problem,

which has a continuous action space A. Instead of using a greedy policy that requires a

global maximization for continuous action space, the DDPG algorithm uses a policy gradient

approach to search along the gradient of a policy-dependent value function with respect to

the policy.

Two DNNs are employed in DDPG, and they are denoted as actor and critic networks,

respectively. The actor network is a DNN used to model the deterministic policy µ for a

given state s as µ(s|θµ), where the parameter θµ represents the weights of the actor network.

The critic network is a DNN used to model the Q-function as Q(s, a|θQ) with parameter

θQ. With the actor-critic pair, define the policy-dependent value function with respect to a

policy µ as:

J(µ) =

∫
S
ρµ(s)Q(s, µ(s|θµ)|θQ)ds

= Es∼ρµ
[
Q(s, µ(s|θµ)|θQ)

]
, (4.22)

where S is the state space, ρµ is the state distribution under policy µ. The policy-dependent

value function in (4.22) is parameterized by θµ instead of depending on the action. The

parameters θµ can thus be updated by searching along the gradient of J(µ) with respect to

θµ as [138],

44

Figure 4.1: The training process of the actor and critic networks in DDPG.

∇θµJ ≈ Es∼ρµ
[
∇θµQ(s, a|θQ)|a=µ(s|θµ)

]
= Es∼ρµ

[
∇aQ(s, a|θQ)|a=µ(s)∇θµµ(s|θµ)

]
.

(4.23)

In the equation above, we need to calculate the expected gradients of both the actor and

critic networks. The expectation operation can be approximated by using the replay buffer

R with mini-batch M as described in the previous subsection. The training process of the

actor and critic networks in DDPG with replay buffer is shown in Fig. 5.3. In addition to

the two networks in the figure, two target networks Q′ and µ′ with parameters θQ
′ and θµ

′

are designed for the actor and critic networks, respectively. The target networks are used to

prevent the networks from propagating too fast.

The critic network used to model Q(s, a|θQ) is similar to the DNN used in the DQN,

and it evaluates how good an action is. Similar to the DQN target value in (4.19), the target

critic value for the i-th transition inM under the current target actor is calculated by

yi = ri + γQ′
(
si+1, µ

′(si+1|θµ
′
)|θQ′

)
, i ∈ I(M). (4.24)

Then the critic network can be updated by minimizing the mean squared error be-

tween the target critic value and the current critic value as

θQ ← θQ + lc∇θQ
1

|M|
∑

i∈I(M)

(
Q(si, µ(si|θµ)|θQ)− yi

)2
, (4.25)

45

where lc is the learning rate of the critic network.

The actor network is used to model the action µ(s|θµ). The actor parameters θµ can

be updated by following the policy gradient in (5.47). In order to reduce computation com-

plexity, most practical DDPG implementations update the actor parameters by maximizing

the action-value function averaged over the mini-batchM as

θµ ← θµ + la∇θµ
1

|M|
∑

i∈I(M)

(
Q(si, µ(si|θµ)|θQ

)
(4.26)

where la is the learning rate of the actor network. The two target networks are updated

softly with parameter ϵ≪ 1 by:

θQ
′

← ϵθQ + (1− ϵ)θQ
′

,

θµ
′

← ϵθµ + (1− ϵ)θµ
′

.
(4.27)

This update process slows down the update of the networks thus improves the stability of

learning.

In addition, to ensure better exploration in a continuous action space, noise is added

during action selection. In this paper, zero mean additive Gaussian noise is applied to the

current policy parameter θµ, where the noise variance is adapted according to the distance

measure between the original policy and noisy policy [139]. Details of the DDPG training

process are given in Algorithm 6. The training process is divided into episodes, where each

episode corresponds to one day with T = 24 time slots. The day in each episode is uniformly

randomly chosen from the set of all summer or winter days. Summer and winter models are

trained separately.

As discussed in Section 4.2.1, the actions performed in DQN or DDPG should meet

the constraint in (4.2), so the actions are first bounded to safe values then used for reward

calculation.

Since the output layer of DDPG is a tanh layer with output ranging from −1 to 1,

the output at(qt) is first scaled up to −nbq
min to nbq

max to meet the constraint in (4.2). Then

it is bounded to meet the constraint in (4.3) as:

max
{
[ct − nbc(m)]γe,−nbq

min
}
≤ qt ≤ min {[nbc(m)− ct]/γe, nbq

max} . (4.28)

46

Algorithm 3 DDPG algorithm training
Require: initial actor parameters θµ, critic parameters θQ, empty replay buffer R, number

of episodes M

1: Initialization: Set target network parameters equal to main parameter: θQ
′ ← θQ,

θµ
′ ← θµ

2: for episode = 1 to M do

3: Initial s1 for the first hour of the day.

4: for t = 1 to T do

5: Output action from actor network at = µ(st|θµ)
6: Execute action at in the environment and observe reward rt and new state st+1

7: Store transition (st, at, rt, st+1) in R
8: Randomly sample a mini-batchM of N transitions (si, ai, ri, si+1) from R
9: Compute targets for all elements in the mini-batchM:

yi = ri + γQ′
(
si+1, µ

′(si+1|θµ
′
)|θQ′

)

10: Update the critic parameters θQ by one step gradient descent of the critic loss

function in (6.29):

θQ ← θQ + lc∇θQ
1

|M|
∑

i∈I(M)

(
Q(si, µ(si|θµ)|θQ)− yi

)2

11: Update the actor parameters θµ by one step gradient ascent of the actor value

function in (6.27):

θµ ← θµ + la∇θµ
1

|M|
∑

i∈I(M)

(
Q(si, µ(si|θµ)|θQ

)

12: Update the target networks with (6.30):

θQ
′

← ϵθQ + (1− ϵ)θQ
′

,

θµ
′

← ϵθµ + (1− ϵ)θµ
′

.
(4.29)

13: end for

14: end for

Ensure: Target actor parameters θµ
′

47

Table 4.1: Desired actions for training

Scenarios Desired actions

t ∈ Hpk Discharge to minimize qnet
t ≥ 0.

t /∈ Hpk Charge or discharge to minimize |qnet
t − qmax|.

Reward Function Design

In order to solve (P1) using DQN or DDPG, we still need to make some modifications

to the reward function. In the original reward function defined in (4.11), the reward is

calculated based on the real month environment, that is, the demand charge in (P1) is

calculated by using the peak load from all days within the same month. On the other hand,

during the DDPG training process, the actor network is updated by using days randomly

drawn from the replay buffer R as in (6.27). Such a random approach might not be able

to learn key scheduling activities such as peak shaving during peak hours or load shifting

during off-peak hours. For example, if too many off-peak hour samples are drawn to the

mini-batch, then the actor network will not be able to fully explore the behavior of the

environment during peak hours. As a result, the action learned during the training process

might fail to recognize the importance of peak shaving needed during peak hours.

We propose to solve the above problem by designing a new reward function that

can guide the learned strategy to balance the actions of peak shaving and load shifting.

The new reward function is developed with the assistance of an off-line optimum nonlinear

programming [33], which can obtain the optimum energy scheduling strategy in a month

based on the training data. It should be noted that the off-line optimum algorithm is non-

causal given that it requires the data from one entire month, thus it cannot be applied to

practical systems. However, it provides the best achievable performance that can be used as

a baseline. Denote the peak energy bought from the utility in a month under the optimal

schedule as qmax.

The reward function is designed by considering two different scenarios as shown in

Table 4.1.

• Scenario 1: t ∈ Hpk

During peak hour in summer, load shifting can be performed by discharging the battery

48

to reduce qnet
t ≥ 0 as much as possible to save on energy cost. The optimum energy

scheduling and the corresponding step reward are

qopt
t1 = −min{qld

t − qsol
t , nbq

max} (4.30)

In order to train the DQN and DDPG agents to learn this strategy, the step reward

function for this scenario is defined as

rt = 1− ζ1
|qt − qopt

t1 |
nbqmax , (4.31)

where ζ1 is a weight used to adjust the learning rate for scenario 1.

• Scenario 2: t /∈ Hpk

During part-peak and off-peak hours in both summer and winter, the current energy

demand should be close to the peak energy bought from the utility in the optimum

off-line scheduling algorithm as much as possible. In this case, peak shaving and load

shifting are performed by charging or discharging the battery. The optimum energy

scheduling in this case is

qopt
t2 = max{min{qnet

max − (qld
t − qsol

t), nbq
max},−nbq

max}, (4.32)

rt = 1− ζ2
|qt − qopt

t2 |
nbqmax , (4.33)

where ζ2 is a weight used to adjust the learning rate for scenario 2.

The coefficients, ζ1, ζ2, can be adjusted to balance the actions of peak shaving and load

shifting.

4.3 Case studies

Case studies with real world data are presented in this section to illustrate the per-

formance of the proposed battery scheduling algorithm. All simulations are performed on a

workstation with a 6-core Intel Core i7-5820K CPU operating at 3.3 GHz, NVIDIA GeForce

GTX 950 GPU, and 32 GB of random access memory (RAM).

4.3.1 Data System Setup

The learning and testing of the scheduling algorithms are performed by using real

world load data from four locations around the campus of the University of Arkansas

49

Table 4.2: Battery and solar parameters

Notation Description Value

{nb, ns} Size of batteries and solar panels 5500,82

cmax Capacity of a single battery (kWh) 13.5

qmax, qmin Maximum charging/discharging rate (kW) 5

γe Energy efficiency of the battery 94%

γs Efficiency of the solar panel 99.96%

α Calendar aging coefficient 0.0036

β Cycling aging coefficient 0.0155

(UARK), Fayetteville. The data include load information collected in 15-minute intervals

over a period of 21 months, spanning from January, 2016 to September, 2017. In this paper,

the 15-minute interval data are converted to hourly sampled data by adding the 4 samples

within an hour. The data in 2016 are used as training set to learn the pattern and the

policy, and the data in 2017 are used for testing. Specifically, two DDPG agents are trained

for winter and summer months, respectively. Similarly, two DQN agents are also trained for

winter and summer for comparison purposes.

The PV energy data are obtained from solar panels installed on the roof of Fayetteville

Public Library [140], which provides hourly solar energy collected from the panels of a total

capacity of 13.5 kW DC. Solar data from the same time period as the load data are used

in the simulation. To match the surface of the installation site, the solar data are scaled to

Ns = 82 solar modules with 10 kW DC capacity each.

The batteries are modeled by using Tesla Powerwall 2. The parameters of the batteries

are set based on the battery datasheet [141]. The parameters for both batteries and solar

planels are given in Table 4.2.

The utility charges are calculated by using the TOU rate (pt, D) of Pacific Gas and

Electric Company in Table 3.1, along with the time division in Table 3.2 [142].

The proposed scheduling algorithm with DDPG is compared to several baseline situ-

ations with details given as follows.

1. PV-only system with no batteries. This scenarios is used to benchmark the performance

gain that can be achieved by employing BESS in the PV system.

50

Table 4.3: DQN and DDPG parameters

Notation Description Value

L Number of DQN discretization level 128

Number of neurons in DQN hidden layers 128,128

l DQN learning rate 0.0005

k Target network update frequency 500

Number of neurons in DDPG hidden layers 128,128

la DDPG actor learning rate 0.00001

lc DDPG critic learning rate 0.0001

ϵ DDPG soft update coefficient 0.001

|R| Experience replay buffer size 50000

|M| Batch size 128

M Number of episodes trained 1000

T Episode length 24

ζ1, ζ2 Reward weight parameters 20,100

2. Off-line nonlinear programming (NLP). This is an optimum but non-causal algorithm

that requires knowledge of the data for an entire month in order to achieve optimum

scheduling for the same month. The nonlinear part comes from the maximum term in

the demand charge in (4.6). The nonlinear programming problem is solved by using the

algorithm presented in our previous work [143]. The results serve as the best achievable

performance for a ESS-assisted PV system.

3. DQN based scheduling. The DQN algorithm is implemented for performance compar-

ison under the framework of RL.The DQN has a discrete action space. If the lower

and upper bound in (4.2) are denoted as qmin
t and qmax

t , then the charge/discharge are

discretized into L = 128 levels between qmin
t and qmax

t . Other parameters are given

in Table 4.3. The DQN algorithm and DDPG are both implemented by using Stable

Baseline [144].

51

4.3.2 DDPG and DQN Training and Testing

The DDPG and DQN training parameters are given in Table 4.3. In DDPG, both

the actor and critic networks are equipped with two hidden layers with 128 neurons each

to match the DQN network. To ensure a fair comparison between DDPG and DQN, both

networks share the same reward functions and system parameters, such as the sizes of replay

buffers and batches.

The DDPG testing algorithm is given in Algorithm 7. The testing is performed by

applying the target actor parameter θµ′ obtained from DDPG training. The reward function

is calculated by using the step reward defined in (4.11). The testing of the DQN algorithm

follows a similar procedure.

Algorithm 4 DDPG testing: Online ESS schedule

1: Initialization: t ← 0, obtain the current state st = {ht, q
ld
t , q

sol
t , ct} as the beginning

state.

2: while t ∈ Hm do

3: t← t+ 1

4: Obtain new observation and calculate the SOC to get s(t+ 1).

5: Output the schedule q(t) based on target actor in Algorithm 1 by: q(t) = µ(st|θµ
′
)

6: Calculate the reward by (4.11)

7: end while

4.3.3 Testing Results

Fig. 4.2 shows the amount of energy bought from the utility during the first week

of January, which is the peak week in the month, under various scheduling scenarios. The

corresponding battery SOC is shown in Fig. 4.3. Under the PV-only scenario, there are

two peaks at the 136th and 154th hours. The NLP algorithm achieves the optimum off-line

scheduling by using data from the entire month, and it successfully shaved those two peaks

by charging the batteries to a higher capacity before the occurrences of the peaks. The DQN

algorithm learns to shift the load by charging the batteries when the demand is low, but it

fails to shave the two peaks. The DDPG algorithm succeeds in both load shifting and peak

shaving. The peak of the DDPG energy curve is 7998.75 kWh at 119th hour, which is only

17.47% above the peak of the off-line NLP energy curve.

52

20 40 60 80 100 120 140 160

Hours in the peak week of Jan, 2017

0

2000

4000

6000

8000

10000

12000

T
h
e
 e

n
e
rg

y
 b

o
u
g
h
t
fr

o
m

 u
ti
lit

y
 (

k
W

h
)

PV only

NLP

DQN

DDPG

Figure 4.2: The energy bought from the

utility on the first week of January, 2017.

20 40 60 80 100 120 140 160

Hours in the peak week of Jan, 2017

0

10

20

30

40

50

60

70

80

90

100

110

B
a
tt
e
ry

 S
O

C
 (

%
)

NLP

DQN

DDPG

Figure 4.3: The SOC of the battery on

the first week of January, 2017.

180 200 220 240 260 280 300 320

Hours in the peak week of July, 2017

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

T
h
e
 e

n
e
rg

y
 b

o
u
g
h
t
fr

o
m

 u
ti
lit

y
 (

k
W

h
)

104

PV only

NLP

DQN

DDPG

Figure 4.4: The energy bought from the

utility on the second week of July, 2017.

180 200 220 240 260 280 300 320

Hours in the peak week of July, 2017

0

10

20

30

40

50

60

70

80

90

100

110

B
a
tt
e
ry

 S
O

C
 (

%
)

NLP

DQN

DDPG

Figure 4.5: The SOC of the battery on

the second week of July, 2017.

53

Table 4.4: Monthly Bill in 2017

Month PV-only NLP DQN DDPG

Jan 678,514 603,396 671,340 629,614

Feb 1,035,429 968,656 1,036,145 1,018,625

Mar 1,039,776 975,610 1,042,461 1,030,354

Apr 834,980 750,513 835,127 822,661

May 851,963 705,821 852,864 810,310

Jun 936,471 804,855 921,106 900,875

Jul 1,142,395 965,615 1,123,076 1,099,311

Aug 1,117,117 983,810 1,102,033 1,093,230

Sept 1,115,512 905,158 1,095,195 1,059,665

Total 8,752,158 7,663,434 8,679,347 8,464,645

Save - 12.44% 0.83% 3.29%

As can be seen from the battery SOC shown in Fig. 4.3, both the DQN and DDPG

agents learn to charge before the occurrences of peak days, but the DQN algorithm does not

charge enough to shave the peaks. The behaviors of DQN are similar to that of NLP, but it

discharges at a relatively slower rate compared to NLP.

Figs. 4.4 and 4.5 show, respectively, the total energy bought from the utility and the

corresponding battery SOC during the second week of July 2017, which is the peak week

in this summer month. The NLP algorithm shaves the peak around the 300th hour, and it

shifts the load from peak hours to off-peak hours by charging and discharging the batteries

on a daily basis. Both DDPG and DQN learn the strategy of daily load shifting. However,

neither can shave the peak around the 300th hour. This is mainly due to the behavior of

daily batter cycle in summer, which does not leave enough energy needed for potential peak

shaving in the next day.

The monthly utility bill during the first nine months in 2017 under different scheduling

scenarios are shown in Table 4.4. The non-causal NLP algorithm has the best performance

as expected. Compared to the PV-only case, the DQN algorithm has lower bills in sum-

mer months, but its performance is worse in the winter months. The DDPG algorithm

outperforms the DQN algorithm in every month.

54

4.4 Conclusion

This paper presents a new scheduling algorithm for BESS-assisted PV systems by

using reinforcement learning with DDPG. Based on the unique behaviors of energy systems,

a new reward function has been designed to guide the learning process of exploration and

exploitation in DDPG. The new reward function can balance the actions of peak shaving

and load shifting that are critical for energy system scheduling. Compared with other online

scheduling methods, the proposed DDPG-based scheduling approach does not require an

explicit model of the environment, and it can deal with continuous state and action spaces.

Case studies with real world data show that the proposed scheduling algorithm outperforms

exiting DQN-based algorithms, and it can learn the behaviors of the off-line NLP algorithm.

55

5 Intelligent Optimal Power Flow Control for Wind-Powered Microgrid with

Deep Reinforcement Learning

Previous chapters discuss the investment plan and on-line schedule of the ESS-assisted

PV system for consumers. Compared with solar panels that can be installed at the con-

sumer’s end, the wind turbines (WT) are integrated to the grid and controlled by the utilities.

It demands a sophisticated control mechanism that can optimize the real-time operations of

power generation and ESS charging/discharging schedules.

Traditional economic dispatch (ED) and optimal power flow (OPF) controllers are

designed to minimize the grid operation cost by optimizing power generation schedules at

each generator. Conventional OPF is usually performed over a single time period, e.g., an

hour, without the need to consider the dynamics of the power grid over a longer time horizon.

However, the addition of ESS such as battery, hydrogen fuel cells, or electrical vehicles, makes

it necessary to consider the storage dynamics over a longer time period [9]. It is shown in [10]

that for power systems with ESS, multi-period OPF is more economical than its single-period

counterpart. The complexity of multi-period OPF increases exponentially with the time

duration. Thus it might not be suitable for power systems with renewable energy sources

(RES), which require real-time decision on the generation and storage schedule given the

real-time uncertainty of RES.

In this chapter, we develop an intelligent RT-OPF control scheme for a microgrid

equipped with wind power generators and ESS. The DDPG algorithm will be used to solve

the ESS scheduling problem and interact with the environment where the OPF will be

calculated. Both the critic and actor networks are trained through iterative interactions

with historical data. The trained agent can then be applied for real time operation controls

without the need of multi-period prediction or multi-period optimization as in conventional

methods. The performance of the proposed DDPG solution is compared to those obtained

from a classic Model Predictive Control (MPC)-based approach. Compared with MPC, the

proposed DDGP approach can achieve a better performance in terms of both lower operation

cost and lower complexity that can ensure its real-time operation.

56

5.1 Problem formulation

Power flow studies are employed by transmission and utility companies and are of

extreme importance in transmission expansion planning (TEP), operation, and control.

5.1.1 Single-period Optimal Power Flow

Basics of AC circuit analysis

1. Single phase in vector form:

(a) Voltage: V = |V |∠δv

(b) Current: I = |I|∠δi

2. Volt-ampere characteristics:

(a) Basics described in the table below, where ω is the angle frequency.

Type of elements Time domain Vector form

Resistor v(t) = Ri(t) V = RI

Inductor v(t) = Ldi(t)
dt

V = jωLI (XL = ωL)

Capacitor i(t) = C dv(t)
dt

V = −j 1
ωC

I (XC = − 1
ωC

)

(b) Impedance (Ω): Z = R + jX, X = XL +XC = ωL− 1
ωC

(c) Admittance (S): Y = 1
Z
= 1

R+jX

(d) Conductance: G = Re{Y } = R
R2+X2

(e) Susceptance: B = Im{Y } = − X
R2+X2

3. Power analysis:

Type of power 1 Phase 3 Phase

Active power (W) P = |V ||I| cos(δv − δi) P =
√
3|V ||I| cos(δv − δi)

Reactive power (VAR) Q = |V ||I| sin(δv − δi) Q =
√
3|V ||I| sin(δv − δi)

Apparent power (VA) S = |V ||I| =
√

P 2 +Q2 S = 3|V ||I| =
√

P 2 +Q2

57

Per-unit presentation

Assuming that the independent base values are apparent power and voltage magni-

tude, we have:

Sbase = 1 pu, Vbase = 1 pu

then from the equations in A 3), the rest of the units can be derived:

Ibase =
Sbase

Vbase
= 1 pu

Zbase =
V 2

base

Sbase
= 1 pu

Ybase =
1

Zbase
= 1 pu

Bus Admittance Matrix

Y bus =

Y11 · · · Y1n

...

Yn1 · · · Ynn

where each element Yij = Gij + jBij, n is the total number of buses in the system. Denote

the current and voltage of the buses as Ibus and V bus, respectively, we can describe a given

network:

Ibus = Y busV bus (5.1)

Using Kirchhoff’s current law, the current entering the k-th bus can be expressed by:

Ik =
n∑

i=1

Y kiV i (5.2)

Then given the voltages on each bus V bus, the bus power injections can be calculated as:

Pk =
n∑

i=1

|V i||V k|[Gki cos(δk − δi) +Bki sin(δk − δi)]

Qk =
n∑

i=1

|V i||V k|[Gki sin(δk − δi)−Bki cos(δk − δi)]

(5.3)

58

Classical Formulation

Note that at each bus, there are four variables (|V |, δ, P,Q) to be known to fully

define the power flow. In classical power flow formulation, two of the four variables need to

be specified (known) to calculate the other two. Based on the known variables, the buses in

a system can be divided into three types:

Type of bus |V | δ P Q Represent

Constant power bus (PQ) ✗ ✗ ✓ ✓ Loads

Voltage controlled bus (PV) ✓ ✗ ✓ ✗ Generators

Swing (or slack) bus (SW) ✓ ✓ ✗ ✗ Large generators control the frequency

The unknown variables that the system can control are bus voltages and angles, so

the power flow calculation aims to solve |V | and δ in the PQ and PV buses. In specific, if

bus 1 to m are PQ buses, m+ 1 to n− 1 are PV buses, the n-th bus is the slack bus. Then

there are n−1 unknown angels and m unknown magnitude. Our known vector x =

[
δn−1

|V |m

]
has n +m− 1 unknown variables and same number of known P and Q value based on the

table above. Each of the known P and Q can be derived into a power equation in (5.3), so

the problem is solvable.

Newton-Raphson Method

1. N-R method:

Note that a set of differentiable nonlinear equations need to be solved to calculate the

unknowns. A common way to solve nonlinear equation is to approximate it linearly at

x0 by the first to term of Taylor series:

f(x) ≈ f(x0) + (x− x0)
∂f(x0)

∂x
(5.4)

then x can be approximated by:

x = x0 + [
∂f(x0)

∂x
] −1[f(x)− f(x0)] (5.5)

This approximation can be repeated until the difference between current estimation

and the previously estimated value is lower than a predefined tolerance. This iteration

59

approach is called the Newton-Raphson Method:

xk+1 = xk + [
∂f(xk)

∂x
] −1[f(x)− f(xk)] (5.6)

when the N-R method is used to find the root of the function, i.e. f(x) = 0, the

iteration in (5.5) reduces to:

xk+1 = xk − [
∂f(xk)

∂x
] −1f(xk) (5.7)

Similarly, the N-R update equation to find the root of a multi-dimensional nonlinear

function F (x) is:

xk+1 = xk − J−1F (xk) (5.8)

where x is a n dimension vector of roots to F , J is the Jacobian matrix:

J =

∂F1

∂x1
· · · ∂F1

∂xn

...
∂Fn

∂x1
· · · ∂Fn

∂xn

2. Solve power flow by N-R method:

Define the n+m− 1 dimension unknown and function:

x =

[
δ

|V |

]
,F (x) =

[
Pspec

Qspec

]
−

[
P n−1

Qm

]
=

[
∆P n−1

∆Qm

]
(5.9)

where P n−1 and Qm are calculated from (5.3). Then the solution can be obtained from

the iteration formulated from (5.8):[
δ

|V |

]
k+1

=

[
δ

|V |

]
k

− J−1

[
∆P n−1

∆Qm

]
k

(5.10)

The Jacobian matrix can be expressed as four sub-matrix:

J = −

∂P
∂δ

∂P
∂|V |

∂Q
∂δ

∂Q
∂|V |

 =

[
H N

K L

]

where H is a (n− 1)× (n− 1) matrix with element Hij = −∂Pi

∂δj
, plug (5.3) in, we can

get:

Hij = −|V i||V j|[Gij sin(δi − δj)−Bij cos(δi − δj)] (5.11)

60

Similarly, we have:

Nij = −|V i||V j|[Gij cos(δi − δj) +Bij sin(δi − δj)] (5.12)

Kij = |V i||V j|[Gij cos(δi − δj) +Bij sin(δi − δj)] (5.13)

Lij = −|V i||V j|[Gij sin(δi − δj)−Bij cos(δi − δj)] (5.14)

when i = j:

Hii = |V i|2Bii +Qi (5.15)

Nii = −|V i|2Gii − Pi (5.16)

Kii = |V i|2Gii − Pi (5.17)

Lii = |V i|2Bii −Qi (5.18)

5.1.2 Multi-period Optimal Power Flow

Now we extend the traditional OPF to a microgrid with WT and ESS as shown in

Fig. 5.1.

Figure 5.1: Distribution network with WT

Table 5.1 lists a summary of notations used in this section. We consider a power

system with N buses, n traditional generators, one wind farm, l energy storage devices, and

61

m time-varying loads distributed at different buses. Define N = {1, . . . , N} as the set of

indices of all buses, and G ∈ N1×n, B ∈ N1×l, and L ∈ N1×m as the set of indices of buses

hosting generators, energy storage devices, and loads, respectively. The index of the bus

with the wind farm is denoted as w.

The time is divided into non-overlapping time slots. The duration of each slot ∆t is

set to one hour in this paper. Denote the state of charge (SOC) of the storage device at the

beginning of slot t ∈ T = {t|t ≥ t0} at bus k ∈ B as ckt . The initial SOC is set to be at half

of its capacity in this paper. During slot t ∈ T , each storage device can charge, discharge,

or remain idle. Denote the charging/discharging rate of the storage device at bus k as qkt ,

and the charging/discharging efficiency as γe ∈ (0, 1). The energy storage dynamics can be

described by the following first-order difference equation:

ckt+1 =

ckt +∆tqkt γe, qkt > 0

ckt , qkt = 0

ckt +∆tqkt /γe qkt < 0.

(5.19)

Due to the physical limits of the battery, the SOC and charging/discharging rate

must satisfy the following constraints,

0 ≤ ckt ≤ cmax
k (5.20)

−qmin
k ≤ qkt ≤ qmax

k (5.21)

where cmax
k is the capacity of the energy storage device at bus k, qmin

k and qmax
k are the

maximum discharging and charging rates at bus k, respectively.

Denote the active and reactive power generation at bus k ∈ G during slot t ∈ T as

P g
k,t and Qg

k,t, respectively. They are bounded by the power generation capacity at bus k as

Pmin
k ≤ P g

k,t ≤ Pmax
k ,

Qmin
k ≤ Qg

k,t ≤ Qmax
k .

(5.22)

The active power generation is also bounded by the ramp-rate limit at bus k as

−Rdown
k ≤ P g

k,t − P g
k,t−1 ≤ Rup

k . (5.23)

The voltage magnitude Vk,t at bus k ∈ N during slot t ∈ T is bounded by

V min
k ≤ Vk,t ≤ V max

k . (5.24)

62

Table 5.1: Summary of notations

Notation Description
Bij Line susceptance between buses i and j
B Set of buses hosting energy storage

c2k, c1k, c0k Coefficient of the generator cost function at bus k
ckt State of charge of the energy storage at bus k at slot t
cmax
k Energy storage capacity at bus k
Gij Line conductance between buses i and j
G Set of buses hosting generators
ht Index of the hourly time in a day at slot t
l Number of energy storage
L Set of buses with a changing demand
m Number of buses with changing demand
n Number of generators
N Number of buses
N Set of buses
Pk,t, Active power injected at bus k at slot t

P d
k,t, P

g
k,t Active power demand/generation at bus k at slot t

Pmin
k , Pmax

k Minimum/maximum active power generation at bus k
Pw
k,t Wind turbine power at bus k at slot t

q Schedule of all storage during OPF horizon
qk Schedule of storage at bus k during OPF horizon
qkt Charge/discharge power of the energy storage at bus k

at slot t
qmin
k , qmax

k Maximum discharge/charge rate of the energy storage
at bus k

Qk,t Reactive power injected at bus k at slot t
Qd

k,t, Q
g
k,t Reactive power demand/generation at bus k at slot t

Qmin
k , Qmax

k Minimum/maximum reactive power generation at bus k
Rdown

k , Rup
k Maximum down/up ramp-rate of the generator at bus k

S State space of a MDP
Sij,t Reactive power flow from bus i to bus j at slot t
Smax
ij Maximum reactive power flow from bus i to bus j
t Index of the hourly time slots
t0 RT-OPF starting time slot
T Number of time slots in the multi-period OPF horizon
T Power flow time slots set
Vk,t Voltage magnitude at bus k at slot t

V min
k , V max

k Minimum/maximum voltage magnitude at bus k
w Index of bus hosting wind turbines
γe Charge/discharge efficiency of the energy storage
δij Difference between angles of buses i and j
∆t Time slot solution

63

The active and reactive power flow balance equations at each bus k ∈ N are given

by:
Pk,t =

∑
i∈N

Vk,tVi,t(Gki cos δki +Bki sin δki)

Qk,t =
∑
i∈N

Vk,tVi,t(Gki sin δki −Bki cos δki)
(5.25)

where Gki and Bki are the line conductance and susceptance between buses k and i, respec-

tively, and δki is the angle difference between buses k and i. Pk,t and Qk,t are the active and

reactive power injected to bus k at slot t given by

Pk,t = P g
k,t + Pw

k,t − qkt − P d
k,t

Qk,t = Qg
k,t −Qd

k,t

(5.26)

where P d
k,t and Qd

k,t are the active and reactive power demands at bus k during slot t,

respectively. Pw
k,t is the power from the WT at bus k.

The various power values need to satisfy the following constraints.

P g
k,t = 0, ∀k /∈ G, (5.27)

Qg
k,t = 0, ∀k /∈ G, (5.28)

Pw
k,t = 0, ∀k ̸= w, (5.29)

qkt = 0, ∀k /∈ B, (5.30)

The reactive power flow on branch (i, j) at time slot t ∈ T , Sij,t is bounded by:

0 ≤ |Sij,t| ≤ Smax
ij (5.31)

The objective of the RT-OPF with battery storage and WT is to minimize the ex-

pected total future generation cost of the microgrid by optimizing the power generation and

storage behavior for all future slots starting from the current slot t = t0, without violating the

storage dynamics and power flow constraints. The optimization problem can be formulated

as

min E

[
∞∑

t=t0

∑
k∈G

c2kP
g
k,t

2 + c1kP
g
k,t + c0k

]
s.t. (5.19)− (5.31).

(P1)

The optimization is performed over P g
k,t, Q

g
k,t for k ∈ G and qkt for k ∈ B, where c2k, c1k, and

c0k are the coefficients of the generator cost function at bus k ∈ G.

64

ckt , P
w
k,t, P

d
k,t, Q

d
k,t

System

Optimization

Model

qkt , P
g
k,t, Q

g
k,t

PredictionControl Actions
MPC Controller

Historical

Data

OutputInput

qkt , . . . , q
k
t+τ−1

P g
k,t, . . . , P

g
k,t+τ−1

Qg
k,t, . . . , Q

g
k,t+τ−1

P̂w
k,t+1, . . . , P̂

w
k,t+τ−1

P̂ d
k,t+1, . . . , P̂

d
k,t+τ−1

Q̂d
k,t+1, . . . , Q̂

d
k,t+τ−1

Figure 5.2: Framework of MPC-based RT-OPF

5.2 Different approaches

5.2.1 Multi-period Optimal Power Flow with Model Predictive Control

The RT-OPF problem is formulated by using model predictive control (MPC) in

this section. MPC is widely used and proven effective for industrial applications with slow

dynamics such as chemical plants and supply chains. It is also popular in real-time energy

management research such as real-time economic dispatch and RT-OPF. Figure 5.2 shows

the framework of MPC-based RT-OPF. The MPC is used to form a prediction model to

predict the wind power and load demands for the next τ − 1 time slots. The RT-OPF is

solved by using a rolling optimization over τ -period OPF with storage and predictions on

load and wind.

ARMA Prediction model

The load and wind power can be modeled as stochastic time series and predicted by

using statistical or machine learning methods. In this paper, the MPC controller employs

the auto-regressive-moving-average (ARMA) model with the same orders for both auto-

regression and moving-average. The prediction on wind power generation can be modeled

as

Pw
k,t = c+ εt +

p∑
i=1

[
φ(i)Pw

k,t−i + θiεt−i

]
, (5.32)

where c is a constant, εt is the model error at slot t, independent and identically distributed

(i.i.d.) with a mean of zero, p is the order of the auto-regressive describing the pattern of

65

the load, and it is also the order of the moving-average describing random effects, φi are

regression parameters, and θi are the linear combination parameters for the error terms.

The prediction models for active and reactive load demands have the same order

as the wind but use different model parameters learned from historical load data. Given

the prediction model parameters, future wind and load demands from t + 1 to t + τ − 1,

{P̂w
k,t+i}τ−1

i=1 , {P̂ d
k,t+i}τ−1

i=1 , and {Q̂d
k,t+i}τ−1

i=1 , can be predicted and used for off-line τ -period OPF

calculation combined with the current information on wind, demand, and storage SOC.

PSO-based τ-period OPF with storage and wind

The multi-period AC OPF with storage scheduling is a non-convex optimization prob-

lem. A commonly used approach to solve this problem in practice is to solve each slot as a

single-period OPF with storage and wind, and then optimize the storage behavior over all

periods.

Denote a possible storage scheduling vector during slots T = {t0, t0+1, . . . , t0+τ−1}
at bus k ∈ B as qk = [qkt0 , q

k
t0+1, . . . , q

k
t0+τ−1]

T ∈ Rτ×1, and define q = [qi|i ∈ B] ∈ Rτ×l.

Given the storage scheduling vector q, the single-period OPF is converted to a normal single-

period OPF problem with the following objective:

C(q) = min

[
t0+τ−1∑
t=t0

∑
k∈G

c2kP
g
k,t

2 + c1kP
g
k,t + c0k

]
s.t. (5.21)− (5.25), (5.26), (5.28)− (5.31)

(P2)

over P g
k,t for k ∈ G ∪ B ∪ {w} and Qg

k,t for k ∈ G.
The optimal storage scheduling of the τ -period OPF with storage and wind can then

be formulated as
min
q

C(q)

s.t. (5.19)− (5.20).
(P3)

The storage optimization problem can be solved by using heuristic algorithms such as the

particle swarm optimization (PSO). In particular, during solving (P3), a single-period OPF

is calculated for each particle, which results in high computation complexity for large scale

power systems. Combining (P2) and (P3) solves the τ -period OPF with storage and wind

up to slot t0 + τ − 1.

66

Algorithm 5 MPC-based RT-OPF with storage and wind
Require: Historical wind and load data, and prediction models for wind and load.

1: Initialization: t← t0. Initial SOC ckt0 = 0.5cmax
k for bus k ∈ B, wind power Pw

k (t0) for

bus k = w, and load demand P d
k,t0

, Qd
k,t0

for bus k ∈ N .

2: while t ≥ t0 do

3: Sample current system output ckt , P
w
k,t, P

d
k,t, and Qd

k,t.

4: Import wind and load profiles over the previous p − 1 slots:

{Pw
k,t−p+1, . . . , P

w
k,t−1},{P d

k,t−p+1, . . . , P
d
k,t−1},{Qd

k,t−p+1, . . . , Q
d
k,t−1}.

5: Predict wind and load profiles over the next τ − 1 slots: {P̂w
k,t+1, . . . , P̂

w
k,t+τ−1},

{P̂ d
k,t+1, . . . , P̂

d
k,t+τ−1}, and {Q̂d

k,t+1, . . . , Q̂
d
k,t+τ−1}.

6: Calculate the τ -period OPF with storage and wind from t to t + τ − 1, get one step

storage schedule qkt for k ∈ B and power generation P g
k,t, Q

g
k,t for k ∈ G.

7: Operate the storage and generators correspondingly, update the SOC.

8: t← t+ 1

9: end while

MPC-based OPF with storage and wind

After exploring the state trajectories that emanate by different schedules from the

current state and finding the optimal control actions, only the first step of the off-line strategy

is applied to the real-time system. Then the system will output the updated wind, demand,

and SOC. The MPC controller shifts forward by one slot and starts a new round of prediction

and optimization. The detailed procedures are given in Algorithm 5.

5.2.2 Multi-period Optimal Power Flow with DDPG

As discussed in previous chapters, reinforcement learning (RL) trains an agent to

make decisions by interacting with an environment E to maximize the expected cumulative

future reward. The formulation is based on Markov Decision Process (MDP), which consists

of a 5-tuple (S,A,P , r, γ), where S is the state space, A is the action space, P = P(st+1|st, at)
is the transition probability from states st to st+1 by taking action at, rt = r(st, at) ∈ R
is the immediate scalar reward or cost by applying action at from state st, 0 < γ ≤ 1 is

the discount factor and its value is usually chosen to be close to 1. A policy can be either

stochastic or deterministic. A stochastic policy π(st) = P(at|st) gives the probability of

67

taking different actions based on the state st. A deterministic policy gives a single action

at = µ(st). The deterministic policy is adopted to solve the RT-OPF problem.

MDP Formulation 1) State Space S. The state at time slot t includes the hour index

in a day h(t) ∈ {0, 1, . . . , 23}, the measured active and reactive demands, the wind power

measured from the wind turbine, the power generation and the state of charge at slot t− 1,

st = [ht,P
d
k∈L,t, Q

d
k∈L,t, P

w
k=w,t, P

g
k∈G ,t−1, Q

g
k∈G ,t−1, c

k∈B
t−1]. (5.33)

2) Action Space A. The actions or decisions that can be made at t is the energy

charge or discharge at the storage: at = qk∈Bt . The action should meet constraints (6.14) and

(6.13).

3) Transition Probability P. Given the current state st, the action at affects power

generation P g
k∈G ,t, Q

g
k∈G ,t under the constraints of power flow and ramp-rate limits, and the

SOC charge ck∈Bt under the constraints of the battery dynamics. The transition of the hour

index is deterministic as follows:

ht+1 = (ht + 1) mod 24 (5.34)

where mod stands for the modulo operator. The transition probability of the demand and

wind power is unknown.

4) Reward function r(st, at). Once the transition is made by taking action at from

state st, the power generation P g
k∈G,t and Qg

k∈G,t are known. The reward function of this

transition is given by

r(st, at) = −
∑
k∈G

c2kP
g
k,t

2 + c1kP
g
k,t + c0k. (5.35)

Define the discounted cumulative future reward starting from time t0 as

Rt0 =
∞∑

t=t0

γt−t0r(st, at). (5.36)

The discounted cumulative reward Rt0 is a random variable, the distribution of which

depends on the environment E (or the transition probability P). The general objective of

MDP is to find the optimum policy µ∗ that will maximize the expected cumulative discounted

future reward from time t0, that is, to maximize E[Rt0],

max E

[
∞∑

t=t0

−γt−t0
∑
k∈G

c2kP
g
k,t

2 + c1kP
g
k,t + c0k

]
, (5.37)

68

where the expectation is performed with respect to the environment E only. Compared to

the objective of RT-OPF in (P1), the MDP objective in (5.37) is the same as (P1) if the

discount factor γ = 1. The problem is formulated as

max Er,s∼E,γ=1[Rt0],

s.t. (5.19)− (5.31).
(P4)

5) Action-value function Q(st, at). The action-value function is defined as

Q(st, at) = Eri≥t,si>t∼E [Rt|st, at] . (5.38)

It is used to estimate the expected discounted return after taking an action at from state st

from any time t ≥ t0.

For simplicity, the action at under a deterministic policy µ is omitted, as well as the

distribution under E

Qµ(st) = Eri≥t,si>t
[Rt|st, µ(st)] . (5.39)

The action-value function can be expressed recursively by following the Bellman equa-

tion as

Qµ(st) = Ert,st+1 [r(st, µ(st)) + γQµ(st+1)]. (5.40)

Given the optimal action-value function denoted by Q∗, the optimal policy of the Bellman

equation µ∗ satisfies:

µ∗(st) = argmax
at∈A

Q∗(st, at). (5.41)

It is in general difficult, if not impossible, to obtain the analytical expression of the

action-value function. In Q-learning, the Q function and the policy are learned in an iterative

manner through the interaction with the environment.

Since the expectation in the Q function definition in (5.39) is not taken with respect to

the policy, the Q function can be learned by transitions from a policy λ that is different from

µ. A greedy policy that maximizes the current Q-function at time t is used in Q-Learning

as

λ(st) = argmax
at∈A

Qλ(st, at). (5.42)

69

With the greedy policy, the Q function with an arbitrary initial value is updated in

the (t− t0)-th iteration as

Qλ(st)←(1− α)Qλ(st) + α[r(st, λ(st)) + γ max
at+1∈A

Qλ(st+1)], (5.43)

where α ∈ (0, 1) is the learning rate of the Q function. In Q-learning, the Q function values

are stored in a look-up-table (LUT), the Q-table. Thus it requires a discretization of the

state and action spaces, which will result in loss of precision. Deep Q-learning Network

(DQN) uses a deep neural network (DNN) parameterized by θQ to estimate Q(s, a), but

it still can only deal with discrete action spaces. A replay buffer R and a target network

Q
′
(s, a) with weight θQ′ are introduced in DQN to stabilize the learning process. Details can

be found in [145].

DDPG-based OPF with storage and wind

We propose to use the DDPG learning method to solve the BESS scheduling problem,

which has a continuous action space A. Instead of using a greedy policy that requires a global

maximization in the continuous action space, the DDPG algorithm uses a policy gradient

approach to search along the gradient of a policy-dependent value function with respect to

the policy.

The DDPG agent employs two DNNs as shown in Fig. 5.3, and they are denoted as

actor and critic networks, respectively. The actor network is used to model the deterministic

policy µ for a given state s as µ(s|θµ) with parameter θµ. The critic network is used to model

the Q-function as Q(s, a|θQ) with parameter θQ. A replay buffer is still used along with the

target critic network Q′(s, a|θQ′
) and target actor network µ′(s|θµ′

).

1) Critic Network. The parameters of the critic network are updated by using a

target value calculated by using the target critic network and a subset of transitions from

the replay buffer.

The replay buffer stores the previous |R| transitions before the current time slot t,

that is (si, ai, ri, si+1)i∈{t−|R|+1,...,t−1,t}. During the time slot t, a mini-batch M ⊂ R with

|M| transitions (si, ai, ri, si+1)i∈I(M) are randomly sampled from the replay buffer, where

I(M) is the time index of transitions in the mini-batchM. Define the target critic value of

transition i ∈ I(M) under current target actor θµ
′
as yi:

yi = ri + γQ
′
(
si+1, µ

′(si+1|θµ
′
)|θQ′

.
)

(5.44)

70

st = {ht, P
d
k∈L,t, Q

d
k∈L,t,

Pw
k=w,t, P

g
k∈G,t−1, Q

g
k∈G,t−1, ck∈Bt−1 }, rt

Environment

Critic

Actor

at = qk ∈Bt

Policy Gradient

DDPG Agent

Mini-batch

State & RewardAction

θQ

θµ

Replay

Buffer

Single-period OPF

(si, ai, ri, si+1)

State
st

∇θµJ

Target

Network

at

Figure 5.3: Framework of DDPG-based OPF

The parameters of the critic network θQ are updated by a one-step descent along the

gradient of the mean squared error between the critic network output and the target value

with learning rate lc as

L(θQ) =
1

|M|
∑
i∈M

(
Q(si, ai|θQ)− yi

)2
, (5.45)

θQ ← θQ + lc∇θQ
1

|M|
∑
i∈M

(
Q(si, ai|θQ)− yi

)2
. (5.46)

2) Actor Network. The actor network is used to update the policy with the help of

the critic network. The objective in (P3) can be written as a function of the policy θµ as

J(θµ). The Policy Gradient Theorem gives the policy gradient [138]

∇θµJ(θ
µ) = Est∼µ

[
∇aQ(st, µ(st)|θQ)∇θµµ(st|θµ)

]
. (5.47)

This provides a theoretical base of updating policy with its performance. A more efficient

way of updating the actor network is to maximize the current Q-function value on M and

with a learning rate la as

L(θµ) =
1

|M|
∑
i∈M

(
Q(s, µ(st|θµ))|θQ

)
(5.48)

θµ ← θµ + la∇θµ
1

|M|
∑
i∈M

(
Q(s, µ(si|θµ)|θQ

)
(5.49)

The target critic and actor networks are updated in every iteration with a parameter ϵ as

θQ
′

← ϵθQ + (1− ϵ)θQ
′

θµ
′

← ϵθµ + (1− ϵ)θµ
′ (5.50)

71

Algorithm 6 DDPG-based OPF with storage and wind training
Require: initial actor parameters θµ, critic parameters θQ, empty replay buffer R
1: Initialization: Set target network parameters equal to main parameter: θQ

′
← θQ,

θµ
′
← θµ

2: for episode = 1 to M do

3: Initial s1 for the first time slot

4: for t = 1 to T do

5: Output action from actor network at = µ(st|θµ)
6: Execute action at in the environment and observe reward rt and new state st+1

7: Store transition (st, at, rt, st+1) in R
8: Randomly sample a mini-batchM of |M| transitions (si, ai, ri, si+1)i∈I(M) from R
9: Compute target value yi with (6.28).

10: Update the critic parameters θQ:

θQ ← θQ + lc∇θQ
1

|M|
∑
i∈M

(
Q(si, ai|θQ)− yi

)2

11: Update the actor parameters θµ:

θµ ← θµ + la∇θµ
1

|M|
∑
i∈M

(
Q(s, µ(si|θµ)|θQ

)

12: Update the target networks:

θQ
′

← ϵθQ + (1− ϵ)θQ
′

θµ
′

← ϵθµ + (1− ϵ)θµ
′

13: end for

14: end for

Ensure: Target actor parameters θµ
′

To balance the tradeoff between exploration and exploitation, noise is added to the

actions drawn from the deterministic policy. The noise model used in the actor network

is similar to that in [146]. The DDPG training algorithm for the RT-OPF is shown in

Algorithm 6.

72

5.3 Case study

The performance of the proposed DDPG-based RT-OPF algorithm are compared

to that of the MPC-based RT-OPF algorithm. The MPC-based algorithm is implemented

using Matpower [147] in Matlab. Note that no models are provided in Matpower for the

wind turbine and energy storage, therefore they are all modeled as none-cost generators

with a given maximum generation equal to the wind power and energy power in the single-

period OPF during simulation. The DDPG-base algorithm is implemented using the Stable

Baselines [144] and pandapower [148] in Python.

5.3.1 Data source and setup

The RT-OPF algorithms are tested on a modified IEEE 14-bus system as shown in

Fig. 8.2, where energy storage units are installed at buses B = {3, 6, 8, 11} and the wind

turbine is located at bus w = 11. Generators are located at bus G = {1, 2, 3, 6, 8}. The

load demand at buses L = {10, 12, 13, 14} are replaced by scaled hourly load data from four

locations at the University of Arkansas, Fayetteville.

12

13

14

11
10

9

6

5

4

3

2

1
8

7

Figure 5.4: The modified IEEE 14-bus case with ESS and WT.

73

2 4 6 8 10 12 14 16 18 20 22 24

Hour

0

2

4

6

8

10

12

14

16

18

A
c
ti
v
e

 l
o

a
d

 (
M

W
)

Bus 10

Bus 12

Bus 13

Bus 14

Figure 5.5: The active load profile at buses 10, 12, 13, 14.

The dataset provides active and reactive loads in 21 months from January, 2016 to

September, 2017. The wind power is calculated from wind speed data at Drake Field weather

station in Fayetteville in the Automated Surface Observing System (ASOS) dataset [149].

The wind power is scaled up to the same level of the base load of the system (275.5 MW),

and the time period is chosen to be the same as the load dataset. The load and wind profiles

in 2016 are used to train the ARMA model for MPC and the DDPG target actor network.

The performance of the algorithms is tested by using the data from March, 2017. Fig. 6.8

shows the active load of the four buses on a testing day March 4th, 2017.

All energy storage units are identical, with a maximum charging/discharging rate of

4 MW (qmin
k∈B = 4, qmax

k∈B = 4), capacity 10 MWh (cmax
k∈B = 10), and storage efficiency γe = 0.94.

Other system parameters and constraints remain the same as the original IEEE 14-bus

system. Ramp limits and cost coefficients of the generators are listed in Table 5.2.

Two situations for comparison along with MPC and DDPG algorithms are introduced

as follows:

74

Table 5.2: Generator parameters for OPF

Bus (k) 1 2 3 6 8

Rdown
k , Rup

k (MW) 40 70 50 60 6

c2k 0.043 0.25 0.01 0.01 0.01

c1k 20 20 40 40 40

c0k 0 0 0 0 0

No storage used and no prediction (No storage)

Under this situation, a single-period OPF with wind is solved at each time slot.

Solutions from the previous time slot only constraints the current OPF by the generator

ramp-rate limit. This scenario serves as a baseline for comparison with more complicated

systems.

OPF with known profiles (OPF)

The future load and wind profiles in the testing month are assumed to be known

under this situation. An off-line 24-period OPF with storage and wind is solved by the

PSO-based algorithm in 5.2.1 for each day instead of solving the OPF for the whole month.

The initial SOC on the first day is at half capacity, and the initial SOC of the remaining

days is the same as the final SOC of the previous day. This non-causal scheduling algorithm

provides a benchmark with the best possible performance.

MPC-based RT-OPF (MPC)

ARMA models with order p = 2 are trained to predict the load and wind. Figs. 5.6

and 5.7 show the 1-hour ahead prediction results at bus 14 on March 4th, 2017. The mean

absolute percentage error (MAPE) of the 1-hour ahead load prediction from January, 2017

to September, 2017 at four locations are given in Table 5.3. Predictions over longer period

will accumulate the prediction error. A 5-hour prediction (τ = 6) is employed to solve a

6-period OPF by the MPC controller.

75

2 4 6 8 10 12 14 16 18 20 22 24

Hour

8

8.5

9

9.5

10

10.5

11

A
c
ti
v
e

 l
o

a
d

 (
M

W
)

Real

Predicted

Figure 5.6: 1 hour ahead active load prediction at bus 14.

2 4 6 8 10 12 14 16 18 20 22 24

Hour

0

50

100

150

200

250

300

W
in

d
 p

o
w

e
r

(M
W

)

Real

Predicted

Figure 5.7: 1 hour ahead wind prediction at bus 14.

76

Table 5.3: 1 hour ahead load prediction performance

Bus 10 12 13 14

MAPE 0.074 0.044 0.061 0.057

DDPG-based RT-OPF (DDPG)

DDPG training parameters are given in Table 6.2. The target actor parameter θµ
′

after DDPG training is applied to the testing month as shown in Algorithm 7. The framework

of DDPG-based RT-OPF can be obtained by simply replacing the whole DDPG Agent block

in Fig. 5.3 with the target actor network θµ
′
.

Table 5.4: DDPG parameters

Notation Description Value

Number of neurons in DDPG hidden layers 128,128

la DDPG actor learning rate 0.00001

lc DDPG critic learning rate 0.0001

ϵ DDPG soft update coefficient 0.001

|R| Experience replay buffer size 50000

|M| Batch size 240

M Number of episodes trained 5000

T Episode length 24

5.3.2 Simulation results

Fig. 5.8 shows the storage schedule results of OPF, MPC, and DDPG on each bus

on March 4th, 2017. The MPC and DDPG results both have a similar storage behavior as

the OPF case. The storage units are fully charged after the second hour and are discharged

to zero from about 6 a.m. to 10 a.m., then are charged again from about 2 p.m. to 5 p.m.,

and are discharged after 9 p.m. The storage units are always fully discharged by the OPF

at the end of the testing day because the daily operation cost will be minimized by using

all the energy in the storage, while MPC and DDPG may save energy at the end of the day

for tomorrow. The MPC result is closer to the OPF result for buses 3, 8, and 11 than the

77

Algorithm 7 DDPG-based RT-OPF with storage and wind

Require: Target network parameter θµ
′ .

1: Initialization: t = t0, initialize P g
k∈G,t0 and Qg

k∈G,t0 by IEEE 14-bus case, ck∈Bt0 = 0.5cmax
k∈B.

2: while t ≥ t0 do

3: Obtain new load and wind power, record the generation and the SOC to get st.

4: Calculate the schedule at = qk∈Bt based on the target actor in Algorithm 1 as at =

µ′(st|θµ
′
)

5: Calculate the power generation P g
k∈G,t and Qg

k∈G,t given the storage schedule by the

single-period OPF.

6: Operate the storage and generators correspondingly, and update the SOC.

7: t← t+ 1

8: end while

DDPG. The DDPG learns a general policy based on the load and wind patterns on different

days.

2 6 10 14 18 22

0

5

10

S
O

C
 a

t
b

u
s
 3

 (
M

W
h

)

2 6 10 14 18 22

0

5

10

S
O

C
 a

t
b

u
s
 6

 (
M

W
h

)

2 6 10 14 18 22

Hour

0

5

10

S
O

C
 a

t
b

u
s
 8

 (
M

W
h

)

2 6 10 14 18 22

Hour

0

5

10

S
O

C
 a

t
b

u
s
 1

1
 (

M
W

h
)

OPF MPC DDPG

Figure 5.8: The storage schedule results at bus 3, 6, 8, 11.

Therefore, the DDPG schedule is smoother, and there is almost no alternative charg-

78

ing and discharging compared with the results from the other two algorithms.

2 6 10 14 18 22

Hour

50

100

150

200

P
g
 a

t
b

u
s
 1

 (
M

W
)

2 6 10 14 18 22

Hour

0

10

20

30

40

P
g
 a

t
b

u
s
 2

 (
M

W
)

2 6 10 14 18 22

Hour

0

5

10

P
g
 a

t
b

u
s
 3

 (
M

W
)

No storage

OPF

MPC

DDPG

Figure 5.9: The active power generated at bus 1, 2, 3.

Figs. 5.9 and 5.10 show the active power generation results obtained by all algorithms

at buses 1, 2, and 3. Generators at buses 6 and 8 are unused. Generator at bus 1 provides

most of the power because of the low cost parameters c21 and c11, generator at bus 2 with

c12 also supplements the generation when generator 1 is bounded by the ramp-rate limits.

Specifically, because of the wind power peak at 7 p.m. as shown in Fig. 5.7, P g
1 decreases

with the maximum ramp down rate from 5 p.m. to 7 p.m. and increases after that. As a

result, P g
2 and P g

3 increases at 6 p.m. and 8 p.m. to balance the demand when P g
1 decreases.

The generation results by different algorithms are close, the average hourly operation cost

and computation time of the testing month is given in Table 5.5.

Table 5.5: Average hourly operation result using different methods

Case No storage OPF MPC DDPG

Cost per hour ($) 6327.99 5781.18 6297.08 6272.31

Computation time (s) 1.03 13.58 64.77 1.28

The OPF algorithm operates with non-causal knowledge of the load and wind infor-

79

2 6 10 14 18 22

Hour

0

50

100

150

200

A
c
ti
v
e

 p
o

w
e

r
g

e
n

e
ra

ti
o

n
 (

M
W

)

 Bus 1

 Bus 2

 Bus 3

No storage

OPF

MPC

DDPG

Figure 5.10: The active power generated at bus 1, 2, 3.

mation. Thus it cannot be implemented in practical systems but it provides the best possible

performance that can be used as a benchmark. The DDPG algorithm obtains a lower average

hourly cost than MPC, and the DDPG has a much lower computation complexity. The MPC

performance is influenced by the prediction accuracy and the DDPG performance depends

on parameters chosen in Table 6.2. Both require training before real-time operations. MPC

needs to train the prediction model while DDPG needs to train the agent. However, no

prediction is required during the real-time operation for DDPG. Therefore, given the same

power system and storage setting, the computation time of DDPG is almost the same as a

single-period OPF, while the MPC computation time depends on the chosen optimization

horizon τ . When the complexity of the system and the number of storage units increase,

the DDPG will still have the same order of complexity as the single-period OPF, but the

complexity of MPC will increase dramatically.

5.4 Conclusion

This chapter has proposed a reinforcement learning based DDPG algorithm for real-

time optimal power flow scheduling in a microgrid equipped with energy storage and power

80

generations from both conventional and wind sources. Unlike conventional Q-learning algo-

rithms that can work only with discrete action spaces, the proposed DDPG algorithm can

deal with continuous actions by using the gradient of the policy. The agent of DDPG was

trained by searching along the policy gradient of the cost function, and the trained agent

was then applied to real world data for testing. The DDPG results were compared to those

obtained from a classic MPC-based approach. Compared with MPC, DDPG has a lower

average cost. In addition, DDPG does not need muti-period prediction and multi-period

optimization as in MPC, thus the proposed DDPG algorithm has a much lower complexity

than MPC and can operate efficiently in real time. Future works can be done to design

a DDPG agent that can learn in real-time during power system operations. In this case,

the parameters of the actor network can be updated in real time to adapt to the changing

environment.

81

6 Optimum Scheduling of Truck-based Mobile Energy Couriers Using Deep

Deterministic Policy Gradient

The intermittent nature of RES can be partly compensated through the employment

of energy storage systems (ESS) such as batteries and hydrogen fuel cells. ESS can store

excess energy during periods of high production and releasing it during periods of high

demand. This helps to stabilize the grid and improve the reliability of renewable energy

sources [7]. Recently there have been growing interests of adding mobility to ESS to achieve

mobile energy storage. Mobile energy storage offers several advantages over SESS, including

flexibility, rapid deployment, redundancy, reduced infrastructure costs, and environmental

benefits. Mobile energy storage systems can be easily moved to different locations as needed,

making it more flexible than its static counterpart [11]. It can also be rapidly deployed in

response to emergencies or to support temporary events. Mobile energy storage provides

backup power in situations where static energy storage systems have failed or are unavailable,

ensuring a continuous supply of energy [12]. Additionally, mobile energy storage can reduce

the need for expensive grid infrastructure upgrades and can be used to power electric vehicles,

reducing greenhouse gas emissions and air pollution [13].

The control and scheduling of a distribution grid with mobile energy storage is com-

plex and challenging due to the dynamic and uncertain nature of both the transportation

networks and the RES, as well as the need to minimize operational costs while ensuring

efficient and reliable energy distribution over the entire grid. This requires a comprehensive

system model combining the scheduling of both transportation network and power flow. Con-

sequently, various design and scheduling techniques have been proposed to optimize power

grids with mobile energy storage systems.

In this chapter we propose a new platform of truck-based mobile energy couriers

(MEC), which consists a fleet of trucks equipped with high-density inverters, converters,

capacitor bands, and energy storage devices. The MEC design problem is formulated as a

non-convex optimization problem that aims to minimize the grid operation cost under the

constraints imposed by conventional and renewable energy sources, dynamic energy demands,

power flows, energy storage, transportation networks, and their dynamic interactions.

82

nomenclature

Sets and Index

A Action space of DDPG

B Set of energy storage locations

E , e Set and index of links

G Set of generators

K, k Set and index of energy carriers

L Set of changeable loads

N , n, i, j Set and index of buses

O Set of origin-destination pairs

Puw, p Set and index of paths between O-D pair (u,w)

S State space of DDPG

T , t Set and index of hours

V , u, w Set and index of nodes

Parameters for transportation and power network

cmax Energy storage and carrier capacity

δij Indicator of whether i = j

γe Charge/discharge efficiency

λij
t Minimal travel time between bus i and bus j at hour t

Pmin
g , Pmax

g Minimal/maximal active power generation at generator g

qmin, qmax Minimal/maximal energy storage and carrier charge/discharge rate

83

Qmin
g , Qmax

g Minimal/maximal reactive power generation at generator g

Smax
ij Maximal reactive power flow from bus i to bus j

τ e0 Free-flow travel time on link e

τuwt Minimal travel time between O-D pair (u,w) at hour t

θij Angle difference between bus i and bus j

V min
n , V max

n Minimal/maximal voltage magnitude at bus n

ζpe Binary indicator of whether path p contains link e

Bij Susceptance between bus i and bus j

ckt State of charge of MEC k at hour t

c2i, c1i, c0i Cost coefficients of generator at bus i

duwt Traffic demand between O-D pair (u,w) at hour t

f e Capacity of link e

f e
t Traffic flow of link e at hour t

fp
t Path flow of path p at hour t

Gij Conductance between bus i and bus j

P b
i,t Renewable power generated at bus i ∈ B at hour t

P g
i,t, Q

g
i,t Active/reactive power generated at bus i ∈ G at hour t

Pn,t, Qn,t Active/reactive power injected to bus n at hour t

qkt Charging/discharging rate of MEC k at hour t

Sij,t Reactive power flow from bus i to bus j at hour t

Vn,t Voltage magnitude at bus n at hour t

Parameters for DDPG

84

α Parameter to adjust the weight of operation reward

ϵ Soft update parameter

γ Discount factor of DDPG

λk
t Time slot left for k-th MEC to reach its destination at hour t

M Mini-batch of transitions from the replay buffer

P State transition probability of MDP

µ Deterministic policy

R Replay buffer

θQ, θµ Weights of critic network and actor network

θQ
′
, θµ

′
Weights of target networks

at Action of the agent at time t

Ctr, Cq, Csoc Penalty parameters for MEC to travel, exceed capacity, and not fully discharged

dkt Destination of the k-th MEC at hour t

I(M) Time index of transitions in B

lc, la Learning rate of critic network and actor network

M Total training timesteps

okt Origin of the k-th MEC at hour t

Q(st, at) Action-value function of taking at from st

rt Step reward from the environment at time t

rop
t Operation reward at time t

rk,qt , rk,soc
t Reward of capacity on k-th MEC at time t

rk,trt Reward of transition on k-th MEC at time t

85

st State of the environment at time t

yi Target critic value of transition indexed by i

We propose to solve the problem by combining optimal power flow (OPF) with DDPG,

where OPF is used to control the grid energy generation and power flow, and DDPG is used

to control the mobility pattern and charging/discharging schedule of MEC. The proposed

DDPG agent can learn the stochastic behaviors of various environment parameters, such as

RES, different loads, and traffic conditions, by interacting with the training data through a

balanced exploitation and exploration. The trained agent can optimize the MEC operations

in real time by strategically dispatch them to different locations to agilely shape the peaks

in generation and load while providing flexible controllability to the distribution grid. With

such a concept, the excessive power from the RES can be directly routed to the point of

local demand or stored in the MEC fleet. Simulation results demonstrated that the proposed

MEC framework with DDPG can achieve significant cost reduction compared to conventional

systems with static energy storage systems.

6.1 Problem formulation

The MEC scheduling problem divided into two sub-problems. The first one is a multi-

period optimal power flow (MP-OPF) problem on a power distribution network equipped

with RES, ESS, and MEC as shown in Fig. 6.1. The second one focuses on the optimum

scheduling of the MECs, which can be formulated as a TA problem on a transportation

network. In this chapter, we assume that the MECs are owned and controlled by the utility

who also monitors and collects data from the distribution network. Each MEC will only

travel in the transportation network according to its scheduled destination and established

route. Compared to other vehicles in the network, the number of MECs is so small that

they have negligible impact on the parameters of the transportation network such as the

origin-destination (O-D) traffic demands, congestion time, and user equilibrium (UE). We

will present the models of the distribution and transportation network in the following two

subsections.

86

Figure 6.1: A distribution grid with both MEC and RES.

6.1.1 Transportation Network Model

The transportation network is usually defined by a connected graph (V , E) where V
denotes the set of vertices in the graph or nodes in the network, and E is the set of edges in

the graph or links in the network.

The time is divided into non-overlapping time slots with the duration ∆t as one hour

in this paper. The vehicle entering rate on link e ∈ E at time t is called the traffic flow on e,

denoted as f e
t . The time for vehicles to travel through link e at time t due to the congestion

of other vehicles is determined by the traffic flow f e
t as the Bureau of Public Roads (BPR)

function [150]

τ et (f
e
t) = τ e0

[
1 + 0.15

(
f e
t

f e

)4
]
, (6.1)

where τ e0 is the free-flow travel time on link e without congestion and f e is the capacity of

link e.

Each vehicle traveling within the transportation network, including the MEC, leaves

from its origin node u ∈ V and plans to arrives at its destination node w ∈ V through links.

The origin-destination (O-D) pair is denoted by (u,w), and the set of all the O-D pairs is

87

denoted by O. The number of vehicles that all share the same O-D pair at time t is called the

traffic demand between (u,w) at t, and it is denoted as duwt . Since the graph is connected,

there exits at least one path p connecting u and w for any chosen pair (u,w). Denote the

set of paths between (u,w) as Puw.

The vehicle entering rate on path p ∈ Puw at time t is called the path flow on p,

denoted as fp
t . The traffic flow f e

t on link e can be calculated by adding the path flow of all

the paths that contains link e as

f e
t =

∑
(u,w)∈O

∑
p∈Puw

fp
t ζpe, (6.2)

where ζpe = 1 if link e is on path p and 0 otherwise.

User equilibrium assumes that each driver decides to use the fastest path, and the

traffic flow will reach a stable state [151]. Under the UE assumption, the stable traffic flow

is obtained by solving the following optimization problem [152]:

min
fe
t

∑
e∈E

∫ fe
t

0

τ et (ω)dω, (6.3)

s.t. (6.2),

duwt =
∑

p∈Puw

fp
t , (6.4)

fp
t ≥ 0, (6.5)

where the objective function in (6.3) is the sum of the integration of the travel time between

0 and the traffic flow f e
t over all links in the network. It has no physical meaning and is

only used for the optimization. Besides the constraint of the relation between the traffic link

and path link in (6.2), constraint (6.4) guarantees the satisfaction of the traffic demand, and

constraint (6.5) ensures that path flow is non-negative.

Despite that (6.3) only solves the UE traffic flow at time t, if the O-D demands duwt

are given for different time slot t, the UE traffic flow for the whole time horizon T can be

obtained by solving it for |T | times sequentially. Once the UE traffic flow f e
t is obtained,

the travel time τ et (f
e
t) can be calculated. The Dijkstra’s algorithm can be applied to find the

fastest path for the MEC at time t between each O-D pairs, and the corresponding minimal

travel time is denoted as τuwt .

88

6.1.2 AC Multi-period Optimal Power Flow

The multi-period optimal power flow model for a distribution network with RES, ESS

and MEC is formulated in this subsection.

Consider a power distribution network consists of |N | buses, |G| conventional gen-

erators, |B| buses hosting energy storage and renewable energy sources such as PV farm

and wind farm, |L| changeable loads including residential, commercial, and industrial loads.

There are |K| MECs in the distribution network, and they can be regarded as special cases

of SESS.

Power generation is performed by both conventional power generators and renewable

energy sources such as solar and wind. Denote the active and reactive power generated by

the conventional generator on bus i ∈ G during time slot t as P g
i,t and Qg

i,t, and they are

bounded as follows
Pmin
i ≤ P g

i,t ≤ Pmax
i ,

Qmin
i ≤ Qg

i,t ≤ Qmax
i .

(6.6)

The active power generation is limited by the ramp rate as

−Rdown
i ≤ P g

i,t − P g
i,t−1 ≤ Rup

i . (6.7)

The power generated by the PV panel and wind turbine on bus i ∈ B during time

slot t is denoted as

P b
i,t = P pv

i,t + Pwind
i,t , (6.8)

where P pv
i,t and Pwind

i,t represent the active power generated by the PV panel and wind turbine,

respectively. Both rely on the weather condition and changes dynamically with respect to

time.

The network constraints contain constraints for bus voltages and branch flows. For

any bus n ∈ N in the network, the voltage magnitude during time slot t should be bounded

as

V min
n ≤ Vn,t ≤ V max

n (6.9)

The active and reactive power injected to bus n ∈ N during time slot t are denoted

89

by Pn,t and Qn,t, respectively. They need to satisfy the load flow equations

Pn,t =
∑
i∈N

Vn,tVi,t(Gni cos θni +Bni sin θni),

Qn,t =
∑
i∈N

Vn,tVi,t(Gni sin θni −Bni cos θni),
(6.10)

where Gni and Bni are the conductance and susceptance between buses n and i, respectively.

θni = θn − θi is the angle difference between buses n and i.

The reactive power flow on branch (i, j) at time slot t is denoted by Sij,t, where

i, j ∈ N and there is a branch between buses i and j. The reactive power should be bounded

by

0 ≤ |Sij,t| ≤ Smax
ij . (6.11)

The network delivers electricity from the transmission network to consumers, includ-

ing residential, commercial, and industrial sectors. The active and reactive power demands

at bus i ∈ L during time slot t are denoted as P l
i,t and Ql

i,t, respectively.

MECs interact with the grid by traveling among the locations of the buses and charg-

ing or discharging their batteries, contributing to grid services or meeting their own energy

needs. Denote the SOC of the k-th MEC at the beginning of time slot t as ckt . The initial

SOC of all energy storage devices is set to be zero. In each time slot t, each energy stor-

age device has the options to either charge, discharge, or stay idle. Denote the charging or

discharging rate of the k-th MEC as qkt and the charging/discharging efficiency as γe. The

dynamics of energy storage can be modeled by the following first-order difference equation

as

ckt+1 =

ckt +∆tqkt γe, qkt > 0

ckt , qkt = 0

ckt +∆tqkt /γe qkt < 0.

(6.12)

The charging/discharging rates are bounded by the maximum rate and storage capacity as

−qmin ≤qkt ≤ qmax (6.13)

0 ≤ckt ≤ cmax (6.14)

With all the generators, loads, and renewable energy sources, the active and reactive

90

power at each bus n ∈ N should be balanced by

Pn,t =
∑
i∈G

P g
i,tδin +

∑
i∈B

P b
i,tδin −

∑
k∈K

qkt δkn,t −
∑
i∈L

P l
i,tδin,

Qn,t =
∑
i∈G

Qg
i,tδin −

∑
i∈L

Ql
i,tδin,

(6.15)

where δin is the Kronecker delta with value 1 if i = n and 0 otherwise. Similarly δkn,t = 1 if

the k-th MEC is at bus n during time slot t.

Define the invertible mapping from buses in the power system network to the nodes

in the transportation network as ϕ : N → V . For example, buses m,n ∈ N are mapped to

nodes u,w ∈ V by ϕ(m) = u, ϕ(n) = w, respectively. Then the minimal travel time between

bus n and bus k at time t, in the unit of the number of slots with duration ∆t, can be

calculated as

λmn
t =

⌈
τ
ϕ(m)ϕ(n)
t

∆t

⌉
=

⌈
τuwt

∆t

⌉
. (6.16)

The MEC scheduling variable δkn,t is also constrained by∑
n∈N

δkn,t ≤ 1, ∀t ∈ T , ∀k ∈ K, (6.17)

which indicates that the k-th MEC can only be at one bus or on a path at each time slot.

The MEC scheduling variable is also constrained by the minimal travel time between buses.

For example, if the k-th MEC arrives at bus m at time slot t0, then the scheduling variable

of the k-th MEC then needs to satisfy

δkn,t = 0, t ∈ {t0, t0 + 1, . . . , t0 + λmn
t0
}

∀n ∈ N \ {m}, ∀k ∈ K,
(6.18)

which indicates that the k-th MEC at bus m will need at least λmn
t0

time slots to arrive at

bus n.

The objective of MP-OPF is to find the power flow solution that minimizes the cost

function. In this paper, a polynomial cost function with c2i, c1i, and c0i as the coefficients

for the generator at bus i ∈ G is used. The MP-OPF can be formulated as

min.
∑
t∈T

∑
i∈G

c2i
(
P g
i,t

)2
+ c1iP

g
i,t + c0i,

s.t. (6.6)− (6.15), (6.17), (6.18).
(P1)

91

where the decision variables are the power generation P g
i,t, Q

g
i,t for i ∈ G, the MEC scheduling

variable δkn,t, and the MEC energy storage behavior qkt for k ∈ K, n ∈ N , during the whole

time horizon t ∈ T .

This is a non-convex optimization problem where no guarantees on the performance

can be provided by theoretical calculation or solvers. It can be divided into two sub-problems.

In the first sub-problem, we can fix the ESS scheduling variables qkt and the MEC scheduling

variable δkn,t for k ∈ K, n ∈ N and t ∈ T , and solve a single-period OPF problem as

C(δkn,t, q
k
t) = min

P g
i,t,Q

g
i,t

∑
t∈T

∑
i∈G

c2i
(
P g
i,t

)2
+ c1iP

g
i,t + c0i

s.t. (6.6)− (6.11), (6.15).
(P2)

This can be solved by classical OPF methods or solvers.

Once the OPF problem in (P2) is solved, the second sub-problem can solve the MEC

and ESS scheduling problem as

min
δkn,t,q

k
t

C(δkn,t, q
k
t)

s.t. (6.12)− (6.14), (6.17), (6.18).
(P3)

6.2 DDPG approach

Recall that reinforcement learning (RL) is formulated based on Markov Decision

Process (MDP), which consists of a 5-tuple (S,A,P , r, γ), where S is the state space, A is

the action space, P is the state transition probability, r is the immediate scalar reward, and

γ ∈ (0, 1] is a discount factor. In this section, a brief DDPG framework will be introduced

and a DDPG agent will be formulated to solve the MEC and ESS scheduling control in (P3).

6.2.1 DDPG formulation for MEC Control

An MEC control environment that fits the MDP framework is developed for the

DDPG formulation. To simplify the environment, especially to reduce the dimension of the

state space, the MEC scheduling problem is described by three pieces of information: okt , dkt ,

and λk
t , which are, respectively, the origin, destination of the k-th MEC at slot t, and the

number of remaining time slots for the MEC to reach its destination at slot t.

1. State space S. The state at time slot t consists of the difference between active load

demand and renewable power generation at the corresponding buses, the origin, desti-

92

nation, the number of time slots remaining to reach the destination, and SOC for each

MEC. The state vector is defined as

st =

[∑
i∈L

P l
i,tδin −

∑
i∈B

P b
i,tδin, o

k
t , d

k
t , λ

k
t , c

k
t

]
,

(n ∈ N , k ∈ K).

(6.19)

2. Action space A. The action at time slot t includes the MEC destination and the

battery charging/discharging schedule

at =
[
dkt , q

k
t

]
, (k ∈ K). (6.20)

3. Transition Probability P . The transition probability is used to describe the probability

of state transitions for a given action. In the DDPG formulation, the DDPG agent will

learn the transition probability through interactions with the environment, and there

is no need to explicitly represent the transition probability.

4. Reward function r. The reward function is determined by the operation costs of gen-

erators and MEC. The objective of (P3) is to minimize the total operation cost of

generators, so the corresponding reward can be calculated by using the negative gen-

erator operation cost as

rop
t = −

(∑
t∈T

∑
i∈G

c2i
(
P g
i,t

)2
+ c1iP

g
i,t + c0i

)
. (6.21)

In addition to the generator operation cost, we also need to consider several other costs

and penalties that are related to MEC transition and constraints. If the k-th MEC is

on the road, then the reward related to the transition cost of the k-th MEC at slot t is

rk,trt = −Ctr, if λk
t > 0, (6.22)

where Ctr is the cost associated with MEC transportation.

We define the following two rewards that are related to the negative of the penalties

for violating of the energy storage constraints

rk,qt = −Cq, if (6.14) is violated (6.23)

rk,soc
t = −Csocc

k
t , if t = 24 (6.24)

93

where Cq is the penalty for violating the SOC constraints on k-th MEC at time t, and

Csoc is the penalty if the final SOC of the k-th MEC is not zero.

The reward function is a linear combination of the rewards above as

rt = αrop
t +

∑
k∈K

rk,trt + rk,qt + rk,soc
t (6.25)

where α is a parameter to adjust the weight of operation reward compared with other

rewards.

5. Discount factor γ: The discount factor is set to 0.99 in this paper.

6.2.2 DDPG framework

DDPG combines the policy gradient method and Deep Q-Network (DQN) by using

an actor-critic framework. The DDPG agent contains two DNNs, which are denoted as the

actor network and critic network, respectively.

The actor network is used to model the deterministic policy at = µ(st|θµ), that is,

the action that the agent should take for a given state st, with θµ being the DNN weight

coefficients for the actor network. The critic network is used to model the action-value

function (also known as the Q-function), Q(st, at), which is the expected discounted reward

after taking an action at at the state st. The output of the critic network in DDPG can be

represented as

Q(st, µ(st|θµ)|θQ), (6.26)

where θQ represent the DNN weight coefficients for the critic network. With the critic

network defined in (6.26), we can evaluate the gradient of the Q-function with respect to

the policy parameters θµ, such that the DDPG agent can iteratively search along the policy

gradient to optimize the policy (action) during the learning process.

DDPG training is performed by using mini-batches randomly sampled from a replay

buffer R, which stores the previous |R| transitions before the current time slot t, that is

(si, ai, ri, si+1)i∈{t−|R|+1,...,t−1,t}. During the time slot t, a mini-batch M ⊂ R with |M|
transitions (si, ai, ri, si+1)i∈I(M) are randomly sampled from the replay buffer, where I(M)

is the time index of transitions in the mini-batchM.

94

Figure 6.2: Diagram of DDPG training in MEC environment.

The actor network will be updated by maximizing the current Q-function value on

M as

θµ ← θµ + la∇θµ
1

|M|
∑

i∈I(M)

(
Q(si, µ(si|θµ)|θQ

)
(6.27)

where la is the learning rate of the actor network.

In order to improve the stability of the learning process, DDPG employs two target

networks for the critic and actor networks with weights θµ′ and θQ
′ , respectively. The target

critic value for the i-th transition inM under the current target actor is calculated by

yi = ri + γQ′
(
si+1, µ

′(si+1|θµ
′
)|θQ′

)
, i ∈ I(M). (6.28)

Then the critic network can be updated by minimizing the mean squared error be-

tween the target critic value and the current critic value as

θQ ← θQ + lc∇θQ
1

|M|
∑

i∈I(M)

(
Q(si, µ(si|θµ)|θQ)− yi

)2
, (6.29)

where lc is the learning rate of the critic network. The two target networks are updated

softly with parameter ϵ≪ 1 by:

θQ
′

← ϵθQ + (1− ϵ)θQ
′

,

θµ
′

← ϵθµ + (1− ϵ)θµ
′

.
(6.30)

This update process slows down the update of the networks thus improves the stability of

learning.

95

Figure 6.3: Diagram of DDPG testing in the MEC environment.

6.2.3 DDPG agent for MEC control

The DDPG agent will be trained for M episodes. During each training episode,

one day is randomly sampled from the dataset. The MECs are initialized with zero SOC,

and they are initially located at a bus with a renewable energy source n ∈ B. The initial

destination for each MEC is set to be the same as its initial location. At each training time

step, the agent interacts with the environment by executing actions from the actor network.

MECs are scheduled to new destinations, and they might charge or discharge once they

arrived at their destination. A single-period OPF with renewable energy source and MEC

behavior is solved and the operation cost is recorded. Along with other rewards, the step

reward is calculated. This single transition is then stored to the replay buffer.

At the same time, the actor and critic networks are updating their weights according

to (6.27) and (6.29), respectively. The target networks are updated softly according to (6.30).

The system diagram for DDPG training is shown in Fig. 6.2. The whole algorithm of DDPG

training is given in Algorithm 8.

After the training is done, the trained agent can be used to interact with the MEC

environment to solve the MEC control in real time. The system diagram for DDPG testing

is shown in Fig. 6.3.

6.3 Case Studies

Simulation results are presented in this section to demonstrate the performance of

the proposed MEC framework with DDPG. The DDPG algorithm is implemented using

96

Algorithm 8 DDPG training in MEC environment
Require: the transportation network (V , E), the power network with B,G,L,N , mapping

function ϕ, and |K| MECs. Structure and learning rate of actor and critic network,

mini-batchM.

1: Initialization: Initialize MECs with zero SOC at bus i ∈ B, initialize all network

weights θµ, θQ, θµ
′
, θQ

′ , build replay buffer.

2: for timestep = 1 to M do

3: for t ∈ T do

4: Observe state st from MECs and energy profiles, select action at = µ(st|θµ)
5: Execute at in the MEC environment: control the MECs, run SPOPF, and calculate

reward rt

6: Store transition (st, at, rt, st+1) in the replay buffer

7: Randomly sample a mini-batchM from the replay buffer

8: Compute targets for i ∈ I(M) by (6.28)

9: Update the critic parameters θQ by (6.29)

10: Update the actor parameters θµ by (6.27)

11: Update the target networks by (6.30)

12: end for

13: end for

Ensure: Network parameters θµ, θQ

Stable-Baselines3 [153] and pandapower [154] in Python. All simulations are performed on a

workstation with a 6-core Intel Core i7-5820K CPU operating at 3.3 GHz, NVIDIA GeForce

GTX 950 GPU, and 32 GB of random access memory (RAM).

6.3.1 Simulation Environment

The transportation network used for simulation is the Sioux Falls transportation

network as shown in Fig. 6.4 where each marker represents a node labeled with its node

ID. The data for all |V| = 24 nodes, |E| = 74 links, and all O-D traffic demand duw for

(u,w ∈ E) are downloaded from [155]. The original O-D traffic demands of Sioux Falls are

shown in Fig. 6.5. In order to simulate the demand changes in the 24 hours in a day, the

typical hourly traffic volume data on all links are downloaded at the City of Sioux Falls GIS

website [156]. The traffic volume data are summed up to each hour and the proportion of

97

Figure 6.4: Sioux Falls Transportation Network.

the hourly traffic demand is calculated by dividing hourly demand by the total demand in

the day. Then the original O-D demands are scaled by the this proportion as shown in Fig.

6.6 to hourly traffic demands duwt for (u,w ∈ E).

The distribution network is implemented on a modified IEEE 14-bus system as shown

in Fig. 6.7, where generators are located at bus G = {1, 2, 3, 6, 8}. The PVs and wind turbines

are installed at buses B = {3, 6, 8, 11}, with the profiles of year 2021 obtained from [157]

and [158]. The load demands at bus L = {2, 3, 4, 5, 6, 9, 10, 11, 12, 13} change according to

the load type in Table 6.1 and the corresponding load profile of the same year from [159–161].

The buses and loads in the distribution network can be found at Fig. 6.4, where the bold

number at the left bottom corner of a node represents the bus ID. For illustration, the

renewable energy profile and load profile on a bus on July 1st, 2021 are shown in Figs. 6.9

and Fig. 6.8, respectively.

98

Figure 6.5: Sioux Falls O-D Demands.

Figure 6.6: Typical hourly traffic demand proportion.

99

12

13

14

11
10

9

6

5

4

3

2

1
8

7

Figure 6.7: Modified IEEE 14-bus System.

Table 6.1: Bus to node mapping and load type

Bus ID Node ID Load type

1 1 -

2 2 I

3 5 R

4 8 R

5 10 C

6 12 R

7 13 -

8 14 -

9 16 R

10 18 R

11 19 R

12 20 R

13 22 C

14 24 - 100

Figure 6.8: The single load profile on July 1st, 2021.

Figure 6.9: The single renewable energy profile on July 1st, 2021.

The cost coefficients and the other physical constraints remain the same as the original

101

Table 6.2: DDPG parameters

Notation Description Value

Number of neurons in DDPG hidden layers 128,128

la DDPG actor learning rate 0.001

lc DDPG critic learning rate 0.001

ϵ DDPG soft update coefficient 0.005

|R| Experience replay buffer size 1000k

|M| Batch size 100

M Number of timesteps trained 100k

T Episode length 24

Ctr Transition cost 0.5

Cq SOC violation penalty 0.5

Csoc Remain energy penalty 0.1

α Weight of operation reward 0.01

IEEE 14-bus system. The energy storage units on each MEC are identical with a maximum

charge/discharge rate qmin = qmax = 3 MW, capacity cmax = 10 MWh, and storage efficiency

γe = 0.94. A single-period OPF (SPOPF) is calculated on this modified system during each

timestep of both training and testing using the pandapower package in Python.

The parameters for DDPG training are given in Table 6.2.

6.3.2 Simulation results

Fig. 6.10 shows the average episode reward during training with the shadow line as an

exponential moving average of weight 0.6. The average episode reward converges to around

−50 after being trained for 1 × 105 steps. This model obtained from training is stored and

then used during the testing stage.

The agent is tested by using the data for 2021. The testing results are averaged into

a daily cost, and the results for different scenarios are given in Table 6.3, where “No RES"

represents the system without RES or ESS, “No ESS" represents the system with RES but no

ESS, “SESS" represents the system with RES and static ESS co-located with the RES. Both

SESS and MEC share the same storage parameters. Compared to the “No RES", “No ESS",

and the SESS schemes, the proposed MEC scheme achieves a generation cost reduction of

102

Figure 6.10: The training curve of DDPG agent.

Table 6.3: Simulation result

Case No RES No ESS SESS MEC

Generation cost ($) 6229.39 5928.28 5066.30 4391.48

29.5%, 25.9%, and 13.3% respectively. Thus the proposed MEC framework can significantly

reduce the generation cost of a power system through the employment of the mobile ESS

units.

The mobility pattern and ESS behaviors for MEC on July 1st, 2021 are shown in

Fig. 6.11, where the lines are the MEC location (in bus ID) and the bars are the SOC of

MEC. For example, MEC 2 is located at bus 6 at the beginning, and travels to bus 14 for the

next 2 hours and stays there during 3 A.M. to 5 A.M. Then it travels to bus 5 to discharge

during the early peak at 7 A.M. and goes back to bus 14 and charges the ESS at noon. Next

it travels to bus 6 with RES, and it is fully charged in the afternoon. Later it discharges

during the late peak at 7 P.M., travels to bus 14 to be fully discharged and travels back to

the initial location. Similar behaviors are observed for MEC 4, which travels between buses

to shave the two peak hours. The mobility of MEC 1 and 3 is not fully utilized, as they

spend the majority of time at a single bus and act as an SESS.

103

Figure 6.11: Simulation results of MECs on July 1st, 2021.

6.4 Conclusion

This chapter has proposed a new framework of truck-based MEC, which are used to

strategically transport energy storage devices to different locations to facilitate the operations

of a distribution network with renewable energy sources. The MEC scheduling involves both

transportation scheduling and energy storage scheduling, and it has been solved by using deep

deterministic policy gradient under the framework of deep reinforcement learning. Based on

reinforcement learning of the dynamics of the loads, RES, and transportation networks,

the MEC powered by DDPG can achieve dynamic spatial-temporal energy reallocation to

optimize the grid operation. Simulation results have demonstrated that the employment of

MEC can achieve better utilization of the dynamic renewable energy sources, thus achieve

significant reduction in generation cost.

Several directions can be explored for future research. First, the problem formulation

can be expanded by considering additional design objectives, such as the resilience and

flexibility to enhance the overall performance of the power system. Second, the performance

of the system can be further optimized by considering the number, capacity, and cost of

MEC, and the results will be valuable for large power systems and transportation networks

104

for practical implementations. Third, employing electrical vehicles as MEC can further

improve the flexibility and efficiency of the overall system design.

105

7 Low Latency Attack Detection with Dynamic Watermarking for

Grid-Connected Photovoltaic Systems

All previous chapters focus on the grid integration of RES and the control algo-

rithms. The addition of these complex control and communication capabilities increases the

vulnerability of the RES, and make them prone to cyberattacks [19]. Cyberattacks can dis-

rupt normal grid operations by causing system instabilities such as line overloads, frequency

and/or voltage violations, reverse power flow, and voltage collapse, especially during heavy

load conditions [20,21]. This necessitates the development of new cybersecurity technologies

that can detect and/or mitigate the negative impacts of cyberattacks.

Many existing studies on the cybersecurity of energy systems focus on grid operations

by using measurements from the supervisory control and data acquisition (SCADA) systems,

the remote terminal units (RTUs), and/or the underlying communication network of the

grid [2, 22]. These measurements are important indicators for grid operations, but they are

insufficient given that attacks can be launched against local measurements from sensors and

actuators of RES, or the local control policies for RES operations.

In this chapter we develop a low latency attack detection algorithm for a grid-

connected PV systems with dynamic watermarking. The proposed algorithm has four main

innovations. First, the algorithm is designed by using a hybrid model- and data-driven ap-

proach. We first construct a state-space model for a grid-connected PV farm, the knowledge

of which is used to estimate and predict the state information, such as current and voltage,

by using a Kalman filter. Key parameters of the filter are estimated and updated by using

data collected from the system. Second, the algorithm performs active detection of cyberat-

tacks by using a two-test dynamic watermarking scheme. The statistical tests of the dynamic

watermarks are formulated by analyzing the statistical properties of the residuals from state

estimation and measurements. Third, unlike existing methods that focus mainly on detec-

tion accuracy, the algorithm is developed to minimize the average detection delay (ADD),

subject to an upper bound on the probability of false alarm (PFA). The low latency detec-

tion algorithm is designed by using a modified CUSUM algorithm that incorporates dynamic

watermarks. Fourth, we propose to measure the stealthiness of various cyberattacks by using

the Kullback-Leibler (KL) divergence between the pre- and post-attack distributions of the

106

test statistics. The KL divergence provides a quantitative measure on the tradeoff between

the stealthiness and the power of a given cyberattack. The KL divergences of several attacks,

such as the false data injection (FDI) attack, replay attack, and destabilization attacks are

analyzed and evaluated.

7.1 Problem formulation

7.1.1 PV model

Figure 7.1: Diagram of PV inverter.

The diagram of a typical PV inverter is shown in Fig. 7.1. The magnitude and

frequency of the PV inverter output voltage need to be controlled and regulated to ensure

proper system operations. The DC voltage at the output of the boost converter, VDC, is

considered as an ideal DC voltage source. Denote the phase voltage magnitude connected

to the grid as VG, the DQ frame of which is represented as VDG and VQG, respectively. The

three phases of the output current of the inverter are denoted as Ia, Ib, and Ic. The DQ

frame of the three-phase current after the inverter is represented as ID and IQ, respectively.

The PV inverter controller is controlled by using the signal VDG, VQG, ID, IQ, along with

the DQ frame of the three-phase reference currents IRef
D and IRef

Q , the values of which are set

based on the output voltage and power to the grid.

Denote the phase voltage magnitude of the inverter as VI, and the equivalent induc-

tance between the inverter and the grid as LEQ, which consists of the inductance of the LCL

filter and the transmission line. Based on the input signals to the PV inverter controller, the

107

reference DQ frames of VI can be computed as

V Ref
DI =

2

VDC

[
Kp1

(
IRef
D − ID

)
+Ki1

∫ t

0

(
IRef
D − ID

)
dτ + VDG + ωLEQIQ

]
, (7.1a)

V Ref
QI =

2

VDC

[
Kp2

(
IRef
Q − IQ

)
+Ki2

∫ t

0

(
IRef
Q − IQ

)
dτ + VQG − ωLEQID

]
, (7.1b)

where Kp1, Kp2, Ki1 and Ki2 are the corresponding proportion parameter and integration

parameter tuned based on the desired static and dynamic performance of the output voltage.

The reference voltage V Ref
I is calculated by inverse DQ transformation from its reference DQ

frame, and then fed to the input of the PWM generator.

7.1.2 State-Space model

The PV farm model can be abstracted to a multiple-input multiple-output partial

observed system model. Based on the grid connected PV farm model, define the system state

vector, x ∈ Rn, the control system input vector, u ∈ Rm, and the output (or observation)

vector, y ∈ Rp, as

x = [ID, IQ, VDG, VQG]
T , n = 4, (7.2a)

u = [VDI, VQI]
T , m = 2, (7.2b)

y = [ω, |VG|]T , p = 2, (7.2c)

where VDI and VQI are the DQ frames of the voltage after the inverter VI, w and |VG| are the

frequency and magnitude of the output voltage connected to the grid, respectively.

The dynamics of the PV farm system can then be estimated by using the following

linearized differential and algebraic equations (DAEs) as

ẋ = Ax+Bu+w, (7.3a)

y = Cx+ n, (7.3b)

where A ∈ Rn×n is the state matrix, B ∈ Rn×m is the control matrix, C ∈ Rp×n is the output

matrix, w ∼ N (0,Σw) and n ∼ N (0,Σn) are zero-mean Gaussian distributed process noise

and the measurement noise, respectively, with their covariance matrices being Σw and Σn,

respectively.

The small-signal dynamics around a given operating condition can be estimated sim-

ilarly by using the DEAs. Let ∆x be the small deviation over the equilibrium state, and ∆u

108

and ∆y are defined in a similar manner. Then the DAEs for the small-signal dynamics can

be expressed as,

∆ẋ = A∆x+B∆u+w, (7.4a)

∆y = C∆x+ n. (7.4b)

The control policy of the entire PV farm can be abstracted into a nonlinear vector

function h(·) as

∆u = h(∆y). (7.5)

The continuous-time state-space model in (7.4) can be discretized into discrete-time as

∆x[t+ 1]−∆x[t] = A∆x[t] +B∆u[t] +w[t+ 1] (7.6a)

∆y[t+ 1] = C∆x[t+ 1] + n[t+ 1] (7.6b)

Similarly, the discrete form of (7.5) is:

∆u[t] = h(yt) (7.7)

where yt := {y[0],y[1], . . . ,y[t]} are the collections of previous measurements reported by

the sensors for the PI control.

It should be noted that the values of variables in the discrete-time difference equations

generally differ from their continuous-time counterparts in the differential equations and their

values are determined by the sampling rate. For convenience, the notations are kept the same

and the small deviation notation ∆ is omitted for the rest of the work. The DEAs in (7.6)

can also be written as,

x[t+ 1] = Adx[t] +Bu[t] +w[t+ 1], (7.8a)

y[t+ 1] = Cx[t+ 1] + n[t+ 1], (7.8b)

where Ad = A + In. The state transition matrices for the discrete-time model can be

obtained from the continuous-time model if the control model is known. They can also be

estimated by measurements in practice without the knowledge of the control model.

7.1.3 Attack models

Suppose the system is attacked at the moment τ , and assume that the attacker has

the knowledge of the control system, including the parameters Ad,B,C, the control policy

109

h(·) and all historical measurements zt. This is a very generous assumption to assume the

worst possible attacks. In case the attacker has partial knowledge of the above parameters

and/or control policy, the attack efficiency will be lower and it will be easier to detect.

The following types of cyberattacks are considered in this paper.

1. FDI attack. The measurement vector y[t] is injected with a deterministic attack vector

a[t] ∈ Rp or a noise vector a[t] ∼ Np(0,Σa) as

z[t] =

{
y[t], t < τ,

y[t] + a[t], t ≥ τ.
(7.9)

2. Replay attack. The measurement vector y[t] is replaced by historical data from l

moments ago with l < τ as,

z[t] =

{
y[t], t < τ,

y[t− l], t ≥ τ.
(7.10)

3. Destabilization attack. The control input u[t] is injected with a scaled controller input

as

ua[t] = u[t] +Apx[t], t ≥ τ (7.11)

where Ap ∈ Rm×n is the scaling parameter for the attack. With the compromised

control input ua[t], the state transition in (7.8) becomes

x[t+ 1] = (Ad +BAp)x[t] +Bu[t] +w[t+ 1]. (7.12)

The system becomes unstable when the entries in Ap are chosen such that ||Ad +

BAp|| ≥ 1 [162].

7.2 State Estimation

7.2.1 Kalman filter

Consider a multiple-input multiple-output partial observed system as shown in Fig.

7.2 with x ∈ Rnx×1 as the state vector. A Kalman filter as shown in Fig. 7.3 is used to

estimate the state. Denote x̂a|b as the estimation of x at the moment a given observations up

110

Figure 7.2: System model

to and including moment b. The state extrapolation equation predicts the next system

state x̂k+1|k based on the knowledge of the current estimated state x̂k|k.

x̂k+1|k = Ax̂k|k +Buk +wk (7.13)

where uk ∈ Rnu×1 is called the control variable or input variable, which is a measurable

input to the system. wk ∈ Rnx×1 is called the process noise or disturbance, which is an

unmeasurable input that affects the state. A ∈ Rnx×nx is the state transition matrix,

B ∈ Rnx×nu is the control matrix or input transition matrix. The predictor covariance

matrix is given by the covariance extrapolation equation:

Pk+1|k = APk|kA
T +Σw (7.14)

where Pk|k is the estimation covariance matrix of the current state, Pk+1|k is the prediction

covariance matrix of the next state. Σw is the covariance matrix of the process noise. These

two equations above are prediction equations.

Denote the measurement vector as yk ∈ Rny×1, represents a linear transformation

of the true state xk ∈ Rnx×1 with a random measurement noise nk ∈ Rny×1, given by the

measurement equation:

yk = Cxk + nk (7.15)

where C ∈ Rny×nx is the observation matrix. The randomness of the measurement noise

is given by covariance matrix Σn.

There are also two equations for updating. Define υk+1 ∈ Rny×1 as the innovation

vector at moment k + 1 as:

υk+1 = yk+1 −Cx̂k+1|k, (7.16)

111

Figure 7.3: State estimation

The first is the state update equation:

x̂k+1|k+1 = x̂k+1|k +Kk+1υk+1, (7.17)

where Kk+1 ∈ Rnx×ny is the Kalman Gain matrix. The covariance update equation is

given by:

Pk+1|k+1 = (I−Kk+1C)Pk+1|k(I−Kk+1C)T +Kk+1ΣnK
T
k+1 (7.18)

where I ∈ Rny×ny is an identity matrix. The derivation can be found in Appendix B.1.

The Kalman Gain matrix is updated by:

Kk+1 = Pk+1|kC
T (CPk+1|kC

T +Σn)
−1 (7.19)

the derivation is also given in Appendix B.2. Plugging equation (7.27) to equation (7.18)

will give a simplified covariance update equation:

Pk+1|k+1 = (I−Kk+1C)Pk+1|k (7.20)

This equation might look more elegant than (7.18), however it is numerically unstable and

not recommended for computing the updated covariance. The operation of Kalman filter

follows a “predict-estimate” loop, as shown in Fig.7.4

7.2.2 Dynamic watermarking

The dynamic watermarking is implemented in the form of a random signal e[t] ∼
N (0,Σe), and they are identically and independently distributed in time. The dynamic

watermark signal is applied to the control input as,

u[t] = h(zt) + e[t], (7.21)

112

Figure 7.4: Kalman filter diagram

where zt is the compromised observation vector after attack, and zt = yt if there is no attack.

With the watermark signal, the system evolves as

x[t+ 1] = Adx[t] +Bh(zt) +Be[t] +w[t+ 1], (7.22a)

y[t+ 1] = Cx[t+ 1] + n[t+ 1]. (7.22b)

It is shown in [86] that the addition of a dynamic watermark signal to the control

input can facilitate the revelation of malicious tampering of the signals through two statistical

tests.

The implementation of the low latency detection with dynamic watermarking requires

state estimation of the solar farm. Using the Kalman filter equations we have:

x̂k+1|k = Adx̂k|k +Bh(zk) +Be[k], (7.23)

Pk+1|k = AdPk|kAd
T +Σw. (7.24)

Define υ[k + 1] ∈ Rp as the innovation vector at moment k + 1 as

υ[k + 1] = z[k + 1]−Cx̂k+1|k, (7.25)

and the corresponding innovation covariance matrix is

Rk+1 = CPk+1|kC
T +Σn. (7.26)

The optimal Kalman gain matrix at moment k + 1 is

Kk+1 = Pk+1|kC
TR−1

k+1. (7.27)

113

Then the posterior state estimation and the corresponding covariance matrix at the

moment k + 1 are updated by

x̂k+1|k+1 = x̂k+1|k +Kk+1υ[k + 1], (7.28)

Pk+1|k+1 = (Ip −Kk+1C)Pk+1|k. (7.29)

Substituting (7.23) and (7.25) into (7.28) yields

x̂k+1|k+1 = Adx̂k|k +Bh(zk) +Be[k] +Kk+1υ[k + 1]. (7.30)

Define a test statistic g[k + 1] at the moment k + 1 as:

g[k + 1] = x̂k+1|k+1 −Adx̂k|k −Bh(zk)−Be[k] (7.31)

If there is no attack, then d[k + 1] = 0, and we have the following distributions,

x̂k+1|k+1 −Adx̂k|k −Bh(zk) ∼ Nn(0,BΣeB
T +Kk+1Rk+1K

T
k+1), (7.32)

x̂k+1|k+1 −Adx̂k|k −Bh(zk)−Be[k] ∼ Nn(0,Kk+1Rk+1K
T
k+1). (7.33)

The elements in g[k + 1] might be mutually correlated because of the selected state

of the system, which makes Φk+1 = Kk+1Rk+1K
T
k+1 singular.

To solve this problem, denote Φ = limk→∞Φk+1 as the asymptotic estimate of Φk+1.

Assume the rank of Φ is q ≤ p with nonzero eigenvalues λ = [λ1, · · · , λq]
T , and the matrix

Ū ∈ Cp×q contains the corresponding eigenvectors on its column. We can perform dimension

reduction on g[k + 1] as

ḡ[k + 1] = ŪHg[k + 1]. (7.34)

Then we have

lim
k→∞

E
[
ḡ[k + 1]ḡ[k + 1]H

]
= D, (7.35)

where D = Diag(λ) ∈ Cq×q is a diagonal matrix with the q nonzero eigenvalues of Φ on its

main diagonal.

Based on the test statistic, the statistical tests that are used for dynamic watermark-

ing are [86]

114

1. Test 1:

lim
T→∞

1

T

T−1∑
k=0

e[k]ḡ[k + 1]T = 0m×q. (7.36)

2. Test 2:

lim
T→∞

1

T

T−1∑
k=0

ḡ[k + 1]ḡ[k + 1]T = D. (7.37)

Following the similar procedure as in [86], it can be proved that passing tests (7.36) and

(7.37) is sufficient to achieve an asymptotically zero attacking power defined as

lim
T→∞

1

T

T−1∑
k=0

||d[k + 1]||2 = 0, (7.38)

which means there is no attack.

Define r[k + 1] = [ḡ[k + 1]T e[k]T]T ∈ Rq+m, The the two tests described in (7.36)

and (7.37) can be combined into one equivalent test as,

lim
T→∞

1

T

T−1∑
k=0

r[k + 1]r[k + 1]T

= lim
T→∞

1

T

T−1∑
k=0

[
ḡ[k + 1]ḡ[k + 1]T ḡ[k + 1]e[k]T

e[k]ḡ[k + 1]T e[k]e[k]T

]

=

[
D 0q×m

0m×q Σe

]
:= Σ0 ∈ R(q+m)×(q+m).

(7.39)

7.3 Low Latency Detection with Dynamic Watermarking

Based on the test statistics designed for dynamic watermarking, we propose to develop

low latency attack detection with dynamic watermarking.

7.3.1 Post-Attack Distributions and KL Divergence

We first study the pre- and post-attack distributions of the test statistics for dynamic

watermarking with various attacks. In addition, the results are used to analytically identify

the KL divergence between the pre- and post-attack distributions. The KL divergence can

be used to measure the stealthiness of various cyberattacks. The analytical results will be

used to facilitate the development of the low latency detection algorithm.

115

Under normal operation conditions without any attack, the limit distribution of r[k+

1] is given based on the Law of large numbers (LLN) as

lim
k→∞

r[k + 1] ∼ Nq+m(0,Σ0). (7.40)

Denote K = limk→∞Kk+1 and P = limk→∞Pk+1 as the asymptotic covariance matrix

and Kalman gain matrix, respectively. The post-attack distribution of r[k+1] depends on the

various attack models as analyzed in the following. The proof of the post-attack distribution

of r[k + 1] can be found in Appendix C.

1. FDI attack: Substituting (8.3) and (7.25) into (8.29) and (7.31), we have the post-

attack distribution of r[k + 1] under the FDI attack as

lim
k→∞

r[k + 1] ∼ Nq+m(µ,Σ) (7.41)

with

µ =

[
ŪHKa[k + 1]

0m

]
(7.42a)

Σ = Σ0 (7.42b)

under deterministic FDI. Under the noisy FDI attack, we have

µ = 0q+m (7.43a)

Σ =

[
D+ ŪHKΣaK

T Ū 0q×m

0m×q Σe

]
(7.43b)

under noise FDI.

2. Replay attack: Substitute (7.10) to (8.29) and (7.31). Define the control matrix L to

be the linear approximation of the control policy h(·), such that

u[k] = Lx̂k|k + e[k]. (7.44)

Then the post-attack distribution of r[k+1] under the replay attack can be estimated

as,

lim
k→∞

r[k + 1] ∼ Nq+m(0q+m,Σ), (7.45)

116

with

Σ =

[
D+ 2ŪHKCXCTKT Ū −ŪHKCBΣe

−ΣeB
TCTKT Ū Σe,

]
(7.46)

where X is the solution of the following Lyapunov equation

AeXAT
e −X+BΣeB

T = 0, (7.47)

and Ae is the estimated transition matrix:

Ae = (Ad +BL)(Ip −KC). (7.48)

3. Destabilization attack: Substituting (7.8) into (7.30) leads to the post-attack distribu-

tion as

r[k + 1] ∼ Nq+m(µ,Σ), (7.49)

with

µ =

[
ŪHKCBApx̂k|k

0m,

]
(7.50a)

Σ =

[
D+ ŪHKCPaC

TKT Ū 0q×m

0m×q Σe,

]
(7.50b)

where

Pa = BApPAp
TBT +AdPAp

TBT +BApPAd
T . (7.51)

Note that r[k+1] follows a normal distribution with µ ̸= 0 or Σ ̸= Σ0 under attacks

in this paper, then the hypothesis test on r[k + 1] is

H0 : r[k + 1] ∼ Nq+m(0,Σ0)

H1 : r[k + 1] ∼ Nq+m(µ,Σ)
(7.52)

We propose to measure the stealthiness of the various attacks by using the Kullback-

Leibler (KL) divergence between the pre- and post-attack distributions of r[k + 1]. The

KL divergence measures the difference between two statistical distributions. A larger KL

divergence means a larger difference between the pre- and post-attack distributions, thus it

117

is relatively easier to detect. A lower KL divergence means that the attack is more stealthy

and harder to detect. The KL divergence of the pre- and post-attack distributions can be

calculated as

D(H1||H0) =
1

2
[µTΣ−1

0 µ+ Tr(Σ−1
0 Σ) + log

|Σ0|
|Σ|
−m− q], (7.53)

with µ and Σ being the post-attack mean and covariance matrices for the various attacks.

7.3.2 Low Latency Attack Detection

In the quickest attack detection, the objective is to minimize the average detection

delay (ADD) subject to an upper bound of the probability of false alarm (PFA). Denote the

attack time identified by the detector as τ̂ . Then the detection problem can be formulated

as:
min ADD = E[τ̂ − τ |τ̂ > τ],

s.t. PFA = P(τ̂ < τ) ≤ α.
(P1)

Based on the analysis in the previous subsections, define a new variable Γ[k]

Γ[k] = r[k]TΣ0
−1r[k] (7.54)

Under the null hypothesis, Γ[k] follows a χ2 − distribution with q + m degrees of

freedom with mean and variance given as follows,

E[Γ[k]] = q +m

Var[Γ[k]] = 2(q +m)
(7.55)

Based on the distribution of Γ[k], we can define the test statistics used for CUSUM

as [2]

U [k + 1] = max(0, U [k] +
Γ[k + 1]− (q +m)√

2(q +m)
), (7.56)

T [k] =
U [k]

k
(7.57)

with U [1] = 0. The test sequence T [k] accumulates the normalized variable, Γ[k]−(q+m)√
2(q+m)

, over

time. Under the null hypothesis, the test sequence T [k] is always close to 0. Under the event

of cyberattacks, the value of T [k] will increase over time. Thus the CUSUM detector can be

defined as a threshold test as

τ̂ = inf{k ≥ 1|T [k] ≥ α}, (7.58)

118

where the threshold α is chosen to meet the PFA upper bound constraint. The Markov chain

approach in [163] can be used for calculating the PFA and then selecting the threshold.

7.4 Simulation results

The PV farm is modeled using MATLAB Simulink, and all the attacks are simulated

based on the Simulink model. The DC link voltage VDC is set to 800 V, and the output

AC phase voltage magnitude |VG| is 400 ×
√

2
3
= 326.60 V with the frequency being 60

Hz. The reference DQ frame of the current are set to IRef
D = −150 A, IRef

Q = 0 A. The

proportion parameters Kp1, Kp2 are tuned to 10, and the integral parameters Ki1, Ki2 are

tuned to 20. The time interval of the simulation is set to ∆t = 10−6 s, which corresponds to

a sampling rate of 1 MHz. This continuous state-space model is discretized with a sampling

rate of 2 kHz, which is equivalent to a time interval of 5×10−4 s between each measurement.

The covariance matrices for the process and measurement noises are set to Σw = 10−6I4

and Σn = 5 × 10−7I2, respectively. The covariance matrix of the dynamic watermark is

Σe = 10−6I2.

The system reaches the equilibrium after 2s. Once the system reaches the equilibrium,

data are collected during the next one minute for parameter estimation. The state x, the

input u, and the output y in the next one minute period are recorded, and are then used to

estimate the corresponding matrices Ad,B,C and D,K,P.

Cyberattacks and low latency attack detection are performed after parameter estima-

tion. The attacks are launched at 4.5 s after the parameter estimation. State estimations are

performed by using the control inputs and the measurements, and the results are then used

to calculate the CUSUM test statistic. The ADD and PFA of the detector are calculated by

using the results from 1,000 Monte-Carlo simulation trials.

119

7.4.1 Performance under different attacks

Deterministic FDI Attack

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

time (s)

59.9

60

60.1

60.2
 (

H
z
)

Actual signal before attack

False data

Actual signal after attack

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

time (s)

326.5

326.55

326.6

326.65

|V
g
|
(v

)

Actual signal before attack

False data

Actual signal after attack

Figure 7.5: The voltage frequency (top) and magnitude (bottom) measurement under

deterministic FDI attack on the PV system at 4.5s

120

3 3.5 4 4.5 5 5.5 6 6.5 7

time (s)

0

5

10

15

20

25

T

4.495 4.5 4.505
0

0.05

0.1

0.15

Figure 7.6: The detector statistic under deterministic FDI attack on the PV system at 4.5s

The FDI attack with a deterministic attack vector is simulated by injecting the vector

a[t] = [0.05,−0.05]T to the measurement vector at 4.5 s. Fig. 7.5 shows the actual measure-

ments and those with the attack. The attack does not cause apparent frequency deviation,

but the voltage magnitude is decreased due to the attack despite the control system.

The CUSUM statistic under the deterministic FDI attack with a zoom-in around 4.5s

is presented in Fig. 7.6. The CUSUM statistic remains around 0 before the attack, and its

value increases dramatically after the attack. Thus the attack can be easily detected with

minimum delay with the proposed quickest attack detection algorithm.

121

Noisy FDI Attack

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

time (s)

59.95

60

60.05
 (

H
z
)

Actual signal before attack

False data

Actual signal after attack

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

time (s)

326.58

326.6

326.62

326.64

|V
g
|
(v

)

Actual signal before attack

False data

Actual signal after attack

Figure 7.7: The voltage frequency (top) and magnitude (bottom) measurement under noise

FDI attack on the PV system at 4.5s

122

3 3.5 4 4.5 5 5.5 6 6.5 7

time (s)

0

0.05

0.1

0.15

0.2

0.25

T

Figure 7.8: The detector statistic under noise FDI attack on the PV system at 4.5s

The noisy FDI attack vector is generated from a random vector a[t] ∼ N2(0,Σa).

We set the noise covariance to a level that is multiple times of the system and measurement

noise, i.e., the vector on the main diagonal of Σa is set to [3× 10−5, 3× 10−6]. Fig.7.7 shows

the actual measurements and those with noise injections. The injection only causes trivial

fluctuation in both the frequency and voltage magnitude, and the actual measurements still

fall in a normal range because of the control system.

The CUSUM statistic under the noisy FDI attack is presented in Fig. 7.8. Since the

variance of the injected noise is very low, such an attack is hard to detect. However, it still

causes a significant increase in the slope of the CUSUM statistic. Thus the noisy FDI attack

can be easily detected with the proposed detection algorithm with low latency.

123

Replay attack

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

time (s)

59.95

60

60.05
 (

H
z
)

Actual signal before attack

False data

Actual signal after attack

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

time (s)

326.58

326.6

326.62

326.64

|V
g
|
(v

)

Actual signal before attack

False data

Actual signal after attack

Figure 7.9: The voltage frequency (top) and magnitude (bottom) measurement under

replay attack on the PV system at 4.5s

124

3 3.5 4 4.5 5 5.5 6 6.5 7

time (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T

Figure 7.10: The detector statistic under replay attack on the PV system at 4.5s

The replay attack is simulated by replacing the actual measurements from 4.5 s by

historical measurements starting at 2.5 s (a delay of 2 seconds). Fig. 7.9 shows the measure-

ments between 2s to 7s, where there is a 2 second delay between the attacked measurement

and the actual measurement. The replay attack does not deviate the measurements from

their normal range. However, the system will be out of normal control and cannot respond

to load changes of the grid or faults in the PV farm, which can cause voltage fluctuations,

reverse power flow, and real power curtailments.

The CUSUM statistic under the replay attack is presented in Fig. 7.10. The statistic

T [k] increases much slower than other attacks, i.e., the attack is much more stealthy com-

pared to others. However, there is still an apparent increase in the slope of T [k]. Thus the

replay attack can be easily detected with the proposed algorithm even if it does not cause

significant deviation of the system states.

125

Destabilization attack

4.46 4.47 4.48 4.49 4.5 4.51 4.52 4.53 4.54 4.55 4.56

time (s)

58

59

60

61

62

 (
H

z
)

Actual signal before attack

Actual signal after attack

4.46 4.47 4.48 4.49 4.5 4.51 4.52 4.53 4.54 4.55 4.56

time (s)

326.4

326.5

326.6

326.7

326.8

|V
g
|
(v

)

Actual signal before attack

Actual signal after attack

Figure 7.11: The voltage frequency (top) and magnitude (bottom) measurement under

destabilization attack on the PV system at 4.5s

126

3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5

time (s)

0

500

1000

1500

2000

2500

3000

3500

T

4.45 4.5 4.55
0

0.2

0.4

Figure 7.12: The detector statistic under destabilization attack on the PV system at 4.5s

The destabilization attack is simulated by replacing the control inputs from 4.5 s by

v(t)+Ap(t)x(t), where Ap(t) is a diagonal matrix with the main diagonal being [1.5, 1.5, 0, 0].

Fig. 7.11 shows the measurements from 4.46 s to 4.56 s. The attack rapidly causes instability

in measurements which gradually exceeds its normal range.

The CUSUM statistic under destabilization attack is presented in Fig. 7.12. The

statistic T [k] increases much faster than other attacks, such that it is easier to detect such

an attack.

127

0 0.05 0.1 0.15 0.2

PFA

8

10

12

14

16

18

20

A
D

D

Deterministic FDI

Destabilization

Figure 7.13: The PFA-ADD curve under the deterministic FDI attack and destabilization

attack on the PV system

7.4.2 Detector performance

More powerful attacks can make the system rapidly drift away from its normal state

and cause damage in a short time. However, they are usually easier to attack. The adversaries

have more incentives to balance the stealthiness and power of the attack such that they can

cause damage before being detected.

The stealthiness of the attacks can be measured by using the KL-divergence between

the distributions of the CUSUM test vector r before and after the attack. The KL-divergence

of various attacks at 4.5s is calculated by using the results in Section 7.3.1, and the results are

shown in Table 7.1. The deterministic FDI and destabilization attacks have similar levels of

KL divergence, and both are two or three orders of magnitude higher than that of the relay

and noisy FDI attacks. Thus the deterministic FDI and destabilization attacks are relatively

easier to detect. Among the 4 attacks, the noisy FDI attack has the best stealthiness with

the lowest KL divergence.

The performance of the proposed low latency CUSUM detector is evaluated by using

the ADD-PFA tradeoff curves shown in Fig.7.13 and Fig.7.14. Each point on the ADD-PFA

128

tradeoff curve is obtained through 1,000 Monte Carlo trails for a given detection threshold.

Due to the stealthiness of the noisy FDI and replay attack, under the same PFA, e.g. PFA =

0.02, the ADD of the deterministic FDI, destabilization, replay, and noisy attacks are 12.1,

16.5, 109, and 128 ms, respectively. This is consistent with the KL divergence analysis, that

is, attacks with lower KL divergence are harder to detect, thus they have larger ADD under

the same PFA.

Attack type KL-divergence

FDI (deterministic) 0.2979

FDI (noise) 0.0053

Replay 0.0547

Destabilization 0.4567

Table 7.1: KL-divergence between distribution of r before and after attack.

0 0.05 0.1 0.15 0.2

PFA

60

70

80

90

100

110

120

130

140

150

A
D

D

Noise FDI

Replay

Figure 7.14: The PFA-ADD curve under noise FDI attack and replay attack on the PV

system

129

7.5 Conclusion

This chapter has proposed an active low latency attack detection algorithm for grid-

connected PV systems. We have developed a generalized CUSUM detector with dynamic

watermarking by constructing and analyzing the physical model of a grid-connected PV

system. The detection algorithm was developed to minimize detection delay while ensuring

detection accuracy. In addition, we have proposed to use the KL divergence to measure the

stealthiness of different cyberattacks. The algorithm was tested on a 400 V grid-connected

PV system with various cyberattacks. Simulation results demonstrated that the proposed

algorithm can achieve a detection delay of 50 ms with PFA below 5%.

130

8 Low Latency Cyberattack Detection in Smart Grids with Deep

Reinforcement Learning

The ever-increasing power demands along with growing penetration rates of renewable

energy necessitate designs of smart grids that are reliable, resilient, and secure [14]. The

cyberattack on local RES such as PV farm can be quickly detected by the local measurement

and the statistics used in last chapter. An important component of a smart grid is the

supervisory control and data acquisition (SCADA) system, which monitors and controls

power grid operations with the help of remote terminal units (RTUs). However, SCADA

systems are prone to cyberattacks. For instance, cyberattacks on the SCADA system in the

power grid of Kiev, Ukraine on December 23, 2015 led to a wide range blackout [15].

In this chapter, we propose to address this problem by developing a low latency detec-

tion algorithm that aims at minimizing the detection delay while maintaining good detection

accuracy. The proposed algorithm adopts a hybrid model- and data-driven approach that

relies on both the physical model of the power grid and the measurement data collected from

the grid. In the model-based analysis, an AC model with an extended Kalman filter (EKF)

is used to estimate and track the dynamic transitions of the power system. The data-driven

analysis is performed by developing a deep reinforcement learning (DRL) based detection

algorithm with a deep Q-network (DQN) on the framework of the Markov decision process

(MDP). The new DQN design has two main innovations. First, the MDP state is designed

as a sliding window of the Rao-statistics of the AC dynamic state estimation residuals. Such

a state representation can accurately capture the dynamic state transitions in power systems

over certain time periods, thus enabling real time detection. Second, a new reward function

is proposed to enable flexible trade-offs between the detection delay and detection accuracy.

The combination of the new MDP state and reward function allows us to achieve low latency

attack detection in real time with high detection accuracy, and it can be used to detect both

FDI and DoS attacks. In addition, the proposed DQN algorithm utilizes a continuous state

space instead of the discrete state space used by most existing RL algorithms. The adoption

of continuous state space can reduce detection complexity and improve detection accuracy,

and it makes the algorithm less likely to suffer from the curse of dimensionality.

131

8.1 Problem formulation

8.1.1 System model

We consider a power system with N buses. Without loss of generality, the first bus

is chosen to be the slack (reference) bus, which means the phase of the voltage at this bus

is regarded as 0. The magnitudes and phases of voltages on the N − 1 remaining buses are

states of the system. Define the state vector of the system as x = [x1, x2, . . . , xn]
T ∈ Rn×1,

where n = 2N − 1, and AT is the matrix transpose operator. Denote the active and reactive

power injected to bus i as Pi and Qi, respectively, and the number of buses that are connected

to bus i is ci. Denote the active and reactive power flow from bus i to bus j as Pij and Qij,

respectively.

Each bus is equipped with a smart meter that collects the active and reactive power

injections and power flows. The system provides m = m1 +m2 + 1 measurements in total,

where m1 = 2N is the number of active and reactive power injections, and m2 =
∑N

i=1 ci

is the number of active and reactive power flows. To fully observe the power system, the

voltage magnitude at the slack bus V1 is also collected. Denote the measurement vector

as z = [z1, z2, . . . , zm]
T ∈ Rm×1. The power and voltage results at time t can be modeled

as nonlinear functions of the state vector xt as h(xt) = [h1(xt), h2(xt), . . . , hm(xt)]
T . The

measurement vector can then be represented by

zt = h(xt) + et, (8.1)

where et is the measurement error at time t, and it is modeled with a zero-mean Gaussian

distributed random vector with length m and covariance matrix R. Denote the estimated

state vector with a dynamic state estimation at time t as x̂t. Define a residual vector vt as

vt = zt − h(x̂t). (8.2)

8.1.2 Attack model

Assume that measurement elements in index I ⊆ {1, 2, · · · ,m} are attacked at time

τ . The attack models of FDI and DoS are given as follows.

1. False Data Injection (FDI): The measurement vector is injected with a random attack

132

vector A = [a1, a2, . . . , am]
T ∈ Rm×1, with ai = 0 if i /∈ I:

zt =

{
h(xt) + et, t < τ

h(xt) + et +A, t ≥ τ
(8.3)

2. Denial of Service (DoS): In the DoS attack, a subset of the elements in the measurement

vector are changed to zero. The DoS attack can be represented by using a diagonal

matrix A with the main diagonal being a binary vector d = [d1, d2, · · · , dm]T ∈ {0, 1}m,

that is A = diag(d), where

di =

{
0, i ∈ I
1, i /∈ I

(8.4)

The DoS attack is modeled as:

zt =

{
h(xt) + et, t < τ

A [h(xt) + et] , t ≥ τ
(8.5)

DoS attack can happen on different layers in the smart grid. Lack of measurements

might cause the system to shut down in some cases.

In this paper the DoS attack is modeled by setting the unavailable measurements as

zero. In this case, the DoS attack can be considered as a special case of FDI attack, because

the DoS attack on I is equivalent to an FDI attack with an attack vector:

ai =

{
−zi, i ∈ I
0, i /∈ I

(8.6)

Thus model (8.3) will be used in this paper for both attacks.

In quickest attack detection, the objective is to minimize the average detection delay

(ADD) subject to an upper bound of the probability of false alarm (PFA). Denote the attack

time identified by the detector as τ̂ . Then the ADD and PFA can be evaluated as

ADD = E[τ̂ − τ |τ̂ > τ] (8.7)

PFA = P(τ̂ < τ) (8.8)

The design of optimum quickest attack detection algorithm usually requires the knowledge

of the attack vector a, which is not available in practical systems.

133

8.2 Dynamic state estimation

8.2.1 Extended Kalman filter

The idea of the EKF is a linearization of the dynamic model using the first-order

Taylor expansion at the working point, which extend the linear Kalman filter in the previous

section to complex systems with non-linear state transition and measurements. Modifications

are made to the observation matrix C and the state transition matrix A in the original KF

model, correspondingly.

The state transition matrix A is replaced by a non-linear transition function f(·), so

the state extrapolation equation looks like:

x̂k+1|k = f(x̂k|k) +Buk +wk (8.9)

and the covariance extrapolation equation changes into:

Pk+1|k =
∂f

∂x
Pk|k

∂f

∂x

T

+Σw (8.10)

The observation matrix C is replaced by a non-linear measurement function h(·), so

the measurement equation looks like:

yk = h(xk) + nk (8.11)

so the innovation vector changes into:

υk+1 = yk+1 − h(x̂k+1|k) (8.12)

the state update equation will use the innovation vector above.

The measurement function h(·) is linearized to calculate the covariance matrix and

Kalman gain. The covariance update equation changes into:

Pk+1|k+1 = (I−Kk+1
∂h

∂x
)Pk+1|k(I−Kk+1

∂h

∂x
)T +Kk+1ΣnK

T
k+1 (8.13)

and the Kalman Gain is updated by:

Kk+1 = Pk+1|k
∂h

∂x

T

(
∂h

∂x
Pk+1|k

∂h

∂x

T

+Σn)
−1 (8.14)

134

8.2.2 Forecasting-Aided State Estimation

The FASE is a particular case of applying DSE to a dynamic system with a quasi-

steady state condition. The state-transition model in this case is almost linear, so the system

behavior is modeled by:
xk+1 = Fxk + gk +wk

yk = h(xk) + nk

(8.15)

where F ∈ Rnx×nx is similar to the state transition matrix, gk ∈ Rnx×1 is the trend vector,

which is a function of uk, identified from historical data. Compared with the traditional

Kalman Filter where the prediction is calculated by state extrapolate, a variety of prediction

models in time series analysis field can be applied for prediction in FASE.

Given the state vector sequence {xk} is a non-linear time series. We propose to model

the state transition by using Holt’s linear trend method, which uses exponential smoothing

to forecast a non-linear dynamic time series with a trend [164]. It involves a forecast equation

and two smoothing constants, α and β.

Holt’s Linear Trend Method

The Holt’s (two parameter) linear exponential smoothing method can be convert into

a predict model. A one-dimension example is introduced here. Consider a dynamic time

series {yt}. The h-step forecast equation for the time series is:

ỹt+h|t = lt + hbt (8.16)

where ỹt+h|t denotes the h-step forecast from yt, and lt and bt are the estimations of the level

and trend (slope) of the series at time t, respectively. The values of lt and bt are iteratively

updated as

lt = αyt + (1− α)ỹt|t−1 = αyt + (1− α)(lt−1 + bt−1) (8.17)

bt = β(lt − lt−1) + (1− β)bt−1 (8.18)

where both α and β are smoothing parameters between 0 and 1. The level equation (8.17)

shows that lt is a weighted average of observation yt and one-step-ahead forecast ỹt|t−1. The

trend equation (8.18) shows that bt is a weighted average of the estimated trend and the

first order difference of the estimated level. The initial values l0 and b0 are estimated by

135

minimizing the sum of squared errors for the one-step training errors. Since the level and

trend are updated for each t, the forecasting method is dynamic.

Applying (8.16)-(8.18) with h = 1 to the system state vector xk, we can express the

forecast state vector x̃k+1 from xk as

x̃k+1 = Fkx̂k + gk (8.19)

where

Fk = α(1 + β)In, (8.20)

gk = (1 + β)(1− α)x̂k|k−1 − βlk−1 + (1− β)bk−1 (8.21)

In the above equations, In is a size-n identity matrix, lk and bk are the estimates of the

level and trend vectors, respectively. The corresponding error covariance matrix of state

forecasting can then be calculated as

Mk+1 = FkΣkFk +Qk. (8.22)

State Filtering

The state estimation at time k + 1, denoted as x̂k+1, can be obtained by minimizing

the following objective function,

J (xk+1) = [zk+1 − h(xk+1)]
T R−1

k+1 [zk+1 − h(xk+1)] +
[
(xk+1 − x̃k+1)

T M−1
k+1 (xk+1 − x̃k+1)

]
,

(8.23)

where x̃k+1 is the forecast state vector in (8.19), and zk+1 is the newly received measurement

at time k + 1.

The optimum x̂k+1 that minimizes J (xk+1) can be obtained through an iterative EKF

as [165]

x̂(i+1) = x̂(i) +Σ(i){HT (x̂(i))R−1[z− h(x̂(i))]−M−1[x̂(i) − x̃]}, (8.24)

where i denotes the iteration counter, H(x) = ∂h(x)
∂x

is the Jacobian matrix, and Σ(i) is the

error covariance matrix of the estimation x̂(i) as

Σ(i) =
[
HT (x̂(i))R−1H(x̂(i)) +M−1

]−1
. (8.25)

It should be noted that the subscript k + 1 was omitted in (8.24) and (8.25) for simplicity.

136

The EKF is initialized with x̂
(0)
k+1 = x̃k+1. Under the assumption that state forecasting

has a high accuracy, that is, |xk+1 − x̃k+1| is very small, the EKF initialized with x̃k+1 will

converge very fast. Thus we only consider the estimation result after one EKF iteration.

Performing the iteration in (8.24) and (8.25) once yields

x̂k+1 = x̃k+1 +Kk+1vk+1, (8.26)

Σk+1 =
[
HT (x̃k+1)R

−1
k+1H(x̃k+1) +M−1

k+1

]−1
, (8.27)

where Kk+1 is the Kalman gain matrix defined as,

Kk+1 = Σk+1H
T (x̃k+1)R

−1
k+1, (8.28)

and

vk+1 = zk+1 − h(x̃k+1), (8.29)

is the residual vector.

8.2.3 Hypothesis Test

The attack detection problem can be formulated in the form of a hypothesis test,

where the null and alternate hypotheses correspond to the status of normal operation and

attack, respectively.

Define the null hypothesis H0 and alternate hypothesis H1 at time t+ 1 as

H0 : zt+1 = h(xt+1) + et+1,

H1 : zt+1 = h(xt+1) + et+1 +A.
(8.30)

Based on the assumption of high forecast accuracy, the nonlinear measurement func-

tion h(xt+1) at time t+1 can be approximated by using its first order Taylor series expansion

around point x̃t+1 as,

h(xt+1) = h(x̃t+1) +H(x̃t+1)(xt+1 − x̃t+1). (8.31)

Combining (8.29), (8.3), and (8.31) yields

vt+1 = H(x̃t+1)(xt+1 − x̃t+1) + et+1. (8.32)

The covariance matrix of vt+1 in the above equation is

St+1 = H(x̃t+1)Mt+1H
T (x̃t+1) +Rt+1. (8.33)

137

The residual vector after attack can be obtained in a similar manner. Then the

hypothesis test given in (8.30) can be equivalently expressed in the form of the residual

vector vt+1 as

H0 : vt+1 = H(x̃t+1)(xt+1 − x̃t+1) + et+1,

H1 : vt+1 = H(x̃t+1)(xt+1 − x̃t+1) + et+1 +A.
(8.34)

The residual vt+1 is assumed to be Gaussian distributed, with its mean vector being

zero and A under the null and alternate hypothesis, respectively [166]. The covariance

matrix remains St+1 with or without attacks. Thus the hypothesis test can be equivalently

written as

H0 : vt+1 ∼ N (0,St+1),

H1 : vt+1 ∼ N (A,St+1).
(8.35)

To further simplify the detection process, we perform the eigen-decomposition of St+1

as

St+1 = UT
t+1Dt+1Ut+1. (8.36)

Define a whitened residual vector

v̄t+1 = Wt+1vt+1 (8.37)

where Wt+1 = D
− 1

2
t+1Ut+1 is the whitening matrix. Then the hypothesis test on v̄t+1 can be

alternatively expressed as

H0 : v̄t+1 ∼ N (0, Im),

H1 : v̄t+1 ∼ N (Wt+1A, Im).
(8.38)

8.3 DQN approach

8.3.1 DQN formulation for Quickest Change Detection

The detail of DQN has been introduced in previous sections. DQN is used for solving

this problem instead of DDPG is because that DQN has discrete action space, which fits the

behavior of the detector: decide on two actions, whether the system is under attack or not.

The attack detection problem is formulated into the MDP framework for DQN train-

ing and testing as following:

138

• State

The state of the system should be able to reveal the status change of the power grid

before and after an attack. The system measurement vector zt is in general not a

good candidate for state, because it is possible to obtain the same measurement before

and after a carefully designed attack. Various system operation and measurement

statistics have been used as state in the literature, such as the state estimation residual

[111], the negative log-likelihood function of the DC dynamic state estimation [109],

etc. Motivated by the Rao-CUSUM method presented in [2], we propose to solve this

problem by using the Rao-test statistic of the whitened residual as [2, 167]

Yt = v̄T
t v̄t (8.39)

With the this Rao-test statistic, we represent the state at time t by using a size-w

sliding window of Rao-test statistics as

o(t) = [Yt−w+1, Yt−w+2, . . . , Yt]. (8.40)

The state at time t contains the Rao-test statistics calculated from the current and the

past w − 1 measurements. The time evolution of the state can then be used to detect

the presence of attacks.

• Action

Since the objective of the system is attack detection, the action at time t can be simply

defined as:

a(t) =

{
1, attack detected

0, no attack detected
(8.41)

• Reward function

Denote the reward function of taking action a(t) from state o(t) as r(o(t), a(t)). The

design of the reward function plays an important role in the accuracy, efficiency, and

convergence of the learning algorithm. The reward function should take into consider-

ations of both detection accuracy and detection delay. The function will give rewards

to correct detection and low detection delays, while false alarms and long detection

delays should be penalized. Considering both detection accuracy and detection delay,

139

we propose a new reward function as follows

r(o(t), a(t)) =

1
τ
[1− a(t)], t < τ,

1
τ
a(t), t = τ,

−ϕ[1− a(t)], t > τ,

(8.42)

where ϕ ∈ [0, 1] is a parameter adjusting the trade-off between ADD and PFA. If ϕ

is close to 0, then there is a very small penalty to delayed detection, which leads to a

long ADD but a low PFA. On the other hand, a larger ϕ will lead to a severe penalty

to long detection delays, which results in low ADD at the cost of potentially higher

PFA. The stage transitions related to various actions and the corresponding reward

functions are illustrated in Fig. 8.1.

Assume the attack is detected at time τ̂ , that is, a(t) = 0 for t < τ̂ and a(τ̂) = 1.

Define an episode E as a sequence of state and action pairs between t ∈ {1, 2, . . . , τ̂},
that is, E = {(o(1), a(1)), (o(2), a(2)), · · · , (o(τ̂), a(τ̂))}. Then the accumulated episode

reward function is

r(E) =
τ̂∑

t=1

r(o(t), a(t)). (8.43)

An action of a = 1 will always lead to the terminal stage, that is, the end of an episode.

The reward function in (8.42) is designed to have an accumulated episode reward of 1

for perfect detection, that is, r(E) = 1 if a(τ) = 1. The reward function will be strictly

less than 1 for false alarm or delayed detection. For excessive long delays, the reward

function will be negative. In (8.43), the accumulated episode reward will be negative

if the detection delay is larger than τ−1
ϕτ

.

Assume the entire DQN training time horizon is divided into multiple sequential

training episodes. Each episode has at most T time steps. A training episode ends if an

attack is detected before T time steps, or no attack is detected in T time steps. For each

new episode, the power grid is initialized to the same normal operating condition, but with

different random attack vectors applied at different time steps. The entire training process

consists E training episodes.

In order to stabilize the training process and avoid big swings from step to step, we

adopt a target network Q
′
(o, a), which is built along the main network Q(o, a). The weights

of the main network, θ, are updated every step, yet the weights of the target network, θ′ , are

140

t = τ

t < τ

t > τ

a = 0, r =
1

τ

a = 0, r = −ϕ

a = 1, r = 0

a = 1, r =
1

τ

a = 1, r = 0a = 0, r =
1

τ

a = 0, r = 0

Pre-attack

Attack Terminal

Post-attack

Figure 8.1: Stage transitions

copied from the main network every C steps, with C being an integer. The action selection

is performed by using the target network Q
′
(o, a).

In order to broaden the exploration of the action space, we adopt an ϵ-greedy policy

in action selection. In the ϵ-greedy policy, a given probability parameter ϵ ∈ [0, 1] is chosen.

During the action selection process, we either select a random action with probability ϵ, or

greedily select an action by using greedy policy with probability 1 − ϵ. Such a randomized

action selection approach can broader the search space and avoid being trapped in a local

optimum early during the training process.

Experience replay is used to improve the sample efficiency and stability of the learn-

ing process. In experience replay, we can obtain in each time step an experience tuple,

e(t) = {o(t), a(t), r(t), o(t + 1)}, which is stored in a replay buffer R. The weights of the

main network are updated by randomly sample a mini-batch M ⊆ R experience tuples

from the replay buffer. For each experience tuple in the mini-batch, we first calculate the

141

corresponding target value as

y(i) =

{
r(i), if i = T

r(i) + γmaxa∈AQ
′
(o(i+ 1), a; θ

′
), otherwise

(8.44)

Then the weights of the main network can be updated by minimizing the mean squared error

between the main network and the target values of the mini-batch as

min
θ

1

|M|
∑

e(i)∈M

[y(i)−Q(o(i), a(i); θ)]2 (8.45)

The minimization can be performed by using gradient descent. With experience replay, the

main network weights are updated by using a random subset of experience tuples. Such an

approach allows the algorithm to learn from uncorrelated experiences from the past, recall

rare occurrences, and learn from individual experiences multiple times. As a result, it can

learn more efficiently from the past experience with better stability.

Details of the DQN training procedure are shown in Algorithm 9.

142

Algorithm 9 DQN Learning
Require: Bus number N , measurement size m, window size w, attack time τ , initial action-

value network parameter θ, empty replay buffer R
1: Initialization: Set target network weights: θ

′ ← θ.

2: for e = 1 to E do

3: Set t← 1; calculate o(1) by dynamic state estimation.

4: while t ≤ T do

5: Select action a(t) by following the ϵ-greedy policy.

6: if a(t) = 1 then

7: t← T + 1

8: else

9: Calculate reward r(t) by using (8.42).

10: Calculate o(t+ 1) by dynamic state estimation.

11: Store experience tuple (o(t), a(t), r(t), o(t+ 1)) in the replay buffer R.

12: Randomly sample a mini-batch of |M| experience tuples M =

{(o(i), a(i), r(i), o(i+ 1))} from R.

13: Calculate the target value y(i) for all experience tuples inM by using (8.44).

14: Update the main network weights θ by minimizing the cost function in (8.45).

15: if mod (t, C) = 0 then

16: Update the target network weights θ′ ← θ.

17: end if

18: t← t+ 1

19: end if

20: end while

21: e← e+ 1

22: end for

Ensure: Target network parameters θ
′

8.3.2 Complexity Analysis

The computation complexity of the proposed algorithm comes from two sources:

the dynamic state estimation (DSE) with extended Kalman filter (EKF), and the DQN

algorithm.

143

During DSE with an AC system model, the EKF is used to estimate and track the

dynamic state transition of the power grid. The estimation results are then used to calculate

the Rao-statistics to form the state vector for the DQN. This procedure is performed at each

time step during the training and testing process.

Consider a power system with N buses and M lines. The size of the state vector x

is n × 1, where n = 2N − 1. The dimension of the measurement vector z is m × 1, where

m = 2(M + N) + 1. The Holt’s linear trend method in section III-A requires 2 vector add

(VA) in (8.21), and multiple scalar multiplications in (8.20) and (8.21). The computational

cost of scalar multiplication is much lower than matrix operations such as VA, matrix-vector

product (MVP), matrix-matrix product (MMP), and matrix inversion (MI). Therefore, only

VA, MVP, MMP, MI are counted during the complexity analysis. The state forecasting in

(8.19) has 1 VA and 1 MVP, the calculation of error covariance matrix in (8.22) has 2 MMPs

and 1 VA.

The state estimation is obtained from one EKF iteration in (8.26), which has 1 MVP

and 1 VA. The calculation of the residual vector requires 1 VA in (8.29). The Kalman gain

matrix requires 2 MMPs in (8.28) and 2 MMPs, 1 VA, and 2 MI in (8.27). A summary of

vector and matrix operations of the DSE-EKF is given in Table 8.1. Given M > N in most

cases, the DSE has a computation complexity of O(N(M +N)2).

Regarding the DQN algorithm, we only need to consider the complexity of the online

detection process, because the training is performed offline. The computational complexity

of the online DQN algorithm comes from the computation cost in the target network. During

the online DQN detection process, the target network takes an input o(t) of dimension w.

It has two hidden layers with dimension k each, and generates an output of dimension 2,

Q(o(t), 0; θ
′
) and Q(o(t), 1; θ

′
). The target network has 4 layers with a total of w + 2k + 2

(w, k, k, 2) neurons. For each layer, an MVP and an activation function are computed.

Thus the online DQN detection requires 3 MVPs with complexity O(wk),O(k2), and O(k),
respectively, and activation computation with complexity O(k). Given k > w in the DQN,

the complexity of the online DQN algorithm is O(k2) and it is independent of the size of the

power grid.

144

Operation Number Complexity

VA 7 O(M +N)

MVP 2 O(N(M +N))

MMP 6 O(N(M +N)2)

MI 2 O(N3)

Table 8.1: Number and complexity of vector and matrix operations

8.4 Simulation results

8.4.1 System Setup

The simulations are performed on a 13-bus system with two areas as shown in Fig. 8.2

using MATLAB Power System Toolbox (PST V3.0) [168]. Bus 1 is used as the reference bus.

The measurement vector consists of m = 55 components, including the voltage magnitude

of bus 1, the active and reactive power injections at all 13 buses, and the active and reactive

power flows at all 14 lines. The state vector consists of n = 25 components, which are

the voltage magnitudes at all 13 buses and the phase angles at the 12 non-reference buses.

The time interval of the simulation is ∆t = 0.01s, which corresponds to a sampling rate of

100 Hz. The maximum length of each episode is T = 200 samples, which corresponds to a

time duration of 2 seconds. The measurement and state vectors are considered as the true

values of z and x, respectively. For the AC system DSE parameters, the covariance matrix

of measurement error is set as R = diag(10−5, 10−6, . . . , 10−6). The parameters for Holt’s

linear trend method are α = 0.95 and β = 0.001. The covariance matrix of state transition

Area 1 Area 2

1 10
20

2

3

4

101 13
120

110 11

14

12

Gen 1

Gen 2

Gen 11

Gen 12

Figure 8.2: 13-bus Two Area System [1]

145

error is Qt = 10−6In.

The DQN algorithm is implemented in Python using Stable Baselines [144], with

which we built a customized power system environment for our simulations. Hyperparame-

ters are tuned manually based on the episode reward curve and state distributions in Ten-

sorboard. The Q-network and the target network each have two hidden layers with 32 nodes

per layer. The discount factor is γ = 1, and the learning rate for updating θ in (8.45) is

0.0005. The size of the buffer R is 50, 000. The exploration probability of the ϵ-greedy policy

is ϵ = 0.1, and the number of transitions in a mini-batch is |M| = 32. The frequency of the

target network update is C = 500.

8.4.2 Training Results

During the training stage, the number of buses under attack is generated by uniformly

sampling from {1, 2, . . . ,m}. Once the number of buses under attack is determined, the set

of indices of buses under attack, I, are sampled uniformly without replacement from the

index set of all buses. The attack time τ is uniformly sampled from {1, 2, . . . , T = 200}. The

elements of the attack vector a are uniformly sampled from [−2, 2] p.u. for FDI attacks. The

system is only trained for FDI attacks. The model trained with FDI attacks will be tested

against both FDI and DoS attacks during the testing stage. In addition to cyberattacks, the

normal system dynamic and state transitions of the power grid are simulated by increasing

the active load at bus 4 by 0.5 per unit (p.u.) at t = 0. Model trained under such a

deterministic load change will be tested against systems with random load changes during

the testing stage. The length of the sliding window used in the MDP state o(t) in (8.40)

is w ∈ {1, 2, 4}. The trade-off parameter ϕ used in the MDP reward function in (8.42) is

chosen from {0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1}. Each agent with a given set of parameters is

trained for E = 105 episodes, which takes about 4 hours on a workstation with a 6-core Intel

Core i7-5820 K CPU operating at 3.3 GHz and 32 GB of random access memory (RAM).

Fig. 8.3 shows the episode reward curves for w ∈ {1, 2, 4} and ϕ = 0.1. The shadow

lines are the real episode rewards and the solid lines are the episode rewards after a Gaussian-

weighted moving average over 20 consecutive samples. Only the positive episode reward is

shown in the figure. The agent with w = 1 failed to reach a high episode reward after being

trained for E = 105 episodes, thus it failed to learn a useful detection strategy. This is due

to the fact that it makes decisions based on the Rao-test statistic from only the current

146

0 1 2 3 4 5 6 7 8 9 10

104

0

0.5

1
w = 1

0 1 2 3 4 5 6 7 8 9 10

104

0

0.5

1
w = 2

0 1 2 3 4 5 6 7 8 9 10

104

0

0.5

1
w = 4

step

e
p

is
o

d
e

 r
e

w
a

rd

Figure 8.3: Learning curve for ϕ = 0.1 and different w

measurement while ignoring all previous measurements. The training results for agents with

w = 2 and w = 4 successfully reached an episode reward that is close to 1 after being trained

for 2× 104 episodes. The models obtained from the training stage are then used during the

testing stage.

8.4.3 Testing Results

The DQN models are tested on the same power system but with different system

dynamics and random cyberattacks. For FDI attacks, the attack indices, attack time, and

attack vector values are all randomly generated by following the same distributions as de-

scribed in the training stage. For DoS attacks, the attack indices are generated as the same

way as FDI attacks, and the attack matrix A is generated according to (8.4). Each agent

is tested for 1,000 Monte Carlo simulations, the PFA and ADD are calculated from the

simulated detection results according to (8.7) and (8.8).

147

Algorithm 10 DQN Testing: Online Detection

Require: Target Q-network parameters θ
′ obtained from Algorithm 1, network measure-

ments, episode length T .

1: Initialization: t← 1; τ̂ =∞.

2: while t ≤ T do

3: Calculate o(t).

4: Update a(t) as

a(t)← argmax
a

Q(o(t), a; θ
′
)

5: if a(t) = 1 then

6: τ̂ ← t

7: Break

8: end if

9: t← t+ 1

10: end while

Ensure: τ̂

During one testing episode (Monte Carlo trial), the agent works as an online de-

tector. At the t-th time-step, it obtains the real measurement zt and then calculates the

MDP state o(t) from zt and historical data. The optimal action is made according to

a(t) = argmaxaQ(o, a; θ
′
), where θ

′ are the target network parameters obtained through the

training stage. The testing episode ends if an attack is detected or the end of the episode is

reached. Detailed testing procedures in each testing episode are presented in Algorithm 10.

The testing results of FDI attacks for agents with w ∈ {1, 2, 4} and ϕ ∈ {0.5, 1} are

given in Table 8.2, where each entry represents the (PFA, ADD) pair obtained for a given

configuration. As discussed in section 8.3, the parameter ϕ can be used to tune the trade-off

between ADD and PFA, with a larger ϕ leading to a bigger penalty for detection delay. Such

a trade-off relationship can be observed in Table 8.2, where increasing ϕ from 0.5 to 1 leads

to a shorter ADD but a slightly larger PFA. As shown in Fig. 8.3, the agent with w = 1 fails

to learn during the training phase, thus the testing PFA is close to 1. The agent with w = 1

is just a one-shot soft threshold detector without utilizing historical data. Increasing w from

1 to 2 or 4 leads to systems with considerably better performance. The agents with w = 2

slightly outperform their w = 4 counterparts in terms of both PFA and ADD. In addition,

148

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

PFA

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

A
D

D
 (

s
e

c
o

n
d

s
)

Normalized Rao-CUSUM

DQN

0.015 0.02 0.025 0.03 0.035
0.02

0.021

0.022

0.023

Figure 8.4: Performance of DQN detector (w = 2) and Normalized Rao-CUSUM detector

[2] under FDI attack

the model complexity of w = 2 is lower than that of w = 4 due to the lower dimension of

o(t).

Table 8.2: FDI Testing results (PFA, ADD)

Parameters ϕ = 0.5 ϕ = 1

w = 1 0.993, 0 0.999, 0

w = 2 0.029, 2.0974e-2 0.034, 2.0768e-2

w = 4 0.033, 4.0513e-2 0.036, 4.0156e-2

The performances of the proposed DQN-based detector under FDI and DoS attacks

are shown in Figs. 8.4 and 8.5, respectively, where the ADD is plotted as a function of the

PFA. In the simulations we have w = 2, and the results are compared to that from the

Rao-CUSUM detector [2]. The multiple points on the ADD-PFA trade-off curve of the DQN

detectors are obtained by setting ϕ ∈ {0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1}. The trade-off curve of

the Normalized Rao-CUSUM detector is obtained by choosing different values for detection

threshold as described in [2]. Every point on the curves is obtained by 1,000 Monte Carlo

149

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

PFA

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

A
D

D
 (

s
e

c
o

n
d

s
)

Normalized Rao-CUSUM

DQN

0.05 0.055 0.06 0.065
0.019

0.02

0.021

0.022

0.023

Figure 8.5: Performance of DQN detector (w = 2) and Normalized Rao-CUSUM detector

[2] under DoS attack

trials. The proposed DQN-based detector outperforms the Rao-CUSUM detector in terms

of both PFA and ADD under both FDI and DoS attacks. Note that the ADD for both

detectors are based on the time interval of the simulation. In practice, the SCADA updates

every 2-5 s, the computation time of DSE in our detector is within 5s for a system with

200 buses or less [169], and the complexity of online the online DQN detection process is

much smaller compared to that of DSE. Since the DQN model is trained under FDI attacks,

systems with FDI attacks slightly outperform those with DoS attacks.

Fig. 8.6 shows the real power at bus 14 under FDI attacks. In case of FDI attacks,

the real power measurement at bus 13 is falsely decreased by 1.5 p.u. and that at bus 14 is

falsely increased by 1 p.u. between 0.25 and 0.6 seconds. The proposed DQN-based detector

can correctly detect the presence of FDI. Upon detection of FDI, we can remove the false

data and replace them with estimated and predicted power values, which are very close to

their true values.

150

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

time (s)

-18.2

-18

-17.8

-17.6

-17.4

-17.2

-17

-16.8

-16.6

-16.4

P
1
4
 (

p
.u

.)

Corrupt

Original

Estimated

Predicted

Figure 8.6: The real power at bus 14 with FDI at 0.25 < t < 0.6

8.5 Conclusion

A DQN-based deep reinforcement learning algorithm has been proposed for the low

latency detection of cyberattacks, such as FDI and DoS attacks, in smart grids. Unlike con-

ventional detection methods that focus solely on detection accuracy, the proposed algorithm

aims at minimizing the average detection delay while maintaining a low probability of false

alarm. The design objective was achieved by developing a DQN-based reinforcement learn-

ing algorithm with dynamic AC power system models, which can accurately model dynamic

state transients in power systems and identify cyberattacks in real time. The DQN-based

reinforcement learning algorithm was developed by following an MDP framework. The MDP

state was formulated by using a sliding window of Rao-statistics that can accurately capture

the dynamic state evolution of the power grid in real time. A new reward function was de-

signed to allow a flexible trade-off between ADD and PFA. Simulation results demonstrated

that the DQN-based RL detection algorithm can achieve very low detection delays while

maintaining good PFA performance, and it can achieve considerable performance gains over

the existing Rao-CUSUM algorithm. For future works, we plan to apply and improve the

proposed algorithm to more sophisticated cyberattacks, e.g., cyberattacks generated by using

151

machine learning algorithms such as generative adversary network (GAN).

152

9 Conclusion and Future Work

This dissertation demonstrates an overlook research procedures to achieve high renew-

able energy integration in smart grid with machine learning, which includes the integration

of solar energy to a consumer’s house or building with ESS and the integration of solar and

wind energy to the grid with ESS or MEC. The overall contributions of this dissertation can

be summarized as follows:

This dissertation demonstrates several machine learning based algorithms for achiev-

ing high renewable energy integration in smart grids which includes the individual consumer’s

perspective, the grid control, and the cybersecurity concerns. The overall contributions of

this dissertation can be summarized as follows: First, this dissertation creates different mod-

els for renewable energy integration in different scenarios, and proposes low complexity and

real-time algorithms to solve the schedule problem. Next, this dissertation presents a variety

of optimization techniques which includes traditional LP, MILP, DP, and MDP, heuristic

algorithms such as PSO, and RL-based sequential decision making algorithms such as DQN,

DDPG. Some of them are combined with QCD framework for cybersecurity research.

Several training and testing environments for simulating the power system with ESS

in Python are developed in this dissertation. Some environments integrates the matlab

model and utilizing reinforcement learning techniques, those models can be further used for

researchers who are not familiar with building RL environments and data process in Python.

Additionally, some environments are build solidly on Python following the Gynmasium envi-

ronment rules, which can be used for training and testing by researchers who are not familiar

with power system simulations.

If we review the research objectives at beginning of the dissertation. The optimum

design of ESS-assisted PV system considering parameters such as system cost, battery and

solar panel aging, is modeled and solved for a long-horizon of 10 years in Chapter 3. Not

only a MINLP model is proposed for optimum design, but also a low-complexity DP based

suboptimal solution is proposed. The total savings and break-even points are given as a

reference. The DDPG based on-line scheduling algorithm is proposed in Chapter 4 for a

given ESS-assisted PV system. The DDPG agent learns from the off-line algorithm and

requires no environment models and provides a real-time continuous control.

153

A DDPG-based OPF for microgrid with renewable integration is proposed in Chapter

5, which requires no prediction model on future renewable energy generation and user load.

The research gap of low computational complexity and prediction model is solved. Such

algorithm is extended to MEC control in Chapter 6 where the transportation model of the

MECS are integrated into the state of the DDPG agent, where no complex transition models

and constraints are needed.

The cybersecurity of the smart grid integrated with high renewable energy is partially

solved. The cyberattacks on the PV farm can be quickly detected by dynamic watermarking-

based algorithm with a minimal delay in Chapter 7, while the attacks on the grid can be

quickly detected by a DQN-based algorithm in Chapter 8. Thus, all of the objectives listed

at the beginning of the dissertation are successfully achieved.

There are several future directions that can be moved from this dissertation. They

are outlined below:

• Train and test the RL agent on different networks:

In the OPF control simulation, we used IEEE-14 bus system and make modifications to

the original system. IEEE-14 bus system is a small distribution network for simulation,

therefore the agent trained for this system need to be further trained on larger networks

or even a hardware implementation. Similarly, in the cybersecurity simulation, the two

area 13-bus system is used. The proposed detection agent should be tested on other

networks.

• Use the state-of-art RL agent:

The development of reinforcement learning algorithms is changing rapidly. Many actor-

critic structured algorithms such as Asynchronous Advantage Actor Critic (A3C) [170],

Proximal Policy Optimization (PPO) [171], and Twin Delayed DDPG (TD3) [172] have

been applied for control problems and out-performance DDPG.

• Use machine learning-based attack:

In our study on cybersecurity, we design and test attacks using traditional methods

such as FDI, DoS, while many attack models are generated using ML algorithms. New

attack model needs to be studied and the detection algorithms proposed in this paper

need to be improved for these attacks.

154

Bibliography

[1] G. Rogers, Power system oscillations. Springer Science & Business Media, 2012.

[2] S. Nath, I. Akingeneye, J. Wu, and Z. Han, “Quickest detection of false data injection
attacks in smart grid with dynamic models,” IEEE Journal of Emerging and Selected
Topics in Power Electronics, vol. 10, no. 1, pp. 1292–1302, 2019.

[3] I. O’MALLEY, “U.S. renewable electricity surpassed coal in 2022,” Associated Press,
2023.

[4] J. Collins. (2018) 2020 solar power: California officially codifies man-
date for homes. [Online]. Available: https://www.governing.com/topics/
transportation-infrastructure/tns-california-solar-power-homes.html

[5] B. Palmintier, R. Broderick, B. Mather, M. Coddington, K. Baker, F. Ding, M. Reno,
M. Lave, and A. Bharatkumar, “On the path to sunshot. emerging issues and chal-
lenges in integrating solar with the distribution system,” National Renewable Energy
Lab.(NREL), Golden, CO (United States), Tech. Rep., 2016.

[6] A. Qazi, F. Hussain, N. A. Rahim, G. Hardaker, D. Alghazzawi, K. Shaban, and
K. Haruna, “Towards sustainable energy: a systematic review of renewable energy
sources, technologies, and public opinions,” IEEE access, vol. 7, pp. 63 837–63 851,
2019.

[7] K. M. Tan, T. S. Babu, V. K. Ramachandaramurthy, P. Kasinathan, S. G. Solanki,
and S. K. Raveendran, “Empowering smart grid: A comprehensive review of energy
storage technology and application with renewable energy integration,” Journal of
Energy Storage, vol. 39, p. 102591, 2021.

[8] X. Xia and A. Elaiw, “Optimal dynamic economic dispatch of generation: A review,”
Electric power systems research, vol. 80, no. 8, pp. 975–986, 2010.

[9] D. Gayme and U. Topcu, “Optimal power flow with large-scale storage integration,”
IEEE Transactions on Power Systems, vol. 28, no. 2, pp. 709–717, 2012.

[10] N. T. Nguyen, D. D. Le, C. Bovo, and A. Berizzi, “Optimal power flow with energy
storage systems: Single-period model vs. multi-period model,” in 2015 IEEE Eindhoven
PowerTech. IEEE, 2015, pp. 1–6.

[11] J. Kim and Y. Dvorkin, “Enhancing distribution system resilience with mobile energy
storage and microgrids,” IEEE Transactions on Smart Grid, vol. 10, no. 5, pp. 4996–
5006, 2018.

155

https://www.governing.com/topics/transportation-infrastructure/tns-california-solar-power-homes.html
https://www.governing.com/topics/transportation-infrastructure/tns-california-solar-power-homes.html

[12] S. Yao, P. Wang, X. Liu, H. Zhang, and T. Zhao, “Rolling optimization of mobile
energy storage fleets for resilient service restoration,” IEEE Transactions on Smart
Grid, vol. 11, no. 2, pp. 1030–1043, 2019.

[13] M. C. Bozchalui and R. Sharma, “Analysis of electric vehicles as mobile energy storage
in commercial buildings: Economic and environmental impacts,” in 2012 IEEE Power
and Energy Society General Meeting. IEEE, 2012, pp. 1–8.

[14] C. Greer, D. A. Wollman, D. E. Prochaska, P. A. Boynton, J. A. Mazer, C. T. Nguyen,
G. J. FitzPatrick, T. L. Nelson, G. H. Koepke, A. R. Hefner Jr et al., “Nist framework
and roadmap for smart grid interoperability standards, release 3.0,” Tech. Rep., 2014.

[15] D. U. Case, “Analysis of the cyber attack on the ukrainian power grid,” Electricity
Information Sharing and Analysis Center (E-ISAC), vol. 388, 2016.

[16] A. S. Musleh, G. Chen, and Z. Y. Dong, “A survey on the detection algorithms for
false data injection attacks in smart grids,” IEEE Transactions on Smart Grid, vol. 11,
no. 3, pp. 2218–2234, 2019.

[17] Y. Liu, P. Ning, and M. K. Reiter, “False data injection attacks against state estima-
tion in electric power grids,” ACM Transactions on Information and System Security
(TISSEC), vol. 14, no. 1, pp. 1–33, 2011.

[18] A. Huseinovic, S. Mrdovic, K. Bicakci, and S. Uludag, “A survey of denial-of-service
attacks and solutions in the smart grid,” IEEE Access, 2020.

[19] M. Z. Gunduz and R. Das, “Cyber-security on smart grid: Threats and potential
solutions,” Computer networks, vol. 169, p. 107094, 2020.

[20] X. Liu, M. Shahidehpour, Y. Cao, L. Wu, W. Wei, and X. Liu, “Microgrid risk analysis
considering the impact of cyber attacks on solar pv and ess control systems,” IEEE
transactions on smart grid, vol. 8, no. 3, pp. 1330–1339, 2016.

[21] A. Teymouri, A. Mehrizi-Sani, and C.-C. Liu, “Cyber security risk assessment of solar
pv units with reactive power capability,” in IECON 2018-44th Annual Conference of
the IEEE Industrial Electronics Society. IEEE, 2018, pp. 2872–2877.

[22] I. Akingeneye and J. Wu, “Pmu-assisted bad data detection in power systems,” in 2018
IEEE/PES Transmission and Distribution Conference and Exposition (T&D). IEEE,
2018, pp. 1–5.

[23] A. Borghetti, C. D’Ambrosio, A. Lodi, and S. Martello, “An MILP Approach for
Short-Term Hydro Scheduling and Unit Commitment With Head-Dependent Reser-
voir,” IEEE Transactions on Power Systems, vol. 23, no. 3, pp. 1115–1124, Aug. 2008.

[24] S. Chouhan, D. Tiwari, H. Inan, S. Khushalani-Solanki, and A. Feliachi, “DER op-
timization to determine optimum BESS charge/discharge schedule using Linear Pro-
gramming.” IEEE, Jul. 2016, pp. 1–5.

156

[25] T. A. Nguyen and R. H. Byrne, “Maximizing the cost-savings for time-of-use and
net-metering customers using behind-the-meter energy storage systems.” IEEE, Sep.
2017, pp. 1–6.

[26] K. Kwan and D. Maly, “Optimal battery energy storage system (BESS) charge schedul-
ing with dynamic programming,” IEE Proceedings - Science, Measurement and Tech-
nology, vol. 142, no. 6, pp. 453–458, Nov. 1995.

[27] Y. Riffonneau, S. Bacha, F. Barruel, and S. Ploix, “Optimal Power Flow Management
for Grid Connected PV Systems With Batteries,” IEEE Transactions on Sustainable
Energy, vol. 2, no. 3, pp. 309–320, Jul. 2011.

[28] V. Marano, G. Rizzo, and F. A. Tiano, “Application of dynamic programming to the
optimal management of a hybrid power plant with wind turbines, photovoltaic panels
and compressed air energy storage,” Applied Energy, vol. 97, pp. 849–859, Sep. 2012.

[29] R. Kamyar and M. M. Peet, “Multi-objective dynamic programming for constrained
optimization of non-separable objective functions with application in energy storage,”
in Decision and Control (CDC), 2016 IEEE 55th Conference on. IEEE, 2016, pp.
5348–5353.

[30] Y. Choi and H. Kim, “Optimal Scheduling of Energy Storage System for Self-
Sustainable Base Station Operation Considering Battery Wear-Out Cost,” Energies,
vol. 9, no. 6, p. 462, Jun. 2016.

[31] M. Jones and M. M. Peet, “Solving dynamic programming with supremum terms in
the objective and application to optimal battery scheduling for electricity consumers
subject to demand charges.” IEEE, Dec. 2017, pp. 1323–1329.

[32] H. Dagdougui, R. Minciardi, A. Ouammi, M. Robba, and R. Sacile, “A dynamic deci-
sion model for the real-time control of hybrid renewable energy production systems,”
IEEE Systems Journal, vol. 4, no. 3, pp. 323–333, Sep. 2010.

[33] Y. Li and J. Wu, “Optimum design of battery-assisted photo-voltaic energy system for
a commercial application,” in 2019 IEEE Power & Energy Society General Meeting
(PESGM). IEEE, 2019.

[34] A. T. Nguyen and S. Chaitusaney, “Optimum schedule and size of BESS in the low
voltage network with high penetration of solar rooftops to maintain voltages within
acceptable limit.” IEEE, Jun. 2017, pp. 194–197.

[35] S.-W. Hwangbo, B.-J. Kim, and J.-H. Kim, “Application of economic operation strat-
egy on battery energy storage system at Jeju.” IEEE, Apr. 2013, pp. 1–8.

[36] R. T. de Salis, A. Clarke, Z. Wang, J. Moyne, and D. M. Tilbury, “Energy storage
control for peak shaving in a single building,” in PES General Meeting| Conference &
Exposition, 2014 IEEE. IEEE, 2014, pp. 1–5.

157

[37] J. von Appen and M. Braun, “Sizing and Improved Grid Integration of Residential
PV Systems With Heat Pumps and Battery Storage Systems,” IEEE Transactions on
Energy Conversion, vol. 34, no. 1, pp. 562–571, Mar. 2019.

[38] P. Harsha and M. Dahleh, “Optimal Management and Sizing of Energy Storage Under
Dynamic Pricing for the Efficient Integration of Renewable Energy,” IEEE Transac-
tions on Power Systems, vol. 30, no. 3, pp. 1164–1181, May 2015.

[39] L. Hernandez, C. Baladron, J. M. Aguiar, B. Carro, A. J. Sanchez-Esguevillas,
J. Lloret, and J. Massana, “A survey on electric power demand forecasting: future
trends in smart grids, microgrids and smart buildings,” IEEE Communications Sur-
veys & Tutorials, vol. 16, no. 3, pp. 1460–1495, 2014.

[40] F. Hafiz, M. Awal, A. R. de Queiroz, and I. Husain, “Real-time stochastic optimization
of energy storage management using deep learning-based forecasts for residential pv
applications,” IEEE Transactions on Industry Applications, vol. 56, no. 3, pp. 2216–
2226, 2020.

[41] L. Tang, Y. Yi, and Y. Peng, “An ensemble deep learning model for short-term load
forecasting based on arima and lstm,” in 2019 IEEE International Conference on
Communications, Control, and Computing Technologies for Smart Grids (SmartGrid-
Comm). IEEE, 2019, pp. 1–6.

[42] C. Feng and J. Zhang, “Reinforcement learning based dynamic model selection for
short-term load forecasting,” in 2019 IEEE Power & Energy Society Innovative Smart
Grid Technologies Conference (ISGT). IEEE, 2019, pp. 1–5.

[43] L. Yu, S. Qin, M. Zhang, C. Shen, T. Jiang, and X. Guan, “A review of deep rein-
forcement learning for smart building energy management,” IEEE Internet of Things
Journal, vol. 8, no. 15, pp. 12 046–12 063, 2021.

[44] B. V. Mbuwir, M. Kaffash, and G. Deconinck, “Battery scheduling in a residen-
tial multi-carrier energy system using reinforcement learning,” in 2018 IEEE Inter-
national Conference on Communications, Control, and Computing Technologies for
Smart Grids (SmartGridComm). IEEE, 2018, pp. 1–6.

[45] Y. Wei, F. R. Yu, M. Song, and Z. Han, “User scheduling and resource allocation in
hetnets with hybrid energy supply: An actor-critic reinforcement learning approach,”
IEEE Transactions on Wireless Communications, vol. 17, no. 1, pp. 680–692, 2017.

[46] V. François-Lavet, D. Taralla, D. Ernst, and R. Fonteneau, “Deep reinforcement learn-
ing solutions for energy microgrids management,” in European Workshop on Reinforce-
ment Learning (EWRL 2016), 2016.

[47] E. Mocanu, D. C. Mocanu, P. H. Nguyen, A. Liotta, M. E. Webber, M. Gibescu,
and J. G. Slootweg, “On-line building energy optimization using deep reinforcement
learning,” IEEE Transactions on Smart Grid, 2018.

158

[48] N. Tsang, C. Cao, S. Wu, Z. Yan, A. Yousefi, A. Fred-Ojala, and I. Sidhu, “Autonomous
household energy management using deep reinforcement learning,” in 2019 IEEE Inter-
national Conference on Engineering, Technology and Innovation (ICE/ITMC). IEEE,
2019, pp. 1–7.

[49] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and
D. Wierstra, “Continuous control with deep reinforcement learning,” arXiv preprint
arXiv:1509.02971, 2015.

[50] Z. Chen and X. Wang, “Decentralized computation offloading for multi-user mo-
bile edge computing: A deep reinforcement learning approach,” arXiv preprint
arXiv:1812.07394, 2018.

[51] C. Qiu, Y. Hu, Y. Chen, and B. Zeng, “Deep deterministic policy gradient (ddpg)
based energy harvesting wireless communications,” IEEE Internet of Things Journal,
2019.

[52] R. Liessner, C. Schroer, A. M. Dietermann, and B. Bäker, “Deep reinforcement learning
for advanced energy management of hybrid electric vehicles.” in ICAART (2), 2018,
pp. 61–72.

[53] L. Yu, W. Xie, D. Xie, Y. Zou, D. Zhang, Z. Sun, L. Zhang, Y. Zhang, and T. Jiang,
“Deep reinforcement learning for smart home energy management,” IEEE Internet of
Things Journal, vol. 7, no. 4, pp. 2751–2762, 2019.

[54] Y. Gao, J. Yang, M. Yang, and Z. Li, “Deep reinforcement learning based optimal
schedule for a battery swapping station considering uncertainties,” IEEE Transactions
on Industry Applications, vol. 56, no. 5, pp. 5775–5784, 2020.

[55] E. Mohagheghi, A. Gabash, and P. Li, “Real-time optimal power flow under wind
energy penetration-part i: Approach,” in 2016 IEEE 16th International Conference on
Environment and Electrical Engineering (EEEIC). IEEE, 2016, pp. 1–6.

[56] S. S. Reddy and P. Bijwe, “Day-ahead and real time optimal power flow consider-
ing renewable energy resources,” International Journal of Electrical Power & Energy
Systems, vol. 82, pp. 400–408, 2016.

[57] L. Gan and S. H. Low, “An online gradient algorithm for optimal power flow on radial
networks,” IEEE Journal on Selected Areas in Communications, vol. 34, no. 3, pp.
625–638, 2016.

[58] Y. Tang, K. Dvijotham, and S. Low, “Real-time optimal power flow,” IEEE Transac-
tions on Smart Grid, vol. 8, no. 6, pp. 2963–2973, 2017.

[59] Y. Zhang, E. Dall’Anese, and M. Hong, “Dynamic admm for real-time optimal power
flow,” in 2017 IEEE Global Conference on Signal and Information Processing (Global-
SIP). IEEE, 2017, pp. 1085–1089.

159

[60] A. Papavasiliou, Y. Mou, L. Cambier, and D. Scieur, “Application of stochastic dual
dynamic programming to the real-time dispatch of storage under renewable supply
uncertainty,” IEEE Transactions on Sustainable Energy, vol. 9, no. 2, pp. 547–558,
2017.

[61] A. Di Giorgio, F. Liberati, and A. Lanna, “Real time optimal power flow integrating
large scale storage devices and wind generation,” in 2015 23rd Mediterranean Confer-
ence on Control and Automation (MED). IEEE, 2015, pp. 480–486.

[62] R. A. Jabr, S. Karaki, and J. A. Korbane, “Robust multi-period opf with storage and
renewables,” IEEE Transactions on Power Systems, vol. 30, no. 5, pp. 2790–2799,
2014.

[63] K. Utkarsh, D. Srinivasan, A. Trivedi, W. Zhang, and T. Reindl, “Distributed model-
predictive real-time optimal operation of a network of smart microgrids,” IEEE Trans-
actions on Smart Grid, vol. 10, no. 3, pp. 2833–2845, 2018.

[64] T. Lu, Z. Wang, Q. Ai, and W.-J. Lee, “Interactive model for energy management of
clustered microgrids,” IEEE Transactions on Industry Applications, vol. 53, no. 3, pp.
1739–1750, 2017.

[65] C. Zhao and X. Li, “A novel real-time energy management strategy for gird-friendly mi-
crogrid: Harnessing internal fluctuation internally,” arXiv preprint arXiv:2006.11521,
2020.

[66] P. Siano, C. Cecati, H. Yu, and J. Kolbusz, “Real time operation of smart grids via
fcn networks and optimal power flow,” IEEE Transactions on Industrial Informatics,
vol. 8, no. 4, pp. 944–952, 2012.

[67] Q. Zhang, K. Dehghanpour, Z. Wang, and Q. Huang, “A learning-based power manage-
ment method for networked microgrids under incomplete information,” IEEE Trans-
actions on Smart Grid, vol. 11, no. 2, pp. 1193–1204, 2019.

[68] V.-H. Bui, A. Hussain, and H.-M. Kim, “Double deep q-learning-based distributed op-
eration of battery energy storage system considering uncertainties,” IEEE Transactions
on Smart Grid, vol. 11, no. 1, pp. 457–469, 2019.

[69] Z. Yan and Y. Xu, “Real-time optimal power flow: A lagrangian based deep reinforce-
ment learning approach,” IEEE Transactions on Power Systems, vol. 35, no. 4, pp.
3270–3273, 2020.

[70] Y. Sun, Z. Li, M. Shahidehpour, and B. Ai, “Battery-based energy storage transporta-
tion for enhancing power system economics and security,” IEEE Transactions on Smart
Grid, vol. 6, no. 5, pp. 2395–2402, 2015.

[71] Y. Sun, J. Zhong, Z. Li, W. Tian, and M. Shahidehpour, “Stochastic scheduling
of battery-based energy storage transportation system with the penetration of wind
power,” IEEE Transactions on Sustainable Energy, vol. 8, no. 1, pp. 135–144, 2016.

160

[72] S.-Y. Kwon, J.-Y. Park, and Y.-J. Kim, “Optimal operation of mobile energy storage
devices to minimize energy loss in a distribution system,” in 2018 IEEE International
Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and
Commercial Power Systems Europe (EEEIC/I&CPS Europe). IEEE, 2018, pp. 1–6.

[73] H. H. Abdeltawab and Y. A.-R. I. Mohamed, “Mobile energy storage scheduling and
operation in active distribution systems,” IEEE Transactions on Industrial Electronics,
vol. 64, no. 9, pp. 6828–6840, 2017.

[74] S. Lei, C. Chen, H. Zhou, and Y. Hou, “Routing and scheduling of mobile power sources
for distribution system resilience enhancement,” IEEE Transactions on Smart Grid,
vol. 10, no. 5, pp. 5650–5662, 2018.

[75] Z. Yang, P. Dehghanian, and M. Nazemi, “Enhancing seismic resilience of electric power
distribution systems with mobile power sources,” in 2019 IEEE Industry Applications
Society Annual Meeting. IEEE, 2019, pp. 1–7.

[76] Z. Pan, Z. Qu, Y. Chen, H. Li, and X. Wang, “A distributed assignment method for dy-
namic traffic assignment using heterogeneous-adviser based multi-agent reinforcement
learning,” IEEE Access, vol. 8, pp. 154 237–154 255, 2020.

[77] T. Qian, C. Shao, X. Li, X. Wang, and M. Shahidehpour, “Enhanced coordinated
operations of electric power and transportation networks via ev charging services,”
IEEE Transactions on Smart Grid, vol. 11, no. 4, pp. 3019–3030, 2020.

[78] D. M. Shilay, K. G. Lorey, T. Weiz, T. Lovetty, and Y. Cheng, “Catching anoma-
lous distributed photovoltaics: An edge-based multi-modal anomaly detection,” arXiv
preprint arXiv:1709.08830, 2017.

[79] K. G. Lore, D. M. Shila, and L. Ren, “Detecting data integrity attacks on correlated
solar farms using multi-layer data driven algorithm,” in 2018 IEEE Conference on
Communications and Network Security (CNS). IEEE, 2018, pp. 1–9.

[80] Q. Li, F. Li, J. Zhang, J. Ye, W. Song, and A. Mantooth, “Data-driven cyberattack
detection for photovoltaic (pv) systems through analyzing micro-pmu data,” in 2020
IEEE Energy Conversion Congress and Exposition (ECCE). IEEE, 2020, pp. 431–436.

[81] S. Nath and J. Wu, “Quickest change point detection with multiple postchange models,”
Sequential Analysis, vol. 39, no. 4, pp. 543–562, 2020.

[82] Y. Mo, R. Chabukswar, and B. Sinopoli, “Detecting integrity attacks on scada systems,”
IEEE Transactions on Control Systems Technology, vol. 22, no. 4, pp. 1396–1407, 2013.

[83] R. Tunga, C. Murguia, and J. Ruths, “Tuning windowed chi-squared detectors for
sensor attacks,” in 2018 Annual American Control Conference (ACC). IEEE, 2018,
pp. 1752–1757.

161

[84] Y. Mo and B. Sinopoli, “Secure control against replay attacks,” in 2009 47th annual
Allerton conference on communication, control, and computing (Allerton). IEEE,
2009, pp. 911–918.

[85] K. Manandhar, X. Cao, F. Hu, and Y. Liu, “Detection of faults and attacks including
false data injection attack in smart grid using kalman filter,” IEEE transactions on
control of network systems, vol. 1, no. 4, pp. 370–379, 2014.

[86] B. Satchidanandan and P. R. Kumar, “Dynamic watermarking: Active defense of net-
worked cyber–physical systems,” Proceedings of the IEEE, vol. 105, no. 2, pp. 219–240,
2016.

[87] J. Ramos-Ruiz, J. Kim, W.-H. Ko, T. Huang, P. Enjeti, P. Kumar, and L. Xie, “An
active detection scheme for cyber attacks on grid-tied pv systems,” in 2020 IEEE
CyberPELS (CyberPELS). IEEE, 2020, pp. 1–6.

[88] P. Hespanhol, M. Porter, R. Vasudevan, and A. Aswani, “Dynamic watermarking for
general lti systems,” in 2017 IEEE 56th Annual Conference on Decision and Control
(CDC). IEEE, 2017, pp. 1834–1839.

[89] M. Porter, P. Hespanhol, A. Aswani, M. Johnson-Roberson, and R. Vasudevan, “De-
tecting generalized replay attacks via time-varying dynamic watermarking,” IEEE
Transactions on Automatic Control, vol. 66, no. 8, pp. 3502–3517, 2020.

[90] A. Monticelli, “Electric power system state estimation,” Proceedings of the IEEE,
vol. 88, no. 2, pp. 262–282, 2000.

[91] R. Moslemi, A. Mesbahi, and J. M. Velni, “A fast, decentralized covariance selection-
based approach to detect cyber attacks in smart grids,” IEEE Transactions on Smart
Grid, vol. 9, no. 5, pp. 4930–4941, 2017.

[92] I. Akingeneye and J. Wu, “Low latency detection of sparse false data injections in
smart grids,” IEEE Access, vol. 6, pp. 58 564–58 573, 2018.

[93] J. Zhao, A. Gómez-Expósito, M. Netto, L. Mili, A. Abur, V. Terzija, I. Kamwa, B. Pal,
A. K. Singh, J. Qi et al., “Power system dynamic state estimation: Motivations, defini-
tions, methodologies, and future work,” IEEE Transactions on Power Systems, vol. 34,
no. 4, pp. 3188–3198, 2019.

[94] M. Khalaf, A. Youssef, and E. El-Saadany, “Detection of false data injection in auto-
matic generation control systems using kalman filter,” in 2017 IEEE Electrical Power
and Energy Conference (EPEC). IEEE, 2017, pp. 1–6.

[95] M. N. Kurt, Y. Yılmaz, and X. Wang, “Distributed quickest detection of cyber-attacks
in smart grid,” IEEE Transactions on Information Forensics and Security, vol. 13,
no. 8, pp. 2015–2030, 2018.

162

[96] H. Karimipour and V. Dinavahi, “On false data injection attack against dynamic state
estimation on smart power grids,” in 2017 IEEE International Conference on Smart
Energy Grid Engineering (SEGE). IEEE, 2017, pp. 388–393.

[97] ——, “Robust massively parallel dynamic state estimation of power systems against
cyber-attack,” IEEE Access, vol. 6, pp. 2984–2995, 2017.

[98] Y. Li, Z. Li, and L. Chen, “Dynamic state estimation of generators under cyber at-
tacks,” IEEE Access, vol. 7, pp. 125 253–125 267, 2019.

[99] M. A. Hasnat and M. Rahnamay-Naeini, “A data-driven dynamic state estimation for
smart grids under dos attack using state correlations,” in 2019 North American Power
Symposium (NAPS). IEEE, 2019, pp. 1–6.

[100] Y. Ding and J. Liu, “Real-time false data injection attack detection in energy internet
using online robust principal component analysis,” in 2017 IEEE Conference on Energy
Internet and Energy System Integration (EI2). IEEE, 2017, pp. 1–6.

[101] Y. He, G. J. Mendis, and J. Wei, “Real-time detection of false data injection attacks
in smart grid: A deep learning-based intelligent mechanism,” IEEE Transactions on
Smart Grid, vol. 8, no. 5, pp. 2505–2516, 2017.

[102] L. Wei, D. Gao, and C. Luo, “False data injection attacks detection with deep belief
networks in smart grid,” in 2018 Chinese Automation Congress (CAC). IEEE, 2018,
pp. 2621–2625.

[103] G. Fenza, M. Gallo, and V. Loia, “Drift-aware methodology for anomaly detection in
smart grid,” IEEE Access, vol. 7, pp. 9645–9657, 2019.

[104] M. Ashrafuzzaman, Y. Chakhchoukh, A. A. Jillepalli, P. T. Tosic, D. C. de Leon, F. T.
Sheldon, and B. K. Johnson, “Detecting stealthy false data injection attacks in power
grids using deep learning,” in 2018 14th International Wireless Communications &
Mobile Computing Conference (IWCMC). IEEE, 2018, pp. 219–225.

[105] H. Jaeger, “The “echo state” approach to analysing and training recurrent neural
networks-with an erratum note,” Bonn, Germany: German National Research Center
for Information Technology GMD Technical Report, vol. 148, no. 34, p. 13, 2001.

[106] K. Hamedani, L. Liu, R. Atat, J. Wu, and Y. Yi, “Reservoir computing meets smart
grids: Attack detection using delayed feedback networks,” IEEE Transactions on In-
dustrial Informatics, vol. 14, no. 2, pp. 734–743, 2017.

[107] K. Hamedani, L. Liu, S. Hu, J. Ashdown, J. Wu, and Y. Yi, “Detecting dynamic at-
tacks in smart grids using reservoir computing: A spiking delayed feedback reservoir
based approach,” IEEE Transactions on Emerging Topics in Computational Intelli-
gence, vol. 4, no. 3, pp. 253–264, 2019.

163

[108] J. James, Y. Hou, and V. O. Li, “Online false data injection attack detection with
wavelet transform and deep neural networks,” IEEE Transactions on Industrial Infor-
matics, vol. 14, no. 7, pp. 3271–3280, 2018.

[109] M. N. Kurt, O. Ogundijo, C. Li, and X. Wang, “Online cyber-attack detection in smart
grid: A reinforcement learning approach,” IEEE Transactions on Smart Grid, vol. 10,
no. 5, pp. 5174–5185, 2018.

[110] Y. Chen, S. Huang, F. Liu, Z. Wang, and X. Sun, “Evaluation of reinforcement learning-
based false data injection attack to automatic voltage control,” IEEE Transactions on
Smart Grid, vol. 10, no. 2, pp. 2158–2169, 2018.

[111] D. An, Q. Yang, W. Liu, and Y. Zhang, “Defending against data integrity attacks in
smart grid: A deep reinforcement learning-based approach,” IEEE Access, vol. 7, pp.
110 835–110 845, 2019.

[112] A. S. Willsky, “A survey of design methods for failure detection in dynamic systems,”
Automatica, vol. 12, no. 6, pp. 601–611, 1976.

[113] F. Gustafsson and F. Gustafsson, Adaptive filtering and change detection. Citeseer,
2000, vol. 1.

[114] M. Basseville, “Detecting changes in signals and systems—a survey,” Automatica,
vol. 24, no. 3, pp. 309–326, 1988.

[115] S. Nath and J. Wu, “Bayesian quickest change point detection with multiple candidates
of post-change models,” in 2018 IEEE Global Conference on Signal and Information
Processing (GlobalSIP). IEEE, 2018, pp. 51–55.

[116] C. Murguia and J. Ruths, “Cusum and chi-squared attack detection of compromised
sensors,” in 2016 IEEE Conference on Control Applications (CCA). IEEE, 2016, pp.
474–480.

[117] C. Truong, M. Naumann, R. Karl, M. Müller, A. Jossen, and H. Hesse, “Economics of
Residential Photovoltaic Battery Systems in Germany: The Case of Tesla’s Powerwall,”
Batteries, vol. 2, no. 2, p. 14, May 2016.

[118] A. Berrueta, J. Pascual, I. S. Martın, P. Sanchis, and A. Ursua, “Influence of the
Aging Model of Lithium-Ion Batteries on the Management of PV Self-Consumption
Systems,” p. 5.

[119] I. Quesada and I. Grossmann, “An LP/NLP based branch and bound algorithm for
convex MINLP optimization problems,” Computers & Chemical Engineering, vol. 16,
no. 10-11, pp. 937–947, Oct. 1992.

[120] R. Ahuja, “Minimax linear programming problem,” Operations Research Letters, vol. 4,
no. 3, pp. 131–134, Oct. 1985.

164

[121] A. Gupta, R. Jain, and P. W. Glynn, “An empirical algorithm for relative value iteration
for average-cost mdps,” in 2015 54th IEEE Conference on Decision and Control (CDC).
IEEE, 2015, pp. 5079–5084.

[122] V. P. Pribylov and A. I. Plyasunov, “A convolutional code decoder design using viterbi
algorithm with register exchange history unit,” in 2005 Siberian Conference on Control
and Communications. IEEE, 2005, pp. 13–18.

[123] R. Bellman, “On a routing problem,” Quarterly of applied mathematics, vol. 16, no. 1,
pp. 87–90, 1958.

[124] P. K. Kitanidis and E. Foufoula-Georgiou, “Error analysis of conventional discrete
and gradient dynamic programming,” Water Resources Research, vol. 23, no. 5, pp.
845–858, May 1987.

[125] K. Ponnambalam and B. J. Adams, “Comment on “Error analysis of conventional
discrete and gradient dynamic programming” by P. K. Kitanidis and Efi Foufoula-
Georgiou,” Water Resources Research, vol. 24, no. 6, pp. 888–889, Jun. 1988.

[126] J. Stachurski, “Continuous State Dynamic Programming via Nonexpansive Approxi-
mation,” Computational Economics, vol. 31, no. 2, pp. 141–160, Mar. 2008.

[127] A. Heydari, “Theoretical and Numerical Analysis of Approximate Dynamic Program-
ming with Approximation Errors,” Journal of Guidance, Control, and Dynamics,
vol. 39, no. 2, pp. 301–311, Feb. 2016.

[128] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex programming,
version 2.1,” http://cvxr.com/cvx, Mar. 2014.

[129] “Commercial Reference Buildings | Department of Energy.” [Online]. Available:
https://www.energy.gov/eere/buildings/commercial-reference-buildings

[130] “PVWatts Calculator.” [Online]. Available: https://pvwatts.nrel.gov/pvwatts.php

[131] “PG&E - Electric Schedule E-19: Medium general demand-metered
tou service.” [Online]. Available: https://www.scribd.com/document/253380587/
Pg-e-Electric-Schedule-E-19

[132] “Tesla Powerwall.” [Online]. Available: https://www.tesla.com/powerwall

[133] C. A. F. Fernandes, J. P. N. Torres, M. Morgado, and J. A. Morgado, “Aging of solar
PV plants and mitigation of their consequences,” in 2016 IEEE International Power
Electronics and Motion Control Conference (PEMC). Varna, Bulgaria: IEEE, Sep.
2016, pp. 1240–1247.

[134] G. Dalal, K. Dvijotham, M. Vecerik, T. Hester, C. Paduraru, and Y. Tassa, “Safe
exploration in continuous action spaces,” arXiv preprint arXiv:1801.08757, 2018.

[135] S. Nath and J. Wu, “Online battery scheduling for grid-connected photo-voltaic sys-
tems,” Journal of Energy Storage, vol. 31, p. 101713, 2020.

165

http://cvxr.com/cvx
https://www.energy.gov/eere/buildings/commercial-reference-buildings
https://pvwatts.nrel.gov/pvwatts.php
https://www.scribd.com/document/253380587/Pg-e-Electric-Schedule-E-19
https://www.scribd.com/document/253380587/Pg-e-Electric-Schedule-E-19
https://www.tesla.com/powerwall

[136] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press,
2018.

[137] D. K. Maly and K.-S. Kwan, “Optimal battery energy storage system (bess) charge
scheduling with dynamic programming,” IEE Proceedings-Science, Measurement and
Technology, vol. 142, no. 6, pp. 453–458, 1995.

[138] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller, “Deterministic
policy gradient algorithms,” 2014.

[139] M. Plappert, R. Houthooft, P. Dhariwal, S. Sidor, R. Y. Chen, X. Chen, T. As-
four, P. Abbeel, and M. Andrychowicz, “Parameter space noise for exploration,” arXiv
preprint arXiv:1706.01905, 2017.

[140] “Solrenview fayetteville public library,” https://www.solrenview.com/cgi-bin/
cgihandler.cgi?view=0,2,0,0&cond=site_ID=316.

[141] “Tesla powerwall 2 datasheet - north america,” https://www.tesla.com/sites/default/
files/pdfs/powerwall/Powerwall%202_AC_Datasheet_en_northamerica.pdf.

[142] “Pge - electric schedule e-19: Medium general demand-metered tou service,” https:
//www.pge.com/tariffs/assets/pdf/tariffbook/ELEC_SCHEDS_E-19.pdf.

[143] Y. Li and J. Wu, “Optimum integration of solar energy with battery energy storage
systems,” IEEE Transactions on Engineering Management, 2020.

[144] A. Hill, A. Raffin, M. Ernestus, A. Gleave, A. Kanervisto, R. Traore, P. Dhariwal,
C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford, J. Schulman, S. Sidor, and
Y. Wu, “Stable baselines,” https://github.com/hill-a/stable-baselines, 2018.

[145] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and
M. Riedmiller, “Playing atari with deep reinforcement learning,” arXiv preprint
arXiv:1312.5602, 2013.

[146] M. Fortunato, M. G. Azar, B. Piot, J. Menick, I. Osband, A. Graves, V. Mnih,
R. Munos, D. Hassabis, O. Pietquin et al., “Noisy networks for exploration,” arXiv
preprint arXiv:1706.10295, 2017.

[147] R. D. Zimmerman, C. E. Murillo-Sánchez, and R. J. Thomas, “Matpower: Steady-state
operations, planning, and analysis tools for power systems research and education,”
IEEE Transactions on power systems, vol. 26, no. 1, pp. 12–19, 2010.

[148] L. Thurner, A. Scheidler, F. Schäfer, J.-H. Menke, J. Dollichon, F. Meier, S. Meinecke,
and M. Braun, “pandapower—an open-source python tool for convenient modeling,
analysis, and optimization of electric power systems,” IEEE Transactions on Power
Systems, vol. 33, no. 6, pp. 6510–6521, 2018.

[149] V. Nadolski, “Automated surface observing system (asos) user’s guide,” National
Oceanic and Atmospheric Administration, Department of Defense, Federal Aviation
Administration, United States Navy, vol. 20, 1998.

166

https://www.solrenview.com/cgi-bin/cgihandler.cgi?view=0,2,0,0&cond=site_ID=316
https://www.solrenview.com/cgi-bin/cgihandler.cgi?view=0,2,0,0&cond=site_ID=316
https://www.tesla.com/sites/default/files/pdfs/powerwall/Powerwall%202_AC_Datasheet_en_northamerica.pdf
https://www.tesla.com/sites/default/files/pdfs/powerwall/Powerwall%202_AC_Datasheet_en_northamerica.pdf
https://www.pge.com/tariffs/assets/pdf/tariffbook/ELEC_SCHEDS_E-19.pdf
https://www.pge.com/tariffs/assets/pdf/tariffbook/ELEC_SCHEDS_E-19.pdf
https://github.com/hill-a/stable-baselines

[150] U. B. of Public Roads. Office of Planning. Urban Planning Division, Traffic Assign-
ment Manual for Application with a Large, High Speed Computer. US Department of
Commerce, 1964.

[151] J. G. Wardrop, “Road paper. some theoretical aspects of road traffic research.” Pro-
ceedings of the institution of civil engineers, vol. 1, no. 3, pp. 325–362, 1952.

[152] M. S. Daskin, “Urban transportation networks: Equilibrium analysis with mathemat-
ical programming methods,” 1985.

[153] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dormann,
“Stable-baselines3: Reliable reinforcement learning implementations,” Journal of
Machine Learning Research, vol. 22, no. 268, pp. 1–8, 2021. [Online]. Available:
http://jmlr.org/papers/v22/20-1364.html

[154] L. Thurner, A. Scheidler, F. Schäfer, J. Menke, J. Dollichon, F. Meier, S. Meinecke,
and M. Braun, “pandapower — an open-source python tool for convenient modeling,
analysis, and optimization of electric power systems,” IEEE Transactions on Power
Systems, vol. 33, no. 6, pp. 6510–6521, Nov 2018.

[155] T. Cabannes, “Transportationnetworks,” https://github.com/bstabler/
TransportationNetworks/tree/master/SiouxFalls, 2019.

[156] “Dataworks: City of sioux falls gis.” [Online]. Avail-
able: https://dataworks.siouxfalls.org/datasets/b169d6ec2d8947f9a18f8a7977cf8d28/
explore?location=43.551843%2C-96.699982%2C11.93

[157] “National renewable energy laboratory: Pvwatts calculator.” [Online]. Available:
https://pvwatts.nrel.gov/

[158] “Us department of commerce, noaa: Automated surface observing system (asos)
dataset.” [Online]. Available: https://www.weather.gov/asos/

[159] “Sioux falls residential load.” [Online]. Available: https://openei.org/datasets/files/
961/pub/EPLUS_TMY2_RESIDENTIAL_BASE/USA_SD_Sioux.Falls.726510_
TMY2.csv

[160] “Sioux falls foss field commercial load.” [Online]. Avail-
able: https://openei.org/datasets/files/961/pub/COMMERCIAL_LOAD_DATA_
E_PLUS_OUTPUT/USA_SD_Sioux.Falls-Foss.Field.726510_TMY3/

[161] F. Braeuer, “Load profile data of 50 industrial plants in Germany for one year,” Jun.
2020. [Online]. Available: https://doi.org/10.5281/zenodo.3899018

[162] M. Izbicki, S. Amini, C. R. Shelton, and H. Mohsenian-Rad, “Identification of destabi-
lizing attacks in power systems,” in 2017 American Control Conference (ACC). IEEE,
2017, pp. 3424–3429.

167

http://jmlr.org/papers/v22/20-1364.html
https://github.com/bstabler/TransportationNetworks/tree/master/SiouxFalls
https://github.com/bstabler/TransportationNetworks/tree/master/SiouxFalls
https://dataworks.siouxfalls.org/datasets/b169d6ec2d8947f9a18f8a7977cf8d28/explore?location=43.551843%2C-96.699982%2C11.93
https://dataworks.siouxfalls.org/datasets/b169d6ec2d8947f9a18f8a7977cf8d28/explore?location=43.551843%2C-96.699982%2C11.93
https://pvwatts.nrel.gov/
https://www.weather.gov/asos/
https://openei.org/datasets/files/961/pub/EPLUS_TMY2_RESIDENTIAL_BASE/USA_SD_Sioux.Falls.726510_TMY2.csv
https://openei.org/datasets/files/961/pub/EPLUS_TMY2_RESIDENTIAL_BASE/USA_SD_Sioux.Falls.726510_TMY2.csv
https://openei.org/datasets/files/961/pub/EPLUS_TMY2_RESIDENTIAL_BASE/USA_SD_Sioux.Falls.726510_TMY2.csv
https://openei.org/datasets/files/961/pub/COMMERCIAL_LOAD_DATA_E_PLUS_OUTPUT/USA_SD_Sioux.Falls-Foss.Field.726510_TMY3/
https://openei.org/datasets/files/961/pub/COMMERCIAL_LOAD_DATA_E_PLUS_OUTPUT/USA_SD_Sioux.Falls-Foss.Field.726510_TMY3/
https://doi.org/10.5281/zenodo.3899018

[163] J. Tang, J. Song, and A. Gupta, “A dynamic watermarking algorithm for finite markov
decision problems,” arXiv preprint arXiv:2111.04952, 2021.

[164] E. S. Gardner Jr and E. McKenzie, “Forecasting trends in time series,” Management
Science, vol. 31, no. 10, pp. 1237–1246, 1985.

[165] A. L. Da Silva, M. Do Coutto Filho, and J. De Queiroz, “State forecasting in electric
power systems,” in IEE Proceedings C (Generation, Transmission and Distribution),
vol. 130, no. 5. IET, 1983, pp. 237–244.

[166] K. Nishiya, J. Hasegawa, and T. Koike, “Dynamic state estimation including anomaly
detection and identification for power systems,” in IEE Proceedings C (Generation,
Transmission and Distribution), vol. 129, no. 5. IET, 1982, pp. 192–198.

[167] A. De Maio, “Rao test for adaptive detection in gaussian interference with unknown
covariance matrix,” IEEE transactions on signal processing, vol. 55, no. 7, pp. 3577–
3584, 2007.

[168] J. H. Chow and K. W. Cheung, “A toolbox for power system dynamics and control
engineering education and research,” IEEE transactions on Power Systems, vol. 7,
no. 4, pp. 1559–1564, 1992.

[169] H. Karimipour and V. Dinavahi, “Extended kalman filter-based parallel dynamic state
estimation,” IEEE transactions on smart grid, vol. 6, no. 3, pp. 1539–1549, 2015.

[170] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and
K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,” in Inter-
national conference on machine learning. PMLR, 2016, pp. 1928–1937.

[171] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy
optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.

[172] S. Fujimoto, H. Hoof, and D. Meger, “Addressing function approximation error in
actor-critic methods,” in International conference on machine learning. PMLR, 2018,
pp. 1587–1596.

168

A Bellman equation (4.13) derivation

Based on Rt in (5.36), the discounted reward function Rt can be written in a recursive

manner as Rt = r(st, at)+γRt+1. Substitute this result into (4.12) and denoting expectations

with respect to rt, st ∼ E, at ∼ π as Ert,st,at yields

Qπ(st, at) = Eri≥t,si>t,ai>t
[r(st, at)|st, at]

+ Eri≥t,si>t,ai>t
[γRt+1|st, at]

(A.1)

The first term is independent of ai>t, so:

Eri≥t,si>t,ai>t
[r(st, at)|st, at]

= Eri≥t,si>t
[r(st, at)|st, at]

= Ert,st+1

[
Eri≥t+1,si>t+1

[r(st, at)|st, at, rt, st+1]
]

= Ert,st+1 [r(st, at)]

(A.2)

Similarly, the second term is independent of st and at:

Eri≥t,si>t,ai>t
[γRt+1|st, at]

= Eri≥t,si>t,ai>t
[γRt+1]

= Ert,st+1,at+1

[
Eri>t,si>t+1,ai>t+1

[γRt+1|rt, st+1, at+1]
]

= Ert,st+1,at+1

[
Eri≥t+1,si>t+1,ai>t+1

[γRt+1|st+1, at+1]
]

= Ert,st+1,at+1 [γQ
π(st+1, at+1)]

= Ert,st+1

[
γEat+1 [Q

π(st+1, at+1)]
]

(A.3)

Combine (A.2) and (A.3) results in the recursive equation of the action-value function in

(4.13).

169

B Kalman filter equations derivation

B.1 Covariance Update Equation Derivation

Plug the measurement equation (7.15) into the state update equation (7.17):

x̂k+1|k+1 = x̂k+1|k +Kk+1(Cxk+1 + nk+1 −Cx̂k+1|k) (B.1)

so the estimation error:

xk+1 − x̂k+1|k+1

= xk+1 − x̂k+1|k −Kk+1(Cxk+1 + nk+1 −Cx̂k+1|k)

= xk+1 − x̂k+1|k −Kk+1Cxk+1 −Kk+1nk+1 +Kk+1Cx̂k+1|k

(B.2)

the estimation covariance:

Pk+1|k+1 = E
[
(xk+1 − x̂k+1|k+1)(xk+1 − x̂k+1|k+1)

T
]

= E
[(
(I−Kk+1C)(xk+1 − x̂k+1|k)−Kk+1nk+1

)
×(

(I−Kk+1C)(xk+1 − x̂k+1|k)−Kk+1nk+1

)T]
= E

[(
(I−Kk+1C)(xk+1 − x̂k+1|k)−Kk+1nk+1

)
×(

(xk+1 − x̂k+1|k)
T (I−Kk+1C)T − (Kk+1nk+1)

T
)]

= E
[
(I−Kk+1C)(xk+1 − x̂k+1|k)× (xk+1 − x̂k+1|k)

T (I−Kk+1C)T

− (I−Kk+1C)(xk+1 − x̂k+1|k)(Kk+1nk+1)
T

−Kk+1nk+1(xk+1 − x̂k+1|k)
T (I−Kk+1C)T

+Kk+1nk+1(Kk+1nk+1)
T
]

= E
(
(I−Kk+1C)(xk+1 − x̂k+1|k)× (xk+1 − x̂k+1|k)

T (I−Kk+1C)T
)

− E
(
(I−Kk+1C)(xk+1 − x̂k+1|k)(Kk+1nk+1)

T
)

− E
(
Kk+1nk+1(xk+1 − x̂k+1|k)

T (I−Kk+1C)T
)

+ E
(
Kk+1nk+1(Kk+1nk+1)

T
)

(B.3)

where

E
(
(I−Kk+1C)(xk+1 − x̂k+1|k)(Kk+1nk+1)

T
)
= 0

E
(
Kk+1nk+1(xk+1 − x̂k+1|k)

T (I−Kk+1C)T
)
= 0

170

because the error of the prior estimation (xk+1 − x̂k+1|k) is uncorrelated with the post mea-

surement noise nk+1. Then the covariance is:

Pk+1|k+1 = E
(
(I−Kk+1C)(xk+1 − x̂k+1|k)× (xk+1 − x̂k+1|k)

T (I−Kk+1C)T
)

+ E(Kk+1nk+1n
T
k+1K

T
k+1)

= (I−Kk+1C)E
(
(xk+1 − x̂k+1|k)× (xk+1 − x̂k+1|k)

T
)
(I−Kk+1C)T

+Kk+1E(nk+1n
T
k+1)K

T
k+1

= (I−Kk+1C)Pk+1|k(I−Kk+1C)T +Kk+1ΣnK
T
k+1

(B.4)

B.2 Kalman Gain Equation Derivation

First, the covariance update equation should be rearranged:

Pk+1|k+1 = (I−Kk+1C)Pk+1|k(I−Kk+1C)T +Kk+1ΣnK
T
k+1

= (I−Kk+1C)Pk+1|k(I−CTKT
k+1) +Kk+1ΣnK

T
k+1

= (Pk+1|k −Kk+1CPk+1|k)(I−CTKT
k+1) +Kk+1ΣnK

T
k+1

= Pk+1|k −Pk+1|kC
TKT

k+1 −Kk+1CPk+1|k +Kk+1CPk+1|kC
TKT

k+1

+Kk+1ΣnK
T
k+1

= Pk+1|k −Pk+1|kC
TKT

k+1 −Kk+1CPk+1|k +Kk+1(CPk+1|kC
T +Σn)K

T
k+1

(B.5)

The Kalman Filter is an optimal filter, which means the Kalman Gain matrix needs to

minimize the estimation variance. This is equivalent to minimize the race of the covariance

matrix Tr(Pk+1|k+1):

Tr(Pk+1|k+1) = Tr(Pk+1|k)− Tr(Pk+1|kC
TKT

k+1)− Tr(Kk+1CPk+1|k)

+ Tr(Kk+1(CPk+1|kC
T +Σn)K

T
k+1)

= Tr(Pk+1|k)− 2Tr(Kk+1CPk+1|k)

+ Tr(Kk+1(CPk+1|kC
T +Σn)K

T
k+1)

(B.6)

To minimize the trace, we differentiate it with respect to Kk+1 and set the result to zero:

d
(
Tr(Pk+1|k+1)

)
dKk+1

=
d
(
Tr(Pk+1|k)

)
dKk+1

−
d
(
2Tr(Kk+1CPk+1|k)

)
dKk+1

+
d
(
Tr(Kk+1(CPk+1|kC

T +Σn)K
T
k+1)

)
dKk+1

= 0− 2(CPk+1|k)
T + 2Kk+1(CPk+1|kC

T +Σn) = 0

(B.7)

171

where

d (Tr(AB))

dA
= BT

d
(
Tr(ABAT)

)
dA

= 2AB

are used in the final step. So we get:

(CPk+1|k)
T = Kk+1(CPk+1|kC

T +Σn)

Kk+1 = (CPk+1|k)
T (CPk+1|kC

T +Σn)
−1

= Pk+1|kC
T (CPk+1|kC

T +Σn)
−1

(B.8)

172

C Post-attack distribution derivation

C.1 Proof of equation (7.42) and (7.43)

Under the FDI attack, the measurements are replaced by:

z[k + 1] = y[k + 1] + a[k + 1] (C.1)

The posterior state estimation is:

x̂k+1|k+1

= x̂k+1|k +Kk+1(z[k + 1]−Cx̂k+1|k)

= x̂k+1|k +Kk+1(y[k + 1]− Cx̂k+1|k + a[k + 1])

(C.2)

The test statistic g[k + 1] is:

g[k + 1] = x̂k+1|k+1 − x̂k+1|k

= Kk+1(υ[k + 1] + a[k + 1])
(C.3)

Then the whitened statistic ḡ[k + 1] is

ḡ[k + 1] = ŪHg[k + 1] = ŪHKk+1(υ[k + 1] + a[k + 1]) (C.4)

For deterministic a[k + 1], the mean of ḡ[k + 1]:

E[ḡ[k + 1]] = ŪHKE[υ[k + 1] + a[k + 1]] = ŪHKa[k + 1] (C.5)

The covariance of ḡ[k + 1] is D since the mean is deterministic:

Cov[ḡ[k + 1]] = D (C.6)

The covariance of ḡ[k + 1] and e[k] is:

E[ḡ[k + 1]e[k]T] = E[ŪHKk+1(υ[k + 1] + a[k + 1])e[k]T]

= ŪHKE[(υ[k + 1] + a[k + 1])e[k]T]

= ŪHKE[(υ[k + 1] + a[k + 1])]E[e[k]T]

= 0q×m

(C.7)

173

Then the mean of r[k + 1] is:

µ =

[
E[ḡ[k + 1]]

E[e[k]]

]
=

[
ŪHKa[k + 1]

0m

]
(C.8)

and the covariance of r[k + 1] is:

Σ =

[
D 0q×m

0m×q Σe

]
= Σ0 (C.9)

which completes the proof of (7.42).

For a[k + 1] ∼ Np(0,Σa), the mean of ḡ[k + 1] is:

E[ḡ[k + 1]] = ŪHKE[υ[k + 1] + a[k + 1]]

= ŪHK(E[υ[k + 1] + E[a[k + 1]]) = 0q

(C.10)

The covariance of ḡ[k + 1] is:

Cov[ḡ[k + 1]] = E[ḡ[k + 1]ḡ[k + 1]T]

= ŪHKE[(υ[k + 1] + a[k + 1])(υ[k + 1] + a[k + 1])T]KT Ū

= ŪHKE[υ[k + 1]υ[k + 1]T + a[k + 1]a[k + 1]T]KT Ū

= D+ ŪHKΣaK
T Ū

(C.11)

using the fact that innovation υ[k + 1] and a[k + 1] are independent. The covariance of

ḡ[k + 1] and e[k] has the same form as deterministic case, then the mean and covariance of

r[k + 1] is:

µ = 0q+m (C.12a)

Σ =

[
D+ ŪHKΣaK

T Ū 0q×m

0m×q Σe

]
(C.12b)

which completes the proof of (7.43).

C.2 Proof of equation (7.45) and (7.46)

Under the replay attack, the measurements are replaced by:

z[k + 1] = y[k + 1− l] (C.13)

174

The innovation after attack is:

υ[k + 1] = z[k + 1]−Cx̂k+1|k

= y[k + 1− l]−Cx̂k+1|k

= C(x[k + 1− l]− x̂k+1|k) + n[k + 1− l]

= C(x[k + 1− l]−Adx̂k|k −Bh(zk))

+ n[k + 1− l]−CBe[k]

(C.14)

Suppose we have a virtual system that satisfied the following system equations:

x
′
[t+ 1] = Adx

′
[t] +Bh(z

′t) +Be
′
[t] +w

′
[t+ 1], (C.15a)

y
′
[t+ 1] = Cx

′
[t+ 1] + n

′
[t+ 1]. (C.15b)

and the Kalman filter update at k + 1:

x̂
′

k+1|k = Adx̂
′

k|k +Bh(z
′k) +Be

′
[k] (C.16)

x̂
′

k+1|k+1 = x̂
′

k+1|k +Kk+1υ
′
[k + 1] (C.17)

and also satisfies the linear approximation of control policy:

h(z
′k) = Lx̂

′

k|k (C.18)

with the initial state x
′
[0] and initial prior state estimation x̂

′

1|0. In addition, the virtual

system is a delayed version of the real system without any attack, which satisfies:

x
′
[k + 1] = x[k + 1− l] (C.19)

x̂
′

k|k = x̂k−l|k−l (C.20)

when k ≥ l. Then the replay attack can be regarded as replacing y[k] with y
′
[k] starting

from τ .

Define the estimated control and transition matrix:

u[k] := Lx̂k|k + e[k] (C.21)

Ae := (Ad +BL)(Ip −KC) (C.22)

Assume Ae is stable, otherwise the measurements will soon be unbounded and the attack

can be detected as a destabilization attack.

175

The Kalman filter estimation after the system is attacked and becomes stable can be rewrit-

ten as:

x̂k+1|k = Adx̂k|k +Bu[k]

= (Ad +BL)x̂k|k +Be[k]

= (Ad +BL)(x̂k|k−1 +K(y
′
[k]−Cx̂k|k−1) +Be[k]

= Aex̂k|k−1 + (Ad +BL)Ky
′
[k] +Be[k]

(C.23)

This update also holds true for the virtual system that:

x̂
′

k+1|k = Aex̂
′

k|k−1 + (Ad +BL)Ky
′
[k] +Be

′
[k] (C.24)

Therefore, we consider the difference between the prior estimation of the two systems

at k + 1:

x̂
′

k+1|k − x̂k+1|k

= Ae(x̂
′

k|k−1 − x̂k|k−1) +B(e
′
[k]− e[k])

= Ae
2(x̂

′

k−1|k−2 − x̂k−1|k−2)

+AeB(e
′
[k − 1]− e[k − 1]) +B(e

′
[k]− e[k]))

= · · ·

= Ae
k(x̂

′

1|0 − x̂1|0) +
k∑

i=1

Ae
k−iB(e

′
[i]− e[i])

(C.25)

The limit mean of ḡ[k + 1] is:

lim
k→∞

E[ḡ[k + 1]] = ŪHKE[υ[k + 1]]

= lim
k→∞

ŪHKE[y′
[k + 1]−Cx̂

′

k+1|k +C(x̂
′

k+1|k

− x̂k+1|k)]

= lim
k→∞

ŪHKE[υ′
[k + 1]] + ŪHKCE[Ae

k(x̂
′

1|0 − x̂1|0)

+
k∑

i=1

Ae
k−iB(e

′
[i]− e[i])]

= lim
k→∞

ŪHKE[υ′
[k + 1]] + ŪHKCE[Ae

k(x̂
′

1|0 − x̂1|0)]

+
k∑

i=1

ŪHKCE[Ae
k−iB(e

′
[i]− e[i])]

= 0q

(C.26)

176

where the first term is the innovation of the virtual system, which has zero mean. The

second term will converge to zero because Ae is stable. The third term is zero because the

watermark has zero mean.

The limit covariance of ḡ[k + 1] is:

lim
k→∞

Cov[ḡ[k + 1]]

= lim
k→∞

ŪHKCov[y
′
[k + 1]−Cx̂

′

k+1|k +C(x̂
′

k+1|k

− x̂k+1|k)]K
T Ū

= lim
k→∞

ŪHK(Cov[υ
′
[k + 1]] +

k∑
i=0

Cov[CAe
iBe

′
[k − i]]

+
k∑

i=0

Cov[CAe
iBe[k − i]])KT Ū

= D+ 2
∞∑
i=0

ŪHKCAe
iBΣeB

T (Ae
T)iCTKT Ū

(C.27)

using the fact that the innovation is independent of the dynamic watermark. Define X as

the solution of the following Lyapunov equation:

AeXAT
e −X+BΣeB

T = 0 (C.28)

since Ae is stable,

X =
∞∑
i=0

Ae
iBΣeB

T (Ae
T)i (C.29)

thus, the covariance of ḡ[k + 1] is:

Cov[ḡ[k + 1]] = D+ 2ŪHKCXCTKT Ū (C.30)

The covariance of ḡ[k + 1] and e[k] is:

E[ḡ[k + 1]e[k]T]

= E[ŪHKk+1(C(x[k + 1− l]−Adx̂k|k −Bh(zk))

+ n[k + 1− l]−CBe[k])e[k]T]

= ŪHKE[−CBe[k]e[k]T]

= −ŪHKCBΣe

(C.31)

since other terms are independent of the current dynamic watermark e[k]. Combined with

the proofs of mean and covariance completes the proof of equation (7.45) and (7.46).

177

C.3 Proof of equation (7.50)

Under the destabilization attack, the attacked control input:

ua[k] = u[k] +Apx[k] (C.32)

the state at k + 1 if there is no attack is:

x[k + 1] = Adx[k] +Bu[k] +w[k + 1] (C.33)

and denote the state at k + 1 after attack as:

xa[k + 1] = Adx[k] +Bua[k] +w[k + 1]

= x[k + 1] +BApx[k]
(C.34)

the measurement at k + 1 is:

z[k + 1] = Cxa[k + 1] + n[k + 1]

= y[k + 1] +CBApx[k]
(C.35)

The innovation after attack is:

υa[k + 1] = z[k + 1]−Cx̂k+1|k

= y[k + 1]−Cx̂k+1|k +CBApx[k]
(C.36)

so the innovation mean is:

E[υa[k + 1]] = E[y[k + 1]−Cx̂k+1|k +CBApx[k]]

= CBApE[x[k]]

= CBApx̂k|k

(C.37)

the first two terms are the innovation without attack which has zeros mean, and by the

definition the posterior estiation should be unbiased. The mean of whitened statistic ḡ[k+1]

is:

E[ḡ[k + 1]] = ŪHKCBApx̂k|k (C.38)

The covariance of the innovation is:

Cov[υa[k + 1]]

= Cov[υ[k + 1] +CBAp(x[k]− x̂k|k)]

= R+CBApPAp
TBTCT

+ E[υ[k + 1](x[k]− x̂k|k)
TAp

TBTCT]

+ E[CBAp(x[k]− x̂k|k)υ[k + 1]T]

(C.39)

178

where

E[υ[k + 1](x[k]− x̂k|k)
TAp

TBTCT]

= E[(C(x[k + 1]− x̂k+1|k) + n[k + 1])(x[k]− x̂k|k)
T

Ap
TBTCT]

= CE[(x[k + 1]− x̂k+1|k)(x[k]− x̂k|k)
T]Ap

TBTCT

= CE[(Adx[k] +Bu[k] +w[k + 1]−Adx̂k|k −Bu[k])

(x[k]− x̂k|k)
T]Ap

TBTCT

= CAdE[(x[k]− x̂k|k)(x[k]− x̂k|k)
T]Ap

TBTCT

= CAdPAp
TBTCT

(C.40)

Plug it to the covariance equation:

Cov[υa[k + 1]]

= R+CBApPAp
TBTCT +CAdPAp

TBTCT

+CBApPAp
TBTCT

(C.41)

Define

Pa = BApPAp
TBT +AdPAp

TBT +BApPAd
T (C.42)

then the covariance of ḡ[k + 1] is:

Cov[ḡ[k + 1]] = D+ ŪHKCPaC
TKT Ū (C.43)

The covariance of ḡ[k+1] and e[k] is zero since all terms in υ[k+1] are independent

of e[k]. Combined with the proofs of mean and covariance completes the proof of (7.50).

179

D Description of Softwares

D.1 Optimization and simulation of power system in Matlab

D.1.1 CVX Toolbox

CVX is a Matlab-based modeling system for convex optimization such as least squares

(LS), linear programming (LP), and quadratic programming (QP). Academic users may

utilize the CVX Professional capability at no charge. The CVX Professional license can be

required by an educational email address. Solvers such as Mosek and Gurobi are highly

recommanded for speeding up the optimization. To do so, it is necessary to obtain licenses

for Mosek and/or Gurobi directly from the vendors. The solver accessibility needs to be

check before optimization.

Version 2.0 of CVX also supports mixed integer disciplined convex programming

(MIDCP) such as mixed integer linear programming (MILP).

D.1.2 MATPOWER

MATPOWER is a package of free, open-source Matlab-language M-files for solving

steady-state power system simulation and optimization problems, such as optimal power

flow (OPF), unit commitment (UC). Many IEEE standard systems are included as cases

and can be imported to simulation easily for OPF calculation. Modifications can be made

to the standard cases by changing the data while still keeping the data format, adding or

deleting elements like generators, loads, or even branches. The OPF can also be extended

by adding user-defined variables, constraints and costs. The details of extending the OPF

can be found in Chapter 7 in the MATPOWER user manual.

MATPOWER uses an interior solver called MIPS, while there are multiple solvers can

be choosen to solve OPF in MATPOWER, such as CPLEX, Gurobi, and MOSEK. When

these solvers are installed, they can be used by setting the solver option in the OPF code.

Note that MATPOWER can only solve OPF for single period. The MATPOWER

Optimal Scheduling Tool (MOST) is an extension of MATPOWER for solving generalized

steady-state electric power scheduling problems. MOST can be used to solve problems as

complex as a stochastic, security-constrained, combined unit-commitment and multiperiod

180

optimal power flow problem with locational contingency and load-following reserves, ramping

costs and constraints, deferrable demands, lossy storage resources and uncertain renewable

generation.

MOST is designed to solve multiperiod OPF. It models the renewable resources as

extra generators and it adds new elements such as energy storage and other time-varying

parameters such as price. Many additional functions are provided to add these new ele-

ments, load the date for extra generators and storages, and load the profiles. Tutorials of

determinstic multiperiod OPF with wind profile can be found in the MOST user manual as

a very good starting point of simulations.

D.1.3 Power System Toolbox

Power System Toolbox (PST) is a package of Matlab M-files for performing stability

simulations of power system, such as transient stability and small signal analysis and damping

controller design. While very few standard models are included in PST, users can customize

the power system model following the set of rules according to the Single Line Diagram Two

Area System tutorial given in the manual. Descriptions of functions for dynamic simulations

such as generating disturbances to the control input can also be found in the manual.

However, this toolbox is pretty old and the user manual is not well maintained. Mat-

lab Simulink is used for model the dynamic of PV farm in this dissertation. New simulation

tools are highly recommended for future students.

D.2 Optimization and simulation of power system in Python

To simulate the power system in Python is unnecessary unless machine learning al-

gorithms are used for optimization.

D.2.1 PYPOWER

PYPOWER is a power flow and OPF solver that ported from MATPOWER to

Python language. All the cases included in MATPOWER can be imported to PYPOWER

directly. However, a solver is all it can be, modifications on these cases are really hard

to make directly in PYPOWER unless the user is familar with the data format used in

MATPOWER and no other functions are provided.

181

D.2.2 Pandapower

Pandapower combines the popular data analysis library "Pandas" and the power

flow solver PYPOWER in Python to create an easy to use network calculation program for

network analysis and optimization in power systems. Many bench mark grids are included in

pandapower besides the IEEE cases, and the data structures for different elements including

load, static generator, generator, and storage are all given in its document. Modifications

on the cases are also easy to make for users who are familiar with data manipulations using

Pandas.

The OPF in pandapower is solved by PYPOWER using the "runopp" function. How-

ever, the convergence properties are not guaranteed. Any modified cases must be checked

to have a convergent OPF solution before further simulations. Sometimes the OPF is not

convergent because the modified load is too small or more constraints are needed for the

modified system to get a solution.

D.3 Reinforcement learning in Python

D.3.1 OpenAI Baselines

OpenAI Baselines is a package of implementations of reinforcement learning algo-

rithms using Tensorflow. Although the codes are all of high quality and open-sourced by the

OpenAI company, they have not been maintained for years, and there is no document for

researchers who are not from a solid computer science background and just want to use the

package for optimization.

D.3.2 Stable Baselines

Stable Baselines is a package that improved the implementations of RL algorithms in

OpenAI Baselines. The documents are well organized and many state-of-art RL algorithms

are included. It also provides examples on training, saving, and loading agents to learn in

a Gym environment. The RL algorithms in this dissertation are all implemented by Stable

Baselines except for chapter 6. However, it only supports Tensorflow versions before 2.0.0.

With the popularity of machine learning frameworks switching from Tensorflow to Pytorch,

this package is migrated to Stable-Baselines3.

182

D.3.3 Stable Baselines3

Stable Baselines3 (SB3) is based on the Pytorch framework and has all feasures in

Stable Baselines. It is highly recommended for future RL researches. Some experience for

installation and environment configuration will be given in this section.

Anaconda or VScode are recommended for Windows users to install Python and

Python packages. Most of the time, a stable version of software is better than the latest

version. For a large training set, GPU is recommended for training. Users need to visit

the Cuda website where the supporting version of Pytorch will be listed, then install the

Pytorch package. GPU can be used for training by setting the "device" attribute in the

agent functions.

Most RL algorithms are trained and tested on environments belong to Gymnasium,

a standard API for RL algorithms and a diverse collections of environments such as classic

control and Atari games. To train and test an agent in the power system, users have to

customize an environment that follows the Gymnasium interface. In specific, a new class

has to be defined inherited from the gymnasium environment class, which has functions such

as "step", "reset" and so on. A Gym Environment Checker function is provided in SB3,

checking the custom environment before training an agent on this environment can save a

lot of debugging time. Examples can be found on the documentations of both the SB3 and

Gymnasium. The environment need to be imported and specified for training and testing

an agent.

To monitor the training process of a RL agent needs the tensorboard, where training

parameters such as the mean of episode reward and the mean of the step reward can be

plotted and updated during training. The usage of tensorboard is also provided in the SB3

documentation.

183

E All Publication Published, Submitted, and Planned

E.1 Journals

1. Y. Li and J. Wu, “Optimum integration of solar energy with battery energy storage

systems,” IEEE Transactions on Engineering Management, 2020.

2. Y. Li and J. Wu, “Low latency cyberattack detection in smart grids with deep rein-

forcement learning,” International Journal of Electrical Power & Energy Systems, vol.

142, p. 108265, 2022.

3. Y. Li, J. Wu, and Y. Pan, “Deep reinforcement learning for online scheduling of photo-

voltaic systems with battery energy storage systems,” Intelligent and Converged Net-

works. Tsinghua University Press (Under review).

4. Y. Li, J. Wu, and Y. Pan, “Intelligent Optimal Power Flow Control for Wind-Powered

Microgrid with Deep Reinforcement Learning,” Intelligent and Converged Networks.

Tsinghua University Press (Under review).

5. Y. Li, N. Lin, J. Wu, Y. Pan, and Y. Zhao, “Low Latency Attack Detection with Dy-

namic Watermarking for Grid-Connected Photovoltaic Systems,” Journal of Emerging

and Selected Topics in Industrial Electronics. IEEE (Under review).

E.2 Conference

1. Y. Li and J. Wu, “Optimum design of battery-assisted photo-voltaic energy system for

a commercial application,” in 2019 IEEE Power & Energy Society General Meeting

(PESGM). IEEE, 2019.

2. S. Nath, Y. Li, J. Wu, and P. Fan, “Multi-user multi-channel computation offloading

and resource allocation for mobile edge computing,” in ICC 2020-2020 IEEE Interna-

tional Conference on Communications (ICC). IEEE, 2020, pp. 1–6.

184

E.3 Posters presentation

1. Y. Li and J. Wu, “Optimum design of battery-assisted photo-voltaic energy system for

a commercial application,” in 2019 IEEE Power & Energy Society General Meeting

(PESGM). IEEE, 2019.

Chapter 3 is reproduced from journal paper 1. Chapter 4 is reproduced from journal

paper 3. Chapter 5 is reproduced from journal paper 4. Chapter 7 is reproduced from journal

paper 5. Chapter 8 is reproduced from journal paper 2.

185

	Achieving High Renewable Energy Integration in Smart Grids with Machine Learning
	Citation

	Introduction
	Background and Motivation
	ESS-assisted PV system
	Grid-Connected ESS-assisted RES
	Cybersecurity of Grid with RES

	Research Objectives
	Dissertation outline

	Literature Review
	Research on optimum ESS-assisted PV system design and scheduling
	Research on real-time ESS-assisted PV system scheduling
	Research on OPF for system with RES and ESS
	Research on OPF for system with RES and MEC
	Research on Cybersecurity for PV farms
	Research on Cybersecurity for Smart Grids
	Research Gaps

	Optimum Integration of Solar Energy With Battery Energy Storage Systems
	Problem formulation
	Battery Model
	Power from the grid
	Objective function

	Different approaches
	Mixed Integer Linear Programming
	Dynamic Programming

	Case studies
	Simulation Environment
	One-Year Results with MILP
	Comparison between results from MILP and DP
	Ten-Year results with DP

	Conclusion

	Reinforcement Learning Based On-Line Battery Energy Storage System Schedule Optimization
	Problem formulation
	Battery Model
	Power from the grid
	Objective function

	Deep Deterministic Policy Gradient approach
	Markov Decision Process
	Reinforcement Learning
	Deep Q-learning Network
	Deep Deterministic Policy Gradient

	Case studies
	Data System Setup
	DDPG and DQN Training and Testing
	Testing Results

	Conclusion

	Intelligent Optimal Power Flow Control for Wind-Powered Microgrid with Deep Reinforcement Learning
	Problem formulation
	Single-period Optimal Power Flow
	Multi-period Optimal Power Flow

	Different approaches
	Multi-period Optimal Power Flow with Model Predictive Control
	Multi-period Optimal Power Flow with DDPG

	Case study
	Data source and setup
	Simulation results

	Conclusion

	Optimum Scheduling of Truck-based Mobile Energy Couriers Using Deep Deterministic Policy Gradient
	Problem formulation
	Transportation Network Model
	AC Multi-period Optimal Power Flow

	DDPG approach
	DDPG formulation for MEC Control
	DDPG framework
	DDPG agent for MEC control

	Case Studies
	Simulation Environment
	Simulation results

	Conclusion

	Low Latency Attack Detection with Dynamic Watermarking for Grid-Connected Photovoltaic Systems
	Problem formulation
	PV model
	State-Space model
	Attack models

	State Estimation
	Kalman filter
	Dynamic watermarking

	Low Latency Detection with Dynamic Watermarking
	Post-Attack Distributions and KL Divergence
	Low Latency Attack Detection

	Simulation results
	Performance under different attacks
	Detector performance

	Conclusion

	Low Latency Cyberattack Detection in Smart Grids with Deep Reinforcement Learning
	Problem formulation
	System model
	Attack model

	Dynamic state estimation
	Extended Kalman filter
	Forecasting-Aided State Estimation
	Hypothesis Test

	DQN approach
	DQN formulation for Quickest Change Detection
	Complexity Analysis

	Simulation results
	System Setup
	Training Results
	Testing Results

	Conclusion

	Conclusion and Future Work
	Bibliography
	Bellman equation (4.13) derivation
	Kalman filter equations derivation
	Covariance Update Equation Derivation
	Kalman Gain Equation Derivation

	Post-attack distribution derivation
	Proof of equation (7.42) and (7.43)
	Proof of equation (7.45) and (7.46)
	Proof of equation (7.50)

	Description of Softwares
	Optimization and simulation of power system in Matlab
	CVX Toolbox
	MATPOWER
	Power System Toolbox

	Optimization and simulation of power system in Python
	PYPOWER
	Pandapower

	Reinforcement learning in Python
	OpenAI Baselines
	Stable Baselines
	Stable Baselines3

	All Publication Published, Submitted, and Planned
	Journals
	Conference
	Posters presentation

