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Abstract

Evaluating association between variables is often of interest by many researchers. To

serve this purpose, different association measures have been developed. However, type of

relation between variables affects the degree of relationship. Hence, detection of the rela-

tionship between variables is germane to measuring the correlation coefficient. With that

mindset, here we explored six non-monotonic measure of association techniques and com-

pared them with three classical approaches. Due to inconsistency in definition and range of

different techniques, it is not feasible to compare the correlation estimates as their nature of

variability differ. Therefore, we used permutation test based on Monte Carlo approximation

for testing independence. We paired the correlation estimates along with the p-value for

deciding strength of association between variables. At first, we explored and compared the

association measures on twelve distinct simulation models under diverse scenario segregated

by three sample sizes and three noise levels. In addition, we assessed the computational time

and peak memory (RAM) usage during computations for each of these methods. Next, we

applied all methods on Cape Floristic Region (CFR) data to capture association between four

pairs of variable combinations with varying sample sizes. Overall, we found that, increasing

sample size improves the performance of correlation measure. For any type of relationship,

non-monotone measures were consistent in capturing association for large sample size. With

respect to time and peak memory usage, we found two of the methods were not efficient.
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1 Introduction

1.1 Importance of Measures of Association Studies

An association between two or more numeric variables is a measurement that gauges the

relationship between the variables (Haug, 2023). If the variables are associated, knowledge

about one variable provides information about the other variable (Samuel and Okey, 2015).

For instance, in clinical trials, measure of association is used to understand the impact of

newly manufactured drugs on patients. If the recommended dose of the testing drug im-

proves/deteriorates the health of the patient, then there exists positive/negative association.

On the other hand, if the medicine does not improve/deteriorate the existing health condition

then there is no association of the drug on health improvement.

Measuring association between variables is considered as the ‘sine qua non’ of scien-

tific research which has become a veritable instrument to experts in various fields (Merlo

and Lynch, 2010). It has wide application from market forecasting in economics to general

social behavior in sociology (Samuel and Okey, 2015). It is most widely used in medical sci-

ence, namely, in the areas of epidemiology and psychology to quantify relationships between

exposures and diseases or behaviors (Haug, 2023).

1.2 Types of Association

1.2.1 Linear and Non-linear Association

Depending on pattern, association can be of different types. When the relation between two

variables tends to be approximately straight line then that is known as linear association

which is specifically referred to as correlation. Correlation can be positive or negative based

on sign. For example, during summer ice cream consumption tends to be higher since people

consume more ice cream when it’s hot out. So, there exists a positive correlation between

the temperature and ice cream consumption. Besides, increase in elevation causes decrease

in pressure. As the pressure decreases,the temperature decreases. Hence, there is a negative
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correlation between altitude and temperature. In contrast, if two variables exhibit other

type of relationship pattern, e.g., sinusoids, exponential etc. then that is known as non-

linear association. Consider the association between side of a square and it’s area. The area

of a square can be obtained by taking the square if it’s side. It follows that, side of a square

and its area has non-linear quadratic relation.

1.2.2 Monotone and Non-monotone Association

Based on the direction of two associated variables, their relation can be classified as monotone

and non-monotone association. If increasing the value of one variable either increase or

decrease the value of other variable i.e., change in one variable due to increase in another

variable always occurs in one direction then the relation between those two variables is

monotonic association. In lieu, if the value of one variable increases, then the value of

other variable may sometimes increase but can sometimes decrease as well, then they are

said to share a non-monotonic association. Linear association or correlation are monotonic

association. However, non-linear association can be monotone or non-monotone. Such as,

when two variables share exponential association that is non-linear monotonic association.

Again, if the variables share quadratic/sinusoid association, then their association is non-

linear and non-monotone.

1.3 Classical Measures of Association

There are various devices to quantify association between two numeric variables in a sample.

The common measures developed, calculate some kind of correlation coefficient. To name

a few, Pearson’s product moment correlation, Spearman’s rank correlation, Kendall’s rank

correlation are some commonly used correlation or association measures. A brief description

of these correlation metrics given below.

Suppose,{x1, . . . , xn} are n i.i.d samples of continuous random variable X. We define

another continuous variable Y taking on values {y1, . . . , yn} expressed in terms of X. We
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consider X as the independent variable and Y as the dependent variable. Here, we will assume

that there are no ties in the observations of X and Y. Let, R (xi) be the rank of xi and R (yi)

be the rank of yi, so that, R (xi) = ∑n
j=1 I

{
x(j) ≤ x(i)

}
and R (yi) = ∑n

j=1 I
{
y(j) ≤ y(i)

}
respectively.

1.3.1 Pearson’s Product-moment Correlation

Pearson’s product-moment correlation is a measure of linear association. Theoretically, a

best fitted line is considered using the values of two variables that goes through the expected

values. The correlation coefficient then calculates the distance of actual variable values from

their respective expected values (Rodgers and Nicewander, 1988). Pearson’s correlation

coefficient is represented by ρ and is defined mathematically as the covariance of the two

variables, normalized by the square root of their variances.

ρ = Cov(X, Y )√
Var(X) · Var(Y )

(1)

The range of the coefficient is (-1, +1). Here, ρ < 0 indicates negative correlation; ρ > 0

indicates positive correlation and 0 indicates no linear association between X and Y.

Correlation measures based on rank is the alternative to address the parametric limi-

tations of Pearson’s correlation. Rank correlation coefficients uses ranks of the data rather

than the actual observed values (Huang, 2010). Kendall’s rank correlation and Spearman’s

rank correlation are most frequently used rank correlation metrics.

1.3.2 Spearman’s Rank Correlation

Spearman’s rank correlation is a measure of monotonic relationship. It is appropriate when

one or both variables are continuous but skewed or ordinal. Hence, Spearman’s rank corre-

lation coefficient is less sensitive to outliers. It can be defined as Pearson’s correlation based

on the ranks of the variables in place of actual observations (Myers and Well, 2003). So, we
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can define the correlation coefficient ρs as,

ρs = Cov(R (xi) , R (yi))√
Var(R (xi)) · Var(R (yi))

(2)

In the absence of ties, ρs can be expressed as,

ρs = 1 − 6 · ∑n
i=1(R (xi) − R (yi))2

n(n2 − 1) (3)

Here, ρs can vary within the range, −1 ≤ ρs ≤ +1. Positive value of correlation coefficient

indicates rank of X and Y are similar and negative correlation coefficient occurs when obser-

vations of X and Y have dissimilar ranks. If the correlation coefficient is 0, it means there is

no monotonic relationship between variables.

1.3.3 Kendall’s Rank Correlation

Kendall’s rank correlation is another non-parametric measure of association based on the

direction of order of X and Y. Like Spearman’s rank correlation, Kendall’s tau correlation

coefficient is measured for ordinal or continuous data.

For any two pairs of observations (xi, yi) and (xj, yj) of the variables X and Y, where

i < j, if (xi–xj) and (yi–yj) have the same sign, the pairs are called concordant pairs;

whereas if they have opposite signs, the pairs are known as discordant pairs (Nelsen, 1999).

In absense of ties, the coefficient has the formula,

τ = (Number of concordant pairs) − (Number of discordant pairs)(
n
2

) (4)

Here,
(

n
2

)
= n(n−1)

2 is the total number of pairs of observations

Kendall’s τ coefficient is obtained by normalizing the symmetric difference. Hence, it

takes values between [−1, +1] (Abdi, 2007). When order of one variable is the exact opposite

of the other variable resulting largest possible distance then τ is 1. When both variables
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have identical order then τ becomes +1 corresponding to the smallest possible distance.

Therefore, τ > 0 when observations of X and Y are more likely to be concordant than

discordant, and there is a positive relationship between X and Y. In contrast, τ < 0 means

a negative relationship between X and Y (Huang, 2010).

1.4 Problems with Monotonic Association Measures

Pearson’s correlation coefficient aims to measure the linear association between variables. It

is a parametric measure used for data in normal or approximately normal distribution. This

coefficient is sensitive to outliers. This is not an appropriate measure while dealing with

non-linear and non-monotone associations. Both Spearman’s rank correlation and Kendall’s

rank correlation are designed to address monotonic non-linear association. Hence, these

applications may return zero correlation even if there is non-monotonic association between

X and Y. So, they are not appropriate when dealing with non-monotonic association.

In the study of measure of association, often there are situations where relationship

between two variables is non-monotone. For example, consider about ‘aging curve’ in sports.

Athletes’ ability increases with age and then decreases. James and Zminda (1988) showed

that, baseball players on average perform best around age 27. Young players increase in

ability as they get stronger and learn how to play. However, their ability decreases as they

become older because they get slower and have more difficulty recovering from injuries.

Hence, the ability of players shows non-monotonic association with age having one curve for

x < 27 and another curve for x > 27. Pearson’s correlation, Spearman’s rank correlation or

Kendall’s rank correlation fails to measure such association.

Several measures of dependence have appeared in literature over time that claimed to

capture monotone as well as non-monotonic association between two continuous variables.

The main objective of this thesis is to make detailed evaluations of six such proposed methods

and determine the optimal measures for monotonic or non-monotonic associations. Although,

correlation typically refer to linear association only, all the methods we reviewed stated non-
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linear/non-monotone associations as correlation. Therefore, to maintain consistency with

the methods under comparison we would mention any type of association as correlation. A

comparison of these six correlation coefficients would be done with three classical methods

proposed by Pearson, Spearman, and Kendall. For this purpose, permutation test based

on Monte Carlo simulation study has been carried out under twelve different relation types

between X and Y. In addition, we would explore the differences of computational time and

memory usage by each of these methods. Alongside the performance of correlation measures

and their independence test on simulation models, we would apply the methods to compute

and compare correlations between four pairs of variables from a real life data.
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2 Methodology

In research and industry, one essential aspect is to measure the strength of dependence

between two variables. Therefore, it is important to have a suitable coefficient that works

as a measure of dependence. Although classical methods are well utilized, they have some

limitations. As discussed in previous chapter, they fail to capture non-monotonic association.

Over time, several different options have been introduced by different school of thoughts to

serve this purpose. Here, we focus on six such methods,

■ Hoeffding’s D correlation based on joint cumulative distribution functions and ranks

(Hoeffding, 1994)

■ Optimal correlation obtained by transformed function of variables based on maximal

correlation coefficient (Breiman and Friedman, 1985)

■ Distance correlation by measuring the pairwise distances (Székely et al., 2007)

■ A modified Kendall’s correlation measure based on joint cumulative distribution func-

tions and ranks (Bergsma and Dassios, 2014)

■ A recent correlation coefficient which is simple in terms of calculation (Chatterjee,

2021)

■ An improved method of Chatterjee’s correlation (Lin and Han, 2023)

2.1 Correlation Coefficient

We would adopt the definitions of the coefficients of measuring association of these above

approaches. However, for purpose of this study, we would modify some computational pro-

cedures. We would consider variables X and Y as discussed in chapter 1 (Introduction). A

brief discussion on the methods is given below.
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2.1.1 Hoeffding’s D Correlation

Most conventional alternative measure of the classical correlation approaches is Hoeffding’s

D correlation that can capture monotonic as well as non-monotonic association. Hoeffding’s

D correlation coefficient is a non-parametric measure that depends on the rank order of the

observations. Theoretically, it calculates the distance between the joint distribution and the

product of the marginal distributions of two variables (Hoeffding, 1994). Mathematically,

we can define the D statistic as,

D = A − 2(n − 2)B + (n − 2)(n − 3)C
n(n − 1)(n − 2)(n − 3)(n − 4) (5)

Here, A = ∑n
i=1 ([R(xi) − 1][R(xi) − 2][R(yi) − 1][R(yi) − 2]),

B = ∑n
i=1 ([R(xi) − 2][R(yi) − 2]ci) and, C = ∑n

i=1 (ci(ci − 1))

Also, ci is the number of bivariate observations of X and Y such that for any (xj, yj),

xj ≤ xi and yj ≤ yi (Wilding and Mudholkar, 2008).

Range of D is (− 1
60 , 1

30). For convention, range of D can be expressed as, −0.5 ≤ D ≤ 1 ,

which is 30 times the original D statistic (Harrell Jr, 2023). Therefore, we use the following

formula to compute D statistic (Hollander et al., 2013),

D = 30 · A − 2(n − 2)B + (n − 2)(n − 3)C
n(n − 1)(n − 2)(n − 3)(n − 4) (6)

The signs of the coefficient have no interpretation because it identifies non-monotonic rela-

tionships. It’s value 1 means complete dependence between X and Y whereas 0 means X

and Y are independent. The larger the value of D, the more dependent are X and Y.

2.1.2 Maximal Correlation Based on Transformation of Variables

A non-parametric optimization procedure was developed by Breiman and Friedman (1985).

The method involves iteration using bivariate conditional expectations until optimum trans-
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formation of X and Y is obtained. The transformed functions of X and Y denoted as ϕ(X)

and θ(Y ) respectively would provide maximal correlation between the variables.

The process starts with setting up initial values ϕ0(X) = X and θ0(Y ) = Y/||Y || where

the norm ||.|| is defined as ||.|| =
√

E(.)2. Then, we compute the objective function,

e2(θ, ϕ) = E[θ0(Y ) − ϕ0(X)]2 (7)

Next, we define ϕ1(X) = E[θ0(Y )|X] and θ1(Y ) = E[ϕ1(X)|Y ]/||E[[ϕ1(X)|Y ]||. Here,

E[θ0(Y )|X] is obtained by fitting local linear regression for Kth nearest neighbour (KNN)

considering θ0(Y ) as response and X as predictor. We determined the best value of K by

applying cross-validation in each run separately, using the caret R-package (Kuhn and Max,

2008). Similarly E[ϕ1(X)|Y ] is computed by considering ϕ1(X) as response and Y as pre-

dictor by KNN. Then, again we compute the objective function using equation (7) for given

ϕ(X) and θ(Y ).

The process is repeated until, between two successive steps, the minimization function

fails to decrease by more than a pre-specified threshold δ. In each step, we would replace old

ϕ(X) and θ(Y ) by their new values respectively and minimize the objective function until

the optimal solution for ϕ(X) and θ(Y ) are obtained. This iterative optimization system

is called Alternating Conditional Expectations (ACE). Algorithm 1 summarizes the ACE

optimization process.

Correlation between the transformed functions is obtained by taking Pearson product-

moment correlation between ϕ(X) and θ(Y ). This correlation is the maximal correlation

between X and Y. Therefore, the maximal correlation ρ∗, obtained by transformed function

is,

ρ∗ = ρ(ϕ(X), θ(Y )) = Cov(ϕ(X), θ(Y )√
Var(ϕ(X)) · Var(θ(Y ))

(8)

The maximal correlation obtained by ACE algorithm varies between 0 to 1. The correlation
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coefficient value become zero when ϕ(X) and θ(Y ) are independent of each other,i.e., there

is no relation between them. Whereas, a correlation value 1 indicates complete dependence.

Algorithm 1: ACE algorithm to obtain optimum functions of X and Y
Input : Data containing information on X and Y, stopping threshold δ

Output: ϕ(X) and θ(Y ) as optimum functions of X and Y

Initialization: Set, ϕ0(X) = X and, θ0(Y ) = Y/||Y || where, ||.|| =
√

E(.)2

Compute, e2
0(θ, ϕ) = E[θ0(Y ) − ϕ0(X)]2

At step t: Define, ϕt(X) = E[θ(t−1)(Y )|X] by fitting local linear regression for

Kth nearest neighbour (value of K obtained by cross-validation for each run)

considering θ(t−1)(Y ) as response and X as predictor.

Also define, θt(Y ) = E[ϕ(t)(X)|Y ]/||E[[ϕ(t)(X)|Y ]|| by fitting local linear

regression for Kth nearest neighbour (value of K obtained by cross-validation

for each run) considering ϕ(t)(X) as response and Y as predictor.

Compute, e2
t (θ, ϕ) = E[θt(Y ) − ϕt(X)]2

If e2
(t−1)(θ, ϕ) − e2

(t)(θ, ϕ) > δ, run Step (t+1) as above.

Else, Exit.

2.1.3 Distance Correlation

Székely et al. (2007) initiated the idea of distance correlation. Consider the joint distribution

of X and Y. Now, for any two pairs of observations (xi, yi) and (xj, yj), define,

Aij = aij − āi. − ā.j + ā.. (9)

Where, aij is the absolute distance between xi and xj, i.e., aij = |xi − xj|,
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āi. = 1
n

∑n
j=1 aij,ā.j = 1

n

∑n
i=1 aij, and, ā.. = 1

n2
∑n

i,j=1 aij

Define Bij in similar way for Y considering, bij = |yi − yj| as the absolute distance

between yi and yj. Now, the distance correlation R(X, Y ) is defined as,

R(X, Y ) =
√

R2(X, Y ) =


ν(X,Y )√

ν(X,X)·ν(Y,Y )
ν(X, X) · ν(Y, Y ) > 0

0 ν(X, X) · ν(Y, Y ) = 0
(10)

Here, νn(X, Y ) is the non-negative distance covariance. It is defined as,

ν(X, Y ) =
√√√√ 1

n2

n∑
i,j=1

Aij · Bij (11)

Likewise, ν(X, X) and ν(Y, Y ) are defined as, ν(X, X) =
√

1
n2

∑n
i,j=1 A2

ij and,

ν(Y, Y ) =
√

1
n2

∑n
i,j=1 B2

ij

Distance correlation is analogous to Pearson’s product-moment correlation. It can vary

within the range, 0 ≤ R ≤ 1, being 0 only if X and Y are independent.

2.1.4 A Modification of Kendall’s τ

Bergsma and Dassios (2014) derived a natural extension of Kendall’s rank correlation. The

empirical expression of kendall’s correlation coefficient is,

τ = 1
n2

n∑
i,j=1

sign(xi − xj) · sign(yi − yj) (12)

Where, sign(xi − xj) and sign(yi − yj) are signs of (xi–xj) and (yi–yj) respectively. Now,

for any z1, z2, z3 and z4, they defined a function,

s(z1, z2, z3, z4) = sign(|z1 − z2|2 + |z3 − z4|2 − |z1 − z3|2 − |z2 − z4|2) (13)

11



and expressed equation (12) in terms of X an Y as,

τ 2 = 1
n4

n∑
i,j,k,l=1

s(xi, xj, xk, xl) · s(yi, yj, yk, yl) (14)

They proposed an improved function based on absolute differences,

a(z1, z2, z3, z4) = sign(|z1 − z2| + |z3 − z4| − |z1 − z3| − |z2 − z4|) (15)

Finally derived τ ∗, the modified τ coefficient,

τ ∗(X, Y ) = 1
n4

n∑
i,j,k,l=1

a(xi, xj, xk, xl)a(yi, yj, yk, yl) (16)

Following Cauchy–Schwartz inequality, normalized version of τ ∗ is,

τ ∗
b = τ ∗(X, Y )√

τ ∗(X, X) · τ ∗(Y, Y )
(17)

Here, τ ∗(X, X) = 1
n4

∑n
i,j,k,l=1 a(xi, xj, xk, xl)a(xi, xj, xk, xl). Likewise, we can define

τ ∗(Y, Y ) for Y.

τ ∗
b takes on values between 0 and 1. Any value within this range indicates presence

association whereas 0 indicates no association between X and Y.

2.1.5 Chatterjee’s Rank-based Approach

Chatterjee (2021) proposed a simple correlation metric which can measure the strength of

relationship between two variables. Akin to Pearson’s correlation coefficient, this coefficient,

expressed in the form of ξn, approaches its maximum value subject to one variable comes close

to a noiseless function of the other. However, the correlation coefficient is not symmetric in

X and Y. So, ξn(X, Y ) assesses whether Y is a function of X. In contrast, to explore whether

X is a function of Y, we need to compute ξn(Y, X).
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To compute ξn(X, Y ), rearrange data as, (x(1), y(1)), ..., (x(n), y(n)) such that, x(1) ≤ ... ≤

x(n). Let, ri be the rank of y(i) such that, for any j, y(j) ≤ y(i). Also let, li be the number of

j for which Y(j) ≥ Y(i). Now, the correlation coefficient is defined as,

ξn(X, Y ) = 1 − n · ∑n−1
i=1 |ri+1 − ri|

2 · ∑n−1
i=1 li · (n − li)

(18)

On the contrary, to compute ξn(Y, X) we rearrange the data as (x(1), y(1)), ..., (x(n), y(n))

where, y(1) ≤ ... ≤ y(n) and assume that ri be the rank of x(i) such that, for any j, x(j) ≤ x(i).

Then, using right side of equation (18), we can evaluate ξn(Y, X).

When n −→ ∞ Range of ξn(X, Y ) lies between [0, 1]. However, for finite n, the maximum

and minimum possible values of ξn(X, Y ) are (n−2)
(n+1) and −1

2 + O( 1
n
), respectively. So, the

lower bound is approximately -0.5 and, the upper bound approaches 1 as the sample size n

gets larger. Hence, we can consider the range of ξn(X, Y ) as [−0.5, 1].

Although simple in calculation, this correlation measure has some limitations when it

comes to testing independence. It lacks power (Chatterjee, 2021; Shi et al., 2022), has a

slower critical detection boundary (Auddy et al., 2021). Hence, we focus on an improved

version of Chatterjee’s correlation coefficient introduced by Lin and Han.

2.1.6 A Modification of Chatterjee’s Measure

Lin and Han (2023) incorporated M many right nearest neighbors into Chatterjee’s correla-

tion coefficient formula and proposed a reconstructed correlation coefficient.

Let, M be the number of right nearest neighbor. Order data, (x(1), y(1)), ..., (x(n), y(n))

such that, x(1) ≤ ... ≤ x(n). Let, ri be the rank of y(i) and rjm(i) be the rank of jth nearest

neighbor of ith observation (ordered based on X) of Y. Now, the correlation coefficient has

the following formula,

ξn,M(X, Y ) = −2 + 6 · ∑n
i=1

∑M
m=1 min(ri, rjm(i))

(n + 1)[nM + M(M + 1)/4] (19)
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Like Chatterjee’s correlation, this correlation is asymmetric. Therefore, to compute

ξn,M(Y, X), one needs to order the dataset (x(1), y(1)), ..., (x(n), y(n)) such that, y(1) ≤ ... ≤

y(n). Consider, ri be the rank of x(i) and rjm(i) be the rank of jth nearest neighbor of ith

observation (ordered based on Y) of X. Then using the right side of equation (19) compute

the correlation coefficient between (Y,X).

Range of ξn,M(X, Y ) is between [−0.5, 1] up to a bias of order M
n

for finite sample.

Table 1 summarizes the methods for calculating correlation coefficients and the corre-

sponding ranges of those methods.

Table 1: List of range of all correlation measures under comparison

Type of Correlation Method/ Refer-
ence

Notation Range

Linear/Monotone
associations

Pearson ρ [−1, +1]

Spearman ρs [−1, +1]

Kendall τ [−1, +1]

Non-
monotone
associations

Hoeffding D [−0.5, +1]

Breiman and
Friedman

ρ∗ [0, +1]

Distance R [0, +1]

Bergsma and
Dassios

τ∗
b [0, +1]

Chatterjee ξn [−0.5, +1]

Lin and Han ξn,M [−0.5, +1]

A few points to be noted,

• Unlike linear/monotone relationships where sign of the measure is important to under-

stand the direction of dependence, they do not have any equivalent meaning for non-

monotone relationships since in case of non-monotonic association there is no concept

of positive or negative association. Only the strength of relationship can be assessed

by any association measures that can capture non-monotonic relationships. So, any

correlation estimate closure to the lower bound means weak non-monotone association

14



whereas, any estimate close to upper bound of correlation measure indicates strong

non-monotone association.

• The correlation estimate of Y as a function of X and X as a function of Y are differ-

ent for Chatterjee’s rank based correlation (Chatterjee, 2021) and modified version of

Chatterjee’s correlation (Lin and Han, 2023). Both of this methods takes into account

the right nearest neighbour while calculation of correlation which makes the correla-

tion metrics asymmetric. Furthermore, maximal correlation (Breiman and Friedman,

1985) deals with iterative transformations of the functions of X and Y, it also produces

different correlation although the estimates are nearly same. But, the number of iter-

ation is different for correlation of Y as a function of X and X as a function of Y. So,

for these three measures we would report correlation for both Y as a function of X and

X as a function of Y.

• The maximal correlation is the correlation between the transformed functions of X and

Y instead of the actual variables (Breiman and Friedman, 1985). In contrast to other

methods which involve fixed number of computational steps depending on sample size,

computing maximal correlation requires convergence of an algorithm. Hence, for data-

sets with identical sample sizes (such as the original data and it’s permuted versions)

computation time for maximal correlation can be different due to different number of

iterations required for the convergence of the algorithm.

2.2 Test of Association

Correlation coefficients are used to measure the strength of association between two variables.

However, the measures obtained are based on sample data. It is often difficult to compare or

assess values of different measures on same sample as the measures have different definition

and range. So, their nature of variability differ. Therefore, for meaningful interpretation

and comparison a uniform criterion should be used. One such criterion could be test of
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independence so that the p-value of the test can be used for deciding strength of association

comparison. There are many tests available, such as, asymptotic tests, permutation tests etc.

Here, we would use permutation test based on Monte Carlo approximation to compare all the

correlation measures under consideration. Permutations tests are widely used in literature

for testing independence of variables (Ludbrook, 1994). An exact permutation test is time

consuming for moderately large sample size. Therefore, we would use resampling testing

method, also known as Permutation test based on Monte Carlo approximation to compare

all the correlation measures under consideration.

2.2.1 Permutation Test

For any correlation measure between two variables X and Y, we are interested in testing the

hypothesis,

Ho : X and Y are independent, i.e., there is no association between them

Ha : They are dependent, i.e., there is association between X and Y

A permutation test rejects the null hypothesis in favor of independence for large values

of the observed correlation coefficient for given bivariate distribution (DiCiccio and Romano,

2017). The test is carried out as follows,

Let, n = Sample size; T = Number of permutations; α = Level of significance; and,

Cor(X,Y) = Observed correlation coefficient between X and Y

For t = 1, ..., T ; let (it1, ..., itn) be a random permutation of the values of variable Y,

and Cort(X, Y ) be the correlation coefficient value of the tth resample. For computation

of Monte Carlo permutation p-value based on T resamples, one needs to take into account

whether the sign of the measure is important in deciding about it’s significance as discussed

after table 1. In that case, one needs to compute a two-sided p-value as,

p-value = 1
T

T∑
t=1

I[|Cort(X, Y )| > |Cor(X, Y )|] (20)

16



Otherwise, a one sided p-value should be computed as,

p-value = 1
T

T∑
t=1

I[Cort(X, Y ) > Cor(X, Y )] (21)

Now, for any predetermined α, we compare the p-value obtained by permutation test

with the level of significance (α) and decide on independence between X and Y.

• If p-value < α, there exists statistically significant evidence in favor of Ha. So, reject

H0 and accept Ha. Hence, conclude that, X and Y are dependent.

• If p-value ≥ α, there does not exist statistically significant evidence in favor of Ha. So,

reject Ha and do not reject H0. So, conclude, X and Y are independent.
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3 Simulation Study

In this chapter we present correlation from a bivariate dataset under different settings. First,

we experimented with different simulation functions that result in different kind of relation-

ships between the variables. We also explored how the presence of noise, to different extent,

influences these correlation measures. Finally, we used datasets with varying number of

observations to understand how sample size influences performance of these methods.

3.1 Simulation Setting

For one of the two variables X, we simulate it’s observations from, X ∼ Unif(−1, 1) in all

settings. Table 2 summarizes the simulation functions in terms of X. Graphical representation

of the functions is given in figure 1.

Then, we generate the variable Y as: Y = f(X) + ϵ where f(X) is chosen from the 12

simulation functions in table 2 and ϵ ∼ N(0, σ2) is the amount of noise in data. ϵ is chosen

using one of the three noise levels of σ2,

• Zero noise: ϵ = 0

• Low noise: ϵ ∼ N(0, 0.012)

• High noise: ϵ ∼ N(0, 0.12)

For models S11 and S12, noise were included inside the exponent function.

3.2 Simulation Results

For each simulation models, we showed the plot of data and tables containing the correlation

estimates between variables X and Y along with p-value from the permutation tests. The

p-values, reported in tables 3 to 14 are based on 10,000 permutations for all methods except

maximal correlation. For maximal correlation, we reduced the number of permutations

to 3,000 due to the convergence issue described in previous chapter. We set the stopping
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Table 2: Functions used to generate simulation models

Index Pattern type Simulation functions

S1 Linear f(X) = X

S2 Quadratic f(X) = X2

S3 Cosinusoid f(X) = cos(2πX)

S4 W-shaped f(X) =
{

|X + 0.5| if X < 0
|X − 0.5| if X ≥ 0

S5 Bump f(X) =
{

2X + 1 if − 1 ≤ X ≤ 0
−2X + 1 if 0 ≤ X ≤ 1

S6 Zig-zag f(X) =


2.99X + 1.99 if − 1 ≤ X ≤ −0.33
−2.99X + 0.01 if − 0.33 ≤ X ≤ 0.34
3.03X − 2.03 if 0.34 ≤ X ≤ 1

S7 Double-bump f(X) =


4X + 3 if − 1 ≤ X ≤ −0.5
−4X − 1 if − 0.5 ≤ X ≤ 0
4X − 1 if 0 ≤ X ≤ 0.5
−4X + 3 if 0.5 ≤ X ≤ 1

S8 Cross f(X) =
{

X if (f(X) ≤ 0 ∪ X ≤ 0) ∩ (f(X) ≥ 0 ∪ X ≥ 0)
−X if (f(X) ≥ 0 ∪ X ≤ 0) ∩ (f(X) ≤ 0 ∪ X ≥ 0)

S9 Box f(X) =


−X − 1 if (f(X) ≤ 0 ∪ X ≤ 0)
X + 1 if (f(X) ≥ 0 ∪ X ≤ 0)
X − 1 if (f(X) ≤ 0 ∪ X ≥ 0)
−X + 1 if (f(X) ≥ 0 ∪ X ≥ 0)

S10 Parallel f(X) =
{

−X − 1 if X ≤ 0
−X + 1 if X ≥ 0

S11 Exponent of
cube

f(X) = exp(X3)

S12 Exponent of
sinusoid

f(X) = exp(sin(2πX)

threshold, δ = 10−6 for all implementations of maximal correlation in this thesis. As noted

in Chapter 2, three of the methods produced different results when the labels of X and Y

are switched. In the following tables and associated discussion, we report two columns of

results for each one of those methods that correspond to the two different labels. We used

the notation (X,Y) and (Y,X) to separate the two sets of labels. The former implies Y is

modeled as a function of X and the latter implies the exact opposite.
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Figure 1: Plot of the functions of Simulation models

As for choice of M in (Lin and Han, 2023), the authors used values of M as exponents

of sample size within (0, 1). Choosing the exponent 0 makes M = 1, choosing the exponent
1
2 makes M = 5 and 10 in case of sample sizes 25 and 100, respectively. So, we explored

three values: 1, 5, 10. However, during computation we found that the correlation estimate
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at M = 1 is approximately same which is also reported by (Lin and Han, 2023). So, while

reporting we dropped the estimates for M = 1 and presented the outcome for M = 5 an 10.

3.2.1 S1: Linear

Figure 2: Plot of Simulation models, S1: Linear

In this model X and Y share linear relation. From Table 3 we observe that, all correlation

measures except ξn and ξn,M captured the linear relation perfectly. Even in zero noise, these

two methods failed to detect perfect correlation. As the value of M increased for ξn,M ,

the amount of correlation decreased. For all methods, increasing sample size improved the

correlation estimate while adding noise to the model decreased the association.
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3.2.2 S2: Quadratic

Figure 3: Plot of Simulation models, S2: Quadratic

Here, Y is a quadratic function of X. Therefore, as X varies from -1 to 1, Y takes

on values from 0 to 1. As evident from table 4, three classical methods failed to capture

any significant association while all non-monotonic measures captured significant correlation.

Increasing sample size improved the correlation estimate for ξn and ξn,M while the correlation

decreased for D, R, and τ ∗
b . As the value of M increased from 5 to 10 for ξn,M , the amount

of correlation decreased. Adding noise to the model decreased association for all methods.
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3.2.3 S3: Cosinusoid

Figure 4: Plot of Simulation models, S3: Cosinusoid

Table 5 summarizes the correlation estimates and p-value when Y is a cosine function

of X. D and τ ∗
b captured negligible correlation while the correlations for R was weak. ξn

and ξn,M for M = 5 could measure moderate correlation for all sample sizes.For M = 10,

ξn,M produced weak correlation. In all methods, significant association were obtained when

sample size increased.
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3.2.4 S4: W-shaped

Figure 5: Plot of Simulation models, S4: W-shaped

When X and Y share a W-shaped relation, D, R and τ ∗
b provide negligible significant

correlation which did not have much impact of increased sample size. M= 5 gave relatively

large correlation than M = 10 for ξn,M . ξn generated moderate significant correlation but

we could not identify any pattern due to increased sample size.
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3.2.5 S5: Bump

Figure 6: Plot of Simulation models, S5: Bump

From table 7 we see, D and τ ∗
b both correlations are significantly weak. However, in-

creasing sample size increased the correlation for D whereas decreased for τ ∗
b . R and ξn

correlations were moderate when sample size was 25. Increasing sample sizes reduced the

correlation coefficient value of R while improved the correlation coefficient value of ξn. ξn,M

produced weak and negligible correlation for M = 5 and M = 10 respectively. Correlation

for both choice of M increased by increasing sample size.
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3.2.6 S6: Zig-zag

Figure 7: Plot of Simulation models, S6: Zig-zag

Table 8 exhibit that, correlations between the variables were quite negligible for D and

τ ∗
b . R and ξn,M provide weak significant correlation. R showed no pattern based on increased

sample size. In contrast, ξn,M increased by increasing sample size but decreased by increasing

value of M. Strong correlations were obtained by ξn than other methods and had an increasing

correlation pattern due to increase of sample.
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3.2.7 S7: Double-bump

Figure 8: Plot of Simulation models, S7: Double-bump

From table 9 we observe that, D and τ ∗
b correlations were negligible for all samples. R

correlation were weak. Similarly, ξn,M provide weak correlation which increased by increas-

ing sample size. Increasing M from 5 to 10 reduced the correlation to a noticeable amount.

ξn produced moderate correlation as opposed to other methods and had an increasing cor-

relation pattern due to increase of sample.
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3.2.8 S8: Cross

Figure 9: Plot of Simulation models, S8: Cross

All the methods are consistent in capturing correlation when X and Y share cross pattern

relationship. The association captured by each method are significantly small which suggests

the association between X and Y is weak/negligible. For all methods, increasing sample size

increased the significance level. Increasing M did not have any impact on correlation pattern

of ξn,M . Correlation obtained by ξn decreased by increasing sample size.
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3.2.9 S9: Box

Figure 10: Plot of Simulation models, S9: Box

Similar to previous model, table 11 suggest that in model S9 there was very weak asso-

ciation between X and Y. All methods were consistent in capturing significant correlation.

Although, increasing sample size did not show any improvement in increasing the correlation

for any method.
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3.2.10 S10: Parallel

Figure 11: Plot of Simulation models, S10: Parallel

From table 12 we see that, D were not consistent with other method in capturing cor-

relation. Other non-monotonic measures captured moderate to strong correlation while

Hoeffding’s D correlation was negligible. Increasing sample increased the correlation coeffi-

cient for R, ξn and ξn,M . The rate of increase in correlation due to increase in sample was

slower for R as compared to ξn and ξn,M . Increased sample did not change the correlations

obtained by τ ∗
b .
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3.2.11 S11: Exponent of cube

Figure 12: Plot of Simulation models, S11: Exponent of cube

From figure 12 we observe that, X and Y share monotonic relation. All the methods

including the classical approaches were consistent in capturing very strong significant corre-

lation between X and Y.
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3.2.12 S12: Exponent of sinusoid

Figure 13: Plot of Simulation models, S12: Exponent of sinusoid

Although figure 13 refers that X and Y share non-monotonic relation but ρ, ρs produced

strong significant correlation. R and ξn correlations were significantly strong as well. τ ,

D, τ ∗
b and ξn,M methods had moderate correlations. But, ξn,M increased as the sample size

increased and M = 5 had better correlation than M = 10.
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For all simulation models, maximal correlation ρ∗ generated strong significant correlation

between the transformed functions of variables. Increasing sample size and adding noise did

not have any impact in increasing correlation.

Figure 14: Plot of comparison of methods across three simulation models

Overall, different non-monotonic measure of associations are not consistent in capturing

the correlation under different simulation models 14. Increasing sample size improves the

performance of correlation measure 15. We found Chatterjee’s rank-based correlation show-

ing consistent pattern for most non-monotonic relationship. For this simulation study, We
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observed that, while working with ξn,M , M = 5 gave higher correlation than M = 10. For

most of the simulation models, ξn and ρ∗ gave significantly high correlation as compared to

other methods. Adding noise mostly decreased the correlation estimates although there were

few exceptions.

Figure 15: Plot of comparison of methods across three sample size

3.2.13 Time and Memory Used During Analysis

Now we report the computational aspects of these methods, in terms of run time and peak

memory usage, for different sample sizes and simulation models. Here, the computational

time is reported in seconds and peak RAM used is presented as Mebibytes(MiB). The values

reported here are obtained by using the R-package peakRAM (Quinn, 2017) which returns

the elapsed time of executing the method and the maximum amount of RAM allocated at
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any point during that implementation.

Since maximal correlation is the only convergence based algorithm in this pool, the com-

putation time of all other methods are not expected to significantly vary based on simulation

model as long as sample size stays same. So, for each sample size, we took the average of

run time and memory usage over all simulation models except maximal correlation.

Figure 16: Plot of time and memory usage for τ ∗
b

We start by reporting modified τ correlation,i.e., τ ∗
b . Figure 16(a) shows the change

in time required for computation of τ ∗
b for different sample size. Computational time for

n = 25 and n = 50 were less than 1 second. When the sample size increased to 100 then

computation of τ ∗
b required 3.342 seconds on average. Figure 16(b) shows how peak memory

use varied by sample. The pattern is similar to time used for computation. With sample

size 25, on an average τ ∗
b computation required small amount of peak RAM (4.236 MiB).

However, increasing the sample size to 50 increased peak RAM use by approximately 10

times (42.661 MiB). For 100 samples τ ∗
b computation requires 304.125 MiB on average which

is approximately 7 times the memory requirement for n = 50.

Next, we present the peak memory usage of distance correlation (R) and Hoeffding’s

D correlation. In case of peak memory usage for computation of distance correlation, on

average it took 0.106 MiB to 1.4 MiB as the sample size increased from 25 to 100. Figure

17(a) showed the change in peak RAM used during computation of distance correlation for
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Figure 17: Plot of memory usage for R and D

three sample sizes. Likewise, computation of Hoeffding’s D required peak RAM usage of

0.111 MiB for n = 25 and for n = 100 the peak RAM usage was 0.836 MiB. Figure 17(b)

showed the changes occurred due to change in sample size.

For maximal correlation, one important quantity to observe is, the number of iterations

required for convergence. However, in our analysis we did not find any specific pattern for

the number of iterations with respect to sample size or noise level. For simulation model

S2 (Quadratic), when the sample size was 25, 40 iteration were required for convergence.

However, as the sample size increased from 25 to 50 and 50 to 100, the number of iterations

changed from 40 to 34 and 34 to 8 respectively. Again, for S5 (Bump), for n = 50, it required

10 iteration to converge at zero noise level, which increased to 56 for low noise level and then

dropped to 5 for high noise level. However, for n = 25 and n = 100, iteration number

decreased for increased noise level. Furthermore, for S10 (Parallel), increasing sample size

increased number of iteration for zero and low noise level and decreased for high noise level.

In the contrary, for n = 25 and n = 50, iteration number decreased from zero to high noise

level gradually. Whereas, for n = 100, iteration number increased and then sharply decreased

for adding noise level. Another interesting feature is that, for the same dataset, switching

the labels of X and Y can possibly lead to significantly different number of iterations. In case

of S8 (Cross), for n = 100 and zero noise level, it required 109 iterations for Y as a function

of X and 61 iterations for X as a function of Y. Whereas for n = 25 and 50, it required less
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itration number for Y as a function of X than X as a function of Y. Peak memory usage

showed a very mild increase due to increase in sample size, going upto 18 MiB from 15 MiB

when sample size changed from 25 to 100. We note that, these numbers implied that the

maximal correlation required much higher peak memory than other methods except τ ∗
b .

Figure 18: Scatter plot of computation time and iteration number for ρ∗ by sample size

Figure 18 shows the relation of computational time and iteration number for conver-

gence of maximal correlation algorithm for different samples. The computational time and

iteration number required for convergence of maximal correlation varied by different simula-

tion models. We observed that, (i) for fixed value of n,computational time showed a strong

linear increasing pattern with respect to number of iterations and (ii) both computational

time and iteration number increased due to increase in sample size. However, figure 18 also

shows, for some instances of a longer computational time associated with smaller number of

iterations or vice-versa. This is most likely due to the use of the algorithm to choose the

best value of K, as described in section 2.1.2, that can take varying amount of time based

on the observations.

All other methods required less than 0.1 MiB peak RAM usage for computation irrespec-

tive of sample size. In addition, except maximal correlation and τ ∗
b , other methods required

computational time less than one second. We did not find any pattern in time and memory

usage due to change of sample size for these methods. Therefore, we did not report them in

this thesis.
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4 Application on Real Data

In previous section we checked the performance of all correlation measures on different sim-

ulation models. In this section we would focus on assessing these correlations on real data.

4.1 Description of Data

The real-world dataset that we considered here comes from Cape Floristic Region (CFR) of

South Africa, a known hotspot for biodiversity research (Gelfand et al., 2006; Myers et al.,

2000; Rebelo, 2002). The environmental and topographical characteristics across CFR are

available at the South African Atlas of Hydrology and Climatology (Schulze, 1997) as GIS

raster layers with a minimum pixel resolution of 1 minute latitude by 1 minute longitude.

For our analysis, we randomly selected 200 pixels in CFR and specifically considered four

such characteristics: altitude (mean elevation within a pixel), roughness (range of elevation

within a pixel), maximum summer temperature and minimum winter temperature. The

units of altitude and roughness are Meters and the units of temperature values are Celsius.

All four variables in this data had tied observations. So, we considered each pair separately

and removed all tied observations from each variable within that pair. Hence, from the

initial data, we had four subsets of data where each subset had two variables with no tied

observations. Since, the number of tied observations in each subset were different for different

variables, the number of observations in each subset after removing ties were different. The

four pairs of variables exhibit diverse kind of pairwise linear association, as seen in figure 19,

■ Moderately positive for altitude and roughness

■ Strong negative for altitude and minimum winter temperature

■ Weak negative for the summer maximum and winter minimum temperatures

■ Negligible for altitude and summer maximum temperature
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Figure 19: Scatterplots of selected variable pairs from CFR dataset

Our goal in this analysis was to understand to what extent the general measures of

correlations, (a) retain presence of any significant linear association in a pair, (b) identify

existence of non-linear or non-monotonic dependence and, (c) agree with each other with

respect to strength of dependence within a pair.

4.2 Results

Here, we present the results obtained by application of all correlation measures on the CFR

data. Similar to simulation analysis, we used same procedure to obtain correlation and

permutation test for testing independence between variables.

Table 15 summarizes the correlation estimates and p-value for all four pairs of variables.

From the table we observe that Pearson correlation ρ retained significant strong linear cor-

relation for altitude and roughness, moderate linear association for altitude and winter min-
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Table 15: Correlation estimate and p-value for CFR data

Correlation estimate and p-value

Methods (Aa,Rb) (A,Sc) (A,Wd) (S,W)

n=143 n=75 n=67 n=42

ρ 0.596
(0.000)

-0.031
(0.794)

-0.927
(0.000)

-0.291
(0.062)

ρs 0.557
(0.000)

0.151
(0.193)

-0.942
(0.000)

-0.317
(0.044)

τ 0.409
(0.000)

0.093
(0.238)

-0.794
(0.000)

-0.233
(0.032)

D 0.112
(0.000)

0.024
(0.012)

0.541
(0.000)

0.039
(0.019)

ρ∗ (X, Y ) 0.685
(0.001)

0.594
(0.030)

0.916
(0.000)

0.671
(0.033)

(Y, X) 0.684
(0.000)

0.579
(0.055)

0.915
(0.000)

0.674
(0.029)

R 0.547
(0.000)

0.325
(0.008)

0.922
(0.000)

0.413
(0.015)

τ∗
b 0.176

(0.000)
0.059
(0.003)

0.635
(0.000)

0.083
(0.008)

ξn

(X, Y ) 0.297
(0.000)

0.184
(0.005)

0.665
(0.000)

-0.111
(0.877)

(Y, X) 0.257
(0.000)

0.020
(0.389)

0.654
(0.000)

0.166
(0.038)

(X,Y)
M=5 0.277

(0.000)
0.139
(0.001)

0.492
(0.000)

0.003
(0.435)

ξn,M

M=10 0.283
(0.000)

0.114
(0.006)

0.339
(0.000)

-0.027
(0.656)

(Y,X)
M=5 0.227

(0.000)
0.030
(0.214)

0.481
(0.000)

0.030
(0.270)

M=10 0.255
(0.000)

0.027
(0.216)

0.335
(0.000)

-0.004
(0.483)

aA: Altitude of terrain
bR: Roughness of terrain
cS: Summer maximum temperature
dW: Winter minimum temperature

imum temperature and marginally significant weak association for summer maximum and

winter minimum temperatures.

In capturing association between different pairs of variables that share diverse type of
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linear association, ρs and R were almost consistent with ρ when the variables share strong,

moderate or weak linear association. While the correlation between altitude and summer

maximum temperature was negligible and insignificant for ρ, ρs and τ ; R showed signifi-

cant weak association and Hoeffding’s D and τ ∗
b produced significant negligible association

between the pair.

As opposed to simulation study, where maximal correlation ρ∗ always obtained very

strong correlation between transformed variables, here, we see it managed to obtain strong

correlation only when the variables themselves share strong linear association. In all other

cases maximal correlation generated moderate correlation.

In case of CFR data, performing time and memory analysis is not that meaningful since

we worked with a single sample size and did not add any noise level. So, here we did not

present computational aspects of CFR data analysis.
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5 Conclusion

5.1 Discussion

In this thesis, we explored six non-monotonic correlation measures focusing on different

rank based measures, maximal correlation and distance based correlation for diverse type of

relations between variables. In addition, we explored three classical approaches of correlation

measure, Pearson correlation, Spearman’s rank correlation and Kendall’s τ .

We observed that, Pearson correlation, Spearman’s rank correlation and Kendall’s τ

showed significant association when the relation between variables were linear and/or mono-

tonic. In case of non-monotonic pattern, they produced insignificant estimates.

All methods except modified τ and maximal correlation require negligible computational

time and peak RAM usage. Both computational time and peak RAM usage had cubic

increase as the sample size increases for modified τ . Out of all methods, modified τ occupied

most peak RAM usage.

Although maximal correlation captured strong significant correlation between variables

for all simulation models. We should keep in mind that, maximal correlation is the associ-

ation between transformed functions of original variables. So, it should be used when there

is scope to consider functions of actual variables rather than the variables themselves. We

found that, maximal correlation for Y as a function of X and X as a function of Y were ap-

proximately same but their iteration number for convergence and computational time varied.

Furthermore, due to the issue of convergence, computational time and peak RAM usage of

maximal correlation is high.

Chatterjee’s rank based correlation (ξn) produced significant correlation for most sim-

ulation models exhibiting non-monotone association. In contrast, it did not show similar

performance for CFR data. The modified Chatterjee’s correlation (ξn,M) varied by the

choice of M. We observed, larger correlation was obtained for smaller choice of M. Moreover,

both (ξn) and (ξn,M) methods produced different correlation estimate based on the direction
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of relationship between variables. In such case, one can compute both correlation for Y as a

function of X and X as a function of Y and consider maximum between the two estimates.

This procedure was followed by Lin and Han (2023) for testing independence.

To summarize, different non-monotonic measure of associations were not consistent in

capturing correlation for different type of relationship pattern between variables. Chatter-

jee’s rank based correlation and maximal correlation captured strong association in most of

the cases. The fact that for some simulation models, all methods had very low correlation

estimates indicate that there was a random relationship between the variables. In such case,

it is understood that there is no linear, monotone or non-monotone association.

5.2 Extension

There were few points that were beyond the scope of this work. First, we assumed there

were no ties in data. In reality, presence of ties in data is quite frequent. Using rank based

correlation measures would create problem as observations with same values would have

same rank. In that case, applying such methods require separate treatment. Some meth-

ods like Spearman’s rank correlation and Hoeffding’s D measure suggested to rearrange the

data at first. Then use average of the rank for observations with same rank (Daniel, 1990;

Hoeffding, 1994). Kendall’s τ and Chatterjee’s rank based correlation proposed separate

formula to handle ties (Chatterjee, 2021; Daniel, 1990). One can compare the performances

of these measures in case of tied observations. Second, we worked with one dimensional

variables only. Some methods, such as, maximal correlation, distance correlation proposed

ways to handle multi-dimensional variables (Breiman and Friedman, 1985; Székely et al.,

2007). This could be another way of exploring that what happens when the variables are

multi-dimensional. Furthermore, we assumed that both variables are numeric. Breiman

and Friedman (1985) developed algorithm in case of categorical data. There could be other

methods in literature for assessing relation between categorical or ordinal variables. Those

could be studied as an extension of this work. Finally, to ensure coherency in all meth-
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ods, we limited our computation to permutation tests for testing independence. However,

permutation tests are not efficient as they are time consuming for large number of samples

(Chatterjee, 2021; Christensen and Zabriskie, 2022). There were alternative tests suggested

by some of the proposed methods (Chatterjee, 2021; Lin and Han, 2023). In addition, many

other alternative independence tests were also proposed which we did not cover in this thesis.

5.3 Scope of Further Study

So far we studied nine correlation measures that capture linear, monotone and/or non-

monotone association. Over time many proposals were introduced for this purpose. There

could be other methods which proposed more efficient tests or association measures to cap-

ture any type of association between variables. To name a few, Blum et al. (1961) suggested

a modification of Hoeffding’s D metric. Heller et al. (2013) introduced a test of dependence

based on pairwise distances between random vectors of any dimension. Pfister et al. (2018)

proposed a Kernel based test to identify joint independence. Wang et al. (2017) developed

G-squared statistic for multi-dimensional joint distributions which is identical to the square

of the Pearson correlation coefficient, R-squared. Kraskov et al. (2004) proposed two classes

of improved estimators for mutual information based on entropy estimates from k-nearest

neighbour distances. Reshef et al. (2011) defined the maximal information coefficient (MIC)

which belongs to a larger class of maximal information-based non-parametric exploration

(MINE) statistics for identifying and classifying relationships.
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A R-code

A.1 Functions of correlation and permutation test

library ( ggp lot2 )

l ibrary ( l a t t i c e )

l ibrary ( c a r e t )

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# Method 1 : Pearson ’ s product−moment c o r r e l a t i o n #

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

rho <− function (y , x ) {

rho = cov (x , y )/ ( sd ( x )∗sd ( y ) )

return ( rho )

}

pearsoncor . t e s t <− function (x , y ) {

oboutput = rho (y , x )

y permute = r e p l i c a t e (MC, sample ( y ) )

output = apply ( y permute , 2 , rho , x=x)

MCpvalue <− (sum( i f e l s e ( abs ( output)>abs ( oboutput ) , 1 , 0 ) ) ) /MC

return ( c ( cor=oboutput , pvalue=MCpvalue ) )

}

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# Method 2 : Spearman ’ s rank c o r r e l a t i o n #

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

srho <− function (y , x ) {

rank . x <− rank ( x )

rank . y <− rank ( y )

d <− rank . x − rank . y
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srho = 1 − ( (6 ∗ sum(d ˆ2) )/ (n∗ (nˆ2 −1)))

return ( srho )

}

spearman . t e s t <− function (x , y ) {

oboutput = srho (y , x )

y permute = r e p l i c a t e (MC, sample ( y ) )

output = apply ( y permute , 2 , srho , x=x)

MCpvalue <− (sum( i f e l s e ( abs ( output)>abs ( oboutput ) , 1 , 0 ) ) ) /MC

return ( c ( cor=oboutput , pvalue=MCpvalue ) )

}

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# Method 3 : Kendal l ’ s tau #

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

kend <− function (y , x ) {

a <− sign ( outer (x , x , ’− ’ ) )

b <− sign ( outer (y , y , ’− ’ ) )

kend <− sum( a∗b)/ (n∗ (n−1))

return ( kend )

}

kenda l l . t e s t <− function (x , y ) {

oboutput = kend (y , x )

y permute = r e p l i c a t e (MC, sample ( y ) )

output = apply ( y permute , 2 , kend , x=x)

MCpvalue <− (sum( i f e l s e ( abs ( output)>abs ( oboutput ) , 1 , 0 ) ) ) /MC

return ( c ( cor=oboutput , pvalue=MCpvalue ) )

}
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−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# Method 4 : Hoef fd ing ’ s D #

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

hoe f f d i ng <− function (y , x ) {

a = sign ( outer (x , x , ’− ’ ) )

b = sign ( outer (y , y , ’− ’ ) )

sum sign = a+b

c = apply (sum sign , 1 , function ( x ) { length (which( x==2))})

rx <− rank ( x )

ry <− rank ( y )

A = sum( ( rx −1)∗ ( rx −2)∗ ( ry −1)∗ ( ry −2))

B = sum( ( rx −2)∗ ( ry −2)∗c )

C = sum( c∗ (c−1))

D = (30∗ (A−(2∗ (n−2)∗B)+((n−2)∗ (n−3)∗C) ) ) /

(n∗ (n−1)∗ (n−2)∗ (n−3)∗ (n−4))

return (D)

}

hoe f f d i ng . t e s t <− function (x , y ) {

oboutput = hoe f f d i ng (y , x )

y permute = r e p l i c a t e (MC, sample ( y ) )

output = apply ( y permute , 2 , hoe f fd ing , x=x)

MCpvalue <− (sum( i f e l s e ( output>oboutput , 1 , 0 ) ) ) /MC

return ( c ( cor=oboutput , pvalue=MCpvalue ) )

}

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# Method 5 : Maximal c o r r e l a t i o n #

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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# Smooth func t i on #

smooth<−function (x , y ) {

x1<−sort ( x )

y1<−y [ order ( x ) ]

TrainData <− matrix ( x1 , ncol=1)

colnames ( TrainData )<−”x1”

Tra inClas se s <− matrix ( y1 , ncol=1)

colnames ( Tra inClas se s )<−”y1”

t r a inda t<−data . frame ( x1=x1 , y1=y1 )

lmFit <− t r a i n ( y1 ˜ . + x1 , data=tra indat ,

method = ”knn” ,

preProces s = c ( ” c ent e r ” , ” s c a l e ” ) ,

t rCont ro l = t ra inCont ro l ( method = ”cv” ) )

ne ighbor<−lmFit$bestTune

#neighbor <− K

out<−array (0 , length ( x ) )

for ( z in 1 : length ( x ) ) {

z1<−rank ( x ) [ z ]

pos<− max( z1−neighbor , 1 ) : min( z1+neighbor , n ) #K=20

xbar<−mean( x1 [ pos ] )

ybar<−mean( y1 [ pos ] )

beta<−cov ( x1 [ pos ] , y1 [ pos ] ) /var ( x1 [ pos ] )

alpha<−ybar−beta∗xbar

smooth<−alpha+beta∗x1 [ z1 ]

out [ z ]<−smooth

}

return ( out )
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}

# Norm func t i on #

norm y<−function ( a ){

sqrt (mean( a ˆ2) )

}

# C o e f f i c i e n t f unc t i on #

rho s ta r <− function (y , x ) {

phi<− x

theta<− y/norm y(y )

e r r o r<−c ( )

e r r o r [ 1 ]<−mean( ( theta−phi )ˆ2)

phix<−x

phiy<−theta

phi<−smooth ( phix , phiy )

thetax<−y

thetay<−phi

thetanum<−smooth ( thetax , thetay )

theta<−thetanum/norm y( thetanum )

e r r o r [ 2 ]<−mean( ( theta−phi )ˆ2)

count = 2

while ( ( e r r o r [ count−1] − e r r o r [ count ] ) > 10ˆ−6){

count = count + 1

phix<−x

phiy<−theta

phi<−smooth ( phix , phiy )

thetax<−y

thetay<−phi
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thetanum<−smooth ( thetax , thetay )

theta<−thetanum/norm y( thetanum )

e r r o r [ count ]<−mean( ( theta−phi )ˆ2)

}

out <−cor ( phi , theta )

return ( c ( out , count ) )

}

rho s ta r . t e s t <− function (x , y ) {

oboutput = rhos ta r (y , x )

y permute = r e p l i c a t e (MC, sample ( y ) )

output = apply ( y permute , 2 , rhostar , x=x)

MCpvalue <− (sum( i f e l s e ( output [1 , ] > oboutput [ 1 ] , 1 , 0 ) ) ) /MC

return ( c ( cor=oboutput [ 1 ] , obcount=oboutput [ 2 ] ,

pvalue=MCpvalue , count=output [ 2 , ] ) )

}

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# Method 6 : Modi f ied tau #

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# when number o f combinat ions i s sma l l e r than number o f permutat ions

s i gn fun <− function ( index , z ) {

az <− sign ( abs ( z [ index [ 1 ] ] − z [ index [ 2 ] ] ) + abs ( z [ index [ 3 ] ] − z [ index [ 4 ] ] )

−abs ( z [ index [ 1 ] ] − z [ index [ 3 ] ] ) − abs ( z [ index [ 2 ] ] − z [ index [ 4 ] ] ) )

return ( az )

}

# when number o f combinat ions i s l a r g e r than number o f permutat ions

s i gn fun comb vec <− function ( z , comb)

{

62



az <− sign ( abs ( z [ comb [1 , ] ] − z [ comb [ 2 , ] ] ) + abs ( z [ comb [3 , ] ] − z [ comb [ 4 , ] ] )

−abs ( z [ comb [1 , ] ] − z [ comb [ 3 , ] ] ) − abs ( z [ comb [2 , ] ] − z [ comb [ 4 , ] ] ) )

return ( az )

}

s i gn fun comb mat <− function ( z , comb)

{

t au s ta r . z <− sign ( abs ( z [ comb [1 , ] ] − z [ comb [ 2 , ] ] )

+abs ( z [ comb [3 , ] ] − z [ comb [ 4 , ] ] ) − abs ( z [ comb [ 1 , ] ]

−z [ comb [ 3 , ] ] ) − abs ( z [ comb [2 , ] ] − z [ comb [ 4 , ] ] ) )

out = sum( t au s ta r . z∗ t au s ta r . x )/ (nˆ4)

rm( t au s ta r . z )

return ( out )

}

t au s ta r<− function (x , y ) {

comb <− combn(n , 4 )

t au s ta r . x <− s i gn fun comb vec ( z=x , comb=comb)

taus ta r . y <− s i gn fun comb vec ( z=y , comb=comb)

obtaustar <− (1/nˆ4)∗sum( t au s ta r . y∗ t au s ta r . x )

obtaustar . x <− (1/nˆ4)∗sum( t au s ta r . x∗ t au s ta r . x )

obtaustar . y <− (1/nˆ4)∗sum( t au s ta r . y∗ t au s ta r . y )

taub <− obtaustar/sqrt ( obtaustar . x∗obtaustar . y )

return ( cor=taub )

}

#when number o f combinat ions i s sma l l e r than number o f permutat ions

t au s ta r . t e s t 1 <− function (y , x ) {

comb <− combn(n , 4 )

t au s ta r . x <− apply (comb , 2 , s ignfun , z=x)

63



t au s ta r . y <− apply (comb , 2 , s ignfun , z=y)

obtaustar <− (1/nˆ4)∗sum( t au s ta r . y∗ t au s ta r . x )

obtaustar . x <− (1/nˆ4)∗sum( t au s ta r . x∗ t au s ta r . x )

obtaustar . y <− (1/nˆ4)∗sum( t au s ta r . y∗ t au s ta r . y )

taub <− obtaustar/sqrt ( obtaustar . x∗obtaustar . y )

y permute = r e p l i c a t e (MC, sample ( y ) )

MCtaustar = apply ( y permute , 2 , s ignfun , comb=comb)

MCpvalue <− (sum( i f e l s e ( MCtaustar>obtaustar , 1 , 0 ) ) ) /MC

return ( c ( cor=taub , pvalue=MCpvalue ) )

}

# when number o f combinat ions i s l a r g e r than number o f permutat ions

t au s ta r . t e s t 2 <− function (x , y ) {

comb <− combn(n , 4 )

t au s ta r . x <− s i gn fun comb vec ( z=x , comb=comb)

taus ta r . y <− s i gn fun comb vec ( z=y , comb=comb)

obtaustar <− (1/nˆ4)∗sum( t au s ta r . y∗ t au s ta r . x )

obtaustar . x <− (1/nˆ4)∗sum( t au s ta r . x∗ t au s ta r . x )

obtaustar . y <− (1/nˆ4)∗sum( t au s ta r . y∗ t au s ta r . y )

taub <− obtaustar/sqrt ( obtaustar . x∗obtaustar . y )

y permute = r e p l i c a t e (MC, sample ( y ) )

MCtaustar = apply ( y permute , 2 , s i gn fun comb mat , comb=comb)

MCpvalue <− (sum( i f e l s e ( MCtaustar>obtaustar , 1 , 0 ) ) ) /MC

return ( c ( cor=taub , pvalue=MCpvalue ) )

}

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# Method 7 : Distance c o r r e l a t i o n #

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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d i s t co r r <− function (y , x ) {

a = as . matrix ( d i s t ( x ) )

b = as . matrix ( d i s t ( y ) )

A = a − matrix ( rowMeans ( a ) ,nrow=nrow( a ) , ncol=ncol ( a ) , byrow=F)

−matrix ( colMeans ( a ) ,nrow=nrow( a ) , ncol=ncol ( a ) , byrow=T) + mean( a )

B = b − matrix ( rowMeans (b ) ,nrow=nrow(b ) , ncol=ncol (b ) , byrow=F)

−matrix ( colMeans (b ) ,nrow=nrow(b ) , ncol=ncol (b ) , byrow=T) + mean(b)

n = nrow( a )

d i s t cov = sqrt (sum(A∗B)/ (n ˆ2) )

d i s t var x = sqrt (sum(A∗A)/ (n ˆ2) )

d i s t var y = sqrt (sum(B∗B)/ (n ˆ2) )

DistCorr = d i s t cov/sqrt ( d i s t var x∗ d i s t var y )

return ( DistCorr )

}

distance cor . t e s t <− function (x , y ) {

oboutput = d i s t co r r (y , x )

y permute = r e p l i c a t e (MC, sample ( y ) )

output = apply ( y permute , 2 , d i s t corr , x=x)

MCpvalue <− (sum( i f e l s e ( output>oboutput , 1 , 0 ) ) ) /MC

return ( c ( cor=oboutput , pvalue=MCpvalue ) )

}

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# Method 8 : Chat ter j ee ’ s Corre l a t i on #

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

x i cor <− function (y , x ) {

n = length ( x )

datamat <− cbind (x , y )
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datamat order by x <− datamat [ order ( x ) , ]

r <− rank ( datamat order by x [ , 2 ] , t i e s . method = ”max” )

rankdi f f sum <− sum( abs ( d i f f ( r ) ) )

z <− 1−((3∗ rankdi f f sum )/ (nˆ2−1))

return ( z )

}

x i c o r . t e s t <− function (x , y ) {

oboutput = x i cor (y , x )

y permute = r e p l i c a t e (MC, sample ( y ) )

output = apply ( y permute , 2 , x i cor , x=x)

MCpvalue <− (sum( i f e l s e ( output>oboutput , 1 , 0 ) ) ) /MC

return ( c ( cor=oboutput , pvalue=MCpvalue ) )

}

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# Method 9 : Improved Chat ter j ee ’ s Corre l a t i on #

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

l h co r <− function (y , x ) {

dat <−data . frame (x , y )

dat = dat [ order ( x ) , ]

yrank <−rank ( dat [ , 2 ] )

n <− length ( y )

out = 0

for ( j in 1 :M) {

out = out+sum(pmin( yrank [ 1 : ( n−j ) ] , yrank [ ( j +1):n ] ) )

+ sum( yrank [ ( n−j +1):n ] )

}

l h co r = −2 + ((6 ∗out )/ ( ( n+1)∗ ( ( n∗M)+(M∗ (M+1))/ 4 ) ) )
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return ( l h co r )

}

l h co r . t e s t <− function (x , y ) {

oboutput = lhco r (y , x )

y permute = r e p l i c a t e (MC, sample ( y ) )

output = apply ( y permute , 2 , lhcor , x=x)

MCpvalue <− (sum( i f e l s e ( output>oboutput , 1 , 0 ) ) ) /MC

return ( c ( cor=oboutput , pvalue=MCpvalue ) )

}

A.2 Output extraction

library (peakRAM)

# Define X and Y

n = length ( x ) # Sample s i z e

MC = # Mention number o f permutat ion here

PearCor = pearsoncor . t e s t (x , y )

PearCor TM = peakRAM( rho (y , x ) )

SpearCor = spearman . t e s t (x , y )

SpearCor TM = peakRAM( srho (y , x ) )

KendCor = kenda l l . t e s t (x , y )

KendCor TM = peakRAM( kend (y , x ) )

Hoef fdingCor = hoe f f d i ng . t e s t (x , y )

Hoef fdingCor TM = peakRAM( hoe f f d i ng (y , x ) )

RhostarCor = rhos ta r . t e s t (x , y )

RhostarCorR = rhos ta r . t e s t (y , x )

RhostarCor TM = peakRAM( rhos ta r (y , x ) )

RhostarCorR TM = peakRAM( rhos ta r (x , y ) )
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TaustarCor = taus ta r . t e s t 2 (x , y ) #Pick func t i on based on

#combination and permutat ion number

TaustarCor TM = peakRAM( taus ta r (x , y ) )

DistCor = distance cor . t e s t (x , y )

DistCor TM = peakRAM( d i s t co r r (x , y ) )

XiCor = x i c o r . t e s t (x , y )

XiCor TM = peakRAM( z a i wo t i e (x , y ) )

XiCorR = x i c o r . t e s t (y , x )

XiCorR TM = peakRAM( z a i wo t i e (y , x ) )

M = #Mention M here

LHCor = lhco r . t e s t (x , y )

LHCor TM = peakRAM( lhco r (y , x ) )

LHCor R = lhco r . t e s t (y , x )

LHCor R TM = peakRAM( lhco r (x , y ) )
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