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Abstract

Multiple sources of light, including coherent light, thermal light, light from a degenerate

parametric oscillation and resonance fluorescence from a two level coherently driven atom

are considered for the analysis of their wait time statistics. We include the second order

normalized correlation function and Mandel’s Q parameter for brief discussion. A general

framework to analyze the generalized conditional and unconditional wait time distributions is

also obtained in order to understand the photo-count statistics of the light sources included

in this work. Average and variance of wait times with respect to both unconditional and

conditional wait time distribution are also obtained and briefly discussed.
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Chapter 1

Introduction

Photon statistics is a discipline that lies at the heart of theoretical and experimental quan-

tum optics. Results obtained in the general field theoretical framework for photon statistics

provide guidance for experiments such as the Hanbury Brown-Twiss interferometry, entan-

glement of photons, phase interference, etc. [1–4]. Experiments that rely on photon coin-

cidence measurement are used to test theoretical results that have been obtained through

assumptions about the possible quantum statistical description of the electromagnetic field;

especially optical fields that are useful and applicable to/from lasers, optical masers, optical

cavities, interferometers, and other useful optical fields. Photon statistics is particularly an

interesting sub-branch of quantum optics since from the experimental point of view, to accu-

rately measure photon correlations, one requires a high degree of accuracy which means one

must have access sufficiently efficient detectors if one wishes to recreate a photon sequence

via photoelectric pulse creation. The challenge, however, is that photodetectors do not have

perfect efficiency of detection. Photodetectors rely on the fact that when they detect a pho-

ton from a beam of photons the photon is converted to a voltage pulse. This may not always

happen since the atomic media that comprises these instruments have imperfections and

will not always recreate a voltage pulse sequence equivalent to that of the photo-emission

sequence incident on the detector. Realistically speaking, one is only able to measure the

photoelectric or voltage pulses.

In the present work, we delve more into how one can categorize sources that produce

photon sequences and how to study the temporal behavior of these photon sequences. How-

ever, before we start, we make a few remarks about photons. Light is fully described by a

set of equations known as Maxwell’s equations, in vacuum or in a certain medium. Once one

combines the framework of quantum mechanics and electrodynamics, the electromagnetic

wave fields described by Maxwell equations can be thought of “particles” or wave packets
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called photons. Photons are fundamental in nature. They are the fundamental carriers of

information across space and time. A vast majority of today’s communication systems rely

on reliable exchange of photons. There are of course other types of waves (acoustic, spin,

phonons, etc.) that are useful for communication, but photons are of high interest here. For

instance, high speed internet, photonic quantum computing, radio transmissions, etc. are a

few of the most important current applications of photons in communication. Thus, knowing

fundamental properties of photons such as their phase, polarization, energy, and other of

their spatial and temporal as well as statistical properties will certainly become handy if one

is to build and improve communications systems that rely heavily in optical components.

One can understand photons from the theoretical and mathematical point of view due to

quantum electrodynamics and quantum field theory which in combination with optics and

quantum mechanics provide the full framework of quantum optics. In our current work, we

will not study individual photons. We will study their collective properties. For the present

thesis, let us consider that position is fixed and thus our detectors are at fixed points in

space. So, our only concern henceforth is with time, the temporal-statistical properties of

photon sequences to be more exact.

Any beam of light contains photons and consequently these photon sequences can be

approximately described by a mathematical tool called time series. Such times series can be

continuous or discrete depending on the properties and characteristics one wishes to observe.

Usually a photon sequence process follows a stochastic point process [5, 12]

Understanding and analyzing the statistical properties of photon sequences generated

from a specific material, physical process, or other light sources represents an essential tool

to unveil the internal dynamics that govern all these photon-emitting sources. Based on the

experimental predictions and theoretical derived results, one can implement a protocol for

reliably categorize the nature of a light source as quantum or classical [1, 5–8] .

The thesis is organized as follows. The present chapter, Chapter 1, is of course the in-

troduction. Chapter 2, the background, introduces the concept of quantized electromagnetic
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field and its use in correlation functions essential for quantum optics. Other statistical quan-

tities of vital importance such as generating functions, moments of the photon sequence,

Mandel’s Q parameter, photon count probabilities, and generalized wait time distributions

(unconditional and conditional) are derived and defined. In Chapter 3, we use the formalism

derived in Chapter 2 to illustrate the case of coherent light and lay ground for comparing

the rest of other light sources discussed in the thesis. In Chapter 4, generalized wait time

statistics of thermal light sources are analyzed and compared to a coherent photon sequence.

Chapter 5 introduces squeezed light from a degenerate parametric oscillator (DPO) and its

general statistical description. A section of chapter 5 is devoted to the effect of on non-unit

detection efficiency of light from a DPO. Lastly, Chapter 6 covers the generalized wait time

statistics for resonance fluorescence of coherently driven two level atom and the case of anti-

bunching of its photon sequence as well as exact generalized expressions for the non-unit

detection efficiency regime. The conclusion and future work section of Chapter 7 summa-

rizes the main points and the research we will continue to do.
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Chapter 2

Background

2.1 Quantization of the Electromagnetic Field and its Point Process Description

All electromagnetic fields in vacuum or in interaction with matter can be represented by the

operators Ê(r,t) and B̂(r,t), the electric and magnetic field observables respectively. Both

the electric and magnetic fields satisfy Maxwell’s equations. This is a set of four linear partial

differential equations that can be solved subject to boundary conditions, if present, or solved

in vacuum. There are two widely used descriptions of the electromagnetic field, the classical

and quantum mechanical. Within the classical framework, Maxwell’s equations can be solved

to produce solutions in terms of sums of plane waves with a certain polarization which

can also be used to treat photons classically. With respect to the other case, the quantum

mechanical framework, the solutions of these equations are assumed to be vector valued

field operators whose Fourier expansion is in terms of annihilation and creation operators-

the same operators that are used for the description of the quantum mechanical harmonic

oscillator. In the case of electromagnetic waves, these operators are associated to a wave

vector k. We are interested in the electric part of the field since the magnetic field can be

mathematically obtained from the electric field operator and the electric field is directly

measurable in experiments [1,2,9]. The most general electric field quantum operator can be

written as

Ê(r, t) = i
∑
k,s

(
ℏω(k)
2ε0V

)1/2

ek,sâk,s(t)e
k·r + c.c. (2.1)

In Eq. (2.1), k is the wave vector, ek,s is the polarization vector and s denotes which po-

larization vector, V is the quantization volume (if the quantum field is to be confined in an

optical cavity then V equals this confinement volume), ω(k) is the frequency of the field,

âk,s(t) is the time dependent annihilation operator and its complex conjugate transpose is

the creation operator and c.c denotes the complex transpose conjugate. In the case that the
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wave vector k is continuous one makes the transform
∑

k →
∫
V
d3kg(k) where g(k) is some

weight function. For convenience, Eq. (2.1) may be redefine as

Ê(r, t) = Ê
(−)

(r, t) + Ê
(+)

(r, t) (2.2)

where the (−) and (+) are known as the negative and positive frequency components of the

electric field and they correspond to the creation and annihilation operators respectively [1,9].

For the sake of briefly introducing the theory of coherence, common assumptions in the

literature are to assume that the field is a single mode plane wave with wavelength far larger

than that of atomic distances of the medium the field interact with; this medium is usually

taken to be the material for which the photodetector is made of. The field is incident on

photodetectors placed in fixed positions so the symbol r in Eq. (2.2) becomes redundant,

one just drops it. In this case the negative frequency part of the electric field reduces to

Ê(−)(t) = iCâ(t) (2.3)

where the constant C = (ℏω/2ε0V )1/2. In Eq. (2.3) we have not written the negative fre-

quency part of the electric field bold font which means is a vector but instead we have

dropped that notation. This is the case since we are not interested in the vectorial properties

of the electric field which stem from the polarization vector associated to it. By means that

are far beyond the scope of this thesis and whose framework is extremely well developed, see

for example Refs. [1, 2, 6, 9], we define the intensity or photon-flux operators as

Î(t) = Ê(−)(t)Ê(+)(t) = C2â†(t)â(t) = C2n̂(t). (2.4)

We remark that the constant C is of no relevance to our discussion. The specific order of

the negative and positive frequency components of the electric field operator in the equation

above has been chosen since one is concerned with theory and experiments related to pho-

todetections, thus annihilation of a photon is succeeded by the creation of another photon

(as read from right to left), all to conserve energy. This specific rule, in an arbitrary product
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string of creation and annihilation operators, of situating the creation operators on the far

left and the annilitaion operators on the far right is known as normal ordering [6, 9].

2.2 Coherence Functions for The Quantized Field

In the previous discussion, we have defined an operator known in the literature as the number

operator, n̂(t) = â†(t)â(t). Consider now two photo-detection events at two different times t

and t+τ given by Î(t) and Î(t+τ). One can then ask how the two events statistically related

by calculating the covariance of Î at these two times, t and t + τ . The averaged two-point

correlation function or also known in optics as the second order coherence function is defined

as

g(2)(t, t+ τ) = 1 +
Cov[T : Î(t)Î(t+ τ) :]

⟨: Î(t) :⟩⟨: Î(t+ τ) :⟩

=
⟨T : Î(t+ τ)Î(t) :⟩
⟨: Î(t+ τ) :⟩⟨: Î(t) :⟩

=
⟨: n̂(t+ τ)n̂(t) :⟩
⟨n̂(t)⟩⟨n̂(t+ τ)⟩

(2.5)

where Cov is the covariance of the variable Î, T is time ordering, : ... : denotes normal

ordering of the creation and annihilation operators and ⟨...⟩ is a quantum mechanical average.

It is also possible to define g(1)(t, t+ τ), the first order coherence function as g(1)(t, t+ τ) =

⟨â†(t)â(t+τ)⟩√
⟨n̂(t)⟩⟨n̂(t+τ)⟩

. Physically speaking, g(2) can be interpreted as a conditional probability that

a photon detection at t + τ is conditioned upon a photon detection at time t. The physical

meaning of g(1) is related to the interference patterns in a Young’s Double Slit experiment.

This is so, since the visibility of the fringe pattern is proportional to |g(1)| [4].

One can define an nth order coherence function for the intensity or photon-flux of the

electric field. For times t1 < t2 < ... < tn the nth order coherence is define as

g(n)(t1, t2, ..., tn) =
⟨T : Î(tn) · ... · Î(t1) :⟩∏n

j=1⟨: Î(tj) :⟩
. (2.6)

The interpretation of g(n) is similar to that of g(2), except that now, each event that happens

at time ti is conditioned upon the event that happens at time ti−1 [1, 6, 9].
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To further proceed with our analysis, it is important to recognize that is possible to

drop the hats on photon-flux operators, Î, since creation and annihilation operators of the

quantum field can be mapped to a corresponding set of stochastic variables described within

the appropriate use of generalized probability distributions [1, 4, 10,11].

Let us briefly make a digression to stochastic analysis. Consider a stochastic process

described by the set of variables I = {I1(t), ..., IN(t)}. For a fix time t0, Ij(t0), for any

j = {1, ..., N} denotes a random variable. The indexing j for fix time denotes a possible

realization of the process. For example, Ij(t) is a sample function or a realization of the

process and it evolves in time.

We can think of the set {I1(t), ..., IN(t)} as an ensemble of events described by their

respective variable, time. Usually, to understand a random process, a common practice is

to define the concept of “ergodicity.” An Ergodic process is that which averages over an

ensemble (possible realizations of the stochastic process) is the same as averages taken over

time [12]. During this thesis we consider photon counting events as Ergodic processes [5]. An

important concept we are going to use is that of wide-sense stationarity. Let us define what

a stationary process is. A signal, a time series, or a stochastic process that is described by

the variable I(t) is said to be stationary in the wide-sense if and only if for any two different

times t and t′, the expectation and correlation of the signal satisfy the following

E[I(t)] = E[I(t′)], (2.7)

Γ(t, t′) = E[I(t′)I(t)] = Γ(|t′ − t|), (2.8)

i.e the correlation function Γ only depends on the difference of times t′ and t. We have also

used the notation E for expectation value either over ensembles or time, but in the context

of this thesis it means the same as a quantum mechanical expectation ⟨...⟩.

Given our digression above about signals, we may assume that the signals treated here are

stationary. However, in the current chapter we will derive expressions for photon sequences

that are not necessarily stationary. The photon sequences treated in Chapters 3, 4, 5 and 6
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will be considered stationary.

Within the framework of quantum optics and the theory of coherence, it is possible to

define a set of equality and inequalities that provide a way of categorization for a quantum

optical field into classical or quantum mechanical. However, before we introduce this for-

malism, we must introduce the concept of coherent states of the electromagnetic field. This

is our reference point, and we will continuously use it throughout this thesis as means for

checking and comparing our results. First, let us point out that coherent states are those

states that are right eigenstates of the annihilation operator â [4] and their occupation num-

ber probability, in the number state basis (this basis comprises the eigenstates of the number

operator, n̂), is given by a Poisson distribution [1, 4].

As it turns out, the theoretical framework backed by vast experimental results in quantum

optics lead one to be able to categorize coherent light as having uniform intensity with

respect to time [1], as long as the signal has a coherence time. From the point of view of

statistics, the photon-flux operator for a coherent field is described as a stationary Poisson

point process. Consequently, the second order correlation, or any order of the correlation

for the field intensity satisfies g(n)(t1, t2, ..., tn) = 1. We shall use this as our reference for

classifying other sources of light.

In order to present reasonable results, we henceforth restrict our discussion to the second

order correlation function to define and explain what inequalities a classical electromagnetic

field must satisfy. These set of inequalities can be used to measure and test the result of

quantum electrodynamics. A field that is described in the phase space representation by

classical or non classical probabilities [10,11] is said to be a coherent field if its second order

correlation function satisfies [13]

g(2)(t, 0) ≥ 1, (2.9)

g(2)(t, 0) ≥ g(2)(t, τ), (2.10)

|g(2)(t, 0)− 1| ≥ |g(2)(t, τ)− 1|. (2.11)
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(a)

(b)

(c)

Figure 2.1: Graphical representation of a randomly distributed (a), bunched (b), and anti-
bunched (c) photon sequence.

Violation of these inequalities imply the quantum nature of the light field [13]. Notice that

by using Schwartz inequalities, one can prove that it is always the case that 0 ≤ g(2)(t, 0), at

least for a coherent field that has classical probabilistic description. Furthermore, using the

criteria for the second order intensity correlation function, we define the following conditions:

1. A photon sequence is said to be randomly distributed if g(2)(t, 0) = 1.

2. A photon sequence is said to be bunched if g(2)(t, 0) ≥ 1.

3. A photon sequence is said to be anti-bunched if 0 ≤ g(2)(t, 0) < 1.

The above conditions refer to a particular grouping of photons temporally. We illustrate this

in Fig. 2.1.

In addition to the above conditions, we must remark that even though light fields such as

squeezed states of the electromagnetic spectrum satisfy the above inequalities for g(2), Eqs.

(2.9)-(2.11), it is still a type of light that requires a fully quantum mechanical treatment to be

accurately described [1,4,10,14,15]. Thus, the above inequalities are one of many criteria to

expose the true nature, classical or quantum, of the electromagnetic field. Another important

criterion is that of the Heisenberg uncertainty relation. One last remark, notice that all

orders of the intensity correlation functions are independent of the quantum efficiency of the

detectors. This allows experimental measurements of any degree of coherence of a light field
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even if the detection efficiency is not ideal [1, 2]. However, if enough photons are deleted

from a photon sequence due to non-ideal detection efficiency, more experimental trials are

required for one to be able to recreate faithful photon correlation statistics.

2.3 Generating Function and Factorial Moments of a Photon Sequence Process

We now define the generating function G for a light beam that is described by the photon-

flux operator Î(t). For the moment, we do not make any assumptions about the light beam

being stationary. We will first obtain general expressions and offer understanding for any

photon sequence. For times t1 = t and t2 = t+ τ we define the generating function to be

G(s, t1, t2) =

〈
T : exp(−sηÛ(t1, t2)) :

〉
. (2.12)

Where the new parameter introduced, s, serves as means for computing other useful statisti-

cal quantities. We have also defined the operator Û(t1, t2), this is the integrated photon-flux

or integrated intensity and is given by

Û(t1, t2) =

∫ t2

t1

Î(t)dt. (2.13)

Notice that G(s, t1, t2) is the probability that not photoelectric detection occurs in the in-

terval of time [t1, t2]. An equally essential quantity in our studies is the probability that n

photo-electron counts have been recorded in the interval [t1, t2], the expression is defined to

be

p(n, t1, t2) =
(−1)n

n!

∂n

∂sn
G(s, t1, t2)

∣∣∣∣
s=1

=

〈
T :

[ηÛ(t1, t2)]
n

n!
exp(−sηÛ(t1, t2)) :

〉
. (2.14)

The derivation will not be discussed here however Ref. [16] has all the remarks about Eq.

(2.14).

Furthermore, it is important to realize that G(s, t1, t2) is the basis for the majority of the
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arguments and computations in this thesis. Such generating function becomes essential in

the calculation of the factorial moments of the light field [1]. We define the factorial moments

of a photon sequence described by the generating function G to be

⟨m(r)(t1, t2)⟩ = (−1)r
∂r

∂sr
G(s, t1, t2)

∣∣∣∣
s=0

. (2.15)

Where r is a positive integer. Now, as r ≥ 2 the calculation of the factorial moments becomes

particularly involved depending on the case one is studying. For example, briefly consider

⟨m(2)⟩, the second order factorial moment. Its formula is given by

⟨m(2)(t, t+ τ)⟩ = η2
∫ t+τ

t

dt2

∫ t+τ

t

dt1⟨Î(t2)Î(t1)⟩

= η2
∫ τ

0

dt2

∫ τ

0

dt1⟨Î(t2 + t)Î(t1 + t)⟩. (2.16)

In principle, calculation of ⟨Î(t2 + t)Î(t1 + t)⟩ follows the exact same algorithm used to

calculate the second order correlation function g(2) only in this case one replaces different

time variables and integrate the final expression. Since we have mentioned ⟨m(2)⟩, we consider

proper the introduction of Mandel’s Q parameter in the following section and also some of its

implications on the departure of the statistics for which a photon sequence is characterized.

2.4 Mandel’s Q Parameter

Mandel’s Q parameter is an important measure about the statistical properties of a light

beam. One can understand the departure of the statistical distributions from Poissonian

statistics by computing Madel’s Q parameter [17]. The Q parameter is defined as

Q(t1, t2) =
⟨m(2)(t1, t2)⟩ − ⟨m(1)(t1, t2)⟩2

⟨m(1)(t1, t2)⟩
=

∫ t2
t1

dt′
∫ t2
t1

dt′′⟨Î(t′)⟩⟨Î(t′′)⟩(g(2)(t′, t′′)− 1)∫ t2
t1
dt′⟨Î(t′)⟩

.

(2.17)

If the photon sequence is stationary, i.e ⟨Î(t1)⟩ = ⟨Î(t2)⟩ and g(2)(t1, t2) = g(2)(|t2 − t1|), i.e

correlation of the photon-flux operator only depends on the difference of time |t2 − t1|, the
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explicit form for Q [14, 17,18] is then

Q(t1, t2) =
⟨m(1)⟩

(t2 − t1)2

∫ t2

t1

dt′
∫ t2

t1

dt′′(g(2)(t′, t′′)− 1)

=
2⟨m(1)⟩
|t2 − t1|

∫ |t2−t1|

0

[
1− t′

|t2 − t1|

]
(g(2)(t′)− 1)dt′ = Q(|t2 − t1|). (2.18)

Given Eq. (2.17) and (2.18), one can establish yet another set of equality and inequalities

similar to those given for g(2). However, the following conditions on Mandel’s Q parameter

then establish what type of statistics a certain photon sequence obeys. They are given as

follows:

1. if Q = 0, then a photon sequence is said to follow Poissonian statistics.

2. if Q > 0, then a photon sequence follows super-Poissonian statistics.

3. If Q < 0, then a photon sequence is said to follow sub-Poissonian statistics.

For some photon sequences, we remark that it is possible that anti-bunching can be accom-

panied by super-Poissonian or sub-Poissonian statistics as it may just as well be the case

with bunching [1, 17, 18].

2.5 Generalized Wait Time Distributions

A large portion of this thesis is devoted to the generalized unconditional and conditional

wait time distributions of the nth photoelectric detection from a photon sequence. Our

ultimate aim with this section is to first introduce the case for both wait time distributions

for the first photoelectric detection and then define the generalized Pn(t1, t2) and wn(t2 −

t1|t1), unconditional and conditional wait time distributions. Let us introduce the following

probability distribution known as the r-fold photo-electron count probability. Consider the

interval of time [t0 = t, tr = t + τ ]. It is convenient to set t = t0 < t1 < ... < tr = t + τ

(where t0, ..., tr is a patition of the interval of time [t, t + τ ]) then the photo-electron count

12



probability is given by [19]

p(r)(n1, t0, t1; ....;nr, tr−1, tr) =

〈
:

r∏
j=1

[ηÛ(tj−1, tj)]
nj

nj!
exp(−ηÛ(tj−1, tj)) :

〉
. (2.19)

The above probability is interpreted as the probability of detecting nj photoelectric pulses

in each interval of time [tj−1, tj]. In what follows we only derive w1(t2 − t1|t1) and omit the

derivation of P1(t1, t2). We omit the derivation of P1(t1, t2) since we are also considering the

general case. Consider now the following scenario. First, a photoelectric detection is recorded

in the interval [t1 − δt1, t1], no photoelectric detection is recorded in the interval [t1, t2] and

another photoelectric detection is recorded in the interval [t2, t2 + δt2]. In the previous, we

have chosen both δt1 and δt2 to be positive and very small real numbers. One can translate

this situation using the r = 3 r-fold photoelectric pulse count probability, Eq. (2.19), which

leads to

p(3)(1, t1 − δt1, t1; 0, t1, t2; 1, t2, t2 + δt2) = η2
〈

: Û(tt2 , t2 + δt2)e
−η

∫ t2
t1

Î(t)dtÛ(t1 − δt1, t1) :

〉
.

The interpretation of the 3 fold probability for the above describes the joint probability that

two photoelectric pulse detections have happened in the whole interval [t1, t2]. However, we

are interested in the conditional probability, w(t2 − t1|t1), that a photoelectric detection at

t2 is conditioned upon a photoelectric pulse detection recorded at time t1 after a time t2− t1

elapses. By this interpretation we then have

w(t2 − t1|t1) = lim
δt1,δt2→0

p(3)(1, t1 − δt1, t1; 0, t1, t2; 1, t2, t2 + δt2)

δt2p(1)(1, t1 − δt1, t1)

=

η

〈
: Î(t2) exp[−η

∫ t2
t1

Î(t)dt]Î(t1) :

〉
⟨: Î(t1) :⟩

. (2.20)

The derivation of P (t1, t2) and w(t2 − t1|t1) are also well described in detail in [8, 19]. How-

ever, the process and algorithm for which w(t2− t1|t1) is obtained is so essential that we feel

that in order to understand generalized wait time distributions, we replicate the derivation

here once more. With the above remarks, we are now moving towards the generalized wait
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time distributions, unconditional and conditional. We now define the generalized uncondi-

tional wait time distribution as Pn(t1, t2) and wn(|t2− t1||t1) respectively. Suppose one starts

counting at an arbitrary time interval [t1− δt1, t1] without having to detect a photon, i.e the

counting process commences arbitrarily in time, then in order to record a nth photoelectric

detection after a time |t2 − t1| has elapsed, n − 1 photoelectric deection events must have

taken place. One does not know how and when exactly these n−1 events happened; however,

it is important that they indeed happen before the nth photoelectric detection could be ever

recorded. After time |t2 − t1| elapses, the nth photoelectric pulse is detected in the interval

of time [t2, t2 + δt2]. We can once more translate the just-described scenario mathematically

in terms of the r-fold probability for r = 3 as follows

Pn(t1, t2) = lim
δt1,δt2→0

p(3)(0, t1 − δt1, t1;n− 1, t1, t2; 1, t2, t2 + δt2)

δt2

=

〈
: ηÎ(t2)

[ηÛ(t1, t2)]
n−1

(n− 1)!
exp[−η

∫ t2

t1

Î(t)dt] :

〉
. (2.21)

Similarly, the physical considerations for wn(t2 − t1|t) is that instead of commencing the

counting process at an arbitrary time interval [t1 − δt1, t1] with not photoelectric detection,

we required that there be a photoelectric detection in this time interval. And we require that

the nth photoelectric detection is conditioned upon such photoelectric detection at time

interval [t1− δt1, t1], then we must divide the r = 3 r-fold probability used for the derivation

of Pn(t1, t2) by the probability p(1)(1, t1 − δt1, t1) of making a photoelectric detection in this

interval of time. In summary, we have that

wn(t2 − t1|t1) = lim
δt1,δt2→0

p(3)(1, t1 − δt1, t1;n− 1, t1, t2; 1, t2, t2 + δt2)

δt2p(1)(1, t1 − δt1, t1)

= η

〈
: Î(t2)

[ηÛ(t1,t2)]n−1

(n−1)!
exp[−η

∫ t2
t1

Î(t)dt]Î(t1) :

〉
⟨: Î(t1) :⟩

. (2.22)

The above arguments are long for both wait time distributions. However, they are essential

in their derivation and we remark that the physical understanding for this arguments is

essential in moving forward.
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We now present alternative definitions of Pn(t1, t2) and wn(t2 − t1|t1) that do not rely on

physical grounds, rather they are convenient for calculating and obtaining analytic expres-

sions for the systems light sources presented in future chapters.

Recall the definition of generating function given in Eq. (2.12). The unconditional and

conditional wait time distributions can be expressed in terms of the generating function as

follows:

Pn(t1, t2) = −(−1)n−1

(n− 1)!

[
∂n−1

∂sn−1

1

s

∂

∂t2
G(s, t1, t2)

]∣∣∣∣
s=1

, (2.23)

wn(t2 − t1, t1) =
1

η⟨: Î(t1) :⟩
(−1)n−1

(n− 1)!

[
∂n−1

∂sn−1

1

s2
∂2

∂t2∂t1
G(s, t1, t2)

]∣∣∣∣
s=1

. (2.24)

Notice from Eq. (2.23) and Eq. (2.24) when n = 1 the equations reduce to the well-known

expressions for P (t1, t2) and w(t2−t1|t1). Furthermore, it is also possible to define recurrence

relations for Eq. (2.23) and Eq. (2.24) in terms of the photoelectric count probability, Eq.

(2.14). Pn(t1, t2) satisfies the following recurrence relation

∂

∂t2
p(n, t1, t2) = Pn(t1, t2)− Pn+1(t1, t2). (2.25)

With P0(t1, t2) = 0, the recurrence relation has solution

Pn(t1, t2) = − ∂

∂t2

[ n−1∑
k=0

p(k, t1, t2)

]
. (2.26)

In a similar manner, wn(t2 − t1|t1) satisfies another recurrence,

1

η⟨: Î(t1) :⟩
∂2

∂t2∂t1
p(n, t1, t2) = wn−1(t2 − t1|t1)− 2wn(t2 − t1|t1) + wn+1(t2 − t1|t1). (2.27)

Along with wn(t2 − t1|t1) = 0 for any integer n ≤ 0, the above recurrence is easily shown to

satisfy

wn(t2 − t1|t1) =
1

η⟨: Î(t1) :⟩
∂2

∂t2∂t1

[ n−1∑
k=0

(n− k)p(k, t1, t2)

]
. (2.28)

A further inspection, shows that the above recurrence relations and conditions on Pn(t1, t2)

and wn(t2 − t1|t1) provide yet another recurrence relation for Pn(t1, t2) and wn(t2 − t1|t1)
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[20–22]

1

η⟨: Î(t1) :⟩
∂

∂t1
Pn(t1, t2) = wn−1(t2 − t1|t1)− wn(t2 − t1|t1) (2.29)

with solution

wn(t2 − t1|t1) = − 1

η⟨: Î(t1) :⟩
∂

∂t1

[ n∑
k=1

Pk(t1, t2)

]
. (2.30)

Recall the definition of the nth intensity correlation function, Eq. (2.6), and let us define once

more t1 = t and t2 = t + τ . We want to remark that for times τ that are sufficiently small

we can relate Eq. (2.21) and Eq. (2.22) to the nth order correlation function. The procedure

is given as follows. Expanding the exponential in Eq. (2.23) we obtain the formulas for

Pn(t, t + τ) and wn(τ |t) in terms of correlations of the photon-flux operators at different

times. At this point, we point out these formulas will prove extremely useful in the analysis

of resonance fluorescence from a coherently driven two level atom. So, we write them out

explicitly as

Pn(t, t+ τ) =
∞∑
k=0

(k + n− 1)!(−1)kηn+k

(n− 1)!k!

∫ τ

0

dtk+n−1

∫ tk+n−1

0

dtk+n−2...

∫ t2

0

dt1×

⟨: Î(τ + t)Î(tk+n−1 + t)...Î(t1 + t) :⟩, (2.31)

wn(τ |t) =
1

⟨: Î(t) :⟩

∞∑
k=0

(k + n− 1)!(−1)kηn+k

(n− 1)!k!

∫ τ

0

dtk+n−1

∫ tk+n−1

0

dtk+n−2...

∫ t2

0

dt1×

⟨: Î(τ + t)Î(tk+n−1 + t)...Î(t1 + t)Î(t) :⟩. (2.32)

Above we have used ∫ τ

0

dtk

∫ τ

0

dtk−1...

∫ τ

0

dt1⟨T : Î(tk + t)...Î(t1 + t) :⟩

= k!

∫ τ

0

dtk

∫ tk−1

0

dtk−2...

∫ t2

0

dt1⟨: Î(tk + t)...Î(t1 + t) :⟩ (2.33)

[8,23]. When the detection efficiency is very small or wait time τ is very small, it is possible

to truncate Eq. (2.31) and Eq. (2.32) up to an order of O(ηn). Doing so we obtain the
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approximations [9]

Pn(t, t+ τ)

η⟨: Î(t) :⟩
≈ (η⟨: Î(t) :⟩τ)n−1g(n)(t, t), (2.34)

wn(τ |t)
η⟨: Î(t) :⟩

≈ (η⟨: Î(t) :⟩τ)n−1g(n+1)(t, t). (2.35)

It is well know that computing g(n) exactly for arbitrary n for any light field can be very

difficult. Nonetheless, through the assumptions of small wait time τ or small efficiency of

detection, we can get reasonable estimates of the nth order correlation function. First let us

define the following ratio

gn(t, t+ τ) = lim
η≪1

wn(τ |t)
Pn(t, t+ τ)

≈ ⟨: Î(t+ τ)[Û(t, t+ τ)]n−1Î(t) :⟩
⟨: Î(t+ τ)[Û(t, t+ τ)]n−1 :⟩⟨: Î(t) :⟩

(2.36)

From the form of gn(t, t+ τ), it possible to approximate the nth coherence for a single value

in time t, i.e g(n)(t) for n ≥ 2,

g(n)(t) ≈ lim
τ→0

{[ n−1∏
j=1

gj(t, t+ τ)

]
g(1)(t, t+ τ)

}
. (2.37)

gn(t, t + τ) is not a probability distribution and one may interpret it as follows. We now

explain the meaning of gn. For practical purposes let us invoke back the notation t1 and

t2. Also, recall the r-fold joint probabilities we have defined in Eq. (2.19) and consider the

following enumerated conditions for small positive real numbers δt1 and δt2 (smaller than

the coherence time of the photon sequence one considers):

1. p(3)(1, t1 − δt1, t1;n − 1, t1, t2; 1, t2, t2 + δt2) provides the joint probability that a pho-

toelectric event is recorded in the interval [t1 − δt1, t1], followed by the occurrence of

n−1 photoelectric detection events, and a photoelectric detection recorded in the time

interval [t2, t2 + δt2.

2. p(3)(0, t1 − δt1, t1;n − 1, t1, t2; 1, t2, t2 + δt2) is the joint probability that, regardless of

whether or not a photoelectric detection is recorded at arbitrary time t1, n− 1 events

must happen before the nth photoelectric detection event is recorded at time t2.
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3. p(1)(1, t1 − δt1, t1) is the probability that an event happened and was detected at time

t1.

4. If it really is the case that a photoelectric detection recorded at time t1 is related in

any way on the occurrence of the following n − 1 photoelectric detections and the

photoelectric detection at time t2 then the joint probability in condition 1 is factorable

in terms of the joint probabilities proportional to those in condition 2. and condition 3.

If the photo electric detection recorded at time t1 is strongly statistically related, and

so are the following ones, then the probability in condition 1 is truly a non-factorable

joint probability distribution of the n+1 photoelectric detection events, meaning that

recording the event at time t2 is strongly conditional on the occurrence of previous

photoelectric detection events.

5. When p(1)(1, t1−δt1, t1) is nonzero, and whenever p(3)(1, t1−δt1, t1; 0, t1, t2; 1, t2, t2+δt2)

and p(3)(0, t1−δt1, t1; 0, t1, t2; 1, t2, t2+δt2) are zero but their ratio is not indeterminate,

define the following ratio

R =
p(3)(1, t1 − δt1, t1;n− 1, t1, t2; 1, t2, t2 + δt2)

p(3)(0, t1 − δt1, t1;n− 1, t1, t2; 1, t2, t2 + δt2)p(1)(1, t1 − δt1, t1)
. (2.38)

As δt1, δt2 → 0 and η ≪ 1, R → gn(t, t+ τ).

6. If the first sentence of condition 4 is true, this would imply that gn(t, t + τ) = 1

for any photoelectric detection n. This tells us that events we are measuring are just

completely random and uncorrelated. This is the case of coherent light and this implies

g(n)(t, t+ τ) = 1 which means a field has arbitrary degree of coherence [9].

7. If the second part of condition 4 is true then gn(t, t + τ) is not necessarily 1 and thus

possibly signaling a quantum property of the photoelectric detection sequence.

The above set of conditions do not serve as a formal proof for a physical interpretation of

gn(t, t+ τ) but rather to illustrate an intuitive approach around a possible interpretation of
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the ratio gn(t, t+ τ). Having acknowledged our thoughts, we now say that gn(t, t+ τ) could

provide a measure of how “efficiently” or “deficient” a correlation of the nth photoelectric

detection in a photon sequence is with respect to the first photoelectric detection at a given

time t1. A possible valid advantage of gn would be from the product formula in Eq. (2.37).

That is, if the interval [t, t + τ ] is to be partitioned, one could in principle get fragmented

values for gj(j = 1, ..., n) and thus estimate computationally a nth order coherence function.

Lastly, we point out that from Eq. (2.36), when gn(t, t+ τ) = 1 and using the definition

of Û from Eq.(2.13), we may have∫ t+τ

t

dtn−1...

∫ t+τ

t

dt1[⟨: Î(tn, tn−1, ..., t1, t) :⟩ − ⟨: Î(tn, tn−1, ..., t1) :⟩⟨: Î(t) :⟩] = 0, (2.39)

where we have defined Î(tn, tn−1, ..., t1, t) = Î(tn)Î(tn−1)...Î(t1)Î(t) and tn = τ. Inspired by

this and the definition of Mandel’s Q parameter we define

Qn(t, t+τ) =

∫ t+τ

t

dtn−1...

∫ t+τ

t

dt1[⟨: Î(tn, tn−1, ..., t1, t) :⟩−⟨: Î(tn, tn−1, ..., t1) :⟩⟨: Î(t) :⟩]

=

∫ t+τ

t

dtn−1...

∫ t+τ

t

dt1⟨: Î(tn, tn−1, ..., t1) :⟩⟨: Î(t) :⟩×[
⟨: Î(tn, tn−1, ..., t1, t) :⟩

⟨: Î(tn, tn−1, ..., t1) :⟩⟨: Î(t) :⟩
− 1

]
. (2.40)

According to the interpretation of gn(t, t + τ), we refer to Qn(t, t + τ) ̸= 0 as a measure

of how much the statistics of the nth photodetection deviates from the nth photodetection

from a random sequence of photons. We will not compute Qn for the specific light sources

in this thesis but we instead remark that on defining gn(t, t + τ) as we have defined in Eq.

(2.36) gives rise to interesting notions on generalizations of Mandel’s Q parameter.

2.6 Unconditional and Conditional Average and Variance of Wait Time τ of

the nth Photoelectric Detection

The average and variance of τ reveals us with the expected time ellapsed on average between

photoelectric to photoelectric detections if the photon sequence is stationary [24]. Addition-
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ally, the variance reveals to us the fluctuations of the wait time τ of these photoelectric

detections. It may be of interest to study time averages of the unconditional and conditional

wait time distributions since it is possible they could be potentially useful for calibration of

delayed coincidences of photoelectric measurements.

In this section, we will assume for simplicity that the photon sequence we are dealing

with is stationary. In this regime, the unconditional and conditional wait time distributions

becomes Pn(t, t+ τ) = Pn(τ) and wn(τ |t) = wn(τ). Using t1 = t and t2 = t+ τ and with the

help of Eq. (2.26) and (2.14) and integration by parts, the mean and mean of the squared τ

with respect of Pn(τ) can be expressed directly in terms of G(s, τ) as

⟨τ⟩Pn =
n−1∑
k=0

(−1)k

k!

[
∂k

∂sk

∫ ∞

0

dτ G(s, τ)

]
s=1

=
(−1)n−1

(n− 1)!

∂n−1

∂sn−1

[∫∞
0

dτG(s, τ)

s

]
s=1

, (2.41)

⟨τ 2⟩Pn = 2
n−1∑
k=0

(−1)k

k!

[
∂k

∂sk

∫ ∞

0

dτ τ G(s, τ)

]
s=1

= 2
(−1)n−1

(n− 1)!

∂n−1

∂sn−1

[∫∞
0

dττG(s, τ)

s

]
s=1

.

(2.42)

Similarly, from Eqs. (2.28)-(2.30), the average and mean of the squared τ with respect of

wn(τ) will be given by

⟨τ⟩wn =
1

η⟨Î⟩

( n∑
k=1

∫ ∞

0

dτPk(τ)

)
=

n

η⟨Î⟩
, (2.43)

⟨τ 2⟩wn =
2

η⟨Î⟩

n∑
k=1

∫ ∞

0

dτ τPk(τ) =
2

η⟨Î⟩

n∑
k=1

⟨τ⟩Pk
. (2.44)

Then the unconditional and conditional variance of wait time are respectivvely defined as

⟨(∆τ)2⟩Pn ≡ ⟨τ 2⟩Pn − ⟨τ⟩2Pn
(2.45)

⟨(∆τ)2⟩wn ≡ ⟨τ 2⟩wn − ⟨τ⟩2wn
=

2

η⟨Î⟩

n∑
k=1

⟨τ⟩Pk
− n2

(η⟨Î⟩)2
. (2.46)
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Chapter 3

Counting statistics of Coherent Light

Let us start our analysis by describing the properties of a photon sequence for coherent source

of light. The photon sequence generated by a sufficiently coherent source can be regarded

to be the output of a well-stabilized single-mode laser operating far above threshold. As

we have mentioned, coherent light is characterized by a constant intensity photon sequence

so that
∫ τ

0
Î(t)dt = ⟨Î⟩τ . For coherent light, it becomes evident that g(n)(t1, ..., tk) = 1 for

arbitrary positive integers n and k and the Mandel’s Q parameter satisfies Q = 0. Showing

the Poissonian character of the statistics that describe coherent light. Using these remarks

and Eqs.(2.12)-(2.14), the generating function and the photoelectric-count distribution for

coherent light are found to be [5, 7]

G(s, τ) = e−sη⟨Î⟩τ , (3.1)

p(n, τ) =
(η⟨Î⟩τ)ne−η⟨Î⟩τ

n!
. (3.2)

The generating function is thus a simple exponential and the photoelectric-count distribution

is a Poisson distribution. This is expected since coherent light is described as a stationary

constant rate Poisson point process. For such a random process, the successive events are

uncorrelated. Consequently, the photoelectric measurements of coherent light initiated at a

photo-detection (conditional) or initiated at random (unconditional) coincide. Hence, both

the conditional and unconditional wait time distributions are given by

wn(τ) =
η⟨Î⟩(η⟨Î⟩τ)(n−1)

(n− 1)!
e−η⟨Î⟩τ = Pn(τ). (3.3)

In particular P1(τ) = η⟨Î⟩e−η⟨Î⟩τ = w1(τ) are simple exponentials with τ = 0 as the most

probable wait time. Eq. (3.3) have the same functional form as that for a gamma distribution

with shape parameter n and rate parameter η⟨Î⟩ [25].

We can also calculate the mean and variance of wait time τ following the properties of the
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gamma distribution. Notice also that it is not necessary to distinguish between unconditional

and conditional averages since for coherent light both wait time distributions (conditional

and unconditional) coincide. The mean and variance for the nth photoelectric detection in

a coherent beam are given by

⟨τ⟩n =
n

η⟨Î⟩
, (3.4)

⟨∆τ 2⟩n =
n

(η⟨Î⟩)2
. (3.5)

The mean and the variance of τ sets a time scale we shall use for comparison of sub-Poissonian

and super-Poissonian photon sequences as well as understanding bunched and anti-bunched

photon sequences.
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Chapter 4

Photon Counting Statistics of Thermal Light

Thermal light, also known as narrow-band Gaussian light, represents an ideal model for

filtered light from electrical discharge lamps or the light from a single-mode laser cavity

operating below threshold. In this chapter, we consider the source of thermal light to be

a single-mode laser operating below threshold with mean cavity photon number n̄, photon

scape rate (cavity decay rate) 2γ and average photon-flux ⟨Î⟩ = 2γn̄. The statistical descrip-

tion of the electric field amplitude for thermal light can be described by two real Gaussian

variables wih zero mean and equal variance or, equivalently, a single complex Gaussian ran-

dom valriable with mean zero and variance n̄ [26]. The generating function for a stationary

thermal light beam obtained by the algorithm given in [27,28] is

G(s, τ) =
e2γτ[

cosh(zτ) + 1
2

[
z
2γ

+ 2γ
z

]
sinh(zτ)

] . (4.1)

Here z2 = (2γ)2 + 2η(2γ)⟨Î⟩s = (2γ)2(1 + 2sηn̄). Using Eq. (2.14), one can find the

photolectric-count probability distribution is given recursively in terms of modified spherical

Bessel functions [27], which can be used directly in Eqs. (2.26),(2.28) and (2.30) to obtain

close expressions for Pn(τ) and wn(τ). In general, the expressions obtained are intricate in

their algebraic forms. Nevertheless, the forms for both Pn(τ) and wn(τ) simplify noticeably

for small and large mean photon number n̄. Before we proceed to explain limiting case of

the mean photon number, we provide useful expressions that will facilitate the calculations

that lay ahead. Eq. (4.1) can be rewritten in more convenient form as

G(s, τ) = [1− A]
e2γτ−zτ

1− Ae−2zτ
, (4.2)
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Figure 4.1: Comparison of the exact (solid black curves) and approximate (dashed black
curves) expressions for Pn(τ) and wn(τ) for n = 1-3 thermal photons for small n = 0.01.
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Figure 4.2: Comparison of the exact (solid black curves) and approximate (dashed black
curves) expressions for Pn(τ) and wn(τ) for n = 1-3 thermal photons for large n = 10.

where

A =

[
z − 2γ

z + 2γ

]2
. (4.3)

The first two derivatives of the generating function G(s, τ) with respect to τ will also be

given and they are given as

∂

∂τ
G(s, τ) = G(s, τ)

[
2γ − z − 2Ae−2zτ

1− Ae−2zτ

]
, (4.4)

∂2

∂τ 2
G(s, τ) = G(s, τ)

{[
2γ − z − 2Ae−2zτ

1− Ae−2zτ

]2
+

4z2Ae−2zτ

1− Ae−2zτ
+

4z2A2e−4zτ

(1− Ae−2zτ )2

}
. (4.5)

Using the above formulas, we now develop limiting cases for unconditional and conditional

wait time distributions.
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4.1 Small n̄ Limit

For the laser operating far below threshold, or equivalently, the laser cavity produces on

average a very small number photons, n̄ ≪ 1, we expect to see the distribution being dom-

inated by long wait times. We expand Eq. (4.4) as power series of n̄ and take derivatives

with respect to s and we keep as many terms necessary in order to satisfy the constraints

imposed by Eqs. (2.34)-(2.35). As it turns out, the numbers of terms that need to be kept

in the total approximate expressions for Pn(τ) is proportional to n, where n denotes the nth

photoelectric detection. We then obtain the following expressions for the unconditional wait

time distributions

P1(τ) ≈ 2ηγn̄e−2ηγn̄τ (4.6)

P2(τ) ≈ 2ηγn̄e−2ηγn̄τ ηn̄

2
(1 + 4γτ − e−4γτ ) (4.7)

P3(τ) ≈ 2ηγn̄e−2ηγn̄τ (ηn̄)
2

4
(1 + 8γτ + 8(γτ)2 − e−4γτ (12γτ + 1)). (4.8)

A similar procedure using Eq. (4.5) for the conditional wait time distribution leads to

w1(τ) ≈ 2ηγn̄e−2ηγn̄τ (1 + e−4γτ ) (4.9)

w2(τ) ≈ 2ηγn̄e−2ηγn̄τηn̄(1 + 2γτ + e−4γτ (−1 + 6γτ)) (4.10)

w3(τ) ≈ 2ηγn̄e−2ηγn̄τ (ηn̄)2(1 + 3γτ + 3(γτ)2 − e−4γτ (2 + 3γτ − 18(γτ)2) + e−8γτ ). (4.11)

We compare Eqs. (4.6)- (4.11) in Fiq. 4.2 with the exact expressions for both wait time

distributions. The exact curves are given by using Eq. (4.1) in Eqs. (2.26) and (2.28). The

solid curves represent exact expressions and the dashed curves represent the approximations.

It can be seen that Eqs. (4.6)- (4.11) capture the essential properties of both wait time

distribution for short and large wait times τ . For the n = 1 we can see that the normalized

unconditional wait time distribution P1(τ)/2γn̄ is always 1 when τ = 0 and it decreases

monotonically for large τ . In the case of the normalized conditional wait time distribution
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w1(τ)/2γn̄ it always starts with 2 when τ = 0. More generally we further see

lim
η≪1

w1(τ)

η⟨: Î :⟩
= 1 + e−4γτ . (4.12)

that is w1(0)/2γηn̄ = g(2)(0) which for thermal light is known to have the value of 2 [2].

Unconditional and conditional wait time distributions for 2 ≤ n start at 0 then reach a

maximum value for some nonzero time τ which depends on n and then monotonically decay

to zero as wait times become large. Furthermore, it is also remarkable that despite that

statistical properties of thermal light have been thoroughly studied [5,27,28], the expressions

given by Eqs. (4.6)- (4.11) have not appeared yet in the literature.

4.2 Large n̄ Limit

In the case n̄ ≫ 1, the wait time distributions are expected to have a short time behavior,

quickly decaying to zero for large wait times. Considering the limit 2γτ ≪ 1, the generating

function given in Eq. (4.1) is approximated by [5,19]

G(s, τ) ≈ 1

(1 + ηsn2γτ)
. (4.13)

Using the generating function above in Eqs. (2.14) we obtain the photoelectric-count prob-

ability

p(n, τ) ≈ (ηn2γτ)n

(1 + ηn2γτ)n+1
. (4.14)

We can now calculate the expression in square brackets from Eq. (2.26), before taking the

derivative with respect to τ we have

n−1∑
k=0

p(k, τ) ≈ 1−
[

ηn̄2γτ

1 + ηn̄2γτ

]n
. (4.15)

An interesting feature of the above expression is that if we sum all the probabilities for all

possible photon counts, i.e n → ∞, we should get back unity, as it must be he case. Using
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the above approximations Eq. (2.26) leads to unconditional wait time distribution

Pn(τ) ≈ 2ηγn̄
n(ηn2γτ)n−1

(1 + ηn2γτ)n+1
. (4.16)

In a similar fashion we have that the expression in square brackets from (2.28) evaluates to

n−1∑
k=0

(n− k)p(k, τ) ≈ n− ηn̄2γτ

{
1−

[
ηn̄2γτ

1 + ηn̄2γτ

]n}
(4.17)

and taking then the derivatives derivatives with respect to τ as given by Eq. (2.28) gives the

conditional wait time distribution

wn(τ) ≈ 2ηγn̄
n(n+ 1)(ηn2γτ)n−1

(1 + ηn2γτ)n+2
. (4.18)

Eqs. (4.14)-(4.18) are illustrated in Fig. 4.2 and compared with exact expressions. The ap-

proximations can be seen to have excellent agreement with the exact wait time distributions

for short wait time. The above equation also satisfy the impositions given by Eqs. (2.34)-

(2.35).

Consider now the long time behavior. For long times 1 ≪ 2γτ the generating function

for thermal light is given by [29]

G(s, τ) ≈ 4(1 + 2sηn̄)1/2

[1 + (1 + 2sηn̄)1/2]2
e−2γτ((1+2sηn̄)1/2−1). (4.19)

The expression above gives an exponential tail distribution when n̄ ≪ 1 characteristic of

coherent light. Furthermore, in the long time limit we can further simplify the generat-

ing function by realizing that in this long time regime the integrated photon-flux Û(τ) =∫ τ

0
Î(t)dt ≈ ⟨Î⟩τ = 2γτn̄. We further simplify and have

G(s, τ) = e−2sγηn̄τ −O((sn̄)2). (4.20)

the generating function given in the equation above has the same form of the generating

function of that of coherent light. It is then expected that the long time behavior of thermal

light is coherent with photon rate 2ηγn̄. We further notice that Eqs. (4.6)- (4.11) for wait
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time distributions have the expected exponential tail e−2γητ . The expressions given by Eqs.

(4.16)-(4.18) do not have this exponential tail since they predict a slower fall off for small

wait times (2γτ ≪ 1), nevertheless, they capture quite remarkably well the behavior of the

exact expressions as n̄ increases. The large n̄ limit is known as the high degeneracy- large

mode occupation number-limit.

From Eqs. (4.16)-(4.18) we see that for thermal light the unconditional and conditional

wait time distributions are related by the functional relation

wn(τ) ≈
(n+ 1)

(1 + ηn2γτ)
Pn(τ) (4.21)

Additionally, P2(τ) and w1(τ) are proportional to the second order intensity coherence func-

tion g(2)(0) for short times, as both distributions involve the detection of a pair of photons.

In the case of the unconditional wait time distribution, P2(0) = 0. This implies that if count-

ing process commences at arbitrary instant, the second photo-detection occur after a wait

time τ , and it must be the case that a photo detection have already occurred. On the other

hand, the normalized wait time distribution for the first photoelectric detection is 2 (which

is the maximum value of w1(τ)/2γn̄). This tells us that if one starts the counting process

at a detection of a photon, the photo-detection after counting began is most likely to occur

immediately after counting starts. In other words, thermal photons are bunched temporally-

the detection of a photon makes the detection of another photon short after highly probable.

We further explore the bunching property of thermal light by pointing out few remarks on

the nth order coherence. Note that in both cases of the small and large mean photon number

it can be shown that Eq. (2.36), by using our approximations, satisfies gn(0) = (n + 1).

Therefore using Eq. (2.37), we have g(n)(0) = n! which is a result well known for chaotic

Gaussian light [4]. It is also interesting to notice that in the large mean photon number limit

gn(τ) ≈
(n+ 1)

(1 + ηn2γτ)
, (4.22)

and thus gn(0) > gn(τ).
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Figure 4.3: Unconditional average and variance of wait time τ for the photodetections n =
1 − 4. We do not include averages and variances with respect to wn since the are given in
terms of the averages and variances with respect to Pn.

Lastly, the average unconditional and conditional wait time and its variance for thermal

photons can be computed using Eqs. (2.41)-(2.42). Analytic expressions in terms of hyper-

geometric functions can be obtained. The resulting averages of τ and τ 2 are expressions that

are not very illuminating but for completeness they are given by

⟨τ⟩Pn =
1

γ

n−1∑
k=0

(−1)k

k!

dk

dsk

[(
z

2γ
+ 1

)−2

Φ

(
(z − 2γ)2

(z + 2γ)2
, 1,

1

2

(
1− 2γ

z

))]∣∣∣∣
s=1

, (4.23)

⟨τ 2⟩wn =
1

ηnγ2

n−1∑
k=0

(−1)k(n− k)

k!

dk

dsk

[(
z

2γ
+1

)−2

Φ

(
(z − 2γ)2

(z + 2γ)2
, 1,

1

2

(
1−2γ

z

))]∣∣∣∣
s=1

, (4.24)

and

⟨τ 2⟩Pn =
1

2γ2

n−1∑
k=0

(−1)k

k!

dk

dsk

[(
z

2γ

)−1(
z

2γ
+1

)−2

Φ

(
(z − 2γ)2

(z + 2γ)2
, 2,

1

2

(
1−2γ

z

))]∣∣∣∣
s=1

, (4.25)

where Φ(z, s, a) are the Lerch’s Transcendent functions [37].

It can be seen from Fig. 4.3 that both the mean and variance decrease to zero mono-

tonically for all n as n̄ increases. On the other hand, in the small mean photon number

regime we can approximate the equation above. Therefore the leading term for conditional

and unconditional averages and variances of wait time τ are given the leading term in n̄ as

⟨τ⟩Pn =
n

ηn2γ
. (4.26)
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In the same limit, the average of the square wait time τ with respect to unconditional and

conditional wait time distribution has leading order given by

⟨τ 2⟩Pn =
n(n+ 1)

(ηn2γ)2
= ⟨τ 2⟩wn . (4.27)

The leading terms on variance of wait times comes to be equal to that of coherent light with

the average photon flux 2ηγn̄. This is expected since for very small n̄ the laser is operating

far below threshold and the photoelectric detections we expect to record are rather rare.

Then, we may be interpret these photoelectric recordings as random events.

Consider the most probable times for coherent light. These are easily obtained from

Eq. (3.3). We thus have that for thermal light the most probable time is τn,coh = (n −

1)/η⟨Î⟩, where ⟨Î⟩ again is the average photon flux. We now consiser the large mean photon

number limit. Based on Eq. (4.16), the most probable wait times for the unconditional nth

photodetection is given to be τn,th = (n − 1)/2η⟨Î⟩, which is shorter than τPn,coh. From Eq.

(4.18), the most probable time is τwn,coh = (n−1)/3η⟨Î⟩, which is even shorter than τPn,coh. The

most probable times for thermal light are shorter that that for coherent light since thermal

light is bunched. Refer to Figure 4.3 for the plots of the unconditional variances.
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Chapter 5

Photon Counting Statistics of the Degenerate Parametric Oscillator

5.1 Description of the DPO

The degenerate parametric oscillator (DPO) is one of the most important sources of squeezed

light. It requires a fully quantum mechanical treatment to completely describe its statistical

properties. The basic mechanism of the DPO is the conversion of a pump photon into a pair of

photons in a sub-harmonic mode (down-conversion) of an optical cavity. The process occurs

in a nonlinear medium where photon energy and momentum are conserved. The Hamiltonian

describing the above process is given as

Ĥ =
1

2
iℏ(κâ†2d b̂− κ∗â2db̂

†) + iℏΓ(ϵb̂† − ϵ∗b̂) + ĤLoss. (5.1)

Where κ is the mode coupling constant given by the third order susceptibility of the nonlin-

ear medium, b̂, b̂† are the annihilation and creation operators for the photons in the pump

mode, â, â†, are the annihilation and creation for the photons in the sub-harmonic mode, ϵ is

a dimensionless classical field amplitude which is defined such that |ϵ|2 is the number of pho-

tons incident on the cavity in one lifetime (2Γ)−1 at the pump mode. ĤLoss describes losses of

the cavity [30]. An equation of motion for the density matrix can be derived from the above

Hamiltonian when usin the Markov approximation in the Heisenberg equaiton of moion or

master equation [10, 15]. It is required to use an appropriate quasi-probability distribution

since the coherent state diagonal representation leads to complications on the Fokker-Planck

equation for probability distribution describing the process. Using the positive-P represen-

tation [11] one can derive a Fokker-Planck equation with positive diffusion. Two Langevin

equations can be derived for the sub-harmonic mode without the effects of pump depletion.
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Their expressions are given by [15,31,32]

α̇ = −γα + κϵα∗ +
√
κϵξ1(t), (5.2)

α̇∗ = −γα∗ + κϵα+
√
κϵξ2(t). (5.3)

Each variable α and α∗ corresponds to the creation and annihilation operators of the sub-

harmonic mode and they are not complex conjugate of each other. Each ξ1 and ξ2 are

Gaussian white-noise stochastic processes with mean zero and variance equals to 1. Above,

sub-harmonic photons escape from the cavity at rate 2γ and photon-flux I(t) = 2γαα∗. By

setting κϵ = |κϵ|eiφ, α = xeiφ/2 and α∗ = xe−iφ/2, for an arbitrary real number φ, one obtains

the equivalent equations of motion for the newly defined variables x and y. Setting the initial

state of the oscillator to the vacuum state with x = 0 = y ensures that the new variables x

and y remain real in time. To uncouple the equations of motion of x and y we define

ui =
x± y

2
, λi = γ ∓ |κϵ|, qi(t) =

ξ1 ± ξ2
2

. (5.4)

with i = {1, 2}. These transformations lead to the following equation of motion for ui

u̇i(t) = −λiui(t) +

√
|κϵ|
2

qi(t), (5.5)

with steady state solutions

ui(t) =

√
|κϵ|
2

∫ t

−∞
e−λi(t−t′)qi(t

′)dt′. (5.6)

Since qi’s are defined by linear combinations of ξ1 and ξ2, they are also Gaussian white-noise

processes and satisfy

⟨qi(t)⟩ = 0, ⟨qi(t)qj(t′)⟩ = δijδ(t− t′). (5.7)
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Using the equations above and Eq. (5.6) we obtain the mean a variance for the variables ui

⟨ui(t)⟩ = 0,

⟨ui(t)uj(t
′)⟩ = |κϵ|

4λi

δije
−λi|t′−t|. (5.8)

The photon count statistics and unconditional and conditional wait distributions P1 and w1

for squeezed light from a DPO are fully described in [30]. We only introduced the variables

α, α∗, u1, and u2 briefly since they are of vital importance in understanding the DPO. We

also define the mean photon number of squeezed light from a DPO as n̄ and is given by

n̄ =
1

2

[
|κϵ|2

γ2 − |κϵ|2

]
. (5.9)

Consider now the generating function G(s, T ) for squeezd light produced by a DPO

operating below treshold. The exact expression is then found to have the form G(s, τ) =

Q1(s, τ)Q2(s, τ), with Qi(s, τ) given by [30,33]:

Qi(s, τ) =
eλiτ/2[

cosh(ziτ) +
1
2

[
zi
λi
+ λi

zi

]
sinh(ziτ)

] 1
2

, (5.10)

where z2i = λ2
i ± 2sηγκϵ for i = {1, 2}. It is interesting to note that the statistics of the

thermal light is described by two real Gaussian random process with zero mean but both

with the same variance which is equivalent to a single Gaussian stochastic process [26]. This

gives rise to the expression for the generating function for thermal light given by Eq. (4.1).

In the case of suqeezed light from a DPO, we have the same variables as thermal light but

they now have difference variance. This difference spurs particular and very distinct quantum

statistical properties for both thermal and DPO light.

Consider first the unit detection efficiency η = 1. When we use Eq. (5.10) in Eqs. (2.14),

(2.26), and (2.28) the expressions resulting for the unconditional and conditional wait time

distributions Pn(τ) and wn(τ) cannot be represented in terms of elementary functions. The

resulting expressions are rather convoluted and complicated and thus will not be reproduced
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here. However, there exists important limiting cases such as small and large mean photon

number n̄ and wait time τ for which we obtain reasonable analytic expressions which are

given in terms of very simple algebraic functions, and which are consistent with the exact

results in their respective domain of approximation. The limiting cases are discussed in the

following sections.

5.2 Small Mean Cavity Photon Number n̄

Consider the case of small mean cavity photon number (n̄ ≪ 1) and, therefore, small photon-

flux. In this case, the wait times will be dominated by large intervals 2γτ ≫ 1. In this limit,

the generating function and the photo-count distribution take the form [30,33,34]

G(s, τ) ≈
[
1− n̄

2
s2
]
exp

[
γn̄τ(s2 − 2s)

]
, (5.11)

p(2k, τ) ≈ (n̄γτ)k

k!
e−n̄γτ , (5.12)

p(2k + 1, τ) ≈ n̄
(n̄γτ)k

k!
e−n̄γτ . (5.13)

An inspection of Eqs. (5.12) and (5.13) reveals a peculiar nature of the photo-count distribu-

tion of the photon sequence generate by a DPO. We find that the probability of detecting an

odd number of photo-counts is negligible compared to the probability of detecting an even

number of photo-counts (p2k+1/p2k ≈ n̄ ≪ 1). It’s as if the cavity favors the emission of pairs

of photons. This picture is reinforced by the structure of Eq. (5.12). Note that a mean photo-

emission rate 2γn̄ will result in 2γn̄τ photon counts (corresponding to n̄γT photon-pairs) in

time τ . Eq. (5.12) then shows that the probability of recording 2k photo-counts is the same

as the probability of recording k (random) photon-pairs. To understand the significance of

this result let us recall that the nonlinear interaction between the pump and cavity modes

in the DPO creates photon pairs inside the cavity. Once inside the cavity, each photon from

each photon pair created in the sub-harmonic mode circulates, not necessarily following the

same path but independently, escaping the cavity in a life time (2γ)−1. Based on this pic-
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ture, we do not expect a pair-like photo-count distribution Eqs. (5.12)-(5.13) even though

the photons are created in pairs. However, for sufficiently low n̄, the rate of photon-pair

generation in the cavity is small, such that both photons of a pair escape the cavity before

another pair is created. Thus a detector monitoring the output will still record, with high

probability, an even number of photon counts in a time τ large compared with the cavity

life time (2γ)−1. The mean cavity photon number (n ≪ 1) and the mean photon flux 2γn

(compared to 2γ) remain small.

Given that photon-count probabilities favor even photon counts over odd photon counts,

we thus see the same behavior reflected in the unconditional and conditional wait time

distributions Pn(τ) and wn(τ). If we are to use Eqs. (5.11),(5.12) and (5.13) in Eqs. (2.26) and

(2.28) long wait time behavior can be well approximated. However, the resulting expressions

will not capture the short time behavior. We will have to expand the generating function

and its derivatives with respect to τ for the DPO, Eq. (5.10), to include higher orders of

n̄ constrained by Eqs. (2.34) and (2.35) to correctly capture the short time behavior of the

wait time distributions as it was the case for thermal light.

In similar fashion as we have done for thermal light, we rewrite the generating function

for the light from a DPO in a more convenient form [30] as

G(s, τ) = [(1− A1)(1− A2)]
1/2 e(2γ−z1−z2)τ/2

[(1− A1e−2z1τ )(1− A2e−2z2τ )]1/2
, (5.14)

where

A1 =

[
z1 − λ1

z1 + λ1

]2
, (5.15)

A2 =

[
z2 − λ2

z2 + λ2

]2
. (5.16)

The first two derivatives of G(s, τ) with respect to wait time τ are given as

∂

∂τ
G(s, τ) = G(s, τ)

[
1

2
(2γ − z1 − z2)−

z1A1e
−2z1τ

1− A1e−2z1τ
− z2A2e

−2z2τ

1− A2e−2z2τ

]
, (5.17)
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∂2

∂τ 2
G(s, τ) = G(s, τ)

{[
1

2
(2γ − z1 − z2)−

z1A1e
−2z1τ

1− A1e−2z1τ
− z2A2e

−2z2τ

1− A2e−2z2τ

]2
+

2z21A
2
1e

−2z1τ

(1− A1e−2z1τ )2
+

2z22A
2
2e

−2z2τ

(1− A2e−2z2τ )2

}
. (5.18)

Expanding the above formulas in powers of n̄ and taking appropriately derivatives with

respect to s can correctly provide the short and long time scales of the wait time distributions.

This leads us to the unconditional wait time distribution for n = 1− 3 photo-detections

P1(τ) ≈ 2γn̄e−γn̄τ (1 + e−2γτ ), (5.19)

P2(τ) ≈ 2γn̄e−γn̄τ 1

2
(1− e−2γτ ), (5.20)

P3(τ) ≈ 2γn̄e−γn̄τ n̄

2
(3 + γτ + 3e−4γτ − e−2γτ (6 + γτ − 4(γτ)2)). (5.21)

The exact algorithm leads the following expressions for the conditional wait time distribution

w1(τ) ≈ 2γn̄e−γn̄τ

[
1

4
+ e−4γτ + e−2γτ

(
1

2n̄
+

7

4

)]
, (5.22)

w2(τ) ≈ 2γn̄e−γn̄τ

[
1

2
− 2e−4γτ + e−2γτ

(
3

2
+ 4γτ

)]
, (5.23)

w3(τ) ≈ 2γn̄e−γn̄τ

[
1

4
+ e−4γτ + e−2γτ

(
2(γτ)2 +

3

2
γτ − 5

4

)]
. (5.24)

Eqs. (5.19)-(5.24) are plotted and compared with the exact distributions in Figs. 5.1 and

5.2. The dashed curves are given by the approximations and the solid curves are given by

the exact expressions. Notice that approximations capture the short and large wait time

behavior of the wait time distributions.

Let us point out properties that become apparent from Eqs. (5.19)-(5.24). First of all,

similar to the wait time distributions for thermal light, P1 and w1 are not zero at τ = 0 and

as τ increases both distributions decay exponentially to zero. It is also notable that in the

short time regime the conditional wait time distribution w1 reveals that a photon sequence

from a DPO is “super-thermal.” This can be seen from the short wait time approximation

that w1(τ) ∝ ⟨: Î(0)2 :⟩, which for DPO is ∝ n̄2 and for thermal light is ∝ n̄. Since n̄ ≪ 1 ,

then n̄2 ≪ n̄ [5,30,34], we then have that g
(2)
th (0) < g

(2)
dpo(0). For n ≤ 2, the distributions reach
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Figure 5.1: Exact curves (solid black) and approximations (dashed black curves) for Pn(τ)
and wn(τ) for the case that n ≪ 1 for DPO n = 1–3 photons.
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Figure 5.2: Exact curves for Pn(τ) and wn(τ) for squeezed light from a DPO for n = 1–3
compared with approximate expressions (dashed curves) given by Eqs. (5.28) and (5.30) for
n = 10.

a maximum at wait time τ and then decay exponentially to zero. Secondly, Eqs. (5.19)-(5.24)

are described by two distinct time scales, the short time scale (2γ)−1 and the long time scale

(γn̄)−1. The short time scale (2γ)−1 is the inverse of photo-emission rate when the cavity has

one photon. This photo-emission rate far exceeds the average photo-emission rate (γn̄)−1. It

can be thought of as photo-emission rate conditioned on a photo-detection. In the small n̄

regime, the cavity has either a pair of photons (for a period lasting one cavity life time) or no

photons. The detection of a photon in this regime signals, with high probability, the presence

of one photon in the cavity, resulting in a photo-emission rate 2γ following a photodetection.

This is a manifestation of strong nonclassical correlations between the photons of a photon-

pair produced in the process of downconversion. The long time scale (γn̄)−1 is the inverse of
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photon pair emission rate. Indeed, the long wait time tail of these distributions is Poissonian

with mean flux γn̄, which is half the mean photon flux 2γn̄ from the cavity. Also, for large

wait times 2γτ ≫ 1, P1 ≈ P2 and P3 ≈ P4. The pattern, in fact, extends to higher order

distributions with P2k+1 ≈ P2k+2. Thus the long wait time behavior mimics a random photon

sequence of mean flux γn̄ and not 2γn̄. Both of these aspects reflect the pair-like character

of photo-emissions from the DPO in the small mean cavity photon number n̄ regime.

5.3 Large Mean Photon Number n̄ ≫ 1

The large photon number regime is also of practical interest. As the oscillator approaches

threshold of oscillation, many photon pairs are created inside the cavity in a cavity life time

and the photons escaping the DPO cavity cannot be interpreted as coming from the same

pair [30]. In this case, the wait times are dominated by intervals small compared to the cavity

lifetime (2γ)−1 and the generating function G(s, τ) can be approximated by [30,33]

G(s, τ) ≈ 1√
1 + 4sηγn̄τ

(5.25)

Using Eq. (2.14) we obtain an analytic expression for the photoelectric count probability

p(n, t)

p(n, τ) ≈ (2n− 1)!!

n!

(2ηγn̄τ)n

(1 + 4ηγn̄τ)n+1/2
. (5.26)

Once more, one calculates the expression in square brackets from Eq. (2.26), before the

derivative with respect to τ and using the definitions of Hyper-geometric functions [35] one

obtains

n−1∑
k=0

p(k, τ) ≈ 1− (2ηγn̄τ)n−1

(1 + 4ηγn̄τ)n−1/2

(2n− 1)!!

n!
2F1

[
1, n+ 1

2

n+ 1
; 2

2ηγn̄τ

1 + 4ηγn̄τ

]
. (5.27)
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As a check, the limit n → ∞ also gives 1 for the above expression. Taking the derivative

with respect to τ as given by Eq. (2.26) leads to

Pn(τ) ≈ 2ηγn̄
(2n− 1)!!

(n− 1)!

(2ηγn̄τ)n−1

(1 + 4ηγn̄τ)n+1/2
. (5.28)

In a similar fashion we have

n−1∑
k=0

(n− k)p(k, τ) ≈ n− ηn̄2γτ

+
(2ηγn̄τ)n

(1 + 4ηγn̄τ)n+1/2

(2n− 1)!!

(n− 1)!

{
2F1

[
1, n+ 1

2

n
; 2

2ηγn̄τ

1 + 4ηγn̄τ

]
−2F1

[
1, n+ 1

2

n+ 1
; 2

2ηγn̄τ

1 + 4ηγn̄τ

]}
.

(5.29)

Taking then the derivatives as described in Eq. (2.28) gives

wn(τ) = 2ηγn̄
(2n+ 1)!!

(n− 1)!

(2ηγn̄τ)n−1

(1 + 4ηγn̄τ)n+3/2
. (5.30)

A comparison of Eqs. (5.28) and (5.30) are given in Fig. 5.2, and one can see that there is

a good agreement for short wait times with the exact distributions. Similar to the case of

thermal light, when we compare the expressions for the large mean photon number against

those approximations for the small mean photon numbers, the two time scales (2γ)−1 and

(n̄γ)−1 are replaced by a single time scale (2ηn̄γ)−1 determined by the mean photon flux of

the cavity, 2γn̄ and quantum efficiency of the detector. This limit is also known as the high

degeneracy limit of squeezed light thoroughly discuss in Ref. [19].

Once more, the unconditinal and conditional wait time distributions are related by

wn(τ) =
(2n+ 1)

1 + 4ηγn̄τ
Pn(τ), (5.31)

which is remarkably similar to the expression given by Eq. (4.21) for thermal light. There are

other similarities, for example. The approximations for the large mean photon number shown

in Fig. 4.2 and Fig. 5.2 demonstrate that both set of approximation, for thermal light and

DPO, are qualitatively similar. Also the most probable conditioned wait times for DPO are
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given by τwn,dpo = (n−1)/5⟨Î⟩. And compared to the thermal case, τwn,th = (n−1)/3⟨Î⟩, we see

that the most probable conditional wait time for DPO is even shorter than the most probable

time for thermal light. Lastly, consider Eqs. (2.36) and (2.37). We see that gn(0) = (2n+1).

This then implies that g(n)(0) = (2n − 1)!! which is a characteristic property of squeezed

light [1].

To finalize our discussion on wait times statistics for squeezed light from a DPO, we

discuss the mean and variance of the unconditional and conditional wait times τ for the

DPO. In the general sense, Eqs. (2.41)-(2.46) can be solved exactly and it is shown that the

exact expressions are given in terms of Hyper-geometric functions of higher order. However,

other than being a formidable alegbraic task there is not much one could extract by looking

at these expressions. For continuity however, we only consider the expressions for mean and

variance with respect to both unconditional and conditional wait time distributions when

there is small mean photon number, n̄ ≪ 1.

To start our derivation, we can use a similar procedure as the one used to derive Holder’s

inequality or Schwartz inequality for integrals [35,36] to show that we can write for two real

valued distributions 0 ≤ q1(s, τ), q2(s, τ) :∫ ∞

0

q1(s, τ)q2(s, τ)dτ = [(1− A1)(1− A2)]
1/2

[ ∫ ∞

0

q21(s, τ)dτ

∫ ∞

0

q22(s, τ)dτ

]1/2
(1− e)1/2

(5.32)

where

qi(s, τ) =
e(2γ−z1−z2)τ/4

[1− Aie−2ziτ ]1/2
,

e =

∫∞
0

∫∞
0
[q1(s, x)q2(y)− q2(s, x)q1(s, y)]

2dxdy

2
√∫∞

0
q21(s, τ)dτ

∫∞
0

q22(s, τ)dτ
(5.33)

In the above, we have assumed that
∫∞
0

q2i (s, τ)dτ ̸= 0 for any value of n̄. On the other hand,

for n̄ ≫ 1,
∫∞
0

q2i (s, τ)dτ ≈ 0 for i = {1, 2}, i.e the integral of approaches zero monotonically.

Notice that each qi(s, τ) for the DPO resembles the generating function Q(s, τ) for thermal
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Figure 5.3: Unconditional average and variance of wait time τ for the photodetections n =
1− 4 for the DPO case. As was the case for the plots for curves for thermal light we do not
include averages and variances with respect to wn.

light but taken as
√

Q(s, τ). Performing the integration of
√
Q(s, τ) is substantially harder

than performing the integration of Q(s, τ). Instead, one sees that in the small mean pho-

ton number regime, the functional forms of q1(s, x)q2(s, y) and q1(s, y)q2(s, x)(Eq. (5.33))

become increasingly similar so the error e above becomes very small. A Mathematica script

numerically proves this assertion. Since we already calculated quantities related to integra-

tion of Q(s, τ), in principle we have nothing new to do but to realize that the integration of

q2i (s, τ) is the same as Q(s, τ) for thermal light. The expressions for the unconditional and

conditional mean and variance of wait time are given as follows:

⟨τ⟩Pn =
2√
λ1λ2

n−1∑
k=0

(−1)k

k!

dk

dsk
ϱ1(s)

∣∣∣∣
s=1

,

⟨τ 2⟩wn =
2

γηn
√
λ1λ2

n−1∑
k=0

(−1)k(n− k)

k!

dk

dsk
ϱ1(s)

∣∣∣∣
s=1

,

and

⟨τ 2⟩Pn =
2

λ1λ2

n−1∑
k=0

(−1)k

k!

dk

dsk
ϱ2(s)

∣∣∣∣
s=1

,

where ϱ1(s, T ) and ϱ2(s, T ) take a very peculiar form:

ϱ1(s) =

(
z1
λ1

+ 1

)−1(
z2
λ2

+ 1

)−1√
Φ(A1, 1, B1)Φ(A2, 1, B2) (5.34)
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Figure 5.4: Effect of the non-unit detection efficiency. Exact curves for Pn(τ) and wn(τ) for
squeezed light from a DPO for n = 1–3 compared with approximate expressions (dashed
curves) given by Eqs. (5.37)-(5.40) for n = 0.01.

and

ϱ2(s) =

(
z1
λ1

+ 1

)−1(
z2
λ2

+ 1

)−1
√

Φ(A1, 1, B1)Φ(A2, 1, B2)

z1z2
. (5.35)

Where

Ai =

(
zi − λi

zi + λi

)2

, Bi =
z1 + z2 − 2γ

2zi
. (5.36)

Φ are already known from the chapter on thermal light as Lerch’s functions [37]. We will not

discuss any further the mean and variance since it is not of high interest at time being, but

perhaps deeper meaning can be withdrawn from these approximations. However, we remark

the pairing of photons becomes noticeable in the small mean photon number limit. This

behavior is shown in Figure 5.3.
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5.4 Effect of Non-Unit Detection Efficiency

Non-unit detection efficiency (η < 1) causes the observed photo-detection sequence to differ

from the photoemission sequence. The most significant effect of the non-unit detection effi-

ciency for the DPO is to degrade the even-odd oscillations in the photo-count distribution.

This has been discussed in detail in Ref. [30]. For non-unit detection efficiency the expres-

sions for Pn(τ) and wn(τ) for arbitrary n do not have simple forms. For large mean cavity

photon number n̄, the dominant effect of detection efficiency is already contained in expres-

sions (5.28) and (5.30) and is similar to that found for thermal light in the high degeneracy

limit [19].

For small n̄ where quantum effects dominate, the effect of detector efficiency is more

interesting and illustrates how the quantum nature of photo-emission sequence can be ob-

scured in the photo-detection sequence. As noted earlier, wait time distributions beyond

n = 1 and 2 carry little qualitatively new information. Therefore, we will limit our con-

siderations of non-unit detection efficiency to n = 1, 2 wait time distributions. Following a

procedure similar to that used in arriving at Eqs. (5.19)- (5.24), we expand the generating

function G(s, τ) = Q1(s, τ)Q2(s, τ) in powers of n̄ and retain terms necessary to satisfy the

constraints of Eqs. (2.34) and (2.35). We then obtain the following expressions

P1(τ) = 2ηγn̄e−(2η−η2)γn̄τ 1

2
[2− η + ηe−2γτ ] (5.37)

P2(τ) = 2ηγn̄e−(2η−η2)γn̄τ η

2
[1− e−2γτ ] (5.38)

w1(τ) = 2ηγn̄e−(2η−η2)γn̄τ η

2

[
1

4
(η − 2)2 + η2e−4γτ + e−2γτ

(
2 +

1

2n̄
+ η − 5η2

4

)]
(5.39)

w2(τ) = w1(τ) = 2ηγn̄e−(2η−η2)γn̄τ η

2
[2− eta+ 4ηe−γτ + e−2γτ (5η − 6ηγτ + 14γτ − 2)].

(5.40)

As a check, we note that for η = 1, these expressions reduce to those in Eqs. (5.19)-

(5.24) and satisfy the constraints on Eqs. (2.34) and (2.35). Figure 5.4 illustrates the effect

of non-unit detection efficiency on wait time distributions. The full curves represent numerical
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calculations using the generating function (5.10) in Eqs. (2.26) and (2.28). The dashed curves

are obtained from Eqs. (5.37)-(5.40). Note that as η decreases, the two distinct time scales

so prominent in the ideal case η = 1 slowly disappear and are replaced by a single time

scale. We can also see analytically from the exponential before the square brackets that for

small detection efficiency, the exponent (2η − η2)γn̄τ → 2ηγn̄. In this quantum regime, the

detection efficiency changes the time scales as well as the shape of the distributions. As the

detection efficiency decreases, the observed wait time distribution resembles a rate limited

distribution for a classical field. Here we have an analytical model that allows us to see how

the quantum mechanical properties of a photon sequence are washed out in the photo-count

distribution with decreasing detection efficiency.
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Chapter 6

Photon Counting Statistics of Resonance Fluorescence of Two Level Atom

Consider now the photon sequence produced by a single coherently driven two level atom near

resonance. This is perhaps one of the most peculiar examples of a light source that requires

a full quantum mechanical description to accurately characterize all its properties. With the

emission of each photon, the atom returns to its lowest energy state, and so each subsequent

photon-emission occurs with the atom starting in the lowest energy state independent of the

history of previous photo-emissions. The driving field, being in a classical (coherent) state,

remains unaffected by photo-emission events. Thus the photo-emissions from a coherently

driven single two level atom form a time series that can be described as a Markov birth

process [8,10,14,17,23,38–40]. This property allows the averages of products of photon-flux

operators over disjoint sub-intervals of a counting time interval [0, τ ] to be simplified and

expressed in terms of the products of two point correlation of the field intensity.

In the case of resonance fluorescence from a two level atom, it is convenient to use the

forms for unconditional and conditional wait times distributions as given by Eqs. (2.31) and

(2.32).

The integrand of (2.32) can be interpreted as the joint probability of detecting pho-

tons at the succesive times 0, t1, t2, ..., tk+n−1, τ [8, 23]. Recognizing the Markov property of

photon-emissions the integrand of Eq. (2.32) can be rewritten as a product series of two-time

conditional probabilities as follows [8, 41]. The conditional probability of a photo-detection

at tk conditioned upon a photo-detection at tk−1(< tk) depends only on the interval tk− tk−1

and has the form

2βf0(tk − tk−1) =
⟨T : Î(tk)Î(tk−1) :⟩

⟨Î(tk−1)⟩
, (6.1)

where 2β is the Einstein A coefficient. A coefficient for the atomic transition. The integrand
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of Eq. (2.32) can then be written as

⟨T : Î(tn+k)Î(tk+n−1)...Î(t1)Î(t0)) :⟩ = ⟨Î(t0)⟩
k+n−1∏
j=0

2βf0(tj+1 − tj), (6.2)

where τ = tn+k and t0 = 0. Using Eqs. (6.10)-(6.2) and taking the Laplace transform [25] of

the resultant expression, we obtain

w̃n(s) =
∞∑
k=0

(k + n− 1)!(−1)k

(n− 1)!k!
[2βηf̃0(s)]

k+n,

where w̃n(s) and f̃0(s) are the Laplace transforms of wn(τ) and f0(tk+1 − tk) respectively.

The sum in the preceding expression can be carried out leading to

w̃n(s) =

[
2βηf̃0(s)

1 + 2βηf̃0(s)

]n
. (6.3)

The function f̃0 is given by [8, 22,23,41],

f̃0(s) =
Ω2

2s((s+ 2β)(s+ β) + Ω2)
, (6.4)

where Ω is the Rabi frequency for the atomic transition. w̃n(s) can be written directly in

terms of atomic parameters as

w̃n(s) =

[
βηΩ2

s(s+ β)(s+ 2β) + Ω2(s+ βη)

]n
. (6.5)

The factorization of the intensity correlation function also allows us to obtain a closed

form expression for the Laplace transform of Pn(τ). Starting with the definition of Eq. (2.31)

of Pn(τ), just like we did for wn(τ), the integrand of Eq. (2.31)can be expressed in terms of

a product series of intensity correlation functions of the form

⟨T :Î(tn+k)Î(tn+k−1)...Î(t1):⟩ = (2β)n+k(f(t1))
n+k−1∏
j=1

f(tj+1 − tj), (6.6)

where f(t1) is the probability of photo-emission given the atoms starts in the steady state [23].
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After using Eq. (6.6) in Eq. (2.31), a formal Laplace transform of Pn(τ) yields

P̃n(s) = 2ηβf̃(s)
∞∑
k=0

(−1)k(n+ k − 1)!

(n− 1)!k!
[2ηβf̃0(s)]

n+k−1,

with f̃0(s) given by Eq. (6.4) and the Laplace transform of f(t1) given by

f̃(s) =
Ω2

2s(Ω2 + 2β2)
. (6.7)

Above, we have a new function, which is the Laplace transform of f(t1). The summation

above is in principle the same as for the case of w̃n(s). The exact expression for P̃n(s) is then

P̃n(s) =

[
f̃(s)

f̃0(s)

][
2ηβf̃0(s)

1 + 2ηβf̃0(s)

]n
. (6.8)

It is convenient to have f̃(s)/f̃0(s) = s(s+3β)
Ω2+2β2 + 1 so that P̃n(s) = (Cs2 + 3βCs + 1)w̃n(s),

where we have set the constant C = 1
Ω2+2β2 . In addition, it can be shown from the definition

of wn(τ) from Eqs. (2.22) that wn(0) = 0 and w′
n = 0 for all n ≥ 0 and we will demonstrate

this further on this section when we obtain an analytic expression for wn(τ) in terms of

atomic parameters. We can the rewrite the Laplace transform of Pn(τ) as

P̃n(s) = C(s2w̃n(s)− swn(0
+)− w′

n(0
+)) + 3βC(sw̃n(s)− wn(0

+)) + w̃n(s).

Where 0+ signifies approaching zero from right to left. The above is only valid for resonance

fluorescence from the two level atom and not for any other quantum system. The previous

equation works out perfectly since it has an exact inverse Laplace transform in terms of wn(τ).

The inverse Laplace transform of P̃n(s) can be obtained by using a Bromwich integral [25]

and yields

Pn(τ) = CL−1{s2w̃n(s)− swn(0
+)− w′

n(0
+)}+ 3βCL−1{sw̃n(s)− wn(0

+)}+ L−1{w̃n(s)}

= C
d2

dτ 2
wn(τ) + 3βC

d

dτ
wn(τ) + wn(τ). (6.9)

The symbol L−1 is the inverse Laplace transform operation. The expression for Pn(τ) is

given in terms of wn(τ) and knowing wn(τ) will determine completely the form of Pn(τ).
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This is the reason why on this section we have decided to begin our discussion of resonance

fluorescence with wn(τ) instead of Pn(τ). From the above formulas we can also have an exact

expression for the parameter gn(τ).

6.1 Unit Detection Efficiency η = 1

For unit quantum efficiency, the inverse Laplace transform of w̃n(s) (Eq. (6.5)) can be eval-

uated using calculus of residues yielding

wn(τ) =
(βΩ2)n

((n− 1)!)3(β2 − Ω2)n
e−βτ×

n−1∑
k=0

τn−k−1[(−1)nD0(n, k) +D(n, k)((−1)ke
√

β2−Ω2τ + e−
√

β2−Ω2τ )], (6.10)

where

D0(n, k) =

(
n− 1

k

)
1

(
√

β2 − Ω2)k

k∑
j=0

(−1)j
(
k

j

)
(n+ k − j − 1)!(n+ j − 1)! (6.11)

and

D(n, k) =

(
n− 1

k

)
1

(
√

β2 − Ω2)k

k∑
j=0

(
k

j

)
(n+ k − j − 1)!(n+ j − 1)!

2n+j
. (6.12)

In general the above expressions must be evaluated numerically. Nevertheless, it can be

seen from the form of the above equations that wn(0) = 0 and w′
n(τ) = 0. The result w1(0) =

0 is, of course, the signature of well known photon anti-bunching. Numerical evaluation of

Eq. (6.10) requires some care as the nature of the functions changes as the Rabi frequency

varies from Ω < β to Ω > β. Simpler expressions can be derived that provide a more intuitive

picture of photon sequences generated. These will be taken next.

Let us write the exact expressions for the conditional wait time distribution wn(τ) for
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n = 1-4 when we use Eqs. (6.10)-(6.12). They take the following form:

w1(τ) = C1βe
−βτ

[
− 1 + cosh(ωτ)

]
, (6.13)

w2(τ) =
C2

2
β2τe−βτ

[
2 + cosh(ωτ)− 3

sinh(ωτ)

ωτ

]
, (6.14)

w3(τ) =
C3

8
β3τ 2e−βτ

[
− 4 + cosh(ωτ)− 9

sinh(ωτ)

ωτ
+ 24

cosh(ωτ)− 1

(ωτ)2

]
, (6.15)

and

w4(τ) =
C4

3 · 24
β4τ 3e−βτ

[
8 + cosh(ωτ)− 18

sinh(ωτ)

ωτ

+
3

(ωτ)2

(
64 + 41 cosh(ωτ)− 105

sinh(ωτ)

ωτ

)]
, (6.16)

where Cn = (Ω/β)2n

(1−(Ω/β)2)n
and ω =

√
β2 − Ω2. For weak driving fields, Ω2

β2 ≪ 1 simple ex-

pressions for wn(τ), similar to Eqs. (6.13)-(6.16) can be obtained in the long and short

time regimes. In the short time regime 2βτ ≪ 1, it is possible to use the approximation

ω ≈ β in the expressions for Eqs. (6.13)-(6.16). Observe that for n = 1 the distribution

w1(τ) ∝ (1 − e−βτ )2. The factor (1 − e−βτ )2 is related to the second order correlation func-

tion g(2)(τ) which vanishes at τ = 0 reflecting photon antibunching. In the case n > 1

relations between wn(τ) and g(n+1)(τ) can be found exactly.

Regarding the general approximation for a weak field, ω ≈ β − β
2
Ω2

β2 for all waiting times

τ , plots and computations suggest that the distributions wn(τ) and Pn(τ) resemble very

closely that of a coherent field. In fact we used approximations for fluorescence of he two

level atom against coherent light and the curves seem to have an overall resemblance across

a wide range of waiting times τ [2, 7].

In the special case Ω = β, it is simpler to use Eq. (6.5), which simplifies to w̃n(s) =
β3n

(s+β)3n

and its inverse Laplace transform is

wn(τ) = β
(βτ)3n−1

(3n− 1)!
e−βT . (6.17)

The above is not quite a Poisson distribution but a Gamma distribution [25] with shape
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parameter 3n and rat β.

It is interesting to compare Eq. (6.17) to the expressions for coherent light of the same

mean photon-flux. Eq. (6.17) attains a maximum at the most probable time τwn,rf = (3n −

1)β−1 which in terms of steady-state photon emission rate ⟨Î⟩ss = β/3 can be written as

τwn,rf = (n − 1/3)⟨Î⟩−1
ss . The corresponding most probable time for coherent light is τn,ch =

(n− 1)⟨Î⟩−1
ss . Since τwn,rf = τn,coh + (2/3)⟨Î⟩−1

ss , we see that the most probable times for wait

times in resonance fluorescence produced by a two level atom, on average, are longer that

the most probable times for randomly distributed photons.

In the strong field regime Ω2

β2 ≫ 1 and wait times that are not so small (2βT > 1), one can

neglect the tail of the sum of Eq. (6.10). It is also worth mentioning that ⟨Î⟩ss = βΩ2

Ω2+2β2 ≈ β.

Hence, wn(τ) takes the form

wn(τ) ≈ β
(βτ)n−1e−βτ

(n− 1)!

[
1− (−1)n−1

2n−1
cos(Ωτ)

]
. (6.18)

The error in Eq. (6.18) is of order O((Ω/β)−1). A comparison of equation Eq. (6.18) with the

result of Eq. (3.3) for coherent light shows that in this limit, wn(τ) for resonance fluorescence

is the product of the wait time coherent light distribution modulated by an oscillatory term

due to Rabi oscillations. Figs. 6.1-(e) and 6.1-(f) show a good agreement between Eq. (6.18)

and the exact expressions. On the other end, in the small time regime 2βτ ≪ 1, it is sufficient

to use expressions such as Eqs. (6.13)-(6.16) and Taylor expand the terms in square brackets

to obtain physically meaningful expressions. After some work, it can be seen that the leading

term for wn(τ) is

wn ∝ Ω2n

β2n
β
(βτ)3n−1

(3n− 1)!
e−βT . (6.19)

For very short times, the conditional wait time distribution wn(τ) is dominated by a gamma

distribution similar to the case Ω = β given by Eq. (6.17) times the term Ω2n

β2n . We notice

that Eq. (6.19) is meaningless as a distribution since it is not truly a probability but just

a leading order for small wait times and large fields. If we take Eq. (6.19) as a probability
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Figure 6.1: wn(τ) and Pn(τ) for small (Ω/β = 0.2
√
2 sub-figures (a)-(b)), resonant (Ω/β = 1

sub-figures (c)-(d)), and large (Ω/β = 10
√
2, sub-figures (e)-(f)) driving fields for n =

1− 4. The dashed curves in sub-figures (e) and (f) represent large field approximations, see
Eq.(6.18).

distribution we will have to normalize it to unity in which case we get the same equation for

the case Ω = β.

Consider now the unconditional wait time distribution Pn(τ). Taking the inverse Laplace

transform of Eq. (6.8) or using Eq. (6.9) and Eqs. (6.10)-(6.12) a similar expression to wn(τ)

can be derived for Pn(τ). Since the expressions for Pn(τ) resemble quite closely those for

wn(τ) we omit writing all the cases explicitly here. We write only the case Ω = β which is
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given by

Pn(τ) =
β

3

(βτ)3(n−1)

(3n− 1)!
e−βτ [((βτ)2 + (3n− 1)βτ + (3n− 1)(3n− 2)]. (6.20)

The above formula satisfies P1(0) = β
3
. Eq. (6.20) is plotted in Figs. 6.1-c and 6.1-d. For

the small and large field regimes it suffices to use the formulas for wn(τ) we have already

discussed. All the exact expressions and approximations for different cases of the excit-

ing/driving field are plotted on Figs. (8)-(10). Calculations of Pn(τ) also allow us to find the

deficiency correlation gn(τ). For brevity, consider only the case Ω = β, wn(τ) and Pn(τ) are

very simple functions so then

gn(τ) =
3(βτ)2

(βτ)2 + (3n− 1)βτ + (3n− 1)(3n− 2)
. (6.21)

Notice immediately that for short times βτ , gn(τ) < 1, which is the anti-bunching property

of resonance fluorescence. Also notice that for some values of βτ , gn(τ) > 1 and gn(τ)

approaches 3 as βτ ≫ 1. For small fields, gn(τ) is always less than 1 and approaches 1 as

wait times increase. The case for a large field exhibits Rabi oscillations. These oscillations

happen around 1 and their amplitude decreases as n increases.

6.2 Non-Unit Detection Efficiency Effect

For non-unit detection efficiency, the expressions for wn(τ) and Pn(τ) become cumbersome.

However, we can write down auxiliary definitions that make wn(τ) and Pn(τ) look more

appealing. Let us start by considering the denominator of Eq. (6.5), s(s + β)(s + 2β) +

Ω2(s + ηβ). It can be factored as (s − s1)(s − s2)(s − s3) where s1, s2 and s3 can be found

using Cardano’s formula. The resulting expressions for the roots are

s1 = −β +∆1 +∆2 (6.22)

s2 = −β −∆1e
iπ/3 −∆2e

−iπ/3 (6.23)

s3 = −β −∆1e
−iπ/3 −∆2e

iπ/3. (6.24)
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Where

∆1 =
ω2

δ
, ∆2 =

1

3
δ, δ =

B
3
√
2
, ω2 = β2 − Ω2,

B = [27β(1− η)Ω2 +
√

4 · 27(Ω2 − β2)3 + (27β(1− η)Ω2)2]1/3.

Note that the expressions for ∆1,∆2, δ and ω have units of frequency.

In the case that η = 1, observe that B = 3
√
2
√

3(Ω2 − β2), then we recover s1 = −β,

s2 = −β−
√
β2 − Ω2 and s3 = −β+

√
β2 − Ω2. This leads to the already known expressions

for wn(τ) and Pn(τ).

Following the method we described in previous sections, we can also find the expression

for the conditional wait time distribution in the non-unit detection efficiency case. It follows

that

wn(τ) = Cne
−βτ×

n−1∑
k=0

(
n− 1

k

)
τn−1−k

(
√

3(∆2
1 +∆1∆2 +∆2

2))
k
[(−1)kJ0(n, l)e

∆1τ+∆2τ +2(−1)nJ (n, l, τ)e−
∆1+∆2

2
τ ].

(6.25)

Where in the above we have defined :

ω =
√

β2 − Ω2, Cn =
(ηβΩ2)n

((n− 1)!)33n(∆2
1 +∆1∆2 +∆2

2)
n
,

J0(n, k) =
k∑

p=0

(
k

p

)
(n+ k − p− 1)!(n+ p− 1)! cos((2p− k)θ1),

J (n, k, τ) = (
√
3)

[√
∆2

1 +∆1∆2 +∆2
2

∆2 −∆1

]n
×

k∑
p=0

(
k

p

)
(−1)p(n+ k − p− 1)!(n+ p− 1)!

[√
∆2

1 +∆1∆2 +∆2
2

∆2 −∆1

]p
cos

[
∆2 −∆1

2

√
3τ + ϕnkp

]
,

θ1 = arctan

[
1√
3

∆2 −∆1

∆2 +∆1

]
and ϕnkp = θ1(n+ k − p)− (n+ p)

π

2
.

(6.26)

See Figs. 6.2 for the effect of the non-unit detection efficiency in both distributions wn and

Pn. Consider expressions for some special cases and some approximations for the conditional
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Figure 6.2: Effect of the non-unit detection efficiency on unconditional waiting time distribu-
tions for resonance fluorescence for n = 1− 4. The distribution approach the coherent limit
as η decreases, this can be seen through figures (a)-(e) where the dashed curve represents
coherent light.

and unconditional wait times distributions. For instance, wn(τ) for the first photoelectric

detection is given as

w1(τ) =
ηβΩ2e−βτ+(∆1+∆2)τ

3(∆2
1 +∆1∆2 +∆2

2)
×[

1− 2

√
∆2

1 +∆1∆2 +∆2
2

∆2 −∆1

e−(∆1+∆2)3τ/2 sin

(
∆2 −∆1

2

√
3τ + θ1

)]
. (6.27)
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Suppose we take the limit Ω = β in Eq. (6.27). We then have that ∆1 = 0, ∆2 = βµ where

µ = (1− η)1/3, and θ1 =
π
6
. Then,

w1(τ) =
ηβ

3µ2
e−βτ(1−µ)

[
1− 2e−

3
2
βµτ cos

[√
3

2
µβτ − π

3

]]
. (6.28)

Furthermore, using Eq. (6.9) it follows that

P1(τ) =
ηβe−βτ(1−µ)

9µ2

[
1 + µ+ µ2

− 2e−
3
2
βµτ

[[
1− µ

2
− µ2

2

]
cos

[√
3

2
µβτ − π

3

]
+ µ(µ− 1)

√
3

2
sin

[√
3

2
µβτ − π

3

]]]
. (6.29)

Observe that Eq. (6.29), is not 0 when τ = 0. For η ≪ 1, it follows that w1(τ)/η ≈ β
3
g(2)(τ)

and P1(τ)/η ≈ β
3
. Hence, we have that g1(τ) ≈ g(2)(τ). Therefore, the small quantum

efficiency limit is equivalent to a small time approximation in our distributions. At τ = 0,

g(2)(0) = 0. The previous findings agree with those of [8]. On an additional note, since

wn(0) = 0, the function gn(τ) can be shown to always satisfy gn(0) = 0 for any n > 0 in the

non-unit detection efficiency case.

Consider the cases Ω2

β2 ≪ 1 and Ω2

β2 ≫ 1 when η ∼ 1 (quantum efficiency is close to but not

one) and the case η ≪ 1 (the cases B3 < 0, B3 = 0, and B3 > 0 have interesting implications

but we do not mention those in these thesis since they deviate from our main scope). In the

case η ≪ 1, regardless of the strength of the field, the distributions for wn(τ) and Pn(τ)

are very close qualitatively to the distributions for coherent light, with the exception that

w1(0) = 0. When the field is small and the detection efficiency is not so small, we can still

see that the anti-bunching effect of fluorescent photons has not been completely watched

out, however, as either the field become weaker or quantum efficiency very small, one just

expects a random photoelectric-count sequence.

Let us now discuss the strong field Ω2

β2 ≫ 1 case and the unit detection efficiency not

far from 1 when the wait time τ is not so small. In this case, we can use the very useful

approximation ∆1 ≈ −ω′ + δ, ∆2 ≈ ω′ + δ and θ1 ≈ π
2
, where we have defined ω′ ≈ − Ω√

3

and δ ≈ β
2
(1 − η). In principle, we can say that the fundamental frequencies ∆1 and ∆2
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experience a shift due to the introduction of a non-unit detection efficiency in the strong

field regime. It then follows by defining R = Ω/β and ξ =

√
R2+ 3

4
(1−η)2

R that wn(τ) takes the

form

wn(τ) =
ηnβ(βτ)n−1e−βτ

(n− 1)!ξ2n

[
eβ(1−η)τ + (−1)n cos(Ωτ)e−

1
2
β(1−η)τ ξn

2n−1

]
+O(R−1) (6.30)

Where again we assume the expression to be useful for times that are not so small. Setting

η = 1 in the above expression gives Eq. (6.18) back. Additionally, to test that the distribution

is close to normalization for strong fields, we have that integration of Eq.(6.30) yields

1

ξ2n
+ 2

[
−η

ξ(3− η)
√

1 + 4R2

(3−η)2

]n
cos

[
n arctan

(
2R
3− η

)]
,

and it is straight forward to show that asR ≫ 1 , ξ → 1 and the above expression approaches

1. If it is desired, we can have Eq.(6.30) divided by the above normalization constant and

use it as normalized wn(τ). We want to remark that, even though one might have the ability

to create a high-intensity driving field, the photoelectric detections are still dominated by η.

As in the case of η = 1, Rabi oscillations die out when n increases according to Eq. (6.30).

When the field is strong and the detection efficiency is very small, we then again get statistics

that resemble that of coherent light. In the case of Pn(τ) refer to Figure 6.2 for the effect of

non-unit detection on Pn(τ).

We can now compute the average of wait times and standard deviation for a resonance

fluorescence from a two level atom. But first, let us make a quick diversion. We remark that

in the case of thermal light and squeezed light from a DPO, the exact expressions for averages

of wait times τ and τ 2 in terms wn(τ) and Pn(τ) were rather complicated. Consequently,

computation of average and variance of wait time τ were notoriously involved. As we will

show in the remaining of this section, the computations for the mean and variance of wait

time τ for the resonance fluorescence from a two level atom becomes more accessible since we

have a close form for the Laplace transforms for wn(τ) and of course Pn(τ). First, we desire

to calculate the average of τm with respect to Eq. (6.10) where m denotes a positive integer
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m > 0. There is a problem if we decide immediately integrate τm against Eqs. (6.10)-(6.12).

The resulting expressions cannot be easily summed. However, an indirect way of finding the

average of τm is given by

⟨τm⟩wn = (−1)m
∂m

∂sm
w̃n(s)

∣∣∣∣
s=0

, (6.31)

where w̃n(s) is given by Eq. (6.5). Since we know exactly the form of w̃n(s) obtaining averages

and variances for waiting times poses no challenge.

Consider first the case Ω = β and η = 1. We obtain that

⟨τm⟩wn,Ω=β =
m!

βm

(
3n+m− 1

m

)
. (6.32)

Also, more generally

⟨τ⟩wn =
n

η⟨I⟩ss
, (6.33)

where ⟨Î⟩ss = βΩ2

(Ω2+2β2)
is the steady state mean photon-flux and

⟨τ 2⟩wn =
n

(η⟨Î⟩ss)2

[
n+ 1− 6ηβ2Ω2

(Ω2 + 2β2)2

]
. (6.34)

This leads to the variance

⟨∆τ 2⟩wn =
n

(η⟨Î⟩ss)2

[
1− 6ηβ2Ω2

(Ω2 + 2β2)2

]
. (6.35)

Furthermore, we can obtain averages of wait times with respect to Pn(τ) by means of the

formula

⟨τm⟩Pn =
m(m− 1)

(Ω2 + 2β2)
⟨τm−2⟩wn − 3βm

(Ω2 + 2β2)
⟨τm−1⟩wn + ⟨τm⟩wn . (6.36)

Above, it is evident that ⟨1⟩Pn = ⟨1⟩wn , showing in fact that if wn(τ) is normalized and so is

Pn(τ).

Using the results above we have that the average of wait time and squared wait time
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Figure 6.3: Conditional and Unconditional variance of wait time τ for the photodetections
n = 1 − 4 for resonance fluorescence. Notice as in the large field limit, each variance ap-
proaches its corresponding n value.

with respect to Pn(τ) are

⟨τ⟩Pn =
n

η⟨Î⟩ss

[
1− 3ηβ2Ω2

n(Ω2 + 2β2)2

]
(6.37)

and

⟨τ 2⟩Pn =
n(n+ 1)

(η⟨Î⟩ss)2
+

2

Ω2 + 2β2

[
1− 6nβ

η⟨Î⟩ss

]
. (6.38)

The variance is therefore

⟨∆τ 2⟩Pn = ⟨∆τ 2⟩wn +
2Ω2 − 5β2

(Ω2 + 2β2)2
. (6.39)

From the above formulations, we note that for a very weak field Ω2

β2 ≪ 1, ⟨τ⟩wn , ⟨τ⟩Pn , ⟨τ 2⟩wn ,

and ⟨τ 2⟩Pn become very large giving rise to very large wait time variance with respect to

both wn(τ) and Pn(τ). This means that the two level atom that is not at all excited and the

photo-emissions incident on the photo detector are very few, the average wait time for any of

its nth photons becomes infinite since it is extremely unlikely the atom will be spontaneously

excited and therefore it does not decay to its lowest energy state.

In the special case that Ω = β, ⟨∆τ 2⟩wn = 3n
η2β2 (3 − 2η) which implies that ⟨∆τ 2⟩wn >
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⟨∆τ 2⟩Pn . Lastly, we consider the strong field limit, Ω2

β2 ≫ 1. Previous formulas indicate that

lim
Ω/β→∞

ηβ⟨τ⟩wn = n, (6.40)

lim
Ω/β→∞

η2β2⟨τ 2⟩wn = n(n+ 1). (6.41)

These two limits lead to

lim
Ω/β→∞

η2β2⟨∆τ 2⟩wn = n. (6.42)

For fields strong enough, we expect that the average time of detecting the nth photon is

exactly the sum of n times the decay rate of a two level atom β−1.
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Chapter 7

Summary

7.1 Conclusion

We have discussed and introduced the concept of light field and its use in coherence functions.

The coherence of all orders offer means for which an arbitrary light field can be tested

theoretically and with development and effort one can experimentally show its true physical

nature. Generally speaking, a light field does not necessarily have to be characterized as

a stationary signal in the wide-sense but it may be thought of as any type of stochastic

signal. We have remarked the importance of knowing which type of light signal one deals

with, theoretically or experimentally, in order to explore the limitations of the theoretical

apparatus used to understand light. Taking into consideration general statistical properties

of any light signal, we have derived expressions that are of great help in order to approach

the problem of describing the statistical properties related to time of a photon sequence

as accurately as possible. Quantities such as the second order correlation functions and

generating functions are necessary tools we have adapted to our work in order to facilitate

the express understanding of other derived quantities that are essential in understanding

the temporal statistics of photon sequences. These other quantities are factorial moments,

photoelectric count probabilities, the Mandel’s Q parameter, and generalized unconditional

and conditional wait time distributions.

A large portion of this thesis, four entire chapters, were devoted to the generalized wait

time distributions of an nth photoelectric detection. The wait time distributions are termed

unconditional and conditional depending on how we have started our search for the nth

photoelectric detection. If we begin the counting process of a photon sequence at an arbitrary

time, the wait time distribution is defined as unconditional. If starting the counting process is

restricted/conditioned to a first photoelectric detection, the wait time distribution is defined

as conditional. Contrary to any normalized order of coherence, the wait time distributions
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depend on the efficiency of detection. If the efficiency of a detector is perfect, then no

distinction between photo-emission of a source and photo-detection needs to be made. On

the other hand, the effect of a detection efficiency less than unity is to degrade the photon

sequence by deleting photons from a photo-emission sequence randomly. For a very small

detection efficiency, enough photons from a photo-emission sequence have been deleted so

that in turn the photon-emission sequence is indistinguishable from one emitted by a coherent

source.

Our treatment of generalized wait time distributions is first devoted to coherent light,

thermal light, squeezed light from a degenerate parametric oscillator, and resonance fluores-

cence from a single coherently riven two level atom. We consider the source of thermal light

to be a laser operating below threshold which allows us to place thermal light in the same

footing for compassion with light from the degenerate parametric oscillator and light from

he resonant fluorescent atom. On the same mark, the degenerate parametric oscillator is also

assumed to be operating below threshold.

In all three cases we have mentioned, different regimes were explored. For example, for

thermal light and the degenerate parametric oscillator, small and large mean photon number

limits are considered, and expressions are derived correspondingly. In both cases, the small

mean photon regime number reveals the pair like behavior of the photon sequence from both

thermal light and the DPO. The pair-like property is carried over by both unconditional

and unconditional wait time distributions and time averages with respect to wait times. The

large mean photon number regime also reveals the bunching property of thermal and light

from the DPO. In addition, for the case of the resonance fluorescence from a two level atom,

small and large field regimes were also discussed. We have seen that as the field interacting

with the two level atom becomes weaker the photon sequence emitted by the atom becomes

random, coherent. On the other extreme, when the field is large, the wait time distributions

are modulated by Rabi frequencies. Overall, the photon sequences produced by a coherently

riven two level atom are shown to be anti-bunched as compared to the bunched photon
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sequences of a single-mode laser operating below threshold and the sub-threshold DPO. We

also discussed the effect of non-unit detection efficiency. In the case of thermal light and DPO

and as well as the two level atom we see that as η decreases, the distributions approach that

of coherent light. We note that deeper notion of the statistical properties of thermal light,

light from the DPO, and resonance fluorescence from a two level atom can be extracted from

both generalized unconditional and conditional wait time distributions for the first, second,

third, and so on, photoelectric detection. We demonstrated that new insights can be gained

due to the understanding of generalized unconditional and conditional wait times for each

source of light as well as insights into their sub-Poissonian, Poissonian and super-Poissonian

statistical descriptions.

7.2 Future Work

Part of my work was also based on the heterodyction of squeezed light from a DPO with

that of a local oscillator which is purely coherent. We studied the transient and steady-state

regimes for a heterodyne DPO. We will also work towards the description of the photon count

probabilities, the generalized unconditional and the conditional wait time distributions for

this source of light.

The current direction we hope to take is in the area of photonic quantum computing. This

is so, since results found in my recent work could open the possibility to using of squeezed

light from a DPO to perform heterodyction and possibly enhance certain features of the

DPO photon sequence with the possibility of retaining statistical properties of the other

photon sequence.

My hope is that I can continue a fruitful collaboration with professors Reeta Vyas and

Surendra Singh and find out how useful heterodyction is in photonic quantum computing and

quantum computing in general, specially using the DPO as main source of squeezed light.

However, other sources of squeezing could be considered in order to demonstrate advantage

as far as it goes on enhancing or retaining particular properties of a desired portion of a
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photon sequence signal.
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the Université Libre de Bruxelles, October 28 to November 4, 1991, volume 18. Springer
Science & Business Media, 2009.

[15] Howard J Carmichael. Statistical methods in quantum optics 2: Non-classical fields.
Springer Science & Business Media, 2009.

[16] PL Kelley and WH Kleiner. Theory of electromagnetic field measurement and photo-
electron counting. Physical Review, 136(2A):A316, 1964.

64



[17] L. Mandel. Sub-poissonian photon statistics in resonance fluorescence. Opt. Lett.,
4(7):205–207, Jul 1979.

[18] AB Dodson and Reeta Vyas. Homodyne photon statistics of the subthreshold degenerate
parametric oscillator. Physical Review A, 47(4):3396, 1993.

[19] Reeta Vyas and Surendra Singh. Waiting-time distributions in the photodetection of
squeezed light. Physical Review A, 38(5):2423, 1988.

[20] HF Arnoldus and G Nienhuis. Photon statistics of fluorescence radiation. Optica Acta:
International Journal of Optics, 33(6):691–702, 1986.

[21] Henk F Arnoldus and Robertsen A Riehle. Conditional probability densities for photon
emission in resonance fluorescence. Physics Letters A, 376(38-39):2584–2587, 2012.

[22] Henk F Arnoldus and Robertsen A Riehle. Waiting times, probabilities and the q factor
of fluorescent photons. Journal of Modern Optics, 59(11):1002–1015, 2012.

[23] D. Lenstra. Photon-number statistics in resonance fluorescence. Phys. Rev. A, 26:3369–
3377, Dec 1982.

[24] J. A. McFadden. On the lengths of intervals in a stationary point process. Journal of
the Royal Statistical Society. Series B (Methodological), 24(2):364–382, 1962.

[25] George B Arfken, Hans J Weber, and Frank E Harris. Mathematical methods for physi-
cists: a comprehensive guide. Academic press, 2011.

[26] Hermann Haken. Laser theory. In Light and Matter Ic/Licht und Materie Ic, pages
1–304. Springer, 1984.

[27] Gabriel Bédard. Photon counting statistics of gaussian light. Physical Review,
151(4):1038, 1966.

[28] E Jakeman and ER Pike. The intensity-fluctuation distribution of gaussian light. Jour-
nal of Physics A: General Physics, 1(1):128, 1968.

[29] Fredrik Brange, Paul Menczel, and Christian Flindt. Photon counting statistics of a
microwave cavity. Physical Review B, 99(8):085418, 2019.

[30] Reeta Vyas and Surendra Singh. Photon-counting statistics of the degenerate optical
parametric oscillator. Physical Review A, 40(9):5147, 1989.

[31] PD Drummond, KJ McNeil, and DF Walls. Non-equilibrium transitions in sub-second
harmonic generation. Optica Acta: International Journal of Optics, 27(3):321–335, 1980.

[32] M Wolinsky and HJ Carmichael. Quantum noise in the parametric oscillator: from
squeezed states to coherent-state superpositions. Physical review letters, 60(18):1836,
1988.

65



[33] Reeta Vyas and Surendra Singh. Quantum statistics of broadband squeezed light. Optics
letters, 14(20):1110–1112, 1989.

[34] Jianming Huang and Prem Kumar. Photon-counting statistics of multimode squeezed
light. Physical Review A, 40(3):1670, 1989.

[35] Milton Abramowitz and Irene A. Stegun. Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables. Dover, New York, ninth dover printing,
tenth gpo printing edition, 1964.

[36] A.N. Kolmogorov, S.V. Fomin, and S.V. Fomin. Elements of the Theory of Functions
and Functional Analysis. Number v. 1 in Dover books on mathematics. Dover, 1999.

[37] Jesús Guillera and Jonathan Sondow. Double integrals and infinite products for some
classical constants via analytic continuations of lerch’s transcendent. The Ramanujan
Journal, 16(3):247–270, jul 2008.

[38] HJ Carmichael and DF Walls. A quantum-mechanical master equation treatment of the
dynamical stark effect. Journal of Physics B: Atomic and Molecular Physics, 9(8):1199,
1976.

[39] HJ Kimble and L Mandel. Theory of resonance fluorescence. Physical Review A,
13(6):2123, 1976.

[40] Surendra Singh. Antibunching, sub-poissonian photon statistics and finite bandwidth
effects in resonance fluorescence. Optics Communications, 44(4):254–258, 1983.

[41] G. S. Agarwal. Time factorization of the higher-order intensity correlation functions in
the theory of resonance fluorescence. Phys. Rev. A, 15:814–816, Feb 1977.

66


	Photon Counting Statistics of Classical and Quantum Light Sources
	Citation

	Introduction
	Background
	Quantization of the Electromagnetic Field and its Point Process Description
	Coherence Functions for The Quantized Field
	Generating Function and Factorial Moments of a Photon Sequence Process 
	 Mandel's Q Parameter 
	Generalized Wait Time Distributions
	Unconditional and Conditional Average and Variance of Wait Time  of the nth Photoelectric Detection

	Counting statistics of Coherent Light 
	Photon Counting Statistics of Thermal Light
	Small  Limit 
	Large  Limit

	Photon Counting Statistics of the Degenerate Parametric Oscillator
	Description of the DPO
	Small Mean Cavity Photon Number 
	Large Mean Photon Number  1
	Effect of Non-Unit Detection Efficiency

	Photon Counting Statistics of Resonance Fluorescence of Two Level Atom
	Unit Detection Efficiency = 1
	Non-Unit Detection Efficiency Effect

	Summary
	Conclusion
	Future Work

	Bibliography

