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Abstract 

The problem of balancing and autonomously navigating a two-wheel mobile robot is an 

increasingly active area of research, due to its potential applications in last-mile delivery, 

pedestrian transportation, warehouse automation, parts supply, agriculture, surveillance, and 

monitoring. This thesis investigates the design and control of a two-wheel balancing mobile robot 

using three different control strategies: Proportional Integral Derivative (PID) controllers, Sliding 

Mode Control, and Deep Q-Learning methodology. The mobile robot is modeled using a dynamic 

and kinematic model, and its motion is simulated in a custom MATLAB/Simulink environment. 

The first part of the thesis focuses on developing a dynamic and kinematic model for the mobile 

robot. The robot dynamics is derived using the classical Euler-Lagrange method, where motion 

can be described using potential and kinetic energies of the bodies. Non-holonomic constraints are 

included in the model to achieve desired motion, such as non-drifting of the mobile robot. These 

non-holonomic constraints are included using the method of Lagrange multipliers. Navigation for 

the robot is developed using artificial potential field path planning to generate a map of velocity 

vectors that are used for the set points for linear velocity and yaw rate. 

The second part of the thesis focuses on developing and evaluating three different control 

strategies for the mobile robot: PID controllers, Hierarchical Sliding Mode Control, and Deep-Q-

Learning. The performances of the different control strategies are evaluated and compared based 

on various metrics, such as stability, robustness to mass variations and disturbances, and tracking 

accuracy. The implementation and evaluation of these strategies are modeled tested in a 

MATLAB/SIMULINK virtual environment.   
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CHAPTER 1: INTRODUCTION 

1.1 Background   

The global market for mobile robotics is poised for significant expansion, with projections 

estimating an increase from $9.34 billion in 2019 to a staggering $64.08 billion by 2026. This 

impressive growth trajectory represents a compound annual growth rate (CAGR) of 12.9% [1]. 

One of the key drivers of this growing market has been the COVID-19 pandemic, which laid bare 

the vulnerabilities inherent in many industries and underscored the necessity for automation in 

numerous processes. As the pandemic prompted widespread lockdowns and mass quarantines to 

curb the transmission of the virus, industries heavily reliant on human labor faced unprecedented 

disruptions. Many were either forced to shut down completely or experienced frequent operational 

interruptions due to personnel exposures. In response to these challenges, substantial investments 

poured into the research and development of autonomous systems, with a particular emphasis on 

autonomous mobile robots [2]. Several other factors have also contributed to the rapid growth of 

the mobile robotics market. Among them are the declining costs of computer hardware (before the 

COVID-19 global pandemic), which has made the technology more accessible and affordable for 

a broader range of applications. Additionally, a resurgence in space exploration has spurred 

innovation and interest in mobile robotic systems designed for extraterrestrial environments. 

Furthermore, the need to perform hazardous tasks safely and efficiently has led to the development 

and deployment of mobile robots in industries such as mining, disaster relief , and defense [3].  

Autonomous mobile robots are experiencing widespread adoption across a diverse range of 

sectors, including healthcare, military and defense, last-mile delivery, and transportation. One 

particularly intriguing type of mobile robot is the two-wheel, balancing robot (TWBR), which 

bears similarities to the classic Inverted Pendulum system. The Inverted Pendulum system has 
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long been a subject of extensive research due to its inherently unstable and nonlinear behavior. 

Unlike the Inverted Pendulum with its single degree of freedom, the TWBR boasts four degrees 

of freedom relative to a fixed global frame: x, y, pitch, and yaw [4]. The enhanced maneuverability 

of the TWBR makes it an optimal choice for navigating narrow spaces, such as hallways, 

sidewalks, and warehouses. This adaptability has led to its growing popularity in various 

applications, including last-mile delivery, pedestrian transportation, and warehouse automation. 

The unique properties of the TWBR have also sparked an upsurge in research interest, particularly 

in the development of control strategies for the system. Several similarly underactuated, unstable 

systems have already been successfully integrated into a range of technologies outside of 

academia. Notable examples include SpaceX's Falcon 9 landing function, the Segway PT personal 

transporter, and Boston Dynamics' Handle robot [5 - 7] . Consequently, the study and development 

of novel control strategies for the TWBR are of significant importance in further advancing the 

field of mobile robotics and its real-world applications.  

1.2 System Configuration and Variables Definition 

Variables  

• 𝑥 Position of the chassis in the �̂� direction of a specified frame 

• 𝑦 Position of the chassis in the �̂� direction of a specified frame 

• 𝑧 Position of the chassis in the �̂� direction of a specified frame 

• �̂� x axis in a specified frame 

• �̂� y axis in a specified frame 

• �̂� z axis in a specified frame 

• 𝛼 
Pitch angular position of the body center of mass about the local frame 
y-axis 

• 𝜃 Yaw angular position of the robot in the about the global frame z-axis 

• m Mass of the body 
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• M Mass of each wheel 

• f Gravitational acceleration 

• L Distance from the concentric wheel axis to the body center of mass 

• (𝐼𝑥 , 𝐼𝑦 , 𝐼𝑧) 
Mass Moment of Inertia of the body about the chassis frame’s  �̂�, �̂�, �̂� 

axes 

• (𝐾, 𝐽, 𝐾) 
Mass Moment of Inertia of each wheel, about the chassis frame’s �̂�, �̂�, �̂� 

axes 

• d Distance between the wheel centers of mass 

• r Wheel radius 

• �⃗�  Position vector 

• �⃗⃗�  Rotational velocity vector 

• 𝑣  Translational velocity vector 

• 𝛾 Wheel angular position 

• R Instantaneous radius of curvature 

• L Lagrangian Function 

• T Kinetic Energy Function 

• V Potential Energy Function 

• F Force 

• 𝜆 Lagrange multipliers 

• 𝜇 Coefficient of friction of the wheels 

• 𝑢 Input Force 

• 𝜙 Input Torque  

• q Generalized Coordinates 

• Q Generalized Forces 

• C Generalized Constraint Forces 

• a Non-Holonomic Constraint Function 

• 𝑴 Inertial Matrix 

• 𝑮 Gravitational Matrix 

• 𝑪 Coriolis Matrix 

• 𝑫 Damping Matrix 
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• 𝑩 Control Gain Matrix 

• 𝝉 Control Input Tensor 

 

Subscripts  

• L Left Wheel 

• R Right Wheel 

• w Wheel  

• c Chassis 

• b Wheel 

• G Global Frame 

• C Chassis Frame 

• B Body Frame 

• trans Translational 

• rot Rotational  

• �̂� x axis in a specified frame 

• �̂� y axis in a specified frame 

• �̂� z axis in a specified frame 

 

The two-wheel balancing robot represents a complex system that presents unique design 

challenges due to its underactuated nature. With limited direct control over all degrees of freedom 

(DOF), the system must leverage its inherent dynamics to maintain balance. Specifically, in the 

robot's chassis frame, the TWBR has three degrees of freedom: forward position (𝑥), pitch angle 

(α), and yaw angle (θ). It is important to note that the pitch angle is highly coupled with the x 

position state variable, implying that changes in pitch will influence position, and vice versa. To 

better understand the system's design and dynamics, a computer-aided design (CAD) assembly of 

the two-wheel balancing robot was developed using SOLIDWORKS 2021, as depicted in Fig. 1. 

This enables tangible visualization of the system and extraction of essential mass properties, such 

as mass, mass moment of inertia, and center of mass, which will play a crucial role in the model 
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development process in subsequent sections of the thesis. The system comprises of two wheels 

actuated by DC motors. Unlike most "two-wheel" actuated systems, there is no caster wheel or 

additional supporting structure to prop the robot up. As a result, the system must rely solely on 

balancing its center of mass above the axle to maintain stability. This necessitates careful 

consideration of the robot's weight distribution, as well as precise control of the motors to achieve 

the required balance.  

Table 1. TWBR Mass and Geometric Properties 

m 6.575 kg 

M 0.2121 kg 

g 9.81 𝑚/𝑠2 

L 0.3895 m 

(𝐼𝑥 , 𝐼𝑦 , 𝐼𝑧̂) (1.128 × 10−1, 1.248 × 10−1, 4.641 × 10−3) 𝑘𝑔 ∙ 𝑚2  

(𝐾, 𝐽, 𝐾) (5.229 × 10−3, 2.651 × 10−4, 5.229 × 10−3) 𝑘𝑔 ∙ 𝑚2  

d 0.15 m 

r 0.11 

 

The mass properties obtained from SOLIDWORKS are provided in Table 1, where m represents 

the mass of the body, M denotes the mass of each wheel, L signifies the normal distance from the 

body to the chassis, 𝐼𝑥 , 𝐼𝑦 , and 𝐼𝑧̂ are the mass moments of inertia of the body about the local �̂�, �̂�, 

and �̂� axes respectively, and 𝐾, J, and 𝐾 are the mass moments of inertia of the wheels about the 

chassis local �̂�, �̂�, and �̂� axes respectively. 
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1.3 Objective 

The main objectives of this research are to develop a dynamic model for the two-wheel 

balancing mobile robot that accurately describes its motion and trajectories and to design and 

evaluate control strategies that can effectively stabilize the robot to achieve the desired motion. 

The evaluated control systems include PID, Sliding Mode Control, and Deep Q-Learning 

methodology. Through this research, these questions were identified and addressed: 

• Can we apply these controllers to the TWBR for successful autonomous navigation? 

• What are the advantages and disadvantages that each controller has over the others? 

• Are these controllers well-suited for this application? 

• What can be done to improve the performance of these controllers?  

 

Figure 1. CAD Model of Two-Wheel Balancing Robot 
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1.4 Approach 

To answer the questions posed, we begin by developing a model for our system that using system 

its kinematics and dynamics. Obtaining the equations of motion for the Two-Wheeled Balancing 

Robot (TWBR) is complex, so we utilize the MATLAB Symbolic Math toolbox to perform the 

intricate algebraic substitutions and solve for the equations of motion in their highest order for the 

state variables. The equations of motion are then implemented in Simulink and integrated to obtain 

the variables of interest, validate the model, and make predictions. We then create a simplified  

version of the path planning algorithm using Artificial Potential Fields to establish set points for 

the controllers to follow. After that, we develop control architectures for PID, Sliding Mode 

Control, and Deep Q-learning methodology. These controllers are tested and evaluated to 

determine their effectiveness in controlling the TWBR. 

1.5 Literature Review 

1.5.1 System Modeling 

There are multiple approaches to modeling the system. These approaches include but not 

limited to Newtonian mechanics, Kane’s mechanics, or Lagrange mechanics. Using Newton’s 

laws is a classical approach to dynamic modeling based on the concept of defining all external 

forces acting on the system. This approach is well suited for simple systems, but due to forces 

being represented as vector quantities and the necessity of including reaction forces, dynamic 

modeling complex systems using Newtonian mechanics can quickly become very involved. The 

Lagrange formulation uses the concept of kinetic and potential energies to derive the equations of 

motion. Lagrangian mechanics relies fundamentally on a quantity called the Lagrangian function, 

which is the difference between kinetic and potential energies. Due to its less-involved 

formulation, Lagrangian mechanics is well suited for constrained multibody systems, such as ours 
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[8]. However, for systems such as wheeled-mobile robots, non-holonomic constraints must be 

considered in order to accurately describe the motion. Non-holonomic systems have constraints 

on their motion. For example, for the two-wheel drive mobile robot, the robot cannot travel 

laterally in the axis normal to its wheel axis. This is what makes it considered a non-holonomic 

system. In order to account for non-holonomic constraints, we must utilize Lagrange multipliers, 

which represent reaction forces, such as friction (non-conservative force), for our system [9]. 

Therefore, we derive the Dynamic model of the TWBR using Euler-Lagrange approach. There are 

existing publications detailing different types of controllers used for TWBR with a few different 

methods of deriving its dynamic model. Many designs include a third castor wheel to keep it 

stabilized, eliminating a degree of freedom for the system. This significantly simplifies the 

dynamic model as well as the control model for the robot. The existence of a castor wheel can 

impede the robot’s maneuverability in very narrow or cluttered spaces. The TWBR described by 

this research has no castor wheel and is therefore highly unstable. 

1.5.2 Path Planning 

Artificial potential fields will be used for path planning due to their simplicity, low 

computational cost, and effectiveness for generating trajectory set points for mobile systems. There 

are problems with Artificial Potential Field algorithms that we don’t address here, since the scope 

of this project is focused more on dynamic modeling and controller design rather than developing 

a robust path planning algorithm. However, solutions to the problems with Artificial Potential 

Fields are well researched and will be discussed in this section along with the general idea being 

the algorithm itself.  

The Artificial Potential Field algorithm consists of assigning repulsive potential fields to 

obstacles and an attractive potential field to the target. The potential field map can be represented 
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as a vector field where the magnitude of the vector is interpreted as velocity magnitude and the 

desired yaw angle can be extracted from the vector angle (relative to the global frame). One major 

issue with Artificial Potential Fields is the problem of local minima. Some obstacle geometries 

such as the one shown in Fig. 1 can generate a local minimum that essentially traps the robot. 

There are many other methods for this, such as one proposed by Lee & Park, where they place 

virtual obstacles at or near local minima to alter the potential field [10]. Iswanto et al. propose a 

modified Artificial Potential Field algorithm for a Quadrotor unmanned aircraft where the potential 

force at locations of local minima can be increased until the aircraft is repulsed to escape [11]. Lee 

et al. proposes a solution to local minima by placing an attractive potential field that draws the 

robot out of the local minimum. Their method is dubbed New Point-APF (NP-APF) [12]. Bounini 

et al. propose a modified APF method that utilizes the well-known A-Star search algorithm by 

adding a repulsive potential field to the local minima and searching for a feasible path using the 

A-Star technique [13].  

1.5.3 Controllers 

There are many controller options for this application of the TWBR. Matthew et al. propose a 

controller design an optimized PID controller design of the TWBR. However, their controller is 

designed for pitch stability only, and it neglects the other control variables needed for autonomous 

navigation [14]. Jang et al. show a gain scheduling approach to the design of fuzzy logic 

controllers, where the feedback gains are changed based on the Takagi-Sugeno fuzzy controller, 

which uses nested “if-then” statements to generate the weights [15]. They simulate their controller 

method for the cart-pole system as well as the Ball-Beam problem, both highly unstable, nonlinear 

systems. Deep Q-Learning was originally developed by Mnih et al. in their manuscript “Playing 

Atari with Deep Reinforcement Learning”. The authors introduce the use of experience replay, 
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which randomly samples previous experiences when updating the neural network. This allowed 

for a much more stable and efficient learning process. They use Convolutional Neural Networks 

to estimate the quality function. This makes it highly suited for high dimensional observation 

spaces with a discrete, limited action space [16]. Carlucho et al. develop an adaptive PID controller 

for mobile robots, that uses a DQN agent trained to change gain values to achieve desired result s. 

This is similar to gain scheduling; however, the gains are adaptively scheduled by an intelligent  

agent [17]. 
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CHAPTER 2: TWO-WHEEL BALANCING ROBOT SYSTEM MODEL 

2.1 Coordinate Frames 

Before modeling, it is crucial to define and understand the three coordinate frames associated 

with the system. For the robot to navigate through a workspace, or even to understand its dynamics, 

its position and orientation in space must be known relative to some reference frame. For the 

purpose of our model, the system is defined as consisting of three rigid bodies: Left wheel, Right 

wheel, and the body, denoted by the subscript L, R, and b, respectively. There are three coordinate 

frames associated with the robot: the fixed global frame denoted by the subscript G, the chassis 

frame denoted by C, and the robot body frame denoted by B. The global frame is fixed in space 

and is used as a reference frame for describing the position and orientation of the robot  and its 

environment. The chassis frame is attached to the robot's base and is used to help describe the 

orientation of the robot. The robot body frame is attached to the robot's base and is also used to 

describe the orientation of the robot's body. By understanding these coordinate frames, the 

TWBR’s kinematics and dynamics can be modeled, and we can plan and execute trajectories that 

allow the robot to perform tasks in its environment. The rotation from frame 𝐶 to 𝐵 by angle 𝛼 is 

given by the rotational matrix. 

 𝑅𝐶
𝐵 (𝛼) = [

cos(𝛼) 0 −sin(𝛼)
0 1 0

sin(𝛼) 0 cos(𝛼)
] (1) 
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Figure 2 shows the three coordinate systems associated with the robot: the fixed global frame, 

chassis frame, and the body frame denote. The figure provides a visual representation of the 

orientation and relationship between these frames. �̇� is used to denote the individual wheel 

 

Figure 2. Two-Wheel Balancing Robot System Coordinate Frames 
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velocities, 𝑃 is used to denote the position vectors of each rigid body, and �⃗⃗�  denotes the rotational 

vectors, which are described in equation (2) 

 �⃗⃗� 𝑐 = [
0
0
�̇�
]; �⃗⃗� 𝑏 = [

0
�̇�
0
] (2) 

These rotational vectors describe motion relating to the pitch rate, �̇�, and the yaw rate, �̇�. By 

understanding how these frames are oriented and related to each other, the robot's movement  can 

accurately be modeled and plan trajectories that allow it to perform tasks in its environment. [18] 

2.2 Kinematic Constraints 

  

Figure 3. TWBR Configuration in Global Navigation Plane 
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The TWBR is subject to both Holonomic and non-Holonomic constraints. Holonomic constraints 

are geometric constraints on configuration, which reduce the total number of controllable degrees 

of freedom [19].  Non-holonomic constraints constrain the motion of a system. There are three 

holonomic or geometric constraints relating to the left wheel, right wheel, and the body to the 

chassis center coordinate. As shown in Fig. 3, the center of mass of the three rigid bodies are 

geometrically constrained to the chassis center by the following holonomic conditions, with respect 

to the global frame: 

 𝑝𝑏 = [

𝑥𝑏

𝑦𝑏

𝑧𝑏

]

 

= [
𝑥𝐶 + 𝐿sin 𝛼 cos 𝜃
𝑦𝐶 + 𝐿sin 𝛼 sin 𝜃

𝐿 cos 𝛼

] (3) 

 𝑝𝐿 = [

𝑥𝐿

𝑦𝐿

𝑧𝐿

]

 

= [

𝑥𝐶 −
𝑑

2
sin 𝜃

𝑦𝐶 +
𝑑

2
cos 𝜃

0

] (4) 

 𝑝𝑅 = [

𝑥𝑅

𝑦𝑅

𝑧𝑅

]

 

= [

𝑥𝐶 +
𝑑

2
sin 𝜃

𝑦𝐶 −
𝑑

2
cos 𝜃

0

] (5) 

The two non-holonomic constraints are “pure rolling” of the wheels, and “non-drifting”. A pure 

rolling constraint occurs when a wheel rolls without slipping or skidding along a surface. The pure 

rolling constraints can be represented using the following equations. 
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 �̇�𝐿 𝑐𝑜𝑠 𝜃 + �̇�𝐿 𝑠𝑖𝑛 𝜃 = 𝑟�̇�𝐿   (6) 

 �̇�𝑅 cos 𝜃 + �̇�𝑅 sin 𝜃 = 𝑟�̇�𝑅  (7) 

Equations (6) and (7) can be altered by substituting in equations (4) and (5) to result in the following 

relationships. 

  �̇�𝑐 cos 𝜃 +  �̇�𝑐 sin 𝜃 − (
𝑑

2
) �̇� − 𝑟�̇�𝐿 = 0 (8) 

 �̇�𝑐 cos 𝜃 + �̇�𝑐 sin 𝜃 + (
𝑑

2
) �̇� − 𝑟�̇�𝑅 = 0 (9) 

 

Figure 4. TWBR Velocity Relationships 
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By referring to Fig. 4, we can see how equations (6) and (7) can be related to the chassis center. 

The mapping of the chassis velocity from the global frame to the chassis frame can be summarized 

by the following relationship: 

 �̇�𝑐 cos 𝜃 − �̇�𝑐 sin 𝜃 = �̇� (10) 

A non-drifting constraint refers to the constraint that the robot's wheels must not slide or skid along 

their local y-axis, which is perpendicular to the direction of forward motion. The non-lateral drifting 

constraint is represented by zero-velocity in the direction perpendicular to the heading velocity, and 

it is mathematically related using equation (11). 

 �̇�𝑐 sin 𝜃 − �̇�𝑐 cos 𝜃 = 0 (11) 

2.3 Navigational Kinematics 

 For mobile robotics, inverse kinematics is the most appropriate since the motor inputs necessary 

to achieve a desired motion and configuration can be found. We start by relating our linear and 

rotational velocities to wheel angular velocities. Consider the case where the left wheel has a slower 

linear velocity than the right wheel. In this case, the robot will be rotating about a point called the 

instantaneous center of curvature (ICC). The robot’s linear velocity, 𝑣𝑐 , is described by the 

following equation: 

 𝑣𝑐 = �̇�𝑅 (12) 

Where 𝑅  is the distance from the ICC to the midpoint between the two wheels and �̇� is the angular 

velocity of the robot turning. Equation (12) can be changed to describe the wheel velocities both in 

terms of their individual rotational velocities about 𝑦𝑐, and in terms of their rotational yaw velocity 

about the ICC as follows. 

 𝑣 𝐿 = �̇�𝐿 𝑟 =  �̇�(𝑅 + 𝑑) (13) 
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 𝑣 𝑅 = �̇�𝑅𝑟 =  �̇�(𝑅 − 𝑑) (14) 

Solving equation (12) for R and substituting it into equations (13) and (14) will result in the 

following relationships. 

 �̇�𝐿 =  
𝑥̇+�̇�𝑑

𝑟
 (15) 

 �̇�𝑅 = 
𝑥̇−�̇�𝑑

𝑟
 (16) 

Here, we have the inverse kinematic equations that describe our individual wheel velocities written 

in terms of linear velocity and angular yaw velocity. 

2.4 Euler-Lagrange Formulation 

 The Euler-Lagrange method is used to determine the equations of motion using the Lagrangian 

function. 

 𝐿 = 𝑇 − 𝑉 (17) 

L is the Lagrangian function, T is the kinetic energy, and V is the potential energy. We begin by 

describing the kinetic and potential energies of each of the three rigid bodies we have defined. The 

Kinetic energy of our system is categorized by two types, translational and rotational, which is 

given by the subscripts 𝑡𝑟𝑎𝑛𝑠 and 𝑟𝑜𝑡 respectively [20]. 

 𝑇𝑡𝑟𝑎𝑛𝑠 = 
1

2
𝑚((𝑣 𝑏)

𝑇 × 𝑣 𝑏)+
1

2
𝑀((𝑣 𝐿)

𝑇 × 𝑣 𝐿) +
1

2
𝑀((𝑣 𝑅)

𝑇 × 𝑣 𝑅) (18) 

 𝑇𝑟𝑜𝑡 = 
1

2
(�⃗⃗� 𝑏)

𝑇𝐼 𝑏 �⃗⃗� 𝑏 +
1

2
(�⃗⃗� 𝐿 )

𝑇𝐼 𝑤�⃗⃗� 𝐿 +
1

2
(�⃗⃗� 𝑅)

𝑇𝐼 𝑤�⃗⃗� 𝑅   (19) 

Here, 𝑚 is the mass of the body, 𝑀 is the mass of each wheel, and the inertia matrices are 

represented in equations (20) and (21) 

 𝐼 𝑏 = 𝑑𝑖𝑎𝑔{𝐼𝑥 , 𝐼𝑦 , 𝐼𝑧̂ } (20) 
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 𝐼 𝑤 = 𝑑𝑖𝑎𝑔{𝐾, 𝐽, 𝐾} (21) 

By taking the time derivative of equations (3) - (5), we find the velocity vectors of our rigid bodies, 

with respect to the fixed global frame, as: 

 𝑣 𝑏 = [
�̇�𝑏

�̇�𝑏

�̇�𝑏

]

 

= [
�̇�𝐶 + �̇�𝐿 cos 𝛼 cos 𝜃 − �̇�𝐿 sin 𝛼 sin 𝜃

�̇�𝐶 + �̇�𝐿 cos 𝛼 sin 𝜃 + �̇�𝐿 sin 𝛼 cos 𝜃
−�̇�𝐿 sin 𝛼

]  (22) 

 𝑣 𝐿 = [
�̇�𝐿

�̇�𝐿

�̇�𝐿

]

 

= [

�̇�𝐶 − �̇�
𝑑

2
cos 𝜃

�̇�𝐶 − �̇�
𝑑

2
sin 𝜃

0

] (23) 

 𝑣 𝑅 = [

�̇�𝑅

�̇�𝑅

�̇�𝑅

]

 

= [

�̇�𝐶 + �̇�
𝑑

2
cos 𝜃

�̇�𝐶 + �̇�
𝑑

2
sin 𝜃

0

] (24) 

The angular velocities of the three rigid bodies with respect to their moving frames C or B are 

described in (25)-(27). 

 �⃗⃗� 𝑏 
𝐶 = 𝑅(𝛼)𝐶

𝐵 × �⃗⃗� 𝑐 + �⃗⃗� 𝑏 
𝐵 = [

−�̇� sin 𝛼
�̇�

�̇� cos 𝛼

] (25) 

 �⃗⃗� 𝐿 = �⃗⃗� 𝑐 + [
0
�̇�𝐿

0

] = [
0
�̇�𝐿

�̇�

] (26) 

 �⃗⃗� 𝑅 = �⃗⃗� 𝑐 + [
0
�̇�𝑅

0
] = [

0
�̇�𝑅

�̇�

] (27) 

By substituting equations (20) through (27) into equations (18) and (19), we find that our energies 

are given by:  
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𝑇𝑡𝑟𝑎𝑛𝑠 = (𝑀 +
𝑚

2
) �̇�𝑐

2 + (𝑀 +
𝑚

2
) �̇�𝑐

2 + 𝑀�̇�2 𝑑2

4
+

𝑚

2
�̇�2𝐿2 +

𝑚

2
�̇�𝐿2(𝑠2𝛼) + 𝑚�̇�𝑐 �̇�𝐿(𝑐𝛼)(𝑠𝜃) −

𝑚�̇�𝑐 �̇�𝐿(𝑠𝛼)(𝑠𝜃) + 𝑚�̇�𝑐 �̇�𝐿(𝑐𝛼)(𝑠𝜃) + 𝑚�̇�𝑐 �̇�𝐿(𝑠𝛼)(𝑐𝜃)  (28) 

 𝑇𝑟𝑜𝑡 =
𝐼𝑥

2
�̇�2(𝑠2𝛼) +

𝐼�̂�

2
�̇� 2(𝑐2𝛼) +

𝐼�̂�

2
�̇�2 +

𝐽

2
(�̇�𝐿

2 + �̇�𝑅
2) + �̇�2𝐾  (29) 

 𝑉 = 𝑚𝑔𝐿(𝑐𝛼)  (30) 

For convenience, we substitute (𝑐𝛼), (𝑠𝛼), (𝑐2𝛼), and (𝑠2𝛼), for cos(𝛼), sin(𝛼) , cos2(𝛼), and 

sin2(𝛼), respectively. By substituting our Kinetic and Potential energies into equation (17), we can 

formulate our Lagrangian function as follows: 

𝐿 = (𝑀 +
𝑚

2
) �̇�𝑐

2 + (𝑀 +
𝑚

2
) �̇�𝑐

2 + 𝑀�̇�2 𝑑2

4
+

𝑚

2
�̇�2𝐿2 +

𝑚

2
�̇�𝐿2(𝑠2𝛼) + 𝑚�̇�𝑐 �̇�𝐿(𝑐𝛼)(𝑠𝜃) −

𝑚�̇�𝑐 �̇�𝐿(𝑠𝛼)(𝑠𝜃) + 𝑚�̇�𝑐 �̇�𝐿(𝑐𝛼)(𝑠𝜃) + 𝑚�̇�𝑐 �̇�𝐿(𝑠𝛼)(𝑐𝜃) +
𝐼𝑥

2
�̇�2(𝑠2𝛼) +

𝐼�̂�

2
�̇� 2(𝑐2𝛼)+

𝐼�̂�

2
�̇�2 +

𝐽

2
(�̇�𝐿

2 + �̇�𝑅
2) + �̇�2𝐾 − 𝑚𝑔𝐿(𝑐𝛼)   (31) 

With the newly formulated Lagrangian function, we see that it is a function of six generalized 

coordinates 𝑞𝑖, which is given by: 

𝑞1 = 𝑥𝑐 

𝑞2 = 𝑦𝑐  

𝑞3 = 𝛼 

𝑞4 = 𝜃 

𝑞5 = �̇�𝐿 

𝑞6 = �̇�𝑅  
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The Euler-Lagrange method does not inherently account for non-holonomic constraints and non-

conservative forces, such as friction [21]. Therefore, generalized forces and the Lagrange multiplier 

method is employed to include these as follows. 

 
d

dt
(

∂L

∂q̇𝑖
) −

∂L

∂q𝑖
= Q𝑖 + C𝑖 (32) 

Here, 𝑄𝑖 represents the generalized forces such as inputs and non-conservative forces, and 𝐶𝑖 

represents the generalized constraint forces. For 𝑖 = 1,… ,6, we find 𝑄𝑖 to be describe by the 

following: 

𝑄1 = 0 

𝑄2 = 0 

𝑄3 = −(𝑄5 + 𝑄6) 

𝑄4 = 0; 

 𝑄5 = 𝐹𝐿 − 𝜇(�̇�𝐿 − �̇�)  

 𝑄6 = 𝐹𝑅 − 𝜇(�̇�𝑅 − �̇�) (33) 

The wheel friction is represented by 𝜇. The generalized constraint forces are given by: 

 𝐶𝑖 = ∑ 𝜆𝑗𝑎𝑗,𝑖𝑗=1  (34) 

Here, 𝜆𝑗 represents the Lagrange multipliers, and 𝑎𝑗,𝑖 represents the constraint functions. These 

Lagrange multipliers help the generalized constraint matrix represent the reaction forces that would 

be meticulously model, had Newtonian mechanics method being utilized [18]. The constraint 

functions are as follows. 

 𝑎1,𝑖 =
𝜕

𝜕�̇�𝑖
(�̇�𝑐 cos 𝜃 + �̇�𝑐 sin 𝜃 −

𝑑

2
�̇� − 𝑟�̇�𝐿) (35) 
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 𝑎2,𝑖 =
𝜕

𝜕�̇�𝑖
(�̇�𝑐 cos 𝜃 + �̇�𝑐 sin𝜃 +

𝑑

2
�̇� − 𝑟�̇�𝑅) (36) 

 𝑎3,𝑖 =
𝜕

𝜕�̇�𝑖

(�̇�𝑐 sin 𝜃 + �̇�𝑐 cos 𝜃) (37) 

Expanding the Euler-Lagrange equations of motion with respect to the generalized coordinates give 

the following equations of motion. 

�̈�𝑐(2𝑀+ 𝑚) + �̈�𝑚𝐿(𝑐𝛼)(𝑠𝜃) − �̈�𝑚𝐿(𝑠𝛼)(𝑠𝜃) − �̇�2𝑚𝐿(𝑠𝛼)(𝑠𝜃) − �̇�2𝑚𝐿(𝑠𝛼)(𝑐𝜃) +

�̇��̇�𝑚𝐿(𝑐𝛼)(𝑐𝜃) − �̇��̇�𝑚𝐿(𝑐𝛼)(𝑠𝜃) = 𝜆1(𝑐𝜃) + 𝜆2(𝑐𝜃) + 𝜆3(𝑠𝜃)  (38) 

�̈�𝑐(2𝑀+ 𝑚) + �̈�𝑚𝐿(𝑐𝛼)(𝑠𝜃) + �̈�𝑚𝐿(𝑠𝛼)(𝑠𝜃) − �̇�2𝑚𝐿(𝑠𝛼)(𝑠𝜃) + �̇�2𝑚𝐿(𝑠𝛼)(𝑐𝜃) +

�̇��̇�𝑚𝐿(𝑠𝛼)(𝑐𝜃) + �̇��̇�𝑚𝐿(𝑐𝛼)(𝑠𝜃) = 𝜆1(𝑠𝜃) + 𝜆2(𝑠𝜃) + 𝜆3(𝑐𝜃)  (39) 

�̈�(𝑚𝐿2 + 𝐼𝑦) + �̈�𝑐𝑚𝐿(𝑐𝛼)(𝑠𝜃) + �̈�𝑐𝑚𝐿(𝑐𝛼)(𝑠𝜃) + �̇�𝑐 �̇�𝑚𝐿(𝑐𝛼)(𝑐𝜃 + 𝑠𝜃) − �̇�
𝑚𝐿2

2
(𝑠2𝑎) −

�̇�2 𝐼𝑥

2
(𝑠2𝑎) + �̇� 2𝐼𝑧̂(𝑠𝛼)(𝑐𝛼) − 𝑚𝑔𝐿(𝑠𝛼) = −(𝐹𝐿 + 𝐹𝑅 ) + 𝜇(�̇�𝐿 + �̇�𝑅 ) − 2�̇�𝜇 (40) 

�̈�𝑀
𝑑2

2
+ 2𝐾 + 𝐼𝑥(𝑠

2𝛼)+ 𝐼𝑧̂(𝑐
2𝛼) − �̈�𝑐𝑚𝐿(𝑠𝛼)(𝑠𝜃) + �̈�𝑐𝑚𝐿(𝑠𝛼)(𝑐𝜃) + �̇�

𝑚𝐿2

2
(𝑠2𝛼) −

�̇�𝑐 �̇�𝑚𝐿(𝑐𝛼)(𝑠𝜃 + 𝑐𝜃) = −𝜆1
𝑑

2
+ 𝜆2

𝑑

2
  (41) 

 𝐽�̈�𝐿 = 𝐹𝐿 − 𝜇(�̇�𝐿 − �̇�)− 𝜆1𝑟 (42) 

 𝐽�̈�𝑅 = 𝐹𝑅 − 𝜇(�̇�𝑅 − �̇�) − 𝜆2𝑟 (43) 

The first two Lagrange multiplier terms 𝜆1 and 𝜆2 can be solved for by using equations (42) and 

(43) to substitute into equations (38), (39), and (41). We can also solve for 𝜆3 using equation (38). 

Lastly, by applying the relationships in equations (10), (15), and (16), results in equations of motion 
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with respect to three generalized coordinates, 𝑥,𝛼, and 𝜃. We use the substitution of 𝑢 = (𝐹𝐿 + 𝐹𝑅) 

and 𝜙 =
𝑑(𝐹𝑅 −𝐹𝐿 )

2
 for simpler representation. 

 (2𝑀 + 𝑚 +
2𝐽

𝑟2) �̈� − 𝑚𝐿(�̇� 2 + �̇�2)(𝑠𝛼) + (𝑐𝛼)(𝑚𝐿)�̈� +
2𝜇

𝑟
(
𝑥̇

𝑟
− �̇�) =

𝑢

𝑟
 (44) 

(𝐼𝑦 + 𝑚𝐿2 )�̈� + (𝑐𝛼)(𝑚𝐿)�̈� + (𝑐𝛼)(𝑠𝛼)(𝐼𝑧̂ − 𝐼𝑥 − 𝑚𝐿2)�̇�2 − (𝑠𝛼)𝑚𝐿𝑔 − 2𝜇 (
𝑥̇

𝑟
− �̇�) = −𝑢 

  (45) 

(𝐼𝑧̂ + 3𝐾 +
𝑀𝑑2

2
+

𝐽𝑑2

2𝑟2 + (𝐼𝑥 + 𝑚𝐿2 − 𝐼𝑧̂)(𝑠𝛼)2) �̈� + (𝑚𝐿�̇� + 2(𝑐𝛼)(𝐼�̂� + 𝑚𝐿2 − 𝐼𝑧̂)�̇�)�̇�(𝑠𝛼) +

𝜇�̇�𝑑2

2𝑟2 =
𝜙

(2𝑟)
  (46) 

These equations of motion can be partially linearized. Notice, that this will not fully linearize our 

equations of motion, but it will reduce the complexity of the model, and therefore it will reduce the 

computational cost that it takes to run simulation. We can linearize our equations by using small-

angle approximation (𝛼 ≈ 0), where the following approximations are assumed. 

 sin(𝛼) ≈ 𝛼 (47) 

 cos(𝛼) ≈ 1 (48) 

This linearization relies on the fact that we know we want the pitch to be at or very near the 

equilibrium point, 𝛼 = 0, at all times. This is because 𝛼 = 0, is a point of marginal stability for the 

system [21]. By substituting this approximation into equations (44-46) and solving these equations 

for �̈�, �̈�, and �̈� in terms of first order time derivatives, we obtain these new equations of motion.  

 (2𝑀 + 𝑚 +
2𝐽

𝑟2) �̈� − 𝑚𝐿(�̇� 2 + �̇�2)𝛼 + (𝑚𝐿)�̈� +
2𝜇

𝑟
(
�̇�

𝑟
− �̇�) =

𝑢

𝑟
 (49) 

 (𝐼𝑦 + 𝑚𝐿2 )�̈� + (𝑚𝐿)�̈� + 𝛼(𝐼𝑧̂ − 𝐼𝑥 − 𝑚𝐿2)�̇�2 − 𝛼𝑚𝐿𝑔 − 2𝜇 (
�̇�

𝑟
− �̇�) = −𝑢 (50) 
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(𝐼𝑧̂ + 3𝐾 +
𝑀𝑑2

2
+

𝐽𝑑2

2𝑟2 + (𝐼𝑥 + 𝑚𝐿2 − 𝐼𝑧̂)𝛼
2) �̈� + (𝑚𝐿�̇� + 2(𝐼𝑥 + 𝑚𝐿2 − 𝐼𝑦)�̇�)�̇�𝛼 +

𝑐�̇�𝑑2

2𝑟2 =
𝜙

(2𝑟)
 

  (51) 

Now, we have our partially linearized equations of motion in terms of our three generalized 

coordinates. We can arrange these equations into the following matrix form [22]: 

 𝑴�̈� + (𝑪 + 𝑫)�̇� + 𝑮 = 𝑩𝛕 (52) 

where M is the inertia matrix, C is the Coriolis matrix, D is the damping matrix, G is the 

gravitational matrix, B is the control gain matrix, and 𝜏 is the control input. The matrices are given 

as follows: 

𝑴 = [
𝑚11 𝑚12 0
𝑚21 𝑚22 0
0 0 𝑚33

]  

𝑮 = [
0
𝑔2

0
] 

𝑪 = [

0 𝑐12 𝑐13

0 0 𝑐23

𝑐31 𝑐32 𝑐33

]  

𝑫 = [
𝑑11 𝑑12 0
𝑑21 𝑑22 0

0 0 𝑑33

] 

𝑩 =

[
 
 
 
 
1

𝑟
0

−1 0

0
1

𝑟]
 
 
 
 

 

𝝉 = [
𝑢
𝜙] 
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The entries for the previous matrices are given as follows: 

 𝑚11 = 𝑚 + 2𝑀 +
2𝐽

𝑟2 ; 𝑚12 = 𝑚𝐿(𝑐𝛼); 𝑚21 = 𝑚𝐿(𝑐𝛼); 

 𝑚33 = 𝐼𝑧̂ + 2𝐾 +
(𝑀+

𝐽

𝑟2)𝑑2

2
+ (𝑚𝐿2 + 𝐼𝑥 − 𝐼𝑧̂ )(𝑠𝛼)2; 

 𝑐12 = −𝑚𝐿�̇�(𝑠𝛼);  𝑐13 = 𝑚𝐿�̇�(𝑠𝛼); 

 𝑐23 = −(𝑚𝐿2 + 𝐼𝑥 − 𝐼𝑧̂)�̇�(𝑐𝛼)(𝑠𝛼); 𝑐31 = 𝑚𝐿�̇�(𝑠𝛼); 

 𝑐32 = (𝑚𝐿2 + 𝐼𝑥 − 𝐼𝑧̂)�̇�(𝑠𝛼)(𝑐𝛼); 𝑐33 = (𝑚𝐿2 + 𝐼𝑥 − 𝐼𝑧̂)�̇�(𝑠𝛼)(𝑐𝛼); 

 𝑑11 =
2𝜇

𝑟2 ; 𝑑12 = −
2𝜇

𝑟
 𝑔2 = −𝑚𝐿𝑔(𝑠𝛼) 

The 2nd order state variables can be solved for like so 

 �̈� = 𝑴−1 (−(𝑪+ 𝑫)�̇� − 𝑮(𝑞)+ 𝑩𝛕) (53) 
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CHAPTER 3: PATH PLANNING 

Variables  

• 𝑈 Potential Field 

• ∇ Gradient 

• Δ Step, or change in the variable it precedes 

• 𝜌 Threshold distance 

• 𝑘 Gain 

• 𝑒 Error  

• 𝜋 The constant 

 

Subscripts  

• d Desired  

• n The n’th step 

• g Goal  

• a Attractive 

 

 Artificial Potential Field (APF) path planning is a method of global navigation, where the 

configuration space is ascribed an artificial potential field that draws the robot toward the potential 

minimum. APF’s consist of two components: attractive fields and repulsive fields. The attractive 

field can be thought of as a “well’ where the global minimum is the navigation goal. The repulsive 

fields are ascribed to obstacles within the configuration space. Figure 5 shows an example of a 

velocity vector field that maps the workspace for a mobile robot. The goal of the robot is to navigate 

towards the red circle, which represents the target location. However, there are obstacles in the way 

represented by the black circles. The vector field is designed such that the robot is repelled by the 

obstacles and attracted towards the target location. It can be seen that around the black circles, the 

velocity vectors are pointing away from the obstacles, and around the red circle, the vectors are 
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pointing towards it. This repulsive and attractive behavior of the vector field allows the robot to 

plan its path and avoid collisions with obstacles while navigating towards the target. 

 

The attractive field in potential field-based mobile robot navigation is split into two types: Conical 

and Paraboloidal. These potential fields are scalar fields whose gradient is interpreted as the 

velocity vector. Both conical and paraboloidal potential fields can be visualized in Fig. 6. In conical 

vector fields, the gradient magnitude is constant for any given point in the field, which is 

interpreted as constant velocity. In contrast, in paraboloidal vector fields, the magnitude of the 

gradient converges to zero closer to the goal (also known as a soft landing), but its magnitude 

increases infinitely further from the goal. However, for many mobile robot applications, the 

 

Figure 5. Vector Field with Repulsive Obstacles and Attractive Goal 
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desired velocity behavior is to have an upper bound and converge to zero at the goal. To achieve 

this behavior, we combine these two fields in a piecewise function, while maintaining continuity 

at a threshold distance from the goal. Specifically, we use a linear combination of the two fields 

with a smooth transition from the conical field to the paraboloidal field. The resulting attractive 

field has a maximum velocity that decreases smoothly as the robot approaches the goal, and 

converges to zero at the goal, producing a soft-landing behavior. This combined attractive field, 

along with the repulsive field created around obstacles, allows the mobile robot to navigate safely 

and efficiently to its goal in complex environments. 

 

We define our attractive potential field using the following piecewise function [23]. 

 𝑈𝑎(𝑥,𝑦) =  {
0.5𝑘1‖𝑒(𝑥, 𝑦)‖2

𝑘2‖𝑒(𝑥,𝑦)‖
 ,    

‖𝑒(𝑥,𝑦)‖ ≤ 𝜌
‖𝑒(𝑥,𝑦)‖ > 𝜌

 (54) 

where, 𝜌 is the threshold distance from the target, 𝑘𝑎 and 𝑘𝑏  are the gain values, and 𝑒(𝑥,𝑦) is the 

distance error given by. 

 

Figure 6. Conical and Paraboloidal Artificial Potential Fields 
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 𝑒(𝑥, 𝑦) =  [
𝑥𝑔 − 𝑥𝑐

𝑦𝑔 − 𝑦𝑐
] (55) 

In order to maintain continuity at 𝜌, we must satisfy the condition defined in (56) 

 lim
‖𝑒(𝑥,𝑦)‖→ 𝜌−

𝑈𝑎(𝑥, 𝑦) = lim
‖𝑒(𝑥,𝑦)‖→ 𝜌+

𝑈𝑎(𝑥, 𝑦)  (56) 

This results in equation (57) which describes a relationship that must be maintained. 

 𝑘1 = 0.5𝜌𝑘2 (57) 

Here, we take the negative gradient of the attractive potential field, to result in the vector field  [24]–

[26] 

 𝐹𝑎(𝑥,𝑦) = −∇𝑈𝑎(𝑥,𝑦) =  {
𝑘1𝑒(𝑥,𝑦)

𝑘2
𝑒(𝑥,𝑦)

‖𝑒(𝑥,𝑦)‖

 ,
‖𝑒(𝑥,𝑦)‖ ≤ 𝜌
‖𝑒(𝑥,𝑦)‖ > 𝜌

 (58) 

 

 

Figure 7. Combined Potential Field 
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The attractive vector field is interpreted as the Chassis velocity vector with respect to the global 

coordinate frame. It is much easier to directly control velocity rather than to directly control 

position, using a PID controller. This is because if there is a large distance error, the controller will 

use a very large input to drive the error to zero. 

 𝐹𝑎(𝑞) = [
𝑣𝑥

𝑣𝑦
] (59) 

With respect to the chassis frame, the Chassis set-point velocity is given as 

 𝑣 
𝐶

𝑥 = ‖𝐹𝑎(𝑥,𝑦)‖2 (60) 

Figure 7 shows the combination of conical and paraboloidal Artificial Potential Fields, with 

continuity maintained at 𝑒(𝑥, 𝑦)  =  𝜌. The set point yaw angle is given by the following equation 

[27]. 

 

 𝜃 = atan2(𝑣𝑦 , 𝑣𝑥) (61) 

 

Figure 8. atan2(Y, X) Surface Map 



 
30 

 

However, the function atan2(𝑦, 𝑥) has a discontinuity occurring at the interface of the II and III 

quadrants, or 𝜃 = ±𝜋. If the robot is pursuing a moving target that requires it to turn more than ±𝜋 

radians, we must implement a conditional statement that “winds up” the desired yaw angle to more 

than ±𝜋 radians. Figure 8 shows the mapping of ATAN2(Y, X) and its discontinuity at (𝑋, 𝑌) =

(−|𝑥|, 0). The windup condition relies on the direction of the angular velocity to determine whether 

we add or subtract 𝜋 from our 𝜃𝑑𝑒𝑠 . For this condition, a step delay is used to find the direction of 

the desired angular velocity. 

 𝜃𝑑 (Δ𝑡) = 𝜃𝑑(𝑡𝑛+1) − 𝜃𝑑(𝑡𝑛) (62) 

𝑡𝑛 is the time value at step 𝑛. At the discontinuity, 𝜃𝑑𝑒𝑠 = 𝑁𝜋, where 𝑁 ∈ ℤ, the following 

condition will be invoked. 

 𝜃𝑑𝑒𝑠 = {
𝜃𝑑 + 2𝜋
𝜃𝑑 − 2𝜋

   𝑖𝑓   
𝜃𝑑(Δ𝑡) ≥ 0

𝜃𝑑(Δ𝑡) < 0
  (63) 

This method of using APF to determine velocity set-points has drawbacks. For one thing, if the 

robot is pursuing a moving target with the goal of a “soft-landing” the robot will never reach the 

target and, instead, chase the target until the end of the simulation. To prevent this, one could choose 

to only use the conical potential field, which if the target is moving slower than the TWBR, then 

the TWBR would reach the target with a “hard-landing”. The chosen parameters for the Artificial 

Potential Field Algorithms are given in table 2. 

Table 2. APF Parameters 

𝜌𝑥  0.5 m 

(𝑘1,𝑘2)𝑥̇ (3, 1.5)  

𝜌𝜃 5𝜋/180 rad 

(𝑘1,𝑘2)�̇� (9, 𝜋/4) 
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The threshold distance from the target, 𝜌𝑥 , is set to be 0.5 m. This is so that the controller has enough 

distance/time to slow down when it crosses the distance threshold. The threshold angular distance 

is much smaller, 𝜌𝜃 =
5𝜋

180
. This is because the heading angle needs to be precise. If the yaw error 

doesn’t close fast enough, the TWBR may travel past the target. The 𝑘𝑏  values can be interpreted 

as the maximum desired speed. So, for velocity, the maximum is 1.5 
𝑚

𝑠
, and for yaw rate, the 

maximum is 
𝜋

4
 
𝑟𝑎𝑑

𝑠
, or 45

𝑑𝑒𝑔

𝑠
.  
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CHAPTER 4: PID CONTROL 

Subscripts  

• P Proportional term 

• I Integral term 

• D Derivative term 

 

4.1 PID System Architecture 

 The PID controller is one of the most widely used controllers in linear systems, it is based on 

the concept of feedback control. PID is a such a popular technique due to its simple design and 

implementation for countless applications [28]. The simplicity of design comes from the need to 

tune only three parameters. The controller utilizes feedback error, also known as the difference 

between the set point and the measure process variable, to determine the value for the control input. 

There are many methods to tune a PID controller for linear systems such as the Root Locus method, 

where gain values can be chosen to meet stability criterion. However, these methods cannot be 

applied to nonlinear systems (such as the TWBR) because the design process requires the analysis 

to be done in the ‘s’ domain. For this reason, the PID controller gains for this research are found 

through trial and error. The PID controller uses three different control actions to adjust the control 

input, these are the Proportional, Integral, and Derivative control actions, whose gains are denoted 

by 𝑘𝑝, 𝑘𝑖, and 𝑘𝑑, respectively. The Proportional control action is based on the current error it aims 

to reduce by applying a control input that is proportional to the error. However, if the proportional 

gain is set to be too large, the system will begin to oscillate. To prevent this, an integral control 

can be included. The Integral control action is based on the accumulated error over time, it aims 

to eliminate any residual error that remains after the proportional control action has been applied. 

The problem with adding integral control is that it increases the percent overshoot, but some 

overshoot is to be expected and can be tolerated. The Derivative control action is based on the rate 
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of change of the error and aims to anticipate future errors and takes preventative action. Adding 

derivative control will help the system error converge faster, but it also introduces significant noise 

to the system. Each of these gain values determine the strength of their respective control action, 

however, care must be taken so that the negative tradeoffs of increasing these gain values does not 

cause instability to the system [29] – [30].  

 The control signal u(t) is the output of the PID controller, it is a combination of the three 

control actions. The error is the difference between the set point and the measured process variable, 

and the PID controller uses the error, e(t), along with the gains 𝑘𝑝, 𝑘𝑖, and 𝑘𝑑 to determine the 

control signal. The PID controller, equation (64) continuously adjusts the control signal in response 

to the error until the error is minimized, and the process variable reaches the set point. 

 𝑢(𝑡) = 𝐾𝑃𝑒(𝑡) + 𝐾𝐼 ∫ 𝑒(𝜏)𝑑𝜏
𝑡

0
+ 𝐾𝑑

𝑑𝑒(𝑡)

𝑑𝑡
 (64) 

 

Figure 9 shows a basic negative feedback control loop using a PID controller for a single-input  

single output (SIMO) system. Using this, we can create a block diagram representing a multi-input  

multi output (MIMO) system, which has the three control variables. 

 

Figure 9. PID Negative Feedback System 
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Figure 10 shows the control architecture in block diagram form for the three control variables, α, �̇�, 

and θ̇, where the set points for �̇� and �̇� are determined by the Artificial Potential Fields. 

4.2 PID Tuning 

After conducting a series of simulations, the suitable gain values for the three PID controllers were 

determined as shown in Table 3.  

Table 3. PID Gain Values 

(𝐾𝑃𝐾𝐼𝐾𝐷)𝛼 (250, 2000, 31.7) 

(𝐾𝑃𝐾𝐼𝐾𝐷)𝑥̇ (10, 250, 25) 

(𝐾𝑃𝐾𝐼𝐾𝐷)�̇� (5, 1, 1) 

The PID controllers were tuned in the order of pitch, velocity, and yaw rate. Pitch is the most 

crucial variable to control because without stability, the other variables cannot meet their desired 

values. The PID values for pitch error was found to be 5000, 2000, 31.7, respectively. These values 

were chosen based on their ability to provide a stable and responsive control of the system. In 

particular, the high proportional and integral gains for the pitch controller were selected because 

the pitch angle is a highly sensitive parameter that requires a rapid and precise response to any 

deviation from the desired value in addition to the ability to quickly reject disturbances. The large 

 

Figure 10. TWBR PID System Architecture 
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proportional gain allows the system to quickly correct for any error in the pitch angle, while the 

integral gain provides additional control to ensure that the system remains stable over time. The 

derivative gain acts like a damping feature on the system to reduce oscillation and overshoot 

caused by the other gains.  

4.3 PID Simulation 

To rigorously assess the robustness of the controllers, they were subjected to disturbances and 

parameter changes, which enables us to identify their strengths and weaknesses. We will conduct 

a series of simulations across various scenarios and environments to comprehensively evaluate the 

performance of each controller. These scenarios may encompass changes in the target position, 

different types and magnitudes of disturbances, and variations in system parameters such as mass. 

By carefully analyzing the simulation results, we can assess each controller's ability to maintain 

stability and achieve the desired performance under diverse conditions. This process of subjecting 

the controllers to different scenarios and disturbances helps to identify their limitations and areas 

of excellence, ultimately guiding in further optimization and the development of more effective 

control strategies. 

For the TWBR, the highest priority is maintaining stability in its pitch angle. If the pitch angle is 

not adequately controlled, it can result in a loss of stability for the TWBR, rendering any other 

tasks it is designed to perform—such as reaching a target or maintaining a certain altitude—

unachievable without proper pitch angle control. One of the primary tests of a controller's stability 

is subjecting the system to an impulse disturbance. An impulse disturbance is a sudden, brief force 

applied to the system to alter the output. In the context of the TWBR, an example of an impulse 

disturbance might be rolling over a small rock or a crack in the sidewalk. It is crucial that the 

controller is capable of withstanding and rejecting these types of disturbances. 
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In the first test, the impulse disturbance applied to the base of the TWBR is increased from 0 N to 

20 N over the course of a 10-second simulation. The impulse alternates direction and occurs every 

1 second, and it lasts for 5% of the impulse width. We evaluated the PID control architecture's 

ability to maintain the robot's stability under impulse disturbances.  

 

As illustrated in Fig. 11, the controller effectively rejected disturbances up to 50N. with both pitch 

and velocity responses settling within 0.5 seconds. However, some oscillations were observed in 

the error tracking for both pitch and velocity responses. However, it failed to reject the 75N 

disturbance at t=3s. Notably, a large oscillation occurred at the beginning of the simulation, prior 

to the introduction of a major impulse disturbances. This observation suggests that the initial 

 

Figure 11. Impulse Disturbances on PID system 
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conditions of the TWBR contributed to the strong controller response. This oscillatory nature of 

the PID controller was a major cause of the failure of the robot. 

The subsequent disturbance introduced to the TWBR is a step disturbance, which more closely 

resembles the robot encountering a steep incline or a constant gust of wind. This test is more 

rigorous due to the persistent application of the disturbance. For the step disturbance test, we 

applied a 5 𝑁 force at 𝑡 = 1. As with the impulse disturbance test, we observed oscillations before 

the disturbance was even applied, attributable to the initial conditions. Upon the application of the 

step disturbance, minor oscillations were observed; however, the reference variables were rapidly 

stabilized. 

 

 

Figure 12. Step Disturbances on PID system 
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The results of the step disturbance test are presented in Fig. 12, which illustrates the step force, 

pitch angle, and velocity error. The figure demonstrates that the PID control architecture is 

effective in maintaining the robot's stability in the presence of a constant external force. Although 

the initial oscillations were present, the controller quickly adapted to the disturbance and brought 

the system back to a stable state. The pitch angle and velocity error responses show that the 

controller managed to minimize the impact of the disturbance and return to the desired reference 

variables in a short time. This test further validates the robustness of the PID control architecture, 

indicating its ability to handle a variety of disturbances and maintain stability under challenging 

conditions. The quick stabilization of the reference variables following the step disturbance 

application highlights the controller's efficacy in mitigating the effects of external forces and 

ensuring the TWBR's optimal performance. 

In this test, we introduced a ramp disturbance, which increased linearly from 0 to 20 N 

over a 10-second period, or 𝐹𝑑 = 2𝑡. This type of disturbance represents a gradual change in the 

external forces acting on the TWBR, simulating scenarios such as a steadily increasing wind or a 

gradual slope. As shown in Fig. 13, for this range of disturbance, the controller exhibited no issues 

in stabilizing the reference variables. As observed in the previous tests, initial oscillations were 

present due to the initial conditions, but they were quickly mitigated by the controller. No signs of 

instability or additional oscillations were detected throughout the test, indicating the controller's 

effectiveness in managing ramp disturbances. 



 
39 

 

 

The results of the ramp disturbance test further demonstrate the robustness and adaptability of the 

PID control architecture in maintaining the TWBR's stability under varying types of disturbances. 

The ability to handle a gradual increase in external forces showcases the controller's capacity to 

adjust to dynamic environments and ensure optimal performance. 

The successful outcomes of the step, and ramp disturbance tests provide strong evidence 

of the PID control architecture's versatility and effectiveness in maintaining the TWBR's stability 

under a wide range of disturbances. However, the failure of the controller to reject the impulse 

disturbances was not acceptable. These tests offer valuable insights into the controller's 

performance, allowing for future optimization and development of even more effective control 

strategies for the TWBR. 

 

Figure 13. Ramp Disturbances on PID system 
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CHAPTER 5: DEEP Q-LEARNING 

Variables  

• R Cumulative Reward 

• r Immediate reward 

• Q Quality Function 

• 𝛾 Discount Factor 

• E Expected 

• L Loss 

• 𝜃 Parameters of Neural Network 

• relu Rectified Linear Unit function 

 
Subscripts  

• t Time 

• s State 

• a Action 

 

Superscripts  

• ‘ The next time step 

• t Time 

 

5.1 Background 

Reinforcement learning is a method of machine learning that allows a computer agent to learn how 

to complete a task by interacting with its environment over the course of many episodes. Unlike 

supervised learning, where the agent is provided with labeled examples of correct inputs and 

outputs, the agent in reinforcement learning receives feedback from the environment in the form 

of rewards or penalties. The environment provides the agent with observations and rewards, and 

the agent learns by trying different actions and receiving feedback from the environment. The goal 

of the agent is to maximize its expected reward by making a series of decisions that lead to 

successful completion of the task. The future rewards are discounted at each time step in order to 

make current decisions that lead to better future rewards. This cumulative return at each time step, 

𝑡, is given as follows [31]: 

 𝑅𝑡 = ∑ 𝛾 𝑡′−𝑡𝑟𝑡′
𝑇
𝑡′=𝑡  (65) 
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T is the time step where the episode is terminated, 𝛾 is the discount factor, and 𝑟𝑡  is the reward at 

time step, t. The intuition behind discounted future rewards is that current actions are more 

important than future actions and should thus be valued more. The discount factor, 𝛾, is set to a 

value in the range 0 ≤ 𝛾 < 1. This affects how much emphasis is put on expected rewards 

occurring in the future. When 𝛾 is higher, it places more value on actions that lead to long term 

rewards, and when it is lower, it values actions that lead to short term reward.  

DQN requires a discrete action space, due to the nature of having a finite number of outputs in the 

Deep Neural Network used approximate the expected Q-values of each possible action. The DQN 

agent is iteratively updated to converge to the optimal action-value function [deep mind paper]. 

This iteratively determined Q-Value function is found by using the Bellman equation, which is 

given as follows: 

 𝑄𝑡(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼 (𝑅(𝑠, 𝑎) + 𝛾 𝑎𝑟𝑔𝑚𝑎𝑥
𝑎

𝑄(𝑠′ ,𝑎) − 𝑄𝑡−1(𝑠, 𝑎)) (66) 

where 𝑄𝑡(𝑠, 𝑎) is the Q-Value for a state-action pair at time step 𝑡,  𝛼 is the learning rate, 𝑅(𝑠, 𝑎) 

is the reward for a state-action pair, and 𝑎𝑟𝑔𝑚𝑎𝑥
𝑎

𝑄(𝑠′ , 𝑎) is the maximum expected reward for 

being in the new state 𝑠′. 𝑅(𝑠, 𝑎) + 𝛾 𝑎𝑟𝑔𝑚𝑎𝑥
𝑎

𝑄(𝑠′ ,𝑎) term is called the target network, or 

𝑄𝑡𝑎𝑟𝑔𝑒𝑡 , which is used to update the Q-network. The learning rate 𝛼 is a hyperparameter that affects 

how much the DQN agent is updated during training.[32] Too high of a learning rate value will 

cause instability during training and can the agent from converging to an optimal policy. However, 

having too low of a learning rate value will cause the agent to train more slowly, and possibly 

converge to a suboptimal policy.  

 This determined Q-value function is used like a ‘label’ for which the Artificial Neural Network 

is trained to estimate based on actions taken. The DQN agent is trained by minimizing the loss 
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function, which is based on the mean squared error of the expected values, and it is described as 

follows [16],[31]: 

 𝐿 𝑖(𝜃𝑖) = 𝛦(𝑠,𝑎,𝑟,𝑠′)∼𝑈(𝐷) [(𝑡𝑎𝑟𝑔𝑒𝑡𝐷𝑄𝑁 − 𝑄(𝑠, 𝑎, 𝜃𝑖  ))
2
] (67) 

Where (𝑠, 𝑎, 𝑟, 𝑠′) ∼ 𝑈(𝐷) denotes that the batch of transitions is chosen uniformly and randomly 

from the experience pool. Experience replay buffer is a technique that saves experiences or 

transitions into an experience pool, which is then randomly sampled from and reused to update the 

network. The number of transitions that are sampled is called the experience buffer length, which 

is a hyperparameter that is tuned to improve sample efficiency and stability during training. [32] 

5.2 Hyperparameter Tuning 

Hyperparameter tuning is a critical step in machine learning that involves adjusting the fixed 

parameters of a model to achieve optimal performance. Hyperparameters play a crucial role in the 

training process as they affect various aspects of the model, such as training stability, speed, and 

convergence to an optimal solution. Without proper tuning, issues such as overfitting, underfitting, 

slow convergence, and training instability can arise, leading to poor model performance. In this 

thesis, several hyperparameters are explored, including the learning rate, discount factor, number 

of hidden layers, number of neurons per layer, reward shaping, and observation selection. Each of 

these hyperparameters can significantly impact the performance of the model and should be 

carefully tuned to achieve the best results. For example, the learning rate determines how much the 

model's parameters are adjusted during each iteration of training. A high learning rate may result 

in instability during training, while a low learning rate may lead to slow convergence and 

suboptimal performance. Similarly, the discount factor determines how much importance is given 

to future rewards versus immediate rewards. Setting the discount factor too high can lead to a hasty 
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policy that only focuses on short-term rewards, while setting it too low can lead to a policy that is 

too conservative and doesn't explore enough. 

5.3 Deep Neural Networks 

Deep neural networks (DNN), or simply neural networks, are powerful and flexible machine 

learning models that can learn highly complex patterns in data. They are based on the structure 

and function of the biological neural networks in the human brain. Neural networks consist of 

nodes, also called neurons, which are connected by weighted paths. Each neuron receives one or 

more input signals, multiplies each input by its corresponding weight, and then sums up the 

weighted inputs. The resulting sum is then passed through a nonlinear activation function, 

producing the output of the neuron, as shown in Fig. 14. 

 

Examples of activation functions are Sigmoid, Rectified Linear Unit (ReLU), Tahh, Softmax, etc. 

relu is a standard and often default activation function used for Deep Neural Networks [33]. It is a 

piecewise function that takes the input from a path and for negative inputs it returns zero and for 

positive outputs it returns the input. The ReLU Piecewise function can be given using the following 

form [33]. 

 𝑟𝑒𝑙𝑢(𝑥) =  {
0
𝑥
    

𝑥 < 0
𝑥 ≥ 0

 = max(0,𝑥) (68) 

 

Figure 14. Neuron Function 



 
44 

 

In Fig. 15, we visualize the Rectified Linear Unit (relu) activation function. The blue line in Fig. 

15 represents the function output when the input value (x) is less than zero. In this region, the relu 

function output is zero, effectively thresholding negative inputs. The orange portion of the line 

represents the function output when x is greater than or equal to zero. In this region, the relu 

function output is equal to the input value itself. This creates a piecewise-linear activation function 

that introduces non-linearity in neural network models and enables them to learn complex 

relationships between inputs and outputs. The relu activation function is widely used in deep neural 

networks and has been shown to improve the model’s training efficiency and overall performance. 

 

The intuition behind introducing an activation function is that it can express nonlinearity to the 

output of the neuron. Without the activation function, the neural network would be a linear function 

of the inputs, which severely limit its function approximation capabilities. By introducing 

activation functions, the neural network can model real-world, complex relationships such as the 

 

Figure 15. relu Function 
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dynamics for our TWBR. To visualize how DNN approximate function, we will show examples 

of approximations using different number of neurons. The function that we are approximating is a 

parabola 𝑓(𝑥) = 𝑥2. 

Figure 13 shows an approximation using only 2, 3, 4, and 10 neurons in a deep layer (any layers 

between input and output layers). 

 

We observe in Fig. 16 how the number of neurons in a neural network affects its ability to 

approximate a given function. Each neuron in the network corresponds to a basis function or a 

feature that can be used to approximate the function in different regions of the input space. When 

we have only a few neurons, the network is limited to using a small number of basis functions to 

approximate the function, while a larger number of neurons allows for more complex combinations 

of basis functions [34]. It's important to note that the number of neurons required to accurately 

 

Figure 16. Function approximation using a one-layered Deep Neural Network 
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approximate a function depends on the complexity of the function and the amount of noise in the 

data. In the case shown in Fig. 16, the parabola function can be well approximated with just a few 

neurons, while in other cases such as the relationship between observations and desirable actions 

in the TWBR, a more complex function may require many more neurons. Additionally, adding 

more neurons not only increases the accuracy of the approximation but also increases the capacity 

of the model to learn more complex features and patterns in the data. However, this comes at the 

cost of increased computational resources and may require more data for training. By carefully 

selecting the number of neurons and other hyperparameters, we can balance these factors and 

obtain the best possible approximation of a given function. 

5.4 Reward Function Shaping 

Reward shaping is a crucial aspect of training a reinforcement learning (RL) agent to achieve 

success in a particular task. In RL, the agent learns through trial and error, and the reward signal 

it receives from the environment plays a vital role in guiding its behavior. The reward function 

defines the goal of the task, and it is used to evaluate the agent's performance at each step of the 

learning process. If the reward function is poorly defined, the agent may learn a suboptimal policy 

that fails to achieve the desired goal. This is because the agent will optimize its behavior to 

maximize the reward signal it receives, regardless of whether the policy it learns is actually useful 

for achieving the task at hand. For example, if we reward the TWBR for keeping its pitch at zero, 

it may learn to spin in circles forever. We need to further define the reward function to reflect what 

successful completion of a task is. Tightly defining the reward function is also useful for faster 

training. For instance, we can reward stability of the TWBR by giving a reward for every time step 

the agent survives, or we can also penalize the agent at every timestep for the magnitude of pitch 

error it has. The agent may eventually figure out through the first method that it survives better 
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when its pitch is zero, but defining the stable operating point through error penalties will help the 

robot converge to the solution faster. On the other hand, if the reward function is too tightly 

bounded, the agent may be constrained in exploring its environment, and it may fail to discover 

optimal policies. In such cases, the agent may learn a policy that exploits the limited environment 

it is exposed to, leading to suboptimal performance. Therefore, it is essential to carefully design 

the reward function such that it balances between providing sufficient guidance for the agent to 

learn the optimal policy, while allowing the agent to explore the environment to discover better 

policies.  

For the TWBR, we started with a reward function, shown in equation 69, that penalizes the agent 

for the magnitude of error it has at each time-step. There is also an early termination condition that 

penalizes the agent for exceeding an angle of ±10𝑜. This is meant to expedite the training process 

by not wasting time on a failed simulation. 

 𝑟𝑡 = 𝛾𝑡 (−0.4𝛼2 − 0.2𝑒�̇�
2 − 0.2𝑒�̇�

2 − 10(𝑓𝑙𝑎𝑔)) (69) 

The early termination condition is 𝑓𝑙𝑎𝑔 which given the value of 1 when the pitch exceeds the 

bounds and a value of 0 otherwise. The intuition behind this is that the agent will minimize the 

error by driving the error to zero. However, due to the early stopping condition, the agent learned 

to intentionally terminate each episode as quickly as possible. It did this because the way the 

reward function is defined, the agent only accumulates penalties, and there was no positive reward 

for surviving. So, while the agent can minimize its penalty at each time step by minimizing error, 

it found that it was better to quickly terminate the episode despite the termination penalty. To 

overcome this, it was decided that the agent needed to generally receive some positive reward at 

every timestep. To do this, it needs to be ensured that the sum of the penalties at each time step are 

smaller than the constant gained for surviving at each time step. Therefore, it is important that the 
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errors are normalized, and weighted appropriately. Equation 70 shows the decided reward 

function. 

 𝑟𝑡 = 𝛾𝑡 (1 − 0.4(
𝛼

0.3491  𝑟𝑎𝑑
)
2

− 0.2 ( 𝑒�̇�

1.5
𝑚

𝑠
 
)
2

− 0.2 (
𝑒
�̇�

𝜋

4

𝑟𝑎𝑑

𝑠

)

2

− 10(𝑓𝑙𝑎𝑔))  (70) 

The constants dividing the reward observations are essentially normalizing the values between -1 

and 1. This ensures that each of these three terms are less or equal to 1. The gain values in front of 

these terms are their weights that emphasis the importance of each term and ensure that their sum 

does not exceed -1. This makes it so the reward is always some positive value, but it is maximized 

by minimizing the error. Therefore, the TWBR is incentivized to make decisions that prolong its 

survival in the environment while driving the errors to zero. 

5.5 Training the DQN Agent 

In this section, we will discuss the observations and analysis of the training and performance of 

the DQN agent for the two-wheel balancing robot. The agent was trained with a step size of Δ𝑡 =

0.02 𝑠𝑒𝑐𝑜𝑛𝑑𝑠, allowing for a fine control of the robot's movements. It was noticed over many 

training attempts that too small of a step size led too poorer training results. This is likely since 

longer step sizes display larger stronger between actions and resulting states, allowing the agent to 

more appropriately learn how to interact with the environment. However, too large of a step size, 

also resulted in poor results due to discrete actions having a large effect on the state. Over the 

course of training, the agent's performance was evaluated in 20-second episodes, with a maximum 

cumulative reward of 𝑅𝑇 = 1000.  

To ensure that the agent was adequately trained, a training criterion was set such that the agent 

must achieve a 3-episode average reward of 850. This criterion was designed to prevent an 

undertrained agent with a suboptimal policy from prematurely exiting the training phase due to an 
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isolated exceptional performance, and it is shown in Fig. 17 by the dark blue line. The light blue 

line represents the individual episodic reward. The agent was trained to pursue a stationary target. 

These targets were randomly generated to lie anywhere on a circle with a radius of 10, centered on 

the TWBR’s initial position. This randomness is meant to prevent the agent from overfitting and 

being more generalized for autonomously navigating to any point it could be given.  

 

We see from training that the agent doesn’t see any noticeable progress until around episode 320, 

and the agent starts seeing large rewards at around episode 550. In Fig. 18, we observe how the 

DQN agent performs in a 20 second simulation with the task of navigating to a stationary target. 

We see the plots of pitch, velocity error, and yaw rate error.   

 

Figure 17. DQN Agent Training 



 
50 

 

 

The maximum pitch error reached approximately 0.5 radians, which is acceptable as it quickly 

converges back to zero. This demonstrates the agent's effectiveness in maintaining the robot's pitch 

stability. Regarding the velocity error, it converges to zero, indicating that the agent is successful 

in achieving the target velocity. However, due to the nature of the discrete action space, the error 

exhibits choppiness, fluctuating between -0.5 m/s and 0.5 m/s. Despite this, the overall 

performance remains satisfactory, as velocity is the least critical control variable among the three. 

The yaw rate error does not converge to zero, which is a big issue for navigation. Instead, it 

maintains a steady-state error of approximately 0.33 rad/s. This level of error is not acceptable, as 

accurate yaw tracking is essential for proper navigation.   

 

Figure 18. DQN Agent Performance 
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Figure 19. DQN Moving Target Pursuit 
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The impact of this error can be more easily visualized in Fig. 19, which displays six frames of the 

robot navigating within the global XY frame. The two-wheel balancing robot (TWBR) exhibits a 

wandering behavior and struggles to navigate towards the target. This analysis suggests that further 

refinements to the DQN agent's training process and exploration of additional techniques, such as 

continuous control methods, may be necessary to enhance the agent's ability to minimize yaw rate 

errors and improve overall navigation performance. 

Having analyzed the performance of the DQN agent in attempting to navigate the two-wheel 

balancing robot under regular conditions, we will now transition to examining its stability under 

various disturbances. This stability analysis is critical to assess the agent's robustness and resilience 

when subjected to unforeseen or challenging scenarios in real-world applications. To evaluate the 

DQN agent's ability to maintain stability, we will subject it to impulse, step, and ramp disturbances. 

These disturbances represent a diverse range of challenges that the agent may encounter in 

practice, and their inclusion in the analysis provides a comprehensive assessment of the agent's 

performance under different conditions.  

First, the DQN agent’s ability to reject disturbances was evaluated by subjecting it to impulse 

disturbances. Specifically, the impulses alternate and increase from 0 to 220N and have an impulse 

width of 5% of the period, which is set to 1 second. Figure 20 illustrates the response of the pitch 

and velocity following each impulse disturbance applied to the DQN agent. The agent effectively 

stabilized pitch in response to the first three impulses, demonstrating its robustness in handling 

disturbances up to 75N. However, the velocity did not converge and the agent failed at 𝑡 = 4𝑠, 

where an impulse of 100N was applied 
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The outcomes of the impulse disturbance tests highlight the necessity to enhance the DQN agent's 

effectiveness in rejecting impulse disturbances and maintaining the robot's stability. While the 

agent demonstrates success in stabilization for disturbances lower than 100N, there is room for 

improvement in its velocity tracking capabilities. To address this issue, further refinements to the 

agent's training process may be required, potentially incorporating a more diverse set of 

disturbances and focusing on velocity tracking during training. By doing so, the agent can become 

more robust and adaptable, providing a more reliable and effective control solution for the two-

wheel balancing robot in various challenging situations. 

Figure 20. DQN Response to Impulse Disturbances 
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The next disturbance is the 5N step disturbance, as shown in Fig. 21. When subjected to a 5N step 

disturbance beginning at 𝑡 = 1𝑠, the DQN agent is able to maintain the robot's stability, although 

frequent spiking is observed in both the pitch and velocity. These spikes slightly exceed 0.1 rad 

and are quickly compensated for, ensuring the robot's stability throughout the disturbance. This 

observed behavior is likely a result of the agent having been trained primarily with impulse 

disturbances, making it respond to any disturbance in the same manner it would to a quick, short 

disturbance. To improve the agent's performance under step disturbances, it is recommended to 

expose it to various types of disturbances during the training process. By incorporating a diverse 

range of disturbances, the agent will become more versatile and adaptive, enhancing its ability to 

handle real-world challenges. Despite the observed spiking, the agent successfully maintains pitch 

 

Figure 21. DQN Response to 5N Step Disturbance 
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and survives the entire 20-second period, demonstrating its resilience under the influence of the 

step disturbance.  

 

Next, we further investigate the stability of the DQN agent by subjecting it to a ramp disturbance, 

in Fig. 22. The agent successfully maintains stability until 𝑡 = 12𝑠 when the disturbance reaches 

about 20 N. This shows that the agent has difficulties compensating for this ramped disturbance, 

and it indicates a need to include more diverse disturbances during training. 

While the agent demonstrates success in stabilizing pitch and achieving the target velocity, it 

struggles to accurately track the yaw rate, which is crucial for effective navigation. To address the 

issue from the failed yaw rate tracking, further refinements to the DQN agent's training process 

may be required, or alternative control methods could be explored to enhance the agent's ability to 

Figure 22. DQN Response to Ramp Disturbance 
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minimize yaw rate errors and improve overall navigation performance. This analysis highlights 

the need for additional improvements and exploration of alternative techniques to enhance the 

agent's performance in all three control variables. 
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CHAPTER 6: SLIDING MODE CONTROL 

Variables  

• 𝑓 Exact Dynamics 

• 𝑏 Exact Control Gain 

• 𝑓 Estimated Dynamics 

• �̂� Estimated Control Gain 

• 𝐹 Dynamics Bounding function 

• 𝑉 Lyapunov Candidate 

• 𝛽 Control gain margin 

• 𝜆 Convergence speed parameter 

• 𝑘 Switching Control Law gain 

• 𝑠 Sliding surface 

• 𝜂 Eta parameter 

• ∞ Infinity 

 

Subscripts  

• min Minimum 

• max Maximum 

• eq Equivalent 

• sw Switching 

 

6.1 First Order Sliding Mode Control 

Sliding Mode Control is a nonlinear, robust control method that is designed to provide stable and 

reliable performance in the presence of modeling inaccuracies, parameter variations, disturbances, 

and other uncertainties. The driving idea behind sliding mode control is that it simplifies the control 

problem of tracking errors in second or higher order systems by transforming it into a more 

manageable stability problem for a first-order system [2]. By designing a sliding surface that 

separates the system into two regions, the controller drives the system towards the surface, and 
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maintains it on the surface by switching between control modes. This approach provides 

robustness against modeling uncertainties and disturbances, making it a popular control strategy 

in various fields such as robotics, power electronics, autonomous vehicles, and aerospace. Sliding 

mode control is a powerful control method, but it comes with a tradeoff: near perfect performance 

at the expense of a large control effort. This is largely due to a phenomenon in Sliding Mode 

Control referred to as chattering. Chattering is characterized as rapid oscillations of the system 

output and the sliding surface around the target value or equilibrium point. This chattering means 

that the system is constantly using a large amount of control even when operating at the stable 

point. While chattering can be undesirable due to its impact on system stability and performance, 

some amount of chattering can be tolerated and may even be necessary to achieve good tracking 

performance in some systems.  

In order to begin the design of a Sliding Mode controller, we must represent our 2nd order system 

as it is in equation (71) [2-5]. 

 �̈� = 𝑓 + 𝑏𝑢 (71) 

The terms 𝑓 is the system dynamics and 𝑏 is the control input gain. The system dynamics are not 

precisely known; however, it is of known bounds. The estimated system is given by equation (72), 

with bounds as defined in equation (73) [35]–[41]. 

 �̈� = 𝑓 + �̂�𝑢 (72) 

 |𝑓 − 𝑓| ≤ 𝐹 (73) 

The bounds on the control gain are given in equations (74) and (75). The term 𝛽, as described in 

equations (76) and (77) are used for later equations [2-5]. 

 0 < 𝑏𝑚𝑖𝑛 ≤ 𝑏 ≤ 𝑏𝑚𝑎𝑥  (74) 

 �̂� = √𝑏𝑚𝑖𝑛𝑏𝑚𝑎𝑥  (75) 
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 𝛽 = √
𝑏𝑚𝑎𝑥

𝑏𝑚𝑖𝑛
 (76) 

 𝛽−1 ≤
�̂�

𝑏
≤ 𝛽  (77) 

For a 2nd order system such as ours is for the TWBR, we can define the sliding surface using 

equation (78) [2-5]. 

 𝑠 = �̇� + 𝜆𝑒 (78) 

The intuition behind sliding mode is that driving the function to the sliding surface and keeping it 

there implies that we have driven the error to zero and we are keeping it there. The error is defined 

here as 𝑒 = 𝑥 − 𝑥𝑑, which should be noted as the negative of the error defined for our previous 

PID negative feedback loop. The time constant, λ, is a positive constant that determines the 

convergence rate of the error. A larger time constant value will cause the controller to force error 

to decay more rapidly. So now we wish to define a control law that will force the sliding surface 

to zero. To do this we choose the Lyapunov Candidate shown in equation (79). 

 𝑉 =
1

2
𝑠2 (79) 

In order to have asymptotic stability about the isolated equilibrium point 𝑠 = 0, we must ensure 

the following criteria are met [2]: 

(a)  �̇� < 0  for 𝑠 ≠ 0 

(b) lim
|𝑠|→∞

𝑉 = ∞ 

Condition (b) is satisfied by equation (79). To satisfy condition (a) we need a control law that will 

satisfy equation (80). 

 �̇� = 𝑠�̇� = −𝑘|𝑠| (80) 

By dividing by the sliding variable 𝑠, we arrive at equation (81). 

 �̇� = −𝑘𝑠𝑔𝑛(𝑠) (81) 
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By taking the time derivative of equation (78) and substituting in equation (72) we see that �̇� can 

also be represented as 

 �̇� = �̈� + 𝜆�̇� = 𝑓 + �̂�𝑢 − �̈�𝑑 + 𝜆�̇� (82) 

Solving equations (81) and (82) for the input 𝑢 gives the following control law shown in equation 

(83). 

 𝑢 = �̂�−1 ( �̈�𝑑 − 𝑓 + −𝜆�̇� − 𝑘𝑠𝑖𝑔𝑛(𝑠)) (83) 

However, we must still find 𝑘 such that it satisfies condition (a). We begin by revisiting equation 

(80). 

 �̇� = 𝑠�̇� = 𝑠(�̈� + 𝜆�̇�) = 𝑠(�̈� − �̈�𝑑 + 𝜆�̇�) (84) 

Then we substitute equation (71) and the definition of 𝑢 from equation (83) to get equation (85). 

 �̇� = 𝑠 (𝑓 + 𝑏�̂�−1 (�̈�𝑑 − 𝜆�̇� − 𝑓 − 𝑘𝑠𝑖𝑔𝑛(𝑠)) − �̈�𝑑 + 𝜆�̇�) (85) 

Then we can substitute in the estimated dynamics 𝑓 from equation (72) to form equation (86) [35]. 

�̇� = 𝑠 ((𝑓 − 𝑓) + (𝑏�̂�−1 − 1)�̂� − 𝑏�̂�−1𝑘𝑠𝑖𝑔𝑛(𝑠)) ≤ |𝑠|(|𝑓 − 𝑓| + |𝑏�̂�−1 − 1||𝑢𝑒𝑞 |−

|𝑏�̂�−1 |𝑘)  (86) 

For 𝑠 to be asymptotically stable, we must show that the 𝑘 is negative for all cases except at 𝑠 = 0. 

This is to satisfy that �̇� is, in fact, negative definite and therefore satisfies condition (a). We can 

do by showing that the terms multiplying |𝑠| in equation (86) is less or equal to some small negative 

number [2]. 

 |𝑓 − 𝑓| + |𝑏�̂�−1 − 1||𝑢𝑒𝑞 |− |𝑏�̂�−1|𝑘 ≤ −𝜂 (87) 

Which gives us the following definition for 𝑘 in equation (88) [2] 

𝑘 ≥ 𝑏�̂�−1(|𝑓 − 𝑓| + 𝜂) + |𝑏�̂�−1 − 1||�̈�𝑑𝑒𝑠 − 𝜆�̇� − 𝑓| ≥ β(𝐹 + 𝜂) + (𝛽 − 1)|�̈�𝑑𝑒𝑠 − 𝜆�̇� − 𝑓| 

 (88) 
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This value of for 𝑘 can be a constant, and it completes the requirements for a control law 𝑢 to 

ensure that we can drive the sliding variable 𝑠 to zero, and thus drive the tracking error 𝑒 to zero 

and keep it there. 

6.2 Sliding Mode Control for the TWBR 

The uncertain parameter we wish to design for is the body mass, 𝑚. This is because for applications 

such as personal transportation, warehouse automation, and last-mile delivery, mass is never 

precisely known. Therefore, the mass and uncertainty it causes in the dynamics can be bound. We 

chose that the mass minimum and maximum are 1kg and 10kg respectively. We can see that the 

gain bounds are given in equations (89) and (90). 

 𝑏𝑚𝑎𝑥 = 𝑏|𝑚𝑚𝑎𝑥
 (89) 

 𝑏𝑚𝑖𝑛 = 𝑏|𝑚𝑚𝑖𝑛
 (90) 

The bounds on the dynamics are given by equations (91) and (92) 

 𝑓𝑚𝑎𝑥 = 𝑓|𝑚𝑚𝑎𝑥
 (91) 

 𝑓𝑚𝑖𝑛 = 𝑓|𝑚𝑚𝑖𝑛
 (92) 

The values for 𝜆 and 𝜂 are chosen to be small constants as they were defined previously. 

6.3 Hierarchical Sliding Mode Control 

Arranging multiple Sliding Mode controllers in a scheme similar to what we've done with the PID 

before poses a challenge due to the extreme precision required by SMC. This precision can become 

problematic in underactuated systems with highly coupled state variables, like the TWBR. For 

example, changing the robot's velocity in the TWBR requires changing its pitch first. If one SMC 

is set to keep the pitch at zero, the other SMC responsible for velocity must compete to control its 

variable, resulting in high instability in the control system. 
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To address this issue, we can use a controller called "hierarchical sliding mode control". This type 

of controller extends the sliding mode controller by organizing multiple sliding surfaces into a 

hierarchical tree or control scheme. This structure enables the controllers to operate with less 

precision, which is crucial for underactuated systems like the TWBR. There are several versions 

of Hierarchical Sliding Mode control (HSMC), including Incremental HSMC and Adaptive 

HSMC. In this context, we will design an Aggregated HSMC.   

 

As shown in Fig. 23, the design of the Aggregated HSMC starts with defining the sliding surfaces 

for the three variables we wish to control. Those sliding surfaces are fed into a parent sliding 

surface. We have yaw under a different sliding surface because it is a function of a separate control 

input. The equations for these low-level sliding surfaces are given by equations (93) through (96) 

[4 - 9] . 

 𝑠1 = 𝜆1𝛼+ �̇� (93) 

 𝑠2 = 𝜆2𝑒𝑥 + �̇�𝑥 (94) 

 𝑠3 = 𝜆3𝑒𝜃 + �̇�𝜃 (95) 

 
Figure 23. Aggregated HSMC Structure 
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The parent sliding surface that aggregates the sliding surfaces 𝑠1 and 𝑠2 is given by equation 96. 

 𝑆 = 𝑠1𝑎 + 𝑠2 (96) 

The parameter, 𝑎, in general, can be a positive or negative parameter. It can be time varying or 

constant [8]. The aggregated HSMC control law for the input, 𝑢, is defined by equation (97), where 

it is the sum of the equivalent control for the two lower level sliding surfaces given in equations 

(93) and (94). The control law, 𝜙, for the sliding surface 𝑠3 is given in equation (98). 

 𝑢 = 𝑢𝑒𝑞1 + 𝑢𝑒𝑞2 + 𝑢𝑠𝑤 (97) 

 𝜙 = 𝜙𝑒𝑞 + 𝜙𝑠𝑤  (98) 

The equivalent control forces are given by equations (99) through (101) [8]. 

 𝑢𝑒𝑞1 =
𝜆1 �̇�+𝑓1

𝑏1
 (99) 

 𝑢𝑒𝑞2 =
𝜆2𝑒�̇�+𝑓2

𝑏2
 (100) 

 𝜙𝑒𝑞 =
−𝑓3+�̈�𝑑−𝜆𝑒̇𝜃

𝑏3
 (101) 

The switching control law for both inputs are given by equations (102) and (103) 

 𝑢𝑠𝑤 = −
𝑎𝑏1𝑢𝑒𝑞2+𝑏2𝑢𝑒𝑞1+𝑘1𝑆+𝜂1𝑠𝑖𝑔𝑛(𝑆)

𝑎𝑏1+𝑏2
 (102) 

 𝜙𝑠𝑤 =
−𝑘2𝑠𝑖𝑔𝑛(𝑠3)

𝑏3
 (103) 

6.4 HSMC Simulation 

In this section, we introduce the simulation results for the proposed HSMC controller for the 

TWBR. After fine-tuning the parameters, we conducted a series of simulations to evaluate the 

controller's performance under various conditions and disturbances. These simulations allowed us 

to assess the controller's effectiveness in maintaining stability and responsiveness, while also 

highlighting any potential limitations or areas for improvement. The detailed outcomes of the 
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simulations, along with relevant performance metrics, are discussed further in the subsequent 

sections.  

Due pitch stability being the most critical function of this system, the parameter tuning process 

began with a focus on pitch-related parameters. After identifying and stabilizing pitch parameters, 

we proceeded to refine those parameters influencing velocity. This involved iterative adjustments 

to optimally balance between the two sets of parameters for the HSMC controller. The resulting 

calibrated parameters for the TWBR aggregated HSMC are presented in Table 4. 

Table 4. HSMC Parameters 

𝜆1 1.8 

𝜆2 5.5 

𝜆3 60 

𝑎 2.225 

𝜂1 0.8 

𝜂2  0.1 

𝑘1 -0.3 

𝑘2 2 

  

After initial tuning of the HSMC parameters, we evaluated the HSMC’s ability to achieve the 

desired reference tracking for pitch, velocity, and yaw rate. The first test involved having the 

HSMC navigate the robot to a stationary target located at (𝑥,𝑦) = (−10,10). This first test did 

not subject the system to disturbances, as we will see in further simulations. Figure 24 shows that 

the HSMC was effective in driving the error to zero within a reasonable amount of time. The 

robot's pitch remained within 0.04 radians or 2.3 degrees, demonstrating excellent tracking 
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performance. The velocity error was reduced to zero within four seconds, and the yaw rate error 

was reduced within two seconds, indicating that the robot maintained a stable heading and velocity 

tracking. This observation justified the yaw rate error tracking. Further validation of the results 

can be shown in Fig. 25, where we visualize the TWBR path in the global XY plane. We see that 

the robot is capable of navigating to the target. However, we also see that the robot takes a curved 

path. This indicates suboptimal yaw error tracking. We also notice at the end of the simulation, 

when the TWBR is closer to the target, the yaw starts to diverge. This can be explained by the fact 

that as the TWBR grows closer to the target, sensitivity of yaw to the input increases. This 

divergence occurs when the TWBR is less than 0.5 𝑚 from the target, which helps validate this 

occurrence. These results demonstrate the system's fundamental capabilities autonomously 

navigate in a simulation environment, and further tests will evaluate the system's performance 

under more challenging conditions and disturbances. 

 

 

Figure 24. HSMC Undisturbed Reference Tracking 
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Next, we will evaluate the HSMC's ability to reject disturbances by subjecting it to impulse 

disturbances. The purpose of this test is to demonstrate the HSMC's ability to maintain stability 

and pursue the reference point even when the robot is subjected to external disturbances. These 

impulse disturbances can be likened to the TWBR rolling over a rock, bump, or crack on the 

ground. Such disturbances can significantly impact the robot's balance and stability, and it is 

crucial for the controller to react appropriately to maintain the robot's balance. Specifically, the 

impulses will be alternating directions and increase in magnitude from 0 to 220N with an impulse 

width of 5% of the period, which is set to 1 second. 

 

Figure 25. HSMC Stationary Target Navigation Plane 
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Figure 26 shows the response of the pitch and velocity after every impulse disturbance. The HSMC 

was effective in stabilizing both pitch and velocity with minimal oscillations in response to the 

impulses. The maximum pitch error observed was 0.6 radians or 34 degrees, which occurred at t=8 

seconds in response to the maximum impulse disturbance. The pitch angle consistently settled 

within 1 second of the disturbance, indicating the controller's ability to detect and respond to the 

disturbance quickly. Similarly, the velocity error settled within 0.5 seconds of the disturbance, 

indicating that the controller could maintain the robot's speed despite the disturbance. These 

impulse disturbance tests validate the HSMC's effectiveness in rejecting impulse disturbances and 

maintaining the robot's stability. The minimal oscillations observed in the response of both pitch 

and velocity indicate the effectiveness of the controller's feedback loop in correcting for the 

disturbances quickly. Additionally, the short settling times of both pitch and velocity after the 

 

Figure 26. HSMC Pitch Impulse Disturbance 
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disturbance indicate the controller's ability to react quickly to disturbances and restore the robot's 

stability. 

 

The subsequent test involved subjecting the TWBR to a step disturbance with a magnitude of 5N, 

initiated at t=1 second. As illustrated in Fig. 27, the HSMC demonstrated its effectiveness in 

managing the error caused by the step disturbance. The controller rapidly converged to the desired 

state, ensuring the TWBR maintained stability throughout the disturbance period. Upon the 

application of the step disturbance, the HSMC quickly responded to counteract its impact on the 

system. The pitch and velocity errors were minimized in a relatively short time, highlighting the 

controller's ability to adapt to sudden changes in the system dynamics. Additionally, the HSMC 

exhibited minimal overshoot and oscillation during this test, further underscoring its potential to 

maintain the stability of the TWBR under step disturbances. In summary, the HSMC proved to be 

an effective control strategy in handling step disturbances, showcasing its adaptability and 

 

Figure 27. HSMC Pitch Step Disturbance 
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responsiveness. The controller's rapid convergence to the desired state and minimal oscillation 

indicates its suitability for applications where the TWBR may encounter abrupt changes in external 

conditions or system dynamics. 

 

The ramp disturbance, in Fig. 28, which increased linearly from 0 to 10 N over a 10-second period, 

𝐹𝑑 = 2𝑡, was applied to evaluate the HSMC's ability to handle gradual changes in external forces 

acting on the TWBR. The results revealed that the velocity error tracked with minor steady-state 

error until t=4s, after which it began to diverge. This indicates that the HSMC was initially able to 

maintain a stable velocity response; however, as the disturbance increased over time, the controller 

struggled to maintain the desired velocity, causing the error to diverge. Despite the divergence in 

the velocity error, the pitch angle tracked relatively well throughout the test, demonstrating the 

controller's ability to maintain stability in the pitch angle under the ramp disturbance. These 

findings suggest that while the HSMC shows promise in handling a certain range of the ramp 

 

Figure 28. HSMC Ramp Disturbance 
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disturbance, but it faces challenges in ensuring optimal velocity tracking as the disturbance 

progressively increases. This observation highlights the need for further investigation and 

refinement of the HSMC to improve its performance in dealing with dynamic environments, 

particularly in relation to velocity control. 

The next objective of the HSMC to pursue a moving target while being subject to impulse 

disturbances. As shown in Fig. 29, the initial location of the TWBR is given by a light blue “T” 

shape, the current position of TWBR is given by a dark blue “T” shape, the current target location 

is given by a red circle, and the paths of the TWBR and target are given by green and pink curves 

respectively. We see here that the target moves counterclockwise in a circle around the origin. The 

robot is able to pursue the target well. 
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Figure 29. HSMC Moving Target Pursuit 
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CHAPTER 7: CONCLUSION 

In this study, we developed the equations of motion representing the Two-Wheeled Balancing 

Robot (TWBR) and investigated its performance under various control architectures. We began 

by identifying the holonomic and non-holonomic conditions constraining our system and 

formulated the equations of motion using the Lagrangian Mechanics approach. To represent the 

system in terms of three generalized coordinates - position (𝑥), pitch (𝛼), and yaw (𝜃) - we applied 

relationships between the global and chassis frames. Following the development of the dynamic 

model, we developed a path planning algorithm called Artificial Potential Fields to determine set 

points for the variables of interest, namely velocity (�̇�) and yaw rate (�̇�). Subsequently, we 

described and designed three different control architectures with the goal of driving the state 

variables to their desired values. These 3 controllers of varying performance were able to stabilize 

the pitch and velocity variables, which plays a critical role in enabling the TWBR to autonomously 

navigate to stationary and moving targets while maintaining pitch stability and rejecting 

disturbances. These three control architectures were PID, DQN, and Sliding Mode Control. The 

PID system architecture consisted of three PID controllers that were successfully deployed to 

control the pitch, yaw rate, and forward velocity. In contrast, the sliding mode control architecture 

was developed by creating a hierarchical system for the pitch and velocity sliding surfaces and by 

applying a traditional first order sliding mode controller for the yaw setpoint. 

To evaluate the performance of the control architectures, the robot models were subjected to 

multiple simulations, each designed to test different aspects of the controllers. These tests included 

impulse, step, and ramp disturbances to assess the robustness and adaptability of each controller 

in maintaining the TWBR's stability under varying conditions. In this model in a simulation 

environment, the PID was fully capable of rejecting all disturbances that we tested for.  
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The results obtained from these tests provided valuable insights into the strengths and limitations 

of each control architecture, guiding further optimization and development of more effective 

control strategies for the TWBR.  

In the PID controller, we observed a significant ability to reject the step and ramp disturbances 

subjected to the system. Despite its robust performance in maintaining stability under various 

conditions, the PID controller introduced a significant amount of oscillation to the system, which 

lead to the failure of the controller at a disturbance o 75N. This rapid oscillation could be 

detrimental in a real-world system where we cannot rely on the non-holonomic constraints to hold 

true. However, as the observed oscillation might raise concerns, for smaller disturbances, these 

oscillations were admissible in the context of stabilizing this model that we developed.  

The DQN agent showed promising results in stabilizing the pitch and velocity errors, but it was 

not successful at accurately stabilizing the yaw rate. This resulted in an inability to navigate to the 

desired target location. This is likely in part due to the very large action space. It is known that the 

DQN algorithm is very well suited for problems with a large observation space but has problems 

when the action space is too large. A further analysis of the action space’s effect on training should 

be conducted to improve the error tracking of the yaw rate error. Despite this problem navigating, 

the agent showed a strong ability to stabilize the pitch and velocity under step disturbances. It was 

not capable of rejecting the impulse disturbances, which indicates the need to introduce larger 

disturbances during training. It failed at rejecting the ramp disturbance, but this could be further 

improved by including more diverse types of disturbances to the agent during the training phase. 

The HSMC demonstrated promising results in rejecting impulse and step disturbances. The control 

scheme efficiently managed these disturbances while exhibiting minimal oscillation, highlighting 

its potential for certain real-world applications. However, we encountered challenges when the 
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controller was subjected to ramp disturbances. As the ramp disturbance increased to around 10N, 

the error began to diverge, indicating limitations in the HSMC's ability to cope with continuously 

increasing disturbances. This could be further improved by developing function for the gain 𝑘 in 

the design of the Hierarchical SMC controlling pitch and velocity. In further work we can define 

a continuous function that bounds this gain, and still satisfies the condition defined in equation 88. 

This would allow the gain to be non-stationary and, in some form, ‘adapt’ the control input to 

stabilize the pitch and velocity more robustly. 

In conclusion, this work has done significant work in modeling of the TWBR and characterizing 

the performances of PID, DQN, and HSMC controllers for this application. Each controller 

demonstrated their strengths and weaknesses in handling various types of disturbances. The PID 

controller excelled in disturbance rejection but struggled with oscillation, while the HSMC 

performed well in rejecting impulse and step disturbances but faced challenges with ramp 

disturbances. The DQN agent showed valuable results in pitch and velocity control and 

demonstrated a powerful ability to develop a unique policy to suit its environment. However, the 

DQN method is highly sensitive to reward shaping and hyperparameter tuning, which takes a very 

long time to optimize without GPU accelerated computing. These observations serve as valuable 

insights for further optimization and development of more effective control strategies for the two-

wheel balancing robot, ultimately enhancing its performance and adaptability in a wide range of 

applications and environments. The insights gained from the tests and simulations contribute to 

the advancement of control systems for the TWBR, enhancing its potential for reliable and efficient 

operation in a wide range of applications and environments.  
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CHAPTER 8: FUTURE WORK 

Future work will focus on optimizing the training process for the Deep Q-Learning agent used in 

this study. One approach that will be explored is the use of GPU-accelerated computing to reduce 

the time required to train complex models. By utilizing GPUs, a wider range of hyperparameters 

can be explored and more thorough evaluations of their impact on the agent's performance can be 

conducted. Overall, the goal is to achieve better performance and faster convergence of the agent, 

leading to more efficient and effective control in the target application. An optimized Deep Q-

Learning agent will be evaluated extensively to validate its effectiveness and robustness. Another 

improvement to the DQN control architecture would be to train two agents: one to stabilize pitch 

and velocity, and the other one to stabilize the yaw rate. This would distribute the complexity of 

the tasks for the DQN agents, and potentially lead to better results in navigation, and the robustness 

to a wider range of disturbances. Further work will also focus on the development of a proof-of-

concept to implement these controllers and further evaluate their capabilities for the real-world 

environment.  
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