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ABSTRACT 

The demand for renewable energy has increased over the last few years, and so has the 

demand for greater expectations within the energy market. This increasing trend has been 

accompanied by more significant usage of internet-connected devices (IoT), leading to critical 

electrical infrastructure being connected to the internet. Implementing internet connectivity with 

such devices and systems provides benefits such as improving the system's performance, 

facilitating irregularity and anomaly mitigation, and providing additional situational awareness for 

enhanced decision-making. However, enhancing the connected system with IoT introduces a 

drawback – a greater vulnerability to cyber-attacks. 

Cyber-attacks targeting critical infrastructure in the electrical sector have occurred in the 

United States and Ukraine. These cyber-attacks highlight and expose vulnerabilities that a system 

inherits when connecting to the internet. These attacks left thousands of customers without 

electricity for hours until operators could regain control of the electric utility grid. 

Therefore, to address the vulnerabilities of an internet-connected power electronic device, 

this work focused on the hardware layer of the system. Implementing a cyber-control system inside 

the hardware layer can significantly reduce the possibility of an attacker patching malicious 

controller firmware into a photovoltaic grid-connected inverter, thus mitigating the likelihood that 

the inverter becomes inactive a cyber-attack scenario. With this mitigation technique, if a cyber-

attack is successful and an attacker gains control of the network, a cyber-defense technique is in 

place to mitigate the impact of the cyber-attack. 

This additional protection layer was developed based on an innovative concept known as 

Digital Twin (DT). A DT, in this case, replicates an Active-Neutral Point Clamped (ANPC) 

inverter and was designed using a hardware language known as VHDL (Very High-Speed 



 

 

Integrated Circuit Hardware Description Language) and applied to Field-Programmable-Gate-

Array (FPGA). The DT is embedded within the FPGA and contained in a controller board, the 

UCB (Unified Controller Board), developed by the University of Arkansas electrical engineering 

team. This UCB also contains two Digital Signal Processors (DSPs) responsible for generating 

associated signals to control an authentic physical inverter. These DSP signals are received and 

processed by the FPGA that implements the DT of an ANPC; in other words, it simulates in real-

time the expected output of an actual ANPC inverter using the signals from the DSP. 

When a new firmware is ready to be patched, the DT provides output signals simulating 

behavior that a real ANPC inverter would generate with the new firmware. The new firmware is 

tested to check if it meets all the operational requirements established using a Design-For-Trust 

technique (DFTr). If the new firmware fails in at least one of the DFT tests, it is considered 

malicious and must be rejected.  

This work is divided into sections, such as Background, which explains the pieces that 

were used and the strategy behind this work; Process and Procedure, which explains the 

methodology that was adopted to prove the reliability and effectiveness of this work; Results and 

Discussion, where the simulations and results are described and explained; followed by 

Conclusion and Future work section, which concludes this work and adds possible future projects 

to continue this work further. 
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CHAPTER 1 

INTRODUCTION 

Advances in technology have led to significant improvements in computing power while 

reducing overall device size and increasing availability and speed of communication. These 

developments have led to a dramatic increase in internet-connected devices, including IoTs. While 

IoTs offer many benefits, such as increased situational awareness, they also create new 

vulnerabilities for cyber-attacks to exploit. 

In 2015, Ukraine experienced a significant power outage when a cyber-attack resulted in 

the disconnection of twenty-three 35kV and seven 110kV substations for three hours. The attack 

was initiated using a phishing technique and resulted in power loss for 225,000 customers. 

Similarly, in 2016, part of the capital city of Ukraine, Kyiv, was left without electricity for over an 

hour due to a cyber-attack [1]. 

In response to these emerging threats, in 2017, the US president signed a bill to increase 

the cybersecurity of federal networks and critical infrastructure. This order highlighted the risks of 

"electricity disruption" caused by cyber-attacks. It is essential to address these risks and intensify 

efforts to improve cybersecurity and protect against cyber-attacks capable of causing significant 

disruption to critical infrastructure [2]. 

In addition, according to the International Energy Agency (IEA), the potential to produce 

energy via renewable technologies, such as wind and solar power, is expected to increase around 

60% of the renewable electricity capacity by 2026, making renewables the primary source 

responsible for almost 95% of this increase, with more than half coming from solar photovoltaic 

(PV) by itself, consequently becoming “the powerhouse of growth in renewable electricity” [3].  
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Therefore, this work applied the modern idea of utilizing Digital Twin to lessen the 

vulnerabilities of internet-connected devices in light of the growing need for renewable energy and 

the rising application of internet-connected devices. As [4] presented a cyber protection system for 

grid-connected devices using embedded systems, this work proposed an improvement to the 

hardware layer of the cyber-physical devices - creating a Digital Twin of an ANPC inverter within 

a custom controller, which was the same controller used in [4].  

The controller contains a Field Programmable Gate-Array (FPGA), which emulates a 3-

level ANPC inverter, instead of a 2-level inverter, as was cited in [4]. Additionally, it has two 

Digital Signal Processors (DSPs): one is used to control an actual inverter – called “Active DSP”; 

while the other is used to create a Digital Twin and authenticate a new firmware before patching 

it – called “Stand By DSP.” In this case, the authentication method is called Design-For-Trust 

(DFTr). The purpose of utilizing this technique is to prevent malicious firmware from being 

installed or updated inside grid-connected inverters used within solar distributed energy resources 

(DERs). Such malicious firmware can potentially carry out a cyber-physical attack on the DERs, 

which can have serious consequences, such as shutting the grid down. DFTr ensures that the 

firmware installed on these inverters is trustworthy and free of malicious code, thereby reducing 

the risk of cyber-physical attacks.  
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CHAPTER 2 

BACKGROUND 

2.1 Cyber-Attacks 

Cyberattacks usually concentrate on revealing the weaknesses of the communications 

layer. Cyber attackers connect to the network using a variety of techniques, including phishing, 

Man-in-the-Middle (MitM) attacks, Denial of Service (DoS), SQL injection, Domain Name 

System (DNS) tunneling, and more, to obtain access to the communication layer. Attackers that 

take over the communications section can send the controller malicious commands or software, 

which could damage the power electronic device [4]. Several cybersecurity techniques are specific 

to the grid for determining the primary forms of attack vectors and performing risk evaluations. 

Since the communications layer is the first point of interaction with the system, most cybersecurity 

techniques concentrate on protecting it. However, new system vulnerabilities are continually being 

found, raising serious concerns about the grid's dependability [5]. 

Grid vulnerabilities are a serious threat because they allow cyberattacks to take down the 

power grid in an entire nation or city, as was the case with Ukraine strikes in 2015 and 2016 [6]. 

Recently, a ransomware attack shut down pipeline operations on the Colonial Pipeline in the 

southeast of the United States [7]. Ransomware programs have caused several cyberattacks that 

shut down physical activities in 2020, as discussed in [7], highlighting the significant need for 

cybersecurity. Cybersecurity must now be incorporated into the design of power electronics 

control systems to decrease the electric grid's vulnerability to cyberattacks that target the 

communication network  [4]. If an attacker successfully takes control of the communications layer, 

they can manipulate the controller, hardware layer, and other layers. Fig. 1 below displays a 

graphical depiction of these layers.  
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For example, when malicious firmware is uploaded to the controller, it might force the 

grid-connected device to shut down or start operating with suboptimal settings. This attack might 

not shut down the entire grid but a portion of it, similar to what happened during the attacks 

targeting Ukraine in 2015 and 2016. This work presents a technique for further protecting grid-

connected devices that use the Supervisory, Control, and Hardware layers. 

This project was designed to address a scenario where an attacker had already taken 

control of the network. The objective was to enhance the security of the power electronics 

controller in order to safeguard the grid operation. In case of an attack, a compromised controller 

would issue a command to shut down the system. The suggested method does not allow 

unauthorized firmware updates that could compromise the controller board. Moreover, a validated 

backup firmware replaces the compromised firmware without disrupting the ongoing system 

control. This technique ensures that the system will not crash during an attack, enhancing its 

resilience and security. 
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Fig. 1 Cyber-physical layer representation [2]. 
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2.2 Photovoltaic Systems 

The conversion process of light (photons) into electricity (voltage) is known as the 

photovoltaic effect. This effect gives the field of photovoltaics (often abbreviated as PV) its name. 

The significance of this effect was first demonstrated in 1954 by researchers at Bell Laboratories, 

who built a silicon solar cell capable of generating electric current upon exposure to light. Since 

then, the development of photovoltaic systems has progressed significantly. Due to their increasing 

economic viability, they are now widely installed and used on a large scale to help power electric 

grids [8]. 

In transmission and distribution networks, almost all power is provided as alternating 

current (AC), while the photovoltaic cells produce Direct Current (DC), the same type of current 

provided by batteries. To connect solar-power systems to the grid, inverters, and other components, 

shown in Fig. 2, necessary to connect a solar power plant to the grid, are utilized to convert DC to 

AC power [9]. 

 

Fig. 2. Solar Power Plant [10] 
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2.3 ANPC Inverter 

Neutral-point-clamped (NPC), capacitor-clamped, and cascaded H-bridge inverters are 

just a few examples of inverters commonly used in PV systems [11]. These power converters, 

known as inverters, take a DC link supply as input. Using Pulse Width Modulation (PWM) signals, 

it controls its output to generate a three-phase sinusoidal AC with each phase offset by 120 degrees 

from the other. The whole system is depicted in Fig. 3 as having four sections:  

• DC input voltage supply: Representing PV arrays from Fig. 2. 

• An inverter: Considering a 3-level ANPC inverter in this case. 

• A three-phase filter.  

• Three-phase load. 

 

Fig. 3. Typical representation of a 3-level ANPC inverter hardware 

 

The NPC inverter design can handle higher voltage levels using semiconductor 

components with lower voltage ratings while generating fewer harmonics in its output, and it is 

appealing for use in high-power applications. The semiconductor devices used in this inverter 
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architecture have a rating of half the input DC bus voltage. Although, the unbalanced loss 

distribution across its semiconductor components is a drawback of the NPC inverter [12] [11]. 

Conversely, this drawback is resolved by the ANPC inverter design. Due to the two 

redundant neutral current pathways in this architecture, semiconductor device losses may be 

balanced regardless of the load power factor [13], [14]. Additionally, it needs low voltage-rated 

semiconductor components for high voltage applications, just like the three-level neutral-point 

clamped inverter structure. As a result, it is a highly appealing option for applications requiring 

high-power energy conversion [12] [11]. 

The NPC design (Fig. 4a) involves twelve switches (four for each phase) and six clamping 

diodes (two for each phase), while the ANPC design uses 18 switches, with six switches for each 

phase, as Fig. 5 illustrates. With these six transistors, it became possible to manipulate more 

switches involved in the design, increasing the number of possible modulation strategies that could 

be used to enhance the ANPC performance, as presented in work [12]. 

  

(a) (b) 

Fig. 4. Inverters: (a) NPC; (b) ANPC 
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Fig. 5. Three-level ANPC inverter topology 

This project is centered on implementing a Digital Twin of an ANPC (Active Neutral 

Point Clamped) inverter, as this inverter type was incorporated with the controller of a solar farm 

during testing. In light of the growing significance of photovoltaic energy in the renewable energy 

sector, three-level inverter topologies have gained prominence over two-level inverters, owing to 

their distinct advantages, such as lowered switching loss, diminished electromagnetic interference, 

and reduced harmonic content in the output current waveform. These benefits are characteristic of 

three-level inverter topologies, setting them apart from their two-level counterparts [12]. 
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2.4 Modulation 

Pulse-width modulation (PWM) is a crucial component of power electronic converters 

that was initially proposed to facilitate the production of sinusoidal AC voltage and current by 

inverters. Despite being suggested over 60 years ago, in 1964, PWM continues to be widely used 

with the rise of advanced power electronic converters and growing requirements for superior 

output voltage and current. PWM remains a significant subject of exploration in the realm of power 

electronics, captivating the curiosity and enthusiasm of researchers and scholars. The ongoing 

interest in PWM reflects its continued relevance and importance in enabling the efficient and 

effective use of power electronic converters in a range of applications [15]. 

The effectiveness and reliability of the inverter can be affected immediately by the 

switching frequency of the PWM technique. Increasing the switching frequency can lead to a lower 

distortion rate in the inverter's AC output current, as well as a decrease in the size and capacity of 

the filter inductor and capacitor. However, increasing the switching frequency also results in higher 

switching losses and greater performance demands on the switching device [15]. 

In order to maintain the output voltage of the single-phase inverter at a specific level, it 

is necessary to apply a control signal that will activate the inverter switches, and a PWM is 

commonly used for this purpose (Fig. 6). PWM signals have two main variables:  

• Duty-Cycle: Also known as “On time,” it is the length for which the switch is in 

operation (On).  

• Switching period: sum of the on-time and the off-time - duration time.  
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Fig. 6. Pulse Width Modulation [16] 

The PWM generation is frequently based on comparing a low-frequency sine wave signal 

to a high-frequency carrier signal, which is usually a triangular method known as SPWM 

(Sinusoidal Pulse-Width Modulation). The fundamental concept behind natural sampling SPWM 

involves the comparison of a sinusoidal modulating voltage with a high-frequency triangular 

carrier wave. This comparison generates a rectangular pulse sequence whose width follows the 

sinusoidal law, as represented by Fig. 7 It is then power amplified and used to drive the inverter, 

ultimately producing a sinusoidal voltage or current output. [15]. 

 

Fig. 7. SPWM generation principle 
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The voltage output of an unfiltered single-phase inverter is half of the DC input voltage 

during the on-time. However, the filtered output voltage is limited to a certain percentage of the 

DC input voltage. As the on-time approaches the maximum limit of 100%, the filtered output 

voltage increases proportionally. When the on-time is 100%, the filtered output voltage equals 

50% of the DC input voltage, equivalent to half of the DC input voltage. The same line of principle 

is applied to the negative side, generating an output voltage as a sinusoidal waveform, which 

symbolizes an AC output, by raising and lowering the on-time, as Fig. 8 portrayed. 

 

Fig. 8. Ideal PWM inverter output voltage [17] 

2.4.1 Modulation: 3-level ANPC Inverter 

A three-level ANPC inverter possesses eighteen transistors, allowing several strategies to 

improve the inverter's performance using different transistor types or modulation, as proposed in 

[12]. As this work was put into practice, an authentic ANPC inverter provided by SMA was used. 

As another group chose the modulation in the same project, modulation type two was selected 

from [12], where the external switching devices (Q2 and Q3) commutate at the carrier frequency. 



13 

In contrast, the inner transistors commutate at the US's fundamental line frequency - 60 Hz – as 

presented in Fig. 9. 

 

Fig. 9. Gate signals for modulation type II [12] 

 

In order to simplify the explanation of how the ANPC inverter works, Fig. 10 illustrates 

one phase leg of the inverter. Each transistor can be considered a switch that can be turned on and 

off, and depending on the state of each switch, the output might change. Considering non-

malicious states only, Table 1 represents each transistor's possible output and states, where Vdc is 

the DC input from the system (Fig. 3), while Fig. 11 illustrates the current path on each of these 

states. 
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Fig. 10. Phase leg of a three-level ANPC inverter topology [2] 

 

 

 

Table 1. Switch states modulation type II [12] 

State Output Q1 Q2 Q3 Q4 Q5 Q6 

P 0.5Vdc 1 1 0 0 0 1 

O+ 0 1 0 1 0 0 1 

O- 0 0 1 0 1 1 0 

N -0.5Vdc 0 0 1 1 1 0 
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(a) 

 

(b) 

 

 

(c) 

 

(d) 

 

 

  

Fig. 11. Switching states: (a) P state, (b) O+ state, (c) O- state, (d) N state 

During the P state, transistors Q1 and Q2 are turned on, allowing the positive half of the 

DC input voltage to reach the output, generating 
𝑉𝑑𝑐

2
 Volts on the output Fig. 11(a). Meanwhile, 

the O+ state, a zero state during the positive cycle, involves turning the transistors Q6 and Q3 On, 

allowing the zero voltage to reach the output Fig. 11(b). In the next state O-, represented by Fig. 

11(c), the transistors Q2 and Q5 are on, allowing the zero voltage to reach the output. Lastly, the 

N state, illustrated in Fig. 11(d), affects the output when transistors Q3 and Q4 are turned on, 
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creating a path for the negative half of the DC input to influence the output, generating 
−𝑉𝑑𝑐

2
 Volts. 

The inverter's output voltage is shown in Fig. 12, where the on-time fluctuates. This voltage output 

goes through a filter and gives it a sinusoidal form, as presented in Fig. 13. 

This sinusoidal output is produced by fluctuating on time with the constant filter settings. 

The output voltage increases as the on-time increases and lowers as the on-time decreases. Switch 

Q6 is set ON in the "P" state to ensure that Q3 and Q4 share the same amount of voltage, while 

switch Q5 is switched ON in the "N" state to ensure that Q1 and Q2 share the same amount of 

voltage [13]. Table 1 shows that Q1 and Q6 are linked because they share the same position for 

each state, and the same applies to Q4 and Q5. 

 

Fig. 12. Inverter voltage output waveforms [12] 

 

Fig. 13. Filtered Inverter Voltage Output 
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2.5 Controller board and architecture 

The work described in [4] used a controller called UCB (Unified Controller Board), which 

contains two DSPs, one FPGA, one Xport gate, four expansion headers, a JTAG interface, IDC 

expansions, and ADC signal conditioners, as illustrated in Fig. 15. As this work is a continuation 

of the work developed in [4], so the same controller board was used. 

The highlighted components displayed in Fig. 15 played a crucial role in the design of 

this project. The expansion headers were utilized primarily to establish a connection between the 

controller and the SMA inverter while providing a pathway to connect other peripheral 

components to the controller, which will be elaborated on in further detail in this work. The DSPs 

and FPGA were extensively integrated into the project since it was primarily developed in VHDL 

and embedded within the FPGA. Communication between these components relied on the Modbus 

RTU protocol, designed by the University of Arkansas and implemented using VHDL. 

Additionally, the Serial Communication Interface (SCI) was heavily utilized to facilitate 

communication between the FPGA and a computer. A picture of the physical board is presented 

in Fig. 15. 

Although not depicted in Fig. 14, the external SPI Flash was another critical component. 

As the development progressed, the FPGA firmware grew to a point where the internal Flash 

memory within the FPGA was insufficient to store the FPGA firmware and the DSP firmware, 

which was initially stored in the same Flash memory. To overcome this issue, an external board 

with an SPI Flash chip was added as a solution, so the DSP firmware could be stored apart from 

the FPGA firmware. Micron's Micron Serial NOR Flash Memory was used for this project. 
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Fig. 14. Block diagram of UCB architecture showing significant components [2] 
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Fig. 15. UCB with auxiliary daughter boards installed [2] 

2.5.1 Field-Programmable-Gate-Array (FPGA) 

An array of configurable logic gates makes up a Field-Programmable Gate Array (FPGA), 

which may be programmed internally using either a special Joint Test Action Group (JTAG) or 

another type of serial/parallel non-volatile memory. Static random-access memory (SRAM), a 

volatile memory type where, once the board is shut down, the data stored in an FPGA's memory 
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is erased, is widely used in the FPGA architecture, and an external non-volatile memory 

(EEPROM) is connected to the FPGA in order to configure the data.  

The FPGA Architecture allows for the implementation of any design of digital hardware 

circuit, and it is based on three distinguished elements: 

• Configurable Logic Blocks (CLBs): The CLBs are the blue boxes represented in 

Fig. 16. Each of these blocks consists of a large number of look-up tables (LUTs), 

multiplexers (MUXs), and Flip-Flops (FFs), as they can be used to implement 

logic functions.  

• Input/Output Blocks (IOBs): Are external connection resources near the FPGA's 

edge. These programmable blocks carry signals "to" or "from" an FPGA device. 

IOBs are depicted in Fig. 16 as rectangular boxes bounded by the FPGA. 

• Switch Matrix: A configuration of linking wires inside an FPGA that provides 

low-impedance and low-delay dedicated pathways for the CLBs. 

 

The Lattice MachX02-7000HC FPGA device used in this project can be programmed 

using the IDE provided by Lattice named “Lattice Diamond.” This FPGA includes an embedded 

clock system providing a frequency not higher than 400MHz, including a Phase Lock Loop (PLL) 

that provides alternative frequency domains for different designs. It also includes Configuration 

Flash Memory, or CFM, where the developed firmware is stored, Embedded Block RAM (EBR), 

a component that can be used to store parameters, was used to store some variable’s values, I/O 

banks, Programmable Function Units (PFUs) that contains 6864 Look-Up-Tables (LUTs) are used 

in the design and have a voltage core of 2.5-3.3V. 
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Fig. 16. Internal architecture of a typical FPGA [18] 

For external communication, the FPGA can communicate through Inter-Integrated 

Circuit (I²C), Serial Peripheral Interface (SPI), and Universal Asynchronous Receiver and 

Transmitter (UART) protocols. In this design, the SPI communicated between the FPGA and an 

external Flash memory to increment the controller’s memory capacity. At the same time, the 

UART was crucial to connect the board with the User Interface (UI) during development and 

testing. More information about the MachX02 can be found in [19]. 
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2.5.2 Digital Signal Processor (DSP) 

It is common to employ DSPs in regulating power inverters that transform DC power 

derived from solar panels or batteries into AC power suitable for utilization in electrical systems. 

DSPs can be used to execute complicated control algorithms that govern inverter voltage, 

frequency, and power production and monitor and fix problems. For this project, DSPs were 

utilized to generate the PWM signals. 

PWM is a crucial feature of DSPs in inverter management. PWM is a method for 

controlling an inverter's output voltage by changing the width of its output pulses, in this case, to 

control the ANPC inverter output. The average voltage can be changed over time by changing the 

pulse width, providing precise output voltage control. The PWM impulses can be generated in 

real-time using DSP, allowing for fast and precise changes to working circumstances. 

The PWM was generated based on the previously explained method of natural sampling 

SPWM, which compares a triangle carrier wave, and a sinusoidal modulating voltage with a 

fundamental frequency, ensuring the carrier has a much higher frequency than the fundamental. 

Then, a rectangular pulse sequence that varies its width is produced, and the pulse sequence drives 

the inverter to provide a sinusoidal voltage or current output, as presented in Fig. 7. 

The two DSP cards utilized within the controller, model Delfino F28335, manufactured 

by Texas Instruments, use Code Composer Studio (CCS) as an interface to communicate and 

control the devices. This DSP was chosen due to its capabilities. As a C2000 real-time 

microcontroller, it was designed to increase closed-loop performance and was specifically 

manufactured for use in real-time control applications, such as solar inverters [20]. Fig. 17 

represents the F28335 schematic. 
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Fig. 17. DSP Block diagram 
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2.5.3 Serial Peripheral Interface Flash Memory (SPI Flash) 

2.5.3.1 Flash Memory 

One of the main differences between a volatile memory, like Random Access Memory 

(RAM), and a non-volatile memory (NVM) is that in a volatile memory, the data stored in it is lost 

when the power is switched off. However, in a non-volatile memory such as Flash Memory, this 

limitation does not occur. The Flash memory can retain the data through multiple power cycles, 

which means the program stored in the Flash is not lost even when switched off [21]. 

The Flash memory was since, during the firmware loading process, the FPGA needs to 

access the DSP firmware when the user requests. In addition, as it also needs to keep a genuinely 

known firmware as a backup, the controller must not lose the DSP firmware in case the system is 

turned off.  

The memory component used as a solution to the lack of internal memory in the FPGA 

was the MT25QL128ABA manufactured by Micron. This chip was selected due to its memory 

size, 128Mb, its voltage application – 2.7 to 3.6V – and its versatility to read and program it with 

ease. 

2.5.3.2 SPI Protocol 

The communication within the Flash Memory is made through a protocol named Serial 

Peripheral Interface, or SPI. It is a widely used synchronous serial communication protocol 

developed by Motorola in the mid-1980s to facilitate data transfer between various electronic 

components [22]. This protocol uses a four-wire interface consisting of a clock line, a master-out-

slave-in (MOSI) line, a master-in-slave-out (MISO) line, and a slave select (SS) line, as depicted 

in Fig. 18. 



25 

 SPI utilizes a master-slave architecture, meaning it has one device (the master) that 

controls the communication and one or more devices (the slaves) that respond to the master's 

commands. This structure provides a straightforward and efficient method of communication 

between devices. It allows for full-duplex communication, meaning the master and slave devices 

can transmit and receive data simultaneously [22]. 

The SPI protocol employs two lines, one for transmitting data and the other for 

synchronization via clock pulses. Whenever the receiver detects a clock edge, it reads the bit from 

the data line. The entity that generates the clock signal is called the "master," while the other party 

is known as the "slave." Typically, there is only one master, which in this case was the FPGA, but 

there may be one or more slaves. To send data from the master to a slave, the master sends bits 

through the MOSI line, and the MISO is used by the slave to return the response. When multiple 

slaves are present, the SS line chooses the intended one and signals the slave to prepare for 

receiving or sending data. The SS line is usually held high, severs the slave's connection to the SPI 

bus [21]. 

For example, in Fig. 18, the master sends a binary command “01010011”, which 

corresponds to “53” in hexadecimal format. After a while, the slave replies to the master with a 

binary message "01000110", which correlates to "46" in hexadecimal. It is important to note that 

the SS is low during the entire communication process between the master and slave because that 

is the method the master uses to select the slave with whom it will communicate. 

SPI can achieve high-speed data transfer rates of up to 400 Mbps, making it an ideal 

choice for applications that require fast and reliable communication between devices, such as 

sensors, displays, and memory chips. Additionally, SPI is commonly used in embedded systems 

and microcontroller-based projects because of its simplicity and low hardware requirements [22]. 
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Fig. 18. SPI Connection [21] 

Fig. 19 depicts the MT25Q128ABA pinout. The nomenclature provided earlier in the SPI 

protocol does not appear in this picture. However, the manufacturer provides the correlation in the 

component's datasheet, where the S# is the slave-select, also known as Chip Select, the C pin is 

the clock input, DQ0 is the input MOSI, DQ1 is the output MISO, Vcc is the power supply, and 

Vss is the ground [23]. Table 2 presents the correlation between the SPI protocol and the SPI Flash 

chip used in this work. The W# and DQ3/HOLD were not used in this work; they are extra 

protection pulled high to disable them. 
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Fig. 19. MT25Q128ABA [23] 

 

Table 2. Correlation SPI - MT25Q128ABA 

SPI MT25Q128ABA 

MOSI DQ0 

MISO DQ1 

SS S# 

SCLK C 

 

An example of when the FPGA needs to read data from the SPI Flash, it must send the 

read command – “03” in hexadecimal – followed by the register address where the data is stored. 

As presented in Fig. 20, the command takes eight clock cycles, 0 to 7, since “03” in hex would be 

“0000 0011” in binary, and each bit takes one clock to be read. After sending the desired register, 

the slave, which is the flash memory itself, replies to the master with the data that was stored at 

that address. LSB and MSB presented in the pictures stand for Least Significant Bit and Most 

Significant Bit, respectively. 
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Fig. 20. SPI Flash reading procedure [23] 

A VHDL-based method was developed to extract data from the MT25Q128ABA, 

essential to store the DSP firmware externally from the FPGA. The reason for this was that the 

MachXO2 device had limited resources, and it was no longer feasible to store the firmware within 

the FPGA memory. As the project progressed, the FPGA firmware size grew to a point where the 

internal Flash memory was inadequate to contain both the FPGA and DSP firmware. 

 

2.6 Digital Twin 

The Digital Twin (DT) was initially introduced by Professor Grieves at the University of 

Michigan in 2003 while teaching a product life cycle management course. Grieves defined DT as 

a virtual information structure representing a manufactured product [5]. He proposed that a DT 

model should have three dimensions: a physical entity, a virtual entity, and an interconnection 

between them [6].  

In their research on the prediction of complex product/system behaviors through Digital 

Twins, Grieves highlighted the importance of using simulation predictions to minimize the 

complexity of such products/systems. The ultimate goal is to prevent unforeseen and unfavorable 

outcomes that could result in disastrous consequences. For instance, when launching a rocket, a 

virtual space is created to simulate the Digital Twin of an actual rocket. The Digital Twin allows 
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for quick replacements and repairs in the event of failure, reducing the risk of catastrophic 

problems [24]. 

This technology is considered the leading force in changing the norms of aviation 

manufacturing in the years to come [25]. This technology is causing significant disruption in 

various industries by utilizing data feeds to map physical entities. The German Information 

Technology and New Media Association BITKOM predicts the manufacturing market will see 

immense value in digital twins, with estimates surpassing 78 billion euros by 2025. In 2016 and 

2017, Gartner – a 5+ billion-dollar company that provides insights and guidance to other 

businesses - recognized DT as one of the top ten strategic technology development trends. In 

November 2017, the largest weapons manufacturer globally, Lockheed Martin, identified DT as 

one of the top six technologies in the future defense and aerospace industry [26]. 

Furthermore, according to [27], applying DT in automated industries is vital. They refer 

to the comprehensive simulations used to create a virtual replica of a physical system. By 

embracing digital twins, operators can oversee production, analyze deviations in a controlled 

virtual setting, and enhance the safety of process industries. 

However, the meaning of DT may vary depending on the context in which it is used. For 

instance, aircraft or system orientation, optimal utilization of advanced physical models, sensors, 

historical operating data, integration of various multi-disciplinary and multi-scale probabilistic 

simulation processes and mapping the physical aircraft's corresponding state are all encompassed 

in NASA's definition of a digital twin. 

Meanwhile, in the electrical engineering realm, more specifically in grid-connected IoT 

devices, some experts argue that DTs for cyber-secure grid-connected devices are real-time 
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simulations that can be employed to monitor system health and event response, and overall 

efficiency during cyberattack scenarios [4].  

Based on the concept of monitoring system health, creating an alternative to check system 

responses for new patches, and also offering the possibility to check system performance without 

putting it into jeopardy, an emulator that replicates a 3-level ANPC inverter behavior (DT) was 

designed in VHDL and embedded within the FPGA.  

Fig. 21 illustrates the DT implementation for the FPGA subsystem, where the FPGA 

contains a hardware emulator that mimics the physical hardware of the grid-connected device, 

which in this case is an ANPC inverter, as shown in Fig. 5. The emulator employs the PWM signals 

generated by the DSP. Based on its status, the DT determines the corresponding output voltages. 

Once the 3-level ANPC output has been determined, the FPGA proceeds to collect 192 output 

samples, with a sampling interval of 100µs, and stores them in its internal RAM, as illustrated in 

Fig. 21 and Fig. 22. When a user requires access to the output generated by the new firmware in 

the standby DSP, the FPGA retrieves the relevant data from its RAM and transmits it to the user 

via the SCI interface. The output is then made available on LabVIEW, among other platforms.  

The process of creating a DT for a 3-level ANPC inverter involves utilizing a DSP that is 

not currently in charge of controlling the inverter. As depicted in Fig. 21, the DSP1 is classified as 

the active DSP since it is responsible for routing the PWMs that control the inverter. In contrast, 

DSP2 is identified as the standby or non-active DSP since its PWM signals are directed not to the 

inverter but to the emulator, which generates the DT and performs firmware validation. 

As an illustration, consider a scenario where a user intends to update the device’s 

firmware. The new firmware is transmitted to the FPGA via the SCI interface and is stored in the 

Flash Memory using the SPI protocol. At this point, the user can load and test the firmware. If the 
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user decides to proceed with testing, the firmware is extracted from the Flash Memory via SPI and 

transmitted to the standby DSP, which in this instance is DSP2, using the MODBUS RTU protocol. 

While the DSP1 continues to control the grid-connected device, the DSP2 undergoes an online 

validation process, which is integrated into the controller board. The validation feature evaluates 

a set of potential firmware flaws, ensuring that the firmware meets all pre-established 

requirements, as described in the subsequent section.  

Additionally, it simulates the behavior of the 3-level ANPC inverter to verify the 

functionality of the firmware on the standby DSP. If the new firmware passes all the tests, it 

becomes available to take over control of the inverter, facilitating hot-patching and providing the 

DT of the new firmware. If the user opts to hot-patch, the signals that regulate the inverter are 

switched, with the DSP1 transitioning into the standby DSP role and the DSP2 becoming the active 

DSP, as illustrated in Figure 19. 

 

Fig. 21. Hardware Architecture (DSP1 as active) 
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Fig. 22. DSP2 as active 

2.7 Design-For-Trust 

Considering a scenario where an attacker gained access to the inverter and attempted to 

update the DSP with malicious firmware, to harm the grid or the inverter, or to shut the inverter 

down, a couple of crucial tests were established and designed in VHDL and embedded in the 

FPGA. Thus, the DSP firmware must be trustworthy to be approved and allowed to control the 

inverter.  

The DFTr technique was designed to prevent the system from entering situations that pose 

a potential risk to the ANPC inverter or the power grid. Before a new firmware is activated, tests 

are conducted to ensure its reliability. If any of these tests fail, the firmware is considered 

inherently harmful, and the system rejects it and prevents it from becoming active. These tests are 

processed simultaneously, enhancing the efficiency of the authentication process. 

The considered tests were based on critical scenarios that could cause significant damage 
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to the grid or the inverter. One of the considered tests was to detect short-circuit scenarios due to 

malicious DSP firmware, which could cause immense damage to the grid and the inverter. Another 

test was made to prevent new DSP firmware from lacking deadtime, generating short-circuits for 

a short period but very frequently, which could jeopardize the inverter and the grid. Another test 

checks if the new firmware is based on the fundamental frequency of 60Hz. The last test is a 

watchdog that ensures a new firmware is not blank, which would turn the inverter off without any 

visible changes in the inverter and impact the power delivered to the grid. 

2.7.1 Short-Circuit 

A low-resistance connection between two conductors that power a circuit is commonly 

referred to as a short-circuit. When electricity flows through a path with low resistance, it creates 

an electrical short circuit, causing an excessive current flow and voltage streaming in the power 

supply, leading to potentially dangerous consequences such as circuit overheating, fire, or 

explosion [28]. 

Considering a 3-level ANPC inverter, the scenario that creates a path between the 

positive, negative, and neutral that generates a short-circuit, known as a shoot-through, must be 

avoided. Considering one phase lag of the ANPC, Fig. 23 illustrates the scenario when Q1 and Q5 

are on simultaneously. The short-circuit path is generated between P and O, which could harm the 

device. The same idea applies to the scenario where Q4 and Q6 are on simultaneously.  

The purpose of the short-circuit tests is to assess the operational switching states of the 

new firmware and ensure that a short-circuit condition among the switches never occurs, as 

depicted in Fig. 23. 
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Fig. 23. Short Circuit scenario [2] 

2.7.2 Deadtime 

Actual transistors are not ideal, requiring a small amount of time to switch between the 

on and off states. Hence, a deadtime is necessary for modulation controls to prevent a shoot-

through scenario in transistors that cannot be on at the same time. Deadtime refers to the interval 

between the first transistor turning off and the second turning on. Fig. 24 illustrates a deadtime 

between Q1 and Q4, as it was used in this project since Q1 and Q4 cannot be on simultaneously 

because the same PWM sent to Q1 is also forwarded to Q6, while Q4 and Q5 share the same PWM. 

Therefore, if Q1 and Q4 are on simultenously, it implies that Q1, Q4, Q5, and Q6 are all on 

together. This delay is generated by the control circuit, which is the DSP, and is essential because 

switching delays can cause cross-conduction. The gap is then necessary to prevent it [29]. 

The deadtime test aims to establish a sufficient delay between switching states to prevent 

the simultaneous conduction of switches that should not be conducted simultaneously. If this 
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invalid switching configuration were to occur, it could result in a short-circuit for a short period 

but very frequently, putting the inverter and the grid in jeopardy. 

 

Fig. 24. Dead Time 

2.7.3 Fundamental Frequency 

According to the source [30], the electrical systems in the United States currently operate 

at a frequency of 60Hz. It is essential to maintain a high level of stability in frequency to ensure a 

reliable electric system. Various factors, such as generation loss and demand overload, can cause 

frequency variations, adversely affecting the grid. These variations can trigger protection relays 

involuntarily and lead to the grid reaching the lowest acceptable frequency, which can severely 

impact the system’s stability, as stated in [31]. 

Furthermore, according to [31], the deployment of under-frequency load-shedding 

schemes varies across NERC (North American Electric Reliability Corporation) regions and 

subregions, with different frequency set points. In the United States, the highest initial blocks of 

load shedding have frequency set points ranging from 59.7 to 59.3 Hz. 
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Under-frequency load shedding is a process that involves disconnecting a significant 

number of predetermined customers from the power grid when the frequency drops to pre-set 

frequency thresholds. 

Therefore, when dealing with grid-connected energy resources, it is essential to maintain 

a stable operational frequency to prevent unwanted harmonic distortions in the grid. The DFTr 

inside the controller ensures that the DSP firmware of the inverter generates a frequency of 60Hz, 

which is necessary for the grid's stability. [2]. 

2.7.4 Fast Frequency 

This test checks if the new firmware has 42kHz as the frequency for the fast transistors 

(Q2 and Q3), as this frequency was defined during the progress of this work. Even though new 

firmware with different frequency values might not be dangerous to the inverter or grid, it can 

reduce the inverter’s performance and change the semiconductors’ response with the possibility of 

increasing losses or harmonics. Thus, during the tests on this work, the firmware needed to remain 

consistent with the defined characteristics. 

2.7.5 Watchdog (Timer) 

The final step in validating the DFTr strategy involves verifying that the DSP firmware 

does not cause the controller to enter a stall state. In this context, a stall state refers to a situation 

where the FPGA is awaiting both rising and falling edges from the Pulse Width Modulation 

(PWM) signals but instead receives malicious firmware that lacks any oscillation in the control 

signals. During the firmware testing phase, the DSP firmware is subject to a maximum waiting 

time, and if the timer reaches this threshold, the new DSP firmware is rejected. 

  



37 

CHAPTER 3 

METHODOLOGY 

During the development of this work, the LabVIEW 2018 software was used as a Graphic 

User Interface (GUI) because it allowed the user to interface with the FPGA through Serial 

Communication Interface (SCI) to send and verify a new DSP firmware, check the DT signals and 

the active DSP (1 or 2), monitor the DSP status, and show the hot-patch status and possible errors, 

as presented in Fig. 25. 

 

 

Fig. 25. LabVIEW interface 

The FPGA is the primary reference in the UCB since it can process different tasks 

simultaneously. The FPGA regulates signal routing, data flow, security measures, and firmware 

patching. To do that, the FPGA was programmed using VHDL language, and some software 

components were designed and embedded into the FPGA to create a cyber-secured system. The 
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main components responsible for initializing the procedure and system, performing the DFTr 

process, generating the DT, and hot-patching were named Bootloader, Firmware Validation, 

Emulation, and Hot-Patching, respectively. Each of these components was considered internal 

processes and was described in detail in the next section of this work. 

3.1 PROCESSES 

This section outlines the steps required for a user to replicate the tests conducted in this 

work. The instructions not only covered the process for obtaining the same results as in this work 

but also provided insight into the inner workings of the controller. The primary aim was to enhance 

the user's comprehension of the interaction between themselves and the controller. 

3.1.1 EXTERNAL PROCESSES 

The procedures outlined in this section are deemed external, as they pertain to a protocol 

that occurs outside of the controller. These procedures involve the user, the IDE, and the controller. 

As established in this project, they are crucial for enabling the user to execute tests with the 

controller and arrive at their conclusion regarding its trustworthiness and dependability. 

3.1.1.1 DSP Firmware Development 

The first step in generating a DT and testing the DFTr is to design firmware to control the 

DSP PWMs. Using the CCS software, the user can create a DSP firmware using C language, as 

presented in Fig. 26. After developing the firmware to generate the PWMs using the GPIOs, as 

presented in Table 3, it was necessary to change the project’s properties to generate a “. hex” file 

when the project is built. To make the changes in the properties, was requested to follow the 

instructions below: 

1. Right-click on the desired project. 

2. Select “Properties.” 
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3. Select the item “C2000 Hex Utility”. 

4. Click on the checkbox “Enable C2000 Hex Utility.” 

5. On “Boot Table Options,” mark the “Specify table source as the SCI-A port, 8-bit 

mode (--sci8, -sci8)” checkbox. 

6. On “Output Format Options,” select “Output Intel hex format (--intel, -i)” as 

Output format and check the “Binary output format (for DSKs) (--binary, -b)” 

checkbox. 

7. Click on “Apply and Close” 

8. Right-click on the desired project and select “Clean Project.” 

9. Right-click on the desired project and select “Build Project.” 

 

 

Fig. 26. CCS IDE 
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Table 3. Correlation between DSP and FPGA GPIOs 

Phase PWM DSP Output 

(GPIO) 

FPGA Input 

A Q1 & Q6 25 AB6 

A Q4 & Q5 12 U10 

A Q2 00 AA8 

A Q3 01 Y7 

B Q1 & Q6 26 Y4 

B Q4 & Q5 27 W11 

B Q2 02 T8 

B Q3 03 V8 

C Q1 & Q6 14 T10 

C Q4 & Q5 19 V11 

C Q2 04 U8 

C Q3 05 W9 

 

After completing the procedure previously described, a “. hex” file was generated and 

stored in the “Debug” folder. An example of a “. hex” file is depicted in Fig. 27. 
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Fig. 27. Example of a Hex File (firmware) 
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3.1.1.2 Firmware Upload – Firmware to be tested. 

 

 

Fig. 28. USB cable connection 

The first step in uploading firmware was to connect a USB cable to the correct (non-

Lattice/FPGA) port on the UCB. Fig. 28 shows the USB connection made with J14 to load a DSP 

firmware. The pictured port, J18, is used to program the FPGA instead. Next, was selected the 

correct setting to connect the computer to the controller. Fig. 29 illustrates the LabVIEW interface 

with the GUI project designed for this work. On the left, a purple square highlights the 

configuration settings for the serial communication between LabVIEW and the UCB. For example, 

the user had to select the correct Serial Communication port, COM5, and make sure the “Serial 

Type” selected was RTU. The “Unit ID” had to be 1, the “baud rate” was 9600, and the “parity” 

field was None, 
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Fig. 29. LabVIEW project 

 

The second step in this procedure was to send the DSP firmware to the controller. With 

the LabVIEW project, the user selected the “. hex” file generated in the previous subsection 

(3.1.1.1 DSP Firmware Development). The user had to click on the folder button highlighted in 

red in Fig. 29 and with the number “1” written in red as well. 

Next, after selecting the “. hex” file correctly, it was necessary to erase the Flash memory. 

As this type of memory cannot be overwritten, it must first be erased. To achieve this, the user had 

to click the “Erase Flash” button, highlighted in black, with the number “2” by its side, in Fig. 29. 

The button to perform the third step is displayed in blue in Fig. 29, with the number “3”. 

The user sends the “. hex” file to the controller in this step. The FPGA received the .hex file and 

stored it in the Flash Memory using the SPI protocol. On the top right of Fig. 29, there is also a 
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blue square with the number “3” on its side that indicates the delivery progress of the firmware to 

the controller. 

When the transmission was complete, the interface allowed the user to click on “Load 

and Verify,” highlighted by a yellow square in the “Controllers” buttons section. Here, the user 

sent a command to the FPGA to pull the firmware previously stored into the Flash memory, reset 

the DSP to enable it to receive a new firmware, and rerouted the data to the DSP. In this step, the 

“DSP Status” lights changed status. The “Ready” light went off, and the “Loading Firmware” 

lighted up, as depicted in Fig. 30. The “Loading Firmware” status not only indicates the firmware 

was being loaded into the DSP but also that the firmware validation was running as soon as the 

loading process ends. In this state, no other controller button affected the controller. 

 

Fig. 30. Loading Firmware 
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If the updated firmware met all the requirements, meaning that it passed the DFTr tests, 

the FPGA enabled the Hot-Patch button, granting the user the possibility of swapping the active 

DSP and then letting the new firmware control the inverter. When the hot-patch function was 

allowed, the “Hot-Patch Status” section turned all lights off except the “Ready,” as presented in 

Fig. 31, meaning the hot-patch was waiting for a command. When a user clicks on the “Hot-Patch” 

button, the status changes from “Ready” to “Done.” 

 

Fig. 31. Hot-Patch Ready 

During the validation process, the Hot-Patch status might have changed. While the 

firmware was undergoing tests, the “Busy” light turned on briefly, indicating that the firmware 

was under evaluation. Because the process was too fast, when this light turned on was almost 

unnoticeable. On the other hand, the “Error” light was effortless to see since it glowed when the 
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DSP firmware was considered malicious; it stayed on until the backup firmware was loaded 

entirely into the standby DSP. 

After Hot-Patching, to generate the DT of the new firmware, the procedure starting at the 

“Load and Verify” step had to be done again so that both DSPs would embed the same firmware. 

This way, one DSP controlled the inverter while the other generated the DT. With the DSP 

firmware loaded into the standby DSP, the FPGA received its output and replicated the output that 

a real ANPC inverter would provide, which had to be similar to what Fig. 12 exhibits. 

To check the provided DT output, the user had to select the “Datalogger” tab at the top 

left of the LabVIEW project window. Then, the user could choose the Vdc the system used, as 

presented in Fig. 32. Next, click “Emu_DL-Start.” This button sent a command to the FPGA, 

informing it to start sampling and storing the samples in the internal RAM. Lastly, the user clicked 

on “Read_DL,” which commanded the FPGA to transmit the data previously stored in RAM to 

LabVIEW. 

 

Fig. 32. Generate Digital Twin output. 

The firmware was rejected if the loaded firmware did not meet the requirements defined 

by the DFTr. Fig. 33 represents the possible errors displayed in LabVIEW. The FPGA rejected the 
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new firmware by resetting the standby DSP and sending the backup firmware. This procedure 

guaranteed that both DSPs could control the inverter if any fault happened to the active DSP. 

 

Fig. 33. Possible errors 

3.1.1.3 Firmware Upload – Backup Firmware. 

The Backup Firmware is a DSP firmware previously tested and approved by the 

controller. In other words, genuine firmware has all the requirements to control the inverter without 

entering a potentially detrimental state. This backup firmware was essential because when the 

firmware is tested and rejected due to not having all the requirements defined in the DFTr, the 

FPGA sends a command to reset the standby DSP where the malicious firmware was loaded. Then, 

the standby DSP is loaded with the backup firmware, guaranteeing that the standby DSP has a 

known non-malicious firmware loaded that can generate a DT of a 3-level ANPC inverter.  

Assuming the LabVIEW configuration was correctly set up by the user using the 

specifications described in the previous subsection to send the backup firmware to the FPGA, it 

was necessary to select the “.hex” file with the genuine firmware and click on the drop-down menu, 

as depicted in Fig. 34, and selected “FW for Backup.” Next, it was required to click the “Erase 

Flash” button, which commanded the FPGA to erase the Flash memory section designated to store 
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the backup firmware. The last step was to push the “Send Firmware” button and wait until the 

progress was complete.  

 

 

Fig. 34. Backup FW: Drop-down menu 

The difference between sending the firmware to be tested and a backup firmware is that 

sending the backup firmware is unnecessary to do the other steps, as cited in the previous 

subsection since the backup firmware must be considered adequate to perform them. 

3.1.2 INTERNAL PROCESSES 

The steps described in this section were considered internal since they relate to a protocol 

executed within the controller. The subsequent subsections elaborate on the procedures within the 

controller that enabled the patching of new firmware and the creation of a DT for virtually 

monitoring the output of a 3-level ANPC inverter by the user. 

3.1.2.1 Bootloader 

The responsibility of the Bootloader was to retrieve the firmware data from the Flash 

memory and transmit it to the DSP. To prepare the DSP for the new firmware, the Bootloader 

clears the DSP's existing contents, resets it, and sends the autobaud configuration data. 

Subsequently, the Bootloader extracts the firmware data from the allocated registers in Flash 

memory, divides it into two 8-bit data sets, and combines them to form a 10-bit packet, including 

the beginning and end portions. To ensure the complete firmware file is transmitted to the DSP, 

the Bootloader utilizes the total number of firmware registers that are recorded in the first allocated 
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register of the Flash, as indicated in Table 4. After transmitting the firmware file to the DSP, the 

Bootloader activates the firmware validation feature to ensure the entire firmware file has been 

successfully transmitted. 

Table 4. Firmware Register Map 

Name 

Ram Address 

(16-Bit Hex) 

Data 

(16-Bit Hex) 

Description 

FW Len 1000 16-bit FW size register 

FW Data 1001:2FFF 16-bit Firmware 

 

If the new firmware was valid, the emulator continued to operate, and the Hot-Patch 

procedure started. However, if the new firmware was not valid, then the validation identified the 

new firmware as malicious. The firmware validation interacted directly with the Bootloader, Hot-

Patch, and Emulation, triggering the “error function” in these components. The emulation stopped 

and reset while the FPGA disabled the Hot-Patch and saved the error flag and error type into the 

registers in the DP-RAM (Dual Port – Random Access Memory), and informed the user of the 

error type. Meanwhile, the Bootloader started the backup procedure by loading the standby DSP 

with secure firmware and disabled user commands until the backup firmware was completely 

loaded. 

The backup process was initiated if the new firmware was rejected during firmware 

validation. When in backup mode, the Bootloader retrieves backup firmware data from designated 

registers in Flash, which are enabled once the backup procedure has been activated. The Flash 

space assigned for the backup firmware data can be found in Table 5. It is worth noting that the 

backup Bootloader method is identical to the new firmware's Bootloader. 
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Table 5. Backup Firmware Register Map 

Name 

Ram Address 

(16-Bit Hex) 

Data 

(16-Bit Hex) 

Description 

FW Len 3000 16-bit Backup FW size 

register 

FW Data 3001:4FFF 16-bit Backup Firmware 

 

3.1.2.2 Firmware Validation 

The security reference design's firmware validation function focused on particular 

firmware instructions that might jeopardize the power electronic inverter or the grid it is connected 

to. This feature's architecture made it simple to detect malicious firmware, putting the firmware 

under the DFTr specifications.  

The firmware validation feature watched the standby DSP’s PWM signals and compared 

and checked against the requirements previously specified in the DFTr. To prevent malicious 

firmware from taking control of the inverter, the FPGA conducts processes described in this 

section by simultaneously comparing all switches in each phase leg's PWM signals using this 

function.  

The firmware validation process takes up to three seconds, enough time to check the 

PWMs, primarily the 60Hz ones. Three seconds was equivalent to 180 cycles of a 60Hz PWM’s 

frequency. The period for testing can be increased, if necessary, but for this work, the time chosen 

was sufficient to test and mitigate flaws in malicious firmware. 
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Considering that MachX02 can provide different clock frequencies, the clock frequency 

chosen for this work was 25MHz (or a period of 40ns). Thus, for all the following tests described 

in this work, the base measure of time considered for a single clock cycle was 40 ns. 

3.1.2.2.1 Short-Circuit 

In this test, the FPGA reads the PWMs received from the standby DSP and searches for 

any scenario where a short-circuit occurs between the slower frequency transistors, which is 

considered the fundamental frequency (60Hz). This test ensures that Q1, Q4, Q5, and Q6 are never 

active simultaneously. 

To achieve that, the FPGA reads the pins routed to the DSP’s GPIOs from Table 3. If a 

firmware provides any scenario where these transistors are switched on together during the test 

period, the FPGA automatically invalidates this firmware. The invalidation of firmware consists 

of raising a malicious firmware flag, stopping all other processes, and starting the backup firmware 

loading procedure. 

The short-circuit test starts by waiting for a transition on phase A Q1. When a transition 

happens, it waits for three more transitions, a period necessary to ensure signal stability. After 

reaching signal stability in phase A, the process is repeated for phases B and C. After reaching a 

stable state, the FPGA keeps reading all three phases, at the same time, waiting to identify a 

scenario where Q1 and Q4 or Q5 and Q6 are on simultaneously in any phase. If this scenario 

happens at least once, the firmware is rejected, a malicious firmware flag is raised, and the backup 

firmware process is started. 

3.1.2.2.2 Deadtime 

The deadtime test is very similar to the short-circuit test, starting with waiting for the 

switching on Q1. The main difference between these tests is that each phase is a process that runs 
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in parallel. After receiving the first state change in Q1, this process ignores the first three changes, 

waiting for signal stability. 

After reaching stability, this test compares the identical transistors but waits specifically 

for a falling edge – a transition from the high state (“1”) to the low state (“0”) - of each of them, 

and, when the falling edge occurs, it starts to count the number of clock cycles between the falling 

edge of one transistor and the rising edge of a different transistor that is not allowed to be on 

simultaneously. If the number of clock cycles is less than specified, the malicious flag is raised, 

the firmware is rejected, and the backup process is started. 

For example, when a falling edge of Q1 happens, a counter starts counting the clock 

cycles and waiting for Q4 (which is not allowed to be on at the same time as Q) to turn on. When 

Q4 is switched on, the counter stops, and the number of clock cycles is checked. If the number of 

clock cycles is less than 25, which implies a deadtime of 1µs, then the firmware is considered 

malicious; otherwise, the firmware passed this test. 

Deadtime = number of clock cycles ∗ clock period 

Deadtime = 25 ∗ 40ns = 1µs 

3.1.2.2.3 Fundamental Frequency 

The Fundamental Frequency test checks if the firmware uses a frequency of 60Hz to 

generate the slow PWMs. A frequency of 60Hz implies that Q1, Q4, Q5, and Q6 must have a 

period of approximately 1.667ms. Considering the frequency fluctuation, this work allowed a 

minimum frequency of 59.5Hz, staying above the minimum set point of 59.3Hz, as in [31]. The 

same difference was allowed above 60Hz. In other words, the range accepted for a slow PWM 

frequency is between 59.5 and 60.5Hz. 
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This test starts waiting for a transition in Q1, and, similarly to the other tests, it ignores 

the first three switches until it becomes stable. After that, it waits for a falling edge to start counting 

and continues counting until the next falling edge. When the second falling edge occurs, the 

counter stops, and the FPGA checks how many clock cycles were counted within the PWM period. 

If this value is greater than 420,000 (the number of clock cycles in a period of 59.5Hz, as 

demonstrated in the following equations) or less than 413,000 (the number of clock cycles in a 

period of 60.5Hz, as presented in the following equations) the firmware is considered malicious, 

and the backup firmware procedure starts. 

Frequency =  
1

Period
 

Period_59.5 =  
1

59.5
≈ 16.80ms 

Period_60.5 =  
1

60.5
≈ 16.53ms 

Number of Clock CyclesMinimum =  
Period

Clock Period
=  

16.53ms

40ns
≈ 413.000 

Number of Clock CyclesMaximum =  
Period

Clock Period
=  

16.80ms

40ns
≈ 420.000 

 

3.1.2.2.4 Fast frequency 

The fast frequency test is similar to the Fundamental Frequency, but instead of 60Hz, this 

test used the period in a 42 kHz frequency. At the beginning of this test, the FPGA waits for a 

transition in Q1 and ignores the first three switches. After that, it waits for a falling edge, and then 

the FPGA starts to count until the next falling edge. The counter stops as soon as the second falling 

edge is read, and the FPGA compares how many clock cycles were counted within the fast PWM 

period. If this value is outside the range between 581-609, the firmware is considered malicious, 
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and the backup firmware procedure starts. The range values consider some oscillation in the 

PWMs, with a minimum of 41kHz and a maximum of 43kHz. 

Period_42k =  
1

42000
≈ 23.80µs 

Number of Clock Cycles42k =  
Period

Clock Period
=  

23.80µs

40ns
≈ 595 

 

3.1.2.2.5 Watchdog (Timer) 

As mentioned, the watchdog test guarantees that a new DSP firmware patch is not blank 

firmware that could stall the inverter. This test starts a counter that begins with all the other tests 

and continues counting until the short-circuit test disables it. When the short-circuit test is 

complete, it tells the FPGA that the new firmware has PWMs and disables the watchdog.  

However, if the firmware is blank, the short-circuit test keeps waiting for a falling edge 

that does not exist in blank firmware. When the counter reaches 71,000,000 (43B5FC0 in 

hexadecimal), or 2.84 seconds, the watchdog raises the malicious firmware flag invalidating the 

new firmware. After that, the FPGA stops all other running processes and loads the backup 

firmware. 

3.1.2.3 Hot-Patch 

The ability to patch a device's firmware without affecting the system's functionality is 

known as hot-patching [4]. Assuming the firmware passes the verification, the hot-patching 

procedure will commence. Otherwise, the backup firmware process will be activated. The Hot-

Patch uses the FPGA as a "routing fabric" and may swap the control signals for the DSP output in 

the order of nanoseconds. The Hot-Patch causes the standby DSP to activate and operate the grid-

connected device while the current active DSP enters standby mode as a backup.  



55 

On the other hand, if the firmware is malicious, then the standby DSP remains in standby 

mode, and the current active DSP stays active throughout the backup process. The standby DSP is 

patched with backup firmware saved in the Flash memory to complete this procedure. Redundancy 

and failsafe functionality are built into this system because if the active DSP malfunctions, the 

standby DSP, equipped with the same firmware, will take over the management of the grid-

connected device. As this project continued [4], the same Hot-patch and Bootloader systems were 

used. 

To achieve a seamless transition during hot-patching and avoid causing service 

disruptions, synchronization between the two DSPs is essential because they work simultaneously 

and have access to identical measurement data from the physical hardware, which enables them to 

coordinate their actions. Fig. 35 depicts the outcome of a DSP transition without synchronization 

following firmware patching and verification [4]. The waveform demonstrates the changeover, 

which, in a real-world scenario, might result in loss of power and/or damage to equipment. The 

synchronous transition event is depicted in Fig. 36, with the DSPs correctly coordinated and 

ensuring no service interruptions or equipment damage occurs[4]. 
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Fig. 35. Asynchronous Hot-Patch [4] 

 

Fig. 36. Synchronous Hot-Patch [4] 
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3.1.2.4 Digital Twin 

The Digital Twin in this security architecture serves to digitally replicate the 3-Phase 3-

Level ANPC inverter, as mentioned in section 2.2. This inverter produces AC output after 

converting the DC input source using its switching mechanism. The DSP controller creates PWM 

signals to operate the switches on the inverter, which the emulator processes. The emulator also 

replicates an inverter output being managed by these PWM signals. After generating the 

corresponding output, the FPGA was programmed to gather 192 samples of these signals and store 

them in the DP-RAM, volatile memory in the FPGA, which can be accessed externally using 

LabVIEW. 

To replicate an ANPC inverter, the FPGA reads the DSP output and applies each signal 

to the eighteen virtual transistors designed as switches, which only have two states: on and off. 

The virtual replica does not account for external factors influencing an actual transistor, such as 

noise or transient time (rise or fall time). In the virtual environment, the eighteen transistors are 

considered ideal, with zero delay response to the received signals from the DSP. This information 

is translated into switch states, as presented in Table 1.  

Combining the digital transistors with the DSP output made it possible to replicate the 

behavior of an authentic ANPC inverter, as illustrated in Table 6. The ANPC inverter generates a 

percentage of the DC input using a duty cycle. For example, in Fig. 11, when the DSP output sends 

a high signal ("1") to transistors Q1 and Q2 simultaneously, the ANPC inverter recreates an output 

that is half of the DC input (state P). The same idea is applied to generate the negative half of the 

DC input (state N) when the DSP signals are on for transistors Q3 and Q4. This behavior was 

designed using VHDL and embedded within the FPGA. 
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From Fig. 32, , a user can fill out the VDC field, and depending on the inserted value, the 

DT values might change since it multiplies the VDC with the proportional output, as shown in 

Table 6. For example, if a user adds a value of 24 to VDC, the possible outputs will be 12, -12, 

and 0. 

After translating the DSP state to an ANPC output, the FPGA collects and stores the 

samples in the DP-RAM, accessing them using the addresses presented in Table 7. Whenever a 

user requests a new sample from the Digital Twin, the FPGA overwrites the data in these registers 

with the new samples collected from the DT output and stores the new data in the DP-RAM. The 

data consists of real-time output values that can be accessed anytime. 

 

Table 6. Digital Twin ANPC Output 

Switch DSP Output State 

Q1 1 1 0 0 

Q2 1 0 1 0 

Q3 0 1 0 1 

Q4 0 0 1 1 

Q5 0 0 1 1 

Q6 1 1 0 0 

Digital Twin 

ANPC Output 

50% 0V 0V -50% 
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Table 7. Digital Twin Registers 

Name 

Ram Address 

(16-Bit Hex) 

Data 

(16-Bit Hex) 

Description 

Phase A 200 16-bit Emulation Phase A 

Phase B 300 16-bit Emulation Phase B 

Phase C 400 16-bit Emulation Phase C 
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CHAPTER 4 

RESULTS AND DISCUSSION 

This section explains the creation of the DT and the validation process of newly received 

firmware by the system. To verify the firmware type and to check if the controller's behavior was 

correct, the oscilloscope model Tektronix MSO 4034 was employed to monitor the DSP and 

controller output signals. 

In addition, this section discusses the DSP and controller's output signals of a known non-

malicious firmware that has all the requirements to pass the DFTr test and would be capable of 

controlling a 3-level ANPC inverter. Next, each malicious firmware type that failed to pass each 

DFTr test is explained and illustrated. 

4.1 Standard Firmware (Non-malicious) 

After following the steps described in the previous section, the DSP firmware was 

generated and sent to the FPGA. Fig. 37 depicts the DSP signals generated, and each of the 

different channels represents the phases in the ANPC inverter. Phase A is represented by channels 

0 and 3, where channel 0 controls Q1 and Q6, and channel 3 controls Q4 and Q5. Phase B is 

represented by channels 1 and 4, and phase C is represented by channels 2 and 5. Table 1 represents 

the correlation between each channel and the relevant transistors associated with them. The ANPC 

inverter's fast frequency transistor behavior was not monitored for this test.  

The blue text values at the bottom-left of Fig. 37 indicate the deadtime between D0 and 

D3, interpreted as Channel 0 and 3, which is 100 µs. It also depicts a deadtime of 60 µs for 

Channels 1 and 4 and 80 µs between Channels 2 and 5. 
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Fig. 37. DSP Standard Firmware 
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Table 8. Transistor/Channel relation 

Phase A 

Q1 & Q6 Channel 0 

Q4 & Q5 Channel 3 

Phase B 

Q1 & Q6 Channel 1 

Q4 & Q5 Channel 4 

Phase C 

Q1 & Q6 Channel 2 

Q4 & Q5 Channel 5 

 

Upon conducting the necessary DFTr checks, the FPGA has successfully validated the 

authenticity of the DSP firmware. As a result, the FPGA could emulate the ANPC inverter's output 

and generate the DT. In Fig. 38, the emulated output provided by the FPGA is presented and 

displayed using LabVIEW. Despite the limited resolution of the waveforms depicted in Fig. 38, it 

is apparent that the signals produced through the emulation process resemble those typically 

produced by a genuine ANPC inverter as depicted in Fig. 12. 
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Fig. 38. Three-Level ANPC Inverter Digital Twin 

4.2 Short-circuit corrupted Firmware (Malicious) 

If a malicious firmware attempts to take control of the inverter, the FPGA must decline it 

and revert to dependable firmware, which in this instance, is a backup firmware. Furthermore, the 

FPGA must prevent the activation of the hot-patching feature while maintaining the operation of 

the currently active DSP. 

Initially, a malicious firmware was transmitted to the FPGA where Phase A had Q1, Q4, 

Q5, and Q6 turned on concurrently, as presented in Fig. 39. If firmware with the same 

characteristics as in Fig. 39 was loaded into the controller, it could cause a short-circuit in the 

inverter, damaging it and harming the grid which it was connected. 
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Fig. 39. Channel 0 and 3 on simultaneously 

The controller’s response to this type of firmware is depicted in Fig. 40. After testing this 

firmware and checking if a short-circuit scenario was present (short-circuit scenario is present in 

this figure), the FPGA correctly refused the firmware and successfully returned an error state. The 

reported error was a short-circuit condition, and the system reacted by loading the backup 

firmware, as shown on the graphical display. 

Short-Circuit 

Scenario 
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Fig. 40. Short-Circuit scenario detected. 

4.3 Firmware with missing deadtime (Malicious) 

Subsequently, malicious firmware devoid of any deadtime was transmitted to the FPGA. 

As depicted in Fig. 41, the firmware lacked deadtime, as denoted by the measurement indicators 

positioned at the lower-left corner, indicating the deadtime between channels 0 (D0) and 3 (D3) 

was zero seconds. The same can be observed between channels 1 (D1) and 4 (D4) and between 

channels 2 (D5) and 5 (D5). Firmware such as this (lacking deadtime) could harm the inverter's 

components and possibly jeopardize the grid by causing short-circuits for a short period. Upon 

detecting the deadtime error, the controller answered by rejecting the new malicious firmware and 

instead reverted to the backup firmware, as evidenced by the observation in Fig. 42. 
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Fig. 41. DSP firmware without deadtime 

 

Dead Time = 0s 
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Fig. 42. Missing deadtime detected. 

4.4 Firmware with a fundamental frequency different than 60Hz (Malicious) 

If a firmware has a suitable deadtime and is devoid of short-circuit scenarios, it is still 

essential to confirm its fundamental frequency. Operating at an inappropriate fundamental 

frequency, such as 30 Hz, can have a detrimental effect on the power grid. Therefore, in such 

cases,\ the controller mechanism must reject the firmware to safeguard the inverter hardware and 

protect the power grid. Fig. 43 depicts a firmware with a fundamental frequency of 30 Hz that falls 

beyond the acceptable operational range. 
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Fig. 43. DSP firmware with a fundamental frequency of 30Hz  

The top right corner of Fig. 43 shows a value of 33.42ms, which corresponds to the period 

of the signal on channel 0 and 3. This period indicates a 30Hz signal rather than the intended 

frequency of 60Hz (16.66ms), as presented in the following equations. Therefore, the expected 

controller response is to reject the new firmware and load the backup firmware. Fig. 44 displays 

the FPGA's reaction to this malicious firmware, which includes rejecting it and loading the backup 

firmware as expected, as well as pointing that the firmware has an error with its fundamental 

frequency. 

Period60Hz =  
1

60
≈ 16.67ms 

Period = 33.42ms 

Freq = 30Hz 
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Period30Hz =  
1

30
≈ 33.33ms 

 

Fig. 44. Fundamental Frequency different than 60 Hz 

4.5 Fast Frequency not matching 42 kHz firmware (Malicious) 

If firmware with a different frequency than what was established is uploaded, it might not 

cause any harm to the inverter or the grid. However, it could still significantly impact the inverter's 

performance by changing the semiconductor's response and increasing the power loss or, in the 

worst case, reducing the semiconductors' life usage. 

Fig. 45 shows an example of firmware using a high frequency of 30 kHz instead of 42 

kHz. The frequency can be found in the bottom-left corner of Fig. 45 and is represented by the 

difference between cursors "a" and "b" in the top-right corner of the respected picture. The period 
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represented by the difference between the cursors is 33.20 µs, representing a 30 kHz frequency, as 

illustrated by the following equation. 

Period30kHz =  
1

30000
≈ 33.33µs 

Table 9 represents the relationship between the channels depicted in Fig. 45 and the 

correspondent transistors. 

Table 9. Fast transistors and channels relationship 

Phase A 

Q2 Channel 0 

Q3 Channel 1 

Phase B 

Q2 Channel 2 

Q3 Channel 3 

Phase C 

Q2 Channel 4 

Q3 Channel 5 
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Fig. 45. DSP firmware with a fast frequency of 42 kHz 

As per the predetermined invalid firmware contingency plan, the controller was expected 

to reject the malfunctioning firmware and initiate the loading of the backup firmware. In Fig. 46, 

the FPGA's response to the detrimental firmware is seen, where it carries out the expected action 

of rejecting it and loading the backup firmware. This response further indicates that the firmware 

contains an error related to its fast frequency, as identified by the FPGA. 
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Fig. 46. Fast Frequency different than 42 kHz 

4.6 Stall state firmware (Malicious) 

Lastly, firmware that has constant values instead of PWM signals was loaded into the 

controller. This type of firmware was illustrated in Fig. 47, where all DSP output signals remain 

constant, which could put the inverter in a stall position, thus disabling it and affecting the grid’s 

power availability. 

The expected controller’s response for this kind of firmware is a rejection, followed by 

the loading of the backup firmware along with displaying the “Timer” error in LabVIEW. Fig. 48 

shows the response of the DT confirming that the controller enhances the system’s security, is 

acting as expected, and is rejecting the firmware. Additionally, the system prevents the now-known 

malicious firmware from being active by tagging the firmware as malicious and indicating that the 

watchdog was not disabled, triggering the timer error. 
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Fig. 47. Stall Firmware 

 

 

Fig. 48. Timer Error 
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4.7 Cost Analysis 

This work introduced a solution enabling hot-patching, reducing downtime, and 

incorporating a DT replicating an ANPC. This replication allows for testing new patches for 

errors before implementing them while also serving as a monitoring tool for system health and 

performance. The standby DSP receives signals from the real ANPC controlled by the active 

DSP, enhancing the system's resilience against cyber-attacks aimed at compromising the inverter 

and power grid with malicious firmware updates. 

Furthermore, these advantages can be incorporated into an affordable inverter costing 

less than two hundred dollars. This cost estimation takes into account the expense of one FPGA 

and two DPS. Based on the prices provided in Fig.  49, and Fig.  50, the price range for a single 

unit or a hundred units falls between $178.25 and $171.73, respectively. These figures represent 

the lowest prices discovered during the preparation of this research.

 

Fig. 49. MachXO2 Price [32] 
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Fig. 50. DSP controlCard Price [32] 

Moreover, the inverter employed in this study, which had its control system replaced by the UCB 

discussed in this work, incorporated a distinct FPGA within its system architecture, specifically 

the Intel Altera 5CSEBA5U23A7N. The cost of this FPGA ranged from $280.07 to $308.07, as 

indicated in Fig. 51 and Fig. 52, respectively. Consequently, considering solely the components 

discussed, integrating the FPGA and the two DSPs described in this research proves to be more 

cost-effective than the FPGA currently utilized in commercial inverters.

 

Fig. 51. FPGA Intel Altera [23] 
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Fig. 52. FPGA Intel Altera [32] 
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

The proliferation of technology, the widespread accessibility of high-speed internet, and 

the growing connectivity of power grids to various networks have brought about numerous 

advantages in the field of distributed energy resource applications. These benefits include 

heightened awareness of the situation, multi-disciplinary event response strategies support, and 

sophisticated secondary and tertiary controls that enhance grid efficiency and resilience. 

Nevertheless, linking these devices to the internet allows for additional attack vectors, introducing 

vulnerabilities to the power grid. Therefore, it is vital to improve the cybersecurity of these devices 

to safeguard against cyber-attacks. 

A new system was developed to safeguard the hardware layer of distributed energy 

resource controls and block many cyber-attacks that try to manipulate the inverter's behavior. This 

system builds upon the previous work presented in [4] and has demonstrated its ability to replicate 

and emulate a 3-level ANPC inverter output while ensuring the new DSP firmware meets all the 

firmware validation requirements of the DFTr system. 

Furthermore, the advantages outlined in this study, including the ability to perform 

firmware hot-patching to minimize downtime, enhancing cyber-security robustness, and real-time 

monitoring of the inverter using the DT, can be seamlessly incorporated into a commercial inverter 

without any cost increase. In fact, the integration of the FPGA and two DSPs utilized in this 

research would cost less than two hundred dollars. In contrast, the lowest price range for the FPGA 

currently employed in commercial inverters is between two hundred and eighty to three hundred 

and eight dollars. 
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This project provided the foundation and system structure for future work to modify the 

emulation architecture to accommodate different inverter topologies. This system can also be 

improved by expanding the tests in the DFTr, which could guarantee the ANPC inverter does not 

suffer a performance downgrade by indicating a subpar system change when being updated to a 

new firmware with lower performance.  

In addition, an improvement that could be added is to check the backup firmware for 

malicious firmware. This work assumed that the backup firmware is non-malicious, but this new 

test is important in increasing the system's cyber-robustness. 

Finally, two other improvements can be added to the system: an authentication process 

that verifies who is sending commands to the inverter and rejects commands being sent from 

unknown sources; and an addition of a real-time system health monitor that would alert the user 

to an error in case of a fault within the ANPC inverter. To clarify, if a transistor within the inverter 

malfunctions, the ANPC inverter would change its output signals, and as this is a closed-loop 

system, the DSP firmware would change its response. After reading the DSP's response, the FPGA 

could identify a problem and alert the user that the ANPC inverter is malfunctioning. This 

implementation could be done by switching the user request for the DT response, as described in 

this work, to an automated request of the DT output – request every second, for example – and 

using the DT output to diagnose the ANPC inverter's health.  
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APPENDICES 

APPENDIX A: VHDL CODE 

A-1: Top file 

---------------------------------------------------------------------------------- 

-- Company:  University of Arkansas (NCREPT) 

-- Engineer: Estefano Soria and Paulo Custodio 

--  

-- Create Date:   26/10/2021 

-- Project Name:   Digital_Twin 

-- Module Name:   Top 

-- Design Name:   Digital_Twin_Top 

-- Target Devices:   LCMXO2-7000HC-4FG484C (UCB v1.4a) 

-- Tool versions:   Lattice Diamond_x64 Build 3.11 

-- Description: 

-- This project has the purpose to create a Digital Twin (DT) able to emulate an Active-Neutral 

Point Clamped (ANPC) inverter using the inactive/standby DSP outputs  

-- to check if the new DSP firmware has all the requirements designed with the Design-For-Trust 

(DFTr) technique. 

-- The ANPC inverter has 6 transistors per phase, being two Fast Frequency Transistors(Q2 and 

Q3) and four Slow Frequency Transistors (Q1,Q4,Q5,Q6). 

-- The strategy used to control the ANPC inverter is considering the PWM 01, which controls the 

transistor 1 (Q1) the same as Q6, since they must be on and off at the same time. 
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-- The same concept was applied to transistors Q4 and Q5, because they also have the same 

behavior. 

-- Slow transistors must have a switching frequency equivalent to the fundamental frequency 

60Hz, while the Fast transistors (Q2 and Q3) must have a switching frequency of 42kHz. 

--  

-- PinOut: 

-- ------Inputs------ 

-- ----DSP 1 (DIMM-B)---- 

-- --Phase A-- 

-- F20 -> Q1|Q6 

-- M16 -> Q2 

-- C22 -> Q3 

-- K20 -> Q4|Q5 

-- --Phase B-- 

-- G18 -> Q1|Q6 

-- M19 -> Q2 

-- C21 -> Q3 

-- K18 -> Q4|Q5 

-- --Phase C-- 

-- K22 -> Q1|Q6 

-- L22 -> Q2 

-- B22 -> Q3 

-- J17 -> Q4|Q5 
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-- ---- END DSP 1 (DIMM-B)---- 

-- ----DSP 2 (DIMM-C)---- 

-- --Phase A-- 

-- AB6 -> Q1|Q6 

-- Y7  -> Q2 

-- T8  -> Q3 

-- U10 -> Q4|Q5 

-- --Phase B-- 

-- Y4  -> Q1|Q6 

-- V8  -> Q2 

-- U8  -> Q3 

-- W11 -> Q4|Q5 

-- --Phase C-- 

-- T10  -> Q1|Q6 

-- W9   -> Q2 

-- AA8  -> Q3 

-- V11  -> Q4|Q5 

-- ---- END DSP 2 (DIMM-C)---- 

-- ----Others---- 

-- C2  -> Flash SPI Slave Output 

-- Y1  -> SCI RX 

-- V13 -> SCI RX DSP 

-- R3  -> SCI RX WEBSERVER 



87 

-- G13 -> Push Button (SW1) -> Erase Flash Memory manually 

-- ---- End Others---- 

-- ------End Inputs------ 

-- ------Outputs------ 

-- --Phase A-- 

-- A21 -> Q1 

-- C19 -> Q2 

-- A20 -> Q3 

-- D18 -> Q4 

-- B19 -> Q5 

-- C18 -> Q6 

-- --Phase B-- 

-- F17 -> Q1 

-- A18 -> Q2 

-- D17 -> Q3 

-- E17 -> Q4 

-- A17 -> Q5 

-- C18 -> Q6 

-- --Phase C-- 

-- F16 -> Q1 

-- E16 -> Q2 

-- D16 -> Q3 

-- B15 -> Q4 
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-- C16 -> Q5 

-- E15 -> Q6 

-- --LEDs-- 

-- R17 -> LED A 

-- U17 -> LED B 

-- T18 -> LED C 

-- R16 -> LED D 

-- T17 -> LED E 

-- Y21 -> LED F 

-- Y20 -> LED G 

-- U18 -> LED H 

-- --Flash Memory-- 

-- C3  -> Chip-Select (CSSPIN) 

-- E4  -> Hold 

-- D3  -> SPI Clock (MCLK) 

-- F5  -> Slave Input SPI (SISPI) 

-- F6  -> Write enable (WPn) 

-- --DSPs-- 

-- G22 -> DIMM_B_GPIO30 

-- H16 -> DIMM_B_SCI_RX 

-- Y3  -> DIMM_C_GPIO30 

-- AB2 -> DIMM_C_SCI_RX 

-- F6-> IDC_D_GPIO_02 (DSP1 Reset) 
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-- F5 -> IDC_D_GPIO_03 (DSP2 Reset) 

-- -- Others -- 

-- AA1 -> SCI_TX 

-- V12 -> SCI_TX_DSP 

-- R2 -> SCI_TX_Webserver 

-- 

-- Revision: 

-- v2.15.22 - Top file without the deadtime component (deadtime should be called by the 

firmware validation only) 

-- v3.24.22 - Added the emulation control and debug signals. Adapted to ANPC inverter 

-- v5.23.22 - Polishment and comments to make it easier to comprehend the code for future 

work. 

-- Additional Comments:  

--  

-- 

---------------------------------------------------------------------------------- 

 

  

Library IEEE; 

use IEEE.std_logic_1164.all; 

use ieee.std_logic_unsigned.all; 

use ieee.numeric_std.all; 
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library machxo2; 

use machxo2.all; 

 

library work; 

use work.Digital_Twin_Common.all; 

 

entity Digital_Twin_and_Hot_Patching is 

    Port  

 ( 

  ------------------- Communication pins between CPLD and UI ------------------

- 

  SCI_RX : in std_logic; --UART RX pin for Serial Comm with UI: UI(TX) 

-> CPLD (RX) -> Y1 

  SCI_TX : out std_logic; --UART TX pin for Serial Comm with UI: UI(RX) 

-> CPLD (TX) -> AA1 

 

  SCI_RX_Webserver : in std_logic;    --UART RX pin for Serial Comm with UI: 

UI(TX) -> CPLD (RX) -> R2 

        SCI_TX_Webserver : out std_logic;    --UART TX pin for Serial Comm with UI: UI(RX) -

> CPLD (TX) -> R3 

     

  IDC_D_GPIO_02 : out STD_LOGIC; -- Reset Pin of the DSP DIMM-B -> F6 

  IDC_D_GPIO_03 : out STD_LOGIC; -- Reset Pin of the DSP DIMM-C -> F5 
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  DIMM_B_SCI_RX : out STD_LOGIC; -- This pin is used to send the firmware to 

the DSP and the bootloader. -> DIMM-B_GPIO-28 -> H16 

  DIMM_C_SCI_RX : out STD_LOGIC; -- This pin is used to send the firmware to 

the DSP and the bootloader. -> DIMM-C_GPIO-28 -> AB2 

  DIMM_B_SCI_TX : in STD_LOGIC;  -- This pin is used to send the firmware to 

the DSP and the bootloader. -> DIMM-B_GPIO-29 -> J19 

  DIMM_C_SCI_TX : in STD_LOGIC;  -- This pin is used to send the firmware to 

the DSP and the bootloader. -> DIMM-C_GPIO-29 -> U12 

   

  DIMM_B_GPIO30 : out STD_LOGIC; -- G22 

  DIMM_C_GPIO30 : out STD_LOGIC; -- Y3 

      

  Btna : in STD_LOGIC; 

 

  -------------------------------------- INPUTS -------------------------------------- 

  -- SW : in STD_LOGIC; 

  ------------------- DIMM_B ------------------- 

  -- Phase A 

  DSP1_01_A : in  STD_LOGIC; -- Q1 -> F20 -> DIMM-B_GPIO-12 

  DSP1_02_A:  in  STD_LOGIC; -- Q2 -> B22 -> DIMM-B_GPIO-00 

  DSP1_03_A : in  STD_LOGIC; -- Q3 -> M16 -> DIMM-B_GPIO-01 

  DSP1_04_A : in  STD_LOGIC; -- Q4 -> K20 -> DIMM-B_GPIO-25 



92 

 

  -- Phase B 

  DSP1_01_B : IN  STD_LOGIC; -- Q1 -> G18 -> DIMM-B_GPIO-26 

  DSP1_02_B : IN  STD_LOGIC; -- Q2 -> C22 -> DIMM-B_GPIO-02 

  DSP1_03_B : IN  STD_LOGIC; -- Q3 -> M19 -> DIMM-B_GPIO-03 

  DSP1_04_B : IN  STD_LOGIC; -- Q4 -> K18 -> DIMM-B_GPIO-27 

 

  -- Phase C 

  DSP1_01_C : IN  STD_LOGIC; -- Q1 -> K22 -> DIMM-B_GPIO-14 

  DSP1_02_C : IN  STD_LOGIC; -- Q2 -> C21 -> DIMM-B_GPIO-04 

  DSP1_03_C : IN  STD_LOGIC; -- Q3 -> L22 -> DIMM-B_GPIO-05 

  DSP1_04_C : IN  STD_LOGIC; -- Q4 -> J17 -> DIMM-B_GPIO-19 

    

  ------------------- DIMM_C ------------------- 

  -- Phase A 

  DSP2_01_A : in  STD_LOGIC; -- Q1 -> AB6 -> DIMM-C_GPIO-12 

  DSP2_02_A:  in  STD_LOGIC; -- Q2 -> AA8 ->  DIMM-C_GPIO-00 

  DSP2_03_A : in  STD_LOGIC; -- Q3 -> Y7 ->  DIMM-C_GPIO-01 

  DSP2_04_A : in  STD_LOGIC; -- Q4 -> U10 -> DIMM-C_GPIO-25 

 

  -- Phase B 

  DSP2_01_B : IN  STD_LOGIC; -- Q1 -> Y4 ->  DIMM-C_GPIO-26 

  DSP2_02_B : IN  STD_LOGIC; -- Q2 -> T8 ->  DIMM-C_GPIO-02  
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  DSP2_03_B : IN  STD_LOGIC; -- Q3 -> V8 ->  DIMM-C_GPIO-03 

  DSP2_04_B : IN  STD_LOGIC; -- Q4 -> W11 -> DIMM-C_GPIO-27 

 

  -- Phase C 

  DSP2_01_C : IN  STD_LOGIC; -- Q1 -> T10 -> DIMM-C_GPIO-14 

  DSP2_02_C : IN  STD_LOGIC; -- Q2 -> U8 ->  DIMM-C_GPIO-04 

  DSP2_03_C : IN  STD_LOGIC; -- Q3 -> W9 -> DIMM-C_GPIO-05 

  DSP2_04_C : IN  STD_LOGIC; -- Q4 -> V11 -> DIMM-C_GPIO-19 

 

  ------------------- Relays ------------------- 

  DIMM_B_GPIO_32 : IN STD_LOGIC; -- H17 

  DIMM_B_GPIO_33 : IN STD_LOGIC; -- H21 

  DIMM_C_GPIO_32 : IN STD_LOGIC; -- V6 

  DIMM_C_GPIO_33 : IN STD_LOGIC; -- AA14 

 

   

  ---------------------------------------- OUTPUTS -------------------------------------- 

  ------------------- Enable DSPs ------------------- 

  -- Enable the DSP to generate the signals 

  -- DSP 1 (DIMM-B) 

  DSP1_DSPEnable : out std_logic; -- M20  -> DIMM-B_GPIO-62 

  -- DSP 2 (DIMM-C) 

  DSP2_DSPEnable : out std_logic; -- AA12 -> DIMM-B_GPIO-62 
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  ------------------- Leds ------------------- 

  LED_A : out STD_LOGIC; -- R17 -> DSP01 is active (D1 from UCB) 

  LED_B : out STD_LOGIC; -- U17 -> DSP02 is active (D2 from UCB) 

  --LEDs not being used 

  LED_C : out STD_LOGIC; -- T18 

  LED_D : out STD_LOGIC; -- R16 

  LED_E : out STD_LOGIC; -- T17 

  LED_F : out STD_LOGIC; -- Y21 

  LED_G : out STD_LOGIC; -- Y20 

  LED_H : out STD_LOGIC; -- U18 

   

  -- Outputs to control the inverter 

  -- Phase A 

   

  SW01_A : out std_logic; -- Q1 -> V19 -> IDC-B_GPIO-05 -> Pin 

  SW02_A : out std_logic; -- Q2 -> W20 -> IDC-B_GPIO-04 -> Pin 

  SW03_A : out std_logic; -- Q3 -> W22 -> IDC-B_GPIO-03 -> Pin 

  SW04_A : out std_logic; -- Q4 -> Y22 -> IDC-B_GPIO-02 -> Pin 

  SW05_A : out std_logic; -- Q5 -> T19 -> IDC-B_GPIO-01 -> Pin 

  SW06_A : out std_logic; -- Q6 -> AA22 -> IDC-B_GPIO-00 -> Pin 

  -- Phase B 

  SW01_B : out std_logic; -- Q1 -> Y16 -> IDC-C_GPIO-12 -> Pin  
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  SW02_B : out std_logic; -- Q2 -> AB17-> IDC-C_GPIO-13 -> Pin  

  SW03_B : out std_logic; -- Q3 -> W14 -> IDC-C_GPIO-14 -> Pin  

  SW04_B : out std_logic; -- Q4 -> V14 -> IDC-C_GPIO-15 -> Pin  

  SW05_B : out std_logic; -- Q5 -> Y17 -> IDC-C_GPIO-16 -> Pin  

  SW06_B : out std_logic; -- Q6 -> AB18-> IDC-C_GPIO-17 -> Pin  

  -- Phase C 

  SW01_C : out std_logic; -- Q1 -> Y14  -> IDC-C_GPIO-00 -> Pin  

  SW02_C : out std_logic; -- Q2 -> AB15 -> IDC-C_GPIO-01 -> Pin  

  SW03_C : out std_logic; -- Q3 -> W12  -> IDC-C_GPIO-02 -> Pin  

  SW04_C : out std_logic; -- Q4 -> V12  -> IDC-C_GPIO-03 -> Pin  

  SW05_C : out std_logic; -- Q5 -> Y12  -> IDC-C_GPIO-04 -> Pin  

  SW06_C : out std_logic; -- Q6 -> V13  -> IDC-C_GPIO-05 -> Pin  

   

  -- Debug outputs 

  --debug_emu_Q1_Q6_A : out std_logic; -- E4 -> IDC-D_GPIO-04 -> Pin 5

 -> (Channel 0) 

  --debug_emu_Q4_Q5_A : out std_logic; --   D3 -> IDC-D_GPIO-05 -> Pin 6

 -> (Channel 1) 

  --debug_emu_Q1_Q6_B : out std_logic; --   G6 -> IDC-D_GPIO-06 -> Pin 7

 -> (Channel 2) 

  --debug_emu_Q4_Q5_B : out std_logic; --   H7 -> IDC-D_GPIO-07 -> Pin 8

 -> (Channel 3) 
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  --debug_emu_Q1_Q6_C : out std_logic; --   B1 -> IDC-D_GPIO-08 -> Pin 9

 -> (Channel 4) 

  --debug_emu_Q4_Q5_C : out std_logic; --   C1 -> IDC-D_GPIO-09 -> Pin 10

 -> (Channel 5) 

  --debug_error    : out std_logic; --   H6 -> IDC-D_GPIO-10 -> Pin 11

 -> (Channel 6) 

  --debug_FW_Val_E1   : out std_logic; -- G5 -> IDC-D_GPIO-11 -> Pin 12

 -> (Channel 7)  -- Short-Circuit 

  --debug_FW_Val_E2   : out std_logic; -- E2 -> IDC-D_GPIO-12 -> Pin 13

 -> (Channel 8)  -- DeadTime 

  --debug_FW_Val_E3   : out std_logic; -- D1 -> IDC-D_GPIO-13 -> Pin 14

 -> (Channel 9)  -- Fund Freq 

  --debug_FW_Val_E4   : out std_logic; -- F4 -> IDC-D_GPIO-14 -> Pin 21

 -> (Channel 10) -- Fast. Freq 

  --debug_FW_Val_E5   : out std_logic; -- G4 -> IDC-D_GPIO-15 -> Pin 22

 -> (Channel 11) -- Timer 

  --debug_FW_Val_EN   : out std_logic; -- F1 -> IDC-D_GPIO-16 -> Pin 23

 -> (Channel 12) 

   

  Flash_CSSPIN:  inout  std_logic; -- A21 -> CS -> IDC-A_GPIO-00 -

> Pin 1 (Channel 0) 

  Flash_SPISO:  in  std_logic;  -- C19 -> SPO -> IDC-A_GPIO-01 -> Pin 2 

(Channel 1) 
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  Flash_WPn:   inout  std_logic; -- A20 -> WP -> IDC-A_GPIO-02 -

> Pin 3 (Channel 2 - Always high) 

  Flash_SISPI:  inout  std_logic; -- D18 -> SPI -> IDC-A_GPIO-03 -> Pin 4 

(Channel 3) 

  Flash_HOLDn:  inout  std_logic; -- B19 -> Hold -> IDC-A_GPIO-04 -

> Pin 5 (Channel 4 - Always high) 

  Flash_MCLK:  inout  std_logic; -- C18 -> clk -> IDC-A_GPIO-05 -

> Pin 6 (Channel 5) 

 

  ---------------- SMA Hard wired inputs ---------------- 

  -- Relays -- 

  IDC_D_GPIO_00 : out std_logic; -- Relay#1 - C3 

  IDC_D_GPIO_01 : out std_logic; -- Relay#2 - C2 

  ---- IDC_B ---- 

  -- Constants 

  IDC_B_GPIO_06 : out std_logic; -- V21 

  IDC_B_GPIO_07 : out std_logic; -- V22 

  IDC_B_GPIO_08 : out std_logic; -- U22 

  IDC_B_GPIO_09 : out std_logic; -- U19 

  IDC_B_GPIO_10 : out std_logic; -- T21 

  IDC_B_GPIO_11 : out std_logic; -- R19 

  IDC_B_GPIO_12 : out std_logic; -- U20 

  IDC_B_GPIO_13 : out std_logic; -- T22 
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  IDC_B_GPIO_14 : out std_logic; -- R20 

  IDC_B_GPIO_15 : out std_logic; -- R18 

  IDC_B_GPIO_16 : out std_logic; -- R21 

  IDC_B_GPIO_17 : out std_logic; -- P19 

 

  ---- IDC_C ---- 

  -- Constants 

  IDC_C_GPIO_06 : out std_logic; -- AB15 

  IDC_C_GPIO_07 : out std_logic; -- W12 

  IDC_C_GPIO_08 : out std_logic; -- V12 

  IDC_C_GPIO_09 : out std_logic; -- Y12 

  IDC_C_GPIO_10 : out std_logic; -- V13 

  IDC_C_GPIO_11 : out std_logic; -- U13 

 

  ---- Security ---- 

  DIMM_B_GPIO_60 : in std_logic; 

  DIMM_B_GPIO_61 : in std_logic; 

  DIMM_C_GPIO_60 : in std_logic; 

  DIMM_C_GPIO_61 : in std_logic; 

   

  ---- Others ---- 

  -- Jinan -- 

  -- DSP INPUTS -- 
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  DIMM_B_GPIO_48 : in std_logic; -- E20 

  DIMM_B_GPIO_84 : in std_logic; -- D22 

  DIMM_B_GPIO_86 : in std_logic; -- F19 

  DIMM_C_GPIO_48 : in std_logic; -- AA7 

  DIMM_C_GPIO_84 : in std_logic; -- V7 

  DIMM_C_GPIO_86 : in std_logic; -- Y6 

  -- Output -- 

  Jinan_01 : out std_logic; -- H6 - IDC-D_GPIO-10 - Pin 11 

  Jinan_02 : out std_logic; -- G5 - IDC-D_GPIO-11 - Pin 12 

  Jinan_03 : out std_logic  -- E2 - IDC-D_GPIO-12 - Pin 13 

  -- End of Jinan -- 

 

 ); 

END Digital_Twin_and_Hot_Patching; 

 

ARCHITECTURE Behavioral OF Digital_Twin_and_Hot_Patching is  

 

 -- Oscillator 

 SIGNAL  OSC_Stdby : std_logic := '0'; 

 SIGNAL  OSC_Out : std_logic := '0'; 

 SIGNAL  OSC_SEDSTDBY : std_logic := '0'; 

 

 -- PLL 
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 --SIGNAL  OSC_Out : std_logic := '0'; 

 SIGNAL  clk : std_logic := '0'; 

 SIGNAL  Pll_Lock : std_logic := '0'; 

 

 -- Bus Master 

 SIGNAL Xrqst   : std_logic := '0'; 

 SIGNAL XDat    : std_logic := '0'; 

 SIGNAL YDat    : std_logic := '0'; 

 

 SIGNAL Data    : std_logic_vector (15 downto 0) := (others => '0'); 

 SIGNAL Addr    : std_logic_vector (15 downto 0) := (others => '0'); 

 SIGNAL BusRqst   : std_logic_vector (9 downto 0) := (others => '0'); 

 SIGNAL BusCtrl   : std_logic_vector (9 downto 0) := (others => '0'); 

 SIGNAL DSP_RAM_addr  : std_logic_vector (15 downto 0) := (others => '0'); 

 

 -- Bootloader 

 SIGNAL  Bootload_EN : std_logic := '1'; 

 SIGNAL  FW_Type  : std_logic := '0'; 

 SIGNAL  DSP_rcv  : std_logic := '0'; 

 SIGNAL  DSP_xmt  : std_logic := '0'; 

 SIGNAL  DSP_Rst  : std_logic := '0'; 

  

 -- Other 
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 SIGNAL  rs232_rcv   : std_logic := '0'; 

 SIGNAL  rs232_xmt   : std_logic := '0'; 

 SIGNAL  Error    : std_logic := '0'; 

 SIGNAL  Boot_Wrkn   : std_logic := '0'; 

 SIGNAL  Boot_Done   : std_logic := '0'; 

 SIGNAL  HP_EN    : std_logic := '0'; 

 SIGNAL  HP_Done   : std_logic := '0'; 

 SIGNAL  Emu_EN    : std_logic := '0'; 

 SIGNAL  Reset_Cnt_rst  : std_logic := '0'; 

 SIGNAL  Reset_Cnt_INC  : std_logic := '0'; 

 SIGNAL  System_rst   : std_logic := '0'; 

 

 SIGNAL  DSP1_Act   : std_logic := '0'; 

 SIGNAL  DSP1_Act_HP_Out : std_logic := '0'; 

 SIGNAL  DSP_Sync_HP  : std_logic := '0';  

 SIGNAL  Reset_Cnt_out  : std_logic_vector (7 downto 0) := (others => '0'); 

  

 SIGNAL DT_EN : std_logic := '0'; 

 SIGNAL DT_Rst : std_logic := '0'; 

 

 ------------------- DSPs ------------------- 

 SIGNAL DSPEnable : std_logic := '0'; 

 --Phase A Inputs 
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 SIGNAL Emu_SW01_A  : std_logic := '0'; 

 SIGNAL Emu_SW02_A  : std_logic := '0'; 

 SIGNAL Emu_SW03_A  : std_logic := '0'; 

 SIGNAL Emu_SW04_A  : std_logic := '0'; 

 SIGNAL Emu_SW05_A  : std_logic := '0'; 

 SIGNAL Emu_SW06_A  : std_logic := '0'; 

 

 --Phase B Inputs 

 SIGNAL Emu_SW01_B  : std_logic := '0'; 

 SIGNAL Emu_SW02_B  : std_logic := '0'; 

 SIGNAL Emu_SW03_B  : std_logic := '0'; 

 SIGNAL Emu_SW04_B  : std_logic := '0'; 

 SIGNAL Emu_SW05_B  : std_logic := '0'; 

 SIGNAL Emu_SW06_B  : std_logic := '0'; 

 

 --Phase C Inputs 

 SIGNAL Emu_SW01_C  : std_logic := '0'; 

 SIGNAL Emu_SW02_C  : std_logic := '0'; 

 SIGNAL Emu_SW03_C  : std_logic := '0'; 

 SIGNAL Emu_SW04_C  : std_logic := '0'; 

 SIGNAL Emu_SW05_C  : std_logic := '0'; 

 SIGNAL Emu_SW06_C  : std_logic := '0'; 
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 SIGNAL SCI_RX_DSP : std_logic; --UART RX pin for Serial Comm with UI: UI(TX) 

-> CPLD (RX) 

 SIGNAL SCI_TX_DSP : std_logic; --UART TX pin for Serial Comm with UI: UI(RX) 

-> CPLD (TX) 

 

 

 ------ Inverted signals ------ 

 -- Phase A 

 SIGNAL Q1_A : std_logic := '1'; 

 SIGNAL Q2_A : std_logic := '1'; 

 SIGNAL Q3_A : std_logic := '1'; 

 SIGNAL Q4_A : std_logic := '1'; 

 

 -- Phase B 

 SIGNAL Q1_B : std_logic := '1'; 

 SIGNAL Q2_B : std_logic := '1'; 

 SIGNAL Q3_B : std_logic := '1'; 

 SIGNAL Q4_B : std_logic := '1'; 

 

 -- Phase C 

 SIGNAL Q1_C : std_logic := '1'; 

 SIGNAL Q2_C : std_logic := '1'; 

 SIGNAL Q3_C : std_logic := '1'; 
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 SIGNAL Q4_C : std_logic := '1'; 

 

 ------------------------------------------ Module Declaration ----------------------------------------

-- 

 ------------------- Internal Oscillator ------------------- 

 COMPONENT OSCH 

  GENERIC  

  ( 

   NOM_FREQ: string := "8.31" 

  ); 

 

  PORT  

  (  

   STDBY :IN std_logic; 

   OSC :OUT std_logic; 

   SEDSTDBY :OUT std_logic 

  ); 

 END COMPONENT;  

  

 ------------------- PLL ------------------- 

    COMPONENT PLL_Clk 

  PORT 

  ( 
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   ClkI: in  std_logic;  

   ClkOP: out std_logic; 

   Lock: out std_logic 

  ); 

    END COMPONENT; 

  

 ------------------- Bus_Master ------------------- 

    COMPONENT Digital_Twin_Bus_Master 

     PORT 

  ( 

          clk : IN  std_logic; 

          rst : IN  std_logic; 

          Data : INOUT  std_logic_vector(15 downto 0); 

          Addr : IN  std_logic_vector(15 downto 0); 

          Xrqst : IN  std_logic; 

          XDat : OUT  std_logic; 

          YDat : IN  std_logic; 

          BusRqst : IN  std_logic_vector(9 downto 0); 

         BusCtrl : OUT  std_logic_vector(9 downto 0); 

   Flash_CSSPIN: out  std_logic;  

   Flash_MCLK: out  std_logic;  

   Flash_SISPI: out  std_logic;  

   Flash_SPISO: in  std_logic;  



106 

   Flash_WPn: out  std_logic;  

   Flash_HOLDn: out  std_logic; 

   Reset_Flash_Button: in std_logic  

  ); 

    END COMPONENT; 

  

 ------------------- RS232_Usr_Int ------------------- 

  COMPONENT RS232_Usr_Int 

   Generic  

  ( 

   Baud   : integer;  -- Baud Rate 

   clk_in   : integer  -- Input Clk 

  ); 

      

  PORT 

  ( 

         clk : IN  std_logic; 

          rst : IN  std_logic; 

         rs232_rcv : IN  std_logic; 

         rs232_xmt : OUT  std_logic; 

         Data : INOUT  std_logic_vector(15 downto 0); 

         Addr : OUT  std_logic_vector(15 downto 0); 

         Xrqst : OUT  std_logic; 
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         XDat : IN  std_logic; 

         YDat : OUT  std_logic; 

         BusRqst : OUT  std_logic; 

         BusCtrl : IN  std_logic 

        ); 

    END COMPONENT; 

 

 ------------------- Test1_DT_Boot_Ctrl ------------------- 

 component Digital_Twin_Bootloader_Control 

 Port (  

   --IN 

   clk   : in  STD_LOGIC; 

   rst   : in  STD_LOGIC; 

    

   Data   : INOUT  std_logic_vector(15 downto 0); 

   Addr   : OUT  std_logic_vector(15 downto 0); 

   Xrqst   : OUT  std_logic; 

   XDat   : IN  std_logic; 

   YDat   : OUT  std_logic; 

   BusRqst  : OUT  std_logic; 

   BusCtrl  : IN  std_logic; 

    

   Error  :in STD_LOGIC; 
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   Boot_Wrkn :in STD_LOGIC; 

   Boot_Done :in STD_LOGIC; 

   HP_EN  :in STD_LOGIC; 

    

   --OUT 

   Bootload_EN :out STD_LOGIC; 

   FW_Type  :out STD_LOGIC; 

   DT_EN  :out STD_LOGIC; 

   DT_Rst  :out STD_LOGIC 

      

      

     );    

 END component; 

 

 ------------------- DT_Bootloader_Test Component -------------------  

 component Digital_Twin_Bootloader 

 generic( 

    Baud : integer;    --9,600 bps 

    clk_in : integer);   --25MHz  

    Port (   

  clk : IN  std_logic; 

  rst : IN  std_logic; 

  Bootload_EN : IN STD_LOGIC; 
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  FW_Type : IN STD_LOGIC; 

  Bootload_Wrkn : OUT STD_LOGIC; 

  Bootload_Done : OUT STD_LOGIC; 

   

  DSP_rcv : OUT std_logic; 

  DSP_xmt : IN  std_logic; 

  DSP_Rst : OUT  STD_LOGIC; 

 

  Data : INOUT  std_logic_vector(15 downto 0); 

  Addr : OUT  std_logic_vector(15 downto 0); 

  Xrqst : OUT  std_logic; 

  XDat : IN  std_logic; 

  YDat : OUT  std_logic; 

  BusRqst : OUT  std_logic; 

  BusCtrl : IN  std_logic       

    

 ); 

 END component;  

 

 ------------------- Std_Counter Component ------------------- 

 component Std_Counter is 

 generic  

 ( 
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  Width : integer  -- width of counter 

 ); 

 port(INC,rst,clk: in std_logic; 

   Count: out STD_LOGIC_VECTOR(Width-1 downto 0)); 

 END component; 

 

 ------------------- DSP_Hot_Patch Component ------------------- 

 component Digital_Twin_Hot_Patch_Control 

    Port ( 

  clk : in std_logic; 

  rst : in std_logic; 

  EN : in std_logic; 

  DSP1_Act_Out : out std_logic; 

  DSP_Sync : out std_logic; 

  Done : out std_logic 

  ); 

 END component; 

 

 ------------------- Digital_Twin_Emulation_Control ------------------- 

 COMPONENT Digital_Twin_Emulation_Control 

  PORT  

  ( 

   clk   : in STD_LOGIC; 
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   rst   : in STD_LOGIC; 

   Emu_EN   : in std_logic; 

   Data   : INOUT  std_logic_vector(15 downto 0); 

   Addr   : OUT  std_logic_vector(15 downto 0); 

   Xrqst   : OUT  std_logic; 

   XDat   : IN  std_logic; 

   YDat   : OUT  std_logic; 

   BusRqst  : OUT  std_logic; 

   BusCtrl  : IN  std_logic; 

 

   --Phase A Inputs 

   Emu_SW01_A  : in std_logic; 

   Emu_SW02_A  : in std_logic; 

   Emu_SW03_A  : in std_logic; 

   Emu_SW04_A  : in std_logic; 

   Emu_SW05_A  : in std_logic; 

   Emu_SW06_A  : in std_logic; 

    

   --Phase B Inputs 

   Emu_SW01_B  : in std_logic; 

   Emu_SW02_B  : in std_logic; 

   Emu_SW03_B  : in std_logic; 

   Emu_SW04_B  : in std_logic; 
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   Emu_SW05_B  : in std_logic; 

   Emu_SW06_B  : in std_logic; 

  

   --Phase C Inputs 

   Emu_SW01_C  : in std_logic; 

   Emu_SW02_C  : in std_logic; 

   Emu_SW03_C  : in std_logic; 

   Emu_SW04_C  : in std_logic; 

   Emu_SW05_C  : in std_logic; 

   Emu_SW06_C  : in std_logic; 

 

   Error   : in STD_LOGIC; 

   HP_EN   : in STD_LOGIC  

  ); 

 END component; 

  

  ------------------- Test1_DT_Firmware_Validation ------------------- 

 COMPONENT Digital_Twin_Firmware_Validation 

  PORT  

  ( 

   clk : in STD_LOGIC; 

   rst : in STD_LOGIC; 
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   Data : INOUT std_logic_vector(15 downto 0); 

   Addr  : OUT std_logic_vector(15 downto 0); 

   Xrqst : OUT std_logic; 

   XDat : IN std_logic; 

   YDat : OUT std_logic; 

   BusRqst : OUT std_logic; 

   BusCtrl : IN std_logic; 

     

   --Phase A Inputs 

   Emu_SW01_A  : in std_logic; 

   Emu_SW02_A  : in std_logic; 

   Emu_SW03_A  : in std_logic; 

   Emu_SW04_A  : in std_logic; 

   Emu_SW05_A  : in std_logic; 

   Emu_SW06_A  : in std_logic; 

    

   --Phase B Inputs 

   Emu_SW01_B  : in std_logic; 

   Emu_SW02_B  : in std_logic; 

   Emu_SW03_B  : in std_logic; 

   Emu_SW04_B  : in std_logic; 

   Emu_SW05_B  : in std_logic; 

   Emu_SW06_B  : in std_logic; 
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   --Phase C Inputs 

   Emu_SW01_C  : in std_logic; 

   Emu_SW02_C  : in std_logic; 

   Emu_SW03_C  : in std_logic; 

   Emu_SW04_C  : in std_logic; 

   Emu_SW05_C  : in std_logic; 

   Emu_SW06_C  : in std_logic; 

       

   HP_Done  : in std_logic; -- Signal coming from DSP_Hot-

Patch module saying that hot-patch is completed 

   Boot_Done : in std_logic; -- Signal to inform that the boot loading is 

done 

   Boot_Wrkn : in std_logic; -- Signal to inform that the boot loading is 

working 

   Emu_EN  : out std_logic; -- Start the emulation 

   HP_EN   : out std_logic; -- Signal sent to DSP_Hot-Patch 

module to enable HP PROCESS 

   DSPEnable : out std_logic; -- Enable the DSP to generate the signals 

 

   Error  : out std_logic; -- Signal error to stop all other PROCESSes 

   DSP1_Act : in std_logic 

 



115 

   --debug_FW_Val_E1: out std_logic; 

   --debug_FW_Val_E2: out std_logic; 

   --debug_FW_Val_E3: out std_logic; 

   --debug_FW_Val_E4: out std_logic; 

   --debug_FW_Val_E5: out std_logic; 

   --debug_FW_Val_EN: out std_logic 

  );  

 END COMPONENT; 

 

BEGIN --------------------------------------------------------- BEGIN ---------------------------------------

------------------ 

 

 ------------------- Instantiate Internal Oscillator ------------------- 

 Int_OSC: OSCH PORT MAP ( 

  STDBY => OSC_Stdby, 

  OSC => OSC_Out, 

  SEDSTDBY => OSC_SEDSTDBY 

 ); 

    

    

 ------------------- Instantiate PLL ------------------- 

 PLL_1: PLL_Clk PORT MAP ( 

  ClkI => OSC_Out, 
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  ClkOP => clk, 

  Lock =>Pll_Lock 

 ); 

 

 ------------------- Instantiate Bus_Master ------------------- 

 BM: Digital_Twin_Bus_Master PORT MAP ( 

  clk    => clk, 

  rst    => System_rst, 

  Data   => Data, 

  Addr   => Addr, 

  Xrqst   => Xrqst, 

  XDat    => XDat, 

  YDat    => YDat, 

  BusRqst   => BusRqst, 

  BusCtrl   => BusCtrl, 

  Flash_CSSPIN => Flash_CSSPIN, 

  Flash_MCLK  => Flash_MCLK, 

  Flash_SISPI  => Flash_SISPI, 

  Flash_SPISO  => Flash_SPISO, 

  Flash_WPn  => Flash_WPn, 

  Flash_HOLDn  => Flash_HOLDn, 

  Reset_Flash_Button => Btna 

    ); 
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 ------------------- Instantiate RS232_Usr_Int ------------------- 

 RS232_Usr: RS232_Usr_Int  

 Generic Map 

  ( 

  Baud  => 9600, -- Baud Rate 

  Clk_In => Clk_Freq -- Input Clk 

  ) 

 PORT MAP ( 

         clk => clk, 

         rst => System_rst, 

         rs232_rcv => SCI_RX, 

         rs232_xmt => SCI_TX, 

         Data => Data, 

         Addr => Addr, 

         Xrqst => Xrqst, 

         XDat => XDat, 

         YDat => YDat, 

         BusRqst => BusRqst(1), -- Was 3 

         BusCtrl => BusCtrl(1) -- Was 3 

    );     

  

  --DSP 
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 RS232_Usr_DSP: RS232_Usr_Int 

 Generic Map 

  ( 

  Baud  => 9600, -- Baud Rate 

  Clk_In => Clk_Freq -- Input Clk 

  ) 

 PORT MAP ( 

         clk => clk, 

         rst => System_rst, 

         rs232_rcv => SCI_RX_DSP, 

         rs232_xmt => SCI_TX_DSP, 

         Data => Data, 

         Addr => Addr, 

         Xrqst => Xrqst, 

         XDat => XDat, 

         YDat => YDat, 

         BusRqst => BusRqst(2), -- Was 3 

         BusCtrl => BusCtrl(2) -- Was 3 

    ); 

 

  --Webserver 

 RS232_Usr_Webserver: RS232_Usr_Int 

 Generic Map 
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  ( 

  Baud     => 9600,    -- Baud Rate 

  Clk_In => Clk_Freq    --    Input Clk 

  ) 

 PORT MAP ( 

   clk => clk, 

   rst => System_rst, 

   rs232_rcv => SCI_RX_Webserver, 

   rs232_xmt => SCI_TX_Webserver, 

   Data => Data, 

   Addr => Addr, 

   Xrqst => Xrqst, 

   XDat => XDat, 

   YDat => YDat, 

   BusRqst => BusRqst(5), -- Was 3 

   BusCtrl => BusCtrl(5) -- Was 3 

 ); 

 

 ------------------- Instantiate Boot_Ctrl ------------------- 

 Boot_Ctrl: Digital_Twin_Bootloader_Control 

 PORT MAP (   

  clk   => clk, 

  rst   => System_rst, 
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  Data   => Data,  

  Addr   => Addr,  

  Xrqst   => Xrqst,  

  XDat   => XDat,  

  YDat   => YDat,  

  BusRqst  => BusRqst(0), 

  BusCtrl  => BusCtrl(0), 

  Error  => Error,  

  Boot_Wrkn => Boot_Wrkn,  

  Boot_Done => Boot_Done,  

  HP_EN  => HP_EN,  

  Bootload_EN => Bootload_EN,  

  FW_Type  => FW_Type, 

  DT_EN  => DT_EN, 

  DT_Rst  => DT_Rst 

 ); 

 

 ------------------- Instantiate Bootloader ------------------- 

 Bootload: Digital_Twin_Bootloader 

 generic map 

 ( 

  Baud      => 9600,  --9,600 bps 

  clk_in      => Clk_Freq --25MHz  
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 ) 

 port map ( 

  clk     => clk, 

  rst     => System_rst, 

  Bootload_EN   => Bootload_EN, 

  FW_Type    => FW_Type, 

  Bootload_Wrkn   => Boot_Wrkn, 

  Bootload_Done   => Boot_Done, 

  DSP_rcv    =>  DSP_rcv,      

 --FW_BIT_OUT, ---- THIS FW_BIT_OUT SIGNAL IS ONLY USED FOR THIS 

TEST, USUALLY THIS CONNECTS TO THE SERIAL PORT OF THE DSP THROUGH 

DIMM B OR DIMM C DEPENDING ON THE DSP, AND IT IS NOW CONNECTED 

THROUGH THE HP PROCESS BELOW ---- 

  DSP_xmt    =>  DSP_xmt,     

 --xmt,  ---- THIS xmt SIGNAL IS ONLY FOR THIS TEST, AND NEEDS TO 

BE INITIALIZED TO 1 ---- 

  DSP_Rst    =>  DSP_Rst,      

 --DSP_Rst,  ---- ONLY FOR THIS TEST, USUALLY CONNECTS TO THE 

EXTERNAL GPIO PIN THAT IS SOLDERED TO THE DSP TO BE ABLE TO RESET IT, 

AND IT IS NOW CONNECTED THROUGH THE HP PROCESS BELOW ----  

  Data     => Data,  

  Addr     => Addr,  

  Xrqst     => Xrqst,  
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  XDat     => XDat,  

  YDat     => YDat,  

  BusRqst    => BusRqst(4), 

  BusCtrl    => BusCtrl(4) 

 ); 

 

 ------------------- Instantiate Reset_Cnt_8 ------------------- 

 Reset_Cnt: Std_Counter 

 generic map 

 ( 

  Width => 8 

 ) 

 port map (  

  clk => OSC_Out, 

  rst=> Reset_Cnt_rst, 

  INC=> Reset_Cnt_INC, 

  Count=> Reset_Cnt_out 

 ); 

 

 ------------------- Instantiate HP ------------------- 

 HP_Set: Digital_Twin_Hot_Patch_Control  

 PORT MAP ( 

  clk => clk, 
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  rst => System_rst, 

  EN => HP_EN, 

  DSP1_Act_Out => DSP1_Act_HP_Out,  

  DSP_Sync => DSP_Sync_HP, 

  Done => HP_Done 

 ); 

 

 

   

 ------------------- Instantiate Emu_Ctrl ------------------- 

 Emu_Ctrl: Digital_Twin_Emulation_Control 

 PORT MAP ( 

  clk   => clk,   

  rst   => System_rst,   

           

  Emu_EN   => Emu_EN,   

           

  Data   => Data,   

  Addr   => Addr,   

  Xrqst   => Xrqst,   

  XDat   => XDat,   

  YDat   => YDat,   

  BusRqst  => BusRqst(3),  
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  BusCtrl  => BusCtrl(3),          

  -- Phase A 

  Emu_SW01_A => Emu_SW01_A, 

  Emu_SW02_A => Emu_SW02_A, 

  Emu_SW03_A => Emu_SW03_A, 

  Emu_SW04_A => Emu_SW04_A, 

  Emu_SW05_A => Emu_SW05_A, 

  Emu_SW06_A => Emu_SW06_A, 

  -- Phase B 

  Emu_SW01_B => Emu_SW01_B, 

  Emu_SW02_B => Emu_SW02_B, 

  Emu_SW03_B => Emu_SW03_B, 

  Emu_SW04_B => Emu_SW04_B, 

  Emu_SW05_B => Emu_SW05_B, 

  Emu_SW06_B => Emu_SW06_B, 

  -- Phase C 

  Emu_SW01_C => Emu_SW01_C, 

  Emu_SW02_C => Emu_SW02_C, 

  Emu_SW03_C => Emu_SW03_C, 

  Emu_SW04_C => Emu_SW04_C, 

  Emu_SW05_C => Emu_SW05_C, 

  Emu_SW06_C => Emu_SW06_C, 

  Error   => Error,   
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  HP_EN   => HP_EN 

 ); 

 

 ------------------- Instantiate Firmware Validation_EN ------------------- 

 FW_Valid: Digital_Twin_Firmware_Validation 

 PORT MAP 

 (   

  clk   => clk,    

  rst   => System_rst,     

  Data   => Data,    

  Addr   => Addr,    

  Xrqst   => Xrqst,    

  XDat   => XDat,    

  YDat   => YDat,    

  BusRqst  => BusRqst(6),   

  BusCtrl  => BusCtrl(6),   

  -- Phase A 

  Emu_SW01_A => Emu_SW01_A, 

  Emu_SW02_A => Emu_SW02_A, 

  Emu_SW03_A => Emu_SW03_A, 

  Emu_SW04_A => Emu_SW04_A, 

  Emu_SW05_A => Emu_SW05_A, 

  Emu_SW06_A => Emu_SW06_A, 
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  -- Phase B 

  Emu_SW01_B => Emu_SW01_B, 

  Emu_SW02_B => Emu_SW02_B, 

  Emu_SW03_B => Emu_SW03_B, 

  Emu_SW04_B => Emu_SW04_B, 

  Emu_SW05_B => Emu_SW05_B, 

  Emu_SW06_B => Emu_SW06_B, 

  -- Phase C 

  Emu_SW01_C => Emu_SW01_C, 

  Emu_SW02_C => Emu_SW02_C, 

  Emu_SW03_C => Emu_SW03_C, 

  Emu_SW04_C => Emu_SW04_C, 

  Emu_SW05_C => Emu_SW05_C, 

  Emu_SW06_C => Emu_SW06_C, 

 

  HP_Done  => HP_Done,   

  Boot_Done => Boot_Done,  

        Boot_Wrkn => Boot_Wrkn,  

        Emu_EN  => Emu_EN,   

        HP_EN   => HP_EN, 

  DSPEnable => DSPEnable, 

        Error  => Error, 

  DSP1_Act => DSP1_Act 
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  --debug_FW_Val_E1 => Debug_FW_Val_E1, 

  --debug_FW_Val_E2 => Debug_FW_Val_E2, 

  --Debug_FW_Val_E3 => Debug_FW_Val_E3, 

  --Debug_FW_Val_E4 => Debug_FW_Val_E4, 

  --Debug_FW_Val_E5 => Debug_FW_Val_E5, 

  --Debug_FW_Val_EN => Debug_FW_Val_EN 

 );  

  

 -------------------  Oscillator ------------------- 

 OSC_Stdby <= '0'; 

 

 ------------------- Tie unused ports to '0'-------------------  

 BusRqst(9 downto 7) <= (others => '0'); 

 

 ------------------- Reset Block1 ------------------- 

 Reset_Blk1: PROCESS 

 BEGIN 

   wait until OSC_Out'event and OSC_Out = '1'; 

    IF (PLL_Lock ='0') THEN 

     Reset_Cnt_rst <= '0'; 

    else 

     Reset_Cnt_rst <= '1'; 

    END IF; 
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 END PROCESS; 

 

 ------------------- Reset Block ------------------- 

 Reset_Blk: PROCESS 

 BEGIN 

   wait until OSC_Out'event and OSC_Out = '1'; 

    IF (Reset_Cnt_out < X"7F") THEN --7F = 127 

     System_rst <= '0'; 

     Reset_Cnt_INC <='1'; 

    else 

     System_rst <= '1'; 

     Reset_Cnt_INC <='0'; 

    END IF; 

 END PROCESS; 

    

 ------------------- Setting DSP1 assignment and debug signals ------------------- 

 DSP1_Act_Set: PROCESS 

 BEGIN 

  wait until clk'event and clk = '1'; 

   IF (System_rst = '0') THEN 

    DSP1_Act <= '1'; 

   else 

    DSP1_Act <= DSP1_Act_HP_Out; 
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   END IF; 

   --debug_emu_Q1_Q6_A <= Emu_SW01_A; 

   --debug_emu_Q4_Q5_A <= Emu_SW04_A; 

   --debug_emu_Q1_Q6_B <= Emu_SW01_B; 

   --debug_emu_Q4_Q5_B <= Emu_SW04_B; 

   --debug_emu_Q1_Q6_C <= Emu_SW01_C; 

   --debug_emu_Q4_Q5_C <= Emu_SW04_C; 

   --debug_error    <= Error; 

 END PROCESS; 

    

 ------------------- Main Routing PROCESS (Combinatorial) ------------------- 

  

 PROCESS (SCI_RX, DSP_Rst, DSP_rcv, DSP1_Act) 

  BEGIN 

   IF (DSP1_Act = '1') THEN 

    DSP1_DSPEnable <= '1'; -- Enable the DSP1 to generate the 

PWMs 

    IF (DIMM_B_GPIO_60 = '1' AND DIMM_B_GPIO_61 = '0') 

THEN -- Consider the PWMs only if the DSP outputs are enabled 

     ------------------- DSP 1 Active ------------------- 

     -- Invert signals -- 

     -- Phase A 

     Q1_A <= NOT(DSP1_01_A); 
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     Q2_A <= NOT(DSP1_02_A); 

     Q3_A <= NOT(DSP1_03_A); 

     Q4_A <= NOT(DSP1_04_A); 

     -- Phase B 

     Q1_B <= NOT(DSP1_01_B); 

     Q2_B <= NOT(DSP1_02_B); 

     Q3_B <= NOT(DSP1_03_B); 

     Q4_B <= NOT(DSP1_04_B); 

     -- Phase C 

     Q1_C <= NOT(DSP1_01_C); 

     Q2_C <= NOT(DSP1_02_C); 

     Q3_C <= NOT(DSP1_03_C); 

     Q4_C <= NOT(DSP1_04_C); 

 

     -- Phase A 

     SW01_A <= Q1_A; 

     SW02_A <= Q2_A; 

     SW03_A <= Q3_A; 

     SW04_A <= Q4_A; 

     SW05_A <= Q4_A; -- Same as PWM 04 

     SW06_A <= Q1_A; -- Same as PWM 01 

     -- Phase B 

     SW01_B <= Q1_B; 
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     SW02_B <= Q2_B; 

     SW03_B <= Q3_B; 

     SW04_B <= Q4_B; 

     SW05_B <= Q4_B; -- Same as PWM 04 

     SW06_B <= Q1_B; -- Same as PWM 01 

     -- Phase C 

     SW01_C <= Q1_C; 

     SW02_C <= Q2_C; 

     SW03_C <= Q3_C; 

     SW04_C <= Q4_C; 

     SW05_C <= Q4_C; -- Same as PWM 04 

     SW06_C <= Q1_C; -- Same as PWM 01 

    ELSE 

     -- Phase A 

     SW01_A <= '1'; 

     SW02_A <= '1'; 

     SW03_A <= '1'; 

     SW04_A <= '1'; 

     SW05_A <= '1'; 

     SW06_A <= '1'; 

     -- Phase B 

     SW01_B <= '1'; 

     SW02_B <= '1'; 
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     SW03_B <= '1'; 

     SW04_B <= '1'; 

     SW05_B <= '1'; 

     SW06_B <= '1'; 

     -- Phase C 

     SW01_C <= '1'; 

     SW02_C <= '1'; 

     SW03_C <= '1'; 

     SW04_C <= '1'; 

     SW05_C <= '1'; 

     SW06_C <= '1'; 

    END IF; 

      

    ------------------- DSP 2 Emulation ------------------- 

    --DSP 2 Enable DSP 

    DSP2_DSPEnable <= DSPEnable;  

    -- Phase A 

    Emu_SW01_A <= DSP2_01_A; 

    Emu_SW02_A <= DSP2_02_A; 

    Emu_SW03_A <= DSP2_03_A; 

    Emu_SW04_A <= DSP2_04_A; 

    Emu_SW05_A <= DSP2_04_A; -- Same as PWM 04 

    Emu_SW06_A <= DSP2_01_A; -- Same as PWM 01 
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    -- Phase B 

    Emu_SW01_B <= DSP2_01_B; 

    Emu_SW02_B <= DSP2_02_B; 

    Emu_SW03_B <= DSP2_03_B; 

    Emu_SW04_B <= DSP2_04_B; 

    Emu_SW05_B <= DSP2_04_B; -- Same as PWM 04 

    Emu_SW06_B <= DSP2_01_B; -- Same as PWM 01 

    -- Phase C 

    Emu_SW01_C <= DSP2_01_C; 

    Emu_SW02_C <= DSP2_02_C; 

    Emu_SW03_C <= DSP2_03_C; 

    Emu_SW04_C <= DSP2_04_C; 

    Emu_SW05_C <= DSP2_04_C; -- Same as PWM 04 

    Emu_SW06_C <= DSP2_01_C; -- Same as PWM 01 

     

    --------------------------------------------------------- 

    DIMM_C_GPIO30 <= DSP_Sync_HP; 

    DIMM_B_GPIO30 <= DSP_Sync_HP; 

 

    LED_A <= '0'; 

    LED_B <= '1'; 

     

    LED_C <= '1'; 
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    LED_D <= '1'; 

    LED_E <= '1'; 

    LED_F <= '1'; 

    LED_G <= '1'; 

    LED_H <= '1'; 

    

    IDC_D_GPIO_02 <= '1';   ---- Reset is active 

low, and 1(NO Reset) is routed to pin 00 of IDC B (DSP1 is Active) 

    IDC_D_GPIO_03 <= DSP_Rst;  ---- DSP_Rst 

signal(Bootloader) routed to pin 00 of IDC C (DSP2 is Stand-By) 

 

    -- DSP 1 Active (DIMM_B), communicate through MODBUS, 

while DSP 2 is able to bootload 

    -- DSP 1 (Modbus) 

    DIMM_B_SCI_RX <= SCI_TX_DSP; ---- Stop bit is high, 

and is sent to the serial receiver of DIMM B (DSP1 is Active) 

    SCI_RX_DSP <= DIMM_B_SCI_TX; 

     

    -- DSP 2 (Bootloading) 

    DIMM_C_SCI_RX <= DSP_rcv;       ---- DSP_rsv 

signal(Bootloader) is routed to the serial receiver of DIMM C (DSP2 is Stand-By) 

    DSP_xmt <= DIMM_C_SCI_TX; 
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    IDC_D_GPIO_00 <= DIMM_B_GPIO_32;   -- Relay #1 

    IDC_D_GPIO_01 <= DIMM_B_GPIO_33;   -- Relay #2 

     

    Jinan_01 <= DIMM_B_GPIO_48; 

    Jinan_02 <= DIMM_B_GPIO_84; 

    Jinan_03 <= DIMM_B_GPIO_86; 

 

   ELSE 

    ------------------- DSP 2 Active ------------------- 

    DSP2_DSPEnable <= '1'; -- Enable the DSP2 to generate the 

PWMs 

    IF (DIMM_C_GPIO_60 = '1' AND DIMM_C_GPIO_61 = '0') 

THEN -- Consider the PWMs only if the DSP outputs are enabled 

     -- Invert signals -- 

     -- Phase A 

     Q1_A <= NOT(DSP2_01_A); 

     Q2_A <= NOT(DSP2_02_A); 

     Q3_A <= NOT(DSP2_03_A); 

     Q4_A <= NOT(DSP2_04_A); 

     -- Phase B 

     Q1_B <= NOT(DSP2_01_B); 

     Q2_B <= NOT(DSP2_02_B); 
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     Q3_B <= NOT(DSP2_03_B); 

     Q4_B <= NOT(DSP2_04_B); 

     -- Phase C 

     Q1_C <= NOT(DSP2_01_C); 

     Q2_C <= NOT(DSP2_02_C); 

     Q3_C <= NOT(DSP2_03_C); 

     Q4_C <= NOT(DSP2_04_C); 

 

     -- Phase A 

     SW01_A <= Q1_A; 

     SW02_A <= Q2_A; 

     SW03_A <= Q3_A; 

     SW04_A <= Q4_A; 

     SW05_A <= Q4_A; -- Same as PWM 04 

     SW06_A <= Q1_A; -- Same as PWM 01 

     -- Phase B 

     SW01_B <= Q1_B; 

     SW02_B <= Q2_B; 

     SW03_B <= Q3_B; 

     SW04_B <= Q4_B; 

     SW05_B <= Q4_B; -- Same as PWM 04 

     SW06_B <= Q1_B; -- Same as PWM 01 

     -- Phase C 
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     SW01_C <= Q1_C; 

     SW02_C <= Q2_C; 

     SW03_C <= Q3_C; 

     SW04_C <= Q4_C; 

     SW05_C <= Q4_C; -- Same as PWM 04 

     SW06_C <= Q1_C; -- Same as PWM 01 

    ELSE 

     -- Phase A 

     SW01_A <= '1'; 

     SW02_A <= '1'; 

     SW03_A <= '1'; 

     SW04_A <= '1'; 

     SW05_A <= '1'; 

     SW06_A <= '1'; 

     -- Phase B 

     SW01_B <= '1'; 

     SW02_B <= '1'; 

     SW03_B <= '1'; 

     SW04_B <= '1'; 

     SW05_B <= '1'; 

     SW06_B <= '1'; 

     -- Phase C 

     SW01_C <= '1'; 
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     SW02_C <= '1'; 

     SW03_C <= '1'; 

     SW04_C <= '1'; 

     SW05_C <= '1'; 

     SW06_C <= '1'; 

    END IF; 

    ------------------- DSP 1 Emulation ------------------- 

    --DSP 1 Enable DSP 

    DSP1_DSPEnable <= DSPEnable; 

    -- Phase A 

    Emu_SW01_A <= DSP1_01_A; 

    Emu_SW02_A <= DSP1_02_A; 

    Emu_SW03_A <= DSP1_03_A; 

    Emu_SW04_A <= DSP1_04_A; 

    Emu_SW05_A <= DSP1_04_A; 

    Emu_SW06_A <= DSP1_01_A; 

    -- Phase B 

    Emu_SW01_B <= DSP1_01_B; 

    Emu_SW02_B <= DSP1_02_B; 

    Emu_SW03_B <= DSP1_03_B; 

    Emu_SW04_B <= DSP1_04_B; 

    Emu_SW05_B <= DSP1_04_B; 

    Emu_SW06_B <= DSP1_01_B; 
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    -- Phase C 

    Emu_SW01_C <= DSP1_01_C; 

    Emu_SW02_C <= DSP1_02_C; 

    Emu_SW03_C <= DSP1_03_C; 

    Emu_SW04_C <= DSP1_04_C; 

    Emu_SW05_C <= DSP1_04_C; 

    Emu_SW06_C <= DSP1_01_C; 

     

    --------------------------------------------------------- 

    DIMM_C_GPIO30 <= DSP_Sync_HP; 

    DIMM_B_GPIO30 <= DSP_Sync_HP; 

     

    LED_A <= '1'; 

    LED_B <= '0'; 

    LED_C <= '1'; 

    LED_D <= '1'; 

    LED_E <= '1'; 

    LED_F <= '1'; 

    LED_G <= '1'; 

    LED_H <= '1'; 

     

    IDC_D_GPIO_02 <= DSP_Rst;  ---- DSP_Rst 

signal(Bootloader) routed to pin 00 of IDC B (DSP1 is Stand-By) 
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    IDC_D_GPIO_03 <= '1';        ---- Reset is active low, and 1(NO 

Reset) is routed to pin 00 of IDC C (DSP2 is Active) 

 

    -- DSP 2 Active (DIMM_C), communicate through MODBUS, 

while DSP 1 is able to bootload 

    -- DSP 1 (Bootloading) 

    DIMM_B_SCI_RX <= DSP_rcv;  ---- DSP_rsv 

signal(Bootloader) is routed to the serial receiver of DIMM B (DSP1 is Stand-By) 

    DSP_xmt <= DIMM_B_SCI_TX; 

 

    -- DSP 2 (Modbus) 

    DIMM_C_SCI_RX <= SCI_TX_DSP;        ---- Stop bit is high, 

and is sent to the serial receiver of DIMM C (DSP2 is Active) 

    SCI_RX_DSP <= DIMM_C_SCI_TX; 

 

    IDC_D_GPIO_00 <= DIMM_C_GPIO_32;   -- Relay #1 

    IDC_D_GPIO_01 <= DIMM_C_GPIO_33;   -- Relay #2 

     

    Jinan_01 <= DIMM_C_GPIO_48; 

    Jinan_02 <= DIMM_C_GPIO_84; 

    Jinan_03 <= DIMM_C_GPIO_86; 

   END IF; 
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   IDC_B_GPIO_06 <= '1'; 

   IDC_B_GPIO_07 <= '1'; 

   IDC_B_GPIO_08 <= '1'; 

   IDC_B_GPIO_09 <= '1'; 

   IDC_B_GPIO_10 <= '1'; 

   IDC_B_GPIO_11 <= '1'; 

 

   IDC_B_GPIO_12 <= '1'; 

   IDC_B_GPIO_13 <= '1'; 

   IDC_B_GPIO_14 <= '1'; 

   IDC_B_GPIO_15 <= '1'; 

   IDC_B_GPIO_16 <= '1'; 

   IDC_B_GPIO_17 <= '1'; 

 

   IDC_C_GPIO_06 <= '1'; 

   IDC_C_GPIO_07 <= '1'; 

   IDC_C_GPIO_08 <= '1'; 

   IDC_C_GPIO_09 <= '1'; 

   IDC_C_GPIO_10 <= '1'; 

   IDC_C_GPIO_11 <= '1'; 

 END PROCESS; 

END Behavioral; 
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A-2: Firmware Validation 

---------------------------------------------------------------------------------- 

-- Company:  University of Arkansas (NCREPT) 

-- Engineer: Estefano Soria and Paulo Custodio 

--  

-- Create Date:   11/18/2021 

-- Project Name:   Digital_Twin 

-- Module Name:   Firmware_Validation 

-- Project Name:   Digital_Twin_Firmware_Validation 

-- Target Devices:   LCMXO2-7000HC-4FG484C (UCB v1.4a) 

-- Tool versions:   Lattice Diamond_x64 Build 3.11 

-- Description: 

-- This module uses different components to test the firmware and integrates them to generate an 

error in case 

-- one or more components detects an issue. 

--  

---- PinOut: 

-- 

-- Revision: V1.1  

-- v3.26.22 - Components added: Deadtime, Timer, Fundamental Frequency Detector, 

-- v5.26.22 - Polish and comments removed/added 

-- 
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-- Additional Comments: 

--  

---------------------------------------------------------------------------------- 

 

 

Library IEEE; 

Library STD; 

use IEEE.std_logic_1164.all; 

use ieee.std_logic_unsigned.all; 

use ieee.numeric_std.all; 

use STD.textio.all; 

use IEEE.std_logic_textio.all; 

 

library machxo2; 

use machxo2.all; 

 

library work; 

use work.Digital_Twin_Common.all; 

 

 

entity Digital_Twin_Firmware_Validation is 

    Port  

 ( 
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  clk : in STD_LOGIC; 

  rst : in STD_LOGIC; 

   

  Data : INOUT  std_logic_vector(15 downto 0); 

  Addr : OUT  std_logic_vector(15 downto 0); 

  Xrqst : OUT  std_logic; 

  XDat : IN  std_logic; 

  YDat : OUT  std_logic; 

  BusRqst : OUT  std_logic; 

  BusCtrl : IN  std_logic; 

    

  --Phase A Inputs 

  Emu_SW01_A  : in std_logic; 

  Emu_SW02_A  : in std_logic; 

  Emu_SW03_A  : in std_logic; 

  Emu_SW04_A  : in std_logic; 

  Emu_SW05_A  : in std_logic; 

  Emu_SW06_A  : in std_logic; 

   

  --Phase B Inputs 

  Emu_SW01_B  : in std_logic; 

  Emu_SW02_B  : in std_logic; 

  Emu_SW03_B  : in std_logic; 



145 

  Emu_SW04_B  : in std_logic; 

  Emu_SW05_B  : in std_logic; 

  Emu_SW06_B  : in std_logic; 

 

  --Phase C Inputs 

  Emu_SW01_C  : in std_logic; 

  Emu_SW02_C  : in std_logic; 

  Emu_SW03_C  : in std_logic; 

  Emu_SW04_C  : in std_logic; 

  Emu_SW05_C  : in std_logic; 

  Emu_SW06_C  : in std_logic; 

      

  HP_Done  : in std_logic; -- Signal coming from DSP_Hot-Patch 

module saying that hot-patch is completed 

  Boot_Done : in std_logic; -- Signal to inform that the boot loading is done 

  Boot_Wrkn : in std_logic; -- Signal to inform that the boot loading is working 

  Emu_EN  : out std_logic; -- Start the emulation 

  HP_EN   : out std_logic; -- Signal sent to DSP_Hot-Patch module to 

enable HP PROCESS 

  DSPEnable : out std_logic; -- Enable the DSP to generate the signals to 

emulate 

 

  --Debug_FW_Val: out std_logic; 
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  Error  : out std_logic; -- Signal error to stop all other processes 

  DSP1_Act : in std_logic 

 

  --debug_FW_Val_E1   : out std_logic; 

  --debug_FW_Val_E2   : out std_logic; 

  --debug_FW_Val_E3   : out std_logic; 

  --debug_FW_Val_E4   : out std_logic; 

  --debug_FW_Val_E5   : out std_logic; 

  --debug_FW_Val_EN   : out std_logic 

 ); 

END Digital_Twin_Firmware_Validation; 

 

ARCHITECTURE Behavioral of Digital_Twin_Firmware_Validation is  

 

 type state_type is ( 

  S0,S1,S2,S3,S4,S5,S6,S7,S8,S9, 

  S10,S11,S12,S13,S14,S15,S16,S17,S18,S19, 

  S20,S21,S22,S23,S24,S25,S26,S27,S28,S29, 

  S30,S31,S32,S33,S34,S35,S36,S37,S38,S39, 

  S40,S41,S42,S43,S44,S45,S46,S47,S48,S49, 

  S50,S51,S52,S53,S54,S55,S100,S101,S102,S103,S104,S_error 

 ); 
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 signal CS, NS, CS_Chk, NS_Chk, CS_ShCrk, NS_ShCrk, CS_DeadT, NS_DeadT : 

state_type; 

 

 -------------------------------- Bad Firmware -------------------------------- 

 signal  Bad_Firmware : std_logic := '0'; -- IF all Bad_FW are OFF THEN Bad_Firmware 

is OFF. IF it is ever ON, THEN backup FW is EN. 

 

 

 -------------------------------- Bus Interface Signals -------------------------------- 

 signal  Bus_Int1_Busy : std_logic := '0'; 

 signal  Bus_Int1_WE : std_logic := '0'; 

 signal  Bus_Int1_RE : std_logic := '0'; 

 signal  Bus_Int1_AddrIn : std_logic_vector (15 downto 0) := (others => '0'); 

 signal Bus_Int1_DataIn : std_logic_vector (15 downto 0) := (others => '0'); 

 signal Bus_Int1_DataOut : std_logic_vector (15 downto 0) := (others => '0'); 

 

 -------------------------------- Registers -------------------------------- 

 -- Hot Patch 

 signal LD_HP_EN   : std_logic := '0'; -- Enable 

 signal Temp_HP_EN   : std_logic := '0'; -- Enable 

 

 signal  LD_HP_Done   : std_logic := '0'; -- Done 

 signal HP_Done_reg_o : std_logic := '0'; -- Done 
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 -- Bad Firmware: Short Circuit 

 signal  Bad_FW1   : std_logic := '0'; 

 

 -- Bad Firmware: Dead Time 

 signal  Bad_FW2   : std_logic := '0'; 

 

 -- Bad Firmware: Fundamental Frequency 

 signal  Bad_FW3   : std_logic := '0'; 

 

 -- Bad Firmware: Fast Frequency 

 signal  Bad_FW4   : std_logic := '0'; 

  

 -- Bad Firmware: Timer Error 

 signal  Bad_FW5   : std_logic := '0'; 

 

 -- Check 

 signal  LD_EN_Chk   : std_logic := '0'; 

 signal  EN_Chk_reg_o : std_logic := '0'; 

 signal  EN_Chk   : std_logic := '0'; 

 

 signal  LD_Stop_Chk  : std_logic := '0'; 

 signal  Temp_Stop_Chk  : std_logic := '0'; 
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 signal  Stop_Chk  : std_logic := '0'; 

  

 -- Boot 

 signal  LD_Boot_Done   : std_logic := '0'; 

 signal  Boot_Done_reg_o  : std_logic := '0'; 

 signal  LD_Boot_Wrkn   : std_logic := '0'; 

 signal Boot_Wrkn_reg_o  : std_logic := '0'; 

  

 -- Emulation 

 signal  LD_Emu_EN    : std_logic := '0'; 

 signal  Temp_Emu_EN   : std_logic := '0'; 

  

 -- Hot Patch Command 

 signal  LD_HP_Cmd    : std_logic := '0'; 

 signal  Temp_HP_Cmd   : std_logic_vector (15 downto 0) := (others => '0'); 

 signal  HP_Cmd    : std_logic_vector (15 downto 0) := (others 

=> '0'); 

  

 -- Error 

 signal LD_Error    : std_logic := '0'; 

 signal Temp_Error    : std_logic := '0'; 

 

 signal LD_Err_Type   : std_logic := '0'; 
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 signal Temp_Err_Type   : std_logic_vector (15 downto 0) := (others => '0'); 

 signal Err_Type   : std_logic_vector (15 downto 0) := (others => '0'); 

  

 -- Variable Data (used to collect data from the Bus) 

 signal LD_Vrble_Data   : std_logic := '0'; 

 signal Temp_Vrble_Data  : std_logic_vector (15 downto 0) := (others => '0'); 

 signal  Vrble_Data   : std_logic_vector (15 downto 0) := (others => '0'); 

  

 -- Validation Start 

 signal LD_Val_Start   : std_logic := '0'; 

 signal Temp_Val_Start   : std_logic := '0'; 

 signal  Val_Start   : std_logic := '0'; 

  

 -------------------------------- Counters -------------------------------- 

 -- Bus 

 signal CntBus_INC : std_logic := '0'; 

 signal CntBus_Rst : std_logic := '0'; 

 signal CntBus_Out : std_logic_vector(15 downto 0) := (others => '0'); 

  

 -- Delay 

 signal CntDelay_INC : std_logic := '0'; 

 signal CntDelay_Rst : std_logic := '0'; 

 signal CntDelay_Out : std_logic_vector(7 downto 0) := (others => '0'); 
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 -- PreChk is used to count the fundamental period, to make sure that the erro checkings 

keep running for this period 

 signal Cnt_PreChk_INC : std_logic := '0'; 

 signal Cnt_PreChk_Rst : std_logic := '0'; 

 signal Cnt_PreChk_Out : std_logic_vector(31 downto 0) := (others => '0'); 

 -------------------------------- End of counters -------------------------------- 

 

 -- Fundamental Frequency Error flags 

 signal FF_error_SW01_A : std_logic := '0'; 

 signal FF_error_SW04_A : std_logic := '0'; 

 signal FF_error_SW01_B : std_logic := '0'; 

 signal FF_error_SW04_B : std_logic := '0'; 

 signal FF_error_SW01_C : std_logic := '0'; 

 signal FF_error_SW04_C : std_logic := '0'; 

 -- Fundamental Frequency Debug  

 --signal debug_FF_detector : std_logic; 

 

 -- Fast Frequency Error flags 

 signal FastFrequency_error_SW02_A : std_logic := '0'; 

 signal FastFrequency_error_SW03_A : std_logic := '0'; 

 signal FastFrequency_error_SW02_B : std_logic := '0'; 

 signal FastFrequency_error_SW03_B : std_logic := '0'; 
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 signal FastFrequency_error_SW02_C : std_logic := '0'; 

 signal FastFrequency_error_SW03_C : std_logic := '0'; 

 

 -- Timer Done Flag 

 signal DisableTimer : std_logic := '0'; 

 

 -- DeadTime Error flags 

 -- Phase A 

 signal Dead_Time_SW_16_45_A  : std_logic := '0';  -- Deadtime between 

Q1/Q6 and Q4/Q5 

 signal Dead_Time_SW_45_16_A  : std_logic := '0';  -- Deadtime between 

Q4/Q5 and Q1/Q6 

 -- Phase B 

 signal Dead_Time_SW_16_45_B  : std_logic := '0';  -- Deadtime between 

Q1/Q6 and Q4/Q5 

 signal Dead_Time_SW_45_16_B  : std_logic := '0';  -- Deadtime between 

Q4/Q5 and Q1/Q6 

 -- Phase C 

 signal Dead_Time_SW_16_45_C  : std_logic := '0';  -- Deadtime between 

Q1/Q6 and Q4/Q5 

 signal Dead_Time_SW_45_16_C  : std_logic := '0';  -- Deadtime between 

Q4/Q5 and Q1/Q6 
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 -- Watchdog signals 

 signal LD_DisableWatchdog  : std_logic := '0'; 

 signal DisableWatchdogReg  : std_logic := '0'; 

 signal Temp_DisableWatchdog  : std_logic := '0'; 

  

 -------------------------------- Components -------------------------------- 

 -- Declare Counter 

 COMPONENT Std_Counter is 

 generic  

 ( 

  Width : integer  --width of counter 

 ); 

 PORT 

 ( 

  INC,rst,clk: in std_logic; 

  Count: out STD_LOGIC_VECTOR(Width-1 downto 0) 

 ); 

 END COMPONENT; 

  

  

 -- Declare Bus Interface 

 COMPONENT Bus_Int 

    PORT 
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 ( 

  clk : IN  std_logic; 

  rst : IN  std_logic; 

  DataIn : IN  std_logic_vector(15 downto 0); 

  DataOut : OUT  std_logic_vector(15 downto 0); 

  AddrIn : IN  std_logic_vector(15 downto 0); 

  WE : IN  std_logic; 

  RE : IN  std_logic; 

  Busy : OUT  std_logic; 

  Data : INOUT  std_logic_vector(15 downto 0); 

  Addr : OUT  std_logic_vector(15 downto 0); 

  Xrqst : OUT  std_logic; 

  XDat : IN  std_logic; 

  YDat : OUT  std_logic; 

  BusRqst : OUT  std_logic; 

  BusCtrl : IN  std_logic 

    ); 

    END COMPONENT; 

 

 -- Declare Deadtime 

 COMPONENT Digital_Twin_DeadTime 

 PORT 

  ( 
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  clk     : in std_logic; 

  rst     : in std_logic; 

  DeadTime_Enable  : in std_logic; 

  DeadTimeError  : out std_logic; 

  

  Emu_SW01  : in std_logic; 

  Emu_SW06  : in std_logic; 

  Emu_SW04  : in std_logic; 

  Emu_SW05  : in std_logic 

 ); 

 END COMPONENT; 

 

 -- Declare Fundamental Frequency Detector 

 COMPONENT FF_detector is 

  generic ( 

   maxValue : std_logic_vector(19 downto 0) := X"67C28"; -- 668A0h = 

59.5Hz = 420,000 clock cycles + 5,000 margin 

   minValue : std_logic_vector(19 downto 0) := X"64D48" -- 64D48h = 

60.5Hz = 413,000 clock cycles   

  ); 

  port 

  ( 

   --debug_FF_detector : out std_logic; 
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   SW     : in std_logic; 

   enable_ff_check  : in std_logic; 

   stop    : in std_logic; 

   clk     : in std_logic; 

   rst     : in std_logic; 

   FF_det_error  : out std_logic 

  ); 

 END COMPONENT; 

 

 COMPONENT FastFrequency_detector is 

  port 

  ( 

   --debug_FF_detector : out std_logic; 

   SW     : in std_logic; 

   enable_ff_check  : in std_logic; 

   stop    : in std_logic; 

   clk     : in std_logic; 

   rst     : in std_logic; 

   FF_det_error  : out std_logic 

  ); 

 END COMPONENT; 

 

 COMPONENT timer_detector is 
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  PORT 

  ( 

   enable : in std_logic; 

   done : in std_logic; 

   clk  : in std_logic; 

   rst  : in std_logic; 

   timer_error : out std_logic  

  ); 

 END COMPONENT; 

 

 COMPONENT Digital_Twin_ShortCircuit is 

  PORT 

  ( 

   -- Inputs 

   clk    : in std_logic; 

   rst    : in std_logic; 

   ShCrkEnable  : in std_logic; 

   Cnt_PreChk_Out : in std_logic_vector(31 downto 0); 

 

   Emu_SW01_A   : in std_logic; 

   Emu_SW04_A   : in std_logic; 

   Emu_SW05_A   : in std_logic; 

   Emu_SW06_A   : in std_logic; 
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   Emu_SW01_B   : in std_logic; 

   Emu_SW04_B   : in std_logic; 

   Emu_SW05_B   : in std_logic; 

   Emu_SW06_B   : in std_logic; 

 

   Emu_SW01_C   : in std_logic; 

   Emu_SW04_C   : in std_logic; 

   Emu_SW05_C   : in std_logic; 

   Emu_SW06_C   : in std_logic; 

 

   -- Outputs 

   DisableTimer : out std_logic; 

   Bad_FW1   : out std_logic 

  ); 

 END COMPONENT; 

 

BEGIN 

 

 -- Instantiate Delay_Cnt 

 Delay_Cnt: Std_Counter 

 generic map 

 ( 
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  Width => 8 

 )  

 port map(  

  clk => clk, 

  rst=> CntDelay_rst, 

  INC=> CntDelay_INC, 

  Count=> CntDelay_Out 

 ); 

  

  

 -- Instantiate Bus_Cnt 

 Bus_Cnt: Std_Counter 

 generic map 

 ( 

  Width => 16 

 ) 

 port map 

 (  

  clk => clk, 

  rst=> CntBus_rst, 

  INC=> CntBus_INC, 

  Count=>CntBus_Out 

 ); 
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 -- Instantiate PreChk counter 

 Cnt_PreChk: Std_Counter 

 generic map 

 ( 

  Width => 32 

 ) 

 port map(  

  clk => clk, 

  rst=> Cnt_PreChk_rst, 

  INC=> Cnt_PreChk_INC, 

  Count=> Cnt_PreChk_Out 

 ); 

 

 -- Instantiate Bus Interface 

 Bus_Int1: Bus_Int  

 PORT MAP  

 ( 

        clk => clk, 

        rst => rst, 

        DataIn => Bus_Int1_DataIn, 

        DataOut => Bus_Int1_DataOut, 
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        AddrIn => Bus_Int1_AddrIn, 

        WE => Bus_Int1_WE, 

        RE => Bus_Int1_RE, 

        Busy => Bus_Int1_Busy, 

        Data => Data, 

        Addr => Addr, 

        Xrqst => Xrqst, 

        XDat => XDat, 

        YDat => YDat, 

        BusRqst => BusRqst, 

        BusCtrl => BusCtrl 

    ); 

 

 TimerDetector: timer_detector 

 PORT MAP( 

  enable => EN_Chk_reg_o, 

  done => DisableTimer, 

  clk  => clk, 

  rst  => rst, 

  timer_error => Bad_FW5 

 ); 

 

 -- Instantiate DeadTime betweem Q1/Q6 and Q4/Q5 for Phase A 



162 

 DeadTime_16_45_A: Digital_Twin_DeadTime  

 PORT MAP  

 ( 

  clk    => clk, 

  rst    => rst, 

  DeadTime_Enable => EN_Chk_reg_o, 

  DeadTimeError  => Dead_Time_SW_16_45_A, 

 

  Emu_SW01 => Emu_SW01_A, 

  Emu_SW06 => Emu_SW06_A, 

  Emu_SW04 => Emu_SW04_A, 

  Emu_SW05 => Emu_SW05_A 

 ); 

 

 -- Instantiate DeadTime betweem Q4/Q5 and Q1/Q6 for Phase A 

 DeadTime_45_16_A: Digital_Twin_DeadTime  

 PORT MAP  

 ( 

  clk    => clk, 

  rst    => rst, 

  DeadTime_Enable => EN_Chk_reg_o, 

  DeadTimeError  => Dead_Time_SW_45_16_A, 
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  Emu_SW01 => Emu_SW04_A, 

  Emu_SW06 => Emu_SW05_A, 

  Emu_SW04 => Emu_SW01_A, 

  Emu_SW05 => Emu_SW06_A 

 ); 

 

 

 -- Instantiate DeadTime betweem Q1/Q6 and Q4/Q5 for Phase B 

 DeadTime_16_45_B: Digital_Twin_DeadTime  

 PORT MAP  

 ( 

  clk    => clk, 

  rst    => rst, 

  DeadTime_Enable => EN_Chk_reg_o, 

  DeadTimeError  => Dead_Time_SW_16_45_B, 

 

  Emu_SW01 => Emu_SW01_B, 

  Emu_SW06 => Emu_SW06_B, 

  Emu_SW04 => Emu_SW04_B, 

  Emu_SW05 => Emu_SW05_B 

 ); 
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 -- Instantiate DeadTime betweem Q4/Q5 and Q1/Q6 for Phase B 

 DeadTime_45_16_B: Digital_Twin_DeadTime  

 PORT MAP  

 ( 

  clk    => clk, 

  rst    => rst, 

  DeadTime_Enable => EN_Chk_reg_o, 

  DeadTimeError  => Dead_Time_SW_45_16_B, 

 

  Emu_SW01 => Emu_SW04_B, 

  Emu_SW06 => Emu_SW05_B, 

  Emu_SW04 => Emu_SW01_B, 

  Emu_SW05 => Emu_SW06_B 

 ); 

 

 

 -- Instantiate DeadTime betweem Q1/Q6 and Q4/Q5 for Phase C 

 DeadTime_16_45_C: Digital_Twin_DeadTime  

 PORT MAP  

 ( 

  clk    => clk, 

  rst    => rst, 

  DeadTime_Enable => EN_Chk_reg_o, 
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  DeadTimeError  => Dead_Time_SW_16_45_C, 

 

  Emu_SW01 => Emu_SW01_C, 

  Emu_SW06 => Emu_SW06_C, 

  Emu_SW04 => Emu_SW04_C, 

  Emu_SW05 => Emu_SW05_C 

 ); 

 

 -- Instantiate DeadTime betweem Q4/Q5 and Q1/Q6 for Phase C 

 DeadTime_45_16_C: Digital_Twin_DeadTime  

 PORT MAP  

 ( 

  clk    => clk, 

  rst    => rst, 

  DeadTime_Enable => EN_Chk_reg_o, 

  DeadTimeError  => Dead_Time_SW_45_16_C, 

 

  Emu_SW01 => Emu_SW04_C, 

  Emu_SW06 => Emu_SW05_C, 

  Emu_SW04 => Emu_SW01_C, 

  Emu_SW05 => Emu_SW06_C 

 ); 

 -- Instantiate Fundamental Frequency Detector for Q1/Q6 (Phase A) 
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 Fundamental_Frequency_Detector_SW01_SW06_A: FF_detector 

 PORT MAP 

 ( 

  --debug_FF_detector => open, 

  SW    => Emu_SW01_A, 

  enable_ff_check => EN_Chk_reg_o, 

  stop   => Stop_Chk, 

  clk    => clk, 

  rst    => rst, 

  FF_det_error => FF_error_SW01_A 

 ); 

 

 -- Instantiate Fundamental Frequency Detector for Q4/Q5 (Phase A) 

 Fundamental_Frequency_Detector_SW04_SW05_A: FF_detector 

 PORT MAP 

 ( 

  --debug_FF_detector => open, 

  SW    => Emu_SW04_A, 

  enable_ff_check => EN_Chk_reg_o, 

  stop   => Stop_Chk, 

  clk    => clk, 

  rst    => rst, 

  FF_det_error => FF_error_SW04_A 
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 ); 

 

 -- Instantiate Fundamental Frequency Detector for Q1/Q6 (Phase B) 

 Fundamental_Frequency_Detector_SW01_SW06_B: FF_detector 

 PORT MAP 

 ( 

  --debug_FF_detector => open, 

  SW    => Emu_SW01_B, 

  enable_ff_check => EN_Chk_reg_o, 

  stop   => Stop_Chk, 

  clk    => clk, 

  rst    => rst, 

  FF_det_error => FF_error_SW01_B 

 ); 

 

 -- Instantiate Fundamental Frequency Detector for Q4/Q5 (Phase B) 

 Fundamental_Frequency_Detector_SW04_SW05_B: FF_detector 

 PORT MAP 

 ( 

  --debug_FF_detector => open, 

  SW    => Emu_SW04_B, 

  enable_ff_check => EN_Chk_reg_o, 

  stop   => Stop_Chk, 
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  clk    => clk, 

  rst    => rst, 

  FF_det_error => FF_error_SW04_B 

 ); 

 

 -- Instantiate Fundamental Frequency Detector for Q1/Q6 (Phase C) 

 Fundamental_Frequency_Detector_SW01_SW06_C: FF_detector 

 PORT MAP 

 ( 

  --debug_FF_detector => open, 

  SW    => Emu_SW01_C, 

  enable_ff_check => EN_Chk_reg_o, 

  stop   => Stop_Chk, 

  clk    => clk, 

  rst    => rst, 

  FF_det_error => FF_error_SW01_C 

 ); 

 

 -- Instantiate Fundamental Frequency Detector for Q4/Q5 (Phase C) 

 Fundamental_Frequency_Detector_SW04_SW05_C: FF_detector 

 PORT MAP 

 ( 

  --debug_FF_detector => open, 
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  SW    => Emu_SW04_C, 

  enable_ff_check => EN_Chk_reg_o, 

  stop   => Stop_Chk, 

  clk    => clk, 

  rst    => rst, 

  FF_det_error => FF_error_SW04_C 

 ); 

 

 

 -- Instantiate Fast Frequency Detector for Q2 (Phase A) 

 Fast_Frequency_Detector_SW02_A: FastFrequency_detector 

 PORT MAP 

 ( 

  --debug_FF_detector => debug_FF_detector, 

  SW    => Emu_SW02_A, 

  enable_ff_check => EN_Chk_reg_o, 

  stop   => Stop_Chk, 

  clk    => clk, 

  rst    => rst, 

  FF_det_error => FastFrequency_error_SW02_A 

 ); 

 

 -- Instantiate Fast Frequency Detector for Q3 (Phase A) 
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 Fast_Frequency_Detector_SW03_A: FastFrequency_detector 

 PORT MAP 

 ( 

  --debug_FF_detector => open, 

  SW    => Emu_SW03_A, 

  enable_ff_check => EN_Chk_reg_o, 

  stop   => Stop_Chk, 

  clk    => clk, 

  rst    => rst, 

  FF_det_error => FastFrequency_error_SW03_A 

 ); 

 

 -- Instantiate Fast Frequency Detector for Q2 (Phase B) 

 Fast_Frequency_Detector_SW02_B: FastFrequency_detector 

 PORT MAP 

 ( 

  --debug_FF_detector => open, 

  SW    => Emu_SW02_B, 

  enable_ff_check => EN_Chk_reg_o, 

  stop   => Stop_Chk, 

  clk    => clk, 

  rst    => rst, 

  FF_det_error => FastFrequency_error_SW02_B 
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 ); 

 

 -- Instantiate Fast Frequency Detector for Q3 (Phase B) 

 Fast_Frequency_Detector_SW03_B: FastFrequency_detector 

 PORT MAP 

 ( 

  --debug_FF_detector => open, 

  SW    => Emu_SW03_B, 

  enable_ff_check => EN_Chk_reg_o, 

  stop   => Stop_Chk, 

  clk    => clk, 

  rst    => rst, 

  FF_det_error => FastFrequency_error_SW03_B 

 ); 

 

 -- Instantiate Fast Frequency Detector for Q2 (Phase C) 

 Fast_Frequency_Detector_SW02_C: FastFrequency_detector 

 PORT MAP 

 ( 

  --debug_FF_detector => open, 

  SW    => Emu_SW02_C, 

  enable_ff_check => EN_Chk_reg_o, 

  stop   => Stop_Chk, 
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  clk    => clk, 

  rst    => rst, 

  FF_det_error => FastFrequency_error_SW02_C 

 ); 

 

 -- Instantiate Fast Frequency Detector for Q3 (Phase C) 

 Fast_Frequency_Detector_SW03_C: FastFrequency_detector 

 PORT MAP 

 ( 

  --debug_FF_detector => open, 

  SW    => Emu_SW03_C, 

  enable_ff_check => EN_Chk_reg_o, 

  stop   => Stop_Chk, 

  clk    => clk, 

  rst    => rst, 

  FF_det_error => FastFrequency_error_SW03_C 

 ); 

  

 ShortCircuit : Digital_Twin_ShortCircuit 

 PORT MAP 

 ( 

  clk => clk,    

  rst => rst,  
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  ShCrkEnable => EN_Chk_reg_o,  

  Cnt_PreChk_Out => Cnt_PreChk_Out,  

   

  Emu_SW01_A  => Emu_SW01_A, 

  Emu_SW04_A  => Emu_SW04_A, 

  Emu_SW05_A  => Emu_SW05_A, 

  Emu_SW06_A  => Emu_SW06_A, 

  

  Emu_SW01_B => Emu_SW01_B,  

  Emu_SW04_B => Emu_SW04_B,  

  Emu_SW05_B => Emu_SW05_B,  

  Emu_SW06_B => Emu_SW06_B,  

  

  Emu_SW01_C => Emu_SW01_C,   

  Emu_SW04_C => Emu_SW04_C,   

  Emu_SW05_C => Emu_SW05_C,   

  Emu_SW06_C => Emu_SW06_C,   

    

   -- Outputs 

  DisableTimer => DisableTimer, 

  Bad_FW1 => Bad_FW1  

 ); 
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 -------------------------------- Registers --------------------------------  

 Reg_Proc: PROCESS 

 BEGIN 

  wait until clk'event and clk = '1'; 

  IF rst = '0' THEN 

   HP_Cmd <= (others => '0'); 

   Err_Type <= (others => '0'); 

   Vrble_Data<= (others => '0'); 

    

   HP_EN <= '0'; 

   HP_Done_reg_o <= '0'; 

   EN_Chk_reg_o <= '0'; 

   Stop_Chk <= '0'; 

   Boot_Done_reg_o <= '0'; 

   Boot_Wrkn_reg_o <= '0'; 

   Emu_EN <= '0'; 

   Error <= '0'; 

   Val_Start <= '0'; 

   DisableWatchdogReg <= '0'; 

  ELSE 

 

   IF (LD_HP_EN    = '1') THEN  HP_EN    

    <= Temp_HP_EN;     END IF; 
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   IF (LD_HP_Done    = '1') THEN  HP_Done_reg_o  

    <= HP_Done;     END IF; 

   IF (LD_Boot_Done   = '1') THEN  Boot_Done_reg_o  

 <= Boot_Done;         END IF; 

   IF (LD_Boot_Wrkn   = '1') THEN  Boot_Wrkn_reg_o  

 <= Boot_Wrkn;         END IF; 

   IF (LD_Emu_EN    = '1') THEN  Emu_EN    

  <= Temp_Emu_EN;    END IF; 

   IF (LD_HP_Cmd    = '1') THEN  HP_Cmd    

  <= Temp_HP_Cmd;    END IF; 

   IF (LD_Error    = '1') THEN  Error      

 <= Temp_Error;     END IF; 

   IF (LD_Err_Type   = '1') THEN  Err_Type   

 <= Temp_Err_Type;     END IF; 

   IF (LD_Vrble_Data   = '1') THEN  Vrble_Data       

<= Temp_Vrble_Data;   END IF; 

   IF (LD_Val_Start   = '1') THEN  Val_Start        

<= Temp_Val_Start;    END IF; 

   IF (LD_EN_Chk       = '1') THEN  EN_Chk_reg_o    

 <= EN_Chk;     END IF; 

   IF (LD_Stop_Chk       = '1') THEN  Stop_Chk       <= 

Temp_Stop_Chk;    END IF; 
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   IF (LD_DisableWatchdog  = '1') THEN  DisableWatchdogReg 

 <= Temp_DisableWatchdog;   END IF; 

  END IF; 

 END PROCESS; 

 

 -------------------------------- Deadtime Check -------------------------------- 

 Deadtime_Check :  PROCESS ( 

  EN_Chk_reg_o, 

  Dead_Time_SW_16_45_A, 

  Dead_Time_SW_45_16_A, 

  Dead_Time_SW_16_45_B, 

  Dead_Time_SW_45_16_B, 

  Dead_Time_SW_16_45_C, 

  Dead_Time_SW_45_16_C 

 ) 

 BEGIN 

  IF (EN_Chk_reg_o = '1') THEN 

   IF ((Dead_Time_SW_16_45_A OR 

     Dead_Time_SW_45_16_A OR 

     Dead_Time_SW_16_45_B OR 

     Dead_Time_SW_45_16_B OR 

     Dead_Time_SW_16_45_C OR 

     Dead_Time_SW_45_16_C 
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    ) = '1') THEN 

    Bad_FW2 <= '1'; 

   ELSE 

    Bad_FW2 <= '0'; 

   END IF; 

  ELSE 

   Bad_FW2 <= '0'; 

  END IF; 

 END PROCESS;  

 -------------------------------- Fast Frequency Check -------------------------------- 

 FastFrequency_Check :  PROCESS ( 

  EN_Chk_reg_o, 

  FastFrequency_error_SW02_A, 

  FastFrequency_error_SW03_A, 

  FastFrequency_error_SW02_B, 

  FastFrequency_error_SW03_B, 

  FastFrequency_error_SW02_C, 

  FastFrequency_error_SW03_C 

 ) 

 BEGIN 

  IF (EN_Chk_reg_o = '1') THEN 

   IF ((FastFrequency_error_SW02_A OR 

    FastFrequency_error_SW03_A OR 
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    FastFrequency_error_SW02_B OR 

    FastFrequency_error_SW03_B OR 

    FastFrequency_error_SW02_C OR 

    FastFrequency_error_SW03_C 

    ) = '1') THEN 

    Bad_FW4 <= '1'; 

   ELSE 

    Bad_FW4 <= '0'; 

   END IF; 

  ELSE 

   Bad_FW4 <= '0'; 

  END IF; 

 END PROCESS; 

 -------------------------------- Fundamental Frequency Check -------------------------------- 

 FF_Check :  PROCESS ( 

  EN_Chk_reg_o, 

  FF_error_SW01_A, 

  FF_error_SW04_A, 

  FF_error_SW01_B, 

  FF_error_SW04_B, 

  FF_error_SW01_C, 

  FF_error_SW04_C 

 ) 



179 

 BEGIN 

  IF (EN_Chk_reg_o = '1') THEN 

   IF ((FF_error_SW01_A OR  

    FF_error_SW04_A OR  

    FF_error_SW01_B OR  

    FF_error_SW04_B OR  

    FF_error_SW01_C OR  

    FF_error_SW04_C) = '1') THEN 

    Bad_FW3 <= '1'; 

   ELSE 

    Bad_FW3 <= '0'; 

   END IF; 

  ELSE 

   Bad_FW3 <= '0'; 

  END IF; 

 END PROCESS; 

 -------------------------------- Bad Firmware Check -------------------------------- 

 Bad_FW_Check :  PROCESS ( 

  EN_Chk_reg_o, 

  Bad_FW1, 

  Bad_FW2, 

  Bad_FW3, 

  Bad_FW4, 
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  Bad_FW5 

 ) 

 BEGIN 

  IF (EN_Chk_reg_o = '1') THEN 

   IF ((Bad_FW1 OR Bad_FW2 OR Bad_FW3 OR Bad_FW4 OR 

Bad_FW5) = '1') THEN 

    Bad_Firmware <= '1'; 

   ELSE 

    Bad_Firmware <= '0'; 

   END IF; 

  ELSE 

   Bad_Firmware <= '0'; 

  END IF; 

 END PROCESS; 

 

 

  

 Main: PROCESS ( 

  CS,  

  Bus_Int1_Busy,  

  Bus_Int1_DataOut,  

  CntDelay_Out,  

  CntBus_Out,  
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  Cnt_PreChk_Out,  

  Vrble_Data,  

  Val_Start,  

  Bad_Firmware,  

  Boot_Wrkn_reg_o,  

  Boot_Done_reg_o,  

  Bad_FW1,  

  Bad_FW2,  

  Bad_FW3, 

  Bad_FW4, 

  Bad_FW5, 

  Err_Type,  

  HP_Cmd,  

  HP_Done_reg_o 

 ) 

 BEGIN 

   

  CntBus_Rst <='1';   

  CntDelay_Rst <='1';   

  CntBus_INC <='0';   

  CntDelay_INC <='0'; 

  Cnt_PreChk_INC <='0'; 

  Cnt_PreChk_Rst <='1'; 



182 

   

  Bus_Int1_AddrIn <= (others => '0'); 

  Bus_Int1_RE <='0'; 

  Bus_Int1_DataIn <= (others => '0'); 

  Bus_Int1_WE <='0'; 

   

  Temp_HP_EN <= '0'; 

  LD_HP_EN <= '0';  

   

  LD_HP_Done <= '0'; 

   

  Temp_Emu_EN <= '0'; 

  LD_Emu_EN <= '0'; 

   

  LD_EN_Chk <= '0'; 

   

  LD_Boot_Done <= '0'; 

   

  LD_Boot_Wrkn <= '0'; 

   

  Temp_Stop_Chk <= '0'; 

  LD_Stop_Chk <= '0'; 
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  Temp_HP_Cmd <= (others => '0'); 

  LD_HP_Cmd <= '0'; 

   

  Temp_Error <= '0'; 

  LD_Error <= '0'; 

   

  LD_Err_Type   <= '0'; 

  Temp_Err_Type <= (others => '0'); 

   

  LD_Vrble_Data   <= '0'; 

  Temp_Vrble_Data <= (others => '0'); 

   

  LD_Val_Start   <= '0'; 

  Temp_Val_Start <= '0'; 

 

  Temp_DisableWatchdog <= '0'; 

  LD_DisableWatchdog <= '0'; 

   

   

  CASE CS IS 

    

   WHEN S0 => 
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    CntBus_INC <='0'; 

    CntBus_Rst <='0'; 

     

    CntDelay_INC <='0'; 

    CntDelay_Rst <='0'; 

      

    Cnt_PreChk_INC <='0'; 

    Cnt_PreChk_Rst <='0'; 

        

    Temp_HP_EN <= '0'; 

    LD_HP_EN <= '1'; 

     

    Temp_Emu_EN <= '0'; 

    LD_Emu_EN <= '1'; 

     

    EN_Chk <= '0'; 

    LD_EN_Chk <= '1'; 

     

    Temp_Stop_Chk <= '0'; 

    LD_Stop_Chk <= '1'; 

     

    Temp_HP_Cmd <= (others => '0'); 

    LD_HP_Cmd <= '1'; 
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    Temp_Error <= '0'; 

    LD_Error <= '1'; 

     

    Temp_Err_Type <= (others => '0'); 

    LD_Err_Type <= '1'; 

     

    NS <= S1; 

 

   WHEN S1=> 

    IF (CntDelay_Out < 40) THEN  

     NS<=S1; 

     CntDelay_INC <= '1'; 

    ELSE 

     NS<=S2; 

    END IF; 

     

 

   WHEN S2=>       -- Wait 

    IF(CntBus_Out < 128) THEN  

     NS<=S2; 

     CntBus_INC<='1'; 

    ELSE 
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     NS<=S3; 

    END IF; 

 

   WHEN S3 =>      -- Wait for Bus 

Control 

    IF(Bus_Int1_Busy = '1') THEN 

     NS <= S3; 

     CntBus_Rst <='0';  -- Reset Bus Counter 

     CntDelay_Rst <='0'; 

    ELSE 

     NS <=S4; 

    END IF; 

 

   WHEN S4 =>      -- Request if the 

Validation Start button was pressed (Load & Verify) 

    Bus_Int1_AddrIn <= Addr_Validation_Start; --

Addr_Validation_Start is a constant from Common file: = X0B08 = 2824 

    Bus_Int1_RE <='1'; 

    NS <= S5; 

 

   WHEN S5 =>      -- Wait for Bus 

Control 

    IF(Bus_Int1_Busy = '1') THEN 
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       NS <= S5;  

    ELSE 

     NS <=S6; 

    END IF; 

    Temp_Vrble_Data <= Bus_Int1_DataOut; 

    LD_Vrble_Data <= '1'; 

     

 

   WHEN S6 =>      -- Store the data 

collected from the BUS to the Validation Start variable 

    Temp_Val_Start <= Vrble_Data(0); 

    LD_Val_Start <= '1'; 

    NS <= S7; 

 

   WHEN S7=>      -- Reset the Hot-Patch 

status 

    Bus_Int1_AddrIn <= Addr_HP_Status; -- Addr_HP_Status is a 

constant from Common file 

    Bus_Int1_DataIn <= X"0000"; -- HP_Stat = 0 (Done/Disabled) 

    Bus_Int1_WE <='1'; 

    NS <= S8; 

     



188 

   WHEN S8 =>      -- Check if the 

Validation Start button was pressed, if not, roll back to S0 

    IF (Val_Start = '1') THEN 

     NS <= S100; 

    ELSE 

     NS <= S0; 

    END IF; 

 

   WHEN S100 =>      -- Wait for 

Bus Control 

    IF(Bus_Int1_Busy = '1') THEN 

     NS <= S100; 

     CntBus_Rst <='0';  -- Reset Bus Counter 

     CntDelay_Rst <='0'; 

    ELSE 

     NS <=S101; 

    END IF; 

 

   WHEN S101 =>      -- Request if 

watchdog is disabled 

    Bus_Int1_AddrIn <= Addr_DisableWatchdog; --

Addr_DisableWatchdog is a constant from Common file: = x0043 

    Bus_Int1_RE <='1'; 
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    NS <= S102; 

 

   WHEN S102 =>      -- Wait for 

Bus Control 

    IF(Bus_Int1_Busy = '1') THEN 

       NS <= S102;  

    ELSE 

     NS <=S103; 

    END IF; 

    Temp_Vrble_Data <= Bus_Int1_DataOut; 

    LD_Vrble_Data <= '1'; 

    

   WHEN S103 =>      -- Store the 

data collected from the BUS to the Validation Start variable 

    Temp_DisableWatchdog <= Vrble_Data(0); 

    LD_DisableWatchdog <= '1'; 

    NS <= S104; 

    

   WHEN S104 => 

    IF (DisableWatchdogReg = '1') THEN 

     NS <= S30; 

    ELSE 

     NS <= S9; 
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    END IF; 

 

 ----------------------------------- Start the verification process -------------------------------------

------      

   WHEN S9=>      -- If the Validation 

Start (Load & Verify) button was pressed, start the firmware checking and emulation process 

    Temp_HP_EN <= '0';    -- Hot-Patching not enabled 

    LD_HP_EN <= '1'; 

     

    Temp_Emu_EN <= '1';   -- Enable emulation 

    LD_Emu_EN <= '1'; 

     

    EN_Chk <= '1';     -- Enable verification 

processes 

    LD_EN_Chk <= '1'; 

     

    NS <= S10; 

 

   WHEN S10 =>    -- Set HP Status to busy 

  

    Bus_Int1_AddrIn <= Addr_HP_Status;  

    Bus_Int1_DataIn <= x"0002";  

    Bus_Int1_WE <='1'; 
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    NS <= S11; 

     

   WHEN S11 =>      -- Wait for 

Bus Control 

    IF(Bus_Int1_Busy = '1') THEN 

     NS <= S11; 

    ELSE 

     NS <=S12; 

    END IF; 

 

   WHEN S12 =>  

    NS <= S13; 

    

   WHEN S13=>      -- Wait for 

fundamental period (60Hz) to have enough time for all the validation processes 

    IF (Cnt_PreChk_Out < X"47868C0") THEN 

     Cnt_PreChk_INC <= '1'; 

     NS <= S13; 

    ELSE 

     Cnt_PreChk_INC <= '0'; 

     NS <= S14; 

    END IF; 
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    Temp_HP_EN <= '0'; 

    LD_HP_EN <= '1'; 

    Cnt_PreChk_Rst <= '1'; 

 

   WHEN S14=>       -- Check for 

Error. Error signal goes to all Modules 

    IF (Bad_Firmware = '1' ) THEN 

     Temp_Error <= '1'; 

     LD_Error <= '1'; 

     NS <= S15; 

    ELSE 

     Temp_Error <= '0'; 

     LD_Error <= '1'; 

     NS <= S30; 

    END IF; 

    

 ----------------------------------- Start ERROR Procedure ------------------------------------------

-   

    

   -- Start Bootload Backup IF needed. Bootloader control may be able to 

handle the situation IF it receives the Error signal 

   -- Set the Error Type from Bad_FW# into Err_Type 

   WHEN S15 => 
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    IF(Boot_Wrkn_reg_o = '0')THEN 

     NS <= S15; 

    ELSE 

     NS <= S16; 

      

    END IF; 

    Temp_Error <= '1'; 

    LD_Error <= '1'; 

    Temp_HP_EN <= '0'; 

    LD_HP_EN <= '1'; 

     

    -- Error type 

    Temp_Err_Type(0) <= Bad_FW1; -- Short-Circuit 

    Temp_Err_Type(1) <= Bad_FW2; -- Deadtime 

    Temp_Err_Type(2) <= Bad_FW3; -- Fundamental Frequency 

    Temp_Err_Type(3) <= Bad_FW4; -- Fast Frequency (MOSFET 2 

and 3) 

    Temp_Err_Type(4) <= Bad_FW5; -- Timer 

 

    LD_Err_Type <= '1'; 

    LD_Boot_Wrkn <= '1'; 
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   WHEN S16 =>      -- Wait for 

Bus Control 

    IF(Bus_Int1_Busy = '1') THEN 

     NS <= S16; 

    ELSE 

     NS <=S17; 

    END IF;  

 

   WHEN S17 =>      -- Set the 

Error Type RAM Reg 

    Bus_Int1_AddrIn <= Addr_ERROR; 

    Bus_Int1_DataIn <= Err_Type; 

    Bus_Int1_WE <='1'; 

    NS <= S18; 

     

   WHEN S18 =>      -- Wait for 

Bus Control 

    IF(Bus_Int1_Busy = '1') THEN 

     NS <= S18; 

    ELSE 

     NS <=S19; 

    END IF; 
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   WHEN S19=>      -- Set the Error bit on 

HP RAM Reg 

    Bus_Int1_AddrIn <= Addr_HP_Status; --Addr_HP_Status is a 

constant from Common file 

    Bus_Int1_DataIn <= X"0003"; -- HP_Stat = 3 (ERROR) 

    Bus_Int1_WE <='1'; 

    NS <= S20; 

 

   WHEN S20 =>      -- Wait for 

Bus Control 

    IF(Bus_Int1_Busy = '1') THEN 

     NS <= S20; 

    ELSE 

     NS <=S21; 

    END IF; 

    LD_Boot_Done <= '1'; 

 

   WHEN S21 =>      -- Wait until 

Bootload is done with Backup 

    IF(Boot_Done_reg_o = '0')THEN 

     NS <= S21; 

    ELSE 

     NS <= S22; 
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    END IF; 

 

    Temp_HP_EN <= '0'; 

    LD_HP_EN <= '1'; 

    LD_Boot_Done <= '1'; 

    EN_Chk <= '0'; 

    LD_EN_Chk <= '1'; 

    Temp_Emu_EN <= '0'; 

    LD_Emu_EN <= '1'; 

    Cnt_PreChk_Rst <= '0'; 

 

   WHEN S22 =>      -- Reset Error 

to all Modules, Reset Err_Type, and SEND Stop_Chk to all Checks 

    Temp_Error <= '0'; 

    LD_Error <= '1'; 

    Temp_Err_Type <= (others => '0'); 

    LD_Err_Type <= '1'; 

    Temp_Stop_Chk <= '1'; 

    LD_Stop_Chk <= '1';   

    NS <= S23; 

 

   WHEN S23=>      -- Reset the validation 

start register 
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    Bus_Int1_AddrIn <= Addr_Validation_Start; 

    Bus_Int1_DataIn <= X"0000";  

    Bus_Int1_WE <='1'; 

    NS <= S24; 

 

   WHEN S24 =>      -- Wait for 

Bus Control 

    IF(Bus_Int1_Busy = '1') THEN 

     NS <= S24; 

    ELSE 

     NS <=S25; 

    END IF; 

    Temp_Val_Start <= '0'; 

    LD_Val_Start <= '1'; 

 

   WHEN S25=>      -- Disable the Hot-

Patch command 

    Bus_Int1_AddrIn <= Addr_HP_Cmd;  

    Bus_Int1_DataIn <= X"0000"; -- Do not hot-patch: command = 

0000 

    Bus_Int1_WE <='1'; 

    NS <= S26; 
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   WHEN S26 =>      -- Wait for 

Bus Control 

    IF(Bus_Int1_Busy = '1') THEN 

      NS <= S26; 

    ELSE 

     NS <=S27; 

    END IF; 

    Temp_HP_Cmd <= (others => '0'); 

    LD_HP_Cmd <= '0'; 

    

 

   WHEN S27=>      -- Reset Hot-Patch 

status 

    Bus_Int1_AddrIn <= Addr_HP_Status; 

    Bus_Int1_DataIn <= X"0000"; -- HP_Status = 0 (Done/Disabled) 

    Bus_Int1_WE <='1'; 

    NS <= S28; 

     

   WHEN S28 =>      -- Wait for 

Bus Control 

    IF(Bus_Int1_Busy = '1') THEN 

     NS <= S28; 

    ELSE 
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     NS <=S29; 

    END IF; 

   

   WHEN S29 =>      -- Wait until 

the error process is done 

    IF(Bad_Firmware = '1')THEN 

     Temp_Stop_Chk <= '1';  -- Stop_Chk = 1 will tell 

Check modules to restart and reset their Bad_FW signal to 0. 

     LD_Stop_Chk <= '1'; 

     NS <= S29; 

    ELSE 

     Temp_Stop_Chk <= '0'; 

     LD_Stop_Chk <= '1'; 

     NS <= S0; 

    END IF; 

    

 ------------------------------------ END ERROR Procedure ----------------------------------------

----    

   WHEN S30=>      -- Wait for Bus 

Control 

    IF(Bus_Int1_Busy = '1') THEN 

     NS <= S30; 

    ELSE 
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     NS <=S31; 

    END IF; 

    

   WHEN S31=>      -- If there is no error, 

set the Hot-Patch status to Ready 

    Bus_Int1_AddrIn <= Addr_HP_Status; --Addr_HP_Status is a 

constant from Common file 

    Bus_Int1_DataIn <= X"0001"; -- HP_Stat = 1 (Ready) 

    Bus_Int1_WE <='1'; 

    NS <= S32; 

     

   WHEN S32 =>      -- Wait for 

Bus Control 

    IF(Bus_Int1_Busy = '1') THEN 

     NS <= S32; 

    ELSE 

     NS <=S33; 

    END IF; 

    

   WHEN S33 =>      -- Read the 

Hot-Patch command, waiting for the user to press the Hot-Patch button 

    Bus_Int1_AddrIn <= Addr_HP_Cmd; 

    Bus_Int1_RE <='1'; 
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    NS <= S34; 

    

   WHEN S34 =>      -- Wait for 

Bus Control 

    IF(Bus_Int1_Busy = '1') THEN 

     NS <= S34; 

    ELSE 

     NS <=S35; 

    END IF; 

    Temp_Vrble_Data <= Bus_Int1_DataOut; 

    LD_Vrble_Data <= '1'; 

    

 

   WHEN S35=>      -- Check for errors 

one more time 

    IF (Bad_Firmware = '1') THEN 

     Temp_Error <= '1'; 

     LD_Error <= '1'; 

 

     NS <= S15; 

    ELSE 

     Temp_Error <= '0'; 

     LD_Error <= '1'; 
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     NS <= S36; 

    END IF; 

        

   WHEN S36 =>      -- Store the 

data collected from bus to the Hot-Patch command register 

    Temp_HP_Cmd <= Vrble_Data; 

    LD_HP_Cmd <= '1'; 

    Temp_Emu_EN <= '0'; 

    LD_Emu_EN <= '1'; 

     

    EN_Chk <= '0'; 

    LD_EN_Chk <= '1'; 

    NS <= S37; 

 

   WHEN S37 =>      -- Wait for the 

Hot-Patch button to be pressed 

    IF (HP_Cmd > X"0000") THEN 

     NS <= S38; 

    ELSE 

     NS <= S30; 

    END IF; 

    Temp_HP_EN <= '0'; 
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    LD_HP_EN <= '1'; 

     

 

   WHEN S38 =>      -- Check for 

errors once more 

    IF (Bad_Firmware = '1' ) THEN 

     Temp_Error <= '1'; 

     LD_Error <= '1';    

     NS <= S15; 

    ELSE 

     Temp_Error <= '0'; 

     LD_Error <= '1'; 

     NS <= S39; 

    END IF; 

    Temp_HP_EN <= '0'; 

    LD_HP_EN <= '1'; 

     

   WHEN S39 =>      -- Turn 

everything off, prepare to hot-patch 

    Temp_HP_EN <= '0'; 

    LD_HP_EN <= '1'; 

    Cnt_PreChk_Rst <= '0'; 

    Temp_Stop_Chk <= '1'; 



204 

    LD_Stop_Chk <= '1'; 

    

    NS <= S40; 

    

   WHEN S40 =>      -- Enable Hot-

Patch 

    Temp_HP_EN <= '1';     

    LD_HP_EN <= '1'; 

    LD_HP_Done <= '1'; 

 

    NS <= S41; 

    

   WHEN S41 => 

    LD_HP_Done <= '1'; 

 

    NS <= S42; 

     

   WHEN S42 =>      -- Wait until 

the Hot-Patch is done 

    IF (HP_Done_reg_o = '0') THEN  

     Temp_HP_EN <= '1'; 

     NS <= S42; 

    ELSE 
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     Temp_HP_EN <= '0'; 

     NS <= S43; 

    END IF; 

    LD_HP_EN <= '1'; 

    LD_HP_Done <= '1'; 

    

   WHEN S43 =>      -- Wait for 

Bus Control 

    IF(Bus_Int1_Busy = '1') THEN 

     NS <= S43; 

    ELSE 

     NS <=S44; 

    END IF; 

    

   WHEN S44 =>      -- Set Hot-

Patch status to "Done" 

    Bus_Int1_AddrIn <= Addr_HP_Status;  

    Bus_Int1_DataIn <= X"0000"; 

    Bus_Int1_WE <='1'; 

 

    NS <= S45; 
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   WHEN S45 =>      -- Wait for 

Bus Control 

    IF(Bus_Int1_Busy = '1') THEN 

     NS <= S45; 

    ELSE 

     NS <= S46; 

    END IF; 

 

   WHEN S46 =>      -- Reset 

Validation Start register 

    Bus_Int1_AddrIn <= Addr_Validation_Start; 

    Bus_Int1_DataIn <= X"0000";  

    Bus_Int1_WE <='1'; 

    NS <= S47; 

    

   WHEN S47 =>      -- Wait for 

Bus Control 

    IF(Bus_Int1_Busy = '1') THEN 

     NS <= S47; 

    ELSE 

     NS <=S48; 

    END IF; 

    Temp_Val_Start <= '0'; 
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    LD_Val_Start <= '1'; 

     

   WHEN S48=>      -- Reset the Hot-Patch 

command register 

    Bus_Int1_AddrIn <= Addr_HP_Cmd; 

    Bus_Int1_DataIn <= X"0000";  

    Bus_Int1_WE <='1'; 

 

    NS <= S49; 

 

   WHEN S49 =>      -- Wait for 

Bus Control 

    IF(Bus_Int1_Busy = '1') THEN 

     NS <= S49; 

    ELSE 

     NS <=S50; 

    END IF; 

    Temp_HP_Cmd <= (others => '0'); 

    LD_HP_Cmd <= '0'; 

     

   WHEN S50 =>      -- Reset Error 

Type vector 

    Temp_Err_Type <= (others => '0'); 
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    LD_Err_Type <= '1'; 

 

    NS <= S51; 

     

   WHEN S51 =>      -- Wait for 

Bus Control 

    IF(Bus_Int1_Busy = '1') THEN 

     NS <= S51; 

    ELSE 

     NS <=S52; 

    END IF; 

 

   WHEN S52 =>      -- Set Error 

Type register to zeros 

    Bus_Int1_AddrIn <= Addr_ERROR; --Addr_ERROR is a constant 

from Common file 

    Bus_Int1_DataIn <= Err_Type;  

    Bus_Int1_WE <='1'; 

 

    NS <= S53; 

     

   WHEN S53 =>      -- Wait for 

Bus Control 
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    IF(Bus_Int1_Busy = '1') THEN 

     NS <= S53; 

    ELSE 

     NS <=S54; 

    END IF; 

 

   WHEN S54 =>      -- Swtich the 

Active DSP register 

    Bus_Int1_AddrIn <= Addr_DSP_Active; 

    if (DSP1_Act = '1') THEN 

     Bus_Int1_DataIn <= X"0000"; 

    ELSE  

     Bus_Int1_DataIn <= X"0001"; 

    END IF; 

    Bus_Int1_WE <='1'; 

 

    NS <= S55; 

 

   WHEN S55 =>      -- Wait for 

Bus Control 

    IF(Bus_Int1_Busy = '1') THEN 

     NS <= S55; 

    ELSE 
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     NS <= S0; 

    END IF; 

 

   WHEN others => 

    NS <= S0; 

 

  END CASE; 

 END PROCESS; 

 

 ----State Sync 

 sync_States: PROCESS 

 BEGIN 

  wait until clk'event and clk = '1'; 

  IF rst = '0' THEN 

   CS <= S0; 

   CS_Chk <= S0; 

   CS_ShCrk <= S0; 

   DSPEnable <= '0'; 

  ELSE 

   CS <= NS; 

   CS_Chk <= NS_Chk; 

   CS_ShCrk <= NS_ShCrk; 

   DSPEnable <= EN_Chk_reg_o; 
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  END IF; 

   

  --debug_FW_Val_E1 <= Bad_FW1; 

  --debug_FW_Val_E2 <= Bad_FW2; 

  --debug_FW_Val_E3 <= Bad_FW3; 

  --debug_FW_Val_E4 <= Bad_FW4; 

  --debug_FW_Val_E5 <= Bad_FW5; 

  --debug_FW_Val_EN <= EN_Chk_reg_o; 

 END PROCESS; 

 ----END State Sync 

END Behavioral; 

 

 

A-3: Short-circuit 

---------------------------------------------------------------------------------- 

-- Company:  University of Arkansas (NCREPT) 

-- Engineer: Paulo Custodio 

--  

-- Create Date:   11/18/2021 

-- Project Name:   Digital_Twin 

-- Module Name:   Dead Time 

-- Project Name:   Digital_Twin_DeadTime 

-- Target Devices:   LCMXO2-7000HC-4FG484C (UCB v1.4a) 
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-- Tool versions:   Lattice Diamond_x64 Build 3.11 

-- Description:  

-- This project was created to detect a Deadtime error, if the DSP firmware does not have enough 

deadtime. 

-- To check if the deadtime is sufficient, this project waits for Q1/Q6 to change from 1 to 0, and 

start counting until Q4/Q5 change from 0 to 1. 

-- After Q4/Q5 became "1", then the counter is compared with the minimum number of clock 

cycles (deadtime). If the counter is greater than the minimum number of clock cycles, 

-- it means that the deadtime is enough, otherwise it must set the error flag to "1" and stop all 

other processes. 

-- The delay of 12ms(300,000 clock cycles) on the first state is necessary to ignore random 

outputs from the DSP while it's being bootloaded.  

---- PinOut: 

-- 

-- Revision   

-- v2.15.22 - Debug signal added; Starts with 0 and when the deadtime is enable, should 

change to 1. 

-- v3.24.22 - Deadtime created as a component to check two different PWMs. Delay added 

to ignore the first 12ms of DSP signals 

-- 

-- Additional Comments:  

--  

-- 
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---------------------------------------------------------------------------------- 

 

Library IEEE; 

Library STD; 

use IEEE.std_logic_1164.all; 

use ieee.std_logic_unsigned.all; 

use ieee.numeric_std.all; 

use STD.textio.all; 

use IEEE.std_logic_textio.all; 

 

library machxo2; 

use machxo2.all; 

 

library work; 

use work.Digital_Twin_Common.all; 

 

 

entity Digital_Twin_ShortCircuit is 

    Port ( 

  -- Inputs 

 clk    : in std_logic; 

 rst    : in std_logic; 

 ShCrkEnable  : in std_logic; 
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 Cnt_PreChk_Out : in std_logic_vector(31 downto 0); 

  

 Emu_SW01_A   : in std_logic; 

 Emu_SW04_A   : in std_logic; 

 Emu_SW05_A   : in std_logic; 

 Emu_SW06_A   : in std_logic; 

 

 Emu_SW01_B   : in std_logic; 

 Emu_SW04_B   : in std_logic; 

 Emu_SW05_B   : in std_logic; 

 Emu_SW06_B   : in std_logic; 

 

 Emu_SW01_C   : in std_logic; 

 Emu_SW04_C   : in std_logic; 

 Emu_SW05_C   : in std_logic; 

 Emu_SW06_C   : in std_logic; 

   

  -- Outputs 

 DisableTimer : out std_logic; 

 Bad_FW1   : out std_logic 

 ); 

end Digital_Twin_ShortCircuit; 
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architecture Behavioral of Digital_Twin_ShortCircuit is  

 

 type state_type is (S0, S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S_error); 

 signal CS_ShCrk, NS_ShCrk : state_type; 

 

 signal LD_Bad_FW1   : std_logic := '0'; 

 signal Temp_Bad_FW1  : std_logic := '0';  

 

 

 

BEGIN --------------------------------------------------------- BEGIN ---------------------------------------

------------------ 

 

 -- Error register 

 Error: process(clk) 

 BEGIN 

  if (rising_edge(clk)) then 

   if rst = '0' then  

    Bad_FW1 <= '0'; 

   else 

    IF (LD_Bad_FW1  = '1') THEN  Bad_FW1 <= 

Temp_Bad_FW1; END IF; 

   end if; 
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  end if; 

 end process; 

 

 

 -------------------------------- Short-Circuit Check -------------------------------- 

 Short_Circuit_Check : PROCESS 

 BEGIN 

  LD_Bad_FW1 <= '0'; 

  Temp_Bad_FW1 <= '0'; 

  DisableTimer <= '0';  

  case CS_ShCrk is 

   WHEN S0 => 

    IF (ShCrkEnable = '0') THEN 

     NS_ShCrk <= S0; 

    ELSE 

     NS_ShCrk <= S1; 

    END IF; 

    Temp_Bad_FW1 <= '0'; 

    LD_Bad_FW1 <= '1'; 

    DisableTimer <= '0'; 

 

   when S1 => -- Wait for the positive Cycle: Phase A Q1 ON 

    if (Emu_SW01_A = '1') then  
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     NS_ShCrk <= S1; 

    ELSE 

     NS_ShCrk <= S2; 

    end if; 

    IF (ShCrkEnable = '0') THEN 

     NS_ShCrk <= S0; 

    END IF; 

 

   when S2 => -- Wait for Q1 and Q6 to be off (Phase A) 

    IF (Emu_SW01_A = '0') THEN 

     NS_ShCrk <= S2; 

    ELSE 

     NS_ShCrk <= S3; 

    END IF; 

    IF (ShCrkEnable = '0') THEN 

     NS_ShCrk <= S0; 

    END IF; 

 

   when S3 => -- Wait for the positive Cycle: Phase A Q1 ON 

    if (Emu_SW01_A = '1') then  

     NS_ShCrk <= S3; 

    ELSE 

     NS_ShCrk <= S4; 
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    end if; 

    IF (ShCrkEnable = '0') THEN 

     NS_ShCrk <= S0; 

    END IF; 

 

   when S4 => -- Wait for Q1 and Q6 to be off (Phase A) 

    IF (Emu_SW01_A = '0') THEN 

     NS_ShCrk <= S4; 

    ELSE 

     NS_ShCrk <= S5; 

    END IF; 

    IF (ShCrkEnable = '0') THEN 

     NS_ShCrk <= S0; 

    END IF; 

 

   when S5 => -- Wait for the positive Cycle: Phase B Q1 ON 

    if (Emu_SW01_B = '1') then  

     NS_ShCrk <= S5; 

    ELSE 

     NS_ShCrk <= S6; 

    end if; 

    IF (ShCrkEnable = '0') THEN 

     NS_ShCrk <= S0; 



219 

    END IF; 

 

   when S6 => -- Wait for Q1 and Q6 to be off 

    IF (Emu_SW01_B = '0') THEN 

     NS_ShCrk <= S6; 

    ELSE 

     NS_ShCrk <= S7; 

    END IF; 

    IF (ShCrkEnable = '0') THEN 

     NS_ShCrk <= S0; 

    END IF; 

 

   when S7 => -- Wait for the second positive Cycle: Q1 ON 

    if (Emu_SW01_C = '1') then  

     NS_ShCrk <= S7; 

    ELSE 

     NS_ShCrk <= S8; 

    end if; 

    IF (ShCrkEnable = '0') THEN 

     NS_ShCrk <= S0; 

    END IF; 

 

   when S8 => -- Wait for Q1 and Q6 to be off 
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    IF (Emu_SW01_C = '0') THEN 

     NS_ShCrk <= S8; 

    ELSE 

     NS_ShCrk <= S9; 

    END IF; 

    IF (ShCrkEnable = '0') THEN 

     NS_ShCrk <= S0; 

    END IF; 

     

   WHEN S9 => -- Short circuit test 

    ------ Phase A ------ 

    IF ((Emu_SW04_A AND Emu_SW06_A) = '1')then 

     NS_ShCrk <= S_error; 

    elsif ((Emu_SW01_A AND Emu_SW05_A) = '1')then  

     NS_ShCrk <= S_error; 

    -------- Phase B ------ 

    elsif((Emu_SW04_B AND Emu_SW06_B) = '1')then 

     NS_ShCrk <= S_error; 

    elsif((Emu_SW01_B AND Emu_SW05_B) = '1')then 

     NS_ShCrk <= S_error; 

    -------- Phase C ------ 

    elsif((Emu_SW04_C AND Emu_SW06_C) = '1')then 

     NS_ShCrk <= S_error; 
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    elsif((Emu_SW01_C AND Emu_SW05_C) = '1')then 

     NS_ShCrk <= S_error; 

    else 

     NS_ShCrk <= S10; 

    END IF; 

    IF (ShCrkEnable = '0') THEN 

     NS_ShCrk <= S0; 

    END IF; 

    

   WHEN S10 => 

    IF (Cnt_PreChk_Out < X"42C1D80") THEN -- Do not stop 

checking 

     NS_ShCrk <= S9; 

    ELSE        -- Stop 

checking 

     NS_ShCrk <= S11; 

    END IF; 

    IF (ShCrkEnable = '0') THEN 

     NS_ShCrk <= S0; 

    END IF; 

    

   WHEN S11 => -- Sit and wait 



222 

    IF (ShCrkEnable = '1') THEN 

     NS_ShCrk <= S11; 

    ELSE       -- Stop 

checking 

     NS_ShCrk <= S0; 

    END IF; 

    DisableTimer <= '1'; 

 

   WHEN S_error => 

    IF (ShCrkEnable = '1') THEN -- Flag erro, sit and wait 

     Temp_Bad_FW1 <= '1'; 

     LD_Bad_FW1 <= '1'; 

     NS_ShCrk <= S_error; 

    ELSE       -- Stop 

checking 

     NS_ShCrk <= S0; 

    END IF; 

    DisableTimer <= '1'; 

 

   WHEN others => 

    NS_ShCrk <= S0; 

    

  END case; 
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 END PROCESS; 

 ------------------- State Sync ------------------- 

 sync_States: process 

 begin 

  wait until clk'event and clk = '1'; 

  if rst = '0' then 

   CS_ShCrk <= S0; 

  else 

   CS_ShCrk <= NS_ShCrk; 

  end if; 

 end process; 

 

end Behavioral; 

 

A-4: Deadtime 

---------------------------------------------------------------------------------- 

-- Company:  University of Arkansas (NCREPT) 

-- Engineer: Estefano Soria and Paulo Custodio 

--  

-- Create Date:   11/18/2021 

-- Project Name:   Digital_Twin 

-- Module Name:   Dead Time 

-- Project Name:   Digital_Twin_DeadTime 
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-- Target Devices:   LCMXO2-7000HC-4FG484C (UCB v1.4a) 

-- Tool versions:   Lattice Diamond_x64 Build 3.11 

-- Description:  

-- This project was created to detect a Deadtime error, if the DSP firmware does not have enough 

deadtime. 

-- To check if the deadtime is sufficient, this project waits for Q1/Q6 to change from 1 to 0, and 

start counting until Q4/Q5 change from 0 to 1. 

-- After Q4/Q5 became "1", then the counter is compared with the minimum number of clock 

cycles (deadtime). If the counter is greater than the minimum number of clock cycles, 

-- it means that the deadtime is enough, otherwise it must set the error flag to "1" and stop all 

other processes. 

-- The delay of 12ms(300,000 clock cycles) on the first state is necessary to ignore random 

outputs from the DSP while it's being bootloaded.  

---- PinOut: 

-- 

-- Revision   

-- v2.15.22 - Debug signal added; Starts with 0 and when the deadtime is enable, should 

change to 1. 

-- v3.24.22 - Deadtime created as a component to check two different PWMs. Delay added 

to ignore the first 12ms of DSP signals 

-- 

-- Additional Comments:  

--  
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-- 

---------------------------------------------------------------------------------- 

 

Library IEEE; 

Library STD; 

use IEEE.std_logic_1164.all; 

use ieee.std_logic_unsigned.all; 

use ieee.numeric_std.all; 

use STD.textio.all; 

use IEEE.std_logic_textio.all; 

 

library machxo2; 

use machxo2.all; 

 

library work; 

use work.Digital_Twin_Common.all; 

 

 

entity Digital_Twin_DeadTime is 

    Port ( 

 clk     : in std_logic; 

 rst     : in std_logic; 

 DeadTime_Enable  : in std_logic; 
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 DeadTimeError  : out std_logic; 

 

 Emu_SW01  : in std_logic; 

 Emu_SW06  : in std_logic; 

 Emu_SW04  : in std_logic; 

 Emu_SW05  : in std_logic 

 ); 

end Digital_Twin_DeadTime; 

 

architecture Behavioral of Digital_Twin_DeadTime is  

 

 type state_type is (S0, S1, S2, S3, S4, S5, S6, S7, S8, S9, S_error, delay); 

 signal CS_DeadT, NS_DeadT : state_type; 

 

 --------------------- Signals for Phase A --------------------- 

 ---------- Counter ----------- 

 signal Cnt_DeadT_INC : std_logic := '0'; 

 signal Cnt_DeadT_Rst : std_logic := '0'; 

 signal Cnt_DeadT_Out : std_logic_vector(31 downto 0) := (others => '0'); 

 ---------- Error ----------- 

 signal Temp_Error  : std_logic := '0'; 

 signal LD_Error  : std_logic := '0'; 

  



227 

 constant numberOfClockCycles :std_logic_vector(7 downto 0) := X"19"; -- 25MHz -> 

40ns period 

 

 --declare Std_Counter Component 

 component Std_Counter is 

 generic ( 

  Width : integer  --width of counter 

 ); 

 port ( 

  INC,rst,clk: in std_logic; 

  Count: out STD_LOGIC_VECTOR(Width-1 downto 0) 

 ); 

 end component; 

 

 

BEGIN --------------------------------------------------------- BEGIN ---------------------------------------

------------------ 

  

 -- Counter to check the deadtime  

 Det_Cnt: Std_Counter 

 generic map 

 ( 

  Width => 32 
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 ) 

 port map(  

  clk => clk, 

  rst=> Cnt_DeadT_Rst, 

  INC=> Cnt_DeadT_INC, 

  Count=> Cnt_DeadT_Out 

 ); 

 

 -- Error register 

 Error: process(clk) 

 BEGIN 

  if (rising_edge(clk)) then 

   if rst = '0' then  

    DeadTimeError <= '0'; 

   else 

    if (LD_Error = '1') then DeadTimeError <= Temp_Error;

 end if; 

   end if; 

  end if; 

 end process; 

 

 -- Main Process 

 Dead_Time : process( 
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  Cnt_DeadT_Out, 

  --_Counter_out, 

  CS_DeadT, 

  Emu_SW01, 

  Emu_SW06, 

  Emu_SW04, 

  Emu_SW05, 

  DeadTime_Enable 

 ) 

 BEGIN 

  LD_Error <= '0'; 

  Cnt_DeadT_Rst <= '1'; 

  Cnt_DeadT_INC <= '0'; 

   

  case CS_DeadT is 

   when S0 => -- Wait until Enable is High 

 

    if(DeadTime_Enable = '0')then 

     NS_DeadT <= S0; 

    else 

     NS_DeadT <= S1; 

    end if; 

    Cnt_DeadT_Rst <= '0'; 
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    Temp_Error <= '0'; 

    LD_Error <= '1'; 

    

   ---- Ignore first cycle ---- 

   when S1 => -- Wait for the positive Cycle: Q1 ON 

    if (Emu_SW01 = '0') then  

     NS_DeadT <= S1; 

    ELSE 

     NS_DeadT <= S2; 

    end if; 

    IF (DeadTime_Enable = '0') THEN 

     NS_DeadT <= S0; 

    END IF; 

 

   when S2 => -- Wait for Q1 and Q6 to be off 

    IF (Emu_SW01 = '1') THEN 

     NS_DeadT <= S2; 

    ELSE 

     NS_DeadT <= S3; 

    END IF; 

    IF (DeadTime_Enable = '0') THEN 

     NS_DeadT <= S0; 

    END IF; 
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   ---- Ignore second cycle ---- 

   when S3 => -- Wait for the positive Cycle: Q1 ON 

    if (Emu_SW01 = '0') then  

     NS_DeadT <= S3; 

    ELSE 

     NS_DeadT <= S4; 

    end if; 

    IF (DeadTime_Enable = '0') THEN 

     NS_DeadT <= S0; 

    END IF; 

 

   when S4 => -- Wait for Q1 and Q6 to be off 

    IF (Emu_SW01 = '1') THEN 

     NS_DeadT <= S4; 

    ELSE 

     NS_DeadT <= S5; 

    END IF; 

    IF (DeadTime_Enable = '0') THEN 

     NS_DeadT <= S0; 

    END IF; 

   ---- Prepare to validate ---- 

   when S5 => -- Wait for the positive Cycle: Q1 ON 
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    if (Emu_SW01 = '0') then  

     NS_DeadT <= S5; 

    ELSE 

     NS_DeadT <= S6; 

    end if; 

    IF (DeadTime_Enable = '0') THEN 

     NS_DeadT <= S0; 

    END IF; 

   when S6 => -- Wait for Q1 and Q6 to be off 

    IF (Emu_SW01 = '1') THEN 

     NS_DeadT <= S6; 

    ELSE 

     NS_DeadT <= S7; 

    END IF; 

    IF (DeadTime_Enable = '0') THEN 

     NS_DeadT <= S0; 

    END IF; 

    

   ---- Validate ---- 

   when S7 => -- While Q1, Q4, Q5 and Q6 are off, count 

    IF (Emu_SW04 = '1') THEN  

     NS_DeadT <= S8; 

    ELSE 
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     NS_DeadT <= S7; 

    END IF; 

    Cnt_DeadT_INC <= '1'; 

    IF (DeadTime_Enable = '0') THEN 

     NS_DeadT <= S0; 

    END IF; 

 

   when S8 => -- Check if the counter > deadtime 

    IF (Cnt_DeadT_Out > numberOfClockCycles) THEN 

     NS_DeadT <= S9; -- No errors 

    ELSE 

     NS_DeadT <= S_error; 

    END IF; 

    IF (DeadTime_Enable = '0') THEN 

     NS_DeadT <= S0; 

    END IF; 

 

   WHEN S9 => -- Sit and wait 

    if (DeadTime_Enable = '1') then  

     NS_DeadT <= S9;  

    else 

     NS_DeadT <= S0;  

    end if; 
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    Temp_Error <= '0'; 

    LD_Error <= '1'; 

  

   when S_error => -- Wait until reset or stay in this state holding the error 

    IF (DeadTime_Enable = '1') then  

     NS_DeadT <= S_error; 

    else 

     NS_DeadT <= S0;  

    end if; 

    Temp_Error <= '1'; 

    LD_Error <= '1'; 

 

   when others => 

    NS_DeadT <= S0; 

   end case; 

 end process; 

 

 

 ------------------- State Sync ------------------- 

 sync_States: process 

 begin 

  wait until clk'event and clk = '1'; 

  if rst = '0' then 
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   CS_DeadT <= S0; 

  else 

   CS_DeadT <= NS_DeadT; 

  end if; 

 end process; 

 

end Behavioral; 

 

 

A-5: Fast Frequency 

---------------------------------------------------------------------------------- 

-- Company:  University of Arkansas (NCREPT) 

-- Engineer: Paulo Custodio 

--  

-- Create Date:   01/17/2023 

-- Project Name:   Digital_Twin 

-- Module Name:   Fundamental Frequency 

-- Project Name:   Digital_Twin_Fast_Frequency 

-- Target Devices:   LCMXO2-7000HC-4FG484C (UCB v1.4a) 

-- Tool versions:   Lattice Diamond_x64 Build 3.11 

-- Description:  

-- This project goal is to detect the frequency of the fast frequency transistors and indicate an 

error in case the frequency is not close to 42kHz. 
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---- PinOut: 

-- 

-- Revision   

-- 

-- Additional Comments:  

--  

-- 

---------------------------------------------------------------------------------- 

Library IEEE; 

use IEEE.std_logic_1164.all; 

use ieee.std_logic_unsigned.all; 

use ieee.numeric_std.all; 

 

 

entity FastFrequency_detector is 

 generic ( 

  maxValue : std_logic_vector(19 downto 0) := X"00300"; -- Ideal value is 595, 

which is 253h 

  minValue : std_logic_vector(19 downto 0) := X"00200" 

 ); 

 port 

 ( 

  --debug_FF_detector : out std_logic; 
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  SW     : in std_logic; 

  enable_ff_check  : in std_logic; 

  stop    : in std_logic; 

  clk     : in std_logic; 

  rst     : in std_logic; 

  FF_det_error  : out std_logic 

 ); 

end; 

 

 

architecture BEHAVIOR of FastFrequency_detector is 

 

 --declare Std_Counter Component 

 component Std_Counter is 

 generic  

 ( 

  Width : integer  --width of counter 

 ); 

 port(INC,rst,clk: in std_logic; 

   Count: out STD_LOGIC_VECTOR(Width-1 downto 0)); 

 end component; 

 

 -- State signals 
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 type state_type is (S0, S1, S2, S3, S4, S5, S6, S7, S_error); 

 signal CS, NS : state_type; 

 

 -- Counter signals 

 signal DC_INC : STD_LOGIC := '0'; 

 signal DC_cnt_out : STD_LOGIC_VECTOR(19 downto 0); 

 signal DC_counter_rst : STD_LOGIC := '0'; 

 

 signal TimerDelay_INC : STD_LOGIC := '0'; 

 signal TimerDelay_OUT : STD_LOGIC_VECTOR(31 downto 0); 

 signal TimerDelay_RST : STD_LOGIC := '0'; 

 

 -- Error signals 

 signal FF_det_sig : STD_LOGIC := '0'; 

 signal LD_FF_det : STD_LOGIC := '0'; 

 signal det_overflow : STD_LOGIC := '0'; 

 

BEGIN 

  

 -- instantiate DC counter 

 DC_Cnt: Std_Counter 

 generic map 

 ( 
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  Width => 20 

 ) 

 port map(  

  clk => clk, 

  rst=> DC_counter_rst, 

  INC=> DC_INC, 

  Count=> DC_cnt_out 

 ); 

 

 TimerDelay: Std_Counter 

 generic map 

 ( 

  Width => 32 

 ) 

 port map(  

  clk => clk, 

  rst=> TimerDelay_RST, 

  INC=> TimerDelay_INC, 

  Count=> TimerDelay_OUT 

 ); 

 

 ----Registers  

 Reg_Proc: process 
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 begin 

  wait until clk'event and clk = '1'; 

  if rst = '0' then 

   FF_det_error <= '0'; 

  else 

   if (LD_FF_det = '1') then  FF_det_error <= FF_det_sig; end if; 

  end if; 

 end process; 

 ----End Registers 

 

 process 

 begin 

  DC_INC <= '0'; 

  FF_det_sig <= '0'; 

  LD_FF_det <= '0'; 

  DC_counter_rst <= '0'; 

  TimerDelay_RST <= '0'; 

  TimerDelay_INC <= '0'; 

  case CS is 

   when S0 =>    -- Wait for the enable signal from the 

Firmware Validation process 

    if (enable_ff_check = '0') then 

     NS <= S0; 
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    else 

     NS <= S1; 

    end if; 

     

 

   when S1 => -- Ignore the first second to ignore transion values 

    if (TimerDelay_OUT < X"17D7840") then --17D 7840 = 

25,000,000 = 1s 

     NS <= S1; 

    else 

     NS <= S2; 

    end if; 

    TimerDelay_RST <= '1'; 

    TimerDelay_INC <= '1'; 

    IF (enable_ff_check = '0') THEN 

     NS <= S0; 

    END IF; 

    

   ------------ Synchonization ------------ 

   when S2 =>    -- Wait for SW to go high 

    if (SW = '0') then 

     NS <= S2; 

    else 



242 

     NS <= S3; 

    end if; 

    DC_counter_rst <= '1'; 

    IF (enable_ff_check = '0') THEN 

     NS <= S0; 

    END IF;     

    

   when S3 =>    -- Wait for SW to go low 

    if (SW = '1') then 

     NS <= S3; 

    else 

     NS <= S4; 

    end if; 

    DC_counter_rst <= '1'; 

    IF (enable_ff_check = '0') THEN 

     NS <= S0; 

    END IF;     

   ------------ Start ------------  

   -- Negatie cycle of the new period 

   when S4 =>    -- Count while is low 

    if (SW = '0') then 

     NS <= S4; 

    else 
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     NS <= S5; 

    end if; 

    DC_counter_rst <= '1'; 

    DC_INC <= '1'; -- Count while is low 

    IF (enable_ff_check = '0') THEN 

     NS <= S0; 

    END IF;     

 

   -- Positive cycle of the new period 

   when S5 => 

    if (SW = '1') then 

     NS <= S5; 

    else 

     NS <= S6; 

    end if; 

    DC_counter_rst <= '1'; -- Keep counting while is high 

    DC_INC <= '1'; 

    IF (enable_ff_check = '0') THEN 

     NS <= S0; 

    END IF;     

 

   -- Counting is over, check if the number of clock cycles are in the 

acceptable range 
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   when S6 =>  

    if ((minValue < DC_cnt_out) AND (DC_cnt_out < maxValue)) 

then 

     NS <= S7; -- No error 

    else 

     NS <= S_error; -- Error 

    end if; 

    DC_counter_rst <= '1'; 

    IF (enable_ff_check = '0') THEN 

     NS <= S0; 

    END IF;     

 

   -- Firmware is valid. Wait for the enable to be turned off  

   when S7 =>  

    if (enable_ff_check = '0') then 

     NS <= S0; -- stop checking 

    else 

     FF_det_sig <= '0'; 

     LD_FF_det <= '1'; 

     NS <= S7; -- Wait 

    end if; 
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   -- Error detected. Wait for the stop checking from Firmware Validation 

process, before going back to S0 

   when S_error => 

    if (enable_ff_check = '1') then 

     FF_det_sig <= '1'; --Error 

     LD_FF_det <= '1'; 

     NS <= S_error; 

    else 

     FF_det_sig <= '0'; 

     LD_FF_det <= '1'; 

     NS <= S0; 

    end if; 

     

  end case; 

 end process; 

 

 ----State Sync 

 sync_States: process 

 begin 

  wait until clk'event and clk = '1'; 

  if rst = '0' then 

   CS <= S0; 

   --debug_FF_detector <= '0'; 
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  else 

   CS <= NS; 

   --debug_FF_detector <= DC_INC; 

  end if; 

 end process; 

 ----End State Sync 

END BEHAVIOR; 

 

 

A-6: Fundamental Frequency 

----------------------------------Fundamental Frequency detector---------------------- 

---------------------------------------------------------------------------------- 

-- Company:  University of Arkansas (NCREPT) 

-- Engineer: Paulo Custodio 

--  

-- Create Date:   03/16/2022 

-- Project Name:   Digital_Twin 

-- Module Name:   Fundamental Frequency 

-- Project Name:   Digital_Twin_Fundamental_Frequency 

-- Target Devices:   LCMXO2-7000HC-4FG484C (UCB v1.4a) 

-- Tool versions:   Lattice Diamond_x64 Build 3.11 

-- Description:  
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-- This project goal is to detect the frequency of the low frequency transistors and indicate an 

error in case the frequency is not close to 60Hz. 

---- PinOut: 

-- 

-- Revision   

-- v2.15.22 - Debug signal added; Starts with 0 and when the deadtime is enable, should 

change to 1. 

-- v5.27.22 - Comments and Polish. 

-- 

-- Additional Comments:  

--  

-- 

---------------------------------------------------------------------------------- 

Library IEEE; 

use IEEE.std_logic_1164.all; 

use ieee.std_logic_unsigned.all; 

use ieee.numeric_std.all; 

 

 

entity FF_detector is 

 generic ( 

  maxValue : std_logic_vector(19 downto 0) := X"67C28"; -- 668A0h = 59.5Hz = 

420,000 clock cycles + 5,000 margin 
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  minValue : std_logic_vector(19 downto 0) := X"64D48" -- 64D48h = 60.5Hz = 

413,000 clock cycles   

 ); 

 port 

 ( 

  --debug_FF_detector : out std_logic; 

  SW     : in std_logic; 

  enable_ff_check  : in std_logic; 

  stop    : in std_logic; 

  clk     : in std_logic; 

  rst     : in std_logic; 

  FF_det_error  : out std_logic 

 ); 

end; 

 

 

architecture BEHAVIOR of FF_detector is 

 

 --declare Std_Counter Component 

 component Std_Counter is 

 generic  

 ( 

  Width : integer  --width of counter 
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 ); 

 port(INC,rst,clk: in std_logic; 

   Count: out STD_LOGIC_VECTOR(Width-1 downto 0)); 

 end component; 

 

 -- State signals 

 type state_type is (S0, S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S_error); 

 signal CS, NS : state_type; 

 

 -- Counter signals 

 signal DC_INC : STD_LOGIC := '0'; 

 signal DC_cnt_out : STD_LOGIC_VECTOR(19 downto 0); 

 signal DC_counter_rst : STD_LOGIC := '0'; 

 

 -- Error signals 

 signal FF_det_sig : STD_LOGIC := '0'; 

 signal LD_FF_det : STD_LOGIC := '0'; 

 signal det_overflow : STD_LOGIC := '0'; 

 

BEGIN 

  

 -- instantiate DC counter 

 DC_Cnt: Std_Counter 
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 generic map 

 ( 

  Width => 20 

 ) 

 port map(  

  clk => clk, 

  rst=> DC_counter_rst, 

  INC=> DC_INC, 

  Count=> DC_cnt_out 

 ); 

 

 ----Registers  

 Reg_Proc: process 

 begin 

  wait until clk'event and clk = '1'; 

  if rst = '0' then 

   FF_det_error <= '0'; 

  else 

   if (LD_FF_det = '1') then  FF_det_error <= FF_det_sig; end if; 

  end if; 

 end process; 

 ----End Registers 
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 process 

 begin 

  DC_INC <= '0'; 

  FF_det_sig <= '0'; 

  LD_FF_det <= '0'; 

  DC_counter_rst <= '0'; 

  case CS is 

   when S0 =>    -- Wait for the enable signal from the 

Firmware Validation process 

    if (enable_ff_check = '0') then 

     NS <= S0; 

    else 

     NS <= S1; 

    end if; 

 

 ------------ First ignore cicle ------------ 

   when S1 => -- Wait for the positive Cycle: Q1 ON 

    if (SW = '1') then  

     NS <= S1; 

    ELSE 

     NS <= S2; 

    end if; 

    IF (enable_ff_check = '0') THEN 
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     NS <= S0; 

    END IF; 

 

   when S2 => -- Wait for Q1 and Q6 to be off 

    IF (SW = '0') THEN 

     NS <= S2; 

    ELSE 

     NS <= S3; 

    END IF; 

    IF (enable_ff_check = '0') THEN 

     NS <= S0; 

    END IF; 

 

   when S3 => -- Wait for the positive Cycle: Q1 ON 

    if (SW = '1') then  

     NS <= S3; 

    ELSE 

     NS <= S4; 

    end if; 

    IF (enable_ff_check = '0') THEN 

     NS <= S0; 

    END IF; 
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   when S4 => -- Wait for Q1 and Q6 to be off 

    IF (SW = '0') THEN 

     NS <= S4; 

    ELSE 

     NS <= S5; 

    END IF; 

    IF (enable_ff_check = '0') THEN 

     NS <= S0; 

    END IF; 

 

   when S5 =>    -- Wait for SW to go low 

    if (SW = '1') then 

     NS <= S5; 

    else 

     NS <= S6; 

    end if; 

    IF (enable_ff_check = '0') THEN 

     NS <= S0; 

    END IF; 

 

   when S6 =>    -- Wait for SW to go high 

    if (SW = '0') then 

     NS <= S6; 
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    else 

     NS <= S7; 

    end if; 

    DC_counter_rst <= '1'; 

    IF (enable_ff_check = '0') THEN 

     NS <= S0; 

    END IF; 

    ------------ Start ------------ 

   -- Wait for a new period to start counting  

   -- Positive cycle of the new period 

   when S7 =>    -- Count while is high 

    if (SW = '1') then 

     NS <= S7; 

    else 

     NS <= S8; 

    end if; 

    DC_counter_rst <= '1'; 

    DC_INC <= '1'; -- Count while is high 

    IF (enable_ff_check = '0') THEN 

     NS <= S0; 

    END IF; 

 

   -- Negative cycle of the new period 
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   when S8 => 

    if (SW = '0') then 

     NS <= S8; 

    else 

     NS <= S9; 

    end if; 

    DC_counter_rst <= '1'; -- Keep counting while is low 

    DC_INC <= '1'; 

    IF (enable_ff_check = '0') THEN 

     NS <= S0; 

    END IF; 

 

   -- Counting is over, check if the number of clock cycles are in the 

acceptable range 

   when S9 =>  

    if ((minValue < DC_cnt_out) AND (DC_cnt_out < maxValue)) 

then 

     NS <= S10; -- No error 

    else 

     NS <= S_error; -- Error 

    end if; 

    DC_counter_rst <= '1'; 

    IF (enable_ff_check = '0') THEN 
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     NS <= S0; 

    END IF; 

 

   -- Firmware is valid. Wait for the enable to be turned off  

   when S10 =>  

    if (enable_ff_check = '0') then 

     NS <= S0; -- stop checking 

    else 

     FF_det_sig <= '0'; 

     LD_FF_det <= '1'; 

     NS <= S10; -- Wait 

    end if; 

 

   -- Error detected. Wait for the stop checking from Firmware Validation 

process, before going back to S0 

   when S_error => 

    if (enable_ff_check = '1') then 

     FF_det_sig <= '1'; --Error 

     LD_FF_det <= '1'; 

     NS <= S_error; 

    else 

     FF_det_sig <= '0'; 

     LD_FF_det <= '1'; 
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     NS <= S0; 

    end if; 

  end case; 

 end process; 

 

 ----State Sync 

 sync_States: process 

 begin 

  wait until clk'event and clk = '1'; 

  if rst = '0' then 

   CS <= S0; 

   --debug_FF_detector <= '0'; 

  else 

   CS <= NS; 

   --debug_FF_detector <= DC_cnt_out(0); 

  end if; 

 end process; 

 ----End State Sync 

END BEHAVIOR; 
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A-7: Watchdog 

---------------------------------------------------------------------------------- 

-- Company:  University of Arkansas (NCREPT) 

-- Engineer: Paulo Custodio and Kelby Haulmark 

--  

-- Create Date:   03/24/2021 

-- Project Name:   Digital_Twin 

-- Module Name:   Timer 

-- Project Name:   Digital_Twin_Timer 

-- Target Devices:   LCMXO2-7000HC-4FG484C (UCB v1.4a) 

-- Tool versions:   Lattice Diamond_x64 Build 3.11 

-- Description: This project has the purpose to add a timer to deadtime tests, to limit the firmware 

validation test 

-- to a certain period of time. 

-- The counter should start when the deadtime is enabled, and the timer should stop when the 

done signal is received or 

-- if it overflows, flagging the error 5. 

---- PinOut: 

-- 

-- Revision: V1.1  

-- 

-- 

-- 
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-- Additional Comments: 

--  

---------------------------------------------------------------------------------- 

 

Library IEEE; 

use IEEE.std_logic_1164.all; 

use ieee.std_logic_unsigned.all; 

use ieee.numeric_std.all; 

 

Library work; 

use work.Digital_Twin_Common.all; 

 

 

entity timer_detector is 

 PORT( 

  enable : in std_logic; 

  done : in std_logic; 

  clk  : in std_logic; 

  rst  : in std_logic; 

  timer_error : out std_logic  

 ); 

end; 
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architecture BEHAVIOR of timer_detector is 

 

 --declare Std_Counter Component 

 component Std_Counter is 

 generic  

 ( 

  Width : integer  --width of counter 

 ); 

 port(INC,rst,clk: in std_logic; 

   Count: out STD_LOGIC_VECTOR(Width-1 downto 0)); 

 end component; 

 

--constant requirement : integer := 20; -- Number of clock cycles needed to meet freq 

 

type state_type is (S0, S1, S2, S3, S4); 

signal CS, NS : state_type; 

 

signal det_INC : STD_LOGIC := '0'; 

signal det_cnt_out : STD_LOGIC_VECTOR(31 downto 0); 

signal counter_rst : STD_LOGIC := '0'; 

signal hp_det_sig : STD_LOGIC := '0'; 

signal LD_hp_det : STD_LOGIC := '0'; 
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signal det_overflow : STD_LOGIC := '0'; 

 

begin 

 Det_Cnt: Std_Counter 

 generic map 

 ( 

  Width => 32 

 ) 

 port map(  

  clk => clk, 

  rst=> counter_rst, 

  INC=> det_INC, 

  Count=> det_cnt_out 

 ); 

 

  

 ----Registers  

 Reg_Proc: process 

 begin 

  wait until clk'event and clk = '1'; 

  if rst = '0' then 

   timer_error <= '0'; 

  else 
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   if (LD_hp_det = '1') then  timer_error <= hp_det_sig; end if; 

    

 end if; 

 end process; 

 ----End Registers 

 

 Main: process (CS, enable, det_overflow, done) 

 begin 

  counter_rst <= '1'; 

  hp_det_sig <= '0'; 

  LD_hp_det <= '0'; 

  det_INC <= '0'; 

  case CS is 

   when S0 => 

    if (enable = '0') then 

     NS <= S0; 

    else 

     NS <= S1; -- When enable is 1, start to count. 

    end if; 

    counter_rst <= '0'; 

    LD_hp_det <= '1'; 

   

   when S1 => 
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    if (done OR det_overflow) = '1' then -- Wait for the done signal or 

the overflow 

     NS <= S2; 

    else 

     NS <= S1; 

    end if; 

    det_INC <= '1'; 

    IF (enable = '0') THEN 

     NS <= S0; 

    END IF; 

    

   when S2 => 

    if (det_overflow = '1') then 

     hp_det_sig <= '1'; 

     NS <= S3; --Error 

    else -- Done without overflow 

     hp_det_sig <= '0'; 

     NS <= S4; -- Ok 

    end if; 

    LD_hp_det <= '1'; 

    IF (enable = '0') THEN 

     NS <= S0; 

    END IF; 
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   when S3 => --error 

    if (enable = '1') then 

     NS <= S3; 

    else 

     NS <= S0; 

    end if; 

    hp_det_sig <= '1'; 

    LD_hp_det <= '1'; 

 

   when S4 => -- Sit and wait. 

    if (enable = '1') then 

     NS <= S4; 

    else 

     NS <= S0; 

    end if; 

    hp_det_sig <= '0'; 

    LD_hp_det <= '1'; 

  

  end case; 

 end process; 

 

 freq_overflow : process(det_cnt_out) 
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 begin 

  -- Counter becomes bigger than freq range so throw flag 

  if (det_cnt_out > X"43B5FC0") then -- 2FAF080 = 2s 

   det_overflow <= '1'; 

  else 

   det_overflow <= '0'; 

  end if; 

 end process; 

 

 ----State Sync 

 sync_States: process 

 begin 

  wait until clk'event and clk = '1'; 

  if rst = '0' then 

   CS <= S0; 

  else 

   CS <= NS; 

  end if; 

 end process; 

 ----End State Sync 

 

END BEHAVIOR; 
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A-8: Emulation (Digital Twin) 

---------------------------------------------------------------------------------- 

-- Company:  University of Arkansas (NCREPT) 

-- Engineer: Estefano Soria and Paulo Custodio 

--  

-- Create Date:   11/18/2021 

-- Project Name:   Digital_Twin 

-- Module Name:   Emulation_Control 

-- Design Name:   Digital_Twin_Emulation_Control 

-- Target Devices:   LCMXO2-7000HC-4FG484C (UCB v1.4a) 

-- Tool versions:   Lattice Diamond_x64 Build 3.11 

-- Description:  

-- This project was first design to emulate the phase-to-phase voltage of a two-level inverter. 

-- Then, it was modified to emulate an ANPC inverter that is used on solar farms. 

-- It must capture 192 samples, catching each sample every 2500 clock cyles (resolution) and 

data will be stored into RAM memory, so the LabVIEW is able to read 

-- the RAM memory and display the data, showing the ANPC inverter output. 

---- PinOut: 

-- 

-- Revision   

-- 

-- 
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-- 

-- Additional Comments:  

-- v5.25.22 - Modified the whole project to an ANPC inverter. 

-- 

---------------------------------------------------------------------------------- 

 

 

Library IEEE; 

Library STD; 

use IEEE.std_logic_1164.all; 

use ieee.std_logic_unsigned.all; 

use ieee.numeric_std.all; 

use STD.textio.all; 

use IEEE.std_logic_textio.all; 

 

library machxo2; 

use machxo2.all; 

 

library work; 

use work.Digital_Twin_Common.all; 

 

ENTITY Digital_Twin_Emulation_Control IS 

    PORT ( 
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  clk : in STD_LOGIC; 

  rst : in STD_LOGIC; 

   

  Emu_EN : in std_logic; 

   

  Data : INOUT  std_logic_vector(15 downto 0); 

  Addr : OUT  std_logic_vector(15 downto 0); 

  Xrqst : OUT  std_logic; 

  XDat : IN  std_logic; 

  YDat : OUT  std_logic; 

  BusRqst : OUT  std_logic; 

  BusCtrl : IN  std_logic; 

 

  --Phase A Inputs 

  Emu_SW01_A  : in std_logic; 

  Emu_SW02_A  : in std_logic; 

  Emu_SW03_A  : in std_logic; 

  Emu_SW04_A  : in std_logic; 

  Emu_SW05_A  : in std_logic; 

  Emu_SW06_A  : in std_logic; 

   

  --Phase B Inputs 

  Emu_SW01_B  : in std_logic; 
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  Emu_SW02_B  : in std_logic; 

  Emu_SW03_B  : in std_logic; 

  Emu_SW04_B  : in std_logic; 

  Emu_SW05_B  : in std_logic; 

  Emu_SW06_B  : in std_logic; 

 

  --Phase C Inputs 

  Emu_SW01_C  : in std_logic; 

  Emu_SW02_C  : in std_logic; 

  Emu_SW03_C  : in std_logic; 

  Emu_SW04_C  : in std_logic; 

  Emu_SW05_C  : in std_logic; 

  Emu_SW06_C  : in std_logic; 

 

  Error : in STD_LOGIC; 

  HP_EN : in STD_LOGIC  

 ); 

END Digital_Twin_Emulation_Control; 

 

ARCHITECTURE Behavioral OF Digital_Twin_Emulation_Control IS  

 

---------------------------------------- START SIGNAL AND COMPONENT DECLARATIONS ---

------------------------------------- 
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 TYPE state_type IS  

 ( 

  S0,S1,S2,S3,S4,S5,S6,S7,S8,S9,S10, 

  S11,S12,S13,S14,S15,S16,S17,S18,S19,S20, 

  S21,S22,S23,S24,S25,S26,S27,S28,S29,S30, 

  S31,S32,S33,S34,S35,S36,S37,S38,S39,S40, 

  S41,S42,S43,S44,S45,S46,S47,S48,S49,S50, 

  S51,S52,S53,S54,S55,S56,S57,S58,S59,S60, 

  S61,S62,S63,S64,S65,S66,S67 

 ); 

 

  signal CS, NS, CSA, NSA, CSB, NSB, CSC, NSC, NS_Fsw, CSab, NSab, CSbc, NSbc, 

CSca, NSca : state_type; 

  

 ------------------- Other Signals ------------------- 

 signal EN : std_logic := '0'; -- Enable 

  

 --Bus Interface Signals 

 signal  Bus_Int1_WE : std_logic := '0'; 

 signal  Bus_Int1_RE : std_logic := '0'; 

 signal  Bus_Int1_Busy : std_logic := '0'; 

 signal  Bus_Int1_AddrIn : std_logic_vector (15 downto 0) := (others => '0'); 
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 signal  Bus_Int1_DataIn : std_logic_vector (15 downto 0) := (others => '0'); 

 signal  Bus_Int1_DataOut : std_logic_vector (15 downto 0) := (others => '0'); 

  

 -- Va FIFO Signals 

 signal  STD_FIFO_Va_Full : std_logic := '0'; 

 signal  STD_FIFO_Va_Empty : std_logic := '0'; 

 signal  STD_FIFO_Va_WriteEn  : std_logic := '0'; 

 signal  STD_FIFO_Va_ReadEn : std_logic := '0'; 

 signal  STD_FIFO_Va_DataIn : std_logic_vector (15 downto 0) := (others => '0'); 

 signal  STD_FIFO_Va_DataOut  : std_logic_vector (15 downto 0) := (others => '0'); 

  

 -- Vb FIFO Signals 

 signal  STD_FIFO_Vb_Full : std_logic := '0'; 

 signal  STD_FIFO_Vb_Empty : std_logic := '0'; 

 signal  STD_FIFO_Vb_WriteEn  : std_logic := '0'; 

 signal  STD_FIFO_Vb_ReadEn : std_logic := '0'; 

 signal  STD_FIFO_Vb_DataIn : std_logic_vector (15 downto 0) := (others => '0'); 

 signal  STD_FIFO_Vb_DataOut  : std_logic_vector (15 downto 0) := (others => '0'); 

  

 -- Vc FIFO Signals 

 signal  STD_FIFO_Vc_Full : std_logic := '0'; 

 signal  STD_FIFO_Vc_Empty : std_logic := '0'; 

 signal  STD_FIFO_Vc_WriteEn  : std_logic := '0'; 
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 signal  STD_FIFO_Vc_ReadEn : std_logic := '0'; 

 signal  STD_FIFO_Vc_DataIn : std_logic_vector (15 downto 0) := (others => '0'); 

 signal  STD_FIFO_Vc_DataOut  : std_logic_vector (15 downto 0) := (others => '0'); 

  

 

 ----------- Data Distribution Counters ----------- 

  

 -- Bus Counter Delay 

 -- 8 bit 

 signal CntBus_INC : std_logic := '0'; 

 signal CntBus_Rst : std_logic := '0'; 

 signal CntBus_Out : std_logic_vector(7 downto 0) := (others => '0'); 

  

 -- Start Data Traffic Counter Delay 

 -- 8 bit 

 signal CntDelay_INC : std_logic := '0'; 

 signal CntDelay_Rst : std_logic := '0'; 

 signal CntDelay_Out : std_logic_vector(7 downto 0) := (others => '0'); 

  

 -- 192 FIFO Reg Counter to Save Emu Data  

 -- 8 bit 

 signal Cnt_LeadReg_INC : std_logic := '0'; 

 signal Cnt_LeadReg_Rst : std_logic := '0'; 
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 signal Cnt_LeadReg_Out : std_logic_vector(7 downto 0) := (others => '0'); 

  

 -- 192 Reg Counter to Save Emu Data from FIFO to RAM 

 --8 bit 

 signal Cnt_FollowReg_INC : std_logic := '0'; 

 signal Cnt_FollowReg_Rst : std_logic := '0'; 

 signal Cnt_FollowReg_Out : std_logic_vector(7 downto 0) := (others => '0'); 

  

 -- PreScale Counter 

 -- 16 bit 

 signal Cnt_Scale_INC : std_logic := '0'; 

 signal Cnt_Scale_Rst : std_logic := '0'; 

 signal Cnt_Scale_Out : std_logic_vector(15 downto 0) := (others => '0'); 

  

 

 ------------------- Registers ------------------- 

  

  

    ----------- Freq Calculations ----------- 

    -----------VAN %DC----------- 

 -- Van Duty Cycle 

 signal   LD_Van_DC   : std_logic := '0'; 

 signal Temp_Van_DC   : std_logic_vector (7 downto 0) := (others => '0'); 
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 signal   Van_DC  : std_logic_vector (7 downto 0) := (others => '0'); 

  

 

    -----------VBN %DC----------- 

 -- Vbn Duty Cycle 

 signal   LD_Vbn_DC   : std_logic := '0'; 

 signal Temp_Vbn_DC   : std_logic_vector (7 downto 0) := (others => '0'); 

 signal   Vbn_DC  : std_logic_vector (7 downto 0) := (others => '0'); 

  

    -----------VCN %DC-----------  

 -- Vcn Duty Cycle 

 signal   LD_Vcn_DC   : std_logic := '0'; 

 signal Temp_Vcn_DC   : std_logic_vector (7 downto 0) := (others => '0'); 

 signal   Vcn_DC  : std_logic_vector (7 downto 0) := (others => '0');  

 

 ----------------------------- Data Distribution ----------------------------------- 

  

 -- Variable Data Register 

 signal   LD_Vrble_Data   : std_logic := '0'; 

 signal Temp_Vrble_Data   : std_logic_vector (15 downto 0) := (others => '0'); 

 signal   Vrble_Data  : std_logic_vector (15 downto 0) := (others => '0'); 
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 -- Start Emu DataLogging Register 

 signal   LD_Emu_DL_Start  : std_logic := '0'; 

 signal Temp_Emu_DL_Start  : std_logic := '0'; 

 signal   Emu_DL_Start : std_logic := '0'; 

  

 -- Scale Ref Register Used for Scale Counter (Latched from PreScale Reg) 

 constant  Scale_Ref  : std_logic_vector (15 downto 0) := X"09C4"; -- 

Scale: 09C4h = 2500 clock cycles. Every 2500 clock cycles, one sample will be collected from 

the DSP signals 

 constant numberOfSamples : std_logic_vector (7 downto 0)  := X"C0";  

-- From each phase, 192(C0h) samples will be collected 

  

  

 -- Emu Va, Vb, Vc Sampling Registers (Sample based on Scale Counter) 

 signal   LD_Va_Samp   : std_logic := '0'; 

 signal Temp_Va_Samp   : std_logic_vector (15 downto 0) := (others => '0'); 

 signal   Va_Samp   : std_logic_vector (15 downto 0) := (others 

=> '0'); 

  

 signal   LD_Vb_Samp   : std_logic := '0'; 

 signal Temp_Vb_Samp   : std_logic_vector (15 downto 0) := (others => '0'); 

 signal   Vb_Samp   : std_logic_vector (15 downto 0) := (others 

=> '0'); 
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 signal   LD_Vc_Samp   : std_logic := '0'; 

 signal Temp_Vc_Samp   : std_logic_vector (15 downto 0) := (others => '0'); 

 signal   Vc_Samp   : std_logic_vector (15 downto 0) := (others 

=> '0'); 

  

  

 -- Emu Va, Vb, Vc RAM Starting Address Latched from Common Constants 

 signal   LD_Addr_Va_Start   : std_logic := '0'; 

 signal Temp_Addr_Va_Start   : std_logic_vector (15 downto 0) := (others => '0'); 

 signal   Addr_Va_Start  : std_logic_vector (15 downto 0) := (others 

=> '0'); 

  

 signal   LD_Addr_Vb_Start   : std_logic := '0'; 

 signal Temp_Addr_Vb_Start   : std_logic_vector (15 downto 0) := (others => '0'); 

 signal   Addr_Vb_Start  : std_logic_vector (15 downto 0) := (others 

=> '0'); 

  

 signal   LD_Addr_Vc_Start   : std_logic := '0'; 

 signal Temp_Addr_Vc_Start   : std_logic_vector (15 downto 0) := (others => '0'); 

 signal   Addr_Vc_Start  : std_logic_vector (15 downto 0) := (others 

=> '0'); 
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 -- PROCESS EN Registers 

 signal   LD_EN   : std_logic := '0'; 

 signal Temp_EN   : std_logic := '0'; 

 

  

 ------------------- Component Declarations (FIFO, Bus_Int, Counters) -------------------------

---- 

 

 -- STD_FIFO 

 COMPONENT STD_FIFO 

  Generic  

  ( 

   DATA_WIDTH   : integer;  -- Width of FIFO 

   FIFO_DEPTH   : integer;  -- Depth of FIFO 

   FIFO_ADDR_LEN   : integer -- Required number of bits to 

represent FIFO_Depth 

  ); 

 

  Port  

  (  

   CLK     : in  STD_LOGIC;                                       

   RST     : in  STD_LOGIC;          

   WriteEn : in  STD_LOGIC;      
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   DataIn  : in  STD_LOGIC_VECTOR (DATA_WIDTH - 1 downto 0);     

   ReadEn  : in  STD_LOGIC;                                 

   DataOut : out STD_LOGIC_VECTOR (DATA_WIDTH - 1 downto 0);   

   Empty   : out STD_LOGIC;                                 

   Full    : out STD_LOGIC                                      

  ); 

 END COMPONENT; 

  

 -- Bus Interface 

 COMPONENT Bus_Int 

     PORT 

  ( 

   clk : IN  std_logic; 

   rst : IN  std_logic; 

   DataIn : IN  std_logic_vector(15 downto 0); 

   DataOut : OUT  std_logic_vector(15 downto 0); 

   AddrIn : IN  std_logic_vector(15 downto 0); 

   WE : IN  std_logic; 

   RE : IN  std_logic; 

   Busy : OUT  std_logic; 

   Data : INOUT  std_logic_vector(15 downto 0); 

   Addr : OUT  std_logic_vector(15 downto 0); 

   Xrqst : OUT  std_logic; 
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   XDat : IN  std_logic; 

   YDat : OUT  std_logic; 

   BusRqst : OUT  std_logic; 

   BusCtrl : IN  std_logic 

     ); 

    END COMPONENT; 

  

 

 --Declare Counter Component  

 component Std_Counter 

  generic  

  ( 

   Width : integer  --width of counter 

  ); 

  port 

  ( 

   INC,rst,clk: in std_logic; 

   Count: out STD_LOGIC_VECTOR(Width-1 downto 0) 

  ); 

 END component; 
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 ---------------------------------------- END SIGNAL AND COMPONENT 

DECLARATIONS---------------------------------------- 

 

BEGIN --------------------------------------------------------- BEGIN ---------------------------------------

------------------ 

  

 --Instantiate STD_FIFO for Va 

 STD_FIFO_Va: STD_FIFO  

 Generic Map 

 ( 

  DATA_WIDTH  => 16, -- Width of FIFO 

  FIFO_DEPTH  => 200, -- Depth of FIFO 

  FIFO_ADDR_LEN => 9 -- Required number of bits to represent FIFO_Depth 

 ) 

 Port Map 

 ( 

  CLK => clk, 

  RST => rst,  

  WriteEn => STD_FIFO_Va_WriteEn, 

  DataIn  => STD_FIFO_Va_DataIn, 

  ReadEn  => STD_FIFO_Va_ReadEn, 

  DataOut => STD_FIFO_Va_DataOut, 

  Empty   => STD_FIFO_Va_Empty, 
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  Full    => STD_FIFO_Va_Full  

 ); 

   

 --Instantiate STD_FIFO for Vb 

 STD_FIFO_Vb: STD_FIFO  

 Generic Map 

 ( 

  DATA_WIDTH  => 16,  -- Width of FIFO 

  FIFO_DEPTH  => 200, -- Depth of FIFO 

  FIFO_ADDR_LEN => 9 -- Required number of bits to represent FIFO_Depth 

 ) 

 Port Map 

 (  

  CLK => clk, 

  RST => rst,  

  WriteEn => STD_FIFO_Vb_WriteEn, 

  DataIn  => STD_FIFO_Vb_DataIn, 

  ReadEn  => STD_FIFO_Vb_ReadEn, 

  DataOut => STD_FIFO_Vb_DataOut, 

  Empty   => STD_FIFO_Vb_Empty, 

  Full    => STD_FIFO_Vb_Full  

 ); 
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 --Instantiate STD_FIFO for Vc 

 STD_FIFO_Vc: STD_FIFO  

 Generic Map 

 ( 

  DATA_WIDTH  => 16,  -- Width of FIFO 

  FIFO_DEPTH  => 200, -- Depth of FIFO 

  FIFO_ADDR_LEN => 9 -- Required number of bits to represent FIFO_Depth 

 ) 

 Port Map 

 ( 

  CLK => clk, 

  RST => rst,  

  WriteEn => STD_FIFO_Vc_WriteEn, 

  DataIn  => STD_FIFO_Vc_DataIn, 

  ReadEn  => STD_FIFO_Vc_ReadEn, 

  DataOut => STD_FIFO_Vc_DataOut, 

  Empty   => STD_FIFO_Vc_Empty, 

  Full    => STD_FIFO_Vc_Full  

 ); 

 

 --Instantiate Bus Interface 

 Bus_Int1: Bus_Int  
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 PORT MAP  

 ( 

     clk => clk, 

     rst => rst, 

     DataIn => Bus_Int1_DataIn, 

     DataOut => Bus_Int1_DataOut, 

     AddrIn => Bus_Int1_AddrIn, 

     WE => Bus_Int1_WE, 

     RE => Bus_Int1_RE, 

     Busy => Bus_Int1_Busy, 

     Data => Data, 

     Addr => Addr, 

     Xrqst => Xrqst, 

     XDat => XDat, 

     YDat => YDat, 

     BusRqst => BusRqst, 

     BusCtrl => BusCtrl 

    ); 

 

 -- Bus Counter Delay 

 CounterBus: Std_Counter 

 generic map 

 ( 
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  Width => 8 

 ) 

 port map( 

  INC  => CntBus_INC, 

  rst  => CntBus_Rst, 

  clk  => clk, 

  Count  => CntBus_Out 

 ); 

 

 -- Start Data Traffic Counter Delay 

 CounterDelay: Std_Counter 

 generic map 

 ( 

  Width => 8 

 ) 

 port map( 

  INC  => CntDelay_INC, 

  rst  => CntDelay_Rst, 

  clk  => clk, 

  Count  => CntDelay_Out 

 ); 
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 -- 192 FIFO Reg Counter to Save Emu Data 

 Counter_LeadReg: Std_Counter 

 generic map 

 ( 

  Width => 8 

 ) 

 port map( 

  INC  => Cnt_LeadReg_INC, 

  rst  => Cnt_LeadReg_Rst, 

  clk  => clk, 

  Count  => Cnt_LeadReg_Out 

  ); 

 

 -- PreScale Counter 

 Counter_Scale: Std_Counter 

 generic map 

 ( 

  Width => 16 

 ) 

 port map 

 ( 

  INC  => Cnt_Scale_INC, 

  rst  => Cnt_Scale_Rst, 
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  clk  => clk, 

  Count  => Cnt_Scale_Out 

 ); 

 

 -- 192 Reg Counter to Save Emu Data from FIFO to RAM 

 Counter_FollowReg: Std_Counter 

 generic map 

 ( 

  Width => 8 

 ) 

 port map 

 ( 

  INC  => Cnt_FollowReg_INC, 

  rst  => Cnt_FollowReg_Rst, 

  clk  => clk, 

  Count  => Cnt_FollowReg_Out 

 ); 

  

  

 ------------------- Registers -------------------  

 Reg_Proc: PROCESS 

 BEGIN 

  wait until clk'event and clk = '1'; 
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  IF rst = '0' THEN  

   Van_DC <= (others => '0'); 

   Vbn_DC <= (others => '0'); 

   Vcn_DC <= (others => '0'); 

    

   --Data Distribution 

   Vrble_Data<= (others => '0'); 

   Va_Samp<= (others => '0'); 

   Vb_Samp<= (others => '0'); 

   Vc_Samp<= (others => '0'); 

   Addr_Va_Start<= (others => '0'); 

   Addr_Vb_Start<= (others => '0'); 

   Addr_Vc_Start<= (others => '0'); 

   Emu_DL_Start<= '0'; 

 

   EN <= '0'; 

 

  ELSE 

   -- Load the data every rising edge. 

   IF (LD_Van_DC = '1')     THEN   Van_DC    <= 

Temp_Van_DC; END if; 
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   IF (LD_Vbn_DC = '1')     THEN   Vbn_DC    <= 

Temp_Vbn_DC;  END if; 

   IF (LD_Vcn_DC = '1')     THEN   Vcn_DC    <= 

Temp_Vcn_DC; END if; 

    

   --Data Distribution 

   IF (LD_Vrble_Data = '1') THEN   Vrble_Data   <= Temp_Vrble_Data;   

 END if; 

   IF (LD_Emu_DL_Start = '1') THEN   Emu_DL_Start <= 

Temp_Emu_DL_Start;   END if; 

   IF (LD_Va_Samp = '1')   THEN   Va_Samp   <= 

Temp_Va_Samp;  END if; 

   IF (LD_Vb_Samp = '1')   THEN   Vb_Samp   <= 

Temp_Vb_Samp;  END if; 

   IF (LD_Vc_Samp = '1')   THEN   Vc_Samp   <= 

Temp_Vc_Samp;  END if; 

   IF (LD_Addr_Va_Start = '1') THEN  Addr_Va_Start <= 

Temp_Addr_Va_Start;  END if; 

   IF (LD_Addr_Vb_Start = '1') THEN  Addr_Vb_Start <= 

Temp_Addr_Vb_Start;  END if; 

   IF (LD_Addr_Vc_Start = '1') THEN  Addr_Vc_Start <= 

Temp_Addr_Vc_Start;  END if; 
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   IF (LD_EN = '1')    THEN  EN     <= 

Temp_EN ;   END if; 

   

  END IF; 

 END PROCESS; 

 ------------------- END Registers ------------------- 

 

 

 Va_Duty_Cycle: PROCESS(CSA, EN, Emu_SW01_A, Emu_SW02_A, Emu_SW03_A, 

Emu_SW04_A) 

 BEGIN  

  LD_Van_DC <= '0'; 

  Temp_Van_DC <= (others => '0'); 

 

 

  case CSA is   

   when S0 => 

 

    IF (EN <= '0')THEN  

     NSA<=S0; 

    ELSE 

     NSA<=S1; 

    END IF; 
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   when S1 => -- 12V Offset (24<->0) instead of 12<->-12 range 

    IF (Emu_SW01_A = '1') THEN -- Positive cycle 

     IF (Emu_SW02_A = '1') THEN 

      Temp_Van_DC <= X"64"; -- 24V 

     ELSE 

      Temp_Van_DC <= X"32"; -- 12v 

     END IF; 

 

    ELSIF (Emu_SW04_A = '1') THEN -- Negative cycle 

     IF (Emu_SW03_A = '1') THEN 

      Temp_Van_DC <= X"00"; -- 0V   

    

     ELSE 

      Temp_Van_DC <= x"32"; -- 12V   

    

     END IF; 

    ELSE 

     Temp_Van_DC <= X"32"; -- 12v  

    END IF; 

    NSA <= S2; 

    LD_Van_DC <= '1'; 
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   when S2 => 

    NSA <= S1; 

 

   when others=> 

    NSA <= S0; 

 

  END case; 

 END PROCESS; 

 

 

    

 ------------------- Calculate Duty Cycle % of Phase B ------------------- 

 Vb_Duty_Cycle: PROCESS(CSB, EN, Emu_SW01_B, Emu_SW02_B, Emu_SW03_B, 

Emu_SW04_B) 

 BEGIN    

  LD_Vbn_DC <= '0'; 

  Temp_Vbn_DC <= (others => '0'); 

 

 

  case CSB is   

   when S0 => 
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    IF (EN <= '0')THEN  

     NSB<=S0; 

    ELSE 

     NSB<=S1; 

    END IF; 

     

   when S1 => -- 12V Offset (24<->0) instead of 12<->-12 range 

    IF (Emu_SW01_B = '1') THEN -- Positive cycle 

     IF (Emu_SW02_B = '1') THEN 

      Temp_Vbn_DC <= X"64"; -- 24V 

     ELSE 

      Temp_Vbn_DC <= X"32"; -- 12v 

     END IF; 

 

    ELSIF (Emu_SW04_B = '1') THEN -- Negative cycle 

     IF (Emu_SW03_B = '1') THEN 

      Temp_Vbn_DC <= X"00"; -- 0V   

    

     ELSE 

      Temp_Vbn_DC <= x"32"; -- 12V   

    

     END IF; 

    ELSE 
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     Temp_Vbn_DC <= X"32"; -- 12v  

    END IF; 

    NSB <= S2; 

    LD_Vbn_DC <= '1'; 

     

 

   when S2 => -- Refresh 

    NSB <= S1; 

 

   when others=> 

    NSB <= S0; 

 

  END case; 

 END PROCESS; 

    

 ------------------- Phase C ------------------- 

 Vc_Duty_Cycle: PROCESS(CSC, EN, Emu_SW01_C, Emu_SW02_C, Emu_SW03_C, 

Emu_SW04_C) 

 BEGIN 

  LD_Vcn_DC <= '0'; 

  Temp_Vcn_DC <= (others => '0'); 

 

  case CSC is   
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   when S0 => 

 

    IF (EN <= '0')THEN  

     NSC<=S0; 

    ELSE 

     NSC<=S1; 

    END IF; 

     

   when S1 => -- 12V Offset (24<->0) instead of 12<->-12 range 

    IF (Emu_SW01_C = '1') THEN -- Positive cycle 

     IF (Emu_SW02_C = '1') THEN 

      Temp_Vcn_DC <= X"64"; -- 24V 

     ELSE 

      Temp_Vcn_DC <= X"32"; -- 12v 

     END IF; 

 

    ELSIF (Emu_SW04_C = '1') THEN -- Negative cycle 

     IF (Emu_SW03_C = '1') THEN 

      Temp_Vcn_DC <= X"00"; -- 0V   

   

     ELSE 

      Temp_Vcn_DC <= x"32"; -- 12V   

   



295 

     END IF; 

    ELSE 

     Temp_Vcn_DC <= X"32"; -- 12v  

    END IF; 

    NSC <= S2; 

    LD_Vcn_DC <= '1';     

 

   when S2 => -- Refresh 

    NSC <= S1; 

 

   when others=> 

    NSC <= S0; 

 

  END case; 

 END PROCESS; 

 

 -------------------------------------- Emulation Data Traffic -------------------------------------- 

 

 Emu_Data_Traffic : PROCESS(CS, CntDelay_Out, CntBus_Out, Bus_Int1_Busy, 

Bus_Int1_DataOut, Vrble_Data, Error, Emu_DL_Start, HP_EN, EN, Cnt_LeadReg_Out, 

Cnt_Scale_Out, Van_DC, Vbn_DC, Vcn_DC, Va_Samp, Vb_Samp, Vc_Samp, 

Cnt_FollowReg_Out, STD_FIFO_Va_Full, STD_FIFO_Va_Empty, STD_FIFO_Va_DataOut, 
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STD_FIFO_Vb_Full, STD_FIFO_Vb_Empty, STD_FIFO_Vb_DataOut, STD_FIFO_Vc_Full, 

STD_FIFO_Vc_Empty, STD_FIFO_Vc_DataOut)    

 BEGIN 

   

  CntBus_Rst <= '1'; 

  CntDelay_Rst <= '1'; 

  Cnt_LeadReg_Rst <= '1'; 

  Cnt_Scale_Rst <= '1'; 

  Cnt_FollowReg_Rst <= '1'; 

 

  CntBus_INC <= '0'; 

  CntDelay_INC <= '0'; 

  Cnt_LeadReg_INC <= '0'; 

  Cnt_Scale_INC <= '0'; 

  Cnt_FollowReg_INC <= '0'; 

   

  LD_Addr_Va_Start <= '0'; 

  LD_Addr_Vb_Start <= '0'; 

  LD_Addr_Vc_Start <= '0'; 

  Temp_Addr_Va_Start <= (others => '0'); 

  Temp_Addr_Vb_Start <= (others => '0'); 

  Temp_Addr_Vc_Start <= (others => '0'); 
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  LD_Vrble_Data <= '0'; 

  Temp_Vrble_Data <= (others => '0'); 

   

  LD_Emu_DL_Start <= '0'; 

  Temp_Emu_DL_Start <= '0'; 

 

  Temp_Va_Samp <= (others => '0'); 

  Temp_Vb_Samp <= (others => '0'); 

  Temp_Vc_Samp <= (others => '0'); 

  LD_Va_Samp <= '0'; 

  LD_Vb_Samp <= '0'; 

  LD_Vc_Samp <= '0'; 

   

  Bus_Int1_AddrIn <= (others => '0'); 

  Bus_Int1_RE <='0'; 

  Bus_Int1_DataIn <= (others => '0'); 

  Bus_Int1_WE <='0'; 

   

  STD_FIFO_Va_WriteEn <='0'; 

  STD_FIFO_Va_DataIn <= (others => '0'); 

  STD_FIFO_Va_ReadEn <='0'; 

   

  STD_FIFO_Vb_WriteEn <='0'; 
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  STD_FIFO_Vb_DataIn <= (others => '0'); 

  STD_FIFO_Vb_ReadEn <='0'; 

   

  STD_FIFO_Vc_WriteEn <='0'; 

  STD_FIFO_Vc_DataIn <= (others => '0'); 

  STD_FIFO_Vc_ReadEn <='0'; 

   

  case CS is 

   when S0 => 

    CntBus_Rst <='0';  -- Reset Bus Counter 

    CntDelay_Rst <='0';  -- Reset Delay Counter 

    Cnt_LeadReg_Rst <= '0'; -- Reset Number of Samples 

    Cnt_Scale_Rst <= '0'; 

    Cnt_FollowReg_Rst <= '0'; 

    Temp_Addr_Va_Start <= Addr0_Emu_Va; 

    Temp_Addr_Vb_Start <= Addr0_Emu_Vb; 

    Temp_Addr_Vc_Start <= Addr0_Emu_Vc; 

    LD_Addr_Va_Start <= '1'; 

    LD_Addr_Vb_Start <= '1'; 

    LD_Addr_Vc_Start <= '1'; 

    Temp_EN <= '0'; 

    LD_EN <= '1'; 
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    NS <= S1; 

 

   when S1=>      -- Delay 

    if(CntDelay_Out < 40) THEN   

     NS<=S1; 

    else 

     NS<=S2; 

    END if; 

    CntDelay_INC<='1'; 

 

   when S2=>      -- Wait 

    if(CntBus_Out < 128) THEN   

     NS<=S2; 

    else 

     NS<=S3; 

    END if; 

    CntBus_INC<='1'; 

    

   when S3 =>      -- Wait for Bus 

Control 

    if(Bus_Int1_Busy = '1') THEN  

     NS <= S3; 

    else 
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     NS <=S4; 

    END if; 

    CntBus_Rst <='0';   -- Reset Bus Counter 

    

   when S4 =>      -- Request if the 

Emulation button was pressed 

    Bus_Int1_AddrIn <= Addr_Emu_DL_Start; --

Addr_Emu_DL_Start is a constant from Common file 

    Bus_Int1_RE <='1'; 

    NS <= S5; 

    

   when S5 =>      -- Wait for Bus 

Control 

    if(Bus_Int1_Busy = '1') THEN  

     NS <= S5; 

    else 

     NS <=S6; 

    END if; 

    Temp_Vrble_Data <= Bus_Int1_DataOut; 

    LD_Vrble_Data <= '1'; 

    

   when S6 =>      -- Store the register 

value into Emulation Datalogger Start variable 
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    Temp_Emu_DL_Start <= Vrble_Data(0); 

    LD_Emu_DL_Start <= '1'; 

    NS <= S7; 

    

   when S7 =>      -- Check if EMU Start 

is pressed 

    if(Emu_DL_Start = '1') THEN  

     NS <= S8; 

    else 

     NS <= S0;    -- If not, go back to 

S0 

    end if; 

 

   when S8 => -- Check errors 

    if(Error = '1') THEN  

     Temp_Emu_DL_Start <= '0'; 

     LD_Emu_DL_Start <= '1'; 

     NS <= S9; 

    ELSE  

     NS <= S16; 

    END if; 
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 ----------------------------------- Start ERROR Procedure ------------------------------------------

-  

   when S9 => -- Wait bus 

    if(Bus_Int1_Busy = '1') THEN  

     NS <= S9; 

    else 

     NS <=S10; 

    END if; 

   

   when S10 => -- Set DL status to Error 

    Bus_Int1_AddrIn <= Addr_Emu_DL_Status; --

Addr_Emu_DL_Status is a constant from Common file 

    Bus_Int1_DataIn <= X"0003"; -- Emu_DL_Stat = 3 (ERROR) 

    Bus_Int1_WE <='1'; 

    NS <= S11; 

 

   when S11 => -- Wait bus 

    if(Bus_Int1_Busy = '1') THEN  

     NS <= S11; 

    else 

     NS <=S12; 

    END if; 
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   when S12 =>  -- Overwrite the DL Start command 

    Bus_Int1_AddrIn <= Addr_Emu_DL_Start; --

Addr_Emu_DL_Start is a constant from Common file 

    Bus_Int1_DataIn <= X"0000"; 

    Bus_Int1_WE <='1'; 

    NS <= S13; 

    

   when S13 => -- Check if Error is still ON. Wait until the error is off 

    IF (Error = '1') THEN 

     NS <= S13; 

    else 

     NS <= S14; 

    END if; 

 

   when S14 => -- Wait bus 

    if(Bus_Int1_Busy = '1') THEN  

     NS <= S14; 

    else 

     NS <=S15; 

    END if; 

     

   when S15 => -- Set DL status to done and go back to S0 
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    Bus_Int1_AddrIn <= Addr_Emu_DL_Status; --

Addr_Emu_DL_Status is a constant from Common file 

    Bus_Int1_DataIn <= X"0000"; -- Emu_DL_Stat = 0 (Ready/Done) 

    Bus_Int1_WE <='1'; 

    NS <= S0; 

 ----------------------------------- END ERROR Procedure -----------------------------------------

-- 

------------------------------------------ Start Emu Data Logging -------------------------------------------- 

   when S16 =>      -- Wait for Bus 

Control 

    if(Bus_Int1_Busy = '1') THEN  

     NS <= S16; 

    else 

     NS <=S17; 

    END if;    

   when S17 =>      -- Set DL Status to 

Busy and Enable emulation 

    Bus_Int1_AddrIn <= Addr_Emu_DL_Status; --

Addr_Emu_DL_Status is a constant from Common file 

    Bus_Int1_DataIn <= X"0001"; -- Emu_DL_Stat = 1 = Busy 

    Bus_Int1_WE <='1'; 

    Temp_EN <= '1';    -- Enable Emulation 

    LD_EN <= '1'; 
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    NS <= S18; 

 

   when S18=>      -- Check if there's no 

error and if HP is enabled 

    if((Error = '0') and (HP_EN = '0'))THEN  

     NS <= S19; 

    else   

     NS <= S9;    -- If there's an error, 

go back to error process (S9)  

    END if;  

 

 --------------------------- Collect sample and save into FIFO loop -------------------------------

-     

   when S19 => 

    IF (Cnt_LeadReg_Out < numberOfSamples) THEN -- Check if all 

samples were collected 

     NS <= S20; 

    else 

     Cnt_Scale_Rst <= '0';      

     NS <= S24; 

    END if; 

    

   when S20 => 
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    if(Cnt_Scale_Out < Scale_Ref)THEN -- Wait for resolution (2500 

clock cycles) 

     Cnt_Scale_INC <= '1'; 

     NS <= S20; 

    else 

     NS <= S21; 

 

    END if; 

 

   when S21 => 

    Cnt_Scale_Rst <= '0';   -- Reset resolution counter 

    Temp_Va_Samp <= X"00" & Van_DC; -- Load values of each 

phase 

    Temp_Vb_Samp <= X"00" & Vbn_DC; 

    Temp_Vc_Samp <= X"00" & Vcn_DC; 

    LD_Va_Samp <= '1'; 

    LD_Vb_Samp <= '1'; 

    LD_Vc_Samp <= '1'; 

    NS <= S22; 

     

   when S22 => 

    Cnt_LeadReg_INC <= '1'; -- Count 1 sample collected 

    NS <= S23; 
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   -- Start Saving Emu Va, Vb, Vc Data in FIFO-- 

   when S23 => 

    IF (STD_FIFO_Va_Full = '0') THEN  

     STD_FIFO_Va_DataIn <= Va_Samp;  --16 bit 

FIFO. DATA_WIDTH in FIFO must be 16 and not 8. 

     STD_FIFO_Va_WriteEn <='1'; 

    END if; 

 

    IF (STD_FIFO_Vb_Full = '0') THEN  

     STD_FIFO_Vb_DataIn <= Vb_Samp;  --16 bit 

FIFO. DATA_WIDTH in FIFO must be 16 and not 8. 

     STD_FIFO_Vb_WriteEn <='1'; 

    END if; 

 

    IF (STD_FIFO_Vc_Full = '0') THEN  

     STD_FIFO_Vc_DataIn <= Vc_Samp;  --16 bit 

FIFO. DATA_WIDTH in FIFO must be 16 and not 8. 

     STD_FIFO_Vc_WriteEn <='1'; 

    END if; 

    NS <= S19 ; 
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   when S24 =>      -- Wait for Bus 

Control 

    if(Bus_Int1_Busy = '1') THEN  

     NS <= S24; 

    else  

     NS <=S25; 

    END if; 

     

   when S25 =>      -- Update 

Emu_DL_Status 

    Bus_Int1_AddrIn <= Addr_Emu_DL_Status; --

Addr_Emu_DL_Status is a constant from Common file 

    Bus_Int1_DataIn <= X"0002"; -- Emu_DL_Stat = 1 (Saving Data) 

    Bus_Int1_WE <='1'; 

    NS <= S26; 

    

   when S26 => 

    if(Cnt_FollowReg_Out < numberOfSamples)THEN -- X"C0" = 

192 

     NS <= S27; 

    else 

     Cnt_FollowReg_Rst <= '0'; 

     NS <= S40; 
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    END if; 

 

 --------------------------- Saving Emu Va, Vb, Vc Data from FIFO to RAM -------------------

--------  

     

   -- Va FIFO to RAM 

   when S27 => 

    if(STD_FIFO_Va_Empty = '1') THEN -- Check if FIFO is empty. 

if true, check Vb FIFO 

     NS<=S31; 

    else 

     STD_FIFO_Va_ReadEn <= '1'; -- Read data from 

FIFO 

     NS<=S28; 

    END if; 

    

   when S28=>      -- Load FIFO data 

        

    Temp_Vrble_Data <= STD_FIFO_Va_DataOut; 

    LD_Vrble_Data <='1'; 

    NS<=S29; 
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   when S29=>      --Wait for Bus 

Control 

    if(Bus_Int1_Busy = '1') THEN  

     NS <= S29; 

    else 

     NS <=S30; 

    END if; 

     

   when S30=>      -- Send data to RAM 

    Bus_Int1_AddrIn <= Addr_Va_Start + Cnt_FollowReg_Out; 

 --SEND Va data to RAM Addr X"0200" + Counter[1:192] 

    Bus_Int1_DataIn <= Vrble_Data; 

    Bus_Int1_WE <='1'; 

    NS<=S31; 

    

   -- Vb FIFO to RAM 

   when S31 => 

    if(STD_FIFO_Vb_Empty = '1') THEN  -- Check if FIFO is empty. 

if true, check Vc FIFO 

     NS <= S35; 

    else 

     STD_FIFO_Vb_ReadEn <= '1'; -- Read data from 

FIFO  
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     NS <= S32; 

    END if; 

    

   when S32 =>      -- Load data from 

FIFO       

    Temp_Vrble_Data <= STD_FIFO_Vb_DataOut; 

    LD_Vrble_Data <='1'; 

    NS <= S33; 

 

   when S33 =>      -- Wait for Bus 

Control 

    if(Bus_Int1_Busy = '1') THEN  

     NS <= S33; 

    else 

     NS <= S34; 

    END if; 

     

   when S34 =>      -- Send data to RAM 

    Bus_Int1_AddrIn <= Addr_Vb_Start + Cnt_FollowReg_Out; 

 --Send Vb data to RAM Addr X"0300" + Counter[1:192] 

    Bus_Int1_DataIn <= Vrble_Data; 

    Bus_Int1_WE <='1'; 

    NS <= S35; 
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   -- Vc FIFO to RAM 

   when S35 => 

    if(STD_FIFO_Vc_Empty = '1') THEN -- Check if FIFO is empty. 

If true go back to S26 

     NS <= S26; 

    else 

     STD_FIFO_Vc_ReadEn <= '1'; -- Read data from 

FIFO  

     NS <= S36; 

    END if; 

    

   when S36=>      -- Load data from 

FIFO 

    Temp_Vrble_Data <= STD_FIFO_Vc_DataOut; 

    LD_Vrble_Data <= '1'; 

    NS <= S37; 

 

   when S37 =>      -- Wait for Bus 

Control 

    if(Bus_Int1_Busy = '1') THEN  

     NS <= S37; 

    else 
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     NS <= S38; 

    END if; 

     

   when S38=>      -- Send data to RAM 

    Bus_Int1_AddrIn <= Addr_Vc_Start + Cnt_FollowReg_Out; 

 --Send Vc data to RAM Addr X"0300" + Counter[1:192] 

    Bus_Int1_DataIn <= Vrble_Data; 

    Bus_Int1_WE <='1'; 

    NS <= S39; 

    

   when S39 => 

    Cnt_FollowReg_INC <= '1';  -- Count 1 sample of each phase and 

go back to S26 

    NS <= S26; 

 

   --------------------------- End Saving Emu Va, Vb, Vc Data from FIFO to 

RAM -------------------------------- 

 

   --------------------------- Finalizing -------------------------------- 

   when S40 =>      -- Wait for Bus 

Control 

    if(Bus_Int1_Busy = '1') THEN  

     NS <= S40; 
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    else 

     NS <= S41; 

    END if; 

    

   when S41 =>      -- Change register 

status to Ready/Done 

    Bus_Int1_AddrIn <= Addr_Emu_DL_Status; --

Addr_Emu_DL_Status is a constant from Common file 

    Bus_Int1_DataIn <= X"0000"; -- Emu_DL_Stat = 0 (Ready/Done) 

    Bus_Int1_WE <='1'; 

    NS <= S42; 

 

   when S42 =>      -- Wait for Bus 

Control 

    if(Bus_Int1_Busy = '1') THEN  

     NS <= S42; 

    else 

     NS <=S43; 

    END if; 

   

   when S43 =>      -- Reset the DL start 

register and go back to S0 
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    Bus_Int1_AddrIn <= Addr_Emu_DL_Start; --

Addr_Emu_DL_Start is a constant from Common file 

    Bus_Int1_DataIn <= X"0000"; 

    Bus_Int1_WE <= '1'; 

    Temp_Emu_DL_Start <= '0'; 

    LD_Emu_DL_Start <= '1'; 

    NS <= S0; 

     

 

   when others => 

    NS <= S0; 

  END case; 

 END PROCESS; 

  

 ----State Sync 

 sync_States: PROCESS 

 BEGIN 

  wait until clk'event and clk = '1'; 

  IF rst = '0' THEN  

   CS  <= S0; 

   CSA  <= S0; 

   CSB     <= S0; 

   CSC     <= S0; 
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   CSab <= S0; 

   CSbc <= S0; 

   CSca <= S0; 

  else 

   CS  <= NS; 

   CSA  <= NSA; 

   CSB  <= NSB; 

   CSC  <= NSC; 

   CSab <= NSab; 

   CSbc <= NSbc; 

   CSca <= NSca; 

  END if; 

 END PROCESS; 

 ----END State Sync 

END Behavioral; 
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