
University of Arkansas, Fayetteville University of Arkansas, Fayetteville

ScholarWorks@UARK ScholarWorks@UARK

Graduate Theses and Dissertations

8-2023

A Real-Time ANPC Inverter Digital Twin with Integrated Design-A Real-Time ANPC Inverter Digital Twin with Integrated Design-

For-Trust For-Trust

Paulo Vitor Do Amaral Custodio
University of Arkansas, Fayetteville

Follow this and additional works at: https://scholarworks.uark.edu/etd

 Part of the Electrical and Computer Engineering Commons

Citation Citation
Do Amaral Custodio, P. V. (2023). A Real-Time ANPC Inverter Digital Twin with Integrated Design-For-
Trust. Graduate Theses and Dissertations Retrieved from https://scholarworks.uark.edu/etd/5035

This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion
in Graduate Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more
information, please contact scholar@uark.edu, uarepos@uark.edu.

https://scholarworks.uark.edu/
https://scholarworks.uark.edu/etd
https://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F5035&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=scholarworks.uark.edu%2Fetd%2F5035&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/etd/5035?utm_source=scholarworks.uark.edu%2Fetd%2F5035&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu,%20uarepos@uark.edu

A Real-Time ANPC Inverter Digital Twin with Integrated Design-For-Trust

A thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science in Electrical Engineering

by

Paulo Vitor do Amaral Custodio

State University of Londrina

Bachelor of Science in Electrical Engineering, 2015

August 2023

University of Arkansas

This thesis is approved for recommendation to the Graduate Council.

H. Alan Mantooth, Ph.D.

Committee Member

Roy A. McCann, Ph.D.

Committee Member

Chis Farnell, Ph.D.

Committee Member

ABSTRACT

The demand for renewable energy has increased over the last few years, and so has the

demand for greater expectations within the energy market. This increasing trend has been

accompanied by more significant usage of internet-connected devices (IoT), leading to critical

electrical infrastructure being connected to the internet. Implementing internet connectivity with

such devices and systems provides benefits such as improving the system's performance,

facilitating irregularity and anomaly mitigation, and providing additional situational awareness for

enhanced decision-making. However, enhancing the connected system with IoT introduces a

drawback – a greater vulnerability to cyber-attacks.

Cyber-attacks targeting critical infrastructure in the electrical sector have occurred in the

United States and Ukraine. These cyber-attacks highlight and expose vulnerabilities that a system

inherits when connecting to the internet. These attacks left thousands of customers without

electricity for hours until operators could regain control of the electric utility grid.

Therefore, to address the vulnerabilities of an internet-connected power electronic device,

this work focused on the hardware layer of the system. Implementing a cyber-control system inside

the hardware layer can significantly reduce the possibility of an attacker patching malicious

controller firmware into a photovoltaic grid-connected inverter, thus mitigating the likelihood that

the inverter becomes inactive a cyber-attack scenario. With this mitigation technique, if a cyber-

attack is successful and an attacker gains control of the network, a cyber-defense technique is in

place to mitigate the impact of the cyber-attack.

This additional protection layer was developed based on an innovative concept known as

Digital Twin (DT). A DT, in this case, replicates an Active-Neutral Point Clamped (ANPC)

inverter and was designed using a hardware language known as VHDL (Very High-Speed

Integrated Circuit Hardware Description Language) and applied to Field-Programmable-Gate-

Array (FPGA). The DT is embedded within the FPGA and contained in a controller board, the

UCB (Unified Controller Board), developed by the University of Arkansas electrical engineering

team. This UCB also contains two Digital Signal Processors (DSPs) responsible for generating

associated signals to control an authentic physical inverter. These DSP signals are received and

processed by the FPGA that implements the DT of an ANPC; in other words, it simulates in real-

time the expected output of an actual ANPC inverter using the signals from the DSP.

When a new firmware is ready to be patched, the DT provides output signals simulating

behavior that a real ANPC inverter would generate with the new firmware. The new firmware is

tested to check if it meets all the operational requirements established using a Design-For-Trust

technique (DFTr). If the new firmware fails in at least one of the DFT tests, it is considered

malicious and must be rejected.

This work is divided into sections, such as Background, which explains the pieces that

were used and the strategy behind this work; Process and Procedure, which explains the

methodology that was adopted to prove the reliability and effectiveness of this work; Results and

Discussion, where the simulations and results are described and explained; followed by

Conclusion and Future work section, which concludes this work and adds possible future projects

to continue this work further.

©2023 by Paulo Vitor do Amaral Custodio

All Rights Reserved

ACKNOWLEDGEMENTS

First, I would like to thank God for giving me good health, courage, wisdom, and

perseverance to follow my dreams and to be able to pursue my master’s degree. Second, I want to

thank my family for their support and guidance and for always believing in myself and pushing

me forward. I would also like to thank my wife, Ana Paula Garcia, who always stood by my side

and gave me all the support I needed. I am also very grateful for the opportunity to work with Dr.

H. Alan Mantooth, Dr. Chris Farnell, and Dr. Le-Vasicek. Without them, this project would not

exist, and the knowledge and the experiences they provided to me during this time we worked

together are unforgettable and priceless. Lastly, I would like to especially thank Brady McBride

and Justin Jackson for all their support and knowledge during the creation of this work, their help

and partnership made my master’s degree journey much lighter and exciting.

TABLE OF CONTENTS

CHAPTER 1 ... 1

INTRODUCTION .. 1

CHAPTER 2 ... 3

BACKGROUND .. 3

2.1 CYBER-ATTACKS ... 3

2.2 PHOTOVOLTAIC SYSTEMS .. 6

2.3 ANPC INVERTER ... 7

2.4 MODULATION... 10

2.4.1 Modulation: 3-level ANPC Inverter .. 12

2.5 CONTROLLER BOARD AND ARCHITECTURE ... 17

2.5.1 Field-Programmable-Gate-Array (FPGA) ... 19

2.5.2 Digital Signal Processor (DSP) .. 22

2.5.3 Serial Peripheral Interface Flash Memory (SPI Flash) .. 24

2.5.3.1 Flash Memory ... 24

2.5.3.2 SPI Protocol .. 24

2.6 DIGITAL TWIN .. 28

2.7 DESIGN-FOR-TRUST ... 32

2.7.1 Short-Circuit .. 33

2.7.2 Deadtime .. 34

2.7.3 Fundamental Frequency ... 35

2.7.4 Fast Frequency ... 36

2.7.5 Watchdog (Timer) .. 36

CHAPTER 3 ... 37

METHODOLOGY ... 37

3.1 PROCESSES ... 38

3.1.1 EXTERNAL PROCESSES .. 38

3.1.2 INTERNAL PROCESSES ... 48

CHAPTER 4 ... 60

RESULTS AND DISCUSSION ... 60

4.1 STANDARD FIRMWARE (NON-MALICIOUS) ... 60

4.2 SHORT-CIRCUIT CORRUPTED FIRMWARE (MALICIOUS) .. 63

4.3 FIRMWARE WITH MISSING DEADTIME (MALICIOUS) ... 65

4.4 FIRMWARE WITH A FUNDAMENTAL FREQUENCY DIFFERENT THAN 60HZ (MALICIOUS)........ 67

4.5 FAST FREQUENCY NOT MATCHING 42 KHZ FIRMWARE (MALICIOUS) 69

4.6 STALL STATE FIRMWARE (MALICIOUS) .. 72

4.7 COST ANALYSIS ... 74

CHAPTER 5 ... 77

CONCLUSIONS AND FUTURE WORK ... 77

REFERENCES ... 79

APPENDICES .. 84

APPENDIX A: VHDL CODE .. 84

A-1: Top file ... 84

A-2: Firmware Validation ... 142

A-3: Short-circuit .. 211

A-4: Deadtime ... 223

A-5: Fast Frequency .. 235

A-6: Fundamental Frequency ... 246

A-7: Watchdog .. 258

A-8: Emulation (Digital Twin) ... 266

LIST OF FIGURES

Fig. 1 Cyber-physical layer representation [2]. .. 5

Fig. 2. Solar Power Plant [10] ... 6

Fig. 3. Typical representation of a 3-level ANPC inverter hardware ... 7

Fig. 4. Inverters: (a) NPC; (b) ANPC ... 8

Fig. 5. Three-level ANPC inverter topology .. 9

Fig. 6. Pulse Width Modulation [16] .. 11

Fig. 7. SPWM generation principle .. 11

Fig. 8. Ideal PWM inverter output voltage [17] .. 12

Fig. 9. Gate signals for modulation type II [12] ... 13

Fig. 10. Phase leg of a three-level ANPC inverter topology [2] ... 14

Fig. 11. Switching states: (a) P state, (b) O+ state, (c) O- state, (d) N state 15

Fig. 12. Inverter voltage output waveforms [12] .. 16

Fig. 13. Filtered Inverter Voltage Output ... 16

Fig. 14. Block diagram of UCB architecture showing significant components [2] 18

Fig. 15. UCB with auxiliary daughter boards installed [2] ... 19

Fig. 16. Internal architecture of a typical FPGA [18] ... 21

Fig. 17. DSP Block diagram ... 23

Fig. 18. SPI Connection [21] .. 26

Fig. 19. MT25Q128ABA [23] .. 27

Fig. 20. SPI Flash reading procedure [23] .. 28

Fig. 21. Hardware Architecture (DSP1 as active) ... 31

Fig. 22. DSP2 as active ... 32

Fig. 23. Short Circuit scenario [2] .. 34

Fig. 24. Dead Time ... 35

Fig. 25. LabVIEW interface .. 37

Fig. 26. CCS IDE .. 39

Fig. 27. Example of a Hex File (firmware) ... 41

Fig. 28. USB cable connection ... 42

Fig. 29. LabVIEW project .. 43

Fig. 30. Loading Firmware ... 44

Fig. 31. Hot-Patch Ready .. 45

Fig. 32. Generate Digital Twin output. ... 46

Fig. 33. Possible errors.. 47

Fig. 34. Backup FW: Drop-down menu.. 48

Fig. 35. Asynchronous Hot-Patch [4] ... 56

Fig. 36. Synchronous Hot-Patch [4] ... 56

Fig. 37. DSP Standard Firmware .. 61

Fig. 38. Three-Level ANPC Inverter Digital Twin... 63

Fig. 39. Channel 0 and 3 on simultaneously ... 64

Fig. 40. Short-Circuit scenario detected. .. 65

Fig. 41. DSP firmware without deadtime ... 66

Fig. 42. Missing deadtime detected. ... 67

Fig. 43. DSP firmware with a fundamental frequency of 30Hz ... 68

Fig. 44. Fundamental Frequency different than 60 Hz ... 69

Fig. 45. DSP firmware with a fast frequency of 42 kHz... 71

Fig. 46. Fast Frequency different than 42 kHz ... 72

Fig. 47. Stall Firmware ... 73

Fig. 48. Timer Error .. 73

Fig. 49. MachXO2 Price [32] ... 74

Fig. 50. DSP controlCard Price [32] ... 75

Fig. 51. FPGA Intel Altera [23] .. 75

Fig. 52. FPGA Intel Altera [32] .. 76

LIST OF TABLES

Table 1. Switch states modulation type II [12] ... 14

Table 2. Correlation SPI - MT25Q128ABA ... 27

Table 3. Correlation between DSP and FPGA GPIOs .. 40

Table 4. Firmware Register Map .. 49

Table 5. Backup Firmware Register Map ... 50

Table 6. Digital Twin ANPC Output .. 58

Table 7. Digital Twin Registers .. 59

Table 8. Transistor/Channel relation... 62

Table 9. Fast transistors and channels relationship ... 70

LIST OF ABBREVIATIONS

AC Alternative Current

CFM Configuration Flash Memory

CLBs Configurable Logic Blocks

DFTr Design-For-Trust

DNS Domain Name System

DC Direct Current

DER Distributed Energy Resource

DoS Denial-of-Service

DSP Digital Signal Processor

DT Digital Twin

EBR Embedded Block RAM

FFs Flip-Flops

FPGA Field-Programmable-Gate-Array

GUI Graphic User Interface

IEA International Energy Agency

IoT Internet-of-Things

I²C Inter-Integrated Circuit

JTAG Joint Test Action Group

LUT Look-up table

MitM Man-in-the-Middle

MUX Multiplexer

NERC North American Electric Reliability Corporation

NVM Non-volatile Memory

NPC Neutral Point Clamped

PFUs Programmable Function Units

PLL Phase Lock Loop

PV Photovoltaic

PWM Pulse Width Modulation

RAM Random Access Memory

SRAM Static random-access memory

SPWM Sinusoidal Pulse Width Modulation

SPI Serial Peripheral Interface

UART Universal Asynchronous Receiver and Transmitter

UCB Unified Controller Board

UI User Interface

VHDL Very High-Speed Integrated Circuit Hardware Description Language

1

CHAPTER 1

INTRODUCTION

Advances in technology have led to significant improvements in computing power while

reducing overall device size and increasing availability and speed of communication. These

developments have led to a dramatic increase in internet-connected devices, including IoTs. While

IoTs offer many benefits, such as increased situational awareness, they also create new

vulnerabilities for cyber-attacks to exploit.

In 2015, Ukraine experienced a significant power outage when a cyber-attack resulted in

the disconnection of twenty-three 35kV and seven 110kV substations for three hours. The attack

was initiated using a phishing technique and resulted in power loss for 225,000 customers.

Similarly, in 2016, part of the capital city of Ukraine, Kyiv, was left without electricity for over an

hour due to a cyber-attack [1].

In response to these emerging threats, in 2017, the US president signed a bill to increase

the cybersecurity of federal networks and critical infrastructure. This order highlighted the risks of

"electricity disruption" caused by cyber-attacks. It is essential to address these risks and intensify

efforts to improve cybersecurity and protect against cyber-attacks capable of causing significant

disruption to critical infrastructure [2].

In addition, according to the International Energy Agency (IEA), the potential to produce

energy via renewable technologies, such as wind and solar power, is expected to increase around

60% of the renewable electricity capacity by 2026, making renewables the primary source

responsible for almost 95% of this increase, with more than half coming from solar photovoltaic

(PV) by itself, consequently becoming “the powerhouse of growth in renewable electricity” [3].

2

Therefore, this work applied the modern idea of utilizing Digital Twin to lessen the

vulnerabilities of internet-connected devices in light of the growing need for renewable energy and

the rising application of internet-connected devices. As [4] presented a cyber protection system for

grid-connected devices using embedded systems, this work proposed an improvement to the

hardware layer of the cyber-physical devices - creating a Digital Twin of an ANPC inverter within

a custom controller, which was the same controller used in [4].

The controller contains a Field Programmable Gate-Array (FPGA), which emulates a 3-

level ANPC inverter, instead of a 2-level inverter, as was cited in [4]. Additionally, it has two

Digital Signal Processors (DSPs): one is used to control an actual inverter – called “Active DSP”;

while the other is used to create a Digital Twin and authenticate a new firmware before patching

it – called “Stand By DSP.” In this case, the authentication method is called Design-For-Trust

(DFTr). The purpose of utilizing this technique is to prevent malicious firmware from being

installed or updated inside grid-connected inverters used within solar distributed energy resources

(DERs). Such malicious firmware can potentially carry out a cyber-physical attack on the DERs,

which can have serious consequences, such as shutting the grid down. DFTr ensures that the

firmware installed on these inverters is trustworthy and free of malicious code, thereby reducing

the risk of cyber-physical attacks.

3

CHAPTER 2

BACKGROUND

2.1 Cyber-Attacks

Cyberattacks usually concentrate on revealing the weaknesses of the communications

layer. Cyber attackers connect to the network using a variety of techniques, including phishing,

Man-in-the-Middle (MitM) attacks, Denial of Service (DoS), SQL injection, Domain Name

System (DNS) tunneling, and more, to obtain access to the communication layer. Attackers that

take over the communications section can send the controller malicious commands or software,

which could damage the power electronic device [4]. Several cybersecurity techniques are specific

to the grid for determining the primary forms of attack vectors and performing risk evaluations.

Since the communications layer is the first point of interaction with the system, most cybersecurity

techniques concentrate on protecting it. However, new system vulnerabilities are continually being

found, raising serious concerns about the grid's dependability [5].

Grid vulnerabilities are a serious threat because they allow cyberattacks to take down the

power grid in an entire nation or city, as was the case with Ukraine strikes in 2015 and 2016 [6].

Recently, a ransomware attack shut down pipeline operations on the Colonial Pipeline in the

southeast of the United States [7]. Ransomware programs have caused several cyberattacks that

shut down physical activities in 2020, as discussed in [7], highlighting the significant need for

cybersecurity. Cybersecurity must now be incorporated into the design of power electronics

control systems to decrease the electric grid's vulnerability to cyberattacks that target the

communication network [4]. If an attacker successfully takes control of the communications layer,

they can manipulate the controller, hardware layer, and other layers. Fig. 1 below displays a

graphical depiction of these layers.

4

For example, when malicious firmware is uploaded to the controller, it might force the

grid-connected device to shut down or start operating with suboptimal settings. This attack might

not shut down the entire grid but a portion of it, similar to what happened during the attacks

targeting Ukraine in 2015 and 2016. This work presents a technique for further protecting grid-

connected devices that use the Supervisory, Control, and Hardware layers.

This project was designed to address a scenario where an attacker had already taken

control of the network. The objective was to enhance the security of the power electronics

controller in order to safeguard the grid operation. In case of an attack, a compromised controller

would issue a command to shut down the system. The suggested method does not allow

unauthorized firmware updates that could compromise the controller board. Moreover, a validated

backup firmware replaces the compromised firmware without disrupting the ongoing system

control. This technique ensures that the system will not crash during an attack, enhancing its

resilience and security.

5

Fig. 1 Cyber-physical layer representation [2].

6

2.2 Photovoltaic Systems

The conversion process of light (photons) into electricity (voltage) is known as the

photovoltaic effect. This effect gives the field of photovoltaics (often abbreviated as PV) its name.

The significance of this effect was first demonstrated in 1954 by researchers at Bell Laboratories,

who built a silicon solar cell capable of generating electric current upon exposure to light. Since

then, the development of photovoltaic systems has progressed significantly. Due to their increasing

economic viability, they are now widely installed and used on a large scale to help power electric

grids [8].

In transmission and distribution networks, almost all power is provided as alternating

current (AC), while the photovoltaic cells produce Direct Current (DC), the same type of current

provided by batteries. To connect solar-power systems to the grid, inverters, and other components,

shown in Fig. 2, necessary to connect a solar power plant to the grid, are utilized to convert DC to

AC power [9].

Fig. 2. Solar Power Plant [10]

7

2.3 ANPC Inverter

Neutral-point-clamped (NPC), capacitor-clamped, and cascaded H-bridge inverters are

just a few examples of inverters commonly used in PV systems [11]. These power converters,

known as inverters, take a DC link supply as input. Using Pulse Width Modulation (PWM) signals,

it controls its output to generate a three-phase sinusoidal AC with each phase offset by 120 degrees

from the other. The whole system is depicted in Fig. 3 as having four sections:

• DC input voltage supply: Representing PV arrays from Fig. 2.

• An inverter: Considering a 3-level ANPC inverter in this case.

• A three-phase filter.

• Three-phase load.

Fig. 3. Typical representation of a 3-level ANPC inverter hardware

The NPC inverter design can handle higher voltage levels using semiconductor

components with lower voltage ratings while generating fewer harmonics in its output, and it is

appealing for use in high-power applications. The semiconductor devices used in this inverter

8

architecture have a rating of half the input DC bus voltage. Although, the unbalanced loss

distribution across its semiconductor components is a drawback of the NPC inverter [12] [11].

Conversely, this drawback is resolved by the ANPC inverter design. Due to the two

redundant neutral current pathways in this architecture, semiconductor device losses may be

balanced regardless of the load power factor [13], [14]. Additionally, it needs low voltage-rated

semiconductor components for high voltage applications, just like the three-level neutral-point

clamped inverter structure. As a result, it is a highly appealing option for applications requiring

high-power energy conversion [12] [11].

The NPC design (Fig. 4a) involves twelve switches (four for each phase) and six clamping

diodes (two for each phase), while the ANPC design uses 18 switches, with six switches for each

phase, as Fig. 5 illustrates. With these six transistors, it became possible to manipulate more

switches involved in the design, increasing the number of possible modulation strategies that could

be used to enhance the ANPC performance, as presented in work [12].

(a) (b)

Fig. 4. Inverters: (a) NPC; (b) ANPC

9

Fig. 5. Three-level ANPC inverter topology

This project is centered on implementing a Digital Twin of an ANPC (Active Neutral

Point Clamped) inverter, as this inverter type was incorporated with the controller of a solar farm

during testing. In light of the growing significance of photovoltaic energy in the renewable energy

sector, three-level inverter topologies have gained prominence over two-level inverters, owing to

their distinct advantages, such as lowered switching loss, diminished electromagnetic interference,

and reduced harmonic content in the output current waveform. These benefits are characteristic of

three-level inverter topologies, setting them apart from their two-level counterparts [12].

10

2.4 Modulation

Pulse-width modulation (PWM) is a crucial component of power electronic converters

that was initially proposed to facilitate the production of sinusoidal AC voltage and current by

inverters. Despite being suggested over 60 years ago, in 1964, PWM continues to be widely used

with the rise of advanced power electronic converters and growing requirements for superior

output voltage and current. PWM remains a significant subject of exploration in the realm of power

electronics, captivating the curiosity and enthusiasm of researchers and scholars. The ongoing

interest in PWM reflects its continued relevance and importance in enabling the efficient and

effective use of power electronic converters in a range of applications [15].

The effectiveness and reliability of the inverter can be affected immediately by the

switching frequency of the PWM technique. Increasing the switching frequency can lead to a lower

distortion rate in the inverter's AC output current, as well as a decrease in the size and capacity of

the filter inductor and capacitor. However, increasing the switching frequency also results in higher

switching losses and greater performance demands on the switching device [15].

In order to maintain the output voltage of the single-phase inverter at a specific level, it

is necessary to apply a control signal that will activate the inverter switches, and a PWM is

commonly used for this purpose (Fig. 6). PWM signals have two main variables:

• Duty-Cycle: Also known as “On time,” it is the length for which the switch is in

operation (On).

• Switching period: sum of the on-time and the off-time - duration time.

11

Fig. 6. Pulse Width Modulation [16]

The PWM generation is frequently based on comparing a low-frequency sine wave signal

to a high-frequency carrier signal, which is usually a triangular method known as SPWM

(Sinusoidal Pulse-Width Modulation). The fundamental concept behind natural sampling SPWM

involves the comparison of a sinusoidal modulating voltage with a high-frequency triangular

carrier wave. This comparison generates a rectangular pulse sequence whose width follows the

sinusoidal law, as represented by Fig. 7 It is then power amplified and used to drive the inverter,

ultimately producing a sinusoidal voltage or current output. [15].

Fig. 7. SPWM generation principle

12

The voltage output of an unfiltered single-phase inverter is half of the DC input voltage

during the on-time. However, the filtered output voltage is limited to a certain percentage of the

DC input voltage. As the on-time approaches the maximum limit of 100%, the filtered output

voltage increases proportionally. When the on-time is 100%, the filtered output voltage equals

50% of the DC input voltage, equivalent to half of the DC input voltage. The same line of principle

is applied to the negative side, generating an output voltage as a sinusoidal waveform, which

symbolizes an AC output, by raising and lowering the on-time, as Fig. 8 portrayed.

Fig. 8. Ideal PWM inverter output voltage [17]

2.4.1 Modulation: 3-level ANPC Inverter

A three-level ANPC inverter possesses eighteen transistors, allowing several strategies to

improve the inverter's performance using different transistor types or modulation, as proposed in

[12]. As this work was put into practice, an authentic ANPC inverter provided by SMA was used.

As another group chose the modulation in the same project, modulation type two was selected

from [12], where the external switching devices (Q2 and Q3) commutate at the carrier frequency.

13

In contrast, the inner transistors commutate at the US's fundamental line frequency - 60 Hz – as

presented in Fig. 9.

Fig. 9. Gate signals for modulation type II [12]

In order to simplify the explanation of how the ANPC inverter works, Fig. 10 illustrates

one phase leg of the inverter. Each transistor can be considered a switch that can be turned on and

off, and depending on the state of each switch, the output might change. Considering non-

malicious states only, Table 1 represents each transistor's possible output and states, where Vdc is

the DC input from the system (Fig. 3), while Fig. 11 illustrates the current path on each of these

states.

14

Fig. 10. Phase leg of a three-level ANPC inverter topology [2]

Table 1. Switch states modulation type II [12]

State Output Q1 Q2 Q3 Q4 Q5 Q6

P 0.5Vdc 1 1 0 0 0 1

O+ 0 1 0 1 0 0 1

O- 0 0 1 0 1 1 0

N -0.5Vdc 0 0 1 1 1 0

15

(a)

(b)

(c)

(d)

Fig. 11. Switching states: (a) P state, (b) O+ state, (c) O- state, (d) N state

During the P state, transistors Q1 and Q2 are turned on, allowing the positive half of the

DC input voltage to reach the output, generating
𝑉𝑑𝑐

2
 Volts on the output Fig. 11(a). Meanwhile,

the O+ state, a zero state during the positive cycle, involves turning the transistors Q6 and Q3 On,

allowing the zero voltage to reach the output Fig. 11(b). In the next state O-, represented by Fig.

11(c), the transistors Q2 and Q5 are on, allowing the zero voltage to reach the output. Lastly, the

N state, illustrated in Fig. 11(d), affects the output when transistors Q3 and Q4 are turned on,

16

creating a path for the negative half of the DC input to influence the output, generating
−𝑉𝑑𝑐

2
 Volts.

The inverter's output voltage is shown in Fig. 12, where the on-time fluctuates. This voltage output

goes through a filter and gives it a sinusoidal form, as presented in Fig. 13.

This sinusoidal output is produced by fluctuating on time with the constant filter settings.

The output voltage increases as the on-time increases and lowers as the on-time decreases. Switch

Q6 is set ON in the "P" state to ensure that Q3 and Q4 share the same amount of voltage, while

switch Q5 is switched ON in the "N" state to ensure that Q1 and Q2 share the same amount of

voltage [13]. Table 1 shows that Q1 and Q6 are linked because they share the same position for

each state, and the same applies to Q4 and Q5.

Fig. 12. Inverter voltage output waveforms [12]

Fig. 13. Filtered Inverter Voltage Output

17

2.5 Controller board and architecture

The work described in [4] used a controller called UCB (Unified Controller Board), which

contains two DSPs, one FPGA, one Xport gate, four expansion headers, a JTAG interface, IDC

expansions, and ADC signal conditioners, as illustrated in Fig. 15. As this work is a continuation

of the work developed in [4], so the same controller board was used.

The highlighted components displayed in Fig. 15 played a crucial role in the design of

this project. The expansion headers were utilized primarily to establish a connection between the

controller and the SMA inverter while providing a pathway to connect other peripheral

components to the controller, which will be elaborated on in further detail in this work. The DSPs

and FPGA were extensively integrated into the project since it was primarily developed in VHDL

and embedded within the FPGA. Communication between these components relied on the Modbus

RTU protocol, designed by the University of Arkansas and implemented using VHDL.

Additionally, the Serial Communication Interface (SCI) was heavily utilized to facilitate

communication between the FPGA and a computer. A picture of the physical board is presented

in Fig. 15.

Although not depicted in Fig. 14, the external SPI Flash was another critical component.

As the development progressed, the FPGA firmware grew to a point where the internal Flash

memory within the FPGA was insufficient to store the FPGA firmware and the DSP firmware,

which was initially stored in the same Flash memory. To overcome this issue, an external board

with an SPI Flash chip was added as a solution, so the DSP firmware could be stored apart from

the FPGA firmware. Micron's Micron Serial NOR Flash Memory was used for this project.

18

Fig. 14. Block diagram of UCB architecture showing significant components [2]

19

Fig. 15. UCB with auxiliary daughter boards installed [2]

2.5.1 Field-Programmable-Gate-Array (FPGA)

An array of configurable logic gates makes up a Field-Programmable Gate Array (FPGA),

which may be programmed internally using either a special Joint Test Action Group (JTAG) or

another type of serial/parallel non-volatile memory. Static random-access memory (SRAM), a

volatile memory type where, once the board is shut down, the data stored in an FPGA's memory

20

is erased, is widely used in the FPGA architecture, and an external non-volatile memory

(EEPROM) is connected to the FPGA in order to configure the data.

The FPGA Architecture allows for the implementation of any design of digital hardware

circuit, and it is based on three distinguished elements:

• Configurable Logic Blocks (CLBs): The CLBs are the blue boxes represented in

Fig. 16. Each of these blocks consists of a large number of look-up tables (LUTs),

multiplexers (MUXs), and Flip-Flops (FFs), as they can be used to implement

logic functions.

• Input/Output Blocks (IOBs): Are external connection resources near the FPGA's

edge. These programmable blocks carry signals "to" or "from" an FPGA device.

IOBs are depicted in Fig. 16 as rectangular boxes bounded by the FPGA.

• Switch Matrix: A configuration of linking wires inside an FPGA that provides

low-impedance and low-delay dedicated pathways for the CLBs.

The Lattice MachX02-7000HC FPGA device used in this project can be programmed

using the IDE provided by Lattice named “Lattice Diamond.” This FPGA includes an embedded

clock system providing a frequency not higher than 400MHz, including a Phase Lock Loop (PLL)

that provides alternative frequency domains for different designs. It also includes Configuration

Flash Memory, or CFM, where the developed firmware is stored, Embedded Block RAM (EBR),

a component that can be used to store parameters, was used to store some variable’s values, I/O

banks, Programmable Function Units (PFUs) that contains 6864 Look-Up-Tables (LUTs) are used

in the design and have a voltage core of 2.5-3.3V.

21

Fig. 16. Internal architecture of a typical FPGA [18]

For external communication, the FPGA can communicate through Inter-Integrated

Circuit (I²C), Serial Peripheral Interface (SPI), and Universal Asynchronous Receiver and

Transmitter (UART) protocols. In this design, the SPI communicated between the FPGA and an

external Flash memory to increment the controller’s memory capacity. At the same time, the

UART was crucial to connect the board with the User Interface (UI) during development and

testing. More information about the MachX02 can be found in [19].

22

2.5.2 Digital Signal Processor (DSP)

It is common to employ DSPs in regulating power inverters that transform DC power

derived from solar panels or batteries into AC power suitable for utilization in electrical systems.

DSPs can be used to execute complicated control algorithms that govern inverter voltage,

frequency, and power production and monitor and fix problems. For this project, DSPs were

utilized to generate the PWM signals.

PWM is a crucial feature of DSPs in inverter management. PWM is a method for

controlling an inverter's output voltage by changing the width of its output pulses, in this case, to

control the ANPC inverter output. The average voltage can be changed over time by changing the

pulse width, providing precise output voltage control. The PWM impulses can be generated in

real-time using DSP, allowing for fast and precise changes to working circumstances.

The PWM was generated based on the previously explained method of natural sampling

SPWM, which compares a triangle carrier wave, and a sinusoidal modulating voltage with a

fundamental frequency, ensuring the carrier has a much higher frequency than the fundamental.

Then, a rectangular pulse sequence that varies its width is produced, and the pulse sequence drives

the inverter to provide a sinusoidal voltage or current output, as presented in Fig. 7.

The two DSP cards utilized within the controller, model Delfino F28335, manufactured

by Texas Instruments, use Code Composer Studio (CCS) as an interface to communicate and

control the devices. This DSP was chosen due to its capabilities. As a C2000 real-time

microcontroller, it was designed to increase closed-loop performance and was specifically

manufactured for use in real-time control applications, such as solar inverters [20]. Fig. 17

represents the F28335 schematic.

23

Fig. 17. DSP Block diagram

24

2.5.3 Serial Peripheral Interface Flash Memory (SPI Flash)

2.5.3.1 Flash Memory

One of the main differences between a volatile memory, like Random Access Memory

(RAM), and a non-volatile memory (NVM) is that in a volatile memory, the data stored in it is lost

when the power is switched off. However, in a non-volatile memory such as Flash Memory, this

limitation does not occur. The Flash memory can retain the data through multiple power cycles,

which means the program stored in the Flash is not lost even when switched off [21].

The Flash memory was since, during the firmware loading process, the FPGA needs to

access the DSP firmware when the user requests. In addition, as it also needs to keep a genuinely

known firmware as a backup, the controller must not lose the DSP firmware in case the system is

turned off.

The memory component used as a solution to the lack of internal memory in the FPGA

was the MT25QL128ABA manufactured by Micron. This chip was selected due to its memory

size, 128Mb, its voltage application – 2.7 to 3.6V – and its versatility to read and program it with

ease.

2.5.3.2 SPI Protocol

The communication within the Flash Memory is made through a protocol named Serial

Peripheral Interface, or SPI. It is a widely used synchronous serial communication protocol

developed by Motorola in the mid-1980s to facilitate data transfer between various electronic

components [22]. This protocol uses a four-wire interface consisting of a clock line, a master-out-

slave-in (MOSI) line, a master-in-slave-out (MISO) line, and a slave select (SS) line, as depicted

in Fig. 18.

25

 SPI utilizes a master-slave architecture, meaning it has one device (the master) that

controls the communication and one or more devices (the slaves) that respond to the master's

commands. This structure provides a straightforward and efficient method of communication

between devices. It allows for full-duplex communication, meaning the master and slave devices

can transmit and receive data simultaneously [22].

The SPI protocol employs two lines, one for transmitting data and the other for

synchronization via clock pulses. Whenever the receiver detects a clock edge, it reads the bit from

the data line. The entity that generates the clock signal is called the "master," while the other party

is known as the "slave." Typically, there is only one master, which in this case was the FPGA, but

there may be one or more slaves. To send data from the master to a slave, the master sends bits

through the MOSI line, and the MISO is used by the slave to return the response. When multiple

slaves are present, the SS line chooses the intended one and signals the slave to prepare for

receiving or sending data. The SS line is usually held high, severs the slave's connection to the SPI

bus [21].

For example, in Fig. 18, the master sends a binary command “01010011”, which

corresponds to “53” in hexadecimal format. After a while, the slave replies to the master with a

binary message "01000110", which correlates to "46" in hexadecimal. It is important to note that

the SS is low during the entire communication process between the master and slave because that

is the method the master uses to select the slave with whom it will communicate.

SPI can achieve high-speed data transfer rates of up to 400 Mbps, making it an ideal

choice for applications that require fast and reliable communication between devices, such as

sensors, displays, and memory chips. Additionally, SPI is commonly used in embedded systems

and microcontroller-based projects because of its simplicity and low hardware requirements [22].

26

Fig. 18. SPI Connection [21]

Fig. 19 depicts the MT25Q128ABA pinout. The nomenclature provided earlier in the SPI

protocol does not appear in this picture. However, the manufacturer provides the correlation in the

component's datasheet, where the S# is the slave-select, also known as Chip Select, the C pin is

the clock input, DQ0 is the input MOSI, DQ1 is the output MISO, Vcc is the power supply, and

Vss is the ground [23]. Table 2 presents the correlation between the SPI protocol and the SPI Flash

chip used in this work. The W# and DQ3/HOLD were not used in this work; they are extra

protection pulled high to disable them.

27

Fig. 19. MT25Q128ABA [23]

Table 2. Correlation SPI - MT25Q128ABA

SPI MT25Q128ABA

MOSI DQ0

MISO DQ1

SS S#

SCLK C

An example of when the FPGA needs to read data from the SPI Flash, it must send the

read command – “03” in hexadecimal – followed by the register address where the data is stored.

As presented in Fig. 20, the command takes eight clock cycles, 0 to 7, since “03” in hex would be

“0000 0011” in binary, and each bit takes one clock to be read. After sending the desired register,

the slave, which is the flash memory itself, replies to the master with the data that was stored at

that address. LSB and MSB presented in the pictures stand for Least Significant Bit and Most

Significant Bit, respectively.

28

Fig. 20. SPI Flash reading procedure [23]

A VHDL-based method was developed to extract data from the MT25Q128ABA,

essential to store the DSP firmware externally from the FPGA. The reason for this was that the

MachXO2 device had limited resources, and it was no longer feasible to store the firmware within

the FPGA memory. As the project progressed, the FPGA firmware size grew to a point where the

internal Flash memory was inadequate to contain both the FPGA and DSP firmware.

2.6 Digital Twin

The Digital Twin (DT) was initially introduced by Professor Grieves at the University of

Michigan in 2003 while teaching a product life cycle management course. Grieves defined DT as

a virtual information structure representing a manufactured product [5]. He proposed that a DT

model should have three dimensions: a physical entity, a virtual entity, and an interconnection

between them [6].

In their research on the prediction of complex product/system behaviors through Digital

Twins, Grieves highlighted the importance of using simulation predictions to minimize the

complexity of such products/systems. The ultimate goal is to prevent unforeseen and unfavorable

outcomes that could result in disastrous consequences. For instance, when launching a rocket, a

virtual space is created to simulate the Digital Twin of an actual rocket. The Digital Twin allows

29

for quick replacements and repairs in the event of failure, reducing the risk of catastrophic

problems [24].

This technology is considered the leading force in changing the norms of aviation

manufacturing in the years to come [25]. This technology is causing significant disruption in

various industries by utilizing data feeds to map physical entities. The German Information

Technology and New Media Association BITKOM predicts the manufacturing market will see

immense value in digital twins, with estimates surpassing 78 billion euros by 2025. In 2016 and

2017, Gartner – a 5+ billion-dollar company that provides insights and guidance to other

businesses - recognized DT as one of the top ten strategic technology development trends. In

November 2017, the largest weapons manufacturer globally, Lockheed Martin, identified DT as

one of the top six technologies in the future defense and aerospace industry [26].

Furthermore, according to [27], applying DT in automated industries is vital. They refer

to the comprehensive simulations used to create a virtual replica of a physical system. By

embracing digital twins, operators can oversee production, analyze deviations in a controlled

virtual setting, and enhance the safety of process industries.

However, the meaning of DT may vary depending on the context in which it is used. For

instance, aircraft or system orientation, optimal utilization of advanced physical models, sensors,

historical operating data, integration of various multi-disciplinary and multi-scale probabilistic

simulation processes and mapping the physical aircraft's corresponding state are all encompassed

in NASA's definition of a digital twin.

Meanwhile, in the electrical engineering realm, more specifically in grid-connected IoT

devices, some experts argue that DTs for cyber-secure grid-connected devices are real-time

30

simulations that can be employed to monitor system health and event response, and overall

efficiency during cyberattack scenarios [4].

Based on the concept of monitoring system health, creating an alternative to check system

responses for new patches, and also offering the possibility to check system performance without

putting it into jeopardy, an emulator that replicates a 3-level ANPC inverter behavior (DT) was

designed in VHDL and embedded within the FPGA.

Fig. 21 illustrates the DT implementation for the FPGA subsystem, where the FPGA

contains a hardware emulator that mimics the physical hardware of the grid-connected device,

which in this case is an ANPC inverter, as shown in Fig. 5. The emulator employs the PWM signals

generated by the DSP. Based on its status, the DT determines the corresponding output voltages.

Once the 3-level ANPC output has been determined, the FPGA proceeds to collect 192 output

samples, with a sampling interval of 100µs, and stores them in its internal RAM, as illustrated in

Fig. 21 and Fig. 22. When a user requires access to the output generated by the new firmware in

the standby DSP, the FPGA retrieves the relevant data from its RAM and transmits it to the user

via the SCI interface. The output is then made available on LabVIEW, among other platforms.

The process of creating a DT for a 3-level ANPC inverter involves utilizing a DSP that is

not currently in charge of controlling the inverter. As depicted in Fig. 21, the DSP1 is classified as

the active DSP since it is responsible for routing the PWMs that control the inverter. In contrast,

DSP2 is identified as the standby or non-active DSP since its PWM signals are directed not to the

inverter but to the emulator, which generates the DT and performs firmware validation.

As an illustration, consider a scenario where a user intends to update the device’s

firmware. The new firmware is transmitted to the FPGA via the SCI interface and is stored in the

Flash Memory using the SPI protocol. At this point, the user can load and test the firmware. If the

31

user decides to proceed with testing, the firmware is extracted from the Flash Memory via SPI and

transmitted to the standby DSP, which in this instance is DSP2, using the MODBUS RTU protocol.

While the DSP1 continues to control the grid-connected device, the DSP2 undergoes an online

validation process, which is integrated into the controller board. The validation feature evaluates

a set of potential firmware flaws, ensuring that the firmware meets all pre-established

requirements, as described in the subsequent section.

Additionally, it simulates the behavior of the 3-level ANPC inverter to verify the

functionality of the firmware on the standby DSP. If the new firmware passes all the tests, it

becomes available to take over control of the inverter, facilitating hot-patching and providing the

DT of the new firmware. If the user opts to hot-patch, the signals that regulate the inverter are

switched, with the DSP1 transitioning into the standby DSP role and the DSP2 becoming the active

DSP, as illustrated in Figure 19.

Fig. 21. Hardware Architecture (DSP1 as active)

32

Fig. 22. DSP2 as active

2.7 Design-For-Trust

Considering a scenario where an attacker gained access to the inverter and attempted to

update the DSP with malicious firmware, to harm the grid or the inverter, or to shut the inverter

down, a couple of crucial tests were established and designed in VHDL and embedded in the

FPGA. Thus, the DSP firmware must be trustworthy to be approved and allowed to control the

inverter.

The DFTr technique was designed to prevent the system from entering situations that pose

a potential risk to the ANPC inverter or the power grid. Before a new firmware is activated, tests

are conducted to ensure its reliability. If any of these tests fail, the firmware is considered

inherently harmful, and the system rejects it and prevents it from becoming active. These tests are

processed simultaneously, enhancing the efficiency of the authentication process.

The considered tests were based on critical scenarios that could cause significant damage

33

to the grid or the inverter. One of the considered tests was to detect short-circuit scenarios due to

malicious DSP firmware, which could cause immense damage to the grid and the inverter. Another

test was made to prevent new DSP firmware from lacking deadtime, generating short-circuits for

a short period but very frequently, which could jeopardize the inverter and the grid. Another test

checks if the new firmware is based on the fundamental frequency of 60Hz. The last test is a

watchdog that ensures a new firmware is not blank, which would turn the inverter off without any

visible changes in the inverter and impact the power delivered to the grid.

2.7.1 Short-Circuit

A low-resistance connection between two conductors that power a circuit is commonly

referred to as a short-circuit. When electricity flows through a path with low resistance, it creates

an electrical short circuit, causing an excessive current flow and voltage streaming in the power

supply, leading to potentially dangerous consequences such as circuit overheating, fire, or

explosion [28].

Considering a 3-level ANPC inverter, the scenario that creates a path between the

positive, negative, and neutral that generates a short-circuit, known as a shoot-through, must be

avoided. Considering one phase lag of the ANPC, Fig. 23 illustrates the scenario when Q1 and Q5

are on simultaneously. The short-circuit path is generated between P and O, which could harm the

device. The same idea applies to the scenario where Q4 and Q6 are on simultaneously.

The purpose of the short-circuit tests is to assess the operational switching states of the

new firmware and ensure that a short-circuit condition among the switches never occurs, as

depicted in Fig. 23.

34

Fig. 23. Short Circuit scenario [2]

2.7.2 Deadtime

Actual transistors are not ideal, requiring a small amount of time to switch between the

on and off states. Hence, a deadtime is necessary for modulation controls to prevent a shoot-

through scenario in transistors that cannot be on at the same time. Deadtime refers to the interval

between the first transistor turning off and the second turning on. Fig. 24 illustrates a deadtime

between Q1 and Q4, as it was used in this project since Q1 and Q4 cannot be on simultaneously

because the same PWM sent to Q1 is also forwarded to Q6, while Q4 and Q5 share the same PWM.

Therefore, if Q1 and Q4 are on simultenously, it implies that Q1, Q4, Q5, and Q6 are all on

together. This delay is generated by the control circuit, which is the DSP, and is essential because

switching delays can cause cross-conduction. The gap is then necessary to prevent it [29].

The deadtime test aims to establish a sufficient delay between switching states to prevent

the simultaneous conduction of switches that should not be conducted simultaneously. If this

35

invalid switching configuration were to occur, it could result in a short-circuit for a short period

but very frequently, putting the inverter and the grid in jeopardy.

Fig. 24. Dead Time

2.7.3 Fundamental Frequency

According to the source [30], the electrical systems in the United States currently operate

at a frequency of 60Hz. It is essential to maintain a high level of stability in frequency to ensure a

reliable electric system. Various factors, such as generation loss and demand overload, can cause

frequency variations, adversely affecting the grid. These variations can trigger protection relays

involuntarily and lead to the grid reaching the lowest acceptable frequency, which can severely

impact the system’s stability, as stated in [31].

Furthermore, according to [31], the deployment of under-frequency load-shedding

schemes varies across NERC (North American Electric Reliability Corporation) regions and

subregions, with different frequency set points. In the United States, the highest initial blocks of

load shedding have frequency set points ranging from 59.7 to 59.3 Hz.

36

Under-frequency load shedding is a process that involves disconnecting a significant

number of predetermined customers from the power grid when the frequency drops to pre-set

frequency thresholds.

Therefore, when dealing with grid-connected energy resources, it is essential to maintain

a stable operational frequency to prevent unwanted harmonic distortions in the grid. The DFTr

inside the controller ensures that the DSP firmware of the inverter generates a frequency of 60Hz,

which is necessary for the grid's stability. [2].

2.7.4 Fast Frequency

This test checks if the new firmware has 42kHz as the frequency for the fast transistors

(Q2 and Q3), as this frequency was defined during the progress of this work. Even though new

firmware with different frequency values might not be dangerous to the inverter or grid, it can

reduce the inverter’s performance and change the semiconductors’ response with the possibility of

increasing losses or harmonics. Thus, during the tests on this work, the firmware needed to remain

consistent with the defined characteristics.

2.7.5 Watchdog (Timer)

The final step in validating the DFTr strategy involves verifying that the DSP firmware

does not cause the controller to enter a stall state. In this context, a stall state refers to a situation

where the FPGA is awaiting both rising and falling edges from the Pulse Width Modulation

(PWM) signals but instead receives malicious firmware that lacks any oscillation in the control

signals. During the firmware testing phase, the DSP firmware is subject to a maximum waiting

time, and if the timer reaches this threshold, the new DSP firmware is rejected.

37

CHAPTER 3

METHODOLOGY

During the development of this work, the LabVIEW 2018 software was used as a Graphic

User Interface (GUI) because it allowed the user to interface with the FPGA through Serial

Communication Interface (SCI) to send and verify a new DSP firmware, check the DT signals and

the active DSP (1 or 2), monitor the DSP status, and show the hot-patch status and possible errors,

as presented in Fig. 25.

Fig. 25. LabVIEW interface

The FPGA is the primary reference in the UCB since it can process different tasks

simultaneously. The FPGA regulates signal routing, data flow, security measures, and firmware

patching. To do that, the FPGA was programmed using VHDL language, and some software

components were designed and embedded into the FPGA to create a cyber-secured system. The

38

main components responsible for initializing the procedure and system, performing the DFTr

process, generating the DT, and hot-patching were named Bootloader, Firmware Validation,

Emulation, and Hot-Patching, respectively. Each of these components was considered internal

processes and was described in detail in the next section of this work.

3.1 PROCESSES

This section outlines the steps required for a user to replicate the tests conducted in this

work. The instructions not only covered the process for obtaining the same results as in this work

but also provided insight into the inner workings of the controller. The primary aim was to enhance

the user's comprehension of the interaction between themselves and the controller.

3.1.1 EXTERNAL PROCESSES

The procedures outlined in this section are deemed external, as they pertain to a protocol

that occurs outside of the controller. These procedures involve the user, the IDE, and the controller.

As established in this project, they are crucial for enabling the user to execute tests with the

controller and arrive at their conclusion regarding its trustworthiness and dependability.

3.1.1.1 DSP Firmware Development

The first step in generating a DT and testing the DFTr is to design firmware to control the

DSP PWMs. Using the CCS software, the user can create a DSP firmware using C language, as

presented in Fig. 26. After developing the firmware to generate the PWMs using the GPIOs, as

presented in Table 3, it was necessary to change the project’s properties to generate a “. hex” file

when the project is built. To make the changes in the properties, was requested to follow the

instructions below:

1. Right-click on the desired project.

2. Select “Properties.”

39

3. Select the item “C2000 Hex Utility”.

4. Click on the checkbox “Enable C2000 Hex Utility.”

5. On “Boot Table Options,” mark the “Specify table source as the SCI-A port, 8-bit

mode (--sci8, -sci8)” checkbox.

6. On “Output Format Options,” select “Output Intel hex format (--intel, -i)” as

Output format and check the “Binary output format (for DSKs) (--binary, -b)”

checkbox.

7. Click on “Apply and Close”

8. Right-click on the desired project and select “Clean Project.”

9. Right-click on the desired project and select “Build Project.”

Fig. 26. CCS IDE

40

Table 3. Correlation between DSP and FPGA GPIOs

Phase PWM DSP Output

(GPIO)

FPGA Input

A Q1 & Q6 25 AB6

A Q4 & Q5 12 U10

A Q2 00 AA8

A Q3 01 Y7

B Q1 & Q6 26 Y4

B Q4 & Q5 27 W11

B Q2 02 T8

B Q3 03 V8

C Q1 & Q6 14 T10

C Q4 & Q5 19 V11

C Q2 04 U8

C Q3 05 W9

After completing the procedure previously described, a “. hex” file was generated and

stored in the “Debug” folder. An example of a “. hex” file is depicted in Fig. 27.

41

Fig. 27. Example of a Hex File (firmware)

42

3.1.1.2 Firmware Upload – Firmware to be tested.

Fig. 28. USB cable connection

The first step in uploading firmware was to connect a USB cable to the correct (non-

Lattice/FPGA) port on the UCB. Fig. 28 shows the USB connection made with J14 to load a DSP

firmware. The pictured port, J18, is used to program the FPGA instead. Next, was selected the

correct setting to connect the computer to the controller. Fig. 29 illustrates the LabVIEW interface

with the GUI project designed for this work. On the left, a purple square highlights the

configuration settings for the serial communication between LabVIEW and the UCB. For example,

the user had to select the correct Serial Communication port, COM5, and make sure the “Serial

Type” selected was RTU. The “Unit ID” had to be 1, the “baud rate” was 9600, and the “parity”

field was None,

43

Fig. 29. LabVIEW project

The second step in this procedure was to send the DSP firmware to the controller. With

the LabVIEW project, the user selected the “. hex” file generated in the previous subsection

(3.1.1.1 DSP Firmware Development). The user had to click on the folder button highlighted in

red in Fig. 29 and with the number “1” written in red as well.

Next, after selecting the “. hex” file correctly, it was necessary to erase the Flash memory.

As this type of memory cannot be overwritten, it must first be erased. To achieve this, the user had

to click the “Erase Flash” button, highlighted in black, with the number “2” by its side, in Fig. 29.

The button to perform the third step is displayed in blue in Fig. 29, with the number “3”.

The user sends the “. hex” file to the controller in this step. The FPGA received the .hex file and

stored it in the Flash Memory using the SPI protocol. On the top right of Fig. 29, there is also a

44

blue square with the number “3” on its side that indicates the delivery progress of the firmware to

the controller.

When the transmission was complete, the interface allowed the user to click on “Load

and Verify,” highlighted by a yellow square in the “Controllers” buttons section. Here, the user

sent a command to the FPGA to pull the firmware previously stored into the Flash memory, reset

the DSP to enable it to receive a new firmware, and rerouted the data to the DSP. In this step, the

“DSP Status” lights changed status. The “Ready” light went off, and the “Loading Firmware”

lighted up, as depicted in Fig. 30. The “Loading Firmware” status not only indicates the firmware

was being loaded into the DSP but also that the firmware validation was running as soon as the

loading process ends. In this state, no other controller button affected the controller.

Fig. 30. Loading Firmware

45

If the updated firmware met all the requirements, meaning that it passed the DFTr tests,

the FPGA enabled the Hot-Patch button, granting the user the possibility of swapping the active

DSP and then letting the new firmware control the inverter. When the hot-patch function was

allowed, the “Hot-Patch Status” section turned all lights off except the “Ready,” as presented in

Fig. 31, meaning the hot-patch was waiting for a command. When a user clicks on the “Hot-Patch”

button, the status changes from “Ready” to “Done.”

Fig. 31. Hot-Patch Ready

During the validation process, the Hot-Patch status might have changed. While the

firmware was undergoing tests, the “Busy” light turned on briefly, indicating that the firmware

was under evaluation. Because the process was too fast, when this light turned on was almost

unnoticeable. On the other hand, the “Error” light was effortless to see since it glowed when the

46

DSP firmware was considered malicious; it stayed on until the backup firmware was loaded

entirely into the standby DSP.

After Hot-Patching, to generate the DT of the new firmware, the procedure starting at the

“Load and Verify” step had to be done again so that both DSPs would embed the same firmware.

This way, one DSP controlled the inverter while the other generated the DT. With the DSP

firmware loaded into the standby DSP, the FPGA received its output and replicated the output that

a real ANPC inverter would provide, which had to be similar to what Fig. 12 exhibits.

To check the provided DT output, the user had to select the “Datalogger” tab at the top

left of the LabVIEW project window. Then, the user could choose the Vdc the system used, as

presented in Fig. 32. Next, click “Emu_DL-Start.” This button sent a command to the FPGA,

informing it to start sampling and storing the samples in the internal RAM. Lastly, the user clicked

on “Read_DL,” which commanded the FPGA to transmit the data previously stored in RAM to

LabVIEW.

Fig. 32. Generate Digital Twin output.

The firmware was rejected if the loaded firmware did not meet the requirements defined

by the DFTr. Fig. 33 represents the possible errors displayed in LabVIEW. The FPGA rejected the

47

new firmware by resetting the standby DSP and sending the backup firmware. This procedure

guaranteed that both DSPs could control the inverter if any fault happened to the active DSP.

Fig. 33. Possible errors

3.1.1.3 Firmware Upload – Backup Firmware.

The Backup Firmware is a DSP firmware previously tested and approved by the

controller. In other words, genuine firmware has all the requirements to control the inverter without

entering a potentially detrimental state. This backup firmware was essential because when the

firmware is tested and rejected due to not having all the requirements defined in the DFTr, the

FPGA sends a command to reset the standby DSP where the malicious firmware was loaded. Then,

the standby DSP is loaded with the backup firmware, guaranteeing that the standby DSP has a

known non-malicious firmware loaded that can generate a DT of a 3-level ANPC inverter.

Assuming the LabVIEW configuration was correctly set up by the user using the

specifications described in the previous subsection to send the backup firmware to the FPGA, it

was necessary to select the “.hex” file with the genuine firmware and click on the drop-down menu,

as depicted in Fig. 34, and selected “FW for Backup.” Next, it was required to click the “Erase

Flash” button, which commanded the FPGA to erase the Flash memory section designated to store

48

the backup firmware. The last step was to push the “Send Firmware” button and wait until the

progress was complete.

Fig. 34. Backup FW: Drop-down menu

The difference between sending the firmware to be tested and a backup firmware is that

sending the backup firmware is unnecessary to do the other steps, as cited in the previous

subsection since the backup firmware must be considered adequate to perform them.

3.1.2 INTERNAL PROCESSES

The steps described in this section were considered internal since they relate to a protocol

executed within the controller. The subsequent subsections elaborate on the procedures within the

controller that enabled the patching of new firmware and the creation of a DT for virtually

monitoring the output of a 3-level ANPC inverter by the user.

3.1.2.1 Bootloader

The responsibility of the Bootloader was to retrieve the firmware data from the Flash

memory and transmit it to the DSP. To prepare the DSP for the new firmware, the Bootloader

clears the DSP's existing contents, resets it, and sends the autobaud configuration data.

Subsequently, the Bootloader extracts the firmware data from the allocated registers in Flash

memory, divides it into two 8-bit data sets, and combines them to form a 10-bit packet, including

the beginning and end portions. To ensure the complete firmware file is transmitted to the DSP,

the Bootloader utilizes the total number of firmware registers that are recorded in the first allocated

49

register of the Flash, as indicated in Table 4. After transmitting the firmware file to the DSP, the

Bootloader activates the firmware validation feature to ensure the entire firmware file has been

successfully transmitted.

Table 4. Firmware Register Map

Name

Ram Address

(16-Bit Hex)

Data

(16-Bit Hex)

Description

FW Len 1000 16-bit FW size register

FW Data 1001:2FFF 16-bit Firmware

If the new firmware was valid, the emulator continued to operate, and the Hot-Patch

procedure started. However, if the new firmware was not valid, then the validation identified the

new firmware as malicious. The firmware validation interacted directly with the Bootloader, Hot-

Patch, and Emulation, triggering the “error function” in these components. The emulation stopped

and reset while the FPGA disabled the Hot-Patch and saved the error flag and error type into the

registers in the DP-RAM (Dual Port – Random Access Memory), and informed the user of the

error type. Meanwhile, the Bootloader started the backup procedure by loading the standby DSP

with secure firmware and disabled user commands until the backup firmware was completely

loaded.

The backup process was initiated if the new firmware was rejected during firmware

validation. When in backup mode, the Bootloader retrieves backup firmware data from designated

registers in Flash, which are enabled once the backup procedure has been activated. The Flash

space assigned for the backup firmware data can be found in Table 5. It is worth noting that the

backup Bootloader method is identical to the new firmware's Bootloader.

50

Table 5. Backup Firmware Register Map

Name

Ram Address

(16-Bit Hex)

Data

(16-Bit Hex)

Description

FW Len 3000 16-bit Backup FW size

register

FW Data 3001:4FFF 16-bit Backup Firmware

3.1.2.2 Firmware Validation

The security reference design's firmware validation function focused on particular

firmware instructions that might jeopardize the power electronic inverter or the grid it is connected

to. This feature's architecture made it simple to detect malicious firmware, putting the firmware

under the DFTr specifications.

The firmware validation feature watched the standby DSP’s PWM signals and compared

and checked against the requirements previously specified in the DFTr. To prevent malicious

firmware from taking control of the inverter, the FPGA conducts processes described in this

section by simultaneously comparing all switches in each phase leg's PWM signals using this

function.

The firmware validation process takes up to three seconds, enough time to check the

PWMs, primarily the 60Hz ones. Three seconds was equivalent to 180 cycles of a 60Hz PWM’s

frequency. The period for testing can be increased, if necessary, but for this work, the time chosen

was sufficient to test and mitigate flaws in malicious firmware.

51

Considering that MachX02 can provide different clock frequencies, the clock frequency

chosen for this work was 25MHz (or a period of 40ns). Thus, for all the following tests described

in this work, the base measure of time considered for a single clock cycle was 40 ns.

3.1.2.2.1 Short-Circuit

In this test, the FPGA reads the PWMs received from the standby DSP and searches for

any scenario where a short-circuit occurs between the slower frequency transistors, which is

considered the fundamental frequency (60Hz). This test ensures that Q1, Q4, Q5, and Q6 are never

active simultaneously.

To achieve that, the FPGA reads the pins routed to the DSP’s GPIOs from Table 3. If a

firmware provides any scenario where these transistors are switched on together during the test

period, the FPGA automatically invalidates this firmware. The invalidation of firmware consists

of raising a malicious firmware flag, stopping all other processes, and starting the backup firmware

loading procedure.

The short-circuit test starts by waiting for a transition on phase A Q1. When a transition

happens, it waits for three more transitions, a period necessary to ensure signal stability. After

reaching signal stability in phase A, the process is repeated for phases B and C. After reaching a

stable state, the FPGA keeps reading all three phases, at the same time, waiting to identify a

scenario where Q1 and Q4 or Q5 and Q6 are on simultaneously in any phase. If this scenario

happens at least once, the firmware is rejected, a malicious firmware flag is raised, and the backup

firmware process is started.

3.1.2.2.2 Deadtime

The deadtime test is very similar to the short-circuit test, starting with waiting for the

switching on Q1. The main difference between these tests is that each phase is a process that runs

52

in parallel. After receiving the first state change in Q1, this process ignores the first three changes,

waiting for signal stability.

After reaching stability, this test compares the identical transistors but waits specifically

for a falling edge – a transition from the high state (“1”) to the low state (“0”) - of each of them,

and, when the falling edge occurs, it starts to count the number of clock cycles between the falling

edge of one transistor and the rising edge of a different transistor that is not allowed to be on

simultaneously. If the number of clock cycles is less than specified, the malicious flag is raised,

the firmware is rejected, and the backup process is started.

For example, when a falling edge of Q1 happens, a counter starts counting the clock

cycles and waiting for Q4 (which is not allowed to be on at the same time as Q) to turn on. When

Q4 is switched on, the counter stops, and the number of clock cycles is checked. If the number of

clock cycles is less than 25, which implies a deadtime of 1µs, then the firmware is considered

malicious; otherwise, the firmware passed this test.

Deadtime = number of clock cycles ∗ clock period

Deadtime = 25 ∗ 40ns = 1µs

3.1.2.2.3 Fundamental Frequency

The Fundamental Frequency test checks if the firmware uses a frequency of 60Hz to

generate the slow PWMs. A frequency of 60Hz implies that Q1, Q4, Q5, and Q6 must have a

period of approximately 1.667ms. Considering the frequency fluctuation, this work allowed a

minimum frequency of 59.5Hz, staying above the minimum set point of 59.3Hz, as in [31]. The

same difference was allowed above 60Hz. In other words, the range accepted for a slow PWM

frequency is between 59.5 and 60.5Hz.

53

This test starts waiting for a transition in Q1, and, similarly to the other tests, it ignores

the first three switches until it becomes stable. After that, it waits for a falling edge to start counting

and continues counting until the next falling edge. When the second falling edge occurs, the

counter stops, and the FPGA checks how many clock cycles were counted within the PWM period.

If this value is greater than 420,000 (the number of clock cycles in a period of 59.5Hz, as

demonstrated in the following equations) or less than 413,000 (the number of clock cycles in a

period of 60.5Hz, as presented in the following equations) the firmware is considered malicious,

and the backup firmware procedure starts.

Frequency =
1

Period

Period_59.5 =
1

59.5
≈ 16.80ms

Period_60.5 =
1

60.5
≈ 16.53ms

Number of Clock CyclesMinimum =
Period

Clock Period
=

16.53ms

40ns
≈ 413.000

Number of Clock CyclesMaximum =
Period

Clock Period
=

16.80ms

40ns
≈ 420.000

3.1.2.2.4 Fast frequency

The fast frequency test is similar to the Fundamental Frequency, but instead of 60Hz, this

test used the period in a 42 kHz frequency. At the beginning of this test, the FPGA waits for a

transition in Q1 and ignores the first three switches. After that, it waits for a falling edge, and then

the FPGA starts to count until the next falling edge. The counter stops as soon as the second falling

edge is read, and the FPGA compares how many clock cycles were counted within the fast PWM

period. If this value is outside the range between 581-609, the firmware is considered malicious,

54

and the backup firmware procedure starts. The range values consider some oscillation in the

PWMs, with a minimum of 41kHz and a maximum of 43kHz.

Period_42k =
1

42000
≈ 23.80µs

Number of Clock Cycles42k =
Period

Clock Period
=

23.80µs

40ns
≈ 595

3.1.2.2.5 Watchdog (Timer)

As mentioned, the watchdog test guarantees that a new DSP firmware patch is not blank

firmware that could stall the inverter. This test starts a counter that begins with all the other tests

and continues counting until the short-circuit test disables it. When the short-circuit test is

complete, it tells the FPGA that the new firmware has PWMs and disables the watchdog.

However, if the firmware is blank, the short-circuit test keeps waiting for a falling edge

that does not exist in blank firmware. When the counter reaches 71,000,000 (43B5FC0 in

hexadecimal), or 2.84 seconds, the watchdog raises the malicious firmware flag invalidating the

new firmware. After that, the FPGA stops all other running processes and loads the backup

firmware.

3.1.2.3 Hot-Patch

The ability to patch a device's firmware without affecting the system's functionality is

known as hot-patching [4]. Assuming the firmware passes the verification, the hot-patching

procedure will commence. Otherwise, the backup firmware process will be activated. The Hot-

Patch uses the FPGA as a "routing fabric" and may swap the control signals for the DSP output in

the order of nanoseconds. The Hot-Patch causes the standby DSP to activate and operate the grid-

connected device while the current active DSP enters standby mode as a backup.

55

On the other hand, if the firmware is malicious, then the standby DSP remains in standby

mode, and the current active DSP stays active throughout the backup process. The standby DSP is

patched with backup firmware saved in the Flash memory to complete this procedure. Redundancy

and failsafe functionality are built into this system because if the active DSP malfunctions, the

standby DSP, equipped with the same firmware, will take over the management of the grid-

connected device. As this project continued [4], the same Hot-patch and Bootloader systems were

used.

To achieve a seamless transition during hot-patching and avoid causing service

disruptions, synchronization between the two DSPs is essential because they work simultaneously

and have access to identical measurement data from the physical hardware, which enables them to

coordinate their actions. Fig. 35 depicts the outcome of a DSP transition without synchronization

following firmware patching and verification [4]. The waveform demonstrates the changeover,

which, in a real-world scenario, might result in loss of power and/or damage to equipment. The

synchronous transition event is depicted in Fig. 36, with the DSPs correctly coordinated and

ensuring no service interruptions or equipment damage occurs[4].

56

Fig. 35. Asynchronous Hot-Patch [4]

Fig. 36. Synchronous Hot-Patch [4]

57

3.1.2.4 Digital Twin

The Digital Twin in this security architecture serves to digitally replicate the 3-Phase 3-

Level ANPC inverter, as mentioned in section 2.2. This inverter produces AC output after

converting the DC input source using its switching mechanism. The DSP controller creates PWM

signals to operate the switches on the inverter, which the emulator processes. The emulator also

replicates an inverter output being managed by these PWM signals. After generating the

corresponding output, the FPGA was programmed to gather 192 samples of these signals and store

them in the DP-RAM, volatile memory in the FPGA, which can be accessed externally using

LabVIEW.

To replicate an ANPC inverter, the FPGA reads the DSP output and applies each signal

to the eighteen virtual transistors designed as switches, which only have two states: on and off.

The virtual replica does not account for external factors influencing an actual transistor, such as

noise or transient time (rise or fall time). In the virtual environment, the eighteen transistors are

considered ideal, with zero delay response to the received signals from the DSP. This information

is translated into switch states, as presented in Table 1.

Combining the digital transistors with the DSP output made it possible to replicate the

behavior of an authentic ANPC inverter, as illustrated in Table 6. The ANPC inverter generates a

percentage of the DC input using a duty cycle. For example, in Fig. 11, when the DSP output sends

a high signal ("1") to transistors Q1 and Q2 simultaneously, the ANPC inverter recreates an output

that is half of the DC input (state P). The same idea is applied to generate the negative half of the

DC input (state N) when the DSP signals are on for transistors Q3 and Q4. This behavior was

designed using VHDL and embedded within the FPGA.

58

From Fig. 32, , a user can fill out the VDC field, and depending on the inserted value, the

DT values might change since it multiplies the VDC with the proportional output, as shown in

Table 6. For example, if a user adds a value of 24 to VDC, the possible outputs will be 12, -12,

and 0.

After translating the DSP state to an ANPC output, the FPGA collects and stores the

samples in the DP-RAM, accessing them using the addresses presented in Table 7. Whenever a

user requests a new sample from the Digital Twin, the FPGA overwrites the data in these registers

with the new samples collected from the DT output and stores the new data in the DP-RAM. The

data consists of real-time output values that can be accessed anytime.

Table 6. Digital Twin ANPC Output

Switch DSP Output State

Q1 1 1 0 0

Q2 1 0 1 0

Q3 0 1 0 1

Q4 0 0 1 1

Q5 0 0 1 1

Q6 1 1 0 0

Digital Twin

ANPC Output

50% 0V 0V -50%

59

Table 7. Digital Twin Registers

Name

Ram Address

(16-Bit Hex)

Data

(16-Bit Hex)

Description

Phase A 200 16-bit Emulation Phase A

Phase B 300 16-bit Emulation Phase B

Phase C 400 16-bit Emulation Phase C

60

CHAPTER 4

RESULTS AND DISCUSSION

This section explains the creation of the DT and the validation process of newly received

firmware by the system. To verify the firmware type and to check if the controller's behavior was

correct, the oscilloscope model Tektronix MSO 4034 was employed to monitor the DSP and

controller output signals.

In addition, this section discusses the DSP and controller's output signals of a known non-

malicious firmware that has all the requirements to pass the DFTr test and would be capable of

controlling a 3-level ANPC inverter. Next, each malicious firmware type that failed to pass each

DFTr test is explained and illustrated.

4.1 Standard Firmware (Non-malicious)

After following the steps described in the previous section, the DSP firmware was

generated and sent to the FPGA. Fig. 37 depicts the DSP signals generated, and each of the

different channels represents the phases in the ANPC inverter. Phase A is represented by channels

0 and 3, where channel 0 controls Q1 and Q6, and channel 3 controls Q4 and Q5. Phase B is

represented by channels 1 and 4, and phase C is represented by channels 2 and 5. Table 1 represents

the correlation between each channel and the relevant transistors associated with them. The ANPC

inverter's fast frequency transistor behavior was not monitored for this test.

The blue text values at the bottom-left of Fig. 37 indicate the deadtime between D0 and

D3, interpreted as Channel 0 and 3, which is 100 µs. It also depicts a deadtime of 60 µs for

Channels 1 and 4 and 80 µs between Channels 2 and 5.

61

Fig. 37. DSP Standard Firmware

62

Table 8. Transistor/Channel relation

Phase A

Q1 & Q6 Channel 0

Q4 & Q5 Channel 3

Phase B

Q1 & Q6 Channel 1

Q4 & Q5 Channel 4

Phase C

Q1 & Q6 Channel 2

Q4 & Q5 Channel 5

Upon conducting the necessary DFTr checks, the FPGA has successfully validated the

authenticity of the DSP firmware. As a result, the FPGA could emulate the ANPC inverter's output

and generate the DT. In Fig. 38, the emulated output provided by the FPGA is presented and

displayed using LabVIEW. Despite the limited resolution of the waveforms depicted in Fig. 38, it

is apparent that the signals produced through the emulation process resemble those typically

produced by a genuine ANPC inverter as depicted in Fig. 12.

63

Fig. 38. Three-Level ANPC Inverter Digital Twin

4.2 Short-circuit corrupted Firmware (Malicious)

If a malicious firmware attempts to take control of the inverter, the FPGA must decline it

and revert to dependable firmware, which in this instance, is a backup firmware. Furthermore, the

FPGA must prevent the activation of the hot-patching feature while maintaining the operation of

the currently active DSP.

Initially, a malicious firmware was transmitted to the FPGA where Phase A had Q1, Q4,

Q5, and Q6 turned on concurrently, as presented in Fig. 39. If firmware with the same

characteristics as in Fig. 39 was loaded into the controller, it could cause a short-circuit in the

inverter, damaging it and harming the grid which it was connected.

64

Fig. 39. Channel 0 and 3 on simultaneously

The controller’s response to this type of firmware is depicted in Fig. 40. After testing this

firmware and checking if a short-circuit scenario was present (short-circuit scenario is present in

this figure), the FPGA correctly refused the firmware and successfully returned an error state. The

reported error was a short-circuit condition, and the system reacted by loading the backup

firmware, as shown on the graphical display.

Short-Circuit

Scenario

65

Fig. 40. Short-Circuit scenario detected.

4.3 Firmware with missing deadtime (Malicious)

Subsequently, malicious firmware devoid of any deadtime was transmitted to the FPGA.

As depicted in Fig. 41, the firmware lacked deadtime, as denoted by the measurement indicators

positioned at the lower-left corner, indicating the deadtime between channels 0 (D0) and 3 (D3)

was zero seconds. The same can be observed between channels 1 (D1) and 4 (D4) and between

channels 2 (D5) and 5 (D5). Firmware such as this (lacking deadtime) could harm the inverter's

components and possibly jeopardize the grid by causing short-circuits for a short period. Upon

detecting the deadtime error, the controller answered by rejecting the new malicious firmware and

instead reverted to the backup firmware, as evidenced by the observation in Fig. 42.

66

Fig. 41. DSP firmware without deadtime

Dead Time = 0s

67

Fig. 42. Missing deadtime detected.

4.4 Firmware with a fundamental frequency different than 60Hz (Malicious)

If a firmware has a suitable deadtime and is devoid of short-circuit scenarios, it is still

essential to confirm its fundamental frequency. Operating at an inappropriate fundamental

frequency, such as 30 Hz, can have a detrimental effect on the power grid. Therefore, in such

cases,\ the controller mechanism must reject the firmware to safeguard the inverter hardware and

protect the power grid. Fig. 43 depicts a firmware with a fundamental frequency of 30 Hz that falls

beyond the acceptable operational range.

68

Fig. 43. DSP firmware with a fundamental frequency of 30Hz

The top right corner of Fig. 43 shows a value of 33.42ms, which corresponds to the period

of the signal on channel 0 and 3. This period indicates a 30Hz signal rather than the intended

frequency of 60Hz (16.66ms), as presented in the following equations. Therefore, the expected

controller response is to reject the new firmware and load the backup firmware. Fig. 44 displays

the FPGA's reaction to this malicious firmware, which includes rejecting it and loading the backup

firmware as expected, as well as pointing that the firmware has an error with its fundamental

frequency.

Period60Hz =
1

60
≈ 16.67ms

Period = 33.42ms

Freq = 30Hz

69

Period30Hz =
1

30
≈ 33.33ms

Fig. 44. Fundamental Frequency different than 60 Hz

4.5 Fast Frequency not matching 42 kHz firmware (Malicious)

If firmware with a different frequency than what was established is uploaded, it might not

cause any harm to the inverter or the grid. However, it could still significantly impact the inverter's

performance by changing the semiconductor's response and increasing the power loss or, in the

worst case, reducing the semiconductors' life usage.

Fig. 45 shows an example of firmware using a high frequency of 30 kHz instead of 42

kHz. The frequency can be found in the bottom-left corner of Fig. 45 and is represented by the

difference between cursors "a" and "b" in the top-right corner of the respected picture. The period

70

represented by the difference between the cursors is 33.20 µs, representing a 30 kHz frequency, as

illustrated by the following equation.

Period30kHz =
1

30000
≈ 33.33µs

Table 9 represents the relationship between the channels depicted in Fig. 45 and the

correspondent transistors.

Table 9. Fast transistors and channels relationship

Phase A

Q2 Channel 0

Q3 Channel 1

Phase B

Q2 Channel 2

Q3 Channel 3

Phase C

Q2 Channel 4

Q3 Channel 5

71

Fig. 45. DSP firmware with a fast frequency of 42 kHz

As per the predetermined invalid firmware contingency plan, the controller was expected

to reject the malfunctioning firmware and initiate the loading of the backup firmware. In Fig. 46,

the FPGA's response to the detrimental firmware is seen, where it carries out the expected action

of rejecting it and loading the backup firmware. This response further indicates that the firmware

contains an error related to its fast frequency, as identified by the FPGA.

72

Fig. 46. Fast Frequency different than 42 kHz

4.6 Stall state firmware (Malicious)

Lastly, firmware that has constant values instead of PWM signals was loaded into the

controller. This type of firmware was illustrated in Fig. 47, where all DSP output signals remain

constant, which could put the inverter in a stall position, thus disabling it and affecting the grid’s

power availability.

The expected controller’s response for this kind of firmware is a rejection, followed by

the loading of the backup firmware along with displaying the “Timer” error in LabVIEW. Fig. 48

shows the response of the DT confirming that the controller enhances the system’s security, is

acting as expected, and is rejecting the firmware. Additionally, the system prevents the now-known

malicious firmware from being active by tagging the firmware as malicious and indicating that the

watchdog was not disabled, triggering the timer error.

73

Fig. 47. Stall Firmware

Fig. 48. Timer Error

74

4.7 Cost Analysis

This work introduced a solution enabling hot-patching, reducing downtime, and

incorporating a DT replicating an ANPC. This replication allows for testing new patches for

errors before implementing them while also serving as a monitoring tool for system health and

performance. The standby DSP receives signals from the real ANPC controlled by the active

DSP, enhancing the system's resilience against cyber-attacks aimed at compromising the inverter

and power grid with malicious firmware updates.

Furthermore, these advantages can be incorporated into an affordable inverter costing

less than two hundred dollars. This cost estimation takes into account the expense of one FPGA

and two DPS. Based on the prices provided in Fig. 49, and Fig. 50, the price range for a single

unit or a hundred units falls between $178.25 and $171.73, respectively. These figures represent

the lowest prices discovered during the preparation of this research.

Fig. 49. MachXO2 Price [32]

75

Fig. 50. DSP controlCard Price [32]

Moreover, the inverter employed in this study, which had its control system replaced by the UCB

discussed in this work, incorporated a distinct FPGA within its system architecture, specifically

the Intel Altera 5CSEBA5U23A7N. The cost of this FPGA ranged from $280.07 to $308.07, as

indicated in Fig. 51 and Fig. 52, respectively. Consequently, considering solely the components

discussed, integrating the FPGA and the two DSPs described in this research proves to be more

cost-effective than the FPGA currently utilized in commercial inverters.

Fig. 51. FPGA Intel Altera [23]

76

Fig. 52. FPGA Intel Altera [32]

77

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

The proliferation of technology, the widespread accessibility of high-speed internet, and

the growing connectivity of power grids to various networks have brought about numerous

advantages in the field of distributed energy resource applications. These benefits include

heightened awareness of the situation, multi-disciplinary event response strategies support, and

sophisticated secondary and tertiary controls that enhance grid efficiency and resilience.

Nevertheless, linking these devices to the internet allows for additional attack vectors, introducing

vulnerabilities to the power grid. Therefore, it is vital to improve the cybersecurity of these devices

to safeguard against cyber-attacks.

A new system was developed to safeguard the hardware layer of distributed energy

resource controls and block many cyber-attacks that try to manipulate the inverter's behavior. This

system builds upon the previous work presented in [4] and has demonstrated its ability to replicate

and emulate a 3-level ANPC inverter output while ensuring the new DSP firmware meets all the

firmware validation requirements of the DFTr system.

Furthermore, the advantages outlined in this study, including the ability to perform

firmware hot-patching to minimize downtime, enhancing cyber-security robustness, and real-time

monitoring of the inverter using the DT, can be seamlessly incorporated into a commercial inverter

without any cost increase. In fact, the integration of the FPGA and two DSPs utilized in this

research would cost less than two hundred dollars. In contrast, the lowest price range for the FPGA

currently employed in commercial inverters is between two hundred and eighty to three hundred

and eight dollars.

78

This project provided the foundation and system structure for future work to modify the

emulation architecture to accommodate different inverter topologies. This system can also be

improved by expanding the tests in the DFTr, which could guarantee the ANPC inverter does not

suffer a performance downgrade by indicating a subpar system change when being updated to a

new firmware with lower performance.

In addition, an improvement that could be added is to check the backup firmware for

malicious firmware. This work assumed that the backup firmware is non-malicious, but this new

test is important in increasing the system's cyber-robustness.

Finally, two other improvements can be added to the system: an authentication process

that verifies who is sending commands to the inverter and rejects commands being sent from

unknown sources; and an addition of a real-time system health monitor that would alert the user

to an error in case of a fault within the ANPC inverter. To clarify, if a transistor within the inverter

malfunctions, the ANPC inverter would change its output signals, and as this is a closed-loop

system, the DSP firmware would change its response. After reading the DSP's response, the FPGA

could identify a problem and alert the user that the ANPC inverter is malfunctioning. This

implementation could be done by switching the user request for the DT response, as described in

this work, to an automated request of the DT output – request every second, for example – and

using the DT output to diagnose the ANPC inverter's health.

79

References

[1] H. Bing, M. Mohammad and B. Ross, "Case Study of Power System Cyber Attack Using

Cascading Outage Analysis Model," in 2018 IEEE Power & Energy Society General

Meeting (PESGM), Portland, OR, USA, 2018.

[2] P. Custodio, B. McBride, T. Le, J. Jackson, K. Haulmark, J. Di, C. Farnell and H. A.

Mantooth, "Digital Twin of an ANPC inverter with integrated Design-For-Trust," in IEEE

Design Methodologies Conference (DMC), Bath, 2022, pp1-7, doi:

10.1109/DMC55175.2022.9906472.

[3] "Renewable electricity growth is accelerating faster than ever worldwide, supporting the

emergence of the new global energy economy," International Energy Agency, 01

December 2021. [Online]. Available: https://www.iea.org/news/renewable-electricity-

growth-is-accelerating-faster-than-ever-worldwide-supporting-the-emergence-of-the-new-

global-energy-economy. [Accessed 17 January 2023].

[4] C. Farnell, E. Soria, J. Jackson and H. A. Mantooth, "Cyber Protection of Grid-Connected

Devices Through Embedded Online Security," in IEEE Design Methodologies Conference

(DMC), Bath, 2021, pp. 1-6, doi: 10.1109/DMC51747.2021.9529935.

[5] B. Huang, M. Majidi and R. Baldick, "Case Study of Power System Cyber Attack Using

Cascading Outage Analysis Model," in IEEE Power & Energy Society General Meeting

(PESGM), Portland, OR, USA, 2018, pp. 1-5, doi: 10.1109/PESGM.2018.8585921..

[6] Q. Wang, W. Tai, T. Yi and M. Ni, "National Vulnerability Database," IET Cyber-Physical

Systems: Theory & Applications, vol. 4, no. 2, pp. 101-107, Jun 2019.

80

[7] "Colonial Pipeline Ransomware Attack Rattles Power Industry, Renews Vulnerability,"

Power Maganize, 2021. [Online]. Available: https://www.powermag.com/colonial-

pipeline-ransomware-attack-rattles-power-industryrenews-vulnerability-concerns/.

[Accessed 20 December 2022].

[8] "Solar Photovoltaic Technology Basics," NREL, [Online]. Available:

https://www.nrel.gov/research/re-photovoltaics.html. [Accessed 19 February 2023].

[9] "Photovoltaics and electricity," U.S. Energy Information Administration, [Online].

Available: https://www.nrel.gov/research/re-photovoltaics.html. [Accessed 19 February

2023].

[10] "How a Photovoltaic Power Plant Works? Construction and Working of a Solar Power

Plant," Electrical Technology, [Online]. Available:

https://www.electricaltechnology.org/2021/07/solar-power-plant.html. [Accessed 19

February 2023].

[11] A. S. Andrade, J. H. Muniz and E. R. Silva, "Three-level Hybrid Flying Dc-Source ANPC

inverter: Application as a photovoltaic AC source," in 2015 IEEE 24th International

Symposium on Industrial Electronics (ISIE), Buzios, Brazil, 2015, pp. 1094-1099, doi:

10.1109, 2015.

[12] D. Woldegiorgis, Y. Wu, Y. Wei and H. A. Mantooth, "A High Efficiency," IEEE Open

Journal of Industry Applications, vol. 2, pp. 154-167, 2021, doi:

10.1109/OJIA.2021.3091549.

[13] Y. Deng, J. Li, K. H. Shin, T. Viitanen, M. Saeedifard and R. G. Harley, "Improved

Modulation Scheme for Loss Balancing of Three-Level Active NPC," IEEE Transactions

81

on Power Electronics, vol. 32, no. 4, pp. 2521-2532, 2017, doi:

10.1109/TPEL.2016.2573823.

[14] T. Bruckner, S. Bernet and P. K. Steimer, "Feedforward Loss Control of Three-Level

Active NPC Converters," IEEE Transactions on Industry Applications, vol. 43, no. 6, pp.

1588-1596, 2007, doi: 10.1109/TIA.2007.908164.

[15] B. Zhang and D. Qiu, "Introduction," in m-Mode SVPWM Technique for Power

Converters, Singapore, Springer, 2019, doi: 10.1007/978-981-13-1382-0_1, p. 5.

[16] M. Mohamed, A. Elmahalawy and H. Harb, "Developing the pulse width modulation tool

(PWMT) for two timer mechanism technique in microcontrollers," in Second International

Japan-Egypt Conference on Electronics, Communications and Computers (JEC-ECC),

2013, pp.148-153, doi: 10.1109/JEC-ECC.2013.6766403.

[17] M. Vujacic, M. Hammami, M. Srndovic and G. Grandi, "Theoretical and Experimental

Investigation of Swiching Ripple in the DC-Link Voltage of Single-Phase H-Bridge PWM

Inverters," Energies, vol. 10, no. 8, 2017, doi: 10.3390/en10081189.

[18] S. H. L., "All about circuits," 09 November 2017. [Online]. Available:

https://www.allaboutcircuits.com/technical-articles/purpose-and-internal-functionality-of-

fpga-look-up-tables/. [Accessed 14 February 2023].

[19] L. Semiconductor, "MachX02 Family Data Sheet," February 2022. [Online]. Available:

https://www.latticesemi.com/view_document?document_id=38834. [Accessed 23

December 2022].

82

[20] T. Instrument, "TMS320x2833x, TMS320x2823x Technical Reference Manual," March

2020. [Online]. Available: https://www.ti.com/lit/pdf/sprui07. [Accessed 23 December

2022].

[21] P. S. Mutha and Y. M. Vaidya, "FPGA reconfiguration using UART and SPI flash," in

2017 International Conference on Trends in Electronics and Informatics (ICEI),

Tirunelveli, India, 2017.

[22] D. Trivedi, A. Khade, K. Jain and R. Jadhav, "SPI to I2C Protocol Conversion Using

Verilog," in 2018 Fourth International Conference on Computing Communication Control

and Automation (ICCUBEA), Pune, India, 2018.

[23] "mouser.com," [Online]. Available:

https://www.mouser.com/datasheet/2/671/mict_s_a0006161798_1-2291050.pdf. [Accessed

01 March 2023].

[24] M. Grieves and J. Vickers, Digital Twin: Mitigating Unpredictable, Undesirable Emergent

Behavior in Complex Systems, J. Kahlen, S. Flumerfelt and A. Alves, Eds., Springer,

Cham. https://doi.org/10.1007/978-3-319-38756-7_4, 2016, pp. 85-113.

[25] T. Uhlemann, C. Schock, C. Lehmann, S. Freiberger and R. Steinhilper, "The Digital Twin:

Demonstrating the Potential of Real Time Data Acquisition in Production Sytems,"

Procedia Manufacturing, no. 9, pp. 113-120, 2017.

[26] J. Wu, Y. Yang, X. Chegn, H. Zuo and Z. Cheng, "The Development of Digital Twin

Technology Review," in 2020 Chinese Automation Congress (CAC), Shanghai, China,

2020.

83

[27] R. He, G. Chen, C. Dong, S. Sun and X. Shen, "Data-driven digital twin technology for

optimized control process systems," in ISA Transactions (2019),

https://doi.org/10.1016/j.isatra.2019.05.011, 2019.

[28] A. Bhatia, "Introduction to Short Circuit Analysis," PDG Online, Fairfax, 2020.

[29] P. Skarolek and J. Letti, "Influence of Deadtime on Si, SiC and GaN Converters," in 2020

21st International Scientific Conference on Electric Power Engineering (EPE), Prague,

Czech Republic, 2020, pp. 1-4, doi: 10.1109/EPE51172.2020.9269208.

[30] M. Folgueras, E. Wenger, A. Florita, K. Clark and V. Gevorgian, "Grid Frequency Extreme

Event Analysis and Modeling," in 2017 International Workshop on Large-Scale

Integration of Wind Power into Power Systems as well as on Transmission Networks for

Offshore Wind Power Plants, Berlin, Germany, 2017.

[31] J. H. Eto, J. Undrill, P. Mackin, R. Daschmans, B. Williams, B. Haney, R. Hunt, J. Ellis, I.

Howard, C. Martinez, M. O'Malley, K. Coughlin and K. H. LaCommare, Use of frequency

response metrics to assess the planning and operating requirements for reliable integration

of variable renewable generation, Berkeley, CA: Lawrence Berkeley National Lab.

(LBNL), 2010.

[32] "Digikey," Digikey, [Online]. Available: https://www.digikey.com/. [Accessed 15 May

2023].

84

APPENDICES

APPENDIX A: VHDL CODE

A-1: Top file

--

-- Company: University of Arkansas (NCREPT)

-- Engineer: Estefano Soria and Paulo Custodio

--

-- Create Date: 26/10/2021

-- Project Name: Digital_Twin

-- Module Name: Top

-- Design Name: Digital_Twin_Top

-- Target Devices: LCMXO2-7000HC-4FG484C (UCB v1.4a)

-- Tool versions: Lattice Diamond_x64 Build 3.11

-- Description:

-- This project has the purpose to create a Digital Twin (DT) able to emulate an Active-Neutral

Point Clamped (ANPC) inverter using the inactive/standby DSP outputs

-- to check if the new DSP firmware has all the requirements designed with the Design-For-Trust

(DFTr) technique.

-- The ANPC inverter has 6 transistors per phase, being two Fast Frequency Transistors(Q2 and

Q3) and four Slow Frequency Transistors (Q1,Q4,Q5,Q6).

-- The strategy used to control the ANPC inverter is considering the PWM 01, which controls the

transistor 1 (Q1) the same as Q6, since they must be on and off at the same time.

85

-- The same concept was applied to transistors Q4 and Q5, because they also have the same

behavior.

-- Slow transistors must have a switching frequency equivalent to the fundamental frequency

60Hz, while the Fast transistors (Q2 and Q3) must have a switching frequency of 42kHz.

--

-- PinOut:

-- ------Inputs------

-- ----DSP 1 (DIMM-B)----

-- --Phase A--

-- F20 -> Q1|Q6

-- M16 -> Q2

-- C22 -> Q3

-- K20 -> Q4|Q5

-- --Phase B--

-- G18 -> Q1|Q6

-- M19 -> Q2

-- C21 -> Q3

-- K18 -> Q4|Q5

-- --Phase C--

-- K22 -> Q1|Q6

-- L22 -> Q2

-- B22 -> Q3

-- J17 -> Q4|Q5

86

-- ---- END DSP 1 (DIMM-B)----

-- ----DSP 2 (DIMM-C)----

-- --Phase A--

-- AB6 -> Q1|Q6

-- Y7 -> Q2

-- T8 -> Q3

-- U10 -> Q4|Q5

-- --Phase B--

-- Y4 -> Q1|Q6

-- V8 -> Q2

-- U8 -> Q3

-- W11 -> Q4|Q5

-- --Phase C--

-- T10 -> Q1|Q6

-- W9 -> Q2

-- AA8 -> Q3

-- V11 -> Q4|Q5

-- ---- END DSP 2 (DIMM-C)----

-- ----Others----

-- C2 -> Flash SPI Slave Output

-- Y1 -> SCI RX

-- V13 -> SCI RX DSP

-- R3 -> SCI RX WEBSERVER

87

-- G13 -> Push Button (SW1) -> Erase Flash Memory manually

-- ---- End Others----

-- ------End Inputs------

-- ------Outputs------

-- --Phase A--

-- A21 -> Q1

-- C19 -> Q2

-- A20 -> Q3

-- D18 -> Q4

-- B19 -> Q5

-- C18 -> Q6

-- --Phase B--

-- F17 -> Q1

-- A18 -> Q2

-- D17 -> Q3

-- E17 -> Q4

-- A17 -> Q5

-- C18 -> Q6

-- --Phase C--

-- F16 -> Q1

-- E16 -> Q2

-- D16 -> Q3

-- B15 -> Q4

88

-- C16 -> Q5

-- E15 -> Q6

-- --LEDs--

-- R17 -> LED A

-- U17 -> LED B

-- T18 -> LED C

-- R16 -> LED D

-- T17 -> LED E

-- Y21 -> LED F

-- Y20 -> LED G

-- U18 -> LED H

-- --Flash Memory--

-- C3 -> Chip-Select (CSSPIN)

-- E4 -> Hold

-- D3 -> SPI Clock (MCLK)

-- F5 -> Slave Input SPI (SISPI)

-- F6 -> Write enable (WPn)

-- --DSPs--

-- G22 -> DIMM_B_GPIO30

-- H16 -> DIMM_B_SCI_RX

-- Y3 -> DIMM_C_GPIO30

-- AB2 -> DIMM_C_SCI_RX

-- F6-> IDC_D_GPIO_02 (DSP1 Reset)

89

-- F5 -> IDC_D_GPIO_03 (DSP2 Reset)

-- -- Others --

-- AA1 -> SCI_TX

-- V12 -> SCI_TX_DSP

-- R2 -> SCI_TX_Webserver

--

-- Revision:

-- v2.15.22 - Top file without the deadtime component (deadtime should be called by the

firmware validation only)

-- v3.24.22 - Added the emulation control and debug signals. Adapted to ANPC inverter

-- v5.23.22 - Polishment and comments to make it easier to comprehend the code for future

work.

-- Additional Comments:

--

--

--

Library IEEE;

use IEEE.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

use ieee.numeric_std.all;

90

library machxo2;

use machxo2.all;

library work;

use work.Digital_Twin_Common.all;

entity Digital_Twin_and_Hot_Patching is

 Port

 (

 ------------------- Communication pins between CPLD and UI ------------------

-

 SCI_RX : in std_logic; --UART RX pin for Serial Comm with UI: UI(TX)

-> CPLD (RX) -> Y1

 SCI_TX : out std_logic; --UART TX pin for Serial Comm with UI: UI(RX)

-> CPLD (TX) -> AA1

 SCI_RX_Webserver : in std_logic; --UART RX pin for Serial Comm with UI:

UI(TX) -> CPLD (RX) -> R2

 SCI_TX_Webserver : out std_logic; --UART TX pin for Serial Comm with UI: UI(RX) -

> CPLD (TX) -> R3

 IDC_D_GPIO_02 : out STD_LOGIC; -- Reset Pin of the DSP DIMM-B -> F6

 IDC_D_GPIO_03 : out STD_LOGIC; -- Reset Pin of the DSP DIMM-C -> F5

91

 DIMM_B_SCI_RX : out STD_LOGIC; -- This pin is used to send the firmware to

the DSP and the bootloader. -> DIMM-B_GPIO-28 -> H16

 DIMM_C_SCI_RX : out STD_LOGIC; -- This pin is used to send the firmware to

the DSP and the bootloader. -> DIMM-C_GPIO-28 -> AB2

 DIMM_B_SCI_TX : in STD_LOGIC; -- This pin is used to send the firmware to

the DSP and the bootloader. -> DIMM-B_GPIO-29 -> J19

 DIMM_C_SCI_TX : in STD_LOGIC; -- This pin is used to send the firmware to

the DSP and the bootloader. -> DIMM-C_GPIO-29 -> U12

 DIMM_B_GPIO30 : out STD_LOGIC; -- G22

 DIMM_C_GPIO30 : out STD_LOGIC; -- Y3

 Btna : in STD_LOGIC;

 -------------------------------------- INPUTS --------------------------------------

 -- SW : in STD_LOGIC;

 ------------------- DIMM_B -------------------

 -- Phase A

 DSP1_01_A : in STD_LOGIC; -- Q1 -> F20 -> DIMM-B_GPIO-12

 DSP1_02_A: in STD_LOGIC; -- Q2 -> B22 -> DIMM-B_GPIO-00

 DSP1_03_A : in STD_LOGIC; -- Q3 -> M16 -> DIMM-B_GPIO-01

 DSP1_04_A : in STD_LOGIC; -- Q4 -> K20 -> DIMM-B_GPIO-25

92

 -- Phase B

 DSP1_01_B : IN STD_LOGIC; -- Q1 -> G18 -> DIMM-B_GPIO-26

 DSP1_02_B : IN STD_LOGIC; -- Q2 -> C22 -> DIMM-B_GPIO-02

 DSP1_03_B : IN STD_LOGIC; -- Q3 -> M19 -> DIMM-B_GPIO-03

 DSP1_04_B : IN STD_LOGIC; -- Q4 -> K18 -> DIMM-B_GPIO-27

 -- Phase C

 DSP1_01_C : IN STD_LOGIC; -- Q1 -> K22 -> DIMM-B_GPIO-14

 DSP1_02_C : IN STD_LOGIC; -- Q2 -> C21 -> DIMM-B_GPIO-04

 DSP1_03_C : IN STD_LOGIC; -- Q3 -> L22 -> DIMM-B_GPIO-05

 DSP1_04_C : IN STD_LOGIC; -- Q4 -> J17 -> DIMM-B_GPIO-19

 ------------------- DIMM_C -------------------

 -- Phase A

 DSP2_01_A : in STD_LOGIC; -- Q1 -> AB6 -> DIMM-C_GPIO-12

 DSP2_02_A: in STD_LOGIC; -- Q2 -> AA8 -> DIMM-C_GPIO-00

 DSP2_03_A : in STD_LOGIC; -- Q3 -> Y7 -> DIMM-C_GPIO-01

 DSP2_04_A : in STD_LOGIC; -- Q4 -> U10 -> DIMM-C_GPIO-25

 -- Phase B

 DSP2_01_B : IN STD_LOGIC; -- Q1 -> Y4 -> DIMM-C_GPIO-26

 DSP2_02_B : IN STD_LOGIC; -- Q2 -> T8 -> DIMM-C_GPIO-02

93

 DSP2_03_B : IN STD_LOGIC; -- Q3 -> V8 -> DIMM-C_GPIO-03

 DSP2_04_B : IN STD_LOGIC; -- Q4 -> W11 -> DIMM-C_GPIO-27

 -- Phase C

 DSP2_01_C : IN STD_LOGIC; -- Q1 -> T10 -> DIMM-C_GPIO-14

 DSP2_02_C : IN STD_LOGIC; -- Q2 -> U8 -> DIMM-C_GPIO-04

 DSP2_03_C : IN STD_LOGIC; -- Q3 -> W9 -> DIMM-C_GPIO-05

 DSP2_04_C : IN STD_LOGIC; -- Q4 -> V11 -> DIMM-C_GPIO-19

 ------------------- Relays -------------------

 DIMM_B_GPIO_32 : IN STD_LOGIC; -- H17

 DIMM_B_GPIO_33 : IN STD_LOGIC; -- H21

 DIMM_C_GPIO_32 : IN STD_LOGIC; -- V6

 DIMM_C_GPIO_33 : IN STD_LOGIC; -- AA14

 -- OUTPUTS --------------------------------------

 ------------------- Enable DSPs -------------------

 -- Enable the DSP to generate the signals

 -- DSP 1 (DIMM-B)

 DSP1_DSPEnable : out std_logic; -- M20 -> DIMM-B_GPIO-62

 -- DSP 2 (DIMM-C)

 DSP2_DSPEnable : out std_logic; -- AA12 -> DIMM-B_GPIO-62

94

 ------------------- Leds -------------------

 LED_A : out STD_LOGIC; -- R17 -> DSP01 is active (D1 from UCB)

 LED_B : out STD_LOGIC; -- U17 -> DSP02 is active (D2 from UCB)

 --LEDs not being used

 LED_C : out STD_LOGIC; -- T18

 LED_D : out STD_LOGIC; -- R16

 LED_E : out STD_LOGIC; -- T17

 LED_F : out STD_LOGIC; -- Y21

 LED_G : out STD_LOGIC; -- Y20

 LED_H : out STD_LOGIC; -- U18

 -- Outputs to control the inverter

 -- Phase A

 SW01_A : out std_logic; -- Q1 -> V19 -> IDC-B_GPIO-05 -> Pin

 SW02_A : out std_logic; -- Q2 -> W20 -> IDC-B_GPIO-04 -> Pin

 SW03_A : out std_logic; -- Q3 -> W22 -> IDC-B_GPIO-03 -> Pin

 SW04_A : out std_logic; -- Q4 -> Y22 -> IDC-B_GPIO-02 -> Pin

 SW05_A : out std_logic; -- Q5 -> T19 -> IDC-B_GPIO-01 -> Pin

 SW06_A : out std_logic; -- Q6 -> AA22 -> IDC-B_GPIO-00 -> Pin

 -- Phase B

 SW01_B : out std_logic; -- Q1 -> Y16 -> IDC-C_GPIO-12 -> Pin

95

 SW02_B : out std_logic; -- Q2 -> AB17-> IDC-C_GPIO-13 -> Pin

 SW03_B : out std_logic; -- Q3 -> W14 -> IDC-C_GPIO-14 -> Pin

 SW04_B : out std_logic; -- Q4 -> V14 -> IDC-C_GPIO-15 -> Pin

 SW05_B : out std_logic; -- Q5 -> Y17 -> IDC-C_GPIO-16 -> Pin

 SW06_B : out std_logic; -- Q6 -> AB18-> IDC-C_GPIO-17 -> Pin

 -- Phase C

 SW01_C : out std_logic; -- Q1 -> Y14 -> IDC-C_GPIO-00 -> Pin

 SW02_C : out std_logic; -- Q2 -> AB15 -> IDC-C_GPIO-01 -> Pin

 SW03_C : out std_logic; -- Q3 -> W12 -> IDC-C_GPIO-02 -> Pin

 SW04_C : out std_logic; -- Q4 -> V12 -> IDC-C_GPIO-03 -> Pin

 SW05_C : out std_logic; -- Q5 -> Y12 -> IDC-C_GPIO-04 -> Pin

 SW06_C : out std_logic; -- Q6 -> V13 -> IDC-C_GPIO-05 -> Pin

 -- Debug outputs

 --debug_emu_Q1_Q6_A : out std_logic; -- E4 -> IDC-D_GPIO-04 -> Pin 5

 -> (Channel 0)

 --debug_emu_Q4_Q5_A : out std_logic; -- D3 -> IDC-D_GPIO-05 -> Pin 6

 -> (Channel 1)

 --debug_emu_Q1_Q6_B : out std_logic; -- G6 -> IDC-D_GPIO-06 -> Pin 7

 -> (Channel 2)

 --debug_emu_Q4_Q5_B : out std_logic; -- H7 -> IDC-D_GPIO-07 -> Pin 8

 -> (Channel 3)

96

 --debug_emu_Q1_Q6_C : out std_logic; -- B1 -> IDC-D_GPIO-08 -> Pin 9

 -> (Channel 4)

 --debug_emu_Q4_Q5_C : out std_logic; -- C1 -> IDC-D_GPIO-09 -> Pin 10

 -> (Channel 5)

 --debug_error : out std_logic; -- H6 -> IDC-D_GPIO-10 -> Pin 11

 -> (Channel 6)

 --debug_FW_Val_E1 : out std_logic; -- G5 -> IDC-D_GPIO-11 -> Pin 12

 -> (Channel 7) -- Short-Circuit

 --debug_FW_Val_E2 : out std_logic; -- E2 -> IDC-D_GPIO-12 -> Pin 13

 -> (Channel 8) -- DeadTime

 --debug_FW_Val_E3 : out std_logic; -- D1 -> IDC-D_GPIO-13 -> Pin 14

 -> (Channel 9) -- Fund Freq

 --debug_FW_Val_E4 : out std_logic; -- F4 -> IDC-D_GPIO-14 -> Pin 21

 -> (Channel 10) -- Fast. Freq

 --debug_FW_Val_E5 : out std_logic; -- G4 -> IDC-D_GPIO-15 -> Pin 22

 -> (Channel 11) -- Timer

 --debug_FW_Val_EN : out std_logic; -- F1 -> IDC-D_GPIO-16 -> Pin 23

 -> (Channel 12)

 Flash_CSSPIN: inout std_logic; -- A21 -> CS -> IDC-A_GPIO-00 -

> Pin 1 (Channel 0)

 Flash_SPISO: in std_logic; -- C19 -> SPO -> IDC-A_GPIO-01 -> Pin 2

(Channel 1)

97

 Flash_WPn: inout std_logic; -- A20 -> WP -> IDC-A_GPIO-02 -

> Pin 3 (Channel 2 - Always high)

 Flash_SISPI: inout std_logic; -- D18 -> SPI -> IDC-A_GPIO-03 -> Pin 4

(Channel 3)

 Flash_HOLDn: inout std_logic; -- B19 -> Hold -> IDC-A_GPIO-04 -

> Pin 5 (Channel 4 - Always high)

 Flash_MCLK: inout std_logic; -- C18 -> clk -> IDC-A_GPIO-05 -

> Pin 6 (Channel 5)

 ---------------- SMA Hard wired inputs ----------------

 -- Relays --

 IDC_D_GPIO_00 : out std_logic; -- Relay#1 - C3

 IDC_D_GPIO_01 : out std_logic; -- Relay#2 - C2

 ---- IDC_B ----

 -- Constants

 IDC_B_GPIO_06 : out std_logic; -- V21

 IDC_B_GPIO_07 : out std_logic; -- V22

 IDC_B_GPIO_08 : out std_logic; -- U22

 IDC_B_GPIO_09 : out std_logic; -- U19

 IDC_B_GPIO_10 : out std_logic; -- T21

 IDC_B_GPIO_11 : out std_logic; -- R19

 IDC_B_GPIO_12 : out std_logic; -- U20

 IDC_B_GPIO_13 : out std_logic; -- T22

98

 IDC_B_GPIO_14 : out std_logic; -- R20

 IDC_B_GPIO_15 : out std_logic; -- R18

 IDC_B_GPIO_16 : out std_logic; -- R21

 IDC_B_GPIO_17 : out std_logic; -- P19

 ---- IDC_C ----

 -- Constants

 IDC_C_GPIO_06 : out std_logic; -- AB15

 IDC_C_GPIO_07 : out std_logic; -- W12

 IDC_C_GPIO_08 : out std_logic; -- V12

 IDC_C_GPIO_09 : out std_logic; -- Y12

 IDC_C_GPIO_10 : out std_logic; -- V13

 IDC_C_GPIO_11 : out std_logic; -- U13

 ---- Security ----

 DIMM_B_GPIO_60 : in std_logic;

 DIMM_B_GPIO_61 : in std_logic;

 DIMM_C_GPIO_60 : in std_logic;

 DIMM_C_GPIO_61 : in std_logic;

 ---- Others ----

 -- Jinan --

 -- DSP INPUTS --

99

 DIMM_B_GPIO_48 : in std_logic; -- E20

 DIMM_B_GPIO_84 : in std_logic; -- D22

 DIMM_B_GPIO_86 : in std_logic; -- F19

 DIMM_C_GPIO_48 : in std_logic; -- AA7

 DIMM_C_GPIO_84 : in std_logic; -- V7

 DIMM_C_GPIO_86 : in std_logic; -- Y6

 -- Output --

 Jinan_01 : out std_logic; -- H6 - IDC-D_GPIO-10 - Pin 11

 Jinan_02 : out std_logic; -- G5 - IDC-D_GPIO-11 - Pin 12

 Jinan_03 : out std_logic -- E2 - IDC-D_GPIO-12 - Pin 13

 -- End of Jinan --

);

END Digital_Twin_and_Hot_Patching;

ARCHITECTURE Behavioral OF Digital_Twin_and_Hot_Patching is

 -- Oscillator

 SIGNAL OSC_Stdby : std_logic := '0';

 SIGNAL OSC_Out : std_logic := '0';

 SIGNAL OSC_SEDSTDBY : std_logic := '0';

 -- PLL

100

 --SIGNAL OSC_Out : std_logic := '0';

 SIGNAL clk : std_logic := '0';

 SIGNAL Pll_Lock : std_logic := '0';

 -- Bus Master

 SIGNAL Xrqst : std_logic := '0';

 SIGNAL XDat : std_logic := '0';

 SIGNAL YDat : std_logic := '0';

 SIGNAL Data : std_logic_vector (15 downto 0) := (others => '0');

 SIGNAL Addr : std_logic_vector (15 downto 0) := (others => '0');

 SIGNAL BusRqst : std_logic_vector (9 downto 0) := (others => '0');

 SIGNAL BusCtrl : std_logic_vector (9 downto 0) := (others => '0');

 SIGNAL DSP_RAM_addr : std_logic_vector (15 downto 0) := (others => '0');

 -- Bootloader

 SIGNAL Bootload_EN : std_logic := '1';

 SIGNAL FW_Type : std_logic := '0';

 SIGNAL DSP_rcv : std_logic := '0';

 SIGNAL DSP_xmt : std_logic := '0';

 SIGNAL DSP_Rst : std_logic := '0';

 -- Other

101

 SIGNAL rs232_rcv : std_logic := '0';

 SIGNAL rs232_xmt : std_logic := '0';

 SIGNAL Error : std_logic := '0';

 SIGNAL Boot_Wrkn : std_logic := '0';

 SIGNAL Boot_Done : std_logic := '0';

 SIGNAL HP_EN : std_logic := '0';

 SIGNAL HP_Done : std_logic := '0';

 SIGNAL Emu_EN : std_logic := '0';

 SIGNAL Reset_Cnt_rst : std_logic := '0';

 SIGNAL Reset_Cnt_INC : std_logic := '0';

 SIGNAL System_rst : std_logic := '0';

 SIGNAL DSP1_Act : std_logic := '0';

 SIGNAL DSP1_Act_HP_Out : std_logic := '0';

 SIGNAL DSP_Sync_HP : std_logic := '0';

 SIGNAL Reset_Cnt_out : std_logic_vector (7 downto 0) := (others => '0');

 SIGNAL DT_EN : std_logic := '0';

 SIGNAL DT_Rst : std_logic := '0';

 ------------------- DSPs -------------------

 SIGNAL DSPEnable : std_logic := '0';

 --Phase A Inputs

102

 SIGNAL Emu_SW01_A : std_logic := '0';

 SIGNAL Emu_SW02_A : std_logic := '0';

 SIGNAL Emu_SW03_A : std_logic := '0';

 SIGNAL Emu_SW04_A : std_logic := '0';

 SIGNAL Emu_SW05_A : std_logic := '0';

 SIGNAL Emu_SW06_A : std_logic := '0';

 --Phase B Inputs

 SIGNAL Emu_SW01_B : std_logic := '0';

 SIGNAL Emu_SW02_B : std_logic := '0';

 SIGNAL Emu_SW03_B : std_logic := '0';

 SIGNAL Emu_SW04_B : std_logic := '0';

 SIGNAL Emu_SW05_B : std_logic := '0';

 SIGNAL Emu_SW06_B : std_logic := '0';

 --Phase C Inputs

 SIGNAL Emu_SW01_C : std_logic := '0';

 SIGNAL Emu_SW02_C : std_logic := '0';

 SIGNAL Emu_SW03_C : std_logic := '0';

 SIGNAL Emu_SW04_C : std_logic := '0';

 SIGNAL Emu_SW05_C : std_logic := '0';

 SIGNAL Emu_SW06_C : std_logic := '0';

103

 SIGNAL SCI_RX_DSP : std_logic; --UART RX pin for Serial Comm with UI: UI(TX)

-> CPLD (RX)

 SIGNAL SCI_TX_DSP : std_logic; --UART TX pin for Serial Comm with UI: UI(RX)

-> CPLD (TX)

 ------ Inverted signals ------

 -- Phase A

 SIGNAL Q1_A : std_logic := '1';

 SIGNAL Q2_A : std_logic := '1';

 SIGNAL Q3_A : std_logic := '1';

 SIGNAL Q4_A : std_logic := '1';

 -- Phase B

 SIGNAL Q1_B : std_logic := '1';

 SIGNAL Q2_B : std_logic := '1';

 SIGNAL Q3_B : std_logic := '1';

 SIGNAL Q4_B : std_logic := '1';

 -- Phase C

 SIGNAL Q1_C : std_logic := '1';

 SIGNAL Q2_C : std_logic := '1';

 SIGNAL Q3_C : std_logic := '1';

104

 SIGNAL Q4_C : std_logic := '1';

 -- Module Declaration --

--

 ------------------- Internal Oscillator -------------------

 COMPONENT OSCH

 GENERIC

 (

 NOM_FREQ: string := "8.31"

);

 PORT

 (

 STDBY :IN std_logic;

 OSC :OUT std_logic;

 SEDSTDBY :OUT std_logic

);

 END COMPONENT;

 ------------------- PLL -------------------

 COMPONENT PLL_Clk

 PORT

 (

105

 ClkI: in std_logic;

 ClkOP: out std_logic;

 Lock: out std_logic

);

 END COMPONENT;

 ------------------- Bus_Master -------------------

 COMPONENT Digital_Twin_Bus_Master

 PORT

 (

 clk : IN std_logic;

 rst : IN std_logic;

 Data : INOUT std_logic_vector(15 downto 0);

 Addr : IN std_logic_vector(15 downto 0);

 Xrqst : IN std_logic;

 XDat : OUT std_logic;

 YDat : IN std_logic;

 BusRqst : IN std_logic_vector(9 downto 0);

 BusCtrl : OUT std_logic_vector(9 downto 0);

 Flash_CSSPIN: out std_logic;

 Flash_MCLK: out std_logic;

 Flash_SISPI: out std_logic;

 Flash_SPISO: in std_logic;

106

 Flash_WPn: out std_logic;

 Flash_HOLDn: out std_logic;

 Reset_Flash_Button: in std_logic

);

 END COMPONENT;

 ------------------- RS232_Usr_Int -------------------

 COMPONENT RS232_Usr_Int

 Generic

 (

 Baud : integer; -- Baud Rate

 clk_in : integer -- Input Clk

);

 PORT

 (

 clk : IN std_logic;

 rst : IN std_logic;

 rs232_rcv : IN std_logic;

 rs232_xmt : OUT std_logic;

 Data : INOUT std_logic_vector(15 downto 0);

 Addr : OUT std_logic_vector(15 downto 0);

 Xrqst : OUT std_logic;

107

 XDat : IN std_logic;

 YDat : OUT std_logic;

 BusRqst : OUT std_logic;

 BusCtrl : IN std_logic

);

 END COMPONENT;

 ------------------- Test1_DT_Boot_Ctrl -------------------

 component Digital_Twin_Bootloader_Control

 Port (

 --IN

 clk : in STD_LOGIC;

 rst : in STD_LOGIC;

 Data : INOUT std_logic_vector(15 downto 0);

 Addr : OUT std_logic_vector(15 downto 0);

 Xrqst : OUT std_logic;

 XDat : IN std_logic;

 YDat : OUT std_logic;

 BusRqst : OUT std_logic;

 BusCtrl : IN std_logic;

 Error :in STD_LOGIC;

108

 Boot_Wrkn :in STD_LOGIC;

 Boot_Done :in STD_LOGIC;

 HP_EN :in STD_LOGIC;

 --OUT

 Bootload_EN :out STD_LOGIC;

 FW_Type :out STD_LOGIC;

 DT_EN :out STD_LOGIC;

 DT_Rst :out STD_LOGIC

);

 END component;

 ------------------- DT_Bootloader_Test Component -------------------

 component Digital_Twin_Bootloader

 generic(

 Baud : integer; --9,600 bps

 clk_in : integer); --25MHz

 Port (

 clk : IN std_logic;

 rst : IN std_logic;

 Bootload_EN : IN STD_LOGIC;

109

 FW_Type : IN STD_LOGIC;

 Bootload_Wrkn : OUT STD_LOGIC;

 Bootload_Done : OUT STD_LOGIC;

 DSP_rcv : OUT std_logic;

 DSP_xmt : IN std_logic;

 DSP_Rst : OUT STD_LOGIC;

 Data : INOUT std_logic_vector(15 downto 0);

 Addr : OUT std_logic_vector(15 downto 0);

 Xrqst : OUT std_logic;

 XDat : IN std_logic;

 YDat : OUT std_logic;

 BusRqst : OUT std_logic;

 BusCtrl : IN std_logic

);

 END component;

 ------------------- Std_Counter Component -------------------

 component Std_Counter is

 generic

 (

110

 Width : integer -- width of counter

);

 port(INC,rst,clk: in std_logic;

 Count: out STD_LOGIC_VECTOR(Width-1 downto 0));

 END component;

 ------------------- DSP_Hot_Patch Component -------------------

 component Digital_Twin_Hot_Patch_Control

 Port (

 clk : in std_logic;

 rst : in std_logic;

 EN : in std_logic;

 DSP1_Act_Out : out std_logic;

 DSP_Sync : out std_logic;

 Done : out std_logic

);

 END component;

 ------------------- Digital_Twin_Emulation_Control -------------------

 COMPONENT Digital_Twin_Emulation_Control

 PORT

 (

 clk : in STD_LOGIC;

111

 rst : in STD_LOGIC;

 Emu_EN : in std_logic;

 Data : INOUT std_logic_vector(15 downto 0);

 Addr : OUT std_logic_vector(15 downto 0);

 Xrqst : OUT std_logic;

 XDat : IN std_logic;

 YDat : OUT std_logic;

 BusRqst : OUT std_logic;

 BusCtrl : IN std_logic;

 --Phase A Inputs

 Emu_SW01_A : in std_logic;

 Emu_SW02_A : in std_logic;

 Emu_SW03_A : in std_logic;

 Emu_SW04_A : in std_logic;

 Emu_SW05_A : in std_logic;

 Emu_SW06_A : in std_logic;

 --Phase B Inputs

 Emu_SW01_B : in std_logic;

 Emu_SW02_B : in std_logic;

 Emu_SW03_B : in std_logic;

 Emu_SW04_B : in std_logic;

112

 Emu_SW05_B : in std_logic;

 Emu_SW06_B : in std_logic;

 --Phase C Inputs

 Emu_SW01_C : in std_logic;

 Emu_SW02_C : in std_logic;

 Emu_SW03_C : in std_logic;

 Emu_SW04_C : in std_logic;

 Emu_SW05_C : in std_logic;

 Emu_SW06_C : in std_logic;

 Error : in STD_LOGIC;

 HP_EN : in STD_LOGIC

);

 END component;

 ------------------- Test1_DT_Firmware_Validation -------------------

 COMPONENT Digital_Twin_Firmware_Validation

 PORT

 (

 clk : in STD_LOGIC;

 rst : in STD_LOGIC;

113

 Data : INOUT std_logic_vector(15 downto 0);

 Addr : OUT std_logic_vector(15 downto 0);

 Xrqst : OUT std_logic;

 XDat : IN std_logic;

 YDat : OUT std_logic;

 BusRqst : OUT std_logic;

 BusCtrl : IN std_logic;

 --Phase A Inputs

 Emu_SW01_A : in std_logic;

 Emu_SW02_A : in std_logic;

 Emu_SW03_A : in std_logic;

 Emu_SW04_A : in std_logic;

 Emu_SW05_A : in std_logic;

 Emu_SW06_A : in std_logic;

 --Phase B Inputs

 Emu_SW01_B : in std_logic;

 Emu_SW02_B : in std_logic;

 Emu_SW03_B : in std_logic;

 Emu_SW04_B : in std_logic;

 Emu_SW05_B : in std_logic;

 Emu_SW06_B : in std_logic;

114

 --Phase C Inputs

 Emu_SW01_C : in std_logic;

 Emu_SW02_C : in std_logic;

 Emu_SW03_C : in std_logic;

 Emu_SW04_C : in std_logic;

 Emu_SW05_C : in std_logic;

 Emu_SW06_C : in std_logic;

 HP_Done : in std_logic; -- Signal coming from DSP_Hot-

Patch module saying that hot-patch is completed

 Boot_Done : in std_logic; -- Signal to inform that the boot loading is

done

 Boot_Wrkn : in std_logic; -- Signal to inform that the boot loading is

working

 Emu_EN : out std_logic; -- Start the emulation

 HP_EN : out std_logic; -- Signal sent to DSP_Hot-Patch

module to enable HP PROCESS

 DSPEnable : out std_logic; -- Enable the DSP to generate the signals

 Error : out std_logic; -- Signal error to stop all other PROCESSes

 DSP1_Act : in std_logic

115

 --debug_FW_Val_E1: out std_logic;

 --debug_FW_Val_E2: out std_logic;

 --debug_FW_Val_E3: out std_logic;

 --debug_FW_Val_E4: out std_logic;

 --debug_FW_Val_E5: out std_logic;

 --debug_FW_Val_EN: out std_logic

);

 END COMPONENT;

BEGIN --- BEGIN ---------------------------------------

 ------------------- Instantiate Internal Oscillator -------------------

 Int_OSC: OSCH PORT MAP (

 STDBY => OSC_Stdby,

 OSC => OSC_Out,

 SEDSTDBY => OSC_SEDSTDBY

);

 ------------------- Instantiate PLL -------------------

 PLL_1: PLL_Clk PORT MAP (

 ClkI => OSC_Out,

116

 ClkOP => clk,

 Lock =>Pll_Lock

);

 ------------------- Instantiate Bus_Master -------------------

 BM: Digital_Twin_Bus_Master PORT MAP (

 clk => clk,

 rst => System_rst,

 Data => Data,

 Addr => Addr,

 Xrqst => Xrqst,

 XDat => XDat,

 YDat => YDat,

 BusRqst => BusRqst,

 BusCtrl => BusCtrl,

 Flash_CSSPIN => Flash_CSSPIN,

 Flash_MCLK => Flash_MCLK,

 Flash_SISPI => Flash_SISPI,

 Flash_SPISO => Flash_SPISO,

 Flash_WPn => Flash_WPn,

 Flash_HOLDn => Flash_HOLDn,

 Reset_Flash_Button => Btna

);

117

 ------------------- Instantiate RS232_Usr_Int -------------------

 RS232_Usr: RS232_Usr_Int

 Generic Map

 (

 Baud => 9600, -- Baud Rate

 Clk_In => Clk_Freq -- Input Clk

)

 PORT MAP (

 clk => clk,

 rst => System_rst,

 rs232_rcv => SCI_RX,

 rs232_xmt => SCI_TX,

 Data => Data,

 Addr => Addr,

 Xrqst => Xrqst,

 XDat => XDat,

 YDat => YDat,

 BusRqst => BusRqst(1), -- Was 3

 BusCtrl => BusCtrl(1) -- Was 3

);

 --DSP

118

 RS232_Usr_DSP: RS232_Usr_Int

 Generic Map

 (

 Baud => 9600, -- Baud Rate

 Clk_In => Clk_Freq -- Input Clk

)

 PORT MAP (

 clk => clk,

 rst => System_rst,

 rs232_rcv => SCI_RX_DSP,

 rs232_xmt => SCI_TX_DSP,

 Data => Data,

 Addr => Addr,

 Xrqst => Xrqst,

 XDat => XDat,

 YDat => YDat,

 BusRqst => BusRqst(2), -- Was 3

 BusCtrl => BusCtrl(2) -- Was 3

);

 --Webserver

 RS232_Usr_Webserver: RS232_Usr_Int

 Generic Map

119

 (

 Baud => 9600, -- Baud Rate

 Clk_In => Clk_Freq -- Input Clk

)

 PORT MAP (

 clk => clk,

 rst => System_rst,

 rs232_rcv => SCI_RX_Webserver,

 rs232_xmt => SCI_TX_Webserver,

 Data => Data,

 Addr => Addr,

 Xrqst => Xrqst,

 XDat => XDat,

 YDat => YDat,

 BusRqst => BusRqst(5), -- Was 3

 BusCtrl => BusCtrl(5) -- Was 3

);

 ------------------- Instantiate Boot_Ctrl -------------------

 Boot_Ctrl: Digital_Twin_Bootloader_Control

 PORT MAP (

 clk => clk,

 rst => System_rst,

120

 Data => Data,

 Addr => Addr,

 Xrqst => Xrqst,

 XDat => XDat,

 YDat => YDat,

 BusRqst => BusRqst(0),

 BusCtrl => BusCtrl(0),

 Error => Error,

 Boot_Wrkn => Boot_Wrkn,

 Boot_Done => Boot_Done,

 HP_EN => HP_EN,

 Bootload_EN => Bootload_EN,

 FW_Type => FW_Type,

 DT_EN => DT_EN,

 DT_Rst => DT_Rst

);

 ------------------- Instantiate Bootloader -------------------

 Bootload: Digital_Twin_Bootloader

 generic map

 (

 Baud => 9600, --9,600 bps

 clk_in => Clk_Freq --25MHz

121

)

 port map (

 clk => clk,

 rst => System_rst,

 Bootload_EN => Bootload_EN,

 FW_Type => FW_Type,

 Bootload_Wrkn => Boot_Wrkn,

 Bootload_Done => Boot_Done,

 DSP_rcv => DSP_rcv,

 --FW_BIT_OUT, ---- THIS FW_BIT_OUT SIGNAL IS ONLY USED FOR THIS

TEST, USUALLY THIS CONNECTS TO THE SERIAL PORT OF THE DSP THROUGH

DIMM B OR DIMM C DEPENDING ON THE DSP, AND IT IS NOW CONNECTED

THROUGH THE HP PROCESS BELOW ----

 DSP_xmt => DSP_xmt,

 --xmt, ---- THIS xmt SIGNAL IS ONLY FOR THIS TEST, AND NEEDS TO

BE INITIALIZED TO 1 ----

 DSP_Rst => DSP_Rst,

 --DSP_Rst, ---- ONLY FOR THIS TEST, USUALLY CONNECTS TO THE

EXTERNAL GPIO PIN THAT IS SOLDERED TO THE DSP TO BE ABLE TO RESET IT,

AND IT IS NOW CONNECTED THROUGH THE HP PROCESS BELOW ----

 Data => Data,

 Addr => Addr,

 Xrqst => Xrqst,

122

 XDat => XDat,

 YDat => YDat,

 BusRqst => BusRqst(4),

 BusCtrl => BusCtrl(4)

);

 ------------------- Instantiate Reset_Cnt_8 -------------------

 Reset_Cnt: Std_Counter

 generic map

 (

 Width => 8

)

 port map (

 clk => OSC_Out,

 rst=> Reset_Cnt_rst,

 INC=> Reset_Cnt_INC,

 Count=> Reset_Cnt_out

);

 ------------------- Instantiate HP -------------------

 HP_Set: Digital_Twin_Hot_Patch_Control

 PORT MAP (

 clk => clk,

123

 rst => System_rst,

 EN => HP_EN,

 DSP1_Act_Out => DSP1_Act_HP_Out,

 DSP_Sync => DSP_Sync_HP,

 Done => HP_Done

);

 ------------------- Instantiate Emu_Ctrl -------------------

 Emu_Ctrl: Digital_Twin_Emulation_Control

 PORT MAP (

 clk => clk,

 rst => System_rst,

 Emu_EN => Emu_EN,

 Data => Data,

 Addr => Addr,

 Xrqst => Xrqst,

 XDat => XDat,

 YDat => YDat,

 BusRqst => BusRqst(3),

124

 BusCtrl => BusCtrl(3),

 -- Phase A

 Emu_SW01_A => Emu_SW01_A,

 Emu_SW02_A => Emu_SW02_A,

 Emu_SW03_A => Emu_SW03_A,

 Emu_SW04_A => Emu_SW04_A,

 Emu_SW05_A => Emu_SW05_A,

 Emu_SW06_A => Emu_SW06_A,

 -- Phase B

 Emu_SW01_B => Emu_SW01_B,

 Emu_SW02_B => Emu_SW02_B,

 Emu_SW03_B => Emu_SW03_B,

 Emu_SW04_B => Emu_SW04_B,

 Emu_SW05_B => Emu_SW05_B,

 Emu_SW06_B => Emu_SW06_B,

 -- Phase C

 Emu_SW01_C => Emu_SW01_C,

 Emu_SW02_C => Emu_SW02_C,

 Emu_SW03_C => Emu_SW03_C,

 Emu_SW04_C => Emu_SW04_C,

 Emu_SW05_C => Emu_SW05_C,

 Emu_SW06_C => Emu_SW06_C,

 Error => Error,

125

 HP_EN => HP_EN

);

 ------------------- Instantiate Firmware Validation_EN -------------------

 FW_Valid: Digital_Twin_Firmware_Validation

 PORT MAP

 (

 clk => clk,

 rst => System_rst,

 Data => Data,

 Addr => Addr,

 Xrqst => Xrqst,

 XDat => XDat,

 YDat => YDat,

 BusRqst => BusRqst(6),

 BusCtrl => BusCtrl(6),

 -- Phase A

 Emu_SW01_A => Emu_SW01_A,

 Emu_SW02_A => Emu_SW02_A,

 Emu_SW03_A => Emu_SW03_A,

 Emu_SW04_A => Emu_SW04_A,

 Emu_SW05_A => Emu_SW05_A,

 Emu_SW06_A => Emu_SW06_A,

126

 -- Phase B

 Emu_SW01_B => Emu_SW01_B,

 Emu_SW02_B => Emu_SW02_B,

 Emu_SW03_B => Emu_SW03_B,

 Emu_SW04_B => Emu_SW04_B,

 Emu_SW05_B => Emu_SW05_B,

 Emu_SW06_B => Emu_SW06_B,

 -- Phase C

 Emu_SW01_C => Emu_SW01_C,

 Emu_SW02_C => Emu_SW02_C,

 Emu_SW03_C => Emu_SW03_C,

 Emu_SW04_C => Emu_SW04_C,

 Emu_SW05_C => Emu_SW05_C,

 Emu_SW06_C => Emu_SW06_C,

 HP_Done => HP_Done,

 Boot_Done => Boot_Done,

 Boot_Wrkn => Boot_Wrkn,

 Emu_EN => Emu_EN,

 HP_EN => HP_EN,

 DSPEnable => DSPEnable,

 Error => Error,

 DSP1_Act => DSP1_Act

127

 --debug_FW_Val_E1 => Debug_FW_Val_E1,

 --debug_FW_Val_E2 => Debug_FW_Val_E2,

 --Debug_FW_Val_E3 => Debug_FW_Val_E3,

 --Debug_FW_Val_E4 => Debug_FW_Val_E4,

 --Debug_FW_Val_E5 => Debug_FW_Val_E5,

 --Debug_FW_Val_EN => Debug_FW_Val_EN

);

 ------------------- Oscillator -------------------

 OSC_Stdby <= '0';

 ------------------- Tie unused ports to '0'-------------------

 BusRqst(9 downto 7) <= (others => '0');

 ------------------- Reset Block1 -------------------

 Reset_Blk1: PROCESS

 BEGIN

 wait until OSC_Out'event and OSC_Out = '1';

 IF (PLL_Lock ='0') THEN

 Reset_Cnt_rst <= '0';

 else

 Reset_Cnt_rst <= '1';

 END IF;

128

 END PROCESS;

 ------------------- Reset Block -------------------

 Reset_Blk: PROCESS

 BEGIN

 wait until OSC_Out'event and OSC_Out = '1';

 IF (Reset_Cnt_out < X"7F") THEN --7F = 127

 System_rst <= '0';

 Reset_Cnt_INC <='1';

 else

 System_rst <= '1';

 Reset_Cnt_INC <='0';

 END IF;

 END PROCESS;

 ------------------- Setting DSP1 assignment and debug signals -------------------

 DSP1_Act_Set: PROCESS

 BEGIN

 wait until clk'event and clk = '1';

 IF (System_rst = '0') THEN

 DSP1_Act <= '1';

 else

 DSP1_Act <= DSP1_Act_HP_Out;

129

 END IF;

 --debug_emu_Q1_Q6_A <= Emu_SW01_A;

 --debug_emu_Q4_Q5_A <= Emu_SW04_A;

 --debug_emu_Q1_Q6_B <= Emu_SW01_B;

 --debug_emu_Q4_Q5_B <= Emu_SW04_B;

 --debug_emu_Q1_Q6_C <= Emu_SW01_C;

 --debug_emu_Q4_Q5_C <= Emu_SW04_C;

 --debug_error <= Error;

 END PROCESS;

 ------------------- Main Routing PROCESS (Combinatorial) -------------------

 PROCESS (SCI_RX, DSP_Rst, DSP_rcv, DSP1_Act)

 BEGIN

 IF (DSP1_Act = '1') THEN

 DSP1_DSPEnable <= '1'; -- Enable the DSP1 to generate the

PWMs

 IF (DIMM_B_GPIO_60 = '1' AND DIMM_B_GPIO_61 = '0')

THEN -- Consider the PWMs only if the DSP outputs are enabled

 ------------------- DSP 1 Active -------------------

 -- Invert signals --

 -- Phase A

 Q1_A <= NOT(DSP1_01_A);

130

 Q2_A <= NOT(DSP1_02_A);

 Q3_A <= NOT(DSP1_03_A);

 Q4_A <= NOT(DSP1_04_A);

 -- Phase B

 Q1_B <= NOT(DSP1_01_B);

 Q2_B <= NOT(DSP1_02_B);

 Q3_B <= NOT(DSP1_03_B);

 Q4_B <= NOT(DSP1_04_B);

 -- Phase C

 Q1_C <= NOT(DSP1_01_C);

 Q2_C <= NOT(DSP1_02_C);

 Q3_C <= NOT(DSP1_03_C);

 Q4_C <= NOT(DSP1_04_C);

 -- Phase A

 SW01_A <= Q1_A;

 SW02_A <= Q2_A;

 SW03_A <= Q3_A;

 SW04_A <= Q4_A;

 SW05_A <= Q4_A; -- Same as PWM 04

 SW06_A <= Q1_A; -- Same as PWM 01

 -- Phase B

 SW01_B <= Q1_B;

131

 SW02_B <= Q2_B;

 SW03_B <= Q3_B;

 SW04_B <= Q4_B;

 SW05_B <= Q4_B; -- Same as PWM 04

 SW06_B <= Q1_B; -- Same as PWM 01

 -- Phase C

 SW01_C <= Q1_C;

 SW02_C <= Q2_C;

 SW03_C <= Q3_C;

 SW04_C <= Q4_C;

 SW05_C <= Q4_C; -- Same as PWM 04

 SW06_C <= Q1_C; -- Same as PWM 01

 ELSE

 -- Phase A

 SW01_A <= '1';

 SW02_A <= '1';

 SW03_A <= '1';

 SW04_A <= '1';

 SW05_A <= '1';

 SW06_A <= '1';

 -- Phase B

 SW01_B <= '1';

 SW02_B <= '1';

132

 SW03_B <= '1';

 SW04_B <= '1';

 SW05_B <= '1';

 SW06_B <= '1';

 -- Phase C

 SW01_C <= '1';

 SW02_C <= '1';

 SW03_C <= '1';

 SW04_C <= '1';

 SW05_C <= '1';

 SW06_C <= '1';

 END IF;

 ------------------- DSP 2 Emulation -------------------

 --DSP 2 Enable DSP

 DSP2_DSPEnable <= DSPEnable;

 -- Phase A

 Emu_SW01_A <= DSP2_01_A;

 Emu_SW02_A <= DSP2_02_A;

 Emu_SW03_A <= DSP2_03_A;

 Emu_SW04_A <= DSP2_04_A;

 Emu_SW05_A <= DSP2_04_A; -- Same as PWM 04

 Emu_SW06_A <= DSP2_01_A; -- Same as PWM 01

133

 -- Phase B

 Emu_SW01_B <= DSP2_01_B;

 Emu_SW02_B <= DSP2_02_B;

 Emu_SW03_B <= DSP2_03_B;

 Emu_SW04_B <= DSP2_04_B;

 Emu_SW05_B <= DSP2_04_B; -- Same as PWM 04

 Emu_SW06_B <= DSP2_01_B; -- Same as PWM 01

 -- Phase C

 Emu_SW01_C <= DSP2_01_C;

 Emu_SW02_C <= DSP2_02_C;

 Emu_SW03_C <= DSP2_03_C;

 Emu_SW04_C <= DSP2_04_C;

 Emu_SW05_C <= DSP2_04_C; -- Same as PWM 04

 Emu_SW06_C <= DSP2_01_C; -- Same as PWM 01

 DIMM_C_GPIO30 <= DSP_Sync_HP;

 DIMM_B_GPIO30 <= DSP_Sync_HP;

 LED_A <= '0';

 LED_B <= '1';

 LED_C <= '1';

134

 LED_D <= '1';

 LED_E <= '1';

 LED_F <= '1';

 LED_G <= '1';

 LED_H <= '1';

 IDC_D_GPIO_02 <= '1'; ---- Reset is active

low, and 1(NO Reset) is routed to pin 00 of IDC B (DSP1 is Active)

 IDC_D_GPIO_03 <= DSP_Rst; ---- DSP_Rst

signal(Bootloader) routed to pin 00 of IDC C (DSP2 is Stand-By)

 -- DSP 1 Active (DIMM_B), communicate through MODBUS,

while DSP 2 is able to bootload

 -- DSP 1 (Modbus)

 DIMM_B_SCI_RX <= SCI_TX_DSP; ---- Stop bit is high,

and is sent to the serial receiver of DIMM B (DSP1 is Active)

 SCI_RX_DSP <= DIMM_B_SCI_TX;

 -- DSP 2 (Bootloading)

 DIMM_C_SCI_RX <= DSP_rcv; ---- DSP_rsv

signal(Bootloader) is routed to the serial receiver of DIMM C (DSP2 is Stand-By)

 DSP_xmt <= DIMM_C_SCI_TX;

135

 IDC_D_GPIO_00 <= DIMM_B_GPIO_32; -- Relay #1

 IDC_D_GPIO_01 <= DIMM_B_GPIO_33; -- Relay #2

 Jinan_01 <= DIMM_B_GPIO_48;

 Jinan_02 <= DIMM_B_GPIO_84;

 Jinan_03 <= DIMM_B_GPIO_86;

 ELSE

 ------------------- DSP 2 Active -------------------

 DSP2_DSPEnable <= '1'; -- Enable the DSP2 to generate the

PWMs

 IF (DIMM_C_GPIO_60 = '1' AND DIMM_C_GPIO_61 = '0')

THEN -- Consider the PWMs only if the DSP outputs are enabled

 -- Invert signals --

 -- Phase A

 Q1_A <= NOT(DSP2_01_A);

 Q2_A <= NOT(DSP2_02_A);

 Q3_A <= NOT(DSP2_03_A);

 Q4_A <= NOT(DSP2_04_A);

 -- Phase B

 Q1_B <= NOT(DSP2_01_B);

 Q2_B <= NOT(DSP2_02_B);

136

 Q3_B <= NOT(DSP2_03_B);

 Q4_B <= NOT(DSP2_04_B);

 -- Phase C

 Q1_C <= NOT(DSP2_01_C);

 Q2_C <= NOT(DSP2_02_C);

 Q3_C <= NOT(DSP2_03_C);

 Q4_C <= NOT(DSP2_04_C);

 -- Phase A

 SW01_A <= Q1_A;

 SW02_A <= Q2_A;

 SW03_A <= Q3_A;

 SW04_A <= Q4_A;

 SW05_A <= Q4_A; -- Same as PWM 04

 SW06_A <= Q1_A; -- Same as PWM 01

 -- Phase B

 SW01_B <= Q1_B;

 SW02_B <= Q2_B;

 SW03_B <= Q3_B;

 SW04_B <= Q4_B;

 SW05_B <= Q4_B; -- Same as PWM 04

 SW06_B <= Q1_B; -- Same as PWM 01

 -- Phase C

137

 SW01_C <= Q1_C;

 SW02_C <= Q2_C;

 SW03_C <= Q3_C;

 SW04_C <= Q4_C;

 SW05_C <= Q4_C; -- Same as PWM 04

 SW06_C <= Q1_C; -- Same as PWM 01

 ELSE

 -- Phase A

 SW01_A <= '1';

 SW02_A <= '1';

 SW03_A <= '1';

 SW04_A <= '1';

 SW05_A <= '1';

 SW06_A <= '1';

 -- Phase B

 SW01_B <= '1';

 SW02_B <= '1';

 SW03_B <= '1';

 SW04_B <= '1';

 SW05_B <= '1';

 SW06_B <= '1';

 -- Phase C

 SW01_C <= '1';

138

 SW02_C <= '1';

 SW03_C <= '1';

 SW04_C <= '1';

 SW05_C <= '1';

 SW06_C <= '1';

 END IF;

 ------------------- DSP 1 Emulation -------------------

 --DSP 1 Enable DSP

 DSP1_DSPEnable <= DSPEnable;

 -- Phase A

 Emu_SW01_A <= DSP1_01_A;

 Emu_SW02_A <= DSP1_02_A;

 Emu_SW03_A <= DSP1_03_A;

 Emu_SW04_A <= DSP1_04_A;

 Emu_SW05_A <= DSP1_04_A;

 Emu_SW06_A <= DSP1_01_A;

 -- Phase B

 Emu_SW01_B <= DSP1_01_B;

 Emu_SW02_B <= DSP1_02_B;

 Emu_SW03_B <= DSP1_03_B;

 Emu_SW04_B <= DSP1_04_B;

 Emu_SW05_B <= DSP1_04_B;

 Emu_SW06_B <= DSP1_01_B;

139

 -- Phase C

 Emu_SW01_C <= DSP1_01_C;

 Emu_SW02_C <= DSP1_02_C;

 Emu_SW03_C <= DSP1_03_C;

 Emu_SW04_C <= DSP1_04_C;

 Emu_SW05_C <= DSP1_04_C;

 Emu_SW06_C <= DSP1_01_C;

 DIMM_C_GPIO30 <= DSP_Sync_HP;

 DIMM_B_GPIO30 <= DSP_Sync_HP;

 LED_A <= '1';

 LED_B <= '0';

 LED_C <= '1';

 LED_D <= '1';

 LED_E <= '1';

 LED_F <= '1';

 LED_G <= '1';

 LED_H <= '1';

 IDC_D_GPIO_02 <= DSP_Rst; ---- DSP_Rst

signal(Bootloader) routed to pin 00 of IDC B (DSP1 is Stand-By)

140

 IDC_D_GPIO_03 <= '1'; ---- Reset is active low, and 1(NO

Reset) is routed to pin 00 of IDC C (DSP2 is Active)

 -- DSP 2 Active (DIMM_C), communicate through MODBUS,

while DSP 1 is able to bootload

 -- DSP 1 (Bootloading)

 DIMM_B_SCI_RX <= DSP_rcv; ---- DSP_rsv

signal(Bootloader) is routed to the serial receiver of DIMM B (DSP1 is Stand-By)

 DSP_xmt <= DIMM_B_SCI_TX;

 -- DSP 2 (Modbus)

 DIMM_C_SCI_RX <= SCI_TX_DSP; ---- Stop bit is high,

and is sent to the serial receiver of DIMM C (DSP2 is Active)

 SCI_RX_DSP <= DIMM_C_SCI_TX;

 IDC_D_GPIO_00 <= DIMM_C_GPIO_32; -- Relay #1

 IDC_D_GPIO_01 <= DIMM_C_GPIO_33; -- Relay #2

 Jinan_01 <= DIMM_C_GPIO_48;

 Jinan_02 <= DIMM_C_GPIO_84;

 Jinan_03 <= DIMM_C_GPIO_86;

 END IF;

141

 IDC_B_GPIO_06 <= '1';

 IDC_B_GPIO_07 <= '1';

 IDC_B_GPIO_08 <= '1';

 IDC_B_GPIO_09 <= '1';

 IDC_B_GPIO_10 <= '1';

 IDC_B_GPIO_11 <= '1';

 IDC_B_GPIO_12 <= '1';

 IDC_B_GPIO_13 <= '1';

 IDC_B_GPIO_14 <= '1';

 IDC_B_GPIO_15 <= '1';

 IDC_B_GPIO_16 <= '1';

 IDC_B_GPIO_17 <= '1';

 IDC_C_GPIO_06 <= '1';

 IDC_C_GPIO_07 <= '1';

 IDC_C_GPIO_08 <= '1';

 IDC_C_GPIO_09 <= '1';

 IDC_C_GPIO_10 <= '1';

 IDC_C_GPIO_11 <= '1';

 END PROCESS;

END Behavioral;

142

A-2: Firmware Validation

--

-- Company: University of Arkansas (NCREPT)

-- Engineer: Estefano Soria and Paulo Custodio

--

-- Create Date: 11/18/2021

-- Project Name: Digital_Twin

-- Module Name: Firmware_Validation

-- Project Name: Digital_Twin_Firmware_Validation

-- Target Devices: LCMXO2-7000HC-4FG484C (UCB v1.4a)

-- Tool versions: Lattice Diamond_x64 Build 3.11

-- Description:

-- This module uses different components to test the firmware and integrates them to generate an

error in case

-- one or more components detects an issue.

--

---- PinOut:

--

-- Revision: V1.1

-- v3.26.22 - Components added: Deadtime, Timer, Fundamental Frequency Detector,

-- v5.26.22 - Polish and comments removed/added

--

143

-- Additional Comments:

--

--

Library IEEE;

Library STD;

use IEEE.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

use ieee.numeric_std.all;

use STD.textio.all;

use IEEE.std_logic_textio.all;

library machxo2;

use machxo2.all;

library work;

use work.Digital_Twin_Common.all;

entity Digital_Twin_Firmware_Validation is

 Port

 (

144

 clk : in STD_LOGIC;

 rst : in STD_LOGIC;

 Data : INOUT std_logic_vector(15 downto 0);

 Addr : OUT std_logic_vector(15 downto 0);

 Xrqst : OUT std_logic;

 XDat : IN std_logic;

 YDat : OUT std_logic;

 BusRqst : OUT std_logic;

 BusCtrl : IN std_logic;

 --Phase A Inputs

 Emu_SW01_A : in std_logic;

 Emu_SW02_A : in std_logic;

 Emu_SW03_A : in std_logic;

 Emu_SW04_A : in std_logic;

 Emu_SW05_A : in std_logic;

 Emu_SW06_A : in std_logic;

 --Phase B Inputs

 Emu_SW01_B : in std_logic;

 Emu_SW02_B : in std_logic;

 Emu_SW03_B : in std_logic;

145

 Emu_SW04_B : in std_logic;

 Emu_SW05_B : in std_logic;

 Emu_SW06_B : in std_logic;

 --Phase C Inputs

 Emu_SW01_C : in std_logic;

 Emu_SW02_C : in std_logic;

 Emu_SW03_C : in std_logic;

 Emu_SW04_C : in std_logic;

 Emu_SW05_C : in std_logic;

 Emu_SW06_C : in std_logic;

 HP_Done : in std_logic; -- Signal coming from DSP_Hot-Patch

module saying that hot-patch is completed

 Boot_Done : in std_logic; -- Signal to inform that the boot loading is done

 Boot_Wrkn : in std_logic; -- Signal to inform that the boot loading is working

 Emu_EN : out std_logic; -- Start the emulation

 HP_EN : out std_logic; -- Signal sent to DSP_Hot-Patch module to

enable HP PROCESS

 DSPEnable : out std_logic; -- Enable the DSP to generate the signals to

emulate

 --Debug_FW_Val: out std_logic;

146

 Error : out std_logic; -- Signal error to stop all other processes

 DSP1_Act : in std_logic

 --debug_FW_Val_E1 : out std_logic;

 --debug_FW_Val_E2 : out std_logic;

 --debug_FW_Val_E3 : out std_logic;

 --debug_FW_Val_E4 : out std_logic;

 --debug_FW_Val_E5 : out std_logic;

 --debug_FW_Val_EN : out std_logic

);

END Digital_Twin_Firmware_Validation;

ARCHITECTURE Behavioral of Digital_Twin_Firmware_Validation is

 type state_type is (

 S0,S1,S2,S3,S4,S5,S6,S7,S8,S9,

 S10,S11,S12,S13,S14,S15,S16,S17,S18,S19,

 S20,S21,S22,S23,S24,S25,S26,S27,S28,S29,

 S30,S31,S32,S33,S34,S35,S36,S37,S38,S39,

 S40,S41,S42,S43,S44,S45,S46,S47,S48,S49,

 S50,S51,S52,S53,S54,S55,S100,S101,S102,S103,S104,S_error

);

147

 signal CS, NS, CS_Chk, NS_Chk, CS_ShCrk, NS_ShCrk, CS_DeadT, NS_DeadT :

state_type;

 -------------------------------- Bad Firmware --------------------------------

 signal Bad_Firmware : std_logic := '0'; -- IF all Bad_FW are OFF THEN Bad_Firmware

is OFF. IF it is ever ON, THEN backup FW is EN.

 -------------------------------- Bus Interface Signals --------------------------------

 signal Bus_Int1_Busy : std_logic := '0';

 signal Bus_Int1_WE : std_logic := '0';

 signal Bus_Int1_RE : std_logic := '0';

 signal Bus_Int1_AddrIn : std_logic_vector (15 downto 0) := (others => '0');

 signal Bus_Int1_DataIn : std_logic_vector (15 downto 0) := (others => '0');

 signal Bus_Int1_DataOut : std_logic_vector (15 downto 0) := (others => '0');

 -------------------------------- Registers --------------------------------

 -- Hot Patch

 signal LD_HP_EN : std_logic := '0'; -- Enable

 signal Temp_HP_EN : std_logic := '0'; -- Enable

 signal LD_HP_Done : std_logic := '0'; -- Done

 signal HP_Done_reg_o : std_logic := '0'; -- Done

148

 -- Bad Firmware: Short Circuit

 signal Bad_FW1 : std_logic := '0';

 -- Bad Firmware: Dead Time

 signal Bad_FW2 : std_logic := '0';

 -- Bad Firmware: Fundamental Frequency

 signal Bad_FW3 : std_logic := '0';

 -- Bad Firmware: Fast Frequency

 signal Bad_FW4 : std_logic := '0';

 -- Bad Firmware: Timer Error

 signal Bad_FW5 : std_logic := '0';

 -- Check

 signal LD_EN_Chk : std_logic := '0';

 signal EN_Chk_reg_o : std_logic := '0';

 signal EN_Chk : std_logic := '0';

 signal LD_Stop_Chk : std_logic := '0';

 signal Temp_Stop_Chk : std_logic := '0';

149

 signal Stop_Chk : std_logic := '0';

 -- Boot

 signal LD_Boot_Done : std_logic := '0';

 signal Boot_Done_reg_o : std_logic := '0';

 signal LD_Boot_Wrkn : std_logic := '0';

 signal Boot_Wrkn_reg_o : std_logic := '0';

 -- Emulation

 signal LD_Emu_EN : std_logic := '0';

 signal Temp_Emu_EN : std_logic := '0';

 -- Hot Patch Command

 signal LD_HP_Cmd : std_logic := '0';

 signal Temp_HP_Cmd : std_logic_vector (15 downto 0) := (others => '0');

 signal HP_Cmd : std_logic_vector (15 downto 0) := (others

=> '0');

 -- Error

 signal LD_Error : std_logic := '0';

 signal Temp_Error : std_logic := '0';

 signal LD_Err_Type : std_logic := '0';

150

 signal Temp_Err_Type : std_logic_vector (15 downto 0) := (others => '0');

 signal Err_Type : std_logic_vector (15 downto 0) := (others => '0');

 -- Variable Data (used to collect data from the Bus)

 signal LD_Vrble_Data : std_logic := '0';

 signal Temp_Vrble_Data : std_logic_vector (15 downto 0) := (others => '0');

 signal Vrble_Data : std_logic_vector (15 downto 0) := (others => '0');

 -- Validation Start

 signal LD_Val_Start : std_logic := '0';

 signal Temp_Val_Start : std_logic := '0';

 signal Val_Start : std_logic := '0';

 -------------------------------- Counters --------------------------------

 -- Bus

 signal CntBus_INC : std_logic := '0';

 signal CntBus_Rst : std_logic := '0';

 signal CntBus_Out : std_logic_vector(15 downto 0) := (others => '0');

 -- Delay

 signal CntDelay_INC : std_logic := '0';

 signal CntDelay_Rst : std_logic := '0';

 signal CntDelay_Out : std_logic_vector(7 downto 0) := (others => '0');

151

 -- PreChk is used to count the fundamental period, to make sure that the erro checkings

keep running for this period

 signal Cnt_PreChk_INC : std_logic := '0';

 signal Cnt_PreChk_Rst : std_logic := '0';

 signal Cnt_PreChk_Out : std_logic_vector(31 downto 0) := (others => '0');

 -------------------------------- End of counters --------------------------------

 -- Fundamental Frequency Error flags

 signal FF_error_SW01_A : std_logic := '0';

 signal FF_error_SW04_A : std_logic := '0';

 signal FF_error_SW01_B : std_logic := '0';

 signal FF_error_SW04_B : std_logic := '0';

 signal FF_error_SW01_C : std_logic := '0';

 signal FF_error_SW04_C : std_logic := '0';

 -- Fundamental Frequency Debug

 --signal debug_FF_detector : std_logic;

 -- Fast Frequency Error flags

 signal FastFrequency_error_SW02_A : std_logic := '0';

 signal FastFrequency_error_SW03_A : std_logic := '0';

 signal FastFrequency_error_SW02_B : std_logic := '0';

 signal FastFrequency_error_SW03_B : std_logic := '0';

152

 signal FastFrequency_error_SW02_C : std_logic := '0';

 signal FastFrequency_error_SW03_C : std_logic := '0';

 -- Timer Done Flag

 signal DisableTimer : std_logic := '0';

 -- DeadTime Error flags

 -- Phase A

 signal Dead_Time_SW_16_45_A : std_logic := '0'; -- Deadtime between

Q1/Q6 and Q4/Q5

 signal Dead_Time_SW_45_16_A : std_logic := '0'; -- Deadtime between

Q4/Q5 and Q1/Q6

 -- Phase B

 signal Dead_Time_SW_16_45_B : std_logic := '0'; -- Deadtime between

Q1/Q6 and Q4/Q5

 signal Dead_Time_SW_45_16_B : std_logic := '0'; -- Deadtime between

Q4/Q5 and Q1/Q6

 -- Phase C

 signal Dead_Time_SW_16_45_C : std_logic := '0'; -- Deadtime between

Q1/Q6 and Q4/Q5

 signal Dead_Time_SW_45_16_C : std_logic := '0'; -- Deadtime between

Q4/Q5 and Q1/Q6

153

 -- Watchdog signals

 signal LD_DisableWatchdog : std_logic := '0';

 signal DisableWatchdogReg : std_logic := '0';

 signal Temp_DisableWatchdog : std_logic := '0';

 -------------------------------- Components --------------------------------

 -- Declare Counter

 COMPONENT Std_Counter is

 generic

 (

 Width : integer --width of counter

);

 PORT

 (

 INC,rst,clk: in std_logic;

 Count: out STD_LOGIC_VECTOR(Width-1 downto 0)

);

 END COMPONENT;

 -- Declare Bus Interface

 COMPONENT Bus_Int

 PORT

154

 (

 clk : IN std_logic;

 rst : IN std_logic;

 DataIn : IN std_logic_vector(15 downto 0);

 DataOut : OUT std_logic_vector(15 downto 0);

 AddrIn : IN std_logic_vector(15 downto 0);

 WE : IN std_logic;

 RE : IN std_logic;

 Busy : OUT std_logic;

 Data : INOUT std_logic_vector(15 downto 0);

 Addr : OUT std_logic_vector(15 downto 0);

 Xrqst : OUT std_logic;

 XDat : IN std_logic;

 YDat : OUT std_logic;

 BusRqst : OUT std_logic;

 BusCtrl : IN std_logic

);

 END COMPONENT;

 -- Declare Deadtime

 COMPONENT Digital_Twin_DeadTime

 PORT

 (

155

 clk : in std_logic;

 rst : in std_logic;

 DeadTime_Enable : in std_logic;

 DeadTimeError : out std_logic;

 Emu_SW01 : in std_logic;

 Emu_SW06 : in std_logic;

 Emu_SW04 : in std_logic;

 Emu_SW05 : in std_logic

);

 END COMPONENT;

 -- Declare Fundamental Frequency Detector

 COMPONENT FF_detector is

 generic (

 maxValue : std_logic_vector(19 downto 0) := X"67C28"; -- 668A0h =

59.5Hz = 420,000 clock cycles + 5,000 margin

 minValue : std_logic_vector(19 downto 0) := X"64D48" -- 64D48h =

60.5Hz = 413,000 clock cycles

);

 port

 (

 --debug_FF_detector : out std_logic;

156

 SW : in std_logic;

 enable_ff_check : in std_logic;

 stop : in std_logic;

 clk : in std_logic;

 rst : in std_logic;

 FF_det_error : out std_logic

);

 END COMPONENT;

 COMPONENT FastFrequency_detector is

 port

 (

 --debug_FF_detector : out std_logic;

 SW : in std_logic;

 enable_ff_check : in std_logic;

 stop : in std_logic;

 clk : in std_logic;

 rst : in std_logic;

 FF_det_error : out std_logic

);

 END COMPONENT;

 COMPONENT timer_detector is

157

 PORT

 (

 enable : in std_logic;

 done : in std_logic;

 clk : in std_logic;

 rst : in std_logic;

 timer_error : out std_logic

);

 END COMPONENT;

 COMPONENT Digital_Twin_ShortCircuit is

 PORT

 (

 -- Inputs

 clk : in std_logic;

 rst : in std_logic;

 ShCrkEnable : in std_logic;

 Cnt_PreChk_Out : in std_logic_vector(31 downto 0);

 Emu_SW01_A : in std_logic;

 Emu_SW04_A : in std_logic;

 Emu_SW05_A : in std_logic;

 Emu_SW06_A : in std_logic;

158

 Emu_SW01_B : in std_logic;

 Emu_SW04_B : in std_logic;

 Emu_SW05_B : in std_logic;

 Emu_SW06_B : in std_logic;

 Emu_SW01_C : in std_logic;

 Emu_SW04_C : in std_logic;

 Emu_SW05_C : in std_logic;

 Emu_SW06_C : in std_logic;

 -- Outputs

 DisableTimer : out std_logic;

 Bad_FW1 : out std_logic

);

 END COMPONENT;

BEGIN

 -- Instantiate Delay_Cnt

 Delay_Cnt: Std_Counter

 generic map

 (

159

 Width => 8

)

 port map(

 clk => clk,

 rst=> CntDelay_rst,

 INC=> CntDelay_INC,

 Count=> CntDelay_Out

);

 -- Instantiate Bus_Cnt

 Bus_Cnt: Std_Counter

 generic map

 (

 Width => 16

)

 port map

 (

 clk => clk,

 rst=> CntBus_rst,

 INC=> CntBus_INC,

 Count=>CntBus_Out

);

160

 -- Instantiate PreChk counter

 Cnt_PreChk: Std_Counter

 generic map

 (

 Width => 32

)

 port map(

 clk => clk,

 rst=> Cnt_PreChk_rst,

 INC=> Cnt_PreChk_INC,

 Count=> Cnt_PreChk_Out

);

 -- Instantiate Bus Interface

 Bus_Int1: Bus_Int

 PORT MAP

 (

 clk => clk,

 rst => rst,

 DataIn => Bus_Int1_DataIn,

 DataOut => Bus_Int1_DataOut,

161

 AddrIn => Bus_Int1_AddrIn,

 WE => Bus_Int1_WE,

 RE => Bus_Int1_RE,

 Busy => Bus_Int1_Busy,

 Data => Data,

 Addr => Addr,

 Xrqst => Xrqst,

 XDat => XDat,

 YDat => YDat,

 BusRqst => BusRqst,

 BusCtrl => BusCtrl

);

 TimerDetector: timer_detector

 PORT MAP(

 enable => EN_Chk_reg_o,

 done => DisableTimer,

 clk => clk,

 rst => rst,

 timer_error => Bad_FW5

);

 -- Instantiate DeadTime betweem Q1/Q6 and Q4/Q5 for Phase A

162

 DeadTime_16_45_A: Digital_Twin_DeadTime

 PORT MAP

 (

 clk => clk,

 rst => rst,

 DeadTime_Enable => EN_Chk_reg_o,

 DeadTimeError => Dead_Time_SW_16_45_A,

 Emu_SW01 => Emu_SW01_A,

 Emu_SW06 => Emu_SW06_A,

 Emu_SW04 => Emu_SW04_A,

 Emu_SW05 => Emu_SW05_A

);

 -- Instantiate DeadTime betweem Q4/Q5 and Q1/Q6 for Phase A

 DeadTime_45_16_A: Digital_Twin_DeadTime

 PORT MAP

 (

 clk => clk,

 rst => rst,

 DeadTime_Enable => EN_Chk_reg_o,

 DeadTimeError => Dead_Time_SW_45_16_A,

163

 Emu_SW01 => Emu_SW04_A,

 Emu_SW06 => Emu_SW05_A,

 Emu_SW04 => Emu_SW01_A,

 Emu_SW05 => Emu_SW06_A

);

 -- Instantiate DeadTime betweem Q1/Q6 and Q4/Q5 for Phase B

 DeadTime_16_45_B: Digital_Twin_DeadTime

 PORT MAP

 (

 clk => clk,

 rst => rst,

 DeadTime_Enable => EN_Chk_reg_o,

 DeadTimeError => Dead_Time_SW_16_45_B,

 Emu_SW01 => Emu_SW01_B,

 Emu_SW06 => Emu_SW06_B,

 Emu_SW04 => Emu_SW04_B,

 Emu_SW05 => Emu_SW05_B

);

164

 -- Instantiate DeadTime betweem Q4/Q5 and Q1/Q6 for Phase B

 DeadTime_45_16_B: Digital_Twin_DeadTime

 PORT MAP

 (

 clk => clk,

 rst => rst,

 DeadTime_Enable => EN_Chk_reg_o,

 DeadTimeError => Dead_Time_SW_45_16_B,

 Emu_SW01 => Emu_SW04_B,

 Emu_SW06 => Emu_SW05_B,

 Emu_SW04 => Emu_SW01_B,

 Emu_SW05 => Emu_SW06_B

);

 -- Instantiate DeadTime betweem Q1/Q6 and Q4/Q5 for Phase C

 DeadTime_16_45_C: Digital_Twin_DeadTime

 PORT MAP

 (

 clk => clk,

 rst => rst,

 DeadTime_Enable => EN_Chk_reg_o,

165

 DeadTimeError => Dead_Time_SW_16_45_C,

 Emu_SW01 => Emu_SW01_C,

 Emu_SW06 => Emu_SW06_C,

 Emu_SW04 => Emu_SW04_C,

 Emu_SW05 => Emu_SW05_C

);

 -- Instantiate DeadTime betweem Q4/Q5 and Q1/Q6 for Phase C

 DeadTime_45_16_C: Digital_Twin_DeadTime

 PORT MAP

 (

 clk => clk,

 rst => rst,

 DeadTime_Enable => EN_Chk_reg_o,

 DeadTimeError => Dead_Time_SW_45_16_C,

 Emu_SW01 => Emu_SW04_C,

 Emu_SW06 => Emu_SW05_C,

 Emu_SW04 => Emu_SW01_C,

 Emu_SW05 => Emu_SW06_C

);

 -- Instantiate Fundamental Frequency Detector for Q1/Q6 (Phase A)

166

 Fundamental_Frequency_Detector_SW01_SW06_A: FF_detector

 PORT MAP

 (

 --debug_FF_detector => open,

 SW => Emu_SW01_A,

 enable_ff_check => EN_Chk_reg_o,

 stop => Stop_Chk,

 clk => clk,

 rst => rst,

 FF_det_error => FF_error_SW01_A

);

 -- Instantiate Fundamental Frequency Detector for Q4/Q5 (Phase A)

 Fundamental_Frequency_Detector_SW04_SW05_A: FF_detector

 PORT MAP

 (

 --debug_FF_detector => open,

 SW => Emu_SW04_A,

 enable_ff_check => EN_Chk_reg_o,

 stop => Stop_Chk,

 clk => clk,

 rst => rst,

 FF_det_error => FF_error_SW04_A

167

);

 -- Instantiate Fundamental Frequency Detector for Q1/Q6 (Phase B)

 Fundamental_Frequency_Detector_SW01_SW06_B: FF_detector

 PORT MAP

 (

 --debug_FF_detector => open,

 SW => Emu_SW01_B,

 enable_ff_check => EN_Chk_reg_o,

 stop => Stop_Chk,

 clk => clk,

 rst => rst,

 FF_det_error => FF_error_SW01_B

);

 -- Instantiate Fundamental Frequency Detector for Q4/Q5 (Phase B)

 Fundamental_Frequency_Detector_SW04_SW05_B: FF_detector

 PORT MAP

 (

 --debug_FF_detector => open,

 SW => Emu_SW04_B,

 enable_ff_check => EN_Chk_reg_o,

 stop => Stop_Chk,

168

 clk => clk,

 rst => rst,

 FF_det_error => FF_error_SW04_B

);

 -- Instantiate Fundamental Frequency Detector for Q1/Q6 (Phase C)

 Fundamental_Frequency_Detector_SW01_SW06_C: FF_detector

 PORT MAP

 (

 --debug_FF_detector => open,

 SW => Emu_SW01_C,

 enable_ff_check => EN_Chk_reg_o,

 stop => Stop_Chk,

 clk => clk,

 rst => rst,

 FF_det_error => FF_error_SW01_C

);

 -- Instantiate Fundamental Frequency Detector for Q4/Q5 (Phase C)

 Fundamental_Frequency_Detector_SW04_SW05_C: FF_detector

 PORT MAP

 (

 --debug_FF_detector => open,

169

 SW => Emu_SW04_C,

 enable_ff_check => EN_Chk_reg_o,

 stop => Stop_Chk,

 clk => clk,

 rst => rst,

 FF_det_error => FF_error_SW04_C

);

 -- Instantiate Fast Frequency Detector for Q2 (Phase A)

 Fast_Frequency_Detector_SW02_A: FastFrequency_detector

 PORT MAP

 (

 --debug_FF_detector => debug_FF_detector,

 SW => Emu_SW02_A,

 enable_ff_check => EN_Chk_reg_o,

 stop => Stop_Chk,

 clk => clk,

 rst => rst,

 FF_det_error => FastFrequency_error_SW02_A

);

 -- Instantiate Fast Frequency Detector for Q3 (Phase A)

170

 Fast_Frequency_Detector_SW03_A: FastFrequency_detector

 PORT MAP

 (

 --debug_FF_detector => open,

 SW => Emu_SW03_A,

 enable_ff_check => EN_Chk_reg_o,

 stop => Stop_Chk,

 clk => clk,

 rst => rst,

 FF_det_error => FastFrequency_error_SW03_A

);

 -- Instantiate Fast Frequency Detector for Q2 (Phase B)

 Fast_Frequency_Detector_SW02_B: FastFrequency_detector

 PORT MAP

 (

 --debug_FF_detector => open,

 SW => Emu_SW02_B,

 enable_ff_check => EN_Chk_reg_o,

 stop => Stop_Chk,

 clk => clk,

 rst => rst,

 FF_det_error => FastFrequency_error_SW02_B

171

);

 -- Instantiate Fast Frequency Detector for Q3 (Phase B)

 Fast_Frequency_Detector_SW03_B: FastFrequency_detector

 PORT MAP

 (

 --debug_FF_detector => open,

 SW => Emu_SW03_B,

 enable_ff_check => EN_Chk_reg_o,

 stop => Stop_Chk,

 clk => clk,

 rst => rst,

 FF_det_error => FastFrequency_error_SW03_B

);

 -- Instantiate Fast Frequency Detector for Q2 (Phase C)

 Fast_Frequency_Detector_SW02_C: FastFrequency_detector

 PORT MAP

 (

 --debug_FF_detector => open,

 SW => Emu_SW02_C,

 enable_ff_check => EN_Chk_reg_o,

 stop => Stop_Chk,

172

 clk => clk,

 rst => rst,

 FF_det_error => FastFrequency_error_SW02_C

);

 -- Instantiate Fast Frequency Detector for Q3 (Phase C)

 Fast_Frequency_Detector_SW03_C: FastFrequency_detector

 PORT MAP

 (

 --debug_FF_detector => open,

 SW => Emu_SW03_C,

 enable_ff_check => EN_Chk_reg_o,

 stop => Stop_Chk,

 clk => clk,

 rst => rst,

 FF_det_error => FastFrequency_error_SW03_C

);

 ShortCircuit : Digital_Twin_ShortCircuit

 PORT MAP

 (

 clk => clk,

 rst => rst,

173

 ShCrkEnable => EN_Chk_reg_o,

 Cnt_PreChk_Out => Cnt_PreChk_Out,

 Emu_SW01_A => Emu_SW01_A,

 Emu_SW04_A => Emu_SW04_A,

 Emu_SW05_A => Emu_SW05_A,

 Emu_SW06_A => Emu_SW06_A,

 Emu_SW01_B => Emu_SW01_B,

 Emu_SW04_B => Emu_SW04_B,

 Emu_SW05_B => Emu_SW05_B,

 Emu_SW06_B => Emu_SW06_B,

 Emu_SW01_C => Emu_SW01_C,

 Emu_SW04_C => Emu_SW04_C,

 Emu_SW05_C => Emu_SW05_C,

 Emu_SW06_C => Emu_SW06_C,

 -- Outputs

 DisableTimer => DisableTimer,

 Bad_FW1 => Bad_FW1

);

174

 -------------------------------- Registers --------------------------------

 Reg_Proc: PROCESS

 BEGIN

 wait until clk'event and clk = '1';

 IF rst = '0' THEN

 HP_Cmd <= (others => '0');

 Err_Type <= (others => '0');

 Vrble_Data<= (others => '0');

 HP_EN <= '0';

 HP_Done_reg_o <= '0';

 EN_Chk_reg_o <= '0';

 Stop_Chk <= '0';

 Boot_Done_reg_o <= '0';

 Boot_Wrkn_reg_o <= '0';

 Emu_EN <= '0';

 Error <= '0';

 Val_Start <= '0';

 DisableWatchdogReg <= '0';

 ELSE

 IF (LD_HP_EN = '1') THEN HP_EN

 <= Temp_HP_EN; END IF;

175

 IF (LD_HP_Done = '1') THEN HP_Done_reg_o

 <= HP_Done; END IF;

 IF (LD_Boot_Done = '1') THEN Boot_Done_reg_o

 <= Boot_Done; END IF;

 IF (LD_Boot_Wrkn = '1') THEN Boot_Wrkn_reg_o

 <= Boot_Wrkn; END IF;

 IF (LD_Emu_EN = '1') THEN Emu_EN

 <= Temp_Emu_EN; END IF;

 IF (LD_HP_Cmd = '1') THEN HP_Cmd

 <= Temp_HP_Cmd; END IF;

 IF (LD_Error = '1') THEN Error

 <= Temp_Error; END IF;

 IF (LD_Err_Type = '1') THEN Err_Type

 <= Temp_Err_Type; END IF;

 IF (LD_Vrble_Data = '1') THEN Vrble_Data

<= Temp_Vrble_Data; END IF;

 IF (LD_Val_Start = '1') THEN Val_Start

<= Temp_Val_Start; END IF;

 IF (LD_EN_Chk = '1') THEN EN_Chk_reg_o

 <= EN_Chk; END IF;

 IF (LD_Stop_Chk = '1') THEN Stop_Chk <=

Temp_Stop_Chk; END IF;

176

 IF (LD_DisableWatchdog = '1') THEN DisableWatchdogReg

 <= Temp_DisableWatchdog; END IF;

 END IF;

 END PROCESS;

 -------------------------------- Deadtime Check --------------------------------

 Deadtime_Check : PROCESS (

 EN_Chk_reg_o,

 Dead_Time_SW_16_45_A,

 Dead_Time_SW_45_16_A,

 Dead_Time_SW_16_45_B,

 Dead_Time_SW_45_16_B,

 Dead_Time_SW_16_45_C,

 Dead_Time_SW_45_16_C

)

 BEGIN

 IF (EN_Chk_reg_o = '1') THEN

 IF ((Dead_Time_SW_16_45_A OR

 Dead_Time_SW_45_16_A OR

 Dead_Time_SW_16_45_B OR

 Dead_Time_SW_45_16_B OR

 Dead_Time_SW_16_45_C OR

 Dead_Time_SW_45_16_C

177

) = '1') THEN

 Bad_FW2 <= '1';

 ELSE

 Bad_FW2 <= '0';

 END IF;

 ELSE

 Bad_FW2 <= '0';

 END IF;

 END PROCESS;

 -------------------------------- Fast Frequency Check --------------------------------

 FastFrequency_Check : PROCESS (

 EN_Chk_reg_o,

 FastFrequency_error_SW02_A,

 FastFrequency_error_SW03_A,

 FastFrequency_error_SW02_B,

 FastFrequency_error_SW03_B,

 FastFrequency_error_SW02_C,

 FastFrequency_error_SW03_C

)

 BEGIN

 IF (EN_Chk_reg_o = '1') THEN

 IF ((FastFrequency_error_SW02_A OR

 FastFrequency_error_SW03_A OR

178

 FastFrequency_error_SW02_B OR

 FastFrequency_error_SW03_B OR

 FastFrequency_error_SW02_C OR

 FastFrequency_error_SW03_C

) = '1') THEN

 Bad_FW4 <= '1';

 ELSE

 Bad_FW4 <= '0';

 END IF;

 ELSE

 Bad_FW4 <= '0';

 END IF;

 END PROCESS;

 -------------------------------- Fundamental Frequency Check --------------------------------

 FF_Check : PROCESS (

 EN_Chk_reg_o,

 FF_error_SW01_A,

 FF_error_SW04_A,

 FF_error_SW01_B,

 FF_error_SW04_B,

 FF_error_SW01_C,

 FF_error_SW04_C

)

179

 BEGIN

 IF (EN_Chk_reg_o = '1') THEN

 IF ((FF_error_SW01_A OR

 FF_error_SW04_A OR

 FF_error_SW01_B OR

 FF_error_SW04_B OR

 FF_error_SW01_C OR

 FF_error_SW04_C) = '1') THEN

 Bad_FW3 <= '1';

 ELSE

 Bad_FW3 <= '0';

 END IF;

 ELSE

 Bad_FW3 <= '0';

 END IF;

 END PROCESS;

 -------------------------------- Bad Firmware Check --------------------------------

 Bad_FW_Check : PROCESS (

 EN_Chk_reg_o,

 Bad_FW1,

 Bad_FW2,

 Bad_FW3,

 Bad_FW4,

180

 Bad_FW5

)

 BEGIN

 IF (EN_Chk_reg_o = '1') THEN

 IF ((Bad_FW1 OR Bad_FW2 OR Bad_FW3 OR Bad_FW4 OR

Bad_FW5) = '1') THEN

 Bad_Firmware <= '1';

 ELSE

 Bad_Firmware <= '0';

 END IF;

 ELSE

 Bad_Firmware <= '0';

 END IF;

 END PROCESS;

 Main: PROCESS (

 CS,

 Bus_Int1_Busy,

 Bus_Int1_DataOut,

 CntDelay_Out,

 CntBus_Out,

181

 Cnt_PreChk_Out,

 Vrble_Data,

 Val_Start,

 Bad_Firmware,

 Boot_Wrkn_reg_o,

 Boot_Done_reg_o,

 Bad_FW1,

 Bad_FW2,

 Bad_FW3,

 Bad_FW4,

 Bad_FW5,

 Err_Type,

 HP_Cmd,

 HP_Done_reg_o

)

 BEGIN

 CntBus_Rst <='1';

 CntDelay_Rst <='1';

 CntBus_INC <='0';

 CntDelay_INC <='0';

 Cnt_PreChk_INC <='0';

 Cnt_PreChk_Rst <='1';

182

 Bus_Int1_AddrIn <= (others => '0');

 Bus_Int1_RE <='0';

 Bus_Int1_DataIn <= (others => '0');

 Bus_Int1_WE <='0';

 Temp_HP_EN <= '0';

 LD_HP_EN <= '0';

 LD_HP_Done <= '0';

 Temp_Emu_EN <= '0';

 LD_Emu_EN <= '0';

 LD_EN_Chk <= '0';

 LD_Boot_Done <= '0';

 LD_Boot_Wrkn <= '0';

 Temp_Stop_Chk <= '0';

 LD_Stop_Chk <= '0';

183

 Temp_HP_Cmd <= (others => '0');

 LD_HP_Cmd <= '0';

 Temp_Error <= '0';

 LD_Error <= '0';

 LD_Err_Type <= '0';

 Temp_Err_Type <= (others => '0');

 LD_Vrble_Data <= '0';

 Temp_Vrble_Data <= (others => '0');

 LD_Val_Start <= '0';

 Temp_Val_Start <= '0';

 Temp_DisableWatchdog <= '0';

 LD_DisableWatchdog <= '0';

 CASE CS IS

 WHEN S0 =>

184

 CntBus_INC <='0';

 CntBus_Rst <='0';

 CntDelay_INC <='0';

 CntDelay_Rst <='0';

 Cnt_PreChk_INC <='0';

 Cnt_PreChk_Rst <='0';

 Temp_HP_EN <= '0';

 LD_HP_EN <= '1';

 Temp_Emu_EN <= '0';

 LD_Emu_EN <= '1';

 EN_Chk <= '0';

 LD_EN_Chk <= '1';

 Temp_Stop_Chk <= '0';

 LD_Stop_Chk <= '1';

 Temp_HP_Cmd <= (others => '0');

 LD_HP_Cmd <= '1';

185

 Temp_Error <= '0';

 LD_Error <= '1';

 Temp_Err_Type <= (others => '0');

 LD_Err_Type <= '1';

 NS <= S1;

 WHEN S1=>

 IF (CntDelay_Out < 40) THEN

 NS<=S1;

 CntDelay_INC <= '1';

 ELSE

 NS<=S2;

 END IF;

 WHEN S2=> -- Wait

 IF(CntBus_Out < 128) THEN

 NS<=S2;

 CntBus_INC<='1';

 ELSE

186

 NS<=S3;

 END IF;

 WHEN S3 => -- Wait for Bus

Control

 IF(Bus_Int1_Busy = '1') THEN

 NS <= S3;

 CntBus_Rst <='0'; -- Reset Bus Counter

 CntDelay_Rst <='0';

 ELSE

 NS <=S4;

 END IF;

 WHEN S4 => -- Request if the

Validation Start button was pressed (Load & Verify)

 Bus_Int1_AddrIn <= Addr_Validation_Start; --

Addr_Validation_Start is a constant from Common file: = X0B08 = 2824

 Bus_Int1_RE <='1';

 NS <= S5;

 WHEN S5 => -- Wait for Bus

Control

 IF(Bus_Int1_Busy = '1') THEN

187

 NS <= S5;

 ELSE

 NS <=S6;

 END IF;

 Temp_Vrble_Data <= Bus_Int1_DataOut;

 LD_Vrble_Data <= '1';

 WHEN S6 => -- Store the data

collected from the BUS to the Validation Start variable

 Temp_Val_Start <= Vrble_Data(0);

 LD_Val_Start <= '1';

 NS <= S7;

 WHEN S7=> -- Reset the Hot-Patch

status

 Bus_Int1_AddrIn <= Addr_HP_Status; -- Addr_HP_Status is a

constant from Common file

 Bus_Int1_DataIn <= X"0000"; -- HP_Stat = 0 (Done/Disabled)

 Bus_Int1_WE <='1';

 NS <= S8;

188

 WHEN S8 => -- Check if the

Validation Start button was pressed, if not, roll back to S0

 IF (Val_Start = '1') THEN

 NS <= S100;

 ELSE

 NS <= S0;

 END IF;

 WHEN S100 => -- Wait for

Bus Control

 IF(Bus_Int1_Busy = '1') THEN

 NS <= S100;

 CntBus_Rst <='0'; -- Reset Bus Counter

 CntDelay_Rst <='0';

 ELSE

 NS <=S101;

 END IF;

 WHEN S101 => -- Request if

watchdog is disabled

 Bus_Int1_AddrIn <= Addr_DisableWatchdog; --

Addr_DisableWatchdog is a constant from Common file: = x0043

 Bus_Int1_RE <='1';

189

 NS <= S102;

 WHEN S102 => -- Wait for

Bus Control

 IF(Bus_Int1_Busy = '1') THEN

 NS <= S102;

 ELSE

 NS <=S103;

 END IF;

 Temp_Vrble_Data <= Bus_Int1_DataOut;

 LD_Vrble_Data <= '1';

 WHEN S103 => -- Store the

data collected from the BUS to the Validation Start variable

 Temp_DisableWatchdog <= Vrble_Data(0);

 LD_DisableWatchdog <= '1';

 NS <= S104;

 WHEN S104 =>

 IF (DisableWatchdogReg = '1') THEN

 NS <= S30;

 ELSE

 NS <= S9;

190

 END IF;

 ----------------------------------- Start the verification process -------------------------------------

 WHEN S9=> -- If the Validation

Start (Load & Verify) button was pressed, start the firmware checking and emulation process

 Temp_HP_EN <= '0'; -- Hot-Patching not enabled

 LD_HP_EN <= '1';

 Temp_Emu_EN <= '1'; -- Enable emulation

 LD_Emu_EN <= '1';

 EN_Chk <= '1'; -- Enable verification

processes

 LD_EN_Chk <= '1';

 NS <= S10;

 WHEN S10 => -- Set HP Status to busy

 Bus_Int1_AddrIn <= Addr_HP_Status;

 Bus_Int1_DataIn <= x"0002";

 Bus_Int1_WE <='1';

191

 NS <= S11;

 WHEN S11 => -- Wait for

Bus Control

 IF(Bus_Int1_Busy = '1') THEN

 NS <= S11;

 ELSE

 NS <=S12;

 END IF;

 WHEN S12 =>

 NS <= S13;

 WHEN S13=> -- Wait for

fundamental period (60Hz) to have enough time for all the validation processes

 IF (Cnt_PreChk_Out < X"47868C0") THEN

 Cnt_PreChk_INC <= '1';

 NS <= S13;

 ELSE

 Cnt_PreChk_INC <= '0';

 NS <= S14;

 END IF;

192

 Temp_HP_EN <= '0';

 LD_HP_EN <= '1';

 Cnt_PreChk_Rst <= '1';

 WHEN S14=> -- Check for

Error. Error signal goes to all Modules

 IF (Bad_Firmware = '1') THEN

 Temp_Error <= '1';

 LD_Error <= '1';

 NS <= S15;

 ELSE

 Temp_Error <= '0';

 LD_Error <= '1';

 NS <= S30;

 END IF;

 ----------------------------------- Start ERROR Procedure --

-

 -- Start Bootload Backup IF needed. Bootloader control may be able to

handle the situation IF it receives the Error signal

 -- Set the Error Type from Bad_FW# into Err_Type

 WHEN S15 =>

193

 IF(Boot_Wrkn_reg_o = '0')THEN

 NS <= S15;

 ELSE

 NS <= S16;

 END IF;

 Temp_Error <= '1';

 LD_Error <= '1';

 Temp_HP_EN <= '0';

 LD_HP_EN <= '1';

 -- Error type

 Temp_Err_Type(0) <= Bad_FW1; -- Short-Circuit

 Temp_Err_Type(1) <= Bad_FW2; -- Deadtime

 Temp_Err_Type(2) <= Bad_FW3; -- Fundamental Frequency

 Temp_Err_Type(3) <= Bad_FW4; -- Fast Frequency (MOSFET 2

and 3)

 Temp_Err_Type(4) <= Bad_FW5; -- Timer

 LD_Err_Type <= '1';

 LD_Boot_Wrkn <= '1';

194

 WHEN S16 => -- Wait for

Bus Control

 IF(Bus_Int1_Busy = '1') THEN

 NS <= S16;

 ELSE

 NS <=S17;

 END IF;

 WHEN S17 => -- Set the

Error Type RAM Reg

 Bus_Int1_AddrIn <= Addr_ERROR;

 Bus_Int1_DataIn <= Err_Type;

 Bus_Int1_WE <='1';

 NS <= S18;

 WHEN S18 => -- Wait for

Bus Control

 IF(Bus_Int1_Busy = '1') THEN

 NS <= S18;

 ELSE

 NS <=S19;

 END IF;

195

 WHEN S19=> -- Set the Error bit on

HP RAM Reg

 Bus_Int1_AddrIn <= Addr_HP_Status; --Addr_HP_Status is a

constant from Common file

 Bus_Int1_DataIn <= X"0003"; -- HP_Stat = 3 (ERROR)

 Bus_Int1_WE <='1';

 NS <= S20;

 WHEN S20 => -- Wait for

Bus Control

 IF(Bus_Int1_Busy = '1') THEN

 NS <= S20;

 ELSE

 NS <=S21;

 END IF;

 LD_Boot_Done <= '1';

 WHEN S21 => -- Wait until

Bootload is done with Backup

 IF(Boot_Done_reg_o = '0')THEN

 NS <= S21;

 ELSE

 NS <= S22;

196

 END IF;

 Temp_HP_EN <= '0';

 LD_HP_EN <= '1';

 LD_Boot_Done <= '1';

 EN_Chk <= '0';

 LD_EN_Chk <= '1';

 Temp_Emu_EN <= '0';

 LD_Emu_EN <= '1';

 Cnt_PreChk_Rst <= '0';

 WHEN S22 => -- Reset Error

to all Modules, Reset Err_Type, and SEND Stop_Chk to all Checks

 Temp_Error <= '0';

 LD_Error <= '1';

 Temp_Err_Type <= (others => '0');

 LD_Err_Type <= '1';

 Temp_Stop_Chk <= '1';

 LD_Stop_Chk <= '1';

 NS <= S23;

 WHEN S23=> -- Reset the validation

start register

197

 Bus_Int1_AddrIn <= Addr_Validation_Start;

 Bus_Int1_DataIn <= X"0000";

 Bus_Int1_WE <='1';

 NS <= S24;

 WHEN S24 => -- Wait for

Bus Control

 IF(Bus_Int1_Busy = '1') THEN

 NS <= S24;

 ELSE

 NS <=S25;

 END IF;

 Temp_Val_Start <= '0';

 LD_Val_Start <= '1';

 WHEN S25=> -- Disable the Hot-

Patch command

 Bus_Int1_AddrIn <= Addr_HP_Cmd;

 Bus_Int1_DataIn <= X"0000"; -- Do not hot-patch: command =

0000

 Bus_Int1_WE <='1';

 NS <= S26;

198

 WHEN S26 => -- Wait for

Bus Control

 IF(Bus_Int1_Busy = '1') THEN

 NS <= S26;

 ELSE

 NS <=S27;

 END IF;

 Temp_HP_Cmd <= (others => '0');

 LD_HP_Cmd <= '0';

 WHEN S27=> -- Reset Hot-Patch

status

 Bus_Int1_AddrIn <= Addr_HP_Status;

 Bus_Int1_DataIn <= X"0000"; -- HP_Status = 0 (Done/Disabled)

 Bus_Int1_WE <='1';

 NS <= S28;

 WHEN S28 => -- Wait for

Bus Control

 IF(Bus_Int1_Busy = '1') THEN

 NS <= S28;

 ELSE

199

 NS <=S29;

 END IF;

 WHEN S29 => -- Wait until

the error process is done

 IF(Bad_Firmware = '1')THEN

 Temp_Stop_Chk <= '1'; -- Stop_Chk = 1 will tell

Check modules to restart and reset their Bad_FW signal to 0.

 LD_Stop_Chk <= '1';

 NS <= S29;

 ELSE

 Temp_Stop_Chk <= '0';

 LD_Stop_Chk <= '1';

 NS <= S0;

 END IF;

 ------------------------------------ END ERROR Procedure --

 WHEN S30=> -- Wait for Bus

Control

 IF(Bus_Int1_Busy = '1') THEN

 NS <= S30;

 ELSE

200

 NS <=S31;

 END IF;

 WHEN S31=> -- If there is no error,

set the Hot-Patch status to Ready

 Bus_Int1_AddrIn <= Addr_HP_Status; --Addr_HP_Status is a

constant from Common file

 Bus_Int1_DataIn <= X"0001"; -- HP_Stat = 1 (Ready)

 Bus_Int1_WE <='1';

 NS <= S32;

 WHEN S32 => -- Wait for

Bus Control

 IF(Bus_Int1_Busy = '1') THEN

 NS <= S32;

 ELSE

 NS <=S33;

 END IF;

 WHEN S33 => -- Read the

Hot-Patch command, waiting for the user to press the Hot-Patch button

 Bus_Int1_AddrIn <= Addr_HP_Cmd;

 Bus_Int1_RE <='1';

201

 NS <= S34;

 WHEN S34 => -- Wait for

Bus Control

 IF(Bus_Int1_Busy = '1') THEN

 NS <= S34;

 ELSE

 NS <=S35;

 END IF;

 Temp_Vrble_Data <= Bus_Int1_DataOut;

 LD_Vrble_Data <= '1';

 WHEN S35=> -- Check for errors

one more time

 IF (Bad_Firmware = '1') THEN

 Temp_Error <= '1';

 LD_Error <= '1';

 NS <= S15;

 ELSE

 Temp_Error <= '0';

 LD_Error <= '1';

202

 NS <= S36;

 END IF;

 WHEN S36 => -- Store the

data collected from bus to the Hot-Patch command register

 Temp_HP_Cmd <= Vrble_Data;

 LD_HP_Cmd <= '1';

 Temp_Emu_EN <= '0';

 LD_Emu_EN <= '1';

 EN_Chk <= '0';

 LD_EN_Chk <= '1';

 NS <= S37;

 WHEN S37 => -- Wait for the

Hot-Patch button to be pressed

 IF (HP_Cmd > X"0000") THEN

 NS <= S38;

 ELSE

 NS <= S30;

 END IF;

 Temp_HP_EN <= '0';

203

 LD_HP_EN <= '1';

 WHEN S38 => -- Check for

errors once more

 IF (Bad_Firmware = '1') THEN

 Temp_Error <= '1';

 LD_Error <= '1';

 NS <= S15;

 ELSE

 Temp_Error <= '0';

 LD_Error <= '1';

 NS <= S39;

 END IF;

 Temp_HP_EN <= '0';

 LD_HP_EN <= '1';

 WHEN S39 => -- Turn

everything off, prepare to hot-patch

 Temp_HP_EN <= '0';

 LD_HP_EN <= '1';

 Cnt_PreChk_Rst <= '0';

 Temp_Stop_Chk <= '1';

204

 LD_Stop_Chk <= '1';

 NS <= S40;

 WHEN S40 => -- Enable Hot-

Patch

 Temp_HP_EN <= '1';

 LD_HP_EN <= '1';

 LD_HP_Done <= '1';

 NS <= S41;

 WHEN S41 =>

 LD_HP_Done <= '1';

 NS <= S42;

 WHEN S42 => -- Wait until

the Hot-Patch is done

 IF (HP_Done_reg_o = '0') THEN

 Temp_HP_EN <= '1';

 NS <= S42;

 ELSE

205

 Temp_HP_EN <= '0';

 NS <= S43;

 END IF;

 LD_HP_EN <= '1';

 LD_HP_Done <= '1';

 WHEN S43 => -- Wait for

Bus Control

 IF(Bus_Int1_Busy = '1') THEN

 NS <= S43;

 ELSE

 NS <=S44;

 END IF;

 WHEN S44 => -- Set Hot-

Patch status to "Done"

 Bus_Int1_AddrIn <= Addr_HP_Status;

 Bus_Int1_DataIn <= X"0000";

 Bus_Int1_WE <='1';

 NS <= S45;

206

 WHEN S45 => -- Wait for

Bus Control

 IF(Bus_Int1_Busy = '1') THEN

 NS <= S45;

 ELSE

 NS <= S46;

 END IF;

 WHEN S46 => -- Reset

Validation Start register

 Bus_Int1_AddrIn <= Addr_Validation_Start;

 Bus_Int1_DataIn <= X"0000";

 Bus_Int1_WE <='1';

 NS <= S47;

 WHEN S47 => -- Wait for

Bus Control

 IF(Bus_Int1_Busy = '1') THEN

 NS <= S47;

 ELSE

 NS <=S48;

 END IF;

 Temp_Val_Start <= '0';

207

 LD_Val_Start <= '1';

 WHEN S48=> -- Reset the Hot-Patch

command register

 Bus_Int1_AddrIn <= Addr_HP_Cmd;

 Bus_Int1_DataIn <= X"0000";

 Bus_Int1_WE <='1';

 NS <= S49;

 WHEN S49 => -- Wait for

Bus Control

 IF(Bus_Int1_Busy = '1') THEN

 NS <= S49;

 ELSE

 NS <=S50;

 END IF;

 Temp_HP_Cmd <= (others => '0');

 LD_HP_Cmd <= '0';

 WHEN S50 => -- Reset Error

Type vector

 Temp_Err_Type <= (others => '0');

208

 LD_Err_Type <= '1';

 NS <= S51;

 WHEN S51 => -- Wait for

Bus Control

 IF(Bus_Int1_Busy = '1') THEN

 NS <= S51;

 ELSE

 NS <=S52;

 END IF;

 WHEN S52 => -- Set Error

Type register to zeros

 Bus_Int1_AddrIn <= Addr_ERROR; --Addr_ERROR is a constant

from Common file

 Bus_Int1_DataIn <= Err_Type;

 Bus_Int1_WE <='1';

 NS <= S53;

 WHEN S53 => -- Wait for

Bus Control

209

 IF(Bus_Int1_Busy = '1') THEN

 NS <= S53;

 ELSE

 NS <=S54;

 END IF;

 WHEN S54 => -- Swtich the

Active DSP register

 Bus_Int1_AddrIn <= Addr_DSP_Active;

 if (DSP1_Act = '1') THEN

 Bus_Int1_DataIn <= X"0000";

 ELSE

 Bus_Int1_DataIn <= X"0001";

 END IF;

 Bus_Int1_WE <='1';

 NS <= S55;

 WHEN S55 => -- Wait for

Bus Control

 IF(Bus_Int1_Busy = '1') THEN

 NS <= S55;

 ELSE

210

 NS <= S0;

 END IF;

 WHEN others =>

 NS <= S0;

 END CASE;

 END PROCESS;

 ----State Sync

 sync_States: PROCESS

 BEGIN

 wait until clk'event and clk = '1';

 IF rst = '0' THEN

 CS <= S0;

 CS_Chk <= S0;

 CS_ShCrk <= S0;

 DSPEnable <= '0';

 ELSE

 CS <= NS;

 CS_Chk <= NS_Chk;

 CS_ShCrk <= NS_ShCrk;

 DSPEnable <= EN_Chk_reg_o;

211

 END IF;

 --debug_FW_Val_E1 <= Bad_FW1;

 --debug_FW_Val_E2 <= Bad_FW2;

 --debug_FW_Val_E3 <= Bad_FW3;

 --debug_FW_Val_E4 <= Bad_FW4;

 --debug_FW_Val_E5 <= Bad_FW5;

 --debug_FW_Val_EN <= EN_Chk_reg_o;

 END PROCESS;

 ----END State Sync

END Behavioral;

A-3: Short-circuit

--

-- Company: University of Arkansas (NCREPT)

-- Engineer: Paulo Custodio

--

-- Create Date: 11/18/2021

-- Project Name: Digital_Twin

-- Module Name: Dead Time

-- Project Name: Digital_Twin_DeadTime

-- Target Devices: LCMXO2-7000HC-4FG484C (UCB v1.4a)

212

-- Tool versions: Lattice Diamond_x64 Build 3.11

-- Description:

-- This project was created to detect a Deadtime error, if the DSP firmware does not have enough

deadtime.

-- To check if the deadtime is sufficient, this project waits for Q1/Q6 to change from 1 to 0, and

start counting until Q4/Q5 change from 0 to 1.

-- After Q4/Q5 became "1", then the counter is compared with the minimum number of clock

cycles (deadtime). If the counter is greater than the minimum number of clock cycles,

-- it means that the deadtime is enough, otherwise it must set the error flag to "1" and stop all

other processes.

-- The delay of 12ms(300,000 clock cycles) on the first state is necessary to ignore random

outputs from the DSP while it's being bootloaded.

---- PinOut:

--

-- Revision

-- v2.15.22 - Debug signal added; Starts with 0 and when the deadtime is enable, should

change to 1.

-- v3.24.22 - Deadtime created as a component to check two different PWMs. Delay added

to ignore the first 12ms of DSP signals

--

-- Additional Comments:

--

--

213

--

Library IEEE;

Library STD;

use IEEE.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

use ieee.numeric_std.all;

use STD.textio.all;

use IEEE.std_logic_textio.all;

library machxo2;

use machxo2.all;

library work;

use work.Digital_Twin_Common.all;

entity Digital_Twin_ShortCircuit is

 Port (

 -- Inputs

 clk : in std_logic;

 rst : in std_logic;

 ShCrkEnable : in std_logic;

214

 Cnt_PreChk_Out : in std_logic_vector(31 downto 0);

 Emu_SW01_A : in std_logic;

 Emu_SW04_A : in std_logic;

 Emu_SW05_A : in std_logic;

 Emu_SW06_A : in std_logic;

 Emu_SW01_B : in std_logic;

 Emu_SW04_B : in std_logic;

 Emu_SW05_B : in std_logic;

 Emu_SW06_B : in std_logic;

 Emu_SW01_C : in std_logic;

 Emu_SW04_C : in std_logic;

 Emu_SW05_C : in std_logic;

 Emu_SW06_C : in std_logic;

 -- Outputs

 DisableTimer : out std_logic;

 Bad_FW1 : out std_logic

);

end Digital_Twin_ShortCircuit;

215

architecture Behavioral of Digital_Twin_ShortCircuit is

 type state_type is (S0, S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S_error);

 signal CS_ShCrk, NS_ShCrk : state_type;

 signal LD_Bad_FW1 : std_logic := '0';

 signal Temp_Bad_FW1 : std_logic := '0';

BEGIN --- BEGIN ---------------------------------------

 -- Error register

 Error: process(clk)

 BEGIN

 if (rising_edge(clk)) then

 if rst = '0' then

 Bad_FW1 <= '0';

 else

 IF (LD_Bad_FW1 = '1') THEN Bad_FW1 <=

Temp_Bad_FW1; END IF;

 end if;

216

 end if;

 end process;

 -------------------------------- Short-Circuit Check --------------------------------

 Short_Circuit_Check : PROCESS

 BEGIN

 LD_Bad_FW1 <= '0';

 Temp_Bad_FW1 <= '0';

 DisableTimer <= '0';

 case CS_ShCrk is

 WHEN S0 =>

 IF (ShCrkEnable = '0') THEN

 NS_ShCrk <= S0;

 ELSE

 NS_ShCrk <= S1;

 END IF;

 Temp_Bad_FW1 <= '0';

 LD_Bad_FW1 <= '1';

 DisableTimer <= '0';

 when S1 => -- Wait for the positive Cycle: Phase A Q1 ON

 if (Emu_SW01_A = '1') then

217

 NS_ShCrk <= S1;

 ELSE

 NS_ShCrk <= S2;

 end if;

 IF (ShCrkEnable = '0') THEN

 NS_ShCrk <= S0;

 END IF;

 when S2 => -- Wait for Q1 and Q6 to be off (Phase A)

 IF (Emu_SW01_A = '0') THEN

 NS_ShCrk <= S2;

 ELSE

 NS_ShCrk <= S3;

 END IF;

 IF (ShCrkEnable = '0') THEN

 NS_ShCrk <= S0;

 END IF;

 when S3 => -- Wait for the positive Cycle: Phase A Q1 ON

 if (Emu_SW01_A = '1') then

 NS_ShCrk <= S3;

 ELSE

 NS_ShCrk <= S4;

218

 end if;

 IF (ShCrkEnable = '0') THEN

 NS_ShCrk <= S0;

 END IF;

 when S4 => -- Wait for Q1 and Q6 to be off (Phase A)

 IF (Emu_SW01_A = '0') THEN

 NS_ShCrk <= S4;

 ELSE

 NS_ShCrk <= S5;

 END IF;

 IF (ShCrkEnable = '0') THEN

 NS_ShCrk <= S0;

 END IF;

 when S5 => -- Wait for the positive Cycle: Phase B Q1 ON

 if (Emu_SW01_B = '1') then

 NS_ShCrk <= S5;

 ELSE

 NS_ShCrk <= S6;

 end if;

 IF (ShCrkEnable = '0') THEN

 NS_ShCrk <= S0;

219

 END IF;

 when S6 => -- Wait for Q1 and Q6 to be off

 IF (Emu_SW01_B = '0') THEN

 NS_ShCrk <= S6;

 ELSE

 NS_ShCrk <= S7;

 END IF;

 IF (ShCrkEnable = '0') THEN

 NS_ShCrk <= S0;

 END IF;

 when S7 => -- Wait for the second positive Cycle: Q1 ON

 if (Emu_SW01_C = '1') then

 NS_ShCrk <= S7;

 ELSE

 NS_ShCrk <= S8;

 end if;

 IF (ShCrkEnable = '0') THEN

 NS_ShCrk <= S0;

 END IF;

 when S8 => -- Wait for Q1 and Q6 to be off

220

 IF (Emu_SW01_C = '0') THEN

 NS_ShCrk <= S8;

 ELSE

 NS_ShCrk <= S9;

 END IF;

 IF (ShCrkEnable = '0') THEN

 NS_ShCrk <= S0;

 END IF;

 WHEN S9 => -- Short circuit test

 ------ Phase A ------

 IF ((Emu_SW04_A AND Emu_SW06_A) = '1')then

 NS_ShCrk <= S_error;

 elsif ((Emu_SW01_A AND Emu_SW05_A) = '1')then

 NS_ShCrk <= S_error;

 -------- Phase B ------

 elsif((Emu_SW04_B AND Emu_SW06_B) = '1')then

 NS_ShCrk <= S_error;

 elsif((Emu_SW01_B AND Emu_SW05_B) = '1')then

 NS_ShCrk <= S_error;

 -------- Phase C ------

 elsif((Emu_SW04_C AND Emu_SW06_C) = '1')then

 NS_ShCrk <= S_error;

221

 elsif((Emu_SW01_C AND Emu_SW05_C) = '1')then

 NS_ShCrk <= S_error;

 else

 NS_ShCrk <= S10;

 END IF;

 IF (ShCrkEnable = '0') THEN

 NS_ShCrk <= S0;

 END IF;

 WHEN S10 =>

 IF (Cnt_PreChk_Out < X"42C1D80") THEN -- Do not stop

checking

 NS_ShCrk <= S9;

 ELSE -- Stop

checking

 NS_ShCrk <= S11;

 END IF;

 IF (ShCrkEnable = '0') THEN

 NS_ShCrk <= S0;

 END IF;

 WHEN S11 => -- Sit and wait

222

 IF (ShCrkEnable = '1') THEN

 NS_ShCrk <= S11;

 ELSE -- Stop

checking

 NS_ShCrk <= S0;

 END IF;

 DisableTimer <= '1';

 WHEN S_error =>

 IF (ShCrkEnable = '1') THEN -- Flag erro, sit and wait

 Temp_Bad_FW1 <= '1';

 LD_Bad_FW1 <= '1';

 NS_ShCrk <= S_error;

 ELSE -- Stop

checking

 NS_ShCrk <= S0;

 END IF;

 DisableTimer <= '1';

 WHEN others =>

 NS_ShCrk <= S0;

 END case;

223

 END PROCESS;

 ------------------- State Sync -------------------

 sync_States: process

 begin

 wait until clk'event and clk = '1';

 if rst = '0' then

 CS_ShCrk <= S0;

 else

 CS_ShCrk <= NS_ShCrk;

 end if;

 end process;

end Behavioral;

A-4: Deadtime

--

-- Company: University of Arkansas (NCREPT)

-- Engineer: Estefano Soria and Paulo Custodio

--

-- Create Date: 11/18/2021

-- Project Name: Digital_Twin

-- Module Name: Dead Time

-- Project Name: Digital_Twin_DeadTime

224

-- Target Devices: LCMXO2-7000HC-4FG484C (UCB v1.4a)

-- Tool versions: Lattice Diamond_x64 Build 3.11

-- Description:

-- This project was created to detect a Deadtime error, if the DSP firmware does not have enough

deadtime.

-- To check if the deadtime is sufficient, this project waits for Q1/Q6 to change from 1 to 0, and

start counting until Q4/Q5 change from 0 to 1.

-- After Q4/Q5 became "1", then the counter is compared with the minimum number of clock

cycles (deadtime). If the counter is greater than the minimum number of clock cycles,

-- it means that the deadtime is enough, otherwise it must set the error flag to "1" and stop all

other processes.

-- The delay of 12ms(300,000 clock cycles) on the first state is necessary to ignore random

outputs from the DSP while it's being bootloaded.

---- PinOut:

--

-- Revision

-- v2.15.22 - Debug signal added; Starts with 0 and when the deadtime is enable, should

change to 1.

-- v3.24.22 - Deadtime created as a component to check two different PWMs. Delay added

to ignore the first 12ms of DSP signals

--

-- Additional Comments:

--

225

--

--

Library IEEE;

Library STD;

use IEEE.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

use ieee.numeric_std.all;

use STD.textio.all;

use IEEE.std_logic_textio.all;

library machxo2;

use machxo2.all;

library work;

use work.Digital_Twin_Common.all;

entity Digital_Twin_DeadTime is

 Port (

 clk : in std_logic;

 rst : in std_logic;

 DeadTime_Enable : in std_logic;

226

 DeadTimeError : out std_logic;

 Emu_SW01 : in std_logic;

 Emu_SW06 : in std_logic;

 Emu_SW04 : in std_logic;

 Emu_SW05 : in std_logic

);

end Digital_Twin_DeadTime;

architecture Behavioral of Digital_Twin_DeadTime is

 type state_type is (S0, S1, S2, S3, S4, S5, S6, S7, S8, S9, S_error, delay);

 signal CS_DeadT, NS_DeadT : state_type;

 --------------------- Signals for Phase A ---------------------

 ---------- Counter -----------

 signal Cnt_DeadT_INC : std_logic := '0';

 signal Cnt_DeadT_Rst : std_logic := '0';

 signal Cnt_DeadT_Out : std_logic_vector(31 downto 0) := (others => '0');

 ---------- Error -----------

 signal Temp_Error : std_logic := '0';

 signal LD_Error : std_logic := '0';

227

 constant numberOfClockCycles :std_logic_vector(7 downto 0) := X"19"; -- 25MHz ->

40ns period

 --declare Std_Counter Component

 component Std_Counter is

 generic (

 Width : integer --width of counter

);

 port (

 INC,rst,clk: in std_logic;

 Count: out STD_LOGIC_VECTOR(Width-1 downto 0)

);

 end component;

BEGIN --- BEGIN ---------------------------------------

 -- Counter to check the deadtime

 Det_Cnt: Std_Counter

 generic map

 (

 Width => 32

228

)

 port map(

 clk => clk,

 rst=> Cnt_DeadT_Rst,

 INC=> Cnt_DeadT_INC,

 Count=> Cnt_DeadT_Out

);

 -- Error register

 Error: process(clk)

 BEGIN

 if (rising_edge(clk)) then

 if rst = '0' then

 DeadTimeError <= '0';

 else

 if (LD_Error = '1') then DeadTimeError <= Temp_Error;

 end if;

 end if;

 end if;

 end process;

 -- Main Process

 Dead_Time : process(

229

 Cnt_DeadT_Out,

 --_Counter_out,

 CS_DeadT,

 Emu_SW01,

 Emu_SW06,

 Emu_SW04,

 Emu_SW05,

 DeadTime_Enable

)

 BEGIN

 LD_Error <= '0';

 Cnt_DeadT_Rst <= '1';

 Cnt_DeadT_INC <= '0';

 case CS_DeadT is

 when S0 => -- Wait until Enable is High

 if(DeadTime_Enable = '0')then

 NS_DeadT <= S0;

 else

 NS_DeadT <= S1;

 end if;

 Cnt_DeadT_Rst <= '0';

230

 Temp_Error <= '0';

 LD_Error <= '1';

 ---- Ignore first cycle ----

 when S1 => -- Wait for the positive Cycle: Q1 ON

 if (Emu_SW01 = '0') then

 NS_DeadT <= S1;

 ELSE

 NS_DeadT <= S2;

 end if;

 IF (DeadTime_Enable = '0') THEN

 NS_DeadT <= S0;

 END IF;

 when S2 => -- Wait for Q1 and Q6 to be off

 IF (Emu_SW01 = '1') THEN

 NS_DeadT <= S2;

 ELSE

 NS_DeadT <= S3;

 END IF;

 IF (DeadTime_Enable = '0') THEN

 NS_DeadT <= S0;

 END IF;

231

 ---- Ignore second cycle ----

 when S3 => -- Wait for the positive Cycle: Q1 ON

 if (Emu_SW01 = '0') then

 NS_DeadT <= S3;

 ELSE

 NS_DeadT <= S4;

 end if;

 IF (DeadTime_Enable = '0') THEN

 NS_DeadT <= S0;

 END IF;

 when S4 => -- Wait for Q1 and Q6 to be off

 IF (Emu_SW01 = '1') THEN

 NS_DeadT <= S4;

 ELSE

 NS_DeadT <= S5;

 END IF;

 IF (DeadTime_Enable = '0') THEN

 NS_DeadT <= S0;

 END IF;

 ---- Prepare to validate ----

 when S5 => -- Wait for the positive Cycle: Q1 ON

232

 if (Emu_SW01 = '0') then

 NS_DeadT <= S5;

 ELSE

 NS_DeadT <= S6;

 end if;

 IF (DeadTime_Enable = '0') THEN

 NS_DeadT <= S0;

 END IF;

 when S6 => -- Wait for Q1 and Q6 to be off

 IF (Emu_SW01 = '1') THEN

 NS_DeadT <= S6;

 ELSE

 NS_DeadT <= S7;

 END IF;

 IF (DeadTime_Enable = '0') THEN

 NS_DeadT <= S0;

 END IF;

 ---- Validate ----

 when S7 => -- While Q1, Q4, Q5 and Q6 are off, count

 IF (Emu_SW04 = '1') THEN

 NS_DeadT <= S8;

 ELSE

233

 NS_DeadT <= S7;

 END IF;

 Cnt_DeadT_INC <= '1';

 IF (DeadTime_Enable = '0') THEN

 NS_DeadT <= S0;

 END IF;

 when S8 => -- Check if the counter > deadtime

 IF (Cnt_DeadT_Out > numberOfClockCycles) THEN

 NS_DeadT <= S9; -- No errors

 ELSE

 NS_DeadT <= S_error;

 END IF;

 IF (DeadTime_Enable = '0') THEN

 NS_DeadT <= S0;

 END IF;

 WHEN S9 => -- Sit and wait

 if (DeadTime_Enable = '1') then

 NS_DeadT <= S9;

 else

 NS_DeadT <= S0;

 end if;

234

 Temp_Error <= '0';

 LD_Error <= '1';

 when S_error => -- Wait until reset or stay in this state holding the error

 IF (DeadTime_Enable = '1') then

 NS_DeadT <= S_error;

 else

 NS_DeadT <= S0;

 end if;

 Temp_Error <= '1';

 LD_Error <= '1';

 when others =>

 NS_DeadT <= S0;

 end case;

 end process;

 ------------------- State Sync -------------------

 sync_States: process

 begin

 wait until clk'event and clk = '1';

 if rst = '0' then

235

 CS_DeadT <= S0;

 else

 CS_DeadT <= NS_DeadT;

 end if;

 end process;

end Behavioral;

A-5: Fast Frequency

--

-- Company: University of Arkansas (NCREPT)

-- Engineer: Paulo Custodio

--

-- Create Date: 01/17/2023

-- Project Name: Digital_Twin

-- Module Name: Fundamental Frequency

-- Project Name: Digital_Twin_Fast_Frequency

-- Target Devices: LCMXO2-7000HC-4FG484C (UCB v1.4a)

-- Tool versions: Lattice Diamond_x64 Build 3.11

-- Description:

-- This project goal is to detect the frequency of the fast frequency transistors and indicate an

error in case the frequency is not close to 42kHz.

236

---- PinOut:

--

-- Revision

--

-- Additional Comments:

--

--

--

Library IEEE;

use IEEE.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

use ieee.numeric_std.all;

entity FastFrequency_detector is

 generic (

 maxValue : std_logic_vector(19 downto 0) := X"00300"; -- Ideal value is 595,

which is 253h

 minValue : std_logic_vector(19 downto 0) := X"00200"

);

 port

 (

 --debug_FF_detector : out std_logic;

237

 SW : in std_logic;

 enable_ff_check : in std_logic;

 stop : in std_logic;

 clk : in std_logic;

 rst : in std_logic;

 FF_det_error : out std_logic

);

end;

architecture BEHAVIOR of FastFrequency_detector is

 --declare Std_Counter Component

 component Std_Counter is

 generic

 (

 Width : integer --width of counter

);

 port(INC,rst,clk: in std_logic;

 Count: out STD_LOGIC_VECTOR(Width-1 downto 0));

 end component;

 -- State signals

238

 type state_type is (S0, S1, S2, S3, S4, S5, S6, S7, S_error);

 signal CS, NS : state_type;

 -- Counter signals

 signal DC_INC : STD_LOGIC := '0';

 signal DC_cnt_out : STD_LOGIC_VECTOR(19 downto 0);

 signal DC_counter_rst : STD_LOGIC := '0';

 signal TimerDelay_INC : STD_LOGIC := '0';

 signal TimerDelay_OUT : STD_LOGIC_VECTOR(31 downto 0);

 signal TimerDelay_RST : STD_LOGIC := '0';

 -- Error signals

 signal FF_det_sig : STD_LOGIC := '0';

 signal LD_FF_det : STD_LOGIC := '0';

 signal det_overflow : STD_LOGIC := '0';

BEGIN

 -- instantiate DC counter

 DC_Cnt: Std_Counter

 generic map

 (

239

 Width => 20

)

 port map(

 clk => clk,

 rst=> DC_counter_rst,

 INC=> DC_INC,

 Count=> DC_cnt_out

);

 TimerDelay: Std_Counter

 generic map

 (

 Width => 32

)

 port map(

 clk => clk,

 rst=> TimerDelay_RST,

 INC=> TimerDelay_INC,

 Count=> TimerDelay_OUT

);

 ----Registers

 Reg_Proc: process

240

 begin

 wait until clk'event and clk = '1';

 if rst = '0' then

 FF_det_error <= '0';

 else

 if (LD_FF_det = '1') then FF_det_error <= FF_det_sig; end if;

 end if;

 end process;

 ----End Registers

 process

 begin

 DC_INC <= '0';

 FF_det_sig <= '0';

 LD_FF_det <= '0';

 DC_counter_rst <= '0';

 TimerDelay_RST <= '0';

 TimerDelay_INC <= '0';

 case CS is

 when S0 => -- Wait for the enable signal from the

Firmware Validation process

 if (enable_ff_check = '0') then

 NS <= S0;

241

 else

 NS <= S1;

 end if;

 when S1 => -- Ignore the first second to ignore transion values

 if (TimerDelay_OUT < X"17D7840") then --17D 7840 =

25,000,000 = 1s

 NS <= S1;

 else

 NS <= S2;

 end if;

 TimerDelay_RST <= '1';

 TimerDelay_INC <= '1';

 IF (enable_ff_check = '0') THEN

 NS <= S0;

 END IF;

 ------------ Synchonization ------------

 when S2 => -- Wait for SW to go high

 if (SW = '0') then

 NS <= S2;

 else

242

 NS <= S3;

 end if;

 DC_counter_rst <= '1';

 IF (enable_ff_check = '0') THEN

 NS <= S0;

 END IF;

 when S3 => -- Wait for SW to go low

 if (SW = '1') then

 NS <= S3;

 else

 NS <= S4;

 end if;

 DC_counter_rst <= '1';

 IF (enable_ff_check = '0') THEN

 NS <= S0;

 END IF;

 ------------ Start ------------

 -- Negatie cycle of the new period

 when S4 => -- Count while is low

 if (SW = '0') then

 NS <= S4;

 else

243

 NS <= S5;

 end if;

 DC_counter_rst <= '1';

 DC_INC <= '1'; -- Count while is low

 IF (enable_ff_check = '0') THEN

 NS <= S0;

 END IF;

 -- Positive cycle of the new period

 when S5 =>

 if (SW = '1') then

 NS <= S5;

 else

 NS <= S6;

 end if;

 DC_counter_rst <= '1'; -- Keep counting while is high

 DC_INC <= '1';

 IF (enable_ff_check = '0') THEN

 NS <= S0;

 END IF;

 -- Counting is over, check if the number of clock cycles are in the

acceptable range

244

 when S6 =>

 if ((minValue < DC_cnt_out) AND (DC_cnt_out < maxValue))

then

 NS <= S7; -- No error

 else

 NS <= S_error; -- Error

 end if;

 DC_counter_rst <= '1';

 IF (enable_ff_check = '0') THEN

 NS <= S0;

 END IF;

 -- Firmware is valid. Wait for the enable to be turned off

 when S7 =>

 if (enable_ff_check = '0') then

 NS <= S0; -- stop checking

 else

 FF_det_sig <= '0';

 LD_FF_det <= '1';

 NS <= S7; -- Wait

 end if;

245

 -- Error detected. Wait for the stop checking from Firmware Validation

process, before going back to S0

 when S_error =>

 if (enable_ff_check = '1') then

 FF_det_sig <= '1'; --Error

 LD_FF_det <= '1';

 NS <= S_error;

 else

 FF_det_sig <= '0';

 LD_FF_det <= '1';

 NS <= S0;

 end if;

 end case;

 end process;

 ----State Sync

 sync_States: process

 begin

 wait until clk'event and clk = '1';

 if rst = '0' then

 CS <= S0;

 --debug_FF_detector <= '0';

246

 else

 CS <= NS;

 --debug_FF_detector <= DC_INC;

 end if;

 end process;

 ----End State Sync

END BEHAVIOR;

A-6: Fundamental Frequency

----------------------------------Fundamental Frequency detector----------------------

--

-- Company: University of Arkansas (NCREPT)

-- Engineer: Paulo Custodio

--

-- Create Date: 03/16/2022

-- Project Name: Digital_Twin

-- Module Name: Fundamental Frequency

-- Project Name: Digital_Twin_Fundamental_Frequency

-- Target Devices: LCMXO2-7000HC-4FG484C (UCB v1.4a)

-- Tool versions: Lattice Diamond_x64 Build 3.11

-- Description:

247

-- This project goal is to detect the frequency of the low frequency transistors and indicate an

error in case the frequency is not close to 60Hz.

---- PinOut:

--

-- Revision

-- v2.15.22 - Debug signal added; Starts with 0 and when the deadtime is enable, should

change to 1.

-- v5.27.22 - Comments and Polish.

--

-- Additional Comments:

--

--

--

Library IEEE;

use IEEE.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

use ieee.numeric_std.all;

entity FF_detector is

 generic (

 maxValue : std_logic_vector(19 downto 0) := X"67C28"; -- 668A0h = 59.5Hz =

420,000 clock cycles + 5,000 margin

248

 minValue : std_logic_vector(19 downto 0) := X"64D48" -- 64D48h = 60.5Hz =

413,000 clock cycles

);

 port

 (

 --debug_FF_detector : out std_logic;

 SW : in std_logic;

 enable_ff_check : in std_logic;

 stop : in std_logic;

 clk : in std_logic;

 rst : in std_logic;

 FF_det_error : out std_logic

);

end;

architecture BEHAVIOR of FF_detector is

 --declare Std_Counter Component

 component Std_Counter is

 generic

 (

 Width : integer --width of counter

249

);

 port(INC,rst,clk: in std_logic;

 Count: out STD_LOGIC_VECTOR(Width-1 downto 0));

 end component;

 -- State signals

 type state_type is (S0, S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S_error);

 signal CS, NS : state_type;

 -- Counter signals

 signal DC_INC : STD_LOGIC := '0';

 signal DC_cnt_out : STD_LOGIC_VECTOR(19 downto 0);

 signal DC_counter_rst : STD_LOGIC := '0';

 -- Error signals

 signal FF_det_sig : STD_LOGIC := '0';

 signal LD_FF_det : STD_LOGIC := '0';

 signal det_overflow : STD_LOGIC := '0';

BEGIN

 -- instantiate DC counter

 DC_Cnt: Std_Counter

250

 generic map

 (

 Width => 20

)

 port map(

 clk => clk,

 rst=> DC_counter_rst,

 INC=> DC_INC,

 Count=> DC_cnt_out

);

 ----Registers

 Reg_Proc: process

 begin

 wait until clk'event and clk = '1';

 if rst = '0' then

 FF_det_error <= '0';

 else

 if (LD_FF_det = '1') then FF_det_error <= FF_det_sig; end if;

 end if;

 end process;

 ----End Registers

251

 process

 begin

 DC_INC <= '0';

 FF_det_sig <= '0';

 LD_FF_det <= '0';

 DC_counter_rst <= '0';

 case CS is

 when S0 => -- Wait for the enable signal from the

Firmware Validation process

 if (enable_ff_check = '0') then

 NS <= S0;

 else

 NS <= S1;

 end if;

 ------------ First ignore cicle ------------

 when S1 => -- Wait for the positive Cycle: Q1 ON

 if (SW = '1') then

 NS <= S1;

 ELSE

 NS <= S2;

 end if;

 IF (enable_ff_check = '0') THEN

252

 NS <= S0;

 END IF;

 when S2 => -- Wait for Q1 and Q6 to be off

 IF (SW = '0') THEN

 NS <= S2;

 ELSE

 NS <= S3;

 END IF;

 IF (enable_ff_check = '0') THEN

 NS <= S0;

 END IF;

 when S3 => -- Wait for the positive Cycle: Q1 ON

 if (SW = '1') then

 NS <= S3;

 ELSE

 NS <= S4;

 end if;

 IF (enable_ff_check = '0') THEN

 NS <= S0;

 END IF;

253

 when S4 => -- Wait for Q1 and Q6 to be off

 IF (SW = '0') THEN

 NS <= S4;

 ELSE

 NS <= S5;

 END IF;

 IF (enable_ff_check = '0') THEN

 NS <= S0;

 END IF;

 when S5 => -- Wait for SW to go low

 if (SW = '1') then

 NS <= S5;

 else

 NS <= S6;

 end if;

 IF (enable_ff_check = '0') THEN

 NS <= S0;

 END IF;

 when S6 => -- Wait for SW to go high

 if (SW = '0') then

 NS <= S6;

254

 else

 NS <= S7;

 end if;

 DC_counter_rst <= '1';

 IF (enable_ff_check = '0') THEN

 NS <= S0;

 END IF;

 ------------ Start ------------

 -- Wait for a new period to start counting

 -- Positive cycle of the new period

 when S7 => -- Count while is high

 if (SW = '1') then

 NS <= S7;

 else

 NS <= S8;

 end if;

 DC_counter_rst <= '1';

 DC_INC <= '1'; -- Count while is high

 IF (enable_ff_check = '0') THEN

 NS <= S0;

 END IF;

 -- Negative cycle of the new period

255

 when S8 =>

 if (SW = '0') then

 NS <= S8;

 else

 NS <= S9;

 end if;

 DC_counter_rst <= '1'; -- Keep counting while is low

 DC_INC <= '1';

 IF (enable_ff_check = '0') THEN

 NS <= S0;

 END IF;

 -- Counting is over, check if the number of clock cycles are in the

acceptable range

 when S9 =>

 if ((minValue < DC_cnt_out) AND (DC_cnt_out < maxValue))

then

 NS <= S10; -- No error

 else

 NS <= S_error; -- Error

 end if;

 DC_counter_rst <= '1';

 IF (enable_ff_check = '0') THEN

256

 NS <= S0;

 END IF;

 -- Firmware is valid. Wait for the enable to be turned off

 when S10 =>

 if (enable_ff_check = '0') then

 NS <= S0; -- stop checking

 else

 FF_det_sig <= '0';

 LD_FF_det <= '1';

 NS <= S10; -- Wait

 end if;

 -- Error detected. Wait for the stop checking from Firmware Validation

process, before going back to S0

 when S_error =>

 if (enable_ff_check = '1') then

 FF_det_sig <= '1'; --Error

 LD_FF_det <= '1';

 NS <= S_error;

 else

 FF_det_sig <= '0';

 LD_FF_det <= '1';

257

 NS <= S0;

 end if;

 end case;

 end process;

 ----State Sync

 sync_States: process

 begin

 wait until clk'event and clk = '1';

 if rst = '0' then

 CS <= S0;

 --debug_FF_detector <= '0';

 else

 CS <= NS;

 --debug_FF_detector <= DC_cnt_out(0);

 end if;

 end process;

 ----End State Sync

END BEHAVIOR;

258

A-7: Watchdog

--

-- Company: University of Arkansas (NCREPT)

-- Engineer: Paulo Custodio and Kelby Haulmark

--

-- Create Date: 03/24/2021

-- Project Name: Digital_Twin

-- Module Name: Timer

-- Project Name: Digital_Twin_Timer

-- Target Devices: LCMXO2-7000HC-4FG484C (UCB v1.4a)

-- Tool versions: Lattice Diamond_x64 Build 3.11

-- Description: This project has the purpose to add a timer to deadtime tests, to limit the firmware

validation test

-- to a certain period of time.

-- The counter should start when the deadtime is enabled, and the timer should stop when the

done signal is received or

-- if it overflows, flagging the error 5.

---- PinOut:

--

-- Revision: V1.1

--

--

--

259

-- Additional Comments:

--

--

Library IEEE;

use IEEE.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

use ieee.numeric_std.all;

Library work;

use work.Digital_Twin_Common.all;

entity timer_detector is

 PORT(

 enable : in std_logic;

 done : in std_logic;

 clk : in std_logic;

 rst : in std_logic;

 timer_error : out std_logic

);

end;

260

architecture BEHAVIOR of timer_detector is

 --declare Std_Counter Component

 component Std_Counter is

 generic

 (

 Width : integer --width of counter

);

 port(INC,rst,clk: in std_logic;

 Count: out STD_LOGIC_VECTOR(Width-1 downto 0));

 end component;

--constant requirement : integer := 20; -- Number of clock cycles needed to meet freq

type state_type is (S0, S1, S2, S3, S4);

signal CS, NS : state_type;

signal det_INC : STD_LOGIC := '0';

signal det_cnt_out : STD_LOGIC_VECTOR(31 downto 0);

signal counter_rst : STD_LOGIC := '0';

signal hp_det_sig : STD_LOGIC := '0';

signal LD_hp_det : STD_LOGIC := '0';

261

signal det_overflow : STD_LOGIC := '0';

begin

 Det_Cnt: Std_Counter

 generic map

 (

 Width => 32

)

 port map(

 clk => clk,

 rst=> counter_rst,

 INC=> det_INC,

 Count=> det_cnt_out

);

 ----Registers

 Reg_Proc: process

 begin

 wait until clk'event and clk = '1';

 if rst = '0' then

 timer_error <= '0';

 else

262

 if (LD_hp_det = '1') then timer_error <= hp_det_sig; end if;

 end if;

 end process;

 ----End Registers

 Main: process (CS, enable, det_overflow, done)

 begin

 counter_rst <= '1';

 hp_det_sig <= '0';

 LD_hp_det <= '0';

 det_INC <= '0';

 case CS is

 when S0 =>

 if (enable = '0') then

 NS <= S0;

 else

 NS <= S1; -- When enable is 1, start to count.

 end if;

 counter_rst <= '0';

 LD_hp_det <= '1';

 when S1 =>

263

 if (done OR det_overflow) = '1' then -- Wait for the done signal or

the overflow

 NS <= S2;

 else

 NS <= S1;

 end if;

 det_INC <= '1';

 IF (enable = '0') THEN

 NS <= S0;

 END IF;

 when S2 =>

 if (det_overflow = '1') then

 hp_det_sig <= '1';

 NS <= S3; --Error

 else -- Done without overflow

 hp_det_sig <= '0';

 NS <= S4; -- Ok

 end if;

 LD_hp_det <= '1';

 IF (enable = '0') THEN

 NS <= S0;

 END IF;

264

 when S3 => --error

 if (enable = '1') then

 NS <= S3;

 else

 NS <= S0;

 end if;

 hp_det_sig <= '1';

 LD_hp_det <= '1';

 when S4 => -- Sit and wait.

 if (enable = '1') then

 NS <= S4;

 else

 NS <= S0;

 end if;

 hp_det_sig <= '0';

 LD_hp_det <= '1';

 end case;

 end process;

 freq_overflow : process(det_cnt_out)

265

 begin

 -- Counter becomes bigger than freq range so throw flag

 if (det_cnt_out > X"43B5FC0") then -- 2FAF080 = 2s

 det_overflow <= '1';

 else

 det_overflow <= '0';

 end if;

 end process;

 ----State Sync

 sync_States: process

 begin

 wait until clk'event and clk = '1';

 if rst = '0' then

 CS <= S0;

 else

 CS <= NS;

 end if;

 end process;

 ----End State Sync

END BEHAVIOR;

266

A-8: Emulation (Digital Twin)

--

-- Company: University of Arkansas (NCREPT)

-- Engineer: Estefano Soria and Paulo Custodio

--

-- Create Date: 11/18/2021

-- Project Name: Digital_Twin

-- Module Name: Emulation_Control

-- Design Name: Digital_Twin_Emulation_Control

-- Target Devices: LCMXO2-7000HC-4FG484C (UCB v1.4a)

-- Tool versions: Lattice Diamond_x64 Build 3.11

-- Description:

-- This project was first design to emulate the phase-to-phase voltage of a two-level inverter.

-- Then, it was modified to emulate an ANPC inverter that is used on solar farms.

-- It must capture 192 samples, catching each sample every 2500 clock cyles (resolution) and

data will be stored into RAM memory, so the LabVIEW is able to read

-- the RAM memory and display the data, showing the ANPC inverter output.

---- PinOut:

--

-- Revision

--

--

267

--

-- Additional Comments:

-- v5.25.22 - Modified the whole project to an ANPC inverter.

--

--

Library IEEE;

Library STD;

use IEEE.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

use ieee.numeric_std.all;

use STD.textio.all;

use IEEE.std_logic_textio.all;

library machxo2;

use machxo2.all;

library work;

use work.Digital_Twin_Common.all;

ENTITY Digital_Twin_Emulation_Control IS

 PORT (

268

 clk : in STD_LOGIC;

 rst : in STD_LOGIC;

 Emu_EN : in std_logic;

 Data : INOUT std_logic_vector(15 downto 0);

 Addr : OUT std_logic_vector(15 downto 0);

 Xrqst : OUT std_logic;

 XDat : IN std_logic;

 YDat : OUT std_logic;

 BusRqst : OUT std_logic;

 BusCtrl : IN std_logic;

 --Phase A Inputs

 Emu_SW01_A : in std_logic;

 Emu_SW02_A : in std_logic;

 Emu_SW03_A : in std_logic;

 Emu_SW04_A : in std_logic;

 Emu_SW05_A : in std_logic;

 Emu_SW06_A : in std_logic;

 --Phase B Inputs

 Emu_SW01_B : in std_logic;

269

 Emu_SW02_B : in std_logic;

 Emu_SW03_B : in std_logic;

 Emu_SW04_B : in std_logic;

 Emu_SW05_B : in std_logic;

 Emu_SW06_B : in std_logic;

 --Phase C Inputs

 Emu_SW01_C : in std_logic;

 Emu_SW02_C : in std_logic;

 Emu_SW03_C : in std_logic;

 Emu_SW04_C : in std_logic;

 Emu_SW05_C : in std_logic;

 Emu_SW06_C : in std_logic;

 Error : in STD_LOGIC;

 HP_EN : in STD_LOGIC

);

END Digital_Twin_Emulation_Control;

ARCHITECTURE Behavioral OF Digital_Twin_Emulation_Control IS

-- START SIGNAL AND COMPONENT DECLARATIONS ---

270

 TYPE state_type IS

 (

 S0,S1,S2,S3,S4,S5,S6,S7,S8,S9,S10,

 S11,S12,S13,S14,S15,S16,S17,S18,S19,S20,

 S21,S22,S23,S24,S25,S26,S27,S28,S29,S30,

 S31,S32,S33,S34,S35,S36,S37,S38,S39,S40,

 S41,S42,S43,S44,S45,S46,S47,S48,S49,S50,

 S51,S52,S53,S54,S55,S56,S57,S58,S59,S60,

 S61,S62,S63,S64,S65,S66,S67

);

 signal CS, NS, CSA, NSA, CSB, NSB, CSC, NSC, NS_Fsw, CSab, NSab, CSbc, NSbc,

CSca, NSca : state_type;

 ------------------- Other Signals -------------------

 signal EN : std_logic := '0'; -- Enable

 --Bus Interface Signals

 signal Bus_Int1_WE : std_logic := '0';

 signal Bus_Int1_RE : std_logic := '0';

 signal Bus_Int1_Busy : std_logic := '0';

 signal Bus_Int1_AddrIn : std_logic_vector (15 downto 0) := (others => '0');

271

 signal Bus_Int1_DataIn : std_logic_vector (15 downto 0) := (others => '0');

 signal Bus_Int1_DataOut : std_logic_vector (15 downto 0) := (others => '0');

 -- Va FIFO Signals

 signal STD_FIFO_Va_Full : std_logic := '0';

 signal STD_FIFO_Va_Empty : std_logic := '0';

 signal STD_FIFO_Va_WriteEn : std_logic := '0';

 signal STD_FIFO_Va_ReadEn : std_logic := '0';

 signal STD_FIFO_Va_DataIn : std_logic_vector (15 downto 0) := (others => '0');

 signal STD_FIFO_Va_DataOut : std_logic_vector (15 downto 0) := (others => '0');

 -- Vb FIFO Signals

 signal STD_FIFO_Vb_Full : std_logic := '0';

 signal STD_FIFO_Vb_Empty : std_logic := '0';

 signal STD_FIFO_Vb_WriteEn : std_logic := '0';

 signal STD_FIFO_Vb_ReadEn : std_logic := '0';

 signal STD_FIFO_Vb_DataIn : std_logic_vector (15 downto 0) := (others => '0');

 signal STD_FIFO_Vb_DataOut : std_logic_vector (15 downto 0) := (others => '0');

 -- Vc FIFO Signals

 signal STD_FIFO_Vc_Full : std_logic := '0';

 signal STD_FIFO_Vc_Empty : std_logic := '0';

 signal STD_FIFO_Vc_WriteEn : std_logic := '0';

272

 signal STD_FIFO_Vc_ReadEn : std_logic := '0';

 signal STD_FIFO_Vc_DataIn : std_logic_vector (15 downto 0) := (others => '0');

 signal STD_FIFO_Vc_DataOut : std_logic_vector (15 downto 0) := (others => '0');

 ----------- Data Distribution Counters -----------

 -- Bus Counter Delay

 -- 8 bit

 signal CntBus_INC : std_logic := '0';

 signal CntBus_Rst : std_logic := '0';

 signal CntBus_Out : std_logic_vector(7 downto 0) := (others => '0');

 -- Start Data Traffic Counter Delay

 -- 8 bit

 signal CntDelay_INC : std_logic := '0';

 signal CntDelay_Rst : std_logic := '0';

 signal CntDelay_Out : std_logic_vector(7 downto 0) := (others => '0');

 -- 192 FIFO Reg Counter to Save Emu Data

 -- 8 bit

 signal Cnt_LeadReg_INC : std_logic := '0';

 signal Cnt_LeadReg_Rst : std_logic := '0';

273

 signal Cnt_LeadReg_Out : std_logic_vector(7 downto 0) := (others => '0');

 -- 192 Reg Counter to Save Emu Data from FIFO to RAM

 --8 bit

 signal Cnt_FollowReg_INC : std_logic := '0';

 signal Cnt_FollowReg_Rst : std_logic := '0';

 signal Cnt_FollowReg_Out : std_logic_vector(7 downto 0) := (others => '0');

 -- PreScale Counter

 -- 16 bit

 signal Cnt_Scale_INC : std_logic := '0';

 signal Cnt_Scale_Rst : std_logic := '0';

 signal Cnt_Scale_Out : std_logic_vector(15 downto 0) := (others => '0');

 ------------------- Registers -------------------

 ----------- Freq Calculations -----------

 -----------VAN %DC-----------

 -- Van Duty Cycle

 signal LD_Van_DC : std_logic := '0';

 signal Temp_Van_DC : std_logic_vector (7 downto 0) := (others => '0');

274

 signal Van_DC : std_logic_vector (7 downto 0) := (others => '0');

 -----------VBN %DC-----------

 -- Vbn Duty Cycle

 signal LD_Vbn_DC : std_logic := '0';

 signal Temp_Vbn_DC : std_logic_vector (7 downto 0) := (others => '0');

 signal Vbn_DC : std_logic_vector (7 downto 0) := (others => '0');

 -----------VCN %DC-----------

 -- Vcn Duty Cycle

 signal LD_Vcn_DC : std_logic := '0';

 signal Temp_Vcn_DC : std_logic_vector (7 downto 0) := (others => '0');

 signal Vcn_DC : std_logic_vector (7 downto 0) := (others => '0');

 ----------------------------- Data Distribution -----------------------------------

 -- Variable Data Register

 signal LD_Vrble_Data : std_logic := '0';

 signal Temp_Vrble_Data : std_logic_vector (15 downto 0) := (others => '0');

 signal Vrble_Data : std_logic_vector (15 downto 0) := (others => '0');

275

 -- Start Emu DataLogging Register

 signal LD_Emu_DL_Start : std_logic := '0';

 signal Temp_Emu_DL_Start : std_logic := '0';

 signal Emu_DL_Start : std_logic := '0';

 -- Scale Ref Register Used for Scale Counter (Latched from PreScale Reg)

 constant Scale_Ref : std_logic_vector (15 downto 0) := X"09C4"; --

Scale: 09C4h = 2500 clock cycles. Every 2500 clock cycles, one sample will be collected from

the DSP signals

 constant numberOfSamples : std_logic_vector (7 downto 0) := X"C0";

-- From each phase, 192(C0h) samples will be collected

 -- Emu Va, Vb, Vc Sampling Registers (Sample based on Scale Counter)

 signal LD_Va_Samp : std_logic := '0';

 signal Temp_Va_Samp : std_logic_vector (15 downto 0) := (others => '0');

 signal Va_Samp : std_logic_vector (15 downto 0) := (others

=> '0');

 signal LD_Vb_Samp : std_logic := '0';

 signal Temp_Vb_Samp : std_logic_vector (15 downto 0) := (others => '0');

 signal Vb_Samp : std_logic_vector (15 downto 0) := (others

=> '0');

276

 signal LD_Vc_Samp : std_logic := '0';

 signal Temp_Vc_Samp : std_logic_vector (15 downto 0) := (others => '0');

 signal Vc_Samp : std_logic_vector (15 downto 0) := (others

=> '0');

 -- Emu Va, Vb, Vc RAM Starting Address Latched from Common Constants

 signal LD_Addr_Va_Start : std_logic := '0';

 signal Temp_Addr_Va_Start : std_logic_vector (15 downto 0) := (others => '0');

 signal Addr_Va_Start : std_logic_vector (15 downto 0) := (others

=> '0');

 signal LD_Addr_Vb_Start : std_logic := '0';

 signal Temp_Addr_Vb_Start : std_logic_vector (15 downto 0) := (others => '0');

 signal Addr_Vb_Start : std_logic_vector (15 downto 0) := (others

=> '0');

 signal LD_Addr_Vc_Start : std_logic := '0';

 signal Temp_Addr_Vc_Start : std_logic_vector (15 downto 0) := (others => '0');

 signal Addr_Vc_Start : std_logic_vector (15 downto 0) := (others

=> '0');

277

 -- PROCESS EN Registers

 signal LD_EN : std_logic := '0';

 signal Temp_EN : std_logic := '0';

 ------------------- Component Declarations (FIFO, Bus_Int, Counters) -------------------------

 -- STD_FIFO

 COMPONENT STD_FIFO

 Generic

 (

 DATA_WIDTH : integer; -- Width of FIFO

 FIFO_DEPTH : integer; -- Depth of FIFO

 FIFO_ADDR_LEN : integer -- Required number of bits to

represent FIFO_Depth

);

 Port

 (

 CLK : in STD_LOGIC;

 RST : in STD_LOGIC;

 WriteEn : in STD_LOGIC;

278

 DataIn : in STD_LOGIC_VECTOR (DATA_WIDTH - 1 downto 0);

 ReadEn : in STD_LOGIC;

 DataOut : out STD_LOGIC_VECTOR (DATA_WIDTH - 1 downto 0);

 Empty : out STD_LOGIC;

 Full : out STD_LOGIC

);

 END COMPONENT;

 -- Bus Interface

 COMPONENT Bus_Int

 PORT

 (

 clk : IN std_logic;

 rst : IN std_logic;

 DataIn : IN std_logic_vector(15 downto 0);

 DataOut : OUT std_logic_vector(15 downto 0);

 AddrIn : IN std_logic_vector(15 downto 0);

 WE : IN std_logic;

 RE : IN std_logic;

 Busy : OUT std_logic;

 Data : INOUT std_logic_vector(15 downto 0);

 Addr : OUT std_logic_vector(15 downto 0);

 Xrqst : OUT std_logic;

279

 XDat : IN std_logic;

 YDat : OUT std_logic;

 BusRqst : OUT std_logic;

 BusCtrl : IN std_logic

);

 END COMPONENT;

 --Declare Counter Component

 component Std_Counter

 generic

 (

 Width : integer --width of counter

);

 port

 (

 INC,rst,clk: in std_logic;

 Count: out STD_LOGIC_VECTOR(Width-1 downto 0)

);

 END component;

280

 -- END SIGNAL AND COMPONENT

DECLARATIONS--

BEGIN --- BEGIN ---------------------------------------

 --Instantiate STD_FIFO for Va

 STD_FIFO_Va: STD_FIFO

 Generic Map

 (

 DATA_WIDTH => 16, -- Width of FIFO

 FIFO_DEPTH => 200, -- Depth of FIFO

 FIFO_ADDR_LEN => 9 -- Required number of bits to represent FIFO_Depth

)

 Port Map

 (

 CLK => clk,

 RST => rst,

 WriteEn => STD_FIFO_Va_WriteEn,

 DataIn => STD_FIFO_Va_DataIn,

 ReadEn => STD_FIFO_Va_ReadEn,

 DataOut => STD_FIFO_Va_DataOut,

 Empty => STD_FIFO_Va_Empty,

281

 Full => STD_FIFO_Va_Full

);

 --Instantiate STD_FIFO for Vb

 STD_FIFO_Vb: STD_FIFO

 Generic Map

 (

 DATA_WIDTH => 16, -- Width of FIFO

 FIFO_DEPTH => 200, -- Depth of FIFO

 FIFO_ADDR_LEN => 9 -- Required number of bits to represent FIFO_Depth

)

 Port Map

 (

 CLK => clk,

 RST => rst,

 WriteEn => STD_FIFO_Vb_WriteEn,

 DataIn => STD_FIFO_Vb_DataIn,

 ReadEn => STD_FIFO_Vb_ReadEn,

 DataOut => STD_FIFO_Vb_DataOut,

 Empty => STD_FIFO_Vb_Empty,

 Full => STD_FIFO_Vb_Full

);

282

 --Instantiate STD_FIFO for Vc

 STD_FIFO_Vc: STD_FIFO

 Generic Map

 (

 DATA_WIDTH => 16, -- Width of FIFO

 FIFO_DEPTH => 200, -- Depth of FIFO

 FIFO_ADDR_LEN => 9 -- Required number of bits to represent FIFO_Depth

)

 Port Map

 (

 CLK => clk,

 RST => rst,

 WriteEn => STD_FIFO_Vc_WriteEn,

 DataIn => STD_FIFO_Vc_DataIn,

 ReadEn => STD_FIFO_Vc_ReadEn,

 DataOut => STD_FIFO_Vc_DataOut,

 Empty => STD_FIFO_Vc_Empty,

 Full => STD_FIFO_Vc_Full

);

 --Instantiate Bus Interface

 Bus_Int1: Bus_Int

283

 PORT MAP

 (

 clk => clk,

 rst => rst,

 DataIn => Bus_Int1_DataIn,

 DataOut => Bus_Int1_DataOut,

 AddrIn => Bus_Int1_AddrIn,

 WE => Bus_Int1_WE,

 RE => Bus_Int1_RE,

 Busy => Bus_Int1_Busy,

 Data => Data,

 Addr => Addr,

 Xrqst => Xrqst,

 XDat => XDat,

 YDat => YDat,

 BusRqst => BusRqst,

 BusCtrl => BusCtrl

);

 -- Bus Counter Delay

 CounterBus: Std_Counter

 generic map

 (

284

 Width => 8

)

 port map(

 INC => CntBus_INC,

 rst => CntBus_Rst,

 clk => clk,

 Count => CntBus_Out

);

 -- Start Data Traffic Counter Delay

 CounterDelay: Std_Counter

 generic map

 (

 Width => 8

)

 port map(

 INC => CntDelay_INC,

 rst => CntDelay_Rst,

 clk => clk,

 Count => CntDelay_Out

);

285

 -- 192 FIFO Reg Counter to Save Emu Data

 Counter_LeadReg: Std_Counter

 generic map

 (

 Width => 8

)

 port map(

 INC => Cnt_LeadReg_INC,

 rst => Cnt_LeadReg_Rst,

 clk => clk,

 Count => Cnt_LeadReg_Out

);

 -- PreScale Counter

 Counter_Scale: Std_Counter

 generic map

 (

 Width => 16

)

 port map

 (

 INC => Cnt_Scale_INC,

 rst => Cnt_Scale_Rst,

286

 clk => clk,

 Count => Cnt_Scale_Out

);

 -- 192 Reg Counter to Save Emu Data from FIFO to RAM

 Counter_FollowReg: Std_Counter

 generic map

 (

 Width => 8

)

 port map

 (

 INC => Cnt_FollowReg_INC,

 rst => Cnt_FollowReg_Rst,

 clk => clk,

 Count => Cnt_FollowReg_Out

);

 ------------------- Registers -------------------

 Reg_Proc: PROCESS

 BEGIN

 wait until clk'event and clk = '1';

287

 IF rst = '0' THEN

 Van_DC <= (others => '0');

 Vbn_DC <= (others => '0');

 Vcn_DC <= (others => '0');

 --Data Distribution

 Vrble_Data<= (others => '0');

 Va_Samp<= (others => '0');

 Vb_Samp<= (others => '0');

 Vc_Samp<= (others => '0');

 Addr_Va_Start<= (others => '0');

 Addr_Vb_Start<= (others => '0');

 Addr_Vc_Start<= (others => '0');

 Emu_DL_Start<= '0';

 EN <= '0';

 ELSE

 -- Load the data every rising edge.

 IF (LD_Van_DC = '1') THEN Van_DC <=

Temp_Van_DC; END if;

288

 IF (LD_Vbn_DC = '1') THEN Vbn_DC <=

Temp_Vbn_DC; END if;

 IF (LD_Vcn_DC = '1') THEN Vcn_DC <=

Temp_Vcn_DC; END if;

 --Data Distribution

 IF (LD_Vrble_Data = '1') THEN Vrble_Data <= Temp_Vrble_Data;

 END if;

 IF (LD_Emu_DL_Start = '1') THEN Emu_DL_Start <=

Temp_Emu_DL_Start; END if;

 IF (LD_Va_Samp = '1') THEN Va_Samp <=

Temp_Va_Samp; END if;

 IF (LD_Vb_Samp = '1') THEN Vb_Samp <=

Temp_Vb_Samp; END if;

 IF (LD_Vc_Samp = '1') THEN Vc_Samp <=

Temp_Vc_Samp; END if;

 IF (LD_Addr_Va_Start = '1') THEN Addr_Va_Start <=

Temp_Addr_Va_Start; END if;

 IF (LD_Addr_Vb_Start = '1') THEN Addr_Vb_Start <=

Temp_Addr_Vb_Start; END if;

 IF (LD_Addr_Vc_Start = '1') THEN Addr_Vc_Start <=

Temp_Addr_Vc_Start; END if;

289

 IF (LD_EN = '1') THEN EN <=

Temp_EN ; END if;

 END IF;

 END PROCESS;

 ------------------- END Registers -------------------

 Va_Duty_Cycle: PROCESS(CSA, EN, Emu_SW01_A, Emu_SW02_A, Emu_SW03_A,

Emu_SW04_A)

 BEGIN

 LD_Van_DC <= '0';

 Temp_Van_DC <= (others => '0');

 case CSA is

 when S0 =>

 IF (EN <= '0')THEN

 NSA<=S0;

 ELSE

 NSA<=S1;

 END IF;

290

 when S1 => -- 12V Offset (24<->0) instead of 12<->-12 range

 IF (Emu_SW01_A = '1') THEN -- Positive cycle

 IF (Emu_SW02_A = '1') THEN

 Temp_Van_DC <= X"64"; -- 24V

 ELSE

 Temp_Van_DC <= X"32"; -- 12v

 END IF;

 ELSIF (Emu_SW04_A = '1') THEN -- Negative cycle

 IF (Emu_SW03_A = '1') THEN

 Temp_Van_DC <= X"00"; -- 0V

 ELSE

 Temp_Van_DC <= x"32"; -- 12V

 END IF;

 ELSE

 Temp_Van_DC <= X"32"; -- 12v

 END IF;

 NSA <= S2;

 LD_Van_DC <= '1';

291

 when S2 =>

 NSA <= S1;

 when others=>

 NSA <= S0;

 END case;

 END PROCESS;

 ------------------- Calculate Duty Cycle % of Phase B -------------------

 Vb_Duty_Cycle: PROCESS(CSB, EN, Emu_SW01_B, Emu_SW02_B, Emu_SW03_B,

Emu_SW04_B)

 BEGIN

 LD_Vbn_DC <= '0';

 Temp_Vbn_DC <= (others => '0');

 case CSB is

 when S0 =>

292

 IF (EN <= '0')THEN

 NSB<=S0;

 ELSE

 NSB<=S1;

 END IF;

 when S1 => -- 12V Offset (24<->0) instead of 12<->-12 range

 IF (Emu_SW01_B = '1') THEN -- Positive cycle

 IF (Emu_SW02_B = '1') THEN

 Temp_Vbn_DC <= X"64"; -- 24V

 ELSE

 Temp_Vbn_DC <= X"32"; -- 12v

 END IF;

 ELSIF (Emu_SW04_B = '1') THEN -- Negative cycle

 IF (Emu_SW03_B = '1') THEN

 Temp_Vbn_DC <= X"00"; -- 0V

 ELSE

 Temp_Vbn_DC <= x"32"; -- 12V

 END IF;

 ELSE

293

 Temp_Vbn_DC <= X"32"; -- 12v

 END IF;

 NSB <= S2;

 LD_Vbn_DC <= '1';

 when S2 => -- Refresh

 NSB <= S1;

 when others=>

 NSB <= S0;

 END case;

 END PROCESS;

 ------------------- Phase C -------------------

 Vc_Duty_Cycle: PROCESS(CSC, EN, Emu_SW01_C, Emu_SW02_C, Emu_SW03_C,

Emu_SW04_C)

 BEGIN

 LD_Vcn_DC <= '0';

 Temp_Vcn_DC <= (others => '0');

 case CSC is

294

 when S0 =>

 IF (EN <= '0')THEN

 NSC<=S0;

 ELSE

 NSC<=S1;

 END IF;

 when S1 => -- 12V Offset (24<->0) instead of 12<->-12 range

 IF (Emu_SW01_C = '1') THEN -- Positive cycle

 IF (Emu_SW02_C = '1') THEN

 Temp_Vcn_DC <= X"64"; -- 24V

 ELSE

 Temp_Vcn_DC <= X"32"; -- 12v

 END IF;

 ELSIF (Emu_SW04_C = '1') THEN -- Negative cycle

 IF (Emu_SW03_C = '1') THEN

 Temp_Vcn_DC <= X"00"; -- 0V

 ELSE

 Temp_Vcn_DC <= x"32"; -- 12V

295

 END IF;

 ELSE

 Temp_Vcn_DC <= X"32"; -- 12v

 END IF;

 NSC <= S2;

 LD_Vcn_DC <= '1';

 when S2 => -- Refresh

 NSC <= S1;

 when others=>

 NSC <= S0;

 END case;

 END PROCESS;

 -------------------------------------- Emulation Data Traffic --------------------------------------

 Emu_Data_Traffic : PROCESS(CS, CntDelay_Out, CntBus_Out, Bus_Int1_Busy,

Bus_Int1_DataOut, Vrble_Data, Error, Emu_DL_Start, HP_EN, EN, Cnt_LeadReg_Out,

Cnt_Scale_Out, Van_DC, Vbn_DC, Vcn_DC, Va_Samp, Vb_Samp, Vc_Samp,

Cnt_FollowReg_Out, STD_FIFO_Va_Full, STD_FIFO_Va_Empty, STD_FIFO_Va_DataOut,

296

STD_FIFO_Vb_Full, STD_FIFO_Vb_Empty, STD_FIFO_Vb_DataOut, STD_FIFO_Vc_Full,

STD_FIFO_Vc_Empty, STD_FIFO_Vc_DataOut)

 BEGIN

 CntBus_Rst <= '1';

 CntDelay_Rst <= '1';

 Cnt_LeadReg_Rst <= '1';

 Cnt_Scale_Rst <= '1';

 Cnt_FollowReg_Rst <= '1';

 CntBus_INC <= '0';

 CntDelay_INC <= '0';

 Cnt_LeadReg_INC <= '0';

 Cnt_Scale_INC <= '0';

 Cnt_FollowReg_INC <= '0';

 LD_Addr_Va_Start <= '0';

 LD_Addr_Vb_Start <= '0';

 LD_Addr_Vc_Start <= '0';

 Temp_Addr_Va_Start <= (others => '0');

 Temp_Addr_Vb_Start <= (others => '0');

 Temp_Addr_Vc_Start <= (others => '0');

297

 LD_Vrble_Data <= '0';

 Temp_Vrble_Data <= (others => '0');

 LD_Emu_DL_Start <= '0';

 Temp_Emu_DL_Start <= '0';

 Temp_Va_Samp <= (others => '0');

 Temp_Vb_Samp <= (others => '0');

 Temp_Vc_Samp <= (others => '0');

 LD_Va_Samp <= '0';

 LD_Vb_Samp <= '0';

 LD_Vc_Samp <= '0';

 Bus_Int1_AddrIn <= (others => '0');

 Bus_Int1_RE <='0';

 Bus_Int1_DataIn <= (others => '0');

 Bus_Int1_WE <='0';

 STD_FIFO_Va_WriteEn <='0';

 STD_FIFO_Va_DataIn <= (others => '0');

 STD_FIFO_Va_ReadEn <='0';

 STD_FIFO_Vb_WriteEn <='0';

298

 STD_FIFO_Vb_DataIn <= (others => '0');

 STD_FIFO_Vb_ReadEn <='0';

 STD_FIFO_Vc_WriteEn <='0';

 STD_FIFO_Vc_DataIn <= (others => '0');

 STD_FIFO_Vc_ReadEn <='0';

 case CS is

 when S0 =>

 CntBus_Rst <='0'; -- Reset Bus Counter

 CntDelay_Rst <='0'; -- Reset Delay Counter

 Cnt_LeadReg_Rst <= '0'; -- Reset Number of Samples

 Cnt_Scale_Rst <= '0';

 Cnt_FollowReg_Rst <= '0';

 Temp_Addr_Va_Start <= Addr0_Emu_Va;

 Temp_Addr_Vb_Start <= Addr0_Emu_Vb;

 Temp_Addr_Vc_Start <= Addr0_Emu_Vc;

 LD_Addr_Va_Start <= '1';

 LD_Addr_Vb_Start <= '1';

 LD_Addr_Vc_Start <= '1';

 Temp_EN <= '0';

 LD_EN <= '1';

299

 NS <= S1;

 when S1=> -- Delay

 if(CntDelay_Out < 40) THEN

 NS<=S1;

 else

 NS<=S2;

 END if;

 CntDelay_INC<='1';

 when S2=> -- Wait

 if(CntBus_Out < 128) THEN

 NS<=S2;

 else

 NS<=S3;

 END if;

 CntBus_INC<='1';

 when S3 => -- Wait for Bus

Control

 if(Bus_Int1_Busy = '1') THEN

 NS <= S3;

 else

300

 NS <=S4;

 END if;

 CntBus_Rst <='0'; -- Reset Bus Counter

 when S4 => -- Request if the

Emulation button was pressed

 Bus_Int1_AddrIn <= Addr_Emu_DL_Start; --

Addr_Emu_DL_Start is a constant from Common file

 Bus_Int1_RE <='1';

 NS <= S5;

 when S5 => -- Wait for Bus

Control

 if(Bus_Int1_Busy = '1') THEN

 NS <= S5;

 else

 NS <=S6;

 END if;

 Temp_Vrble_Data <= Bus_Int1_DataOut;

 LD_Vrble_Data <= '1';

 when S6 => -- Store the register

value into Emulation Datalogger Start variable

301

 Temp_Emu_DL_Start <= Vrble_Data(0);

 LD_Emu_DL_Start <= '1';

 NS <= S7;

 when S7 => -- Check if EMU Start

is pressed

 if(Emu_DL_Start = '1') THEN

 NS <= S8;

 else

 NS <= S0; -- If not, go back to

S0

 end if;

 when S8 => -- Check errors

 if(Error = '1') THEN

 Temp_Emu_DL_Start <= '0';

 LD_Emu_DL_Start <= '1';

 NS <= S9;

 ELSE

 NS <= S16;

 END if;

302

 ----------------------------------- Start ERROR Procedure --

-

 when S9 => -- Wait bus

 if(Bus_Int1_Busy = '1') THEN

 NS <= S9;

 else

 NS <=S10;

 END if;

 when S10 => -- Set DL status to Error

 Bus_Int1_AddrIn <= Addr_Emu_DL_Status; --

Addr_Emu_DL_Status is a constant from Common file

 Bus_Int1_DataIn <= X"0003"; -- Emu_DL_Stat = 3 (ERROR)

 Bus_Int1_WE <='1';

 NS <= S11;

 when S11 => -- Wait bus

 if(Bus_Int1_Busy = '1') THEN

 NS <= S11;

 else

 NS <=S12;

 END if;

303

 when S12 => -- Overwrite the DL Start command

 Bus_Int1_AddrIn <= Addr_Emu_DL_Start; --

Addr_Emu_DL_Start is a constant from Common file

 Bus_Int1_DataIn <= X"0000";

 Bus_Int1_WE <='1';

 NS <= S13;

 when S13 => -- Check if Error is still ON. Wait until the error is off

 IF (Error = '1') THEN

 NS <= S13;

 else

 NS <= S14;

 END if;

 when S14 => -- Wait bus

 if(Bus_Int1_Busy = '1') THEN

 NS <= S14;

 else

 NS <=S15;

 END if;

 when S15 => -- Set DL status to done and go back to S0

304

 Bus_Int1_AddrIn <= Addr_Emu_DL_Status; --

Addr_Emu_DL_Status is a constant from Common file

 Bus_Int1_DataIn <= X"0000"; -- Emu_DL_Stat = 0 (Ready/Done)

 Bus_Int1_WE <='1';

 NS <= S0;

 ----------------------------------- END ERROR Procedure ---

--

-- Start Emu Data Logging --

 when S16 => -- Wait for Bus

Control

 if(Bus_Int1_Busy = '1') THEN

 NS <= S16;

 else

 NS <=S17;

 END if;

 when S17 => -- Set DL Status to

Busy and Enable emulation

 Bus_Int1_AddrIn <= Addr_Emu_DL_Status; --

Addr_Emu_DL_Status is a constant from Common file

 Bus_Int1_DataIn <= X"0001"; -- Emu_DL_Stat = 1 = Busy

 Bus_Int1_WE <='1';

 Temp_EN <= '1'; -- Enable Emulation

 LD_EN <= '1';

305

 NS <= S18;

 when S18=> -- Check if there's no

error and if HP is enabled

 if((Error = '0') and (HP_EN = '0'))THEN

 NS <= S19;

 else

 NS <= S9; -- If there's an error,

go back to error process (S9)

 END if;

 --------------------------- Collect sample and save into FIFO loop -------------------------------

-

 when S19 =>

 IF (Cnt_LeadReg_Out < numberOfSamples) THEN -- Check if all

samples were collected

 NS <= S20;

 else

 Cnt_Scale_Rst <= '0';

 NS <= S24;

 END if;

 when S20 =>

306

 if(Cnt_Scale_Out < Scale_Ref)THEN -- Wait for resolution (2500

clock cycles)

 Cnt_Scale_INC <= '1';

 NS <= S20;

 else

 NS <= S21;

 END if;

 when S21 =>

 Cnt_Scale_Rst <= '0'; -- Reset resolution counter

 Temp_Va_Samp <= X"00" & Van_DC; -- Load values of each

phase

 Temp_Vb_Samp <= X"00" & Vbn_DC;

 Temp_Vc_Samp <= X"00" & Vcn_DC;

 LD_Va_Samp <= '1';

 LD_Vb_Samp <= '1';

 LD_Vc_Samp <= '1';

 NS <= S22;

 when S22 =>

 Cnt_LeadReg_INC <= '1'; -- Count 1 sample collected

 NS <= S23;

307

 -- Start Saving Emu Va, Vb, Vc Data in FIFO--

 when S23 =>

 IF (STD_FIFO_Va_Full = '0') THEN

 STD_FIFO_Va_DataIn <= Va_Samp; --16 bit

FIFO. DATA_WIDTH in FIFO must be 16 and not 8.

 STD_FIFO_Va_WriteEn <='1';

 END if;

 IF (STD_FIFO_Vb_Full = '0') THEN

 STD_FIFO_Vb_DataIn <= Vb_Samp; --16 bit

FIFO. DATA_WIDTH in FIFO must be 16 and not 8.

 STD_FIFO_Vb_WriteEn <='1';

 END if;

 IF (STD_FIFO_Vc_Full = '0') THEN

 STD_FIFO_Vc_DataIn <= Vc_Samp; --16 bit

FIFO. DATA_WIDTH in FIFO must be 16 and not 8.

 STD_FIFO_Vc_WriteEn <='1';

 END if;

 NS <= S19 ;

308

 when S24 => -- Wait for Bus

Control

 if(Bus_Int1_Busy = '1') THEN

 NS <= S24;

 else

 NS <=S25;

 END if;

 when S25 => -- Update

Emu_DL_Status

 Bus_Int1_AddrIn <= Addr_Emu_DL_Status; --

Addr_Emu_DL_Status is a constant from Common file

 Bus_Int1_DataIn <= X"0002"; -- Emu_DL_Stat = 1 (Saving Data)

 Bus_Int1_WE <='1';

 NS <= S26;

 when S26 =>

 if(Cnt_FollowReg_Out < numberOfSamples)THEN -- X"C0" =

192

 NS <= S27;

 else

 Cnt_FollowReg_Rst <= '0';

 NS <= S40;

309

 END if;

 --------------------------- Saving Emu Va, Vb, Vc Data from FIFO to RAM -------------------

 -- Va FIFO to RAM

 when S27 =>

 if(STD_FIFO_Va_Empty = '1') THEN -- Check if FIFO is empty.

if true, check Vb FIFO

 NS<=S31;

 else

 STD_FIFO_Va_ReadEn <= '1'; -- Read data from

FIFO

 NS<=S28;

 END if;

 when S28=> -- Load FIFO data

 Temp_Vrble_Data <= STD_FIFO_Va_DataOut;

 LD_Vrble_Data <='1';

 NS<=S29;

310

 when S29=> --Wait for Bus

Control

 if(Bus_Int1_Busy = '1') THEN

 NS <= S29;

 else

 NS <=S30;

 END if;

 when S30=> -- Send data to RAM

 Bus_Int1_AddrIn <= Addr_Va_Start + Cnt_FollowReg_Out;

 --SEND Va data to RAM Addr X"0200" + Counter[1:192]

 Bus_Int1_DataIn <= Vrble_Data;

 Bus_Int1_WE <='1';

 NS<=S31;

 -- Vb FIFO to RAM

 when S31 =>

 if(STD_FIFO_Vb_Empty = '1') THEN -- Check if FIFO is empty.

if true, check Vc FIFO

 NS <= S35;

 else

 STD_FIFO_Vb_ReadEn <= '1'; -- Read data from

FIFO

311

 NS <= S32;

 END if;

 when S32 => -- Load data from

FIFO

 Temp_Vrble_Data <= STD_FIFO_Vb_DataOut;

 LD_Vrble_Data <='1';

 NS <= S33;

 when S33 => -- Wait for Bus

Control

 if(Bus_Int1_Busy = '1') THEN

 NS <= S33;

 else

 NS <= S34;

 END if;

 when S34 => -- Send data to RAM

 Bus_Int1_AddrIn <= Addr_Vb_Start + Cnt_FollowReg_Out;

 --Send Vb data to RAM Addr X"0300" + Counter[1:192]

 Bus_Int1_DataIn <= Vrble_Data;

 Bus_Int1_WE <='1';

 NS <= S35;

312

 -- Vc FIFO to RAM

 when S35 =>

 if(STD_FIFO_Vc_Empty = '1') THEN -- Check if FIFO is empty.

If true go back to S26

 NS <= S26;

 else

 STD_FIFO_Vc_ReadEn <= '1'; -- Read data from

FIFO

 NS <= S36;

 END if;

 when S36=> -- Load data from

FIFO

 Temp_Vrble_Data <= STD_FIFO_Vc_DataOut;

 LD_Vrble_Data <= '1';

 NS <= S37;

 when S37 => -- Wait for Bus

Control

 if(Bus_Int1_Busy = '1') THEN

 NS <= S37;

 else

313

 NS <= S38;

 END if;

 when S38=> -- Send data to RAM

 Bus_Int1_AddrIn <= Addr_Vc_Start + Cnt_FollowReg_Out;

 --Send Vc data to RAM Addr X"0300" + Counter[1:192]

 Bus_Int1_DataIn <= Vrble_Data;

 Bus_Int1_WE <='1';

 NS <= S39;

 when S39 =>

 Cnt_FollowReg_INC <= '1'; -- Count 1 sample of each phase and

go back to S26

 NS <= S26;

 --------------------------- End Saving Emu Va, Vb, Vc Data from FIFO to

RAM --------------------------------

 --------------------------- Finalizing --------------------------------

 when S40 => -- Wait for Bus

Control

 if(Bus_Int1_Busy = '1') THEN

 NS <= S40;

314

 else

 NS <= S41;

 END if;

 when S41 => -- Change register

status to Ready/Done

 Bus_Int1_AddrIn <= Addr_Emu_DL_Status; --

Addr_Emu_DL_Status is a constant from Common file

 Bus_Int1_DataIn <= X"0000"; -- Emu_DL_Stat = 0 (Ready/Done)

 Bus_Int1_WE <='1';

 NS <= S42;

 when S42 => -- Wait for Bus

Control

 if(Bus_Int1_Busy = '1') THEN

 NS <= S42;

 else

 NS <=S43;

 END if;

 when S43 => -- Reset the DL start

register and go back to S0

315

 Bus_Int1_AddrIn <= Addr_Emu_DL_Start; --

Addr_Emu_DL_Start is a constant from Common file

 Bus_Int1_DataIn <= X"0000";

 Bus_Int1_WE <= '1';

 Temp_Emu_DL_Start <= '0';

 LD_Emu_DL_Start <= '1';

 NS <= S0;

 when others =>

 NS <= S0;

 END case;

 END PROCESS;

 ----State Sync

 sync_States: PROCESS

 BEGIN

 wait until clk'event and clk = '1';

 IF rst = '0' THEN

 CS <= S0;

 CSA <= S0;

 CSB <= S0;

 CSC <= S0;

316

 CSab <= S0;

 CSbc <= S0;

 CSca <= S0;

 else

 CS <= NS;

 CSA <= NSA;

 CSB <= NSB;

 CSC <= NSC;

 CSab <= NSab;

 CSbc <= NSbc;

 CSca <= NSca;

 END if;

 END PROCESS;

 ----END State Sync

END Behavioral;

	A Real-Time ANPC Inverter Digital Twin with Integrated Design-For-Trust
	Citation

	tmp.1697911216.pdf.Ebrvo

