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ABSTRACT

Recommender systems provide personalized services for users seeking information and

play an increasingly important role in online applications. While most research papers focus

on inventing machine learning algorithms to fit user behavior data and maximizing predictive

performance in recommendation, it is also very important to develop fairness-aware machine

learning algorithms such that the decisions made by them are not only accurate but also

meet desired fairness requirements. In personalized recommendation, although there are

many works focusing on fairness and discrimination, how to achieve user-side fairness in

bandit recommendation from a causal perspective still remains a challenging task. Besides,

the deployed systems utilize user-item interaction data to train models and then generate

new data by online recommendation. This feedback loop in recommendation often results in

various biases in observational data.

The goal of this dissertation is to address challenging issues in achieving causal fairness

in recommender systems: achieving user-side fairness and counterfactual fairness in bandit-

based recommendation, mitigating confounding and sample selection bias simultaneously in

recommendation and robustly improving bandit learning process with biased offline data.

In this dissertation, we developed the following algorithms and frameworks for research

problems related to causal fairness in recommendation.

• We developed a contextual bandit algorithm to achieve group level user-side fairness

and two UCB-based causal bandit algorithms to achieve counterfactual individual fair-

ness for personalized recommendation;

• We derived sufficient and necessary graphical conditions for identifying and estimating

three causal quantities under the presence of confounding and sample selection biases



and proposed a framework for leveraging the causal bound derived from the confounded

and selection biased offline data to robustly improve online bandit learning process;

• We developed a framework for discrimination analysis with the benefit of multiple

causes of the outcome variable to deal with hidden confounding;

• We proposed a new causal-based fairness notion and developed algorithms for deter-

mining whether an individual or a group of individuals is discriminated in terms of

equality of effort.
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1 Introduction

This chapter introduces the motivation and provides an overview of this dissertation,

and then summarizes the contributions of this research.

1.1 Motivation

Machine learning has been widely used to solve challenging problems in both academia

and industry communities due to its powerful and effective abilities. Numerous machine

learning algorithms have been designed and deployed to make decisions in a variety of real-

world applications. The rapid development of these techniques has benefited many AI-related

tasks, including computer vision, natural language processing, and recommender systems,

etc.

Among those rapidly developing tasks, recommender systems serve as important and

valuable tools for many Web-based services such as online advertising, social software and

digital media systems. The research literature in this field has grown tremendously in recent

years. However, most of the papers focus on inventing machine learning models to maximize

predictive performance, e.g., estimating click through ratio based on the historical training

data. Since user behavior data is observational rather than experimental, blindly fitting

the data without considering the inherent biases will result in many serious issues, e.g.,

discrimination and unfairness caused by these machine learning algorithms may have serious

consequences for minority groups, as well as perpetuate and exacerbate existing prejudices

and social inequalities.

Fairness-aware machine learning is receiving an increasing attention in machine learn-

1



ing fields. Discrimination is unfair treatment towards individuals based on the group to which

they are perceived to belong. The first endeavor of the research community to achieve fair-

ness is developing correlation or association-based measures, including demographic disparity

(e.g., risk difference), mistreatment disparity, calibration, etc. [1, 2, 3, 4, 5], which mainly

focus on discovering the disparity of certain statistical metrics between two groups of indi-

viduals. However, as paid increasing attention recently [6, 7, 8, 9, 10, 11, 12, 13, 14], unlawful

discrimination is a causal connection between the challenged decision and a protected charac-

teristic, which cannot be captured by simple correlation or association concepts. To address

this limitation, causal-based fairness measures have been proposed, including total effect

[15], direct and indirect discrimination [6, 15, 16], counterfactual fairness [17, 18, 9], and

path-specific counterfactual fairness [19]. Besides, how to strike a balance between accurate

predictions and fairness is receiving increasing attention in the machine learning field. Causal

modeling based fair learning models [17, 18, 6, 19, 20, 9, 16], which are based on Pearl’s (prob-

abilistic) causal model [21], have been developed to capture and quantify different fairness

measures through counterfactual inference along specific paths in causal graphs.

Recently researchers have started taking fairness and discrimination into considera-

tion in the design of recommendation algorithms. It is known that many existing recommen-

dation algorithms are designed solely based on learning correlative patterns from observa-

tional data, and could incur biases, even discrimination that can influence recommendation

performance and ethical treatment of customers with different profile attributes. To trans-

form the large volume of research models into practical improvements, it is highly urgent to

explore the impacts of various biases and conduct debiasing procedure when necessary. It is

also imperative to develop explainable, trustworthy, and fairness-aware algorithm frameworks

in recommendation with the assistance of causal inference techniques, such that the deci-
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sions made by those algorithms are able to achieve fairness and high predictive performance

simultaneously.

1.2 Overview

The goal of this dissertation is to address challenging issues in achieving causal fairness

in recommendation.

First, we focus on user-side fairness in bandit-based recommendation. Personalized

recommendation based on multi-arm bandit (MAB) algorithms has become a popular topic

of research and shown to lead to high utility and efficiency [22] as it dynamically adapts the

recommendation strategy based on feedback. However, it is also known that such personal-

ization could incur biases or even discrimination that can influence decisions and opinions

[23, 24]. Recently researchers have started taking fairness and discrimination into consid-

eration in the design of MAB based personalized recommendation algorithms [25, 26, 27].

However, they focused on the fairness of the recommended items (e.g., services provided by

small or large companies) instead of the customers who received those items. For example,

[26] focused on individual fairness, i.e., “treating similar individuals similarly,” and consid-

ered the individual as an arm with the aim of ensuring the probability of selecting an arm

is equal to the probability with which the arm has the best quality realization. [25] aimed

to achieve group fairness over items by ensuring the probability distribution from which

items are sampled satisfies certain fairness constraints at all time steps. In this dissertation,

we aim to develop novel algorithms to ensure fair and ethical treatment of customers with

different profile attributes (e.g., gender, race, education, disability, and economic conditions)

in a contextual bandit based personalized recommendation.

Second, we focus on how to achieve counterfactual fairness in causal bandit. Partic-
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ularly, we focus on online recommendation, e.g., customers are being recommended items,

and consider the setting where customers arrive in a sequential and stochastic manner from

an underlying distribution and the online decision model recommends a chosen item for each

arriving individual based on some strategy. The challenge here is how to choose the arm

at each step to maximize the expected reward while achieving user-side fairness for cus-

tomers, i.e., customers who share similar profiles will receive similar rewards regardless of

their sensitive attributes and items being recommended. By incorporating causal inference

into bandits and adopting soft intervention to model the arm selection strategy, we first

propose the d-separation based UCB algorithm (D-UCB) to explore the utilization of the

d-separation set in reducing the amount of exploration needed to achieve low cumulative

regret. Based on that, we then propose the fair causal bandit (F-UCB) for achieving the

counterfactual individual fairness.

Third, we focus on dealing with compound biases in recommender systems. Rec-

ommender systems provide personalized services for users seeking information and play an

increasingly important role in online applications. However, the user-item interaction data,

which are used to train recommender systems and then generated by the deployed systems,

often have both selection and confounding biases. The confounding bias arises when hidden

variables determine user/item features and an outcome variable simultaneously. For exam-

ple, popularity bias is one classic instance of confounding bias. It occurs when items are

over-displayed and therefore have more chances to be seen as well as clicked by users. Under

popularity bias, the click through rate (CTR) of the users does not accurately reflect the

users’ true preference on an over-exposed item. Additionally, the selection mechanism, e.g.,

choosing users based on a certain time or location, can lead to sample selection bias. Sev-

eral attempts have been made to alleviate such biases from both causal and counterfactual
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inference perspectives [28, 29, 30]. However, previous work has focused on dealing with one

specific source of bias rather than handling multiple sources simultaneously. Neglecting the

presence of both confounding and sample selection biases leads to poor recommendation

performance. In this dissertation, we formulate both confounding and selection biases and

show that they can be separately mitigated by conditioning on a bias adjustment set that

satisfies certain criteria. We further investigate how to robustly improve online bandit al-

gorithms with confounded and selection biased offline data. We derive a unified framework

that improves the arm-picking strategies of bandit algorithms and achieve lower regret with

the help of prior causal bounds extracted from the biased observational data.

Last but not least, we move to fairness-aware machine learning in general recommen-

dation settings and include two extensions. One is to derive a multi-cause discrimination

analysis framework under the presence of multiple protected and redlining attributes. The

other aims to achieve fairness regarding to equality of effort.

The remainder of this dissertation is organized as follows. In Chapter 2, we discuss

related work in a wide scope of fairness-aware machine learning, bandit-based recommen-

dation, as well as causal-based debiasing methods in recommendation. Then in Chapter 3

we clarify some notations that are used through all the proposed research and present back-

ground knowledge for causal inference and bandit-based recommendation. The main body

of this dissertation is in Chapters 4 - 9. Finally, we conclude this dissertation and discuss

future work in Chapter 10.

1.3 Summary of Contributions

In Chapter 4, we propose a fair contextual bandit algorithm for personalized recom-

mendation. While current research in fair recommendation mainly focus on how to achieve
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fairness on the items that are being recommended, our work differs by focusing on fairness

on the individuals whom are being recommended an item. Specifically, we aim to recom-

mend items to users while insuring that both the protected group and privileged group

improve their learning performance equally. Our developed Fair-LinUCB improves upon the

state-of-the-art LinUCB algorithm by automatically detecting unfairness, and adjusting its

arm-picking strategy such that it maximizes the fairness outcome. We further provide a re-

gret analysis of our fair contextual bandit algorithm and demonstrate that the regret bound

is only worse than LinUCB up to an additive constant. Finally, we evaluate the perfor-

mances of our Fair-LinUCB against that of LinUCB by comparing both their effectiveness

and degree of fairness. Experimental evaluations show that our Fair-LinUCB achieves com-

petitive effectiveness while outperforming LinUCB in terms of fairness. We further show that

our algorithm is robust against numerous factors that would otherwise induce or increase

discrimination in the traditional LinUCB algorithm.

In Chapter 5, we study how to learn optimal interventions sequentially by incorporat-

ing causal inference in bandits. We develop D-UCB and F-UCB algorithms which leverage

the d-separation set identified from the underlying causal graph and adopt soft intervention

to model the arm selection strategy. Our F-UCB further achieves counterfactual individual

fairness in each round of exploration by choosing arms from a subset of arms satisfying

counterfactual fairness constraint. Our theoretical analysis and empirical evaluation show

the effectiveness of our algorithms against baselines.

In Chapter 6, we study both confounding and sample selection biases in recommen-

dation systems and develop a causal based debiased recommendation algorithm that simul-

taneously controls for confounding and selection biases via some auxiliary external data.

We present sufficient and necessary graphical conditions for conditional causal effects, path-
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specific effects, and counterfactual effects. We also derive a procedure to estimate an ad-

justment under confounding and selection biases based on the inverse probability weighting

technique. Our empirical evaluation shows the effectiveness of our approach.

In Chapter 7, we aim to extract the causal bound for each arm that is robust towards

compound biases from biased observational data. The derived bounds contain the ground

truth mean reward and can effectively guide the bandit agent to learn a nearly-optimal

decision policy. We also conduct regret analysis in both contextual and non-contextual bandit

settings and showed that prior causal bounds could help consistently reduce the asymptotic

regret.

In Chapter 8, we develop one approach based on the potential outcome framework to

analyze the discrimination effects of protected and redlining attributes on the decision. The

developed approach is based on the potential outcome framework and combines the decon-

founder and inverse probability of treatment weighting. It can better handle the presence of

hidden confounders and can lead to a more robust estimate of causal effects. We empirically

compare our approach with the structural causal modeling based approach and experimental

results demonstrate the advantages of the proposed approach.

In Chapter 9, we propose a new causality-based fairness notion called the equality of

effort. Although previous notions can be used to judge discrimination from various perspec-

tives (e.g., demographic parity, equal opportunity), they cannot quantify the (difference in)

efforts that individuals need to make in order to achieve certain outcome levels. Our proposed

notion, on the other hand, can help answer counterfactual questions like “how much credit

score an applicant should improve such that the probability of her loan application approval

is above a threshold”, and judge discrimination from the equal-effort perspective. To quantify

the average effort discrepancy, we develop a general method under certain assumptions and

7



specific methods based on three common causal inference techniques. When equality of effort

is not achieved in a dataset, we develop an optimization method to remove discrimination. In

the experiments, we show that the Adult dataset does contain effort discrepancy at system,

group, and also individual levels, and our removal method can ensure the newly generated

dataset satisfies equality of effort.
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2 Related Work

2.1 Fairness-aware Machine Learning

Fairness in machine learning has been a research subject with rapid growth and at-

tention recently. In machine learning, training data may have historically biased decisions

against the protected group; models learned from such data may make discriminatory pre-

dictions against the protected group. The fair learning research community has developed

extensive fair machine learning algorithms based on a variety of fairness metrics, e.g., equal-

ity of opportunity and equalized odds [31, 32], direct and indirect discrimination [6, 15, 16],

counterfactual fairness [17, 18, 9], and path-specific counterfactual fairness [19]. There are

survey papers that comprehensively and systematically studied various categories of statis-

tical fairness [33] and causality-based fairness [34] metrics.

Among those publications, related but different from our work include long term

fairness (e.g., [35]), which concerns for how decisions affect the long-term well-being of dis-

advantaged groups measured in terms of a temporal variable of interest, fair pipeline or

multi-stage learning (e.g., [36, 37, 38, 39]), which primarily consider the combination of mul-

tiple non-adaptive sequential decisions and evaluate fairness at the end of the pipeline, and

fair sequential learning (e.g., [40]), which sequentially considers each individual and makes

decision for them. In [35], the authors proposed the study of delayed impact of fair ma-

chine learning and introduced a one-step feedback model of decision-making to quantify the

long-term impact of classification on different groups in the population.
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2.2 Causal Inference and Bias in Recommendation

Recently, causal inference has emerged as powerful tool for dealing with biases in

recommendation. [41] presented a systematic survey on biases in recommendation systems

and categorize them into selection, conformity, exposure, position, inductive, popularity, and

unfairness bias. Existing methods on causal inference based recommendation debiasing usu-

ally focus on addressing only one particular bias, such as position bias [42] or popularity bias

[28]. The majority of existing work [43, 28, 29] employs extracted user/item feature embed-

dings and focus on predefined abstract causal structures. In these approaches, recommender

models estimate the conditional probability of clicks given user/item representations that

are derived from logged user-item interaction data. An abstract causal graph is constructed

to analyze the causal relations among user representations, item representations, and predic-

tion scores. To address hidden confounders, e.g., item popularity, that affect both the user

representation and the prediction score, they developed approximations of backdoor adjust-

ment to eliminate the impact of confounders. Additionally, [28] developed a popularity-bias

deconfounding and adjusting method via causal intervention. [29] examined the causal effect

of user representation on the prediction scores and develop a deconfounded recommender

system (DecRS) to prevent bias amplification.

When considering both confounding and sample selection biases in recommendation

systems, [44] was the first to study the use of adjustment for simultaneously dealing with both

confounding and selection biases based on the SCM. They introduced the selection-backdoor

criterion as a sufficient condition for recovering causal effects from a biased distribution and

externally unbiased data. Correa et al. [45] developed a set of complete conditions for two

cases: when none of the covariates are measured externally, and when all of them are mea-
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sured without selection bias. [46] further studied a general case when only a subset of the

covariates require external measurement. They introduced the notion of an adjustment pair,

present graphical conditions for identifying causal effects by adjustment, design an algorithm

for finding all admissible adjustment pairs, and develop an estimation procedure. The de-

veloped adjustment technique combines the partial unbiased data with the biased data to

produce an estimand of the causal effect in the overall population. Different from these works

that focus on conventional causal effects, our work derives an adjustment criterion and pro-

cedure for conditional causal effects, which is needed in personalized causal recommendation.

Moreover, we derive results for path-specific causal effects and counterfactual effects, which

are important in recommendation analysis.

2.3 Bandit-based Recommendation

Personalized recommendation based on multi-arm bandit (MAB) algorithms has be-

come a popular topic of research and shown to lead to high utility and efficiency [47] as it

dynamically adapts the recommendation strategy based on feedback. Contextual bandit [48]

is an extension of the classic multi-armed bandit (MAB) algorithm [49]. The MAB chooses

an action from a fixed set of choices to maximize the expected gain where each choice’s

properties are only partially known at the time of choice and the gain of a choice will be

observed only after the action is taken. In other words, the MAB simultaneously attempts to

acquire new information (exploration) and optimize decisions based on existing knowledge

(exploitation). Compared to the traditional content-based recommendation approaches, the

MAB is able to fit dynamically changing user preferences over time and address the cold-

start problem by balancing the exploration and exploitation trade-off in the recommendation

system. However, the MAB does not use any information about the state of the environment.
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The contextual bandit model extends the MAB model by making the recommendation con-

ditional on the state of the environment. Other variations include stochastic [50], Bayesian

[51], adversarial [52], and non-stationary [53] bandits. The contextual information is the cus-

tomer’s features and the features of the items under exploration, and the reward is derived

from purchase record or customer feedback.

Recently researchers have also started taking fairness and discrimination into consid-

eration in the design of MAB based personalized recommendation algorithms [40, 54, 55,

25, 26, 27, 56, 57, 58]. Among them, [40] was the first paper of studying fairness in classic

and contextual bandits. It defined fairness with respect to one-step rewards introduced a

notion of meritocratic fairness, i.e., the algorithm should never place higher selection prob-

ability on a less qualified arm (e.g., job applicant) than on a more qualified arm. This was

inspired by equal treatment, i.e., similar people should be treated similarly. [59] developed a

metric-free individual fairness and a cooperative contextual bandits (CCB) algorithm. The

CCB algorithm utilizes fairness as a reward and attempts to maximize it. It tries to achieve

individual fairness unlimited to problem-specific similarity metrics using multiple gradient

contextual bandits. The following works along this direction include [54] for infinite and

contextual bandits, [55] for reinforcement learning, [26] for the simple stochastic bandit set-

ting with calibration based fairness. In [60], the authors studied the problem of learning fair

stochastic multi-armed bandit where each arm is required to be pulled for at least a given

fraction of the total available rounds. In [61], the authors studied fairness in the setting

that multiple arms can be simultaneously played and an arm could sometimes be sleeping.

[62] used an unknown Mahalanobis similarity metric from some weak feedback that identi-

fies fairness violations through an oracle rather than adopting a quantitative fairness metric

over individuals. The fairness constraint requires that the difference between the probabili-
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ties that any two actions are taken is bounded by the distance between their contexts. All

the above papers require some fairness constraint on arms at every round of the learning

process, which is different from our user-side fairness setting. How to achieve fairness in

other related contexts have also been studied, e.g., sequential decision making [63], online

stochastic classification [64], offline contextual bandits [65], and collaborative filtering based

recommendation systems [66, 67].

There are also several state-of-the-art research works that focus on confounding issue

in bandit setting [68, 69]. It is shown in [68] that in MAB problems, neglecting unobserved

confounders will lead to a sub-optimal arm selection strategy. They also demonstrated that

one cannot simulate the optimal arm-picking strategy by a single data collection proce-

dure, such as pure offline or online evaluation. To this end, another line of research works

considers combining offline causal inference techniques and online bandit learning to ap-

proximate a nearly-optimal policy. [69] studied a linear bandit problem where the agent is

provided with partially observed offline data. [70, 71] derived causal bounds based on struc-

tural causal model and used them to guide arm selection in online bandit algorithms. [72]

further leveraged the information provided by the lower bound of the mean reward to reduce

the cumulative regret. Nevertheless, none of the bounds derived by these methods are based

on a feature-level causal graph extracted from the offline data. [73, 74] proposed another di-

rection to unify offline causal inference and online bandit learning by extracting appropriate

logged data and feed it to online learning phase. Their VirUCB-based framework mitigates

the cold start problem and can thus boost the learning speed for a bandit algorithm without

any cost on the regret.
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3 Preliminaries

In this chapter, we present the essential notations and fundamental background for

the whole dissertation. We start with the notations of describing data, variables and dis-

tributions. Then we continue with the necessary background knowledge on causal inference

and bandit-based Recommendation.

3.1 Notations

Throughout the dissertation, an uppercase denotes a variable, e.g., S; a bold upper-

case denotes a set of variables, e.g., X; a lowercase denotes a value or a set of values of the

variables, e.g., s and x; and a lowercase with superscript denotes a particular value, e.g., s+

and x−. We use ||x||2 to define the L-2 norm of a vector x ∈ Rd. For a positive definite

matrix A ∈ Rd×d, we define the weighted 2-norm of x ∈ Rd to be ||x||A =
√
xTAx.

3.2 Causal Inference

3.2.1 Potential Outcomes Framework

The potential outcomes framework, also known as Neyman-Rubin potential outcomes

or Rubin causal model, has been widely used in many research areas to perform causal in-

ference. It refers to the outcomes one would see under each treatment option. Let Y be the

outcome variable, T be the binary or multiple valued ordinal treatment variable, and X be

the pre-treatment variables (covariates). Yi(t) represents the potential outcome for individ-

ual i given treatment level T = t and E[Yi(t)] denotes the individual-level expectation of
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outcome variable. The “fundamental problem of causal inference” claims that one can never

observe all the potential outcomes for any individual [75] and we need to compare potential

outcomes and make inference from observed data. We use E[Y (t)] to denote population-

level expectation of outcome variable and E[Y⋄(t)] to denote the conditional expectation of

outcome variable within certain sub-population ⋄.

Classic causal inference focuses on estimating the potential outcome and treatment

effect given the information of treatment variable and pre-treatment variables [76]. For ex-

ample, the average treatment effect ATE = E[Y (t′)− Y (t)] answers the question of how, on

average, the outcome of interest Y would change if everyone in the population of interest had

been assigned to a particular treatment t′ relative to if they had received another treatment

t. The average treatment effect on the treated, ATT = E[Y (t′) − Y (t)|T = t] is about how

the average outcome would change if everyone who received one particular treatment t had

instead received another treatment t′.

The potential outcome framework relies on three assumptions: (1) Stable Unit Treat-

ment Value Assumption (SUTVA) which basically requires the potential outcome observation

on one unit should be unaffected by the particular assignment of treatments to the other

units. (2) Consistency assumption which means that the value of potential outcomes would

not change no matter how the treatment is observed or assigned through an intervention. (3)

Strong ignorability (unconfoundedness) assumption which is equal to the assumption that

there are no unobserved confounders. A confounder is a pre-treatment variable that affects

both treatment and outcome variables.

Propensity Score Method

Definition 1 (Propensity Score). For a binary treatment variable, propensity score is the
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conditional probability of receiving treatment T given the pre-treatment variables X,

e(x) = Pr(T = 1|X = x)

The estimation of propensity scores requires the model or functional form of e(·) and

the variables to include in X. Let e(i) denote the propensity score for individual i, for binary

valued groups, the propensity score is estimated by logistic regression:

logit(e(i)) = β0 + β1x1 + ...+ βkxk,

where x1, ..., xk are values of the selected covariates and β1, ..., βk are regression coefficients.

If correctly estimated, the reciprocal of propensity score can be used as the weight for

each individual such that the distribution of the group under treatment 1 and that under

treatment 0 becomes identical. [77] showed that conditional on the propensity score, all

observed covariates are independent of treatment assignment, and they will not confound

estimated treatment effects.

Hence after weighting procedure, a pseudo-balanced population can be built in which

the imbalance caused by measured covariates between the treatment groups has been elim-

inated. The average potential outcome can thus be estimated by some standard estima-

tors. For example, one unbiased estimator of the population-level ATE can be written as:

1
N1

∑
i∈N 1Ti=1ωiyi − 1

N2

∑
i∈N 1Ti=0ωiyi where N1 =

∑
i∈N 1Ti=1 and N2 =

∑
i∈N 1Ti=0.

3.2.2 Structural Causal Model

Definition 2 (Structural Causal Model [21]). A structural causal modelM is represented

by a quadruple ⟨U,V,F, P (U)⟩ where
16



1. U is a set of exogenous (external) variables that are determined by factors outside the

model.

2. P (U) is a joint probability distribution defined over U.

3. V is a set of endogenous (internal) variables that are determined by variables in U∪V.

4. F is a set of structural equations from U∪V to V. Specifically, for each V ∈ V, there

is a function fV ∈ F mapping from U ∪ (V\V ) to V , i.e., v = fV (Pa(V ), uV ), where

Pa(V ) is a realization of a set of endogenous variables Pa(V ) ∈ V \ V that directly

determines V , and uV is a realization of a set of exogenous variables that directly

determines V .

The causal model M is associated with a causal graph G = ⟨V , E⟩ where V is a set

of nodes and E is a set of edges. Each node of V corresponds to a variable of V inM. Each

edge in E , denoted by a directed arrow →, points from a node X ∈ U ∪ V to a different

node Y ∈ V if fY uses values of X as input. A causal path from X to Y is a directed path

that traces arrows directed from X to Y . For a node X, its parents, ancestors, children,

and descendants are denoted by Pa(X), An(X), Ch(X), and De(X), respectively. GX is the

graph resulting from removing all incoming edges to X in G, and GX is the graph resulting

from removing all outgoing edges from X.

Quantitatively measuring causal effects in a causal model is facilitated with the do-

operator [21] which forces some variableX to take on a certain value x, which can be formally

denoted by do(X = x) or do(x). In a causal modelM, the intervention do(x) is defined as the

substitution of the structural equation X = fX(Pa(X), UX) with X = x, which corresponds

to a modified causal graph that has removed all edges into X and in turn sets X to x. For

an observed variable Y affected by the intervention, its interventional variant is denoted by
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Yx. The distribution of Yx, also referred to as the post-intervention distribution of Y under

do(x), is denoted by P (Yx = y), or simply P (yx).

Similarly, the intervention that sets the value of a set of variables X to x is denoted

by do(X = x). The post-intervention distribution of all other attributes Y = V\X, i.e.,

P (Y = y|do(X = x)), or simply P (y|do(x)), can be computed by the truncated factorization

formula [21],

P (y|do(x)) =
∏
Y ∈Y

P (y|Pa(Y ))δX=x, (3.1)

where δX=x means assigning attributes in X involved in the term ahead with the correspond-

ing values in x.

Each causal model M is associated with a causal graph G = ⟨V,E⟩, where V is

a set of nodes and E is a set of directed edges. Each node in G corresponds to a variable

V in M. Each edge, denoted by an arrow →, points from each member of Pa(V ) toward

V to represent the direct causal relationship specified by equation fV (·). The well-known

d-separation criterion [78] connects the causal graph with conditional independence.

Definition 3 (d -Separation [78]). Consider a causal graph G. X, Y and W are disjoint sets

of attributes. X and Y are d-separated by W in G, if and only if W blocks all paths from

every node in X to every node in Y. A path p is said to be blocked by W if and only if: 1)

p contains a chain i → m → j or a fork i ← m → j such that the middle node m is in W,

or 2) p contains an collider i → m ← j such that the middle node m is not in W and no

descendant of m is in W.
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3.2.3 Causal Inference under Confounding and Selection Biases

Confounding Bias occurs when there exist hidden variables that simultaneously determine

user/item features and the outcome variable. It is well known that, in the absence of hidden

confounders, all causal effects can be estimated consistently from non-experimental data.

However, in the presence of hidden confounders, whether the desired causal quantity can

be estimated depends on the locations of the unmeasured variables, the intervention set,

and the outcome. To adjust for confounding bias, one common approach is to condition on

a set of covariates that satisfy the backdoor criterion. [79] further generalize the backdoor

criterion to identify causal effect if all non-proper causal paths are blocked.

Definition 4 (Proper Causal Path and Proper Backdoor Graph). A causal path from a

node on I to Y is called proper if it does not intersect I except at the starting point. The

proper backdoor graph, denoted as GpbdY I , is obtained from G by removing the first edge of

every proper causal path from I to Y .

Definition 5 (Generalized Backdoor Criterion). A set of variables Z satisfies the adjustment

criterion relative to (I, Y ) in G if: (i) no element in Z is a descendant in GI of any W /∈ I

lying on a proper causal path from I to Y ; (ii) all non-causal paths in G from I to Y are

blocked by Z.

The causal effect can be computed by controlling for a set of covariates Z.

P (Y = y|do(I = i)) =
∑
Z

P (y|i, z)P (z) (3.2)

Sample Selection Bias arises with a biased selection mechanism, e.g., choosing users

based on a certain time or location. Theorem 1 shows one general criteria to test whether a
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conditional probability is recoverable from biased data.

Theorem 1. For any disjoint sets X and Y, the conditional distribution P (Y = y|X = x)

is s-recoverable from Gs if and only if (S ⊥⊥ Y|X) where S is the selection mechanism.

[44] study the use of adjustment for recovering causal effects in the presence of con-

founding and selection biases. They denote V to be the set of variables measured under

selection bias and T ⊂ V to be the subset of variables that are also measured externally,

and unbiasedly, in the whole population. They introduce the selection-backdoor criterion as

a sufficient and necessary condition for recovering causal effects from a biased distribution

P (v|S = 1) with externally unbiased data P (t).

Theorem 2 (Generalized Adjustment for Causal Effect). Given a causal diagram G aug-

mented with selection variable S, disjoint sets of variables Y, I,Z, a set of externally and

unbiasedly measured variables T, and a set Z⊺ ⊆ Z∩T, for every model compatible with G,

we have

P (y|do(i)) =
∑
Z

P (y|i, z, S = 1)P (z\z⊺|z⊺, S = 1)P (z⊺) (3.3)

if and only if (Z,Z⊺) satisfies the following generalized adjustment criterion:

1. No element in Z is a descendant in GI of any W /∈ I lying on a proper causal path from

I to Y.

2. All non-causal paths in G from I to Y are blocked by Z and S.

3. Z⊺ d-separates Y from S in the proper backdoor graph, i.e., (Y ⊥⊥ S|Z⊺)Gpbd
Y I

.

(Z,Z⊺) is said to be an adjustment pair for recovering the causal effect of I on Y .
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Theorem 2 studies a general case Z⊺ ⊆ Z∩T where only a subset Z⊺ of the covariates

Z requires external measurement. It naturally covers two extreme cases: when none of the co-

variates is measured externally (Z∩T = ∅) and when all of them are measured without selec-

tion bias (Z ⊆ T) [45]. Equation 3.3 reduces to P (y|do(i)) =
∑

Z P (y|i, z, S = 1)P (z|S = 1)

in the former case and P (y|do(i)) =
∑

Z P (y|i, z, S = 1)P (z) in the latter case.

Instead of identifying causal effect in presence of selection bias by adjustment, [80]

proposed a parallel procedure to justify whether a causal quantity is identifiable and re-

coverable from selection bias using axiomatical c-components factorization [81]. Basically,

c-component factorization first partitions nodes in G into a set of c-components, then ex-

presses the target intervention in terms of the c-factors corresponding to each c-component.

Specifically, a c-component C denotes a subset of variables in G such that any two nodes

in C are connected by a path entirely consisting of bi-directed edges. A c-factor Q[C](v)

is a function that demonstrates the post-intervention distribution of C after conducting

interventions on the remaining variables V\C and is defined as

Q[C](v) = P (c|do(v\c)) =
∑
U

∏
V ∈C

P (v|Pa(v),uv)P (u)

where Pa(v) and uv denote the set of observed and unobserved parents for node V . We

explicitly denote Q[C](v) as Q[C] and list the factorization formula.

Theorem 3 (C-component Factorization). Given a causal graph G, the target intervention

P (y|do(x)) could be expressed as a product of c-factors associated with the c-components

as follows:

P (y|do(x)) =
∑
C\Y

Q[C] =
∑
C\Y

l∏
i=1

Q[Ci] (3.4)
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where X,Y ⊂ V could be arbitrary sets, C = An(Y)GV\X , and C1, ...,Cl are the c-

components of GC .

Based on the factorization above, [44] showed that P (y|do(x)) is recoverable and

could be computed by Equation 3.4 if each factor Q[Ci] is recoverable from the observational

data. Accordingly, they developed the RC algorithm to determine the recoverability of each

c-factor.

3.3 Bandit-based Recommendation

LinUCB Algorithm We use the linear contextual bandit [82] as one baseline model for our

personalized recommendation. In the linear contextual bandit, the reward for each action is

an unknown linear function of the contexts. Formally, we model the personalized recommen-

dation as a contextual multi-armed bandit problem, where each user u is a “bandit player”,

each potential item a ∈ A is an arm and k is the number of item candidates. At time t, there

is a coming user u. For each item a ∈ A, its contextual feature vector xt,a ∈ Rd represents the

concatenation of the user and the item feature vectors. The algorithm takes all contextual

feature vectors as input, recommends an item at ∈ A and observes the reward rt,at , and then

updates its item recommendation strategy with the new observation (xt,at , at, rt,at). During

the learning process, the algorithm does not observe the reward information for unchosen

items.

The total reward by round t is defined as
∑

t rt,at and the optimal expected reward

as E[
∑

t rt,a∗ ], where a∗ indicates the best item that can achieve the maximum reward at

time t. We aim to train an algorithm so that the maximum total reward can be achieved.

Equivalently, the algorithm aims to minimize the regret R(T ) = E[
∑

t rt,a∗ ]−E[
∑

t rt,at ]. The

contextual bandit algorithm balances exploration and exploitation to minimize regret since
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there is always uncertainty about the user’s reward given the specific item.

Algorithm 1 LinUCB

1: Input: α ∈ R+

2: for t = 1,2,3,...,T do
3: Observe contextual features of all arms a ∈ At : xt,a ∈ Rd

4: for a ∈ At do
5: if a is new then
6: Aa ← Id (d-Dimension identity matrix)
7: ba ← 0d×1 (d-Dimension zero vector)
8: end if

9: θ̂a ← A−1
a ba

10: pt,a ← θ̂T
a xt,a + α

√
xT
t,aA

−1
a xt,a

11: end for
12: Choose arm at = argmaxa∈Atpt,a with ties broken arbitrarily, and observe a real-

valued payoff rt,at
13: Aat ← Aat + xt,atx

T
t,at

14: bat ← bat + rt,atxt,at

15: end for

Algorithm 1 shows the LinUCB algorithm as introduced by [83]. It assumes the ex-

pected reward is linear in its d-dimensional features xt,a with some unknown coefficient vector

θ∗
a. Formally, for all t, we have the expected reward at time t with arm a as E[rt,a|xt,a] =

θ∗T
a xt,a. Here the dot product of θ∗

a and xt,a could also be succinctly expressed as ⟨θ∗
a,xt,a⟩.

At each round t, we observe the realized reward rt,a = ⟨θ∗
a,xt,a⟩ + ϵt where ϵt is the noise

term.

Basically, LinUCB applies ridge regression technique to estimate the true coefficients.

Let Da ∈ Rma×d denote the context of the historical observations when arm a is selected and

ra ∈ Rma denote the relative rewards. The regularised least-square estimator for θa could be

expressed as:

θ̂a = argmin
θ∈Rd

(
ma∑
i=1

(ri,a − ⟨θ, Da(i, :)⟩)2 + λ||θ||22

)
(3.5)
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where λ is the penalty factor of the ridge regression. The solution to Equation 3.5 is:

θ̂a = (DT
aDa + λId)

−1DT
a ra (3.6)

[83] derived a confidence interval that contains the true expected reward with prob-

ability at least 1− δ:

∣∣∣θ̂T
a xt,a − E[rt,a|xt,a]

∣∣∣ ≤ α
√
xT
t,a(D

T
aDa + λId)xt,a

for any δ > 0, where α = 1 +
√

ln(2/δ)/2 . Following the rule of optimism in the face of

uncertainty for linear bandits (OFUL), this confidence bound leads to a reasonable arm-

selection strategy: at each round t, pick an arm by

at = argmaxa∈At

(
θ̂T
a xt,a + α

√
xT
t,aA

−1
a xt,a

)
(3.7)

where Aa = DT
aDa + λId. The parameter λ could be tuned to a suitable value in order to

improve the algorithm’s performance. Line 13 and 14 in Algorithm 1 provide an iterative

way to update the arm-related matrices Aa and ba. In the remaining content we will denote

the weighted 2-norm
√

xT
t,aA

−1
a xt,a as ||xt,a||A−1

a
for the sake of simplicity.

Regret Bound of LinUCB

Existing research works (e.g., [50, 84]) on deriving the regret bound of LinUCB are

based on the following four assumptions:

1. The true coefficient θ∗ is shared by all arms.

2. The error term ϵt follows 1-sub-Gaussian distribution for each time point.
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3. {αt}ni=1 is a non-decreasing sequence with α1 ≥ 1.

4. ||xt,a||2 < L, ||θ∗||2 < M for all time points and arms.

For assumption 1, since there is only one unified θ, we change the notation of Da, ra to

Dt and rt to denote the historical observations up to time t for all arms. The matrix Aa

will be denoted as At accordingly. For assumption 3, following [50] and [84], we modify α in

Algorithm 1 to be a time dependent sequence to get a suitable confidence set for θ∗ at each

round, but use a fixed and tuned α in the experiment part to make the online computation

more efficient.

To derive the regret bound, the first step is to construct a confidence set Ct ∈ Rd for

the true coefficient. At each round t, a natural choice is to make Ct centered at θ̂t−1. [50]

shows that the confidence ellipsoid could be a suitable choice for constructing the confidence

region, which is defined as follows:

Ct = {θ ∈ Rd : ||θ − θ̂t−1||At−1 < αt}

The key point is how to obtain an appropriate αt at each round to make Ct contain

the true parameter θ∗ with high probability and be as small as possible simultaneously. [50]

takes the advantages of the martingale techniques and derives a confidence bound in terms

of the weighted 2-norm shown in Lemma 1.

Lemma 1. (Theorem 2 in [50]) Suppose the noise term is 1-sub-Gaussian distributed, let

δ ∈ (0, 1), with probability at least 1− δ, it holds that for all t ∈ N+,

||θ∗ − θ̂t||At ≤
√
λ||θ∗||2 +

√
2log(|At|1/2|λId|−1/2δ−1) (3.8)

25



The RHS of Equation 3.8 gives an appropriate selection of αt for the confidence

ellipsoid. Under the fact that θ∗ ∈ Ct and the optimistic arm selection rule of LinUCB we

could further bound the regret at each round with high probability by rt = ⟨θ∗,xt,a⟩ −

⟨θ̂,xt,a⟩ ≤ 2αt||xt,a||A−1
t
. Summing up the regret at each round, the following corollary gives

a Õ(dlog(T )) cumulative regret bound up to time T .

Corollary 1. (Corollary 19.3 in [85]) Under the assumptions above, the expected regret of

LinUCB with δ = 1/T is bounded by

RT ≤ Cd
√
T log(TL) (3.9)

where C is a suitably large constant.
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4 Achieving User-side Fairness in Bandit-based Recommendation

4.1 Introduction

Personalized recommendation based on multi-arm bandit (MAB) algorithms has be-

come a popular topic of research and shown to lead to high utility and efficiency [22] as

it dynamically adapts the recommendation strategy based on feedback. However, it is also

known that such personalization could incur biases or even discrimination that can influ-

ence decisions and opinions [23, 24]. Recently researchers have started taking fairness and

discrimination into consideration in the design of MAB based personalized recommendation

algorithms [25, 26, 27]. However, they focused on the fairness of the recommended items

(e.g., services provided by small or large companies) instead of the customers who received

those items. For example, [26] focused on individual fairness, i.e., “treating similar indi-

viduals similarly,” and considered the individual as an arm with the aim of ensuring the

probability of selecting an arm is equal to the probability with which the arm has the best

quality realization. [25] aimed to achieve group fairness over items by ensuring the probabil-

ity distribution from which items are sampled satisfies certain fairness constraints at all time

steps. In this chapter, we aim to develop novel algorithms to ensure fair and ethical treat-

ment of customers with different profile attributes (e.g., gender, race, education, disability,

and economic conditions) in a contextual bandit based personalized recommendation.

Consider the personalized educational video recommendation in Table 4.3 as an il-

lustrative example. Table 4.1 shows two students, Alice and Bob, having the same profiles

except for the gender. Table 4.2 shows potential videos and Table 4.3 shows recommendations

27



Student Gender Grade GPA ...
Alice female 9th 2.6 ...
Bob male 9th 2.6 ...
... ... ... ... ...

Table 4.1: Students.

Video Gender of speaker rating length ...
2501 female 4.3 4 minutes ...
0964 male 4.3 6 minutes ...
... ... ... ... ...

Table 4.2: Videos.

by a personalized recommendation algorithm. Focusing on the fairness of the video would

ensure that videos featuring female speakers have similar chances of being recommended as

those featuring male speakers. However, one group of students could benefit more from the

recommended videos than the other group, therefore yielding to an unequal improvement of

the learning performances. In our work, rather than focusing on the fairness of the item being

recommended, i.e., the video, we focus on the user-side fairness in terms of the reward, i.e.,

the improvement of student’s learning performance after watching the recommended video.

We want to ensure that both male students and female students who share similar profiles

will receive a similar reward regardless of the video being recommended, such that they both

benefit from the video recommendations and improve their learning performance equally.

We study how to achieve the user-side fairness in the classic contextual bandit al-

gorithm. The contextual bandit framework [48], which is used to sequentially recommend

Student Video Reward
Alice 2501 0.60
Bob 0964 0.80
... ... ...

Table 4.3: Recommendations.
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items to a customer based on her contextual information, is able to fit user preferences,

address the cold-start problem by balancing the exploration and exploitation trade-off in

recommendation systems, and simultaneously adapt the recommendation strategy based on

feedback to maximize the customer’s learning performance. However, such a personalized

recommendation system could induce an unfair treatment of certain customers which could

lead to discrimination. We develop a novel fairness aware contextual bandit algorithm such

that customers will be treated fairly in personalized learning.

We train our fair contextual bandit algorithm to detect discrimination, that is, whether

or not a group of customers is being privileged in terms of reward received. Our fair con-

textual bandit algorithm then measures to what degree each of the items (arms in bandits)

contributes to the discrimination. Furthermore, in order to counter the discrimination, if

any, we introduce a fairness penalty factor. The goal of this penalty factor is to maintain a

balance between fairness and utility, by ensuring that the arm picking strategy will not incur

discrimination whilst achieving good utility. Finally, we compare our algorithm against the

traditional LinUCB both theoretically and empirically and we show that our approach not

only achieves group-level fairness in terms of reward, but also yields comparable effectiveness.

Overall, our contributions are two-fold. First, we develop a fairness aware contextual

bandit algorithm that achieves user-side fairness in terms of reward and is robust against

factors that would otherwise increase or incur discrimination. Secondly, we provide a theo-

retical regret analysis to show that our algorithm has a regret bound higher than LinUCB

up to only an additive constant.
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4.2 Fairness Aware Contextual Bandits

We focus on how to achieve user-side fairness in contextual bandit based recommen-

dation and present our fair contextual bandit algorithm, called Fair-LinUCB and derive its

regret bound.

4.2.1 Problem Formulation

We define a sensitive attribute S ∈ xt,a with domain values {s+, s−} where s+ (s−)

is the value of the privileged (protected) group. Let Ts denote a time index subset such that

the users being treated at time points in Ts all hold the same sensitive attribute value s.

We introduce the group-level cumulative mean reward as r̄s =
1

|Ts|
∑

t∈Ts
rt,a. Specifically,

r̄s
+
denotes the cumulative mean reward of the individuals with sensitive attribute S = s+,

and r̄s
−
denotes the cumulative mean reward of all individuals having the sensitive attribute

S = s−.

We define the group fairness in contextual bandits as E[r̄s+ ] = E[r̄s− ], more specifi-

cally, the expected mean reward of the protected group and that of the unprotected group

should be equal. A recommendation algorithm incurs group-level unfairness in regards to a

sensitive attribute S if |E[r̄s+ ] − E[r̄s− ]| > τ where τ ∈ R+ reflects the tolerance degree of

unfairness.

4.2.2 Fair-LinUCB Algorithm

We describe our fair LinUCB algorithm and show its pseudo code in Algorithm 2.

The key difference from the traditional LinUCB is the strategy of choosing an arm during

recommendation (shown in Line 12 of Algorithm 2). In the remaining of this section, we

explain how this new strategy achieves user-side group-level fairness.
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Algorithm 2 Fair-LinUCB

1: Input: α , γ ∈ R+

2: r̄s
+
, r̄s

− ← 0
3: for t = 1,2,3,..., T do
4: Observe features of all arms a ∈ At : xt,a ∈ Rd

5: for a ∈ At do
6: if a is new then
7: Aa ← λId (d-Dimension identity matrix)
8: ba ← 0d×1 (d-Dimension zero vector)
9: r̄s

+

a , r̄s
−

a ← 0
10: end if
11: θ̂a ← A−1

a ba

12: pt,a ← θ̂T
a xt,a + α||xt,a||A−1

a
+ L(γ, Fa)

13: end for
14: Choose arm at = argmaxa∈Atpt,a with ties broken arbitrarily, and observe a real-

valued payoff rt,at
15: Aa ← Aa + xt,atx

T
t,at

16: ba ← ba + rt,atxt,at

17: if St = s+ then
18: update r̄s

+
, r̄s

+

a with rt,at
19: else
20: update r̄s

−
, r̄s

−
a with rt,at

21: end if
22: end for
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Given a sensitive attribute S with domain values {s+, s−}, the goal of our fair con-

textual bandit is to minimize the cumulative mean reward difference between the protected

group and the privileged group while preserving its efficiency. Note that Fair-LinUCB can

be extended to the general setting of multiple sensitive attributes Sj ∈ S = {S1, S2, ..., Sl}

where S ⊂ xt,a and each Sj can have multiple domain values. In order to measure the un-

fairness at the group-level, our Fair-LinUCB algorithm will keep track of both cumulative

mean rewards along the time, e.g., r̄s
+
and r̄s

−
. We capture the orientation of the bias (i.e.,

towards which group the bias is leaning) through the sign of the cumulative mean reward

difference. By doing so, Fair-LinUCB is able to know which group is being discriminated and

which group is being privileged.

When running context bandits for recommendation, each arm may generate a reward

discrepancy and therefore contribute to the unfairness to some degree. Fair-LinUCB captures

the reward discrepancy at the arm level by keeping track of the cumulative mean reward

generated by each arm a for both groups s+ and s−. Specifically, let r̄s
+

a denote the average

of the rewards generated by arm a for the group s+, and let r̄s
−

a denote the average of the

rewards generated by arm a for the group s−. The bias of an arm is thus the difference

of both averages: ∆a = (r̄s
+

a − r̄s
−

a ). Finally, by combining the direction of the bias and

the amount of the bias induced by each arm a, we define the fairness penalty term as

Fa = −sign(r̄s+ − r̄s
−
) · ∆a, and exert onto the UCB value in our fair contextual bandit

algorithm. Note that the lesser an arm contributes to the bias, the smaller the penalty.

As a result, if an arm has a high UCB but incurs bias, its adjusted UCB value will

decrease and it will be less likely to be picked by the algorithm. In contrast, if an arm has

a small UCB but is fair, its adjusted UCB value will increase, and it will be more likely to

be picked by the algorithm, thereby reducing the potential unfairness in recommendation.
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Different from the traditional LinUCB that picks the arm to solely maximize the UCB,

our Fair-LinUCB accounts for the fairness of the arm and picks the arm that maximizes

the summation of the UCB and the fairness. Formally, we show the modified arm selection

criteria in Equation 4.1.

pt,a ← θ̂T
a xt,a + α||xt,a||A−1

a
+ L(γ, Fa) (4.1)

We adopt a linear mapping function L with input parameters γ and Fa to transform the

fairness penalty term proportionally to the size of its confidence interval. Specifically,

L(γ, Fa) =
αt||xt,am||A−1

t

2
(Fa + 1)γ (4.2)

am = argmina∈At||xt,a||A−1
a

(4.3)

Assuming that the reward generated is in the range [0, 1], the fairness penalty Fa lies

in [−1, 1]. When designing the coefficient of the linear mapping function, we choose am to

be the arm with the smallest confidence interval to guarantee a unified fairness calibration

among all the arms. Under the effect of L, the range of the fairness penalty is mapped from

[−1, 1] to [0, γαt||xt,am||A−1
t
], which implies a similar scale with the confidence interval. In

our empirical evaluations, we show how γ controls fairness-accuracy trade-off on the practical

performance of Fair-LinUCB.

4.2.3 Regret Analysis

In this section, We prove that our Fair-LinUCB algorithm has a Õ(dlog(T )) regret

bound under certain assumptions with carefully chosen parameters. We adopt the regret
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analysis framework of linear contextual bandit and introduce a mapping function on the

fairness penalty term. By applying the mapping function L we make our fairness penalty

term possess the similar scale with the half length of the confidence interval. Thus we can

merge the regret generated by UCB term and fairness term together and derive our regret

bound.

Theorem 4. Under the same assumptions shown in Section 3.3, further assuming γ is a

moderate small constant with γ ≤ Γ, there exists δ ∈ (0, 1) such that with probability at

least 1− δ Fair-LinUCB achieves the following regret bound:

RT ≤
√

2Tdlog(1 + TL2/(dλ))× (2+Γ)(
√
λM +

√
2log(1/δ) + dlog(1 + TL2/(dλ))) (4.4)

Proof. We first introduce three technical lemmas from [50] and [85] to help us complete the

proof of Theorem 4.

Lemma 2. (Lemma 11 in appendix of [50]) If λ ≥ max(1, L2), the weighted L2-norm of

feature vector could be bounded by :
∑T

t=1 ||xt,a||2A−1
t
≤ 2log |At|

λd

Lemma 3. (Lemma 10 in appendix of [50] ) The determinant |At| could be bounded by:

|At| ≤ (λ+ tL2/d)d.

Lemma 4. (Theorem 20.5 in [85]) With probability at least 1 − δ, for all the time point

t ∈ N+ the true coefficient θ∗ lies in the set:

Ct = {θ ∈ Rd : ||θ̂t − θ||At ≤
√
λM +

√
2log(1/δ) + dlog(1 + TL2/(dλ))} (4.5)
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In Fair-LinUCB, the range of fairness term is [−1, 1], we apply a linear mapping

function L(γ, x) =
αt||xt,am ||

A−1
t

2
(x + 1)γ to map the range of L(γ, Fa) to [0, γαt||xt,am ||A−1

t
],

where am = argmina∈At ||xt,a||A−1
a
.

According to the rule, the regret at each time t is bounded by:

regt = xT
t,aθ̂t − xT

t,aθ
∗

≤ xT
t,aθ̂t + αt||xt,a||A−1

t
+ L(γ, Fa)− xT

t,aθ
∗

≤ xT
t,aθ̂t + αt||xt,a||A−1

t
+ L(γ, Fa)− (xT

t,aθ̂t − αt||xt,a||A−1
t
)

≤ 2αt||xt,a||A−1
t

+ L(γ, 1)

= 2αt||xt,a||A−1
t

+ γαt||xt,am||A−1
t

≤ 2αt||xt,a||A−1
t

+ γαt||xt,a||A−1
t

≤ (2 + Γ)αt||xt,a||A−1
t

The second line above is derived based on the theoretic result in Lemma 1 and fol-

lowing the selection rule of the Fair-LinUCB algorithm, specifically, xT
t,a∗θ

∗ ≤ xT
t,a∗θ̂t +

αt||xt,a∗||A−1
t
≤ xT

t,a∗θ̂t+αt||xt,a∗||A−1
t
+L(γ, Fa∗) ≤ xT

t,aθ̂t+αt||xt,a||A−1
t
+L(γ, Fa). Note that

Lemma 1 can be equally applied here because the estimator θ̂t is still a valid ridge regression

estimator at each round.

Summing up the regret at each bound, with probability at least 1− δ the cumulative

regret up to time T is bounded by:

RT =
T∑
t=1

regt ≤

√√√√T

T∑
t=1

reg2t ≤ (2 + Γ)αT

√√√√T

T∑
t=1

||xt,a||2A−1
t

(4.6)
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Since {αt}ni=1 is a non-decreasing sequence, we can enlarge each element αt to αT to

obtain the inequalities in Equation 4.6. By applying the inequalities from Lemma 2 and 3

we could further relax the regret bound up to time T to:

RT ≤ (2 + Γ)αT

√
2T log

|At|
λd

≤ (2 + Γ)αT

√
2Td(log(λ+ TL2/d)− logλ)

= (2 + Γ)αT

√
2Tdlog(1 + TL2/(dλ))

(4.7)

Following the result of Lemma 1, by loosing the determinant of At according to

Lemma 3, Lemma 4 provides a suitable choice for αT up to time T . By plugging in the RHS

from Equation 4.5 we get the regret bound shown in Theorem 4:

RT ≤
√
2Tdlog(1 + TL2/(dλ))× (2 + Γ)(

√
λM +

√
2log(1/δ) + dlog(1 + TL2/(dλ)))

Corollary 2. Setting δ = 1/T , the regret bound in Theorem 4 could be simplified as

RT ≤ C ′d
√
T log(TL).

Comparing Corollary 2 with Corollary 1 (for LinUCB), we can see the regret bound

of Fair-LinUCB is worse than the original LinUCB only up to an additive constant. This

perfectly matches the intuition that Fair-LinUCB is able to keep aware of the fairness and

guarantee there is no reward gap between different subgroups or individuals, however, it

suffers from a relatively higher regret.
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4.3 Experimental Evaluation

4.3.1 Experiment Setup

4.3.1.1 Simulated Dataset

There are presently no publicly available datasets that fits our environment. We

therefore generate one simulated dataset for our experiments by combining the following

two publicly available datasets.

• Adult dataset: The Adult dataset [86] is used to represent the students (or bandit

players). It is composed of 31,561 instances: 21,790 males and 10,771 females, each

having 8 categorical variables (work class, education, marital status, occupation, rela-

tionship, race, sex, native-country) and 3 continuous variables (age, education number,

hours per week), yielding an overall of 107 features after one-hot encoding.

• YouTube dataset: The Statistics and Social Network of YouTube Videos 1 dataset

is used to represent the items to be recommended (or arms). It is composed of 1,580

instances each having 6 categorical features (age of video, length of video, number of

views, rate, ratings, number of comments), yielding a total of 25 features after one-hot

encoding. We add a 26th feature used to represent the gender of the speaker in the

video which is drawn from a Bernoulli distribution with the probability of success as

0.5.

The feature contexts xt,a used throughout the experiment is the concatenation of both

the student feature vector and the video feature vector. In our experiments we choose the

sensitive attribute to be the gender of adults, and we therefore focus on the unfairness on

1https://netsg.cs.sfu.ca/youtubedata/
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the group-level for the male group and female group. Furthermore, we assume that a male

student prefers a video featuring a male and a female student prefers a video featuring a

female speaker. Thus, in order to maintain the linear assumption of the reward function, we

add an extra binary variable in the feature context vector that represents whether or not the

gender of the student matches the gender of the speaker in the video. Overall, xt,a contains

a total of 134 features.

For our experiments, we use a subset of 5,000 random instances from the Adult

dataset, which is then split into two subsets: one for training and one for testing. The training

subset is composed of 1,500 male individuals and 1,500 female individuals whilst the testing

subset is composed of 1000 males and 1000 females. Similarly, a subset of YouTube dataset is

used as our pool of videos to recommend (or arms). The subset contains 30 videos featuring

a male speaker and 70 videos featuring a female speaker.

4.3.1.2 Reward Function

We compare our Fair-LinUCB against the original LinUCB using a simple reward

function wherein we manually set the θ∗ coefficients. The reward r is defined as

r = θ∗1 · x1 + θ∗2 · x2 + θ∗3 · x3

where θ∗1 = 0.3, θ∗2 = 0.4, θ∗3 = 0.3 and x1 = video rating, x2 = education level, x3 =

gender match. The remaining d− 3 coefficients are set to 0. Hence, only these three features

matter to generate our true reward. The gender match is set to 1 if both the student gender

and the gender of the video match, and 0 otherwise. The education level is divided into 5

subgroups each represented by a value ranging from 0.0 to 1.0 with a higher education level
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yielding a higher value. In our setup, the education level is used to represent the strength

of the student. Similarly, the video rating varies from 0 to 1.0, and is used to represent the

educational quality of the video. Evidently, a higher reward is generated when the gender of

the student matches the gender of the video.

4.3.1.3 Evaluation Metrics

Throughout our experiments we measure the effectiveness of the algorithms through

the average utility loss. Since we know the true reward function, we can derive the optimal

reward at each round t. We can thus define

utility loss =
1

T

T∑
t=1

(rt,a∗ − rt,a)

where rt,a∗ is the optimal reward at round t by choosing arm a∗ and rt,a is the observed

reward by the algorithm after picking arm a.

We measure the fairness of the algorithms through the absolute value of the difference

between the cumulative mean reward (r̄t, as introduced in Section 4.2.1) of the male group

and female group:

reward difference = |r̄s+t − r̄s
−

t |

Additionally, for all following figures the left hand side plots the cumulative mean reward

during the training phase whilst the right hand side reflects the cumulative mean reward

over the testing dataset. Note that the contextual bandit continues to learn throughout both

phases.
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4.3.1.4 Baselines

As existing fair bandits algorithms focus on item-side fairness, we mainly compare

our Fair-LinUCB against LinUCB in terms of utility-fairness trade-off in our evaluations. We

also report a comparison with a simple fair LinUCB method that suppresses the unfairness

by removing the sensitive attribute and all its correlated attributes from the context. We

name this method as Naive in our evaluation.

4.3.2 Comparison with Baselines

4.3.2.1 Comparison with LinUCB

Our first experiment compares the performances of the traditional LinUCB against

our Fair-LinUCB, using the reward function r described in the previous section. Figure 4.2

plots the cumulative mean reward of both the male and female groups over time. We can

notice that the cumulative mean rewards of both groups suffer a discrepancy with LinUCB,

and the outcome can therefore be considered unfair towards the male group. Indeed, as shown

on Figure 4.2a the cumulative mean reward of the female group (0.839) is greater than the

cumulative mean reward of the male group (0.802), yielding a reward difference of 0.037. The

utility loss incurred is 0.050. In contrast, Fair-LinUCB is able to seal the reward discrepancy

with a γ coefficient set to 3 (Figure 4.2b). Our algorithm thereby achieves a cumulative

mean reward of 0.819 for both the male group and the female group, which yields a reward

difference of 0.0, while incurring a utility loss of 0.052. Our Fair-LinUCB outperforms the

traditional LinUCB in terms of reward difference while suffering a slight loss of utility. The

comparison results are summarized in the first two rows of Table 4.4.

To evaluate how the inclusion or exclusion of sensitive attributes affects the fairness-
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Table 4.4: Comparison of three algorithms under reward function r.

Utility Loss Reward difference

Fair-LinUCB (γ = 3) 0.052 0.000
LinUCB 0.050 0.037
Naive 0.046 0.035

(a) (b)

Figure 4.1: LinUCB (a) vs Fair-LinUCB γ = 3 (b) with reward function r2.

utility tradeoff, we compare LinUCB against Fair-LinUCB with a modified reward function:

r2 = θ∗1 · x1 + θ∗2 · x2

where θ∗1 = 0.5 and θ∗2 = 0.5 and x1 = video rating, x2 = education level The remaining

d − 2 coefficients are set to 0. r2 is not dependent upon the gender match attribute and

expects to incur zero or small discrepancy between both groups. As depicted on Figure

4.1, both LinUCB and Fair-LinUCB show a very low cumulative mean reward discrepancy.

Specifically, LinUCB incurs a utility loss of 0.037 and a reward difference of 0.006, while

Fair-LinUCB incurs 0.034 utility loss and a reward difference of 0.008. Furthermore, in this

case, although Fair-LinUCB has additional constraints for the arm picking strategy due to

the fairness penalty, it does not induce any loss of utility when compared to LinUCB.
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4.3.2.2 Comparison with Naive

Naive method tries to achieve fairness by removing from the context the sensitive

attribute and the features that are highly correlated with the sensitive attribute. In our

experiment, we first compute the correlation matrix of all the user’s features and then remove

the gender feature as well as all features that are highly correlated with it. Specifically,

features that have a correlation coefficient greater than 0.3 were removed, which include

the following: is male, is female, is divorced, is married, is widowed, is a husband, has an

administrative clerical job, has a salary less than 50k. We report in the last row of Table 4.4

the utility loss and reward difference of Naive with reward function r.

We can see the reward discrepancy between the male and female groups from the

Naive method is 0.035, thus showing it cannot completely remove discrimination. The utility

loss from the Naive method is 0.046, which is only slightly smaller than LinUCB and Fair-

LinUCB. In fact, as shown in Table 4.5, Fair-LinUCB with γ = 2 can outperform the Naive

method in terms of both fairness and utility. In short, removing the gender information and

highly correlated features from the context does not necessarily close the gap of the reward

difference.

In summary, although LinUCB learns to pick the arm that maximizes the reward

given a particular context, we have seen that it could incur discrimination towards a group

of users in some cases. Fair-LinUCB is capable of detecting when unfairness occurs, and

will adapt its arm picking strategy accordingly so as to be as fair as possible and reduce

any reward discrepancy. When a reward discrepancy is not detected, our algorithm does not

need to adjust the arm picking strategy and therefore performs as well as the traditional

LinUCB.
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(a) (b)

Figure 4.2: LinUCB (a) vs Fair-LinUCB γ = 3 (b) with reward function r.

Table 4.5: Impact of γ on the fairness-utility trade-off.

Utility Loss Reward difference

γ = 0 0.050 0.037
γ = 1 0.040 0.016
γ = 2 0.035 0.004
γ = 3 0.052 0.000
γ = 4 0.081 0.000

4.3.3 Impact of γ on Fairness-Utility Trade-off

The γ coefficient introduced in Section 4.2.2 controls the weight of the fairness penalty

that the algorithm will exert onto the UCB value. Indeed, as shown in Equation (4.2), γ is

used to adjust the upper bound of the linear mapping function L(γ, Fa). Thus, when the

γ coefficient increases, the range of the fairness penalty increases proportionally which will

consequently increase the UCB value in Equation 4.1. The γ coefficient therefore reflects

the significance of the fairness of Fair-LinUCB. However, as γ becomes larger, the fairness

penalty becomes out of proportion to the extent of neglecting the importance of the UCB

value, thereby decreasing the utility of the algorithm.

To evaluate the fairness-utility trade-off of Fair-LinUCB, we compare several γ values

and report the fairness and utility loss in Table 4.5. With a γ equal to 0, our algorithm

behaves as a traditional LinUCB, therefore it incurs discrimination (reward difference mea-
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sured at 0.037), and a utility loss of 0.050 is reported. We can observe that when γ increases

slightly, the algorithm improves the reward difference and loss of utility. Specifically, a reward

difference of 0.016 is achieved for γ = 1 with a utility loss of 0.040, and a reward difference

of 0.004 with a utility loss of 0.035 is achieved with γ = 2. Although the utility losses are

improved, they both remain not fair. In our best case scenario, with γ = 3, the algorithm

is completely fair, i.e., reward difference is 0.000, with a utility loss of 0.052. Finally, when

the γ coefficient is too large, the algorithm prioritizes fairness over utility, resulting in a fair

algorithm that suffers a greater loss of utility. For example, with a γ set to 4, Fair-LinUCB

incurs a utility loss of 0.081.

4.3.4 Impact of Arm and User Distributions

In certain cases the distribution of the arms (videos) or the users can significantly

impact the cumulative mean reward of some groups of users, and therefore incur the large

reward difference. In our experiment, given the reward function r, we first explore the impact

of the ratio of gender arms, i.e., videos by female or male speakers, and then we investigate

the impact of the order of the data in which the algorithm learns. The following results

discuss our findings. We explore the effect of three different arm ratio values: (1) 70% male

and 30% female, (2) 50% male and 50% female, and (3) 30% male and 70% female. Table

4.6 reports the utility loss, reward difference, as well as both the cumulative mean reward

for the male and female groups. As observed with the LinUCB performances, the arm ratio

induces unfairness on some user group. Indeed, when there is a majority of male arms, it

appears that the male user group will benefit more and will have a higher cumulative mean

reward. Likewise, when the arms have more females than males, the female user group will

benefit more than the male user group, and will therefore have a higher cumulative mean
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Table 4.6: Impact of different arm ratio on the fairness and utility.

Arm ratio Utility Loss
Reward Male Female

m:f difference cmr cmr
LinUCB

7:3 0.061 0.029 0.824 0.795
1:1 0.053 0.012 0.824 0.812
3:7 0.050 0.037 0.802 0.839

Fair-LinUCB γ = 3

7:3 0.087 0.001 0.784 0.783
1:1 0.162 0.000 0.709 0.709
3:7 0.052 0.000 0.819 0.819

reward. Although having a balanced ratio of male and female arms minimizes the reward

difference, it is not always feasible or convenient to adjust the arms distribution in practice.

We ran the same experiment with Fair-LinUCB with γ = 3. As we can see, in all

three cases, Fair-LinUCB yields a very low reward difference. Indeed, our Fair-LinUCB learns

which group is being discriminated and adjusts its arm picking strategy accordingly so as to

remove any discrimination, it however suffers a higher utility loss than LinUCB. Note that

a γ different than 3 could yield a better utility loss for the ratios 7:3 and 1:1.

Thus, as opposed to a traditional LinUCB which only learns to maximize the reward

given a context, our Fair-LinUCB learns how to achieve fairness at the same time, making

it robust against factors that would otherwise induce unfairness.

It is also our intuition that the order of the data in which LinUCB learns to recom-

mend an item could affect its recommendation choice or arm pick.

In these experiments, we use the 70% male and 30% female arms setting, and we

manually change the order of the training data. In the first setting, we manually set the

order of the students in the training data by having all 1,500 female students followed by

the 1,500 males instances. In the second setting we order the data by having all 1,500 male

instances first, followed by the 1,500 female instances. The test data remains shuffled. We

45



(a) (b)

(c) (d)

Figure 4.3: Impact of the order of the data on the performances.

then compare LinUCB with Fair-LinUCB in order to see the impact on the learning strategy

of both algorithms.

We ran the traditional LinUCB and report the cumulative mean reward of the male

user group and female user group over time. Figure 4.3 shows the impact of the order of the

data on the performances. Specifically, (a)LinUCB: 1,500 females followed by 1,000 males.

(b)LinUCB: 1,500 males followed by 1,000 females. (c)FairLinUCB with γ = 3: 1,500 females

followed by 1,000 males. (d)FairLinUCB with γ = 3: 1,500 males followed by 1,000 females.

As shown in Figure 4.3a and Figure 4.3b, overall the male group gets a higher cumulative

mean reward than the female group. Particularly, the male group achieves 0.822 against

0.816 for the female group in Figure 4.3a and 0.834 against 0.795 in Figure 4.3b. However,

we notice that the reward discrepancy is much higher in the second scenario as compared to

the first one. From Figure 4.3a, it appears that learning to recommend videos to all females
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students prior to recommending videos to any male students affects the recommendation

process positively (i.e., it yields a higher cumulative mean reward for the female group). Thus,

the order of the training data can sometimes affect the recommendation process of LinUCB,

which can impact the recommendation outcomes and may also induce discrimination towards

one group.

We ran the same experiments with Fair-LinUCB, using a γ coefficient of 3, and

we report our results in Figure 4.3c and Figure 4.3d. We notice that in both situations

our Fair-LinUCB remains very fair, that is, we do not observe a cumulative mean reward

discrepancy between the male and female user group. In the former setting, both groups

achieve a cumulative mean reward of 0.802 against 0.789 in the latter, both yielding a

cumulative mean reward difference of 0.00. In addition, we notice that regardless of the order

of the training data our Fair-LinUCB performs equivalently in both scenarios. However, the

gain in fairness also induces a loss of utility. Indeed, in the first setting LinUCB achieves

0.052 utility loss against 0.070 for Fair-LinUCB. In the second setting, LinUCB achieves

0.057 against 0.082 for Fair-LinUCB. Thus, our results indicate that Fair-LinUCB is able

to close the reward discrepancy and is robust against scenarios that might otherwise induce

unfairness.

4.4 Summary

Previous research have shown that personalized recommendation can be highly effec-

tive at a cost of introducing unfairness. In this chapter, we have proposed a fair contextual

bandit algorithm for personalized recommendation. While current research in fair recommen-

dation mainly focus on how to achieve fairness on the items that are being recommended,

our work differs by focusing on fairness on the individuals whom are being recommended an
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item. Specifically, we aim to recommend items to users while insuring that both the protected

group and privileged group improve their learning performance equally. Our developed Fair-

LinUCB improves upon the state-of-the-art LinUCB algorithm by automatically detecting

unfairness, and adjusting its arm-picking strategy such that it maximizes the fairness out-

come. We further provided a regret analysis of our fair contextual bandit algorithm and

demonstrate that the regret bound is only worse than LinUCB up to an additive constant.

Finally, we evaluate the performances of our Fair-LinUCB against that of LinUCB by com-

paring both their effectiveness and degree of fairness. Experimental evaluations showed that

our Fair-LinUCB achieves competitive effectiveness while outperforming LinUCB in terms

of fairness. We further showed that our algorithm is robust against numerous factors that

would otherwise induce or increase discrimination in the traditional LinUCB algorithm. The

early version of this work is published at BigData 2021 [87] and HCIS 2022 [88].
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5 Achieving User-side Counterfactual Fairness in Bandit-based

Recommendation

5.1 Introduction

Fairness in machine learning has been a research subject with rapid growth recently.

Although there are many works focusing on fairness in personalized recommendation [25, 26,

27], how to achieve individual fairness in bandit recommendation still remains a challenging

task. We focus on online recommendation, e.g., customers are being recommended items,

and consider the setting where customers arrive in a sequential and stochastic manner from

an underlying distribution and the online decision model recommends a chosen item for

each arriving individual based on some strategy. The challenge here is how to choose the

arm at each step to maximize the expected reward while achieving user-side fairness for

customers, i.e., customers who share similar profiles will receive similar rewards regardless

of their sensitive attributes and items being recommended.

Recently researchers have started taking fairness and discrimination into consider-

ation in the design of personalized recommendation algorithms [25, 26, 27, 40, 54, 55, 56,

57, 58]. Among them, [40] was the first paper of studying fairness in classic and contextual

bandits. It defined fairness with respect to one-step rewards and introduced a notion of mer-

itocratic fairness, i.e., the algorithm should never place higher selection probability on a less

qualified arm (e.g., job applicant) than on a more qualified arm. The following works along

this direction include [54] for infinite and contextual bandits, [55] for reinforcement learn-

ing, [26] for the simple stochastic bandit setting with calibration based fairness. However,
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all existing works require some fairness constraint on arms at every round of the learning

process, which is different from our user-side fairness setting. One recent work [88] focused

on achieving user-side fairness in bandit setting, but it only purposed a heuristic way to

achieve correlation based group level fairness and didn’t incorporate causal inference and

counterfactual fairness into bandits.

By incorporating causal inference into bandits, we first propose the d-separation based

upper confidence bound bandit algorithm (D-UCB), based on which we then propose the

fair causal bandit (F-UCB) for achieving the counterfactual individual fairness. Our work

is inspired by recent research on causal bandits [89, 90, 91, 92, 93], which studied how

to learn optimal interventions sequentially by representing the relationship between inter-

ventions and outcomes as a causal graph along with associated conditional distributions.

For example, [93] developed the causal UCB (C-UCB) that exploits the causal relation-

ships between the reward and its direct parents. However, different from previous works,

our algorithms adopt soft intervention [94] to model the arm selection strategy and leverage

the d-separation set identified from the underlying causal graph, thus greatly reducing the

amount of exploration needed to achieve low cumulative regret. We show that our D-UCB

achieves Õ(
√
|W| · T ) regret bound where T is the number of iterations and W is a set

that d-separates arm/user features and reward R in the causal graph. As a comparison, the

C-UCB achieves Õ(
√
|Pa(R)| · T ) where Pa(R) is the parental variables of R that is a trivial

solution of the d-separation set. In our F-UCB, we further achieve counterfactual fairness

in each round of exploration. Counterfactual fairness requires the expected reward an in-

dividual would receive keeps the same if the individual’s sensitive attribute were changed

to its counterpart. The introduced counterfactual reward combines two interventions, a soft

intervention on the arm selection and a hard intervention on the sensitive attribute. The
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F-UCB achieves counterfactual fairness in online recommendation by picking arms from a

subset of arms at each round in which all the arms satisfy counterfactual fairness constraint.

Our theoretical analysis shows F-UCB achieves Õ(

√
|W|T

τ−∆π0
) cumulative regret bound where τ

is the fairness threshold and ∆π0 denotes the maximum fairness discrepancy of a safe policy

π0, i.e., a policy that is fair across all rounds.

We conduct experiments on the Email Campaign data [93] whose results show the

benefit of using the d-separation set from the causal graph. Our D-UCB incurs less regrets

than two baselines, the classic UCB which does not leverage any causal information as well

as the C-UCB. In addition, we validate numerically that our F-UCB maintains good perfor-

mance while satisfying counterfactual individual fairness in each round. On the contrary, the

baselines fail to achieve fairness with significant percentages of recommendations violating

fairness constraint. We further conduct experiments on the Adult-Video dataset and com-

pare our F-UCB with another user-side fair bandit algorithm Fair-LinUCB [88]. The results

demonstrate the advantage of our causal based fair bandit algorithm on achieving individual

level fairness in online recommendation.

5.2 Achieving Counterfactual Fairness in Bandit

In this section, we present our D-UCB and F-UCB bandit algorithms. The online

recommendation is commonly modeled as a contextual multi-armed bandit problem, where

each customer is a “bandit player”, each potential item a has a feature vector a ∈ A and

there are a total number of k items1. For each customer arrived at time t ∈ [T ] with feature

vector xt ∈ X , the algorithm recommends an item with features a based on vector xt,a

1We use a to represent the feature vector of item/arm a, and they may be used interchangeably when
the context is unambiguous.

51



which represents the concatenation of the user and the item feature vectors (xt, a), observes

the reward rt (e.g., purchase), and then updates its recommendation strategy with the new

observation. There may also exist some intermediate features (denoted by I) that are affected

by the recommended item and influence the reward, such as the user feedback about relevance

and quality.

5.2.1 Modeling Arm Selection via Soft Intervention

In bandit algorithms, we often choose an arm that maximizes the expectation of the

conditional reward, at = argmaxa E[R|xt,a]. The arm selection strategy could be implemented

by a functional mapping from X to A, and after each round the parameters in the function

get updated with the newest observation tuple.

A R

X

Iπ

Figure 5.1: Graph structure for contextual bandit recommendation. Node π denotes the
soft intervention conducted on arm selection.

We advocate the use of the causal graph and soft interventions as a general represen-

tation of any bandit algorithm. We consider the causal graph G, e.g., as shown in Figure 5.1,

where A represents the arm features, X represents the user features, R represents the re-

ward, and I represents some intermediate features between A and R. Since the arm selection

process could be regarded as the structural equation of X on A, we treat X as A’s parents.

Then, the reward R is influenced by the arm selection, the contextual user features, as well

as some intermediate features, so all the three factors are parents of R. In this setting, it is

natural to treat the update of the arm selection policy as a soft intervention π performed on
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the arm features A. Each time when an arm selection strategy is learned, the corresponding

soft intervention is considered to be conducted on A while user features X and all other

relationships in the causal graph are unchanged.

There are several advantages of modeling arm selection learning using the soft inter-

vention. First, it can capture the complex causal relationships between context and reward

without introducing strong assumptions, e.g., linear reward function, or Gaussian/Bernoulli

prior distribution, which are often not held in practice. Second, it is flexible in terms of the

functional form. For example, it can be of any function type, and it can be independent

or dependent upon the target variable’s existing parents and can also include new variables

that are not the target variable’s parents. Third, the soft intervention can be either deter-

ministic, i.e., fixing the target variable to a particular constant, or stochastic, i.e., assigns to

the target variable a distribution with probabilities over multiple states. As a result, most

existing and predominant bandit algorithms could be described using this framework. More-

over, based on this framework we could propose new bandit algorithms by adopting different

soft interventions.

Formally, let Πt be the arm selection policy space at time t ∈ [T ], and π ∈ Πt be a

specific policy. The implementation of policy π is modeled by a soft intervention. Denoting

by R(π) the post-interventional value of the reward after performing the intervention, the

expected reward under policy π, denoted by µπ, is given by E[R(π)|xt]. According to the

σ-calculus [94], it can be further decomposed as follows:

µπ = E[R(π)|xt] =
∑
a

Pπ(a|xt) · E[R(a)|xt] = Ea∼π [E[R(a)|xt]] (5.1)

where Pπ(a|xt) is a distribution defined by policy π. As can be seen, once a policy is given,
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the estimation of µπ depends on the estimation of E[R(a)|xt] (denoted by µa). Note that µa

represents the expected reward when selecting an arm a, which is still a post-intervention

quantity and needs to be expressed using observational distributions in order to be com-

putable. In the following, we propose a d-separation based estimation method and based

on which we develop our D-UCB algorithm. For the ease of representation, our discussions

in the following subsections assume deterministic policies, in principle the above framework

could be applied to stochastic policies as well.

5.2.2 D-UCB Algorithm

Let W ⊆ A ∪ X ∪ I be a subset of nodes that d-separates reward R from features

(A ∪X)\W in the causal graph. Such set always exists since A ∪X and Pa(R) are trivial

solutions. Let Z = W\(A∪X). Using the do-calculus [21], we can decompose µa as follows.

µa = E[R|do(a),xt] =
∑
Z

E[R|z, do(a),xt]P (z|do(a),xt)

=
∑
Z

E[R|z, a,xt]P (z|a,xt) =
∑
Z

E[R|z, a,xt]P (z|xt,a)

=
∑
Z

E[R|w]P (z|xt,a) (5.2)

where the last step is due to the d-separation. Similar to [93], we assume that distribu-

tion P (z|xt,a) is known based on previous knowledge used to build the causal graph. Then,

by using a sample mean estimator (denoted by µ̂w(t)) to estimate E[R|w] based on the
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observational data up to time t, the estimated reward mean is given by

µ̂π(t) = Ea∼π

[∑
Z

µ̂w(t) · P (z|xt,a)

]
(5.3)

Subsequently, we propose a causal bandit algorithm based on d-separation, called

D-UCB. Since there is always uncertainty on the reward given a specific policy, in order to

balance exploration and exploitation we follow the rule of optimistic in the face of uncertainty

(OFU) in D-UCB algorithm. The policy taken at time t will lead to the highest upper

confidence bound of the expected reward, which is given by

πt = argmax
π∈Πt

Ea∼π[UCBa(t)] (5.4)

UCBa(t) =
∑
Z

UCBw(t)P (z|xt,a) (5.5)

Since µ̂w(t) is an unbiased estimator and the error term of the reward is assumed to be

sub-Gaussian distributed, the 1− δ upper confidence bound of µw(t) is given by

UCBw(t) = µ̂w(t) +

√
2 log(1/δ)

1 ∨Nw(t)
(5.6)

After taking the policy, we will have new observations on rt and wt. The sample mean

estimator is then updated accordingly:

µ̂w(t) =
1

Tw(t)

t∑
k=1

rt1wk=w where Tw(t) =
t∑

k=1

1wk=w (5.7)

We hypothesize that the choice of d-separation set W would significantly affect the
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Algorithm 3 D-UCB: Causal Bandit based on d-separation
1: Input: Policy space Π, confidence level parameter δ, original causal Graph G with domain

knowledge
2: Find the d-separation set W with minimum subset Z in terms of domain space.
3: for t = 1, 2, 3, ..., T do

4: Obtain the optimal policy πt following Eq. (5.4).
5: Take action at ∼ πt and observe a real-valued payoff rt and a d-separation set value wt.
6: Update µ̂w(t) for all w ∈W following Eq. (5.7).
7: end for

regret of the D-UCB. To this end, we analyze the upper bound of the cumulative regret RT .

The following theorem shows that, the regret upper bound depends on the domain size of

d-separation set W.

Theorem 5 (Regret bound of D-UCB). Given a causal graph G, with probability at least

1− 2δT |W| − exp(− |W| log3(T )
32 log(1/δ)

), the regret of D-UCB is bounded by

RT ≤
√
|W|T log(T )log(T ) +

√
32|W|T log(1/δ)

where |W| is the domain space of set W.

Proof Sketch. The proof of Theorem 5 follows the general regret analysis framework of the

UCB algorithm [95]. By leveraging d-separation decomposition of the expected reward, we

split the cumulative regret into two terms and bound them separately. Since there are less

terms to traverse when summing up and bounding the uncertainty caused by exploration-

exploitation strategy, D-UCB is supposed to obtain lower regret than the original UCB

algorithm and C-UCB algorithm. By setting δ = 1/T 2, it is easy to show that D-UCB

algorithm achieves Õ(
√
|W| · T ) regret bound. Refer to Appendix for proof details.

Algorithm 3 shows the pseudo code of the D-UCB. In Line 2, according to Theorem

5, we first determine the d-separation set W with the minimum domain space. In Line 4
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we leverage causal graph and the observational data up to time t to find the optimal policy

πt = argmaxπ∈Πt
Ea∼π[UCBa(t)]. In Line 5, we take action at ∼ πt and observe a real-valued

payoff rt, and in Line 6, we update the observational data with at and rt.

Remark. Determining the minimum d-separation set has been well studied in causal infer-

ence [96]. We leverage the algorithm of finding a minimum cost separator [97] to identify

W. The discovery procedure usually requires the complete knowledge of the causal graph.

However, in the situation where the d-separation set to be used as well as the associated con-

ditional distributions P (z|xt,a) are given, the remaining part of the algorithm will work just

fine without the causal graph information. Moreover, the assumption of knowing P (z|xt,a)

follows recent research works on causal bandit. Generalizing the causal bandit framework

to partially/completely unknown causal graph setting is a much more challenging but im-

portant task. A recent work [98] tried to generalize causal bandit algorithm based on causal

trees/forests structure.

To better illustrate the long-term regret of causal bandit algorithm, suppose the set

A ∪U ∪ I includes N variables that are related to the reward and the d-separation set W

includes n variables. If each of the variable takes on 2 distinct values, the number of deter-

ministic policies can be as large as 2N for traditional bandit algorithm, leading to a O(
√
2NT )

regret bound. On the other hand, our proposed causal algorithms exploit the knowledge of

the d-separation set W and achieves O(
√
2nT ) regret, which implies a significant reduction

regarding to the regret bound if n << N . If the number of arm candidates is much smaller

than the domain space of W, our bound analysis could be easily adjusted to this case using

a subspace of W that corresponds to the arm candidates.

57



5.2.3 Counterfactual Fairness

Now, we are ready to present our fair UCB algorithm. Rather than focusing on the

fairness of the item being recommended (e.g., items produced by small companies have

similar chances of being recommended as those from big companies), we focus on the user-side

fairness in terms of reward, i.e., individual users who share similar profiles will receive similar

rewards regardless of their sensitive attributes and items being recommended such that they

both benefit from the recommendations equally. To this end, we adopt counterfactual fairness

as our fairness notion.

Consider a sensitive attribute S ∈ X in the user’s profile. Counterfactual fairness

concerns the expected reward an individual would receive assuming that this individual

were in different sensitive groups. In our context, this can be formulated as the counterfactual

reward E[R(π, s∗)|xt] where two interventions are performed simultaneously: soft intervention

π on the arm selection and hard intervention do(s∗) on the sensitive attribute S, while

conditioning on individual features xt. Denoting by ∆π = E[R(π, s+)|xt]−E[R(π, s−)|xt] the

counterfactual effect of S on the reward, a policy that is counterfactually fair is defined as

follows.

Definition 6. A policy π is counterfactually fair for an individual arrived if ∆π = 0. The

policy is τ - counterfactually fair if |∆π| ≤ τ where τ is the predefined fairness threshold.

To achieve counterfactual fairness in online recommendation, at round t, we can only

pick arms from a subset of arms for the customer (with feature xt), in which all the arms

satisfy counterfactual fairness constraint. The fair policy subspace Φt ⊆ Πt is thus given by

Φt = {π : ∆π ≤ τ}.

However, the counterfactual fairness is a causal quantity that is not necessarily uniden-
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tifiable from observational data without the knowledge of structure equations [99]. In [9], the

authors studied the criterion of identification of counterfactual fairness given a causal graph

and provided the bounds for unidentifiable counterfactual fairness. According to Proposi-

tion 1 in [9], our counterfactual fairness is identifiable if X\{S} are not descendants of S.

In this case, similar to Eq. (5.1), we have that E[R(π, s∗)|xt] = Ea∼π [E[R(a, s∗)|xt]] where

s∗ ∈ {s+, s−}. Similar to Eq. (5.2), we denote µa,s∗ = E[R(a, s∗)|xt], which can be decom-

posed using the do-calculus as

µa,s∗ = E[R(a, s∗)|xt] =
∑
Z

E[R|s∗,w\st] · P (z|s∗,xt,a\st) (5.8)

where w\st and xt,a\st represent all values in w and xt,a except st respectively. Note that

s∗ is the sensitive attribute value in the counterfactual world which could be different from

the observational value st. The estimated counterfactual reward can be calculated as

µ̂a,s∗(t) =
∑
Z

µ̂w∗(t) · P (z|s∗,xt,a\st)

where w∗ = {s∗,w\st} and µ̂w∗(t) is again the sample mean estimator based on the obser-

vational data up to time t. The estimated counterfactual discrepancy of a policy is

∆̂π(t) = |Ea∼π[µ̂a,s+(t)]− Ea∼π[µ̂a,s−(t)]| (5.9)

In the case where µa,s∗ is not identifiable, based on Proposition 2 in [9] we derive

the lower and upper bounds of µa,s∗ as presented in the following theorem. Please refer to

Appendix for the proof.

Theorem 6. Given a causal graph as shown in Figure 5.1, if there exists a non-empty set
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B ⊆ X\{S} which are descendants of S, then µa,s∗ = E[R(a, s∗)|xt] is bounded by

µa,s∗ ≤
∑
Z

max
b
{E[R|s∗,w\st]} · P (z|xt,a) ,

µa,s∗ ≥
∑
Z

min
b
{E[R|s∗,w\st]} · P (z|xt,a)

5.2.4 F-UCB Algorithm

Taking the estimation error of the counterfactual discrepancy into consideration, we

could also use the high probability upper confidence bound of the counterfactual effect to

build the conservative fair policy subspace Φ̄t = {π : UCB∆π(t) ≤ τ} where

UCB∆π(t) = ∆̂π(t) +
∑
Z

√
8 log(1/δ)

1 ∨Nw(t)
P (z|xt,a) (5.10)

which is derived based on the fact that the sum of two independent sub-Gaussian random

variables is still sub-Gaussian distributed. Thus, the learning problem can be formulated as

the following constrained optimization problem:

minRT =
T∑
t=1

(
Ea∼π∗

t
[µa]− Ea∼πt [µa]

)
s.t. ∀t, πt ∈ Φ̄t

where π∗
t is defined as the optimal policy in the policy space Πt at each round, which

is the same in D-UCB setting. A safe policy π0 refers to a a feasible solution under the fair

policy subspace at each round, i.e., π0 ∈ Πt such that ∆π0 ≤ τ for each t ∈ [T ].

This optimization can be solved similarly by following the rule of OFU. Algorithm 4
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depicts our fair bandit algorithm called the F-UCB. Different from the D-UCB algorithm,

F-UCB only picks arm from Φ̄t at each time t. In Line 5, we compute the estimated reward

mean and the estimated fairness discrepancy. In Line 6, we determine the fair policy subspace

Φ̄t, and in Line 7, we find the optimal policy πt = argmaxπ∈Φ̄t
Ea∼π[UCBa(t)].

Algorithm 4 F-UCB: Fair Causal Bandit
1: Input: Policy space Π, fairness threshold τ , confidence level parameter δ, original causal Graph
G with domain knowledge

2: Find the d-separation set W with minimum subset Z in terms of domain space.
3: for t = 1, 2, 3, ..., T do
4: for π ∈ Πt do
5: Compute the estimated reward mean using Eq. (5.3) and the estimated fairness discrep-

ancy using Eq. (5.9).
6: end for

7: Determine the conservative fair policy subspace Φ̄t.
8: Find the optimal policy following Eq. (5.4) within Φ̄t.
9: Take action at ∼ πt and observe a real-valued payoff rt and a d-separation set value wt.
10: Update µ̂w(t) for all w ∈W.
11: end for

The following regret analysis shows that, the regret bound of F-UCB is larger than

that of D-UCB as expected, and it is still influenced by the domain size of set W.

Theorem 7 (Regret bound of fair causal bandit). Given a causal graph G, let δE = 4|W|Tδ

and ∆π0 denote the maximum fairness discrepancy of a safe policy π0 across all rounds.

Setting αc = 1 and αr = 2
τ−∆π0

, with probability at least 1 − δE, the cumulative regret of

F-UCB is bounded by:

RT ≤ (
2

τ −∆π0

+ 1)×
(
2
√
2T |W| log(1/δE) + 4

√
T log(2/δE) log(1/δE)

)

Proof Sketch. Our derivation of the regret upper bound of F-UCB follows the proof idea

of bandits with linear constraints [100], where we treat counterfactual fairness as a linear
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constraint. By leveraging the knowledge of a feasible fair policy at each round and properly

designing the numerical relation of the scale parameters αc and αr, we are able to syn-

chronously bound the cumulative regret of reward and fairness discrepancy term. Merging

these two parts of regret analysis together leads to a unified bound of the F-UCB algorithm.

By setting δE to 1/T 2 we can show F-UCB achieves Õ(

√
|W|T

τ−∆π0
) long-term regret. The detailed

proof is reported in Appendix.

Remark. In Theorem 7, αc and αr refer to the scale parameters that control the magnitude

of the confidence interval for sample mean estimators related to reward and fairness term

respectively. The values taken in Theorem 7 is one feasible solution with αc taking the

minimum value under the constraint domain space.

The general framework we proposed (Eq. (5.1)) can be applied to any policy/function

class. However, the D-UCB and F-UCB algorithms we proposed still adopt the deterministic

policy following the classic UCB algorithm. Thus, the construction of Φ̄t = {π : UCB∆π(t) ≤

τ} can be easily achieved as the total number of policies are finite. In this chapter we also

assume discrete variables, but in principle the proposed algorithms can also be extended to

continuous variables by employing certain approximation approaches, e.g., neural networks

for estimating probabilities and sampling approaches for estimating integrals. However, the

regret bound analysis may not apply as |W| will become infinite in the continuous space.

5.3 Experiment

In this section, we conduct experiments on two datasets and compare the performance

of D-UCB and F-UCB with UCB, C-UCB and Fair-LinUCB in terms of the cumulative

regret. We also demonstrate the fairness conformance of F-UCB and the violations of other
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algorithms.

5.3.1 Email Campaign Dataset

We adopt the Email Campaign data as used in previous works [93]. The dataset

is constructed based on the online advertising process. Its goal is to determine the best

advertisement recommendation strategy for diverse user groups to improve their click through

ratio (CTR), thus optimize the revenue generated through advertisements. We construct

the causal graph following the domain knowledge and one of the recent research works on

causal bandit [93]. Figure 5.2 shows the topology of the causal graph. We use X1, X2, X3

to denote three user profile attributes, gender, age and occupation; A1, A2, A3 to denote

three arm features, product, purpose, send-time that could be intervened; I1, I2, I3, I4 to

denote Email body template, fitness, subject length, and user query ; and R to denote the

reward that indicates whether users click the advertisement. The reward function is R =

1/12(I1+I2+I3+A3)+N (0, σ2), where σ = 0.1. In Figure 5.2, nodes with blue frame denote

the variables that can be intervened. The node with red frame is the sensitive attribute. Light

shaded nodes denote the minimal d-separation set. In our experiment, we set δ = 1/t2 for

each t ∈ [T ]. Specifically, Table 5.1 shows the attributes of Email Campaign data and their

domain values. Table 5.2 shows the conditional probabilities of P (I4 = i|X1, X2, X3). The

following equations are the conditional distributions for the remaining variables.

P (I2 = 1|A1, A2, I4) = (A1 + A2 + I4)/12 P (I1 = 1|A1, A2, I2) = (A1 + A2 + I2)/10

P (I3 = 1|I2 = 1) = 0.4 P (I3 = 1|I2 = 2) = 0.6
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Table 5.1: Variables in Email campaign data.

Variables Domain Value

Click (R) (0, 1)
Gender (X1) (1, 2)
Age (X2) (1, 2)
Occupation (X3) (1, 2)
Product (A1) (1, 2, 3)
Propose (A2) (1, 2, 3, 4)
Send time (A3) (1, 2, 3)
Email body template (I1) (1, 2)
Fitness (I2) (1, 2)
Subject length (I3) (1, 2, 3, 4)
User query (I4) (1, 2)

Table 5.2: Conditional probabilities of P (I4 = i|X1, X2, X3).

(X1, X2, X3) i = 1 i = 2 i = 3 i = 4
(0,0,0) 0.4 0.3 0.2 0.1
(0,0,1) 0.3 0.4 0.2 0.1
(0,1,0) 0.6 0.1 0.2 0.1
(0,1,1) 0.5 0.2 0.2 0.1
(1,0,0) 0.1 0.3 0.2 0.4
(1,0,1) 0.1 0.4 0.2 0.3
(1,1,0) 0.1 0.1 0.2 0.6
(1,1,1) 0.1 0.2 0.2 0.5

Figure 5.3 plots the cumulative regrets of different bandit algorithms along T . For

each bandit algorithm, the online learning process starts from initialization with no previous

observation. Figure 5.3 shows clearly all three causal bandit algorithms perform better than

UCB. This demonstrates the advantage of applying causal inference in bandits. Moreover,

our D-UCB and F-UCB outperform C-UCB, showing the advantage of using d-separation

set in our algorithms. The identified d-separation set W (send time, fitness, and template)

and the domain space of Z (fitness and template) significantly reduce the exploration cost

in D-UCB and F-UCB.

Remark. Note that in Figure 5.3, for the first 2000 rounds, F-UCB has lower cumulative

regret than D-UCB. A possible explanation is that fair constraint may lead to a policy sub-
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Figure 5.2: Graph structure under Email Campaign data.

Figure 5.3: Comparison of bandit algorithms (τ = 0.3 for F-UCB).

space that contains many policies with high reward. As the number of explorations increase,

D-UCB gains more accurate reward estimations for each policy in the whole policy space

and eventually outperforms F-UCB.

Table 5.3 shows how the cumulative regret of F-UCB (T = 5000 rounds) varies with

the fairness threshold τ . The values in Table 5.3 (and Table 5.4) are obtained by averaging
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Table 5.3: Comparison results for Email campaign data.

τ
Cumulative Regret

of F-UCB
Unfair Decisions

UCB C-UCB D-UCB F-UCB

0.1 392.12 3030 3176 3473 0

0.2 363.55 1383 1487 1818 0

0.3 355.21 482 594 739 0

0.4 317.80 141 185 234 0

0.5 313.89 18 27 47 0

the results over 5 trials. The larger the τ , the smaller the cumulative regret. In the right block

of Table 5.3, we further report the number of fairness violations of the other three algorithms

during the exploration of T = 5000 rounds, which demonstrates the need of fairness aware

bandits. In comparison, our F-UCB achieves strict counterfactual fairness in every round.

5.3.2 Adult-Youtube Video Dataset

Following the setting of [88], we generate one simulated dataset for our experiments

by combining the following two publicly available datasets.

• Adult dataset: The Adult dataset [86] is used to represent the students (or bandit

players). It is composed of 31,561 instances: 21,790 males and 10,771 females, each

having 8 categorical variables (work class, education, marital status, occupation, rela-

tionship, race, sex, native-country) and 3 continuous variables (age, education number,

hours per week). We select 4 variables, age, sex, race, income, as user features in our

experiments and binarize their domain values due to data sparsity issue.

• YouTube dataset: The Statistics and Social Network of YouTube Videos 2 dataset

is used to represent the items to be recommended (or arms). It is composed of 1,580

instances each having 6 categorical features (age of video, length of video, number

2https://netsg.cs.sfu.ca/youtubedata/
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of views, rate, ratings, number of comments). We select four of those variables (age,

length, ratings, comments) and binarize them for a suitable size of the arm pool.

For our experiments, we use a subset of 10,000 random instances from the Adult

dataset, which is then split into two subsets: one for graph construction and the other for

online recommendation. Similarly, a subset of YouTube dataset is used as our pool of videos

to recommend. The subset contains 16 video types (arms) representing different domain

values of the 4 binarized arm features.

The feature contexts xt,a used throughout the experiment is the concatenation of both

the student feature vector and the video feature vector. Four elements in xt,a are selected

according to domain knowledge as the variables that will determine the value of the reward.

A linear reward function is then applied to build this mapping relation from those selected

variables to the reward variable. In our experiments we choose the sensitive attribute to be

the gender of adults, and focus on the individual level fairness discrepancy regarding to

both male and female individuals. For the Adult-Video experiment setting, we construct the

causal graph using a causal discovery software Tetrad (https://www.ccd.pitt.edu/tools/).

We further compare the performance of F-UCB algorithm with Fair-LinUCB [88]

on Adult-Video dataset. We select 10,000 instances and use half of the data as the of-

fline data to construct causal graph and adopt the other half to be user sequence and

arm candidates for online recommendation. The causal graph constructed from the train-

ing data is shown in Figure 5.4, where X = {age, sex, race, income} denote user fea-

tures, A = {length, ratings, views, comments} denote video features. Bold nodes denote

direct parents of the reward and red nodes denote the sensitive attribute. The minimum

d-separation set for this graph topology is W = {age, income, ratings, views}. The reward

function is set as R = 1/5(age+ income+ ratings+ views) +N (0, σ2), where σ = 0.1. We
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Figure 5.4: Graph structure for Adult-Video data.

Table 5.4: Comparison results for Adult-Video data.

τ
Regret Unfair Decisions
F-UCB F-UCB Fair-LinUCB

0.1 361.43 0 2053

0.2 332.10 0 1221

0.3 323.12 0 602

0.4 303.32 0 82

0.5 296.19 0 6

set δ = 1/t2 for each t ∈ [T ]. The cumulative regret is added up through 5000 rounds.

We observe from Table 5.4 a high volume of unfair decisions made by Fair-LinUCB

under strict fairness threshold (nearly forty percent of the users are unfairly treated when

τ = 0.1). This implies Fair-LinUCB algorithm can not achieve individual level fairness when

conducting online recommendation compared to F-UCB. On the other hand, the cumulative

regret for Fair-LinUCB is around 250 over 5000 rounds, which is slightly better than F-UCB.

This is because we use the same linear reward setting as [88] in our experiment and Lin-UCB

based algorithm will better catch the reward distribution under this setting.
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5.4 Summary

In this chapter, we studied how to learn optimal interventions sequentially by incor-

porating causal inference in bandits. We developed D-UCB and F-UCB algorithms which

leverage the d-separation set identified from the underlying causal graph and adopt soft in-

tervention to model the arm selection strategy. Our F-UCB further achieves counterfactual

individual fairness in each round of exploration by choosing arms from a subset of arms sat-

isfying counterfactual fairness constraint. Our theoretical analysis and empirical evaluation

show the effectiveness of our algorithms against baselines. The early version of this work is

published at AAAI 2022 [101].
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6 Dealing with Confounding and Sample Selection Biases in

Recommendation

6.1 Introduction

Recommender systems provide personalized services for users seeking information and

play an increasingly important role in online applications. However, the user-item interaction

data, which are used to train recommender systems and then generated by the deployed

systems, often have both selection and confounding biases. The confounding bias arises when

hidden variables determine user/item features and an outcome variable simultaneously. For

example, popularity bias is one classic instance of confounding bias. It occurs when items

are over-displayed and therefore have more chances to be seen as well as clicked by users.

Under popularity bias, the click through rate (CTR) of the users does not accurately reflect

the users’ true preference on an over-exposed item. Additionally, the selection mechanism,

e.g., choosing users based on a certain time or location, can lead to sample selection bias.

Several attempts have been made to alleviate such biases from both causal and counterfactual

inference perspectives [28, 29, 30]. However, previous work has focused on dealing with one

specific source of bias rather than handling multiple sources simultaneously. Neglecting the

presence of both confounding and sample selection biases leads to poor recommendation

performance.

Figure 6.1 shows abstract causal graph structures of a recommendation system under

confounding and selection biases. Our formulation is based on the structural causal model

(SCM) [21], which describes the causal mechanisms of a system as a set of nodes and struc-
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(a) (b)

Figure 6.1: Abstract causal graph structures of an online recommendation system.
(a)Conventional Recommender. (b)Biased Recommender.

tural equations. Figure 6.1a illustrates the graph structure of a traditional recommendation

model, where U represents user features, I represents item features, M represents a matching

score model, and a binary outcome variable Y represents user clicks, e.g., Y = 1 for clicked

and Y = 0 for not clicked. Figure 6.1b demonstrates the graph structure of a recommenda-

tion model under confounding and selection biases. The dashed bi-directed edges indicate

the existence of the common cause factors of user/item features and user clicks, which might

be unobserved. Node S depicts the (biased) selection mechanism of the recommended item.

Specifically, S = 1 indicates the tuple is selected into the observational data, and S = 0

otherwise.

In causal inference based personalized recommendation, one core problem is to derive

conditional causal effects in the form of P (Y = y|do(I = i),U = u), which represents the

causal effect of the intervention (recommending item with features i) on the outcome y for

a user with features u. Note that the do operator simulates the interventions or treatments

that force item attributes I to take certain values i. The intervention/treatment in the

recommender system can be thought of as referring to a recommendation strategy, i.e., how

the system selects, organizes, and shows item features to some specific users.
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Two of the most common obstacles in deriving conditional causal effects are con-

founding and selection biases. Confounding bias often arises from lack of control over the

decision making process. Formally, it denotes the difference between the interventional quan-

tity P (y|do(i),u) and its probabilistic counterpart P (y|i,u). In practice, the most common

method for controlling confounding bias is the backdoor adjustment [21]. Selection bias arises

because of preferential exclusion of samples, which makes the observed data no longer a true

representation of the underlying population. As a result, biased estimates of the causal ef-

fect will be produced. To correct selection bias, we must derive unbiased estimates from the

observed distribution P (V|S = 1) instead of from P (V) (which is unavailable), where V

denotes the observed variables in a causal graph.

In this chapter, we formulate both confounding and selection biases and show that

they can be separately mitigated by conditioning on a bias adjustment set that satisfies

certain criteria. In particular, we show P (y|do(i),u) can be identified and recovered when

unbiased external data over a subset of variables T (i.e., P (T)) is available. We develop a

debiased recommendation algorithm, called dREC, within the scope of the structural causal

model that can achieve accurate prediction under the presence of both biases. We also present

a general statistical procedure based on inverse probability weighting (IPW) to estimate the

adjustment formula from the biased data.

We further show under the presence of confounding and selection biases how to derive

path-specific effects, i.e., the effect of changing I from i1 to i2 on y transmitted along a path

set π, and counterfactual effect, i.e., the probability that event Y = y would be observed

had I been i, given that we actually observed I to be i′. We compare the performance of

our debiased approach with baselines with datasets under different biased selection settings.

Experimental results show the effectiveness of our approach.
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6.2 Debiased Recommendation

6.2.1 Overview

In personalized recommendation, given a user u with features u, we aim to recommend

an item with features i such that the expected reward is maximized. Formally, we have

i = argmaxi∈DI
P (y|do(i),u). Conditional causal effects can be calculated based on the

backdoor criteria when there is no sample selection bias.

P (y|do(i),u) =
∑
Z

P (y|i, z,u)P (z|u) (6.1)

However, the challenge is to estimate P (y|do(i),u) from a selection-biased distribution. In

this section, we first give an overview of our algorithm. We then present our derived selection-

backdoor criterion and procedure of identifying an intervention set and adjustment pair in

Section 6.2.2. We describe an estimation procedure based on inverse probability weighting

in Section 6.2.3.

Algorithm 5 Debiased Recommendation under Confounding and Selection Biases (dREC)

1: Input: Historical observation data H with item features I, user features U, click Y , and
P (T) of externally and unbiasedly measured features T.

2: Initialization: Construct causal graph Gs based on H.
3: I,Z,Z⊺ ← F(Gs, I,U, Y,T). (Algorithm 6)
4: for each user u with features u do
5: for i = 1, 2, ...|DI | do
6: Compute P (y|do(i),u) using Equation 6.4.
7: end for
8: Recommend to user u an item with features i = argmaxi∈DI

P (y|do(i),u).
9: end for

Algorithm 5 shows the pseudo code of our debiased personalized recommendation

(dREC) under the existence of confounding and selection biases. The input of our dREC

algorithm consists of two parts: P (V|S = 1) as a distribution collected under selection

bias, and P (T) as a distribution of a subset of the variables T. In line 2, we first build
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a causal graph G based on observed data and then construct the augmented graph Gs by

adding a node S representing a binary indicator of entry into the observed data. In line

3, we call the function F to find a valid adjustment pair (Z,Z⊺) and intervention set I so

that we can eliminate confounding and selection biases simultaneously from P (y|do(i),u).

In line 6, we perform the estimation procedure based on inverse probability weighting to

calculate conditional causal effects P (y|do(i),u). In line 8, we recommend to user u an item

with features i = argmaxi∈DI
P (y|do(i),u), where DI is the space of identified intervention

features I from Algorithm 6.

6.2.2 Identification under Confounding and Selection Biases

We present our main theoretical result in Theorem 8. It shows that the conditional

causal effects P (Y |do(I),U) can be identified and recovered under confounding and selection

biases if and only if an adjustment pair (Z,Z⊺) satisfying certain graphical criterion can be

identified.

Theorem 8 (Generalized Adjustment for Conditional Intervention). Given a causal

diagram G augmented with selection variable S, variable sets I,U,Z, outcome Y , a set of

externally and unbiasedly measured variables T, and a set Z⊺ ⊆ Z ∩ T, for every model

compatible with G, we have

P (y|do(i),u) =
∑
Z

P (y|i, z,u, S = 1)P (z\z⊺|z⊺,u, S = 1)P (z⊺|u) (6.2)

if and only if (Z,Z⊺) satisfies the following generalized adjustment criterion:

1. No element in Z is a descendant in GI of any W /∈ I lying on a proper causal path from

I to Y.
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2. All non-causal paths in G from I to Y are blocked by Z ∪U and S.

3. Z⊺ d-separates Y from S in the proper backdoor graph, i.e., (Y ⊥⊥ S|Z⊺)Gpbd
YI

.

(Z,Z⊺) is said to be an adjustment pair for recovering the conditional causal effect of I on

Y given U.

Generally speaking, condition (1) prevents causal paths from being compromised by

conditioning on an element in Z. Condition (2) requires all non-causal paths to be blocked

by Z ∩U and S. Condition (3) ensures that the influence of the selection mechanism on the

outcome is nullified by Z⊺. Essentially, if the set (U,Z, S) blocks all the non-causal paths,

and z⊺ d-separates Y and S, we are able to unbiasedly estimate P (y|do(i),u) under the

presence of confounding and selection biases.

Proof sketch. Our derivation of generalized adjustment for conditional intervention is based

on the proof idea of Theorem 2 in [46]. If we can find an adjustment pair (Z,Z⊺) that satisfies

the three graphical conditions in Theorem 8 for I, Y in G, then P (y|do(i),u) can be expressed

as Equation 6.2. Note that P (y|i, z, S = 1) and P (z\z⊺|z⊺, S = 1) can be directly computed

from the biased observational data P (v|S = 1), and P (z⊺|u) from the external unbiased

observational data P (t) given a certain user profile. The target condition intervention thus

can be computed from the confounded and sample selection biased data. If P (y|do(i),u)

is computable and recoverable by the adjustment expression in Equation 6.2, according to

Theorem 1, (Z,Z⊺) is a valid adjustment pair. Please refer to Appendix for the detailed

proof.

Remark. Equation 6.2 is a significant extension of Equation 6.1 and it deals with both

confounding and selection biases by allowing the use of unbiased data over a subset of the
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covariates. Note that the target distribution cannot be recovered from selection biased data

if the selection node is outcome-dependent. This can be regarded as a corollary of Theorem

1, where S and Y cannot be d-separated by arbitrary intervention sets. More specifically, if

an arrow exists from Y to S, the conditional independence of S and Y given I is no longer

valid.

Algorithm 6 Identify Intervention Set and Adjustment Pair

1: Input: Causal graph Gs, Item features I, User featuresU, Outcome Y , Available external
unbiased features T.

2: Initialize: Z← ∅, Z⊺ ← ∅.
3: for all Is ⊆ I starting with the largest size do
4: if An adjustment pair can be found according to Theorem 9 then
5: return (Is,Z,Z

⊺).
6: else
7: Apply function ListAdjPairs(Gs, Is, Y, S,V,T) [46]
8: if List of Adjustment Pairs is not empty then
9: return (Is,Z,Z

⊺) with the least cost.
10: end if
11: end if
12: end for

Algorithm 6 shows our procedure of identifying an adjustment pair for P (y|do(i),u).

In line 3-12, we search over the subset space of I and return the intervention set Is and its

corresponding adjustment pair (Z,Z⊺). Although Theorem 8 shows the generalized criterion

for adjustment pairs, one challenge is how to find them systematically and efficiently. It is

clear that any algorithm that aims to output all adjustment pairs will take exponential time.

In line 4, we call an explicit procedure to find one valid adjustment pair based on Theorem

9.

Theorem 9. (Z,Z⊺) is an adjustable pair if

Z = An(I ∪ Y ∪ {S})Gpbd
IY
∩C, Z⊺ = (An({S} ∪ Y )Gpbd

IY
∩T) ∩C
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C3

C1
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I1 I2

Figure 6.2: Illustrative example of implementing dREC algorithm.

where C = V\(I ∪ Y ∪De((De(I))GI
\I) ∩ An(Y )GI

).

Applying Theorem 9, we are able to construct one admissible pair efficiently with

O(n +m) time complexity where n,m are the number of variables and edges in G, respec-

tively. If the explicit adjustment pair cannot be identified, we then apply the procedure

ListAdjPairs developed in [46] that outputs all sets for generalized adjustment. ListAd-

jPairs runs with polynomial delay. If no adjustment pair exists for the current intervention

set Is, we move to another candidate feature subset for intervention.

We next presents a computation complexity analysis of our dREC algorithm. Specif-

ically, line 3 in Algorithm 5 calls Algorithm 6 to find a valid adjustment pair, which works

with O(2|I| · n(n +m)) complexity in the worst case by applying function LISTADJPAIRS

for each candidate intervention set. Line 4-9 estimates the condition causal effect for each

user-item pair, which takes O(|DI | · |u|) complexity, where |I| and |DI | are the ordinality of

the original item feature set and the identified intervention set returned by Algorithm 6, |u|

denotes the number of users. Thus dREC algorithm achieves O(max(2|I| ·n(n+m), |DI |·|u|))

computation complexity in general.

Figure 6.2 shows an illustrative example of a causal graph for personalized recommen-

dation. In Figure 6.2, U1, U2 represent the user features, I1, I2 represent the item features, Y
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denotes the outcome, C1, C2, C3 denote the potential adjustment covariates, among which C3

affects selection mechanism S. Suppose the intervention set is I = {I1, I2}, the user feature

set is U = {U1, U2}. Since the node Y cannot be d-separated from S conditioned on (U, I),

P (Y |do(i),u) cannot be recovered from observational distribution P (v|S = 1). However, by

incorporating the unbiased observation of C3 ⊆ T, we can identify one admissible adjustment

pair (Z,Z⊺) = ({C2, C3}, C3) from potential adjustment covariates. The causal quantity can

thus be identified and recovered from the observational distribution by applying Equation

6.2. We also emphasize that the truncated factorization based on adjustment pair (Z,Z⊺) is

robust towards some unobserved confounding. For example, if there is one hidden confounder

between I2 and C2, our debiased formula still holds.

6.2.3 Estimation Based on Inverse Probability Weighting

The direct calculation of P (y|do(i),u) in Equation 6.2 involves finding the conditional

probability of Y given I for each stratum defined by the possible values of the covariates Z

and user features U. This presents computational and sample complexity challenges because

the number of different strata may be huge with the cardinality of Z and U. As a result, the

number of samples in the training data falling under each stratum is too small to provide a

reliable estimate of the conditional distribution. In this section, we follow the widely adopted

robust statistical estimation procedure, inverse probability weighting estimation [102], to

construct an estimator for conditional causal effects in the presence of selection bias using

the generalized adjustment given in Theorem 8.

With the absence of sample selection bias, given observed i.i.d. dataH = {(ut, it, zt, yt)}Tt=1,

the IPW estimator for P (y|do(i),u) is given by µ̂ = 1
T

∑T
t=1 wt1it=iyt, where 1it=i is the indi-

cator function, wt =
1

P̂ (it|zt,ut)P̂ (ut)
, and P̂ (it|zt,ut)) is the estimator of the propensity score
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that is estimated from data by some parametric model.

Given a valid adjustment pair (Z,Z⊺), P (y|do(i),u) can be rewritten as follows:

∑
Z

P (y|i, z,u, S = 1)P (z\z⊺|z⊺,u, S = 1)P (z⊺|u)

=
∑
Z

P (y, i, z|u, S = 1)

P (i|z,u, S = 1)

P (z⊺|u)
P (z⊺|u, S = 1)

=
∑
Z

P (y, i, z,u|S = 1)

P (i|z,u, S = 1)

P (S = 1|u)
P (S = 1|z⊺,u)

(6.3)

Given observed data {(ut, it, zt, yt)}Tt=1 under selection bias from P (v|S = 1), we can

obtain a reliable estimate of the propensity score P (i|z,u, S = 1) as well as the inverse

probability of the selection weight conditioned on a certain user profile P (S=1|u)
P (S=1|u,z⊺) , from

selection biased data and additional unbiased external data. Thus, the conditional causal

effects under selection bias can be estimated by:

µ̂ =
1

T

T∑
t=1

wc
t · ws

t1it=iyt (6.4)

where wc
t =

1
P (it|zt,ut,S=1)

, and ws
t =

P (S=1|ut)
P (S=1|ut,z

⊺
t )
. In practice, these quantities can be estimated

by some parametric models like logistic regression or neural networks. According to Equation

6.4, the loss function in the training can be written as:

LdRec =
1

T

T∑
t=1

wc
t · ws

t · L(ŷt, yt) (6.5)

where L denotes the predominant Mean Squared Error (MSE) metric L(ŷt, yt) = (ŷt − yt)
2.

6.3 Extension

6.3.1 Path-specific Causal Effect

In this section, we aim to measure the path-specific causal effect under the sample

selection mechanism. Due to the orthogonality of confounding and sample selection biases,
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it is non-trivial to derive the expression of path-specific causal effect under sample selection

bias, and the graphical condition for causal effect identification.

Definition 7 (Path-specific Causal Effect). The path-specific causal effect measures the

effect of changing I from i1 to i2 on an outcome Y transmitted along a path set π.

PTEπ(i2, i1) = P (Y = y|do(i2|π, i1|π̄))− P (Y = y|do(i1)) (6.6)

where π denotes a subset of causal paths from I to Y and π̄ denotes the causal paths not in

π.

The condition under which the path-specific effect can be estimated from the obser-

vational data is known as the recanting witness criterion.

Definition 8 (Recanting Witness Criterion). Given a path set π pointing from I to Y , let

W be a node in G such that: i) there exists a path from I to W which is a segment of a path

in π; ii) there exists a path from W to Y which is a segment of a path in π; iii) there exists

another path from W to Y which is not a segment of any path in π. Then, the recanting

witness criterion for the path-specific treatment effect is satisfied with W as a witness.

The path-specific causal effect can be computed from the observational data if and

only if the recanting witness criterion is not satisfied [103]. Note that to calculate the second

term P (y|do(i1)) in the presence of confounding bias and selection bias, we can directly follow

the adjustment formula shown in Equation 3.3 and obtain

P (y|do(i1)) =
∑
Z

P (y|i1, z, S = 1)P (z\z⊺|z⊺, S = 1)P (z⊺) (6.7)

We then aim to compute the second term P (Y = y|do(i2|π, i1|π̄)) in the presence of

confounding and selection biases if some unbiased observations can be further collected. We
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give our main theorem of computing and recovering the the second term of path-specific

causal effect under selection biases as follows:

Theorem 10 (Path-specific Causal Effect under Selection Bias). In a Markovian model,

the path-specific treatment effect under selection bias is recoverable if the recanting witness

criterion is not satisfied and the generalized adjustment criterion is satisfied simultaneously.

Specifically, the first term P (Y = y|do(i2|π, i1|π̄)) in Equation 6.6 is given by

∑
Z

(∑
PAπ

P (paπ|i2, z, S = 1)P (y|paπ, i1, z, S = 1)

)
× P (z\z⊺|z⊺, S = 1)P (z⊺) (6.8)

Proof sketch. Let PA denote Y ’s parent nodes along all causal paths, PAπ denote Y ’s parent

nodes that lie in π, and PAπ̄ denote the remaining parents along the causal paths. We can

compute P (Y = y|do(i2|π, i1|π̄)) by adjusting on a valid covariate set Z, which is shown in

the following equation:

∑
Z∪PA

P (paπ|i2, z)P (paπ̄|i1, z)P (y|pa, z)P (z) =
∑
Z

(∑
PAπ

P (paπ|i2, z)P (y|paπ, i1, z)

)
P (z)

(6.9)

We then derive Equation 6.8 based on Equation 6.9 and the condition that we are able

to find a valid adjustment pair (Z,Z⊺) that satisfies the generalized adjustment criterion.

Please refer to Appendix for the detailed proof.

We next use the causal graph in Figure 6.3 to further illustrate the computation

process. To recover causal effect from selection and confounding biases, it is obvious to

identify the adjustment pair (Z,Z⊺) = (U,U). Setting π = I → M → Y , the path-specific
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causal effect transmitted along π is PTEπ(i2, i1) = P (Y = y|do(i2|π, i1|π̄))−P (Y = y|do(i1)).

The first term can be computed from observational distribution in the following procedure:

P (Y = y|do(i2|π, i1|π̄))

=
∑

U,M,O

P (m|i2, u)P (o|i1)P (y|i1, u,m, o)P (u)

=
∑

U,M,O

P (m|i2, u)P (o|i1, u)P (y|i1, u,m, o)P (u)

=
∑

U,M,O

P (m|i2, u)
P (m|i1, u)

P (m, o|i1, u)P (y|i1, u,m, o)P (u)

=
∑

U,M,O

P (m|i2, u)
P (m|i1, u)

P (y,m, o|i1, u)P (u)

=
∑
U,M

P (m|i2, u)
P (m|i1, u)

P (y,m|i1, u)P (u)

=
∑
U,M

P (m|i2, u)P (y|i1,m, u)P (u)

=
∑
U

(∑
M

P (m|i2, u, S = 1)P (y|i1,m, u, S = 1)

)
P (u)

Figure 6.3: Illustrative example of computing path-specific treatment effect.
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6.3.2 Counterfactual Effect

Causal interventions only consider post-interventional distributions, but counterfac-

tual inference considers both the real world without the intervention and the counterfactual

world with the intervention. Particularly, we want to answer: what will the user’s CTR be

had they been recommended an item with different features? The counterfactual effect is

expressed as P (yi|i′) = P (Y (do(I = i))|I = i′). We now extend the backdoor criterion for

counterfactual effect to backdoor adjustment under selection bias.

Theorem 11 (Counterfactual Effect under Selection Bias). If (Z,Z⊺) satisfies the generalized

adjustment criterion in Theorem 8, the counterfactual effect P (yi|i′) is identifiable and can

be recovered from biased observational data by

P (yi|i′) =
∑
Z

P (y|i, z, S = 1)P (z\z⊺|z⊺, i′, S = 1)P (z⊺) (6.10)

Proof. We follow the regime in [104] to add a new node W with the same set of parents as I

to generate the counterfactual graph G ′. The following lemma demonstrates that computing

the counterfactual effect given a graph G is equivalent to calculating the related conditional

intervention in G ′.

Lemma 5 (Equivalent Conditional Intervention [104]). The estimand of the counterfactual

effect P (yi|i′) is equal to that of the conditional intervention P (y|w, do(i)) by replacing all

occurrences of w with i′.

We next demonstrate the derivation of estimating the conditional intervention P (y|w, do(i))

from observation data under selection bias. First, since W is independent of I, we follow the
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rules of conditional probability and obtain:

P (y|w, do(i)) = P (y, w|do(i))/P (w|do(i)) = P (y, w|do(i))/P (w) (6.11)

Based on the construction of G ′ and the first two conditions of the generalized adjustment

criterion, it is straightforward to derive (Y ⊥⊥ W |Z)G′
Ī
. Thus, the first term in Equation 6.11

can be marginalized on Z as follows:

P (y|w, do(i)) =
(∑

z

P (y|z, do(i))P (w, z)

)
/P (w)

=

(∑
z

P (y|z, i)P (w, z)

)
/P (w) =

∑
z

P (y|z, i)P (z|w)
(6.12)

We then recover the target distribution from selection biased data. Based on the third condi-

tion of the generalized adjustment criterion and the fact that node W cannot be the decedent

of Z, we further decompose P (z|w) by leveraging unbiased data Z⊺. We have:

P (y|w, do(i)) =
∑
z

P (y|z, i)P (z\z⊺|w, z⊺)P (z⊺|w)

=
∑
z

P (y|z, i, S = 1)P (z\z⊺|w, z⊺, S = 1)P (z⊺)

(6.13)

Finally, substituting w with i′ in Equation 6.13 leads to the result in Equation 6.10.

Figure 6.4 shows an illustrative example for calculating counterfactual effect with the

presence of sample selection bias. It is easy to identify (Z,Z⊺) = (U,U). We thus have:

P (y|w, do(i)) = P (y, w|do(i))/P (w|do(i)) = P (y, w|do(i))/P (w) (6.14)
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Furthermore we can decompose P (y, w|do(i)) as:

∑
U,M,N

P (n|do(i))P (m|u, do(i))P (w|u)P (u)P (y|u,m, n, do(i))

=
∑

U,M,N

P (m,n|u, do(i))P (y|u,m, n, do(i))p(w, u)

=
∑

U,M,N

P (y,m, n|u, do(i))P (w, u)

=
∑
U

P (y|u, do(i))P (w, u)

Since S and Y are d-separated by U and we are able to have the unbiased observation of

U , plugging in the above equation to Equation 6.14 and replacing W with I ′ leads to the

following results.

P (y|w, do(i)) =
∑
U

P (y|u, do(i))P (u|i′) =
∑
U

P (y|U, do(i), S = 1)P (u) (6.15)

Figure 6.4: Illustrative example of computing counterfactual effect.
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6.4 Empirical Evaluation

We compare the performance of our dREC algorithm with baselines on Adult-Video

dataset under the task of personalized recommendation. We follow the settings of [101] by

combining two publicly available datasets: Adult dataset [86] and Youtube video dataset

1. The user feature set U includes age(a), education(e), sex, marital-status, workclass,

hours, and income. The item feature set I includes length(l), ratings(r), views(v), and

comments(c). We generate clicks from the concatenation of user/item features (U, I) by the

following procedure:

clicks ∼ Bernoulli(p)

pd = K1(a, e, v, l, c) +K2(1a,1e)

ps = K1(a, e, v, l, c) +K2(1a,1e) + ϵ

(6.16)

where 1a = 1 if age = view = length = 1, otherwise 1a = 0; 1e = 1 if education = comments

= 1, otherwise 1e = 0; K1(x) = 0.1x, K2(x) = 0.25x. pd denotes the click probability for

deterministic case. We inject a noise term ϵ in ps to simulate stochastic situation, which is

sampled from the truncated normal distribution Nt(0, 0.1).

We randomly select 80 percent of users from the Adult dataset and recommend them

a video from the Youtube video dataset. We generate user click information to form training

data under selection bias. We divide age into 9 subgroups, then include a tuple with a certain

probability to generate the biased dataset. We use S = [α, β] to describe the selection

mechanism where α denotes the selection probability of the 10-30 year old group, and β

denotes the others. We set S1 = [0.2, 0.8] and S2 = [0.7, 0.8] to simulate one skewed selection

1https://netsg.cs.sfu.ca/youtubedata/
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Figure 6.5: Causal graph for Adult-Youtube video Dataset.

Table 6.1: Comparison results in the Adult-Video dataset. Lower MAE and higher Hit@1
(PR@5) mean better results.

Deterministic Stochastic
CP Biased dREC CP Biased dREC

MAE, S1 0.177 0.172 0.169 0.180 0.177 0.177
Hit@1, S1 0.231 0.277 0.292 0.193 0.199 0.269
PR@5, S1 0.263 0.301 0.361 0.247 0.285 0.318
MAE, S2 0.167 0.164 0.164 0.169 0.167 0.165
Hit@1, S2 0.273 0.316 0.322 0.212 0.230 0.246
PR@5, S2 0.299 0.407 0.397 0.248 0.360 0.364

scenario and one slightly skewed scenario, respectively. We construct the causal graph from

the training data using the TETRAD software [105]. Figure 6.5 shows the constructed causal

graph where the light-shaded nodes (age, education) denote the adjustment variables Z, age

is Z⊺, and S denotes the selection mechanism. We compare our proposed method, dREC,

with two baselines: conditional probability (CP) based on P (Y = 1|U = u, I = i), and biased

estimate (Biased) based on P (Y = 1|U = u, do(I = i)). We evaluate the performance using

three metrics: prediction accuracy based on MAE, Hit@1, and Precision@5.

Table 6.1 shows our experimental result. For all of the results, we run our experiments

five times and report the average values. We summarize the comparison results based on t-test

and find out that dREC achieves best results. For both deterministic and stochastic situations
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under biased selection mechanisms S1 and S2, the p-values of testing dREC against the two

baselines are less than 0.05 in terms of all three metrics in 21 out of 24 comparison cases. Note

that when the slightly skewed mechanism S2 is applied, under the deterministic situation,

dREC obtains slightly lower Precision@5 (0.397) than Biased (0.407). This is because there

are three estimated terms in dREC (Equation 6.2), but only two estimated terms in Biased

(Equation 6.1). More estimation terms induce more uncertainty.

6.5 Evaluation of Path-specific Effect and Counterfactual Effect

We show the accuracy of our debiased approach using the Adult dataset [86]. We

first construct the causal graph using TETRAD [105] software. Figure 6.6 shows the con-

structed causal graph. Node S denotes the selection mechanism. Node workclass(w) is the

variable under intervention. Node income denotes the outcome variable. Light-shaded nodes

{age, education, marital-status, sex} and age denote the adjustment pair Z and Z⊺.

Figure 6.6: Causal graph for Adult Dataset.

We divide age into 5 subgroups, then include a tuple with a certain probability to

generate the biased dataset. Si (i = 1, 2, 3) represents three selection mechanisms. In par-
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ticular, let α denote the selection probability of the 20-60 year old group, and β denote the

others. The selection mechanism can thus be represented as S = [α, β]. We set S1 = [0.2, 0.8],

S2 = [0.8, 0.2] to simulate two skewed selection mechanisms and set S3 = [0.8, 0.8] to sim-

ulate a uniform selection mechanism with no selection bias. To calculate the path-specific

causal effect, we set the target path set π as workclass → income.

Table 6.2: Comparison results in Adult dataset.

Causal Effect Path-Specific Effect Counterfactual Effect
CP Truth Biased dREC Truth Biased dREC Truth Biased dREC

w = 1, S1 0.256 0.242 0.215 0.243 0.155 0.129 0.156 0.223 0.194 0.202
w = 1, S2 0.302 0.242 0.254 0.244 0.155 0.165 0.155 0.223 0.233 0.226
w = 1, S3 0.288 0.242 0.242 0.242 0.155 0.154 0.154 0.223 0.226 0.218

We compare our debiased method with baselines on answering three causal queries:

causal effect P (Y = 1|do(w)), path-specific causal effect P (Y = 1|do(w2|π, w1|π̄)) and coun-

terfactual effect P ((Y = 1)w2|w1). We calculate each effect five times and report their average

in Table 6.2. The column ”Truth” denotes the ground truth value by calculating an effect

based on the population data. The column ”Biased” denotes estimating an effect using biased

data without mitigating selection bias. The column “dREC” denotes estimating an effect us-

ing biased data and external observation with our derived formula. The column “CP” denotes

estimating a causal effect using simple conditional probability estimator. The experimental

results show our debiased method consistently improves the prediction accuracy of three

causal queries, especially under biased sample selection scenarios S1 and S2.

6.6 Summary

In this chapter we studied both confounding and sample selection biases in recom-

mendation systems and develops a causal based debiased recommendation algorithm that
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simultaneously controls for confounding and selection biases via some auxiliary external

data. We presented sufficient and necessary graphical conditions for conditional causal ef-

fects, path-specific effects, and counterfactual effects. We also derived a procedure to esti-

mate an adjustment under confounding and selection biases based on the inverse probability

weighting technique. Our empirical evaluation shows the effectiveness of our approach.
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7 Robustly Improving Bandit Algorithms with Confounded and Selection

Biased Offline Data

7.1 Introduction

The past decade has seen the rapid development of contextual bandit as a legit frame-

work to model interactive decision-making scenarios, such as personalized recommendation

[83], online advertising [106, 107], and anomaly detection [108]. The key challenge in a con-

textual bandit problem is to select the most beneficial item (i.e. the corresponding arm or

intervention) according to the observed context at each round. In practice it is common that

the agent has additional access to logged data from various sources, which may provide some

useful information. A key issue is how to accurately leverage offline data such that it can

efficiently assist the online decision-making process. However, one inevitable problem is that

there may exist compound biases in the offline dataset, probably due to the data collection

process, the existence of unobserved variables, the policies implemented by the agent, and

so on. As a consequence, blindly fitting a model without considering those biases will lead

to an inaccurate estimator of the reward distribution for each arm, ending up inducing a

negative impact on the online learning phase.

To overcome this limitation and make good use of the offline data for online bandit

learning, we formulate our framework from a causal inference perspective. Causal inference

provides a family of methods to infer the effects of actions from a combination of data and

qualitative assumptions about the underlying mechanism. Based on Pearl’s structural causal

model [21] we can derive a truncated factorization formula that expresses the target causal
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quantity with probability distributions from the data. Appropriately adopting that prior

knowledge on the reward distribution of each arm can accelerate the learning speed and

achieve lower cumulative regret for online bandit algorithms.

Previous studies along this direction [70, 72, 69] only focused on one specific bias and

have not dealt with compound biases in the offline data. It was shown in [44] that biases

could be classified into confounding bias and selection bias based on the causal structure they

imply. Due to the orthogonality of confounding and selection bias, simply deconfounding

and estimating causal effects in the presence of selection bias using observational data is

in general impractical without further assumptions, such as strong graphical conditions [45]

or the accessibility of external unbiasedly measured data [109]. In this chapter, we address

this limitation by non-parametrically bounding the target conditional causal effect when

recoverability and identifiability can not be satisfied simultaneously. We propose two novel

strategies to extract prior causal bounds for the reward distribution of each arm and use

them to effectively guide the bandit agent to learn a nearly-optimal decision policy. We

demonstrate that our approach could further reduce cumulative regret and is resistant to

different levels of compound biases in offline data.

Our contributions can be summarized into three parts: 1) We derive causal bounds

for conditional causal effects under confounding and selection biases based on c-component

factorization and substitute intervention methods; 2) we propose a novel framework that

leverages the prior causal bound obtained from biased offline data to guide the arm-picking

process in bandit algorithms, thus robustly decreasing the exploration of sub-optimal arms

and reducing the cumulative regret; and 3) we develop two contextual bandit algorithms

(LinUCB-PCB and OAM-PCB) and one non-contextual bandit algorithm (UCB-PCB) that

are enhanced with prior causal bounds. We theoretically show under mild conditions all
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three bandit algorithms achieve lower regret than their non-causal counterparts. We also

conduct an empirical evaluation to demonstrate the effectiveness of our method under the

linear contextual bandit setting.

7.2 Algorithm Framework

An overview of our framework is illustrated in Figure 7.1. Our algorithm framework

leverages the observational data to derive a prior causal bound for each arm to mitigate the

cold start issue in online bandit learning, thus reducing the cumulative regret. In the offline

evaluation phase, we call our bounding conditional causal effect (BCE) algorithm (shown

in Algorithm 7) to obtain the prior causal bound for each arm given a user’s profile. Then

in the online bandit phase, we apply adapted contextual bandit algorithms with the prior

causal bounds as input.

Figure 7.1: An illustration graph of our proposed framework.
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Let C ∈ C denote the context vector, where C denotes the domain space of C. We use

Y to denote the reward variable and X ∈ X to denote the intervention variables. At each

time t ∈ [T ], a user arrives and the user profile ct is revealed to the agent. The agent pulls

an arm at with features xat following the policy π ∈ Π, and π : C → X could be treated as

a mapping function from the context space C to the arm feature space X . The agent then

receives the reward Yat . We use uat = E[Y |do(X = xat), ct] to denote the expected mean

reward of pulling arm with feature value xat given the user context. In the contextual bandit

setting, the agent aims to approximate the optimal policy π∗ = argmaxπ∈Π µπ and minimize

the cumulative regret simultaneously (an arm choice in X can be seen as a policy in Π in

the deterministic setting). Specifically, the goal of the agent is to pull an arm at each round,

update the policy, and minimize the cumulative regret R(T ) =
∑T

t=1(µ
∗
t − E[Yat ]).

When the offline observational data are available, we can leverage them to reduce

explorations in the online phase. However, under the circumstances that the causal effect

is either unidentifiable or nonrecoverable from the observational data, blindly using the

observational data might even have a negative effect on the online learning phase. Our

approach is to derive a causal bound for the desired causal effect from the biased observational

data. We will further show even when the observational data could only lead to loose causal

bounds, we can still guarantee our approach is no worse than conventional bandit algorithms.

7.3 Deriving Causal Bounds under Confounding and Selection Biases

In this section, we focus on bounding the effects of conditional interventions in the

presence of confounding and sample selection biases. To tackle the identifiability issue of

a conditional intervention P (Y = y|do(x), c), the cond-identify algorithm [110] provides a
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complete procedure to compute conditional causal effects using observational distributions.

P (Y = y|do(x), c) = Px(y|c) =
Px(y, c)

Px(c)
(7.1)

where Px(y|c) is the abbreviated form of the conditional causal effect P (Y = y|do(x), c).

[110] showed that if the numerator Px(y, c) is identifiable, then Px(y|c) is also identifiable. In

the contextual bandit setting, because none of the variables in C is a descendant of variables

in X, the denominator Px(c) can be reduced to P (c) following the causal topology. Since

P (c) is always identifiable and can be accurately estimated, we do not need to consider the

situation where neither Px(y, c) nor Px(c) is identifiable but Px(y|c) is still identifiable. Thus

the conditional causal effect Px(y|c) in Equation 7.1 is identifiable if and only if Px(y, c)

is identifiable. However, the cond-identify algorithm [110] is not applicable for the scenario

with the presence of selection bias.

In this chapter we develop novel approaches for deriving bounds of conditional causal

effects in the presence of both confounding and selection biases. Specifically, we allow the

existence of unobserved confounders, which are denoted using dashed bi-directed arrows in

the causal graph G. We also introduce the selection node S depicting the data selection

mechanism in the offline evaluation phase. With slight abuse of the notation, we denote G to

be the causal graph augmented with S in the remaining sections. By adopting state-of-the-art

causal discovery techniques on the offline dataset we assume the causal graph is accessible

by the agent and remains invariant through the offline evaluation phase and online learning

phase.

Algorithm 7 shows our algorithm framework of bounding conditional causal effects

under confounding and selection biases. We develop two methods, c-component factorization
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and substitute intervention, and apply each to derive a bound for conditional causal effect

separately. We then compare the two causal bounds and return the tighter upper/lower

bound. Specifically, lines 5-10 in Algorithm 7 decompose the target causal effect following

c-component factorization and recursively call our RC* algorithm (shown in Algorithm 8)

to bound each c-factor. Lines 11-15 search over recoverable intervention space and find valid

substitute interventions to bound the target causal effect. Lines 16-18 compare two derived

causal bounds and take the tighter upper/lower bound as the output causal bounds.

Algorithm 7 Bounding Conditional Causal Effect

1: function BCE(x, c, y,G,H)
2: Input: Intervention variables X = x, context vector C = c, outcome variable Y = y,

causal graph G.
3: Output: Causal bound [Lx,c, Ux,c] of the conditional intervention Px(y|c).
4: Initialization: [Lq, Uq] = [0, 1], [Lw, Uw] = [0, 1]

5: // C-component Factorization
6: Decompose Px(y, c) =

∑
D\{Y,C}

∏l
i=1Q[Di] following Equation 3.4.

7: for each Di do
8: LQ(Di), UQ(Di) = RC*(Di, P (v|S = 1),G)
9: end for
10: Update Lq, Uq according to Theorem 12.

11: // Substitute Intervention
12: D = FindRSI(x, c, y,G)
13: if D ≠ ϕ then
14: Update Lw, Uw according to Theorem 13.
15: end if

16: // Comparing Bounds
17: Calculate estimated values L̂q, L̂w, Ûq, Ûw based on H.
18: return Lx,c = max{L̂q, L̂w}, Ux,c = min{Ûq, Ûw}

7.3.1 Bounding via C-component Factorization

To derive the causal bound based on c-component factorization, we decompose the

target intervention into c-factors and call RC* algorithm to recover each c-factor. The RC*

algorithm shown in Algorithm 8 is designed based on the RC algorithm in [80] to accommo-
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date for non-recoverable situations. When the c-factorQ[E] is recoverable, the RC* algorithm

returns an expression of Q[E] using biased distribution P (v|S = 1).

Specifically, lines 4-6 in Algorithm 8 marginalize out the non-ancestors of E∪S since

they do not affect the recoverability results. From Lemma 3 in [109], each c-component in line

7 is recoverable since none of them contains ancestors of S. Line 13 calls the Identify function

proposed by [111] that gives a complete procedure to determine the identifiability of Q[E].

When Q[E] is identifiable, Identify(E,Ci, Q[Ci]) returns a closed form expression of Q[E] in

terms of Q[Ci]. In line 15, if none of the recoverable c-components Ci contains E, we replace

the distribution P by dividing the recoverable quantity
∏

i Q[Ci] and recursively run the

RC* algorithm on the graph GV\C . Under certain situations where line 8 in RC* Algorithm

fails (C = ∅), the corresponding Q[E] cannot be computed from the biased observational

data in theory. These situations are referred to as nonrecoverable situations. We address this

nonrecoverable challenge by non-parametrically bounding the targeted causal quantity. In

this case, RC* returns a bound [LQ(E), UQ(E)] for Q[E]. The bound for Px(y, c) is derived by

summing up the estimator/bounds of those c-factors following Equation 3.4.

Theorem 12 (Causal Bound from RC* algorithm). Given a conditional intervention Px(y|c),

the causal bounds derived by calling RC* algorithm for each c-factor are:

Lq =
∑

D\{Y,C}

l∏
i=1

LQ[Di]/Px(c)

Uq =
∑

D\{Y,C}

l∏
i=1

UQ[Di]/Px(c)

(7.2)

Note that in line 9 of RC* algorithm, we bound the target c-component by [0, 1] since

under semi-Markovian models it is challenging to find a tight bound for Q[E] when C = ∅.
97



Algorithm 8 RC* Algorithm

1: function RC*(E, P,G)
2: Input: E a c-component, P a distribution and G a causal graph.
3: Output: Causal bound [LQ[E], UQ(E)] for Q[E].
4: if V\(An(E) ∪ An(S)) ̸= ϕ then
5: return RC*(E,

∑
V\(An(E)∪An(S)) P,G(An(E)∪An(S)))

6: end if
7: LetC1, ...,Ck be the c-components of G that contains no ancestors of S andC = ∪i∈[k]Ci.
8: if C = ∅ then
9: Bound Q[E] with UQ(E) = 1, LQ(E) = 0.
10: return LQ(E), UQ(E)

11: end if
12: if E is a subset of some Ci and Identify(E,Ci, Q[Ci]) does not return FAIL then
13: return LQ(E) = UQ(E) = Identify(E,Ci, Q[Ci])
14: end if
15: return RC*(E, P∏

i Q[Ci]
,GV\C)

One future direction is to further apply a non-parametric bounding technique similar to

[9]. That is, choosing certain probability distributions in the truncated formula that are the

source of unrecoverability. Then we set a variable set with specific domain values to allow

the related probability distributions to achieve their maximum/minimum values.

7.3.2 Bounding via Substitute Interventions

From previous discussion we find that RC* algorithm may return a loose bound when

we fail to recover most of the c-factors. In order to obtain a tight causal bound that is robust

under various graph conditions, we develop another novel strategy to bound Px(y, c). Our

key idea is to search over the substitute recoverable interventions with a larger intervention

space. Note that for a variable set W such that W∩X = ∅ in the contextual bandit setting,

we can perform marginalization on W and derive Px(y, c) =
∑

W Px(y, c|w)P (w). We can
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further bound Px(y, c) by

Px(y, c) ≤ max
w∗∈W

Px(y, c|w∗)

Px(y, c) ≥ min
w∗∈W

Px(y, c|w∗)

(7.3)

We then investigate whether the action/observation exchange rule of do-calculus [21] and

the corresponding graph conditions could be extended in the presence of selection bias and

list the results in the following lemma.

Lemma 6 (Action/Observation Rule under Selection Bias). If the graphical condition (Y ⊥⊥

Z, S|X,W)G
XZ(w)

is satisfied in G, the following equivalence between two post-interventional

distributions holds:

P (y|do(x), do(w), z, S = 1) = P (y|do(x),W, z, S = 1) (7.4)

where GXZ represents the causal graph with the deletion of both incoming and outgoing

arrows ofX and Z respectively. Z(W) is the set of Z-nodes that are not ancestors of variables

in W in GX.

Following the general action/observation exchange rules in Equation 7.4, if (Y,C ⊥⊥

W, S|X)GXW
, we can replace Px(y, c|w∗) with Px,w∗(y, c) and derive the bound for Px(y, c)

as shown in Theorem 13.

Theorem 13 (Causal Bound with Substitute Interventions). Given a set of variables cor-

responding to recoverable substitute interventions: D = {W|Px,w(y, c) is recoverable}, the
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target conditional intervention Px(y|c) is bounded by

Lw = max
W∈D

min
w∗∈W

Px,w∗(y, c)/Px(c)

Uw = min
W∈D

max
w∗∈W

Px,w∗(y, c)/Px(c)

(7.5)

Algorithm 9 Finding Recoverable Substitute Interventions

1: function FindRSI(x, c, y,G)
2: Input: Causal graph G, target intervention Px(y, c).
3: Output: A valid variable set D = {W|Px,w(y, c) is recoverable and could be expressed

in terms of biased observational distributions following Equation 3.3}.
4: Initialize: D ← ∅.
5: for all W such that W ∩X = ∅, starting with the smallest size of W do
6: if a valid adjustment set can be found according to Theorem 2 then
7: D = D ∪ {W}
8: end if
9: end for

We list our procedure of finding all the recoverable substitute interventions in Algo-

rithm 9. Basically the main function FindRSI in Algorithm 9 returns a set containing all

admissible variables, each of which corresponding to a recoverable intervention with a larger

intervention space.

Next, we give an illustration example on how to run our BCE algorithm to get prior

causal bounds. Figure 7.2 shows a causal graph constructed from offline data, where nodes

U1, U2 and X1, X2 depict user features and item features respectively, Y denotes the outcome

variable, S denotes the selection variable, and I1 denotes an intermediate variable. The bi-

directed dashed line indicates there exist unobserved confounders that affect both I1 and

Y simultaneously. To bound the conditional causal effect px1,x2(y|u1, u2) via c-component

factorization, we first identify the set D = An(Y)GV\X = {Y, U1, U2}. The target intervention

100



S
X1

X2

U1

U2

I1

Y

Figure 7.2: Causal graph for synthetic data.

could be expressed as

px1,x2(y|u1, u2) = px1,x2(y, u1, u2)/p(u1, u2) = (Q[Y ] ·Q[U1] ·Q[U2])/p(u1, u2) (7.6)

We then call RC* algorithm to bound each c-component and return the bound for each arm

according to Theorem 12. For bounding causal effects via substitute interventions, we call

FindRSI to find a valid variable set D = {I1}. According to Theorem 13, we can obtain the

bound for each arm.

7.4 Online Bandit Learning with Prior Causal Bounds

In this section we show how to incorporate our derived causal bounds to online

contextual bandit algorithms. We focus on the stochastic contextual bandit setting with

linear reward function. Under the linear assumption, the binary reward is generated by

P (Yt = 1) = ⟨θ,xt,a⟩+ ηt where θ ∈ Rd, xt,a ∈ Rd denotes the context vector related to the

concatenation of user and arm feature vector at time t and the noise term ηt follows sub-

Gaussian distribution for t ∈ [T ]. Let at = argmaxa∈A E[Ya∼π(ct)], the expected cumulative
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regret of a policy π is defined as:

E[Rπ(T )] =
T∑
t=1

⟨θ,xt,a∗⟩ −
T∑
t=1

E[Yat ]

We next conduct regret analysis and prove our strategy could consistently improve the long-

term regret with the guide of the pruned arm set and a prior causal bound for each arm’s

reward distribution.

7.4.1 LinUCB Algorithm with Prior Causal Bounds

LinUCB [82] is one of the most widely used stochastic contextual bandit algorithms

that assume the expected reward of each arm a is linearly dependant on its d-dimensional

feature vector xt,a with an unknown coefficient θa at time t. We develop the LinUCB-PCB al-

gorithm that includes a modified arm-picking strategy, clipping the original upper confidence

bounds with the prior causal bounds obtained from the offline evaluation phase. Algorithm

10 shows the pseudo-code of our LinUCB-PCB algorithm. The truncated upper confidence

bound shown in line 12 of Algorithm 10 contains strong prior information about the true

reward distribution implied by the prior causal bound, thus leading to a lower asymptotic

regret bound.

Theorem 14. Let ||x||2 define the L-2 norm of a context vector x ∈ Rd and

L = max
a,c∈{A,C},Ua,c≥⟨θ,xa∗,c⟩

||xa,c||2

The expected regret of LinUCB-PCB algorithm is bounded by:

RT ≤ Cd
√
T log(TL) (7.7)
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Algorithm 10 LinUCB algorithm with Prior Causal Bounds (LinUCB-PCB)

1: Input: Time horizon T , arm set A, prior causal bounds {[La,c, Ua,c]}a,c∈{A,C}, α ∈ R+.
2: for t = 1,2,3,...,T do
3: Observe contextual features xt,a ∈ Rd for all arms
4: for a ∈ A do
5: if a is new then
6: Aa ← Id, ba ← 0d×1

7: end if

8: θ̂a ← A−1
a ba

9: pt,a ← θ̂T
a xt,a + α

√
xT
t,aA

−1
a xt,a

10: Ut,a ← Ua,ct : xa,ct ≜ [xa, ct] = xt,a

11: UCBa(t)← min
{
pt,a, Ut,a} //Truncated UCB

12: end for
13: Pull arm at ← argmaxa∈AUCBa(t), and observe a reward rt,at
14: Aat ← Aat + xt,atx

T
t,at , bat ← bat + rt,atxt,at

15: end for

where C is a suitably large constant.

We follow the standard procedure of deriving the expected regret bound for linear

contextual bandit algorithms in [50] and [112]. Please refer to Appendix for the proof. We

next discuss the potential improvement in regret that can be achieved by applying LinUCB-

PCB algorithm in comparison to original LinUCB algorithm.

Theorem 15. If there exists an arm a such that Ua,ct < ⟨θ,xa∗,ct⟩ at a round t ∈ [T ],

LinUCB-PCB is guaranteed to achieve lower cumulative regret than LinUCB algorithm.

Proof. To prove Theorem 15, we first introduce a Lemma shown as follows:

Lemma 7 (Reduced Arm Exploration Set). Given an arm a with Ua,c < ⟨θ,xa∗,c⟩, we have

P (at = a) = 0, ∀t ∈ [T ].

We prove Lemma 7 by contradiction. Given an arm a with Ua,c < ⟨θ,xa∗,c⟩ and

suppose the agent pulls the arm a at round t. Based on the optimism in the face of uncertainty

103



(OFU) principle we have ⟨θ,xa∗,c⟩ < UCBa∗,c < UCBa,c ≤ Ua,c, which contradicts with the

fact Ua,c < ⟨θ,xa∗,c⟩. Thus for all the rounds t ∈ [T ] we have P (at = a) = 0.

Lemma 7 basically states that although the optimal reward given a user context is

unknown to the agent apriori, based on the exploration strategy enhanced with the infor-

mation provided by the prior causal bounds, LinUCB-PCB will not pull the arms that are

sub-optimal implied by their upper causal bounds at each round, thus leading to a reduced

exploration arm set and a lower value of L.

We further define the total number of sub-optimal arms implied by prior causal

bounds as

N−
pcb =

∑
a,c∈{A,C}

1Ua,c−⟨θ,xa∗,c⟩<0

Note that the value of N−
pcb depends on the accuracy of the causal upper bound for each arm.

This is because if the estimated causal bounds are more concentrated, that is, Ua,c is close

to ⟨θ,xa,c⟩ for each a, c ∈ {A, C}, there will be more arms whose prior causal upper bound

is less than the optimal mean reward, thus N−
pcb will increase accordingly. A large N−

pcb value

implies less uncertainty regarding the sub-optimal arms implied by prior causal bounds. As a

result there are in general less arms to be explored and the L value will decrease accordingly,

leading to a more significant improvement by applying LinUCB-PCB algorithm.

7.4.2 OAM-PCB Algorithm

Recently, [113] developed one state-of-the-art contextual linear bandit algorithm based

on the optimal allocation matching (OAM) policy. It alternates between exploration and ex-

ploitation based on whether or not all the arms have satisfied the approximated allocation

rule. We investigate how to incorporate prior causal bounds in OAM and develop the new
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OAM-PCB algorithm shown in the following algorithm.

Algorithm 11 Optimal Allocation Matching with Prior Causal Bounds

1: Input: Time horizon T , arm set A, exploration parameter ϵt, exploration counter s(d) =
0, prior causal bounds {[La,c, Ua,c]}a,c∈{A,C}.

2: for t = 1 to T do
3: Solve the optimization problem in Equation 7.13 based on the estimated gap ∆̂(t−1).
4: if ||a||2

G−1
t−1

≤ max{ ∆̂
2
min(t−1)

fn
, (∆̂

ct
a (t−1))2

fn
}, ∀a ∈ A, then

5: // Exploitation
6: for Each arm a ∈ A do
7: µ̂a(t− 1) = max{min{Ua,c, a

⊤θ̂t−1}, La,c}
8: end for
9: Pull arm at = argmaxa∈A µ̂a(t− 1).
10: else
11: //Wasted (LinUCB) Exploration
12: s(t) = s(t− 1) + 1

13: if Na(t− 1) ≥ min(Ta(∆̂(t− 1)), fn/(∆̂min(t− 1)))2, ∀a ∈ A, then
14: Pull an arm following Equation 7.8.
15: else
16: Calculate b1, b2 following Equation 7.9.
17: if Nb2(t− 1) ≤ ϵts(t− 1) then
18: // Forced Exploration
19: Pull arm at = b2.
20: else
21: // Unwasted Exploration
22: Pull arm at = b1.
23: end if
24: end if
25: end if
26: Observe reward and update θ̂t, ∆̂

ct
a (t), ∆̂min(t)

27: end for

As shown in Algorithm 11, at each round in both exploitation and wasted exploration

scenarios, we truncate the upper confidence bound for each arm with the upper causal bound

to obtain a more accurate estimated upper bound:
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ÛCBa(t− 1) = min
{
a⊤θ̂t−1 +

√
fn,1/s(t))2||a||G−1

t−1
, Ua,c

}
at = argmax

a∈A
ÛCBa(t− 1)

(7.8)

where Gt =
∑t

s=1XsX
⊤
s . The algorithm then explores by computing two arms:

b1 = argmin
a∈A

Na(t− 1)

min(T ct
a (∆̂(t− 1)), fn/∆̂2

min(t− 1))

b2 = argmin
a∈A

Na(t− 1)

(7.9)

where fn,δ = 2(1 + 1/log(n))log(1/δ) + cdlog(dlog(n)). c is a constant and we denote fn =

fn,1/n for simplicity. Na(T ) denotes the number of pulls of arm a up to time T . For any ∆̃ ∈

[0,∞)|∪a∈A| that is an estimate of ∆, T (∆̃) could be treated as an approximated allocation

rule in contrast to the optimal allocation rule, which is defined as a solution to the following

optimization problem:

min
(T c

a)a,c∈[0,∞]

|C|∑
c=1

∑
a∈A

T c
a∆̃

c
a (7.10)

subject to

||x||2
H−1

T
≤ ∆2

a

fn
,∀a ∈ A, c ∈ [|C|] (7.11)

and HT =
∑|C|

c=1

∑
a∈A T c

aaa
⊤ is invertible.

We next derive the asymptotic regret bound of OAM-PCB and show our theoretical

results.

Theorem 16 (Regret of OAM-PCB). Given causal bounds E[Ya,c] ∈ [La,c, Ua,c] over a ∈ A,

the asymptotic regret of optimal allocation matching policy augmented with prior causal
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bounds is bounded by

Rπoam(T ) ≤ log(T ) · V(θ,A) (7.12)

where V(θ,A) denotes the optimal value of the optimization problem defined as:

inf
αa,c∈[0,∞]

|C|∑
c=1

∑
a:Ua,c≥µ∗

c

αa,c∆
c
a (7.13)

subject to the constraint that for any context c and suboptimal arm a ∈ A,

a⊤
( |C|∑

c=1

∑
a:Ua,c≥µ∗

c

αa,caa
⊤
)−1

a ≤ (∆c
a)

2

2
(7.14)

In Theorem 16, c indexes a domain value of the context vector C, µ∗
c = ⟨θ, a∗c⟩ is the

mean reward of the best arm given context c, ∆c
a = ⟨θ, a∗c − a⟩ is the suboptimality gap and

∆min = minc∈[|C|] mina∈A,∆c
a>0∆

c
a. Please refer to Appendix for the proof.

7.4.3 Non-contextual Setting

Our prior causal bounds can also be incorporated into non-contextual bandits. We

derive the UCB-PCB algorithm, a non-contextual upper confidence bound-based multi-arm

bandit algorithm enhanced with prior causal bounds, and give its pseudo-code and regret

analysis as follows:

Theorem 17 (Regret of UCB-PCB algorithm). Suppose the noise term is 1-subgaussian

distributed, let δ = 1/T 2, the cumulative regret for k-arm bandit bounded by:

R(T ) = 3
k∑

a=1

∆a +
∑

a:Ua≥µ∗

16log(T )

∆a
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Algorithm 12 UCB Algorithm with Prior Causal Bounds (UCB-PCB)

1: Input: Time horizon T , arm set A, causal Graph G, prior causal bounds {[La, Ua]}a∈A.
2: Initialization: Values assigned to parent variables: µ̂a, Ta(0) = 0.
3: for t = 1, 2, 3, ..., T do
4: for each arm a ∈ A do

5: UCBa(t− 1) = µ̂a(t− 1) +
√

2log(1/δ)
Na(t−1)

.

6: ÛCBa(t− 1) = max{min{Ua, UCBa(t− 1)}, La}
7: end for
8: Pull arm at = argmaxa∈A ÛCBa(t− 1)
9: Observe Yt and update upper confidence bounds accordingly.
10: end for

where ∆a denotes the reward gap between arm a and the optimal arm a∗

Notice that the improvement could be significant if we obtain concentrated causal

bounds from observational data and consequently exclude more arms whose causal upper

bounds are less than µ∗. Please refer to Appendix for the proof.

7.5 Empirical Evaluation

In this section, we conduct experiments to validate our proposed methods. We use

the synthetic data generated following the graph structure in Figure 7.2. We generate 30000

data points to simulate the confounded and selection biased setting shown in Table 7.1.

After conducting the preferential exclusion indicated by the selection mechanism, there are

approximately 15000 data points used for offline evaluation.

Table 7.1: Conditional probabilities for synthetic data.
Variables Vi ∈ V Distributions P (Vi = 1|PaVi

)
U1 P (U1 = 1) = 0.4
U2 P (U2 = 1) = 0.6
X1 P (X1 = 1|U1 = u1) = (1{u1=1} + 0.5)/2
X2 P (X2 = 1|U2 = u2) = (1{u2=1} + 0.3)/2
I1 P (I1 = 1|X1 = x1, C1 = c1) = 0.3 + (1{x1=1} + 1{c1=1})/4
Y P (Y = 1|C1 = c1, U1 = u1, X2 = x2, I1 = i1) = (1{c1=1} + 1{u1=1} + 1{x2=1} + 1{i1=1})/6 + 0.1
C1 P (C1 = 1) = 0.5

S
P (S = 1|I1 = i1) = 0.8 if i1 = 1
P (S = 1|I1 = i1) = 0.1 if i1 = 0
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Offline Evaluation We use our BCE algorithm to obtain the bound of each arm based

on the input offline data and compare the causal bound derived by the algorithm with the

estimated values from two baselines: an estimate that is derived based on Equation 3.2

which only takes into account confounding bias (Biased), and a naive conditional probability

estimate derived without considering both confounding and selection biases (CP). Table 7.2

shows the comparison results in offline evaluation phase. lb and ub denote the lower bound

and upper bound derived by our BCE algorithm for the conditional causal effect related to

a value of the context vector. We also report the visualized comparison results on causal

bound and the estimated values among 16 different values of the context vector in Figure

7.3. The comparison results show our BCE algorithm contains the ground-truth causal effect

(denoted by the red lines in the figure) for each value of the context vector. On the contrary,

the estimated values from CP and Biased baselines deviate from the true causal effect in the

presence of compound biases. The experimental results reveal the fact that neglecting any

bias will inevitably lead to an inaccurate estimation of the target causal effect.

Figure 7.3: Comparison results for offline evaluation under confounding and selection biases.
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Table 7.2: Reward estimation for the synthetic data.

Context Index CP Biased
BCE

Truth
lb ub

1 0.313 0.364 0.246 0.385 0.283
2 0.336 0.351 0.236 0.371 0.278
3 0.533 0.346 0.233 0.367 0.275
4 0.510 0.362 0.244 0.384 0.283
5 0.517 0.539 0.350 0.565 0.448
6 0.494 0.519 0.376 0.545 0.440
7 0.657 0.513 0.371 0.538 0.436
8 0.710 0.537 0.389 0.563 0.448
9 0.377 0.492 0.296 0.505 0.419
10 0.386 0.474 0.285 0.486 0.411
11 0.525 0.468 0.282 0.480 0.407
12 0.518 0.490 0.295 0.503 0.419
13 0.547 0.652 0.414 0.665 0.580
14 0.513 0.628 0.409 0.640 0.569
15 0.756 0.620 0.404 0.632 0.564
16 0.681 0.649 0.324 0.662 0.580

Figure 7.4: Comparison results for contextual linear bandit.

Online Bandit LearningWe use 15000 samples from the generated data to simulate the on-

line bandit learning process. In Figure 7.4, we compare the performance of our LinUCB-PCB
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algorithm regarding cumulative regret with the following baselines: LinUCB, LinUCB Biased

and LinUCB CP, where LinUCB Biased and LinUCB CP are LinUCB-based algorithms ini-

tialized with the estimated reward for each value of the context vector (arm) from the Biased

and CP baselines in the offline evaluation phase. Each curve denotes the regret averaged

over 100 simulations to approximate the true expected regret. We find that LinUCB-PCB

achieves the lowest regret compared to the baselines. Moreover, both LinUCB Biased and

LinUCB CP perform worse than the LinUCB baseline, which is consistent with the conclu-

sion from our theoretical analysis that blindly utilizing biased estimates from offline data

could negatively impact the performance of online bandit algorithms.

7.6 Summary

This chapter studied bounding conditional causal effects in the presence of confound-

ing and sample selection biases using causal inference techniques and utilizes the derived

bounds to robustly improve online bandit algorithms. We presented two novel causal-based

techniques to derive a bound for conditional causal effects given offline data with compound

biases. We developed contextual and non-contextual bandit algorithms that leverage the

derived causal bounds and conduct their regret analysis. Theoretical analysis and empirical

evaluation demonstrate the improved regrets of our algorithms.
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8 Achieving Fairness through Multiple Causes Discrimination Analysis

8.1 Introduction

Discrimination or unfairness has been a paramount concern in many big data ap-

plications like employment, credit, and insurance. How to strike a balance between accu-

rate predictions and fairness is receiving increasing attention in the machine learning field.

Causal modeling based fair learning models [17, 18, 6, 19, 20, 9, 16], which are based on

Pearl’s (probabilistic) causal model [21], have been developed to capture and quantify differ-

ent fairness measures (e.g., direct/indirect discrimination, counterfactual fairness) through

counterfactual inference along specific paths in causal graphs. However, most existing causal

modeling based fair learning research focuses on single cause effect of one protected attribute

on decision.

In this chapter, we focus on discrimination discovery when multiple protected at-

tributes and redlining attributes are present in addition to other covariates. Protected at-

tributes refer to certain characteristics that are the subject of discrimination analysis, such

as race, gender, marital status, whereas redlining attributes (e.g., zipcode in loan applica-

tion) are a set of attributes that cannot be legally justified if used in decision-making. We

are interested in evaluating the causal effects of those protected and redlining attributes on

the decision (the outcome variable). We regard those protected and redlining attributes as

multiple causes of the outcome variable.

One big challenge for causal modeling is to deal with hidden variables. Most previous

works [17, 18, 6] based on Pearl’s structural causal modeling make the Markovian assump-
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tion (i.e., there is no hidden variable that affects both protected attribute and decision) to

facilitate the causal inference. In open world scenario, the existence of the hidden variable

mentioned above (also known as hidden confounder) is an inescapable fact. Simply ignoring

the presence of these variables in a causal model can lead to erroneous conclusions about the

causal relationship among endogenous variables. Furthermore, causal effects are not com-

putable from observational data in some situations known as the unidentifiable situations.

Those methods have to make simplified assumptions to avoid the unidentifiable situations,

but the validity issue of the assumptions imposes uncertainty on the performance and relia-

bility of these methods.

To deal with hidden confounders, we adopt the potential outcome framework [114]

and leverage the state-of-the-art deconfounder algorithm [115] to do causal inference under

multiple causes. The potential outcome framework focuses on the causal relationship be-

tween a treatment and its effect given other covariates. Potential outcomes are expressed in

the form of counterfactual conditional statements of the case conditional on a prior event

occurring. For each instance, only one potential outcome can be observed. The deconfounder

algorithm combines unsupervised machine learning and predictive model checking to per-

form causal inference in multiple-cause settings. Its main idea is to infer a latent variable

as a substitute for unobserved confounders and then use that substitute to perform causal

inference. Combining them, we are able to relax the Markovian assumption and avoid the

unidentifiability issue in structural causal modeling approaches. We compare our approach

with the widely adopted structural casual modeling approach [21] in our empirical evalu-

ation on both synthetic data and real data. Empirical evaluation results demonstrate the

effectiveness of the proposed approach.
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Figure 8.1: Graph structure under multiple treatments setting.

8.2 Modeling Multi-cause Discrimination

8.2.1 Problem Formulation

Assume that there is a population over the space S×X×Y where S are the protected

attributes, Y is the decision attribute, and X are the covariates. The underlying mechanism

that determines the values of all the attributes is represented by a causal model. In practice

the causal model is unknown, but we can observe a training dataset D = {(si,xi, yi); i =

1, · · · , n} drawn from the population and consider it as in fact generated by the causal

model. Among covariates X there is a set of attributes that cannot be legally justified if

used in the decision making process, referred to as the redlining attributes denoted by R. In

discrimination discovery, we are interested in the causal effects of protected attributes S and

redlining attributes R on the decision Y . Traditional causal inference usually uses an upper

letter A to represent a single treatment variable. In this chapter we generalize the notation

A to a bold letter A = {A1, ..., Am} = S ∪ R to represent m possible multiple treatments

and aim to estimate their causal effect on Y . In addition to the observed attributes (S, X,

Y ), there may exist a set U containing unobserved hidden confounders.

Figure 8.1 shows an illustrative example under the multiple treatments setting. In Fig-

ure 8.1, the shaded node Z denotes the substitute variable from the deconfounder algorithm.
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Y is the outcome variable. S = {S1, S2} is the protected attributes set. X = {R1, R2, X3, X4,

X5} is the covariate set, among which lies the redlining attribute set R = {R1, R2}. A =

{S1, S2, R1, R2} represents the multiple treatments set. X3 is a pre-treatment covariate, X4

is a multiple-cause confounder that affects more than two causes and the outcome variable

simultaneously and X5 is a single-cause confounder that affects exactly one cause and the

outcome variable. U = {U1} is hidden variable set and U1 is also a multi-cause hidden

confounder.

The ATE of A on Y under multiple treatments scenario can then be expressed as

E[Yi(a)] − E[Yi(a
′)] where a and a′ are two treatment configurations. However, the pres-

ence of hidden variables (especially hidden confounders such as U1 in Figure 8.1) can make

the estimate of ATE inaccurate. In this chapter, we develop a Multi-Cause Discrimination

Analysis (MCDA) algorithm to derive the ATE of A on Y with the presence of hidden con-

founders. Our MCDA involves two phases. In phase 1, we apply the deconfounder algorithm

[115] to infer a latent variable as a substitute for unobserved confounders and then use that

substitute to perform causal inference. The shaded node Z in Figure 8.1 is the substitute

variable derived from the deconfounder algorithm. Note that the deconfounder algorithm re-

laxes the assumption of no hidden confounders to that of no single-cause confounders, which

significantly improves the applicability of causal inference. In phase 2, we apply the propen-

sity score approach, in particular, the inverse probability of treatment weighting method,

to estimate the causal effect. We emphasize that the deconfounder provides a checkable ap-

proach to estimating closer-to-truth causal effects as its weakened assumption is more likely

held in practice. The causal inference based on the combination of the deconfounder and

the propensity score approach is more appropriate for analyzing the simultaneous effects of

multiple protected and redlining attributes on the decision in discrimination discovery and
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fair learning.

8.2.2 The Deconfounder Algorithm

In [115], the authors proposed the deconfounder algorithm to conduct causal inference

under multiple treatments setting. The algorithm relaxes the strong ignorability assumption

to single ignorability assumption. The single ignorability assumes that there are no unob-

served single-cause confounders. Roughly speaking, single ignorability implies that we ob-

serve all the confounders that affect exactly one of the causes and the outcome variable. The

assumption is much weaker than the strong ignorability that requires all confounders are

observed. For those application problems which may involve multiple causes in the model,

confounders are unlikely to have effect on only one cause. Hence, single ignorability is more

likely to be satisfied in practice. The deconfounder algorithm can be divided into two parts:

the assignment model and the outcome model.

8.2.2.0.1 Assignment model The assignment model is basically a factor model of the

assigned causes. The main point is that if we can infer a reasonable latent variable Z (shown

in Figure 8.1) such that each cause is conditionally independent given Z, then Z could be

regarded as a substitute confounder. This is because if there exists any other multiple-cause

confounder, it will break the conditional independence between treatments. Through the use

of substitute confounders, we can get rid of the barrier of unobserved confounders when the

single ignorability assumption is satisfied.

To implement the deconfounder algorithm we firstly define and fit a probabilistic

factor model to capture the joint distribution of causes p(a1, · · · , am). The factor model

posits per-instance latent variables Zi and uses them to model the assigned causes. The
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model can be represented as:

Zi ∼ p(·|α) i = 1, · · · , n

Aij|Zi ∼ p(·|(zi, θj) j = 1, · · · ,m
(8.1)

where α parameterizes the distribution of Zi and θj parameterizes the per-cause distribution

of Aij. Generally Zi can be multi-dimensional and factor models include many methods from

Bayesian statistics and probabilistic machine learning. In our chapter, we use probabilistic

principal component analysis proposed by [116] as a factor model. Its structure can be

expressed as follows:

Zik ∼ N (0, λ2) k = 1, · · · , K

Aij|Zi ∼ N (zTi θj, σ
2) j = 1, · · · ,m

(8.2)

In Equation 8.2 both zi and θj are real-valued K-dimension vectors, λ and σ are

hyper parameters. Since the deconfounder rests on finding a good factor model to capture

the dependent relationship of all assigned causes, posterior predictive checks are used to

assess the fidelity of the model. We use the fitted factor model to calculate the posterior

distribution p(Zi|Ai) by applying Bayes’ theorem and then derive the conditional expectation

Ẑi = E[Zi|Ai] as the approximation of Zi. Since the factor model captures the population

distribution of assigned causes, we have essentially discovered a variable (set) that captures

all multiple-cause confounders.

8.2.2.0.2 Outcome model The outcome model aims to estimate causal effects given

the information from the augmented dataset {A, Z}, where Z is the substitute confounder

inferred in assignment model. It can be formulated as the function f(a, z) = E[Yi(Ai)|Ai =
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a, Zi = z]. From the equation above, we can see the outcome modal could have various

expression form. Any reasonable model can be fitted here if it passes the model checking and

has a good performance on approximating the causal effects. For example, we can simply fit

a linear regression model. If the outcome variable is binary, we can apply logistic regression

and each coefficient of the logistic regression corresponds to the causal odds ratio of a certain

covariate.

We emphasize that causal effects can be accurately estimated since strong ignorability

is guaranteed with the help of substitute confounder derived from phase 1. In the illustrative

example shown in Figure 8.1, after we infer a reasonable substitute confounder Z from the

assignment model, both observed and unobserved multiple confounders (such as X4 and

U1) can be well represented by the substitute confounder Z. Hence we can apply classical

causal inference methods (e.g., matching and weighting methods) without worrying any

biases caused by those hidden confounders. In this chapter we focus on inverse probability

of treatment weighting method as one legitimate choice of the outcome model.

8.2.3 Inverse Probability of Treatment Weighting

Definition 9 (Propensity Score). Propensity score, e(x) = Pr(A = 1|X = x), is the condi-

tional probability of receiving treatment A given the pretreatment variables X.

With the help of the propensity score, we can divide individuals with the same propen-

sity score into one stratum and treat those strata as randomized controlled trial. Treatment

effect is then automatically identified within each stratum and simple methods can be applied

to obtain unbiased estimation of the average treatment effect. In statistics, the propensity

score is usually estimated using regression models. There are four predominating propensity

score methods used for removing the confounding bias when estimating causal effects: propen-
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sity score matching (PSM), propensity score stratification, inverse probability of treatment

weighting (IPTW) and covariate adjustment using the propensity score.

In this chapter, we mainly focus on the IPTW method. The main idea is to use

inverse propensity score as the weight for each individual. By multiplying such a weight to

all the data points we can create a pseudo-population to synthesize randomized controlled

experiments and estimate the average treatment effect unbiasedly. Specifically, the weight

for individual i can be defined as

ωi =
I(Ai)

e(xi)
+

1− I(Ai)

1− e(xi)
(8.3)

where e(xi) is the propensity score for i-th individual, I(Ai) is an indicator variable denoting

whether i-th individual received treatment.

After weighting procedures we generate a balanced dataset such that each individual

has the same chance to receive the treatment. The average treatment effect can thus be

estimated by a naive estimator shown in Equation 8.4 and Equation 8.5.

ÂTE =
1

NA=1

∑
i:Ai=1

wiYi −
1

NA=0

∑
i:Ai=0

wiYi (8.4)

NAi=1 =
∑ Ai

e(xi)
NAi=0 =

∑ 1− Ai

1− e(xi)
(8.5)

NAi=1 and NAi=0 denote the number of instances under treatment and control. In our

chapter, we generalize the treatment variable A to multiple treatments set A and use A = a

to represent a certain treatments configuration. The selection of covariates to condition on

will also influence the estimated propensity scores, and IPTW method may be sensitive
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to whether the propensity score has been accurately estimated. However, our multi-cause

discrimination analysis combines the potential outcome framework and the deconfounder

algorithm to deal with the hidden confounders.

8.3 Empirical Evaluation

We implement our MCDA algorithm and compare with the traditional IPTW method

to evaluate how the deconfounder can improve the estimation of causal effects. Furthermore,

we compare with the structural casual model [21], denoted as SCM. We use Tetrad [105] to

learn the causal graph and then calculate the causal effect using the truncated factorization.

8.3.1 Synthetic Data

We generate 10, 000 data points following the data generating process:

H1, H2
iid∼ U(0, 1)

A1, A2
iid∼ B(0, f(H1, H2))

Y ∼ B(0, g(H1, H2, A1, A2)) (8.6)

Here U refers to uniform distribution and B refers to binomial distribution. f and

g are functions with linear form. We consider A1,A2 as treatment variables, Y as outcome

variable, and H1,H2 as confounders. As we have the full knowledge and the ground truth

here, we can compare the performance of different methods under multiple scenarios (based

on whether the confounders are observed or hidden) against the ground truth.

We observe that the graph structure of the synthetic data satisfies the back-door

criterion. Hence we apply the structural equation model and use the truncated factorization
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Table 8.1: Causal effects for synthetic data where the most accurate estimates are
highlighted.

Causal effect H1,H2 observed H1 hidden H1,H2 hidden
Ground Truth 0.3982 0.3982 0.3982

SCM 0.3982 0.7241 0.7729
IPTW 0.4063 0.7732 0.6978
MCDA 0.5763 0.5763 0.5763

to get the true causal effect of X1 and X2 on Y . We measure the causal effect between

two different treatment configurations: (X1, X2) = (1, 1) and (X1, X2) = (0, 0). The ground

truth ATE is 0.3982. Our evaluation focuses on the scenario with H1 and H2 hidden. We

see this scenario has two treatments and no single-cause confounder. As shown in the last

column of Table 8.1, our MCDA algorithm achieves more accurate estimate (0.5763) than

the IPTW (0.6978) and SCM (0.7729) compared with the ground truth (0.3982). We also

conduct comparisons under the scenario with only H1 hidden. As shown in the third column

of Table 8.1, MCDA achieves the best estimate. We also show the scenario with both H1 and

H2 observed. Note that in this scenario, there are no hidden variables. It is not surprising

that SCM and IPTW outperform MCDA because of no hidden variables in this scenario.

8.3.2 Adult Dataset

We also use the adult dataset [86] that contains 65, 123 records with 11 attributes.

We assume there are no unknown variables associated with this dataset. Under this as-

sumption, we also have the ground truth. We binarize the categorical variables due to the

data sparsity issue. We then apply the PC algorithm in Tetrad to build the causal graph.

Since native country, sex, age, race are unlikely to be caused by other covariates, we set

them in the first tier. The built causal graph is shown in Figure 8.2. We take income as

the outcome variable, sex as the protected attribute, workclass and relationship as two
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redlining attributes, education, occupation, hours, marital-status as observed covariates,

and native country and age as two unobserved covariates. The causal effect can be calcu-

lated accurately if we know the whole knowledge of the graph. We may still estimate the

causal effects using structural equation model when there exits hidden confounders, which

is usually the case in observational study (SCM). From the graph structure we can see that

there are no single-cause confounders. Hence our MCDA algorithm is applicable.

Figure 8.2: Causal graph for Adult Dataset.

Table 8.2: Comparison result from adult dataset, where A1, A2, and A3 correspond to
workclass, relationship, and sex.

Treatment Configuration MCDA SCM Ground Truth
(A1, A2, A3) = (0, 0, 0) 0.277 0.464 0.275
(A1, A2, A3) = (0, 0, 1) 0.526 0.397 0.610
(A1, A2, A3) = (0, 1, 0) 0.185 0.333 0.201
(A1, A2, A3) = (0, 1, 1) 0.434 0.250 0.288
(A1, A2, A3) = (1, 0, 0) 0.446 0.493 0.400
(A1, A2, A3) = (1, 0, 1) 0.695 0.481 0.673
(A1, A2, A3) = (1, 1, 0) 0.354 0.352 0.250
(A1, A2, A3) = (1, 1, 1) 0.603 0.088 0.362

We focus on estimating the causal effects with two redlining attributes workclass
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and relationship and the sensitive attribute sex. We emphasize our MCDA algorithm can

analyze multi-cause effects simultaneously. Table 8.2 shows the expected potential outcome

value for each treatment configuration of workclass, relationship, and sex. By applying

average treatment effect formula, we can calculate the average treatment effect between any

pair of two configurations. For example, the causal effect between two different treatment

configurations (A1, A2, A3) = (1, 0, 1) and (A1, A2, A3) = (0, 0, 0) is 0.418 (0.695 − 0.277),

which is also close to the ground truth 0.398. The result shows that MCDA significantly

outperforms the SCM and is more robust to unmeasured confounding. In other words, we

can easily conduct counterfactual analysis and answer “what-if” questions in causal inference,

which is imperative for exploration based fair learning.

8.4 Summary

In this chapter, we developed one approach based on the potential outcome framework

to analyze the discrimination effects of protected and redlining attributes on the decision.

The developed approach is based on the potential outcome framework and combines the de-

confounder and inverse probability of treatment weighting. It can better handle the presence

of hidden confounders and can lead to a more robust estimate of causal effects. We have

empirically compared our approach with the structural causal modeling based approach

and experimental results demonstrated the advantages of the proposed approach. The early

version of this work is published at SBP-BRiMS 2020 [117].
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9 Achieving Fairness through Equality of Effort

9.1 Introduction

Fair machine learning is receiving an increasing attention in machine learning fields.

Discrimination is unfair treatment towards individuals based on the group to which they

are perceived to belong. The first endeavor of the research community to achieve fairness is

developing correlation or association-based measures, including demographic disparity (e.g.,

risk difference), mistreatment disparity, calibration, etc. [1, 2, 3, 4, 5], which mainly focus

on discovering the disparity of certain statistical metrics between two groups of individuals.

However, as paid increasing attention recently [6, 7, 8, 9, 10, 11, 12, 13, 14], unlawful discrim-

ination is a causal connection between the challenged decision and a protected characteristic,

which cannot be captured by simple correlation or association concepts. To address this lim-

itation, causal-based fairness measures have been proposed, including total effect [15], direct

and indirect discrimination [6, 15, 16], counterfactual fairness [17, 18, 9], and path-specific

counterfactual fairness [19]. Fairness notions have also been extended to considering both

decisions in the training data and decisions made by predictive models, such as equality of

opportunity and equalized odds [31, 32], and counterfactual direct and indirect error rates

[118].

In this chapter, we develop a new causal-based fairness notation, called equality of

effort. Consider a dataset with N individuals with attributes (S, T,X, Y ) where S denotes

a protected attribute such as gender with domain values {s+, s−}, Y denotes a decision

attribute such as loan with domain values {y+, y−}, T denotes a legitimate attribute such
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as credit score, and X denotes a set of covariates. For a particular applicant i in the dataset

with profile (Si = s−, Ti = t,Xi = x, Yi = y−), she may ask the counterfactual question, how

much her credit score she should improve such that the probability of her loan application

approval is above a threshold γ (e.g., 80%). Informally speaking, our proposed equality of

effort notation addresses her concern on whether her future effort (the increase of her credit

score) has no difference from male applicants with similar profile x.

Following Rubin’s causal modeling notations, we use Yi(t) to represent the potential

outcome for individual i given a new treatment T = t, E[Yi(t)] to denote the individual-

level expectation of outcome variable. If E[Yi(t)] ≥ γ, we say applicant i tends to receive

loan approval with at least probability γ. We can then calculate or estimate the minimum

value of the treatment variable to achieve γ-level outcome for individual i. If the minimum

value of individual i is significantly higher than her counterparts (i.e., males with similar

characteristics), discrimination exists in terms of effort discrepancy.

Our fairness notation, equality of effort, is different from existing fairness notions,

e.g., statistical disparity, path-specific effects, which mainly focus on the the effect of the

sensitive attribute S on the decision attribute Y . Our proposed equality of effort instead

focuses on to what extend the treatment variable T should change to make the individual

achieve a certain outcome level. This notation addresses the concerns whether the efforts that

would need to make to achieve the same outcome level for individuals from the protected

group and the efforts from the unprotected group are different. We develop algorithms for

determining whether an individual or a group of individuals are discriminated in terms

of equality of effort based on three widely used techniques for causal inference, outcome

regression, propensity score weighting, and structural causal modeling. We also develop an

optimization-based method for removing discriminatory efforts from biased datasets. We

125



conduct empirical evaluations to compare the equality of effort and existing fairness notions

and evaluation results show the effectiveness of our proposed algorithms.

9.2 Fairness Through Equal Effort

For the sake of simplicity, we assume there is only one binary protected attribute,

one binary decision attribute, and one ordered multi-categorical legitimate attribute. Our

formulation and methods are readily to extend to general cases where there are multiple

protected/decision/legitimate attributes. In this chapter, we simply use the change of T as

the effort needed to achieve a certain level of outcome and do not consider the real monetary

or resource cost behind that change.

9.2.1 Equality of Effort at the Individual Level

For an individual i in the dataset with profile (si, ti,xi, yi), we want to figure out

what is the minimal change on treatment variable T to achieve a certain outcome level

based on observational data. If the minimal change for individual i has no difference from

that of counterparts (individuals with similar profiles except the sensitive attribute), we say

individual i achieves fairness in terms of equality of effort.

Formally, we use Yi(t) to represent the potential outcome for individual i given a new

or counterfactual treatment T = t. We use E[Yi(t)] to denote the individual-level expectation

of outcome variable where E[·] is the expectation operator from probability theory. When

E[Yi(t)] is larger than a predefined threshold γ, we say individual i would receive a positive

decision with probability γ.

Definition 10 (γ-Minimum Effort). For individual i with value (si, ti,xi, yi), the minimum
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value of the treatment variable to achieve γ-level outcome is defined as:

Ψi(γ) = argmin
t∈T

{
E[Yi(t)] ≥ γ)}

and the minimum effort to achieve γ-level outcome is Ψi(γ)− ti.

However Yi(t) cannot be directly observed and we have to derive its estimate from

samples with similar characteristics. We design an estimation procedure based on the idea

of situation testing [2], which is one normal practice of determining whether an individual

is discriminated. How to select variables for finding similar individuals has been studied in

situation testing based individual discrimination discovery [119]. The proposed idea there

was to first construct a causal graph for all variables and then select variables that are the

parents of the decision. Their work is also applicable to our equal effort definition. We first

find a subset of users, denoted as I, each of whom has the same (or similar) characteristics

(x and t) as individual i. We denote I+ (I−) the subgroup of users in I with the sensitive

attribute value s+ (s−). Similarly, E[YI+(t)] denotes the expected outcome under treatment t

for the subgroup I+. The minimal effort needed to achieve γ level of outcome variable within

the subgroup I+ is then defined as:

ΨI+(γ) = argmin
t∈T

{E[YI+(t)] ≥ γ}.

Definition 11 (γ-Equal Effort Fairness at the Individual Level). For a certain outcome level

γ, we define equality of effort for individual i if

ΨI+(γ) = ΨI−(γ).
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The difference δi(γ) = ΨI+(γ) − ΨI−(γ) measures the effort discrepancy at the individual

level.

9.2.2 Equality of Effort at the Group or System Level

In addition to the task of checking individual level discrimination, we also want to

check whether discrimination exists at the group or system level. System-level discrimina-

tion deals with the average discrimination across the whole system, e.g., all applicants to a

university, and group-level discrimination deals with discrimination that occurs in one par-

ticular subgroup, e.g., the applicants applying for a particular major. Existing works [3, 6]

apply demographic disparity metrics (e.g., risk difference) or causal effect (e.g., direct and

indirect causal discrimination) on the whole dataset (the subset of data) to determine the

system-level (group-level) discrimination. Similarly, we may want to check whether there are

effort discrepancies at the group or system level.

We denote D as the whole dataset, and D+ (D−) as the subset with the sensitive

attribute value s+ (s−). We define the minimum value of treatment variable to achieve a

certain outcome level γ for D∗ as:

ΨD∗(γ) = argmin
t∈T

{
E[YD∗(t)] ≥ γ

}
.

Definition 12 (γ-Equality of Effort at the System Level). For a certain outcome level γ,

equality of effort between two sensitive attributes s+ and s− is achieved if

ΨD+(γ) = ΨD−(γ).

The difference δD(γ) = ΨD+(γ) − ΨD−(γ) measures the effort discrepancy at the system
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Table 9.1: Formula of previous fairness notions.

Notation References Formula

Demographic parity [120] P (y+|s+)− P (y+|s−)
Conditional parity [120] P (y+|s+,o)− P (y+|s−,o)
Total causal discrimination [6, 15] E[Y (s+)]− E[Y (s−)]
Path-specific causal discrimination [6, 8] E[Y (s+)|π]− E[Y (s−)|π]
Counterfactual fairness [17] E[Yo(s+)]− E[Yo(s−)]
Path-specific counterfactual fairness [19] E[Yo(s+)|π]− E[Yo(s−)|π]
Equality of opportunity [31, 32] P (Ŷ = y+|s+, y+)− P (Ŷ = y+|s−, y+)
Calibration [31, 32] P (y+|s+, Ŷ = y+)− P (y+|s−, Ŷ = y+)

level.

Definition 12 can be straightforwardly adapted to the group level. Given two compared

groups, their distributions in terms of certain attributes (e.g., outstanding debt) could be

different. The simple use of our group equal-effort fairness may not be appropriate. In this

case, we could apply the path-specific effect/mediator analysis [6, 8] to separate and measure

different causal effects e.g., direct discrimination, indirect discrimination, and explainable

effects.

9.2.3 Comparison with Other Fairness Metrics

Many different fairness metrics have been proposed to measure fairness of data and

machine learning algorithms. Classic metrics include individual fairness, demographic parity,

equality of opportunity, calibration, causal fairness, and counterfactual causal fairness. Refer

to a recent survey [120]. We show in Table 9.1 the formula of previous representative fairness

metrics to compare with our equality of effort notion. For example, demographic imparity

requires that P (y+|s+) = P (y+|s−) and similarly conditional demographic imparity requires

P (y+|s+,o) = P (y+|s−,o) where o is the values of a specified variable set O. Basically they

require that a decision be independent of the protected attribute conditional or unconditional
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on some other variables. For causal based fairness notions, the total causal discrimination

is based on the average causal effect of S on Y and is defined as E[Y (s+)] − E[Y (s−)],

which represents the expected change of outcome Y when S of all individuals changes from

s− to s+. Different from the total causal discrimination that measures the causal effect

transmitted along all the causal paths from S to Y in the causal graph, the path-specific

causal discrimination is based on the causal effect that is transmitted along some specific

paths π from S to Y , e.g., direct causal discrimination when π is the direct path from S

to Y , and indirect causal discrimination when π is all paths from S to Y through redlining

attribute T . Counterfactual fairness requires E[Yo(s
+)] − E[Yo(s

−)], which means that a

decision is fair towards an individual if it is the same in the actual world and a counterfactual

world where the individual belonged to a different demographic group. Most recently, [19]

developed a unified definition, path-specific counterfactual fairness (PC Fairness), that covers

previous causality-based fairness notations. Different from demographic parity and causal

based fairness notions, our proposed equality of effort considers to what extend the legitimate

variable T should change to achieve a certain outcome level and whether the minimum effort

made for individuals from the protected group and that from the unprotected group are the

same.

When considering discrimination from the perspective of supervised learning, the

equality of opportunity is based on the actual outcome Y and the predicted outcome Ŷ ,

requiring P (Ŷ = y+|s+, y+) = P (Ŷ = y+|s−, y+). Basically it means the decision model

should not mistakenly predict examples with y+ as Ŷ = y− at a higher rate for one group

than another. In other words, a predictor Ŷ satisfies equalized opportunity with respect

to protected attribute S and outcome Y if Ŷ and S are independent conditional on Y .

Similarly the calibration considers the fraction of correct positive predictions and requires
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P (y+|s+, Ŷ = y+) = P (y+|s−, Ŷ = y+). Different from the previous methods that focuses

on prediction results, our proposed equality of opportunity focuses on the effort, i.e., the

minimum change of T to achieve a certain outcome level Y , based on the causal framework.

We noticed a parallel work [121] that developed an effort-based measure of fairness and

formulated effort unfairness as the inequality in the amount of effort required for members

from disadvantage group and advantaged group. However, their work focused on character-

izing the long-term impact of algorithmic policies on reshaping the underlying population

based on the psychological literature on social learning and the economic literature on equal-

ity of opportunity. Our work is based on counterfactual causal inference and develops an

optimization-based framework for removing discriminatory effort unfairness from the static

data if discrimination is detected.

9.3 Calculating Average Effort Discrepancy

In real-world applications, we often have multiple values of γ used in decision making.

We use the average effort discrepancy over all values of γ as the measure of equality of effort

in this scenario. If γ has a set of discrete values, then the average is computed by the mean

of all effort discrepancies. If γ is a continuous variable, then the average is defined as the

integration over the range of γ.

Definition 13 (Average Effort Discrepancy (AED)). If γ ∈ Γ where Γ denotes the effort

level value set of the expectation of outcome variable, then the average effort discrepancy is

defined as

AED =
1

|Γ|
∑
γ∈Γ

δ(γ). (9.1)

If γ is a continuous variable in a range [γ1, γ2], then the average effort discrepancy is defined
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as

AED =
1

γ2 − γ1

∫ γ2

γ1

δ(γ)dγ. (9.2)

To calculate the AED, we need to first compute the expected outcome E[YI∗(t)] or

E[YD∗(t)], and then compute the minimum effort. In the following, we develop a general cal-

culating method assuming the monotonicity and invertibility for E[YD∗(t)]. Then, we consider

three widely used techniques for causal inference: outcome regression and propensity score

weighting from Rubin’s framework, and structural causal analysis from Pearl’s framework.

We compute the AED for each of the techniques.

Algorithm 13 Discrimination detection through equal effort.

Ensure: Discrimination detection result
1: For each subset D∗ ∈ {D+, D−}, identify expected outcome fD∗(t) = E[YD∗(t)]
2: if fD∗(t) is continuous, monotonous and invertible then
3: Calculate AED according to Eq. (9.3)
4: else
5: Identify inverse function f−1

D∗ (γ)
6: if f−1

D∗ (γ) has a closed form then
7: for each γ do
8: Find the minimum value of t such that t ≥ f−1

D∗ (γ)
9: Calculate effort discrepancy δD(γ)
10: end for
11: else
12: for each treatment level t do
13: Use appropriate causal inference method to estimate z
14: end for
15: for each γ do
16: Numerically find the minimum value of t such that Ê[YD∗(t)] ≥ γ
17: Calculate effort discrepancy δD(γ)
18: end for
19: Calculate AED following Definition 13
20: end if
21: end if
22: if |AED| ≥ τ then
23: Result = True
24: else
25: Result = False
26: end if
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Algorithm 13 shows the pseudocode of our algorithm for computing the AED and

making the judge of discrimination through equal effort. Lines 2-3 deal with the situation

where fD∗(t) = E[YD∗(t)] is a continuous, monotonous and invertible function of t, and AED

can be directly computed through an integration over fD∗(t) given in the next subsection.

If the assumptions are not satisfied, lines 6-10 handle the situation where the closed-form of

inverse function f−1
D∗ (γ) can be derived; and lines 12-19 handle the situation otherwise.

9.3.1 General Method under Monotonicity and Invertibility Assumption

As discussed in the previous section, E[YD+(t)] and E[YD−(t)] denote the expectations

of outcome variable for groups D+ and D−. We can treat them as functions of t, denoted as

fD+(t) and fD−(t). Under the assumptions of being monotonically increasing and invertible,

inequality E[YD+(t)] ≥ γ can be expressed as fD+(t) ≥ γ, which leads to t ≥ f−1
D+(γ), where

f−1
D+(·) is the inverse function of fD+(·). As a result, we directly obtain that ΨD+(γ) = f−1

D+(γ),

and similarly ΨD−(γ) = f−1
D−(γ).

If the closed forms of f−1
D+(·) and f−1

D−(·) can be derived, then the AED can be easily

computed; otherwise its calculation is not straightforward. However, when γ is a continuous

variable, then we don’t need to derive the closed form of the inverse functions to compute the

AED, but only require the integration of fD+(·) and fD−(·) to be tractable. This is because

based on the Laisant’s theorem we have

∫ γ2

γ1

f−1
D+(γ)dγ = γ2t

+
2 − γ1t

+
1 −

∫ t+2

t+1

fD+(γ)dγ,

where t+1 = f−1
D+(γ1) and t+2 = f−1

D+(γ2). In practice, t+1 and t+2 can be estimated using
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numerical methods. As a result, the AED is given by

(t+2 − t−2 )γ2 − (t+1 − t−1 )γ1 −
(∫ t+2

t+1

fD+(γ)dγ −
∫ t−2

t−1

fD−(γ)dγ
)
. (9.3)

9.3.2 Outcome Regression

Outcome regression is one straightforward method to conduct causal inference. In

this approach, a model is posited for the outcome variable as a function of the treatment

variable and the covariates. The basic outcome regression model is the linear regression of

the form:

E[Y |T,X] = β0 + β1T + β2X + β3XT,

where β0, β1 are regression coefficients, β2 and β3 are the coefficient vectors with the same

length as X. All the parameters can be estimated by least squares method.

One advantage of outcome regression is it can help us directly calculate the relative

treatment value given a certain expected outcome level. Suppose the regression model is

correctly specified, the expected outcome of any subset D∗ is given by

E[YD∗(t)] =
1

|D∗|
∑
i∈D∗

(β0 + β1t+ β2xi + β3xit).

Thus, the minimum value of the treatment variable to achieve γ-level outcome, i.e., ΨD∗(γ),

can be expressed as:

argmin
t∈T

{
E[YD∗(t)] ≥ γ) =

γ − 1
|D∗|

∑
i∈D∗(β0 + β2)

1
|D∗|

∑
i∈D∗(β1 + β3)

. (9.4)
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9.3.3 Propensity Score Weighting

Another widely used branch of causal inference is based on weighting and one typical

method is the inverse propensity score weighting. In our context, the treatment variable is a

multiple valued ordinal variable, we apply generalized propensity score [122] to estimate the

weights.

Definition 14 (Generalized Propensity Score). The generalized propensity score for indi-

vidual i is the conditional probability of receiving a particular level of the treatment given

the pre-treatment variables:

r(t,xi) = Pr(T = t|Xi = xi).

The weighted mean of the potential outcomes for those who received the treatment t

had they received another treatment t′ can be consistently estimated by

Ê[Y (t′)|t] =
∑

i∈N 1Ti=t′Yiωi(t, t
′)∑

i∈N 1Ti=t′ωi(t, t′)
,

where

ωi(t, t
′) =

r(t,xi)

r(t′,xi)
.

Following the above method, we can get a table showing estimation values of the expected

outcome under all treatment pair combinations (t, t′). Thus, the minimum treatment value

to achieve Ê[Y (t′)|t] ≥ γ can be determined by comparing the results in that table.
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9.3.4 Structural Causal Model

The structural causal model describes the causal mechanisms of a system as a set of

structural equations. For ease of representation, each causal model can be illustrated by a

directed acyclic graph called the causal graph, where each node represents a variable and

each edge represents the direct causal relationship specified by the causal model. In addition,

each node V is associated with a conditional probability distribution P (v|paV ) where paV

is the realization of a set of variables PaV called the parents of V . The treatment is modeled

using the intervention, which forces the treatment variable T to take certain value t, formally

denoted by do(T = t) or do(t). The potential outcome of variable Y under intervention do(t)

is denoted as Yt. The distribution of Yt, also referred to as the post-intervention distribu-

tion of Y under do(t), is denoted as P (Yt). Facilitated by the intervention, the expected

outcome E[YD∗(t)] can be measured by the counterfactual quantity E[Yt|z∗], where z∗ rep-

resents attribute values that form the subgroup D∗. The counterfactual quantity measures

the expected outcome of Y assuming that the intervention is performed on the subgroup

of individuals only. According to [21], if attributes Z are non-descendant of T in the causal

graph, then P (Yt|z∗) can be computed from observational data as

∑
X\Z

∏
V ∈{Y,S,X} P (v|paV )δT=t

P (z∗)
,

where δT=t means assigning T involved in all probabilities with the corresponding value t.

If the inverse function of E[Yt|z∗] can be derived, then we follow lines 6-10 in Algorithm

13 to compute AED; otherwise, we follow lines 12-19 to compute AED.
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Table 9.2: Preprocessing education.

Category Original Values
0 Preschool, 1st-4th, 5th-6th
1 7th-8th, 9th, 10th, 11th
2 12th, HS-grad, Some-college, Assoc-voc
3 Assoc-acdm, Bachelors, Masters, Prof-school
4 Doctorate

Figure 9.1: Constructed causal graph for Adult Dataset.

Table 9.3: Expectation of the potential outcome for males and females in Adult dataset.

education
sex=male sex=female

Weighting Regression SCM Weighting Regression SCM

0 0.196 0.086 0.164 0.048 0.026 0.057

1 0.269 0.214 0.239 0.066 0.051 0.075

2 0.513 0.491 0.498 0.211 0.190 0.221

3 0.736 0.781 0.741 0.416 0.497 0.469

4 0.842 0.933 0.859 0.485 0.807 0.706
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9.4 Achieving Equal Effort

When our discrimination detection algorithm shows that a dataset does not satisfy

the equal effort requirement, then we may want to remove the discriminatory effects from

the dataset before it is used for any predictive analysis, i.e., training a decision model. In

this section, we develop a method for generating a new dataset which is close to the original

dataset and also satisfies equal effort. Our removal method is based on the use of outcome

regression to estimate the potential outcome, but it can be easily extended to any method

where the closed form of Ψ(γ) can be derived. The general idea is to derive a new outcome

regression model satisfying the equal effort constraints. Then, for each individual in the

original dataset, we randomly generate a new value Ỹ based on the expectation computed

from the fair outcome regression model.

Specifically, we consider two outcome regression models for subsets D+ and D− re-

spectively, given by

E[YD+ |T,X] = β+
0 + β+

1 T + β+
2 X + β+

3 XT,

E[YD− |T,X] = β−
0 + β−

1 T + β−
2 X + β−

3 XT.

Then, as shown by Eq. (9.4), the minimum effort for subgroupD+ (and similarly for subgroup

D−) is given by

ΨD+(γ) =
γ − 1

|D+|
∑

i∈D+(β
+
0 + β+

2 )
1

|D+|
∑

i∈D+(β
+
1 + β+

3 )
.
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Table 9.4: Expectation of the potential outcome for males and females with the original
education=0.

education
sex=male sex=female

Weighting Regression SCM Weighting Regression SCM

1 0.225 0.232 0.227 0.071 0.084 0.081

2 0.457 0.462 0.467 0.205 0.205 0.224

3 0.692 0.694 0.719 0.418 0.411 0.497

4 0.810 0.870 0.842 0.497 0.693 0.754

As a result, the AED according to either Eq. (9.1) or (9.2) is given by

γ̄ − 1
|D+|

∑
i∈D+(β

+
0 + β+

2 )
1

|D+|
∑

i∈D+(β
+
1 + β+

3 )
−

γ̄ − 1
|D−|

∑
i∈D−(β

−
0 + β−

2 )
1

|D−|
∑

i∈D−(β
−
1 + β−

3 )
,

where γ̄ equals 1
|Γ|
∑

γ∈Γ γ if discrete and
γ2
2−γ2

1

2
if continuous. We want the AED to approach

zero. After adding the penalty term for the AED, the objective function becomes

argmin
β

∑
i∈D+,D−

(E[YD∗ |ti,xi]− yi)
2 + λ · AED2

where D∗ = D+ or D− and λ is the parameter for balancing the two objectives.

Finally, for each individual i in the dataset with profile (si, ti,xi, yi), we first compute

his expected value of Y using the fair outcome regression model, i.e., E[YD∗|ti,xi], where

D∗ = D+ or D− depending on the value of si. Then, we randomly assign 0 or 1 to the new

value ỹi based on the probability given by E[YD∗ |ti,xi]. The generated data then satisfies the

equal effort requirement.

9.5 Experiments

We evaluate our discrimination detection and removal algorithms based on the pro-

posed equality of effort on the UCI Adult dataset [123]. The Adult dataset contains 65, 123
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Table 9.5: Expectation of the potential outcome for three randomly chosen individuals.

education
User 1 User 2 User 3

sex=male sex=female sex=male sex=female sex=male sex=female

0 - - - - 0.012 0.006

1 0.022 0.007 0.058 0.030 0.051 0.024

2 0.085 0.036 0.206 0.134 0.188 0.096

3 0.282 0.159 0.523 0.438 0.501 0.317

4 0.624 0.487 0.823 0.796 0.813 0.669

records with 14 attributes. We select 7 attributes, sex, age, marital status, workclass, educa-

tion, hours, and income in our experiments. We consider income as the outcome, education

as the treatment attribute, and sex as the protected attribute. Due to the sparse data issue,

we binarize the domain of age, marital status, workclass, and hours into two classes. We also

categorize 16 values of education into five levels, as shown in Table 9.2.

In our experiments, we calculate the minimum effort based on three methods, out-

come regression (Regression), propensity score weighting (Weighting), and structural causal

model inference (SCM ). ForWeighting, we implement the propensity score weighting for

multiple treatments by following the work of [124] and [76]. For SCM, we follow the settings

of [6] and use three tiers for causal graph learning: sex, age in Tier 1, marital-status, educa-

tion, workclass, and hours in Tier 2, and income in Tier 3. The causal graph is constructed

and presented by utilizing the open-source software TETRAD [105]. We employ the origi-

nal PC algorithm [78] and set the significance threshold 0.01 for conditional independence

setting in causal graph construction. Figure 9.1 shows the built causal graph. We apply the

nonparametric inference of the structural causal model by following the work of [125]. In

discrimination removal, the quadratic programming is solved using PyTorch [126].
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9.5.1 Discrimination Discovery

9.5.1.1 Checking equal effort at the system level

Table 9.3 shows the comparison results of the expectations of the potential outcome

for males (E[YD+(t)]) and that for females (E[YD−(t)]) in Adult. We calculate the expecta-

tion of the potential outcomes using three methods, Weighting, Regression, and SCM, and

vary the treatment variable education from 0 to 4. As shown in Table 9.3, the expectations

of potential outcome for males are significantly higher than the corresponding values for

females, indicating large effort discrepancy exists in Adult. For example, E[YD+(t)] = 0.498

and E[YD−(t)] = 0.221 when t = 2 based on SCM. If we set γ = 0.7, the minimum values of

treatment variable (education) to achieve γ-level outcome are 3 for males (with the expecta-

tion of the potential outcome 0.741) and 4 for females (with the expectation of the potential

outcome 0.706). The effort discrepancy between females and males is 1, which indicates the

existence of significant discrimination in terms of equal effort fairness. We would like to point

out that the expectations of potential outcome calculated from three methods are generally

consistent as shown in Table 9.3. However, each calculation method has its own applicable

assumptions and may not achieve reliable results when those assumptions are not met. There

are extensive researches on the applicability of those causal inference methods (e.g., refer to

[21]), which are out of the scope of this work.

9.5.1.2 Checking equal effort at the group level

For the group level equality of effort, we split the Adult dataset into five groups by

education. Individuals with the same education value form one group. For each group, we cal-

culate the expectations of potential outcome for males (E[YD+(t)]) and females (E[YD−(t)]).
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We report in Table 9.4 the expectations of the potential outcome variable for group one with

education=0. Each expectation is calculated using three methods. We can see the significant

discrepancy between males and females in this group. We also observe the similar phenomena

in other four groups. When considering γ = 0.5, the minimum education value to achieve

the outcome for males in this group is 3 (with all expectation values from three methods

close to 0.7) whereas the minimum education level for females is 4.

9.5.1.3 Checking equal effort at the individual level

To detect effort discrepancy at the individual level, we need to first identify a subset

of users I with the same characteristics of the given individual and then split them into

the male group (I+) and female group (I−). We then calculate the expectations of potential

outcome for the male group (E[YI+(t)]) and female group (E[YI+(t)]) with each treatment

level t. We report in Table 9.5 the results of three randomly chosen female users whose index

numbers are 425, 9569, and 46437. Both users 1 and 2 have the original education value 1

and user 3 has education value 0. As shown in Table 9.5, the expectations of outcome for I+

are consistently higher than I−, indicating the existence of discrimination in terms of equal

effort for these three individuals. For example, results of user 3 show that the minimum effort

for her to achieve 0.5-level outcome is education t = 4 whereas the corresponding minimum

effort to achieve the same level outcome is t = 3 had she been a male.

9.5.2 Discrimination Removal

We run our removal algorithm to remove discrimination in terms of equality of effort

from the Adult dataset, and then run the discovery algorithm to further examine whether

discrimination is truly removed in the modified dataset. For comparison, we include the re-
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moval algorithm (Denoted by DI) of [5], which removes discrimination from the demographic

parity perspective. Basically, DI tries to modify X such that the modified X̂ cannot be used

to predict S. The results show that, after executing our removal method (with λ = 5), the

average difference between E[YD+(t)] and E[YD−(t)] for all ts is −0.0136, indicating all ef-

fort discrepancy has been removed. However, the average difference for the DI algorithm is

0.2628, showing that DI does not remove effort discrepancy. Regarding data utility loss in

terms of χ2, our method also outperforms the DI algorithm in that the utility loss of our

method is 34778, while the utility loss of the DI algorithm is 37997.

9.6 Summary

In this chapter, we proposed a new causality-based fairness notion called the equality

of effort. Although previous notions can be used to judge discrimination from various per-

spectives (e.g., demographic parity, equal opportunity), they cannot quantify the (difference

in) efforts that individuals need to make in order to achieve certain outcome levels. Our pro-

posed notion, on the other hand, can help answer counterfactual questions like “how much

credit score an applicant should improve such that the probability of her loan application

approval is above a threshold”, and judge discrimination from the equal-effort perspective.

To quantify the average effort discrepancy, we developed a general method under certain as-

sumptions and specific methods based on three common causal inference techniques. When

equality of effort is not achieved in a dataset, we developed an optimization method to re-

move discrimination. In the experiments, we show that the Adult dataset does contain effort

discrepancy at system, group, and also individual levels, and our removal method can ensure

the newly generated dataset satisfies equality of effort. The early version of this work is

published at WWW Workshop: FATES 2020 [20].

143



10 Conclusion and Future Work

In this chapter, we summarize our works and, based on the observed results and

performance analysis, propose several potential research directions associated with causal

fairness in recommendation.

10.1 Conclusion

Around achieving causal fairness in recommendation, this dissertation aims to explore

and address the following problems:

1. How to achieve user-side group level fairness in bandit-based recommendation;

2. How to achieve user-side counterfactual fairness at individual level in bandit-based

recommendation;

3. How to deal with biases from various sources simultaneously in recommender systems;

4. How to robustly improve bandit-based recommendation algorithms by leveraging offline

data under compound biases;

5. How to achieve causal fairness under hidden confounding with the benefit of multiple

treatment/redlining variables;

6. How to discover discrimination and achieve causal fairness in terms of equality of

efforts.

In Chapter 4, we study how to achieve user-side fairness in personalized recommen-

dation. We formulate our fair personalized recommendation as a modified contextual bandit
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and focus on achieving fairness on the individual whom is being recommended an item as

opposed to achieving fairness on the items that are being recommended. We introduce and

define a metric that captures the fairness in terms of rewards received for both the privileged

and protected groups. We develop a fair contextual bandit algorithm, Fair-LinUCB, that im-

proves upon the traditional LinUCB algorithm to achieve group-level fairness of users. Our

algorithm detects and monitors unfairness while it learns to recommend personalized videos

to students to achieve high efficiency. We provide a theoretical regret analysis and show

that our algorithm has a slightly higher regret bound than LinUCB. We conduct numerous

experimental evaluations to compare the performances of our fair contextual bandit to that

of LinUCB and show that our approach achieves group-level fairness while maintaining a

high utility.

In Chapter 5, we study how to recommend an item at each step to maximize the

expected reward while achieving user-side fairness for customers, i.e., customers who share

similar profiles will receive a similar reward regardless of their sensitive attributes and items

being recommended. By incorporating causal inference into bandits and adopting soft inter-

vention to model the arm selection strategy, we first propose the d-separation based UCB

algorithm (D-UCB) to explore the utilization of the d-separation set in reducing the amount

of exploration needed to achieve low cumulative regret. Based on that, we then propose

the fair causal bandit (F-UCB) for achieving the counterfactual individual fairness. Both

theoretical analysis and empirical evaluation demonstrate effectiveness of our algorithms.

In Chapter 6, we formulate the causal personalized recommendation problem based

on the structural causal model (SCM) and a generalization of the notion of backdoor ad-

justment to account for both biases. Our approach leverages external data of some variables

that are also measured without selection bias and uses an adjustment pair based on the de-
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rived graphical conditions for identifying conditional causal effects. We present a statistical

estimation procedure based on inverse probability weighting to calculate conditional causal

effects when training samples are limited. Under the presence of confounding and selection

biases, we also show how to derive path-specific effects and counterfactual effects, both of

which are needed in recommendation analysis. We show the effectiveness of our approach

through experimental analysis.

In Chapter 7, we investigate bounding conditional causal effects in the presence of

confounding and sample selection biases using causal inference techniques and utilizes the

derived bounds to robustly improve online bandit algorithms. We present two novel causal-

based techniques to derive a bound for conditional causal effects given offline data with

compound biases. We develop contextual and non-contextual bandit algorithms that lever-

age the derived causal bounds and conduct their regret analysis. Theoretical analysis and

empirical evaluation demonstrate the improved regrets of our algorithms.

In Chapter 8, we focus on discrimination discovery when multiple protected attributes

and redlining attributes are present in addition to other covariates. We regard those pro-

tected and redlining attributes as multiple causes of the outcome variable. To deal with

unobserved variables, especially hidden confounders, we adopt the potential outcome frame-

work and leverage the state-of-the-art deconfounder algorithm to do causal inference under

multiple causes. The deconfounder algorithm infers a latent variable as a substitute for unob-

served confounders and then uses that substitute to perform causal inference. Our approach

is more appropriate for discrimination discovery as it is able to relax the Markovian as-

sumption and avoid the unidentifiability issue in structural causal modeling approaches. We

conduct empirical evaluation on both synthetic data and real data. Empirical evaluation

results demonstrate the effectiveness of our proposed approach.
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In Chapter 9, we develop a new causal-based fairness notation, called equality of effort.

Different from existing fairness notions which mainly focus on discovering the disparity of

decisions between two groups of individuals, the proposed equality of effort notation helps

answer questions like to what extend a legitimate variable should change to make a particular

individual achieve a certain outcome level and addresses the concerns whether the efforts

made to achieve the same outcome level for individuals from the protected group and that

from the unprotected group are different. We develop algorithms for determining whether an

individual or a group of individuals is discriminated in terms of equality of effort. We also

develop an optimization-based method for removing discriminatory effects from the data

if discrimination is detected. We conduct empirical evaluations to compare the equality of

effort and existing fairness notion and show the effectiveness of our proposed algorithms.

10.2 Future Work

In this section, based on the works we have done, we propose several interesting

directions that deserve further exploration and investigation.

Generally speaking, in this dissertation we studied the problems of achieving causal

fairness in recommendation. In future work, we will continue along this general direction and

explore new challenging research problems. First, in causal inference literature we usually

categorize compound biases into confounding bias and selection bias due to the orthogonal-

ity of these two kinds of biases. In recommendation research field, how to disentangle biases

from different sources based on the causal graph structure and causal representation learn-

ing techniques requires further exploration. Second, further research should be undertaken

to investigate how to combine the abstract causal graph with features that have semantic

meanings to achieve better performance in recommendation. More broadly, research is also
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needed to build a general causal analysis framework for recommendation. It is also imper-

ative to unify current causal based prediction and debiasing methods under the scope of

structure causal model framework.

There are also potential research problems related to specific chapters. For example,

in Chapter 4 we made a linear assumption on the reward function. In the future work, we

plan to extend the user-level fairness to more general cases and make it easier to be im-

plemented in multifarious reward functions. We plan to develop heuristics to determine the

appropriate value for the fairness-accuracy trade off parameter γ. We also plan to study

user-side fairness in the multiple choice linear bandits, e.g., recommending multiple videos

to a student at each round. Finally, we plan to study how to achieve individual fairness in

bandits algorithms. In Chapter 5 we assume the causal graph is a faithful representation of

the ground truth causal mechanism and could be learned from logged data. In real world it

is usually hard to obtain the accurate causal graph. How to derive causal bandit algorithms

with unknown causal structure is still an interesting yet challenging problem. In Chapter

6, in future work, we will conduct empirical comparisons of our debiased recommendation

algorithm with existing causal recommendation methods based on user/item embeddings

and abstract causal graphs. In Chapter 7, in future work, we will study incorporating causal

bounds into advanced bandit algorithms such as contextual bandits under non-linearity as-

sumption and bandits with adversarial feedback. In Chapter 8, the multi-cause discrimination

analysis framework is proposed based on the potential outcome framework. How to derive

the equivalent or similar graphical assumptions and analysis framework based on structural

causal models could be a potential direction in our future exploration. In Chapter 9, We

made several assumptions including the no-hidden-confounder assumption, monotonicity of

the expectation of outcome variable, and invertibility of outcome function. We also assumed
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one binary protected attribute and one binary decision for simplicity’s sake. The no-hidden-

confounder assumption is a common assumption for causal inference [21] and widely adopted

by causal inference based fair learning. The monotonicity assumption reflects the real world

phenomena (the more effort, the better outcome). The invertibility assumption is used in our

general method of calculating the average effort discrepancy without deriving the closed form

of the inverse function. When this invertibility assumption is not held, we have presented in

our algorithm several inference methods that could also have their limitations. Moreover, we

implicitly assumed that the discrimination detection algorithm knows the same information

as the decision-maker, i.e., there are no omitted variables used in decision making but invis-

ible to the discrimination detection. In our future work, we will study how to achieve equal

effort fairness when some of those assumptions are not met in practice.
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A Appendix

A.1 Nomenclature and Assumptions for Chapter 5

In our regret bound analysis of D-UCB and F-UCB algorithms, we follow several

standard assumptions [100] to guarantee the correctness and the simplicity of the proofs.

Assumption 1. For all t ∈ [T ], both the error term of reward and the error term of

counterfactual fairness discrepancy follow 1-sub-Gaussian distribution.

Assumption 2. For all t ∈ [T ], both the mean of reward and the mean of counterfactual

fairness discrepancy are within [0, 1].

Assumption 3. There exists a safe policy π0, i.e., π0 ∈ Πt such that ∆π0 ≤ τ for each

t ∈ [T ].

The last assumption introduces the existence of a safe policy at each round, which

plays an important role in the regret bound analysis of F-UCB. The nomenclature used for

the proof part is shown in Table A.1.

A.2 Proof of Theorem 5

Proof. Following the definition we can further define the expected reward mean of a certain

policy as

µπ = Ea∼π[µa|do(a)] = Ea∼π

 |Z|∑
i=1

E[R|W = wi]P (Z = zi|a)


and the policy applied at each time t as πt = argmaxπ∈Πt

Ea∼π[µa].
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Table A.1: Nomenclature.

At Arm set at time t
A,X, R Arm features, user features, and reward
W d-separation set that separates R from (A ∪X)\W
Z The difference between the d-separation set W and A ∪X.
δ With probability at least 1− δ that the true reward is less than the

estimated upper confidence bound for an arm a at time t
δE With probability at least 1−δE that the regret of causal fair bandit

is bounded
δ′ With probability at least 1 − δ′ that the true counterfactual dis-

crepancy is less than its estimated upper confidence bound for an
arm a at time t

UCBa(t) Upper confidence bound of the reward for action a based on the
observed values up to time t

µa Expected mean reward for arm a
µa,s∗ Estimated mean reward for arm a if gender = s∗ given the user’s

profile
µπ Expected mean reward for taking policy π
µ̂π(t) Estimated mean reward of a policy π based on the observed values

up to time t
RT Cumulative regret up to time T
αr Parameter that controls the scale of the confidence interval of re-

ward
αc Parameter that controls the scale of the confidence interval of coun-

terfactual discrepancy
γt Parameter that could be tuned to ensure the fairness of a certain

policy
E Event under which all the true rewards are less than the estimated

upper confidence bound
Ecf Event under which all the counterfactual discrepancies are less than

the estimated upper confidence bound
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Let Nw(t) =
∑t

s=1 IWs=w denote the count for a certain domain value of W up to

time t. Further we define the mean of the reward related to a d-separation set domain value

as µw = E[R|W = w] and its estimated value as µ̂w(t) =
1

Nw(t)

∑t
s=1 RasIWs=w.

We also define the upper confidence bound of the reward for each arm and the upper

confidence bound for each policy:

UCBw(t) = µ̂w(t) +

√
2 log(1/δ)

1 ∨Nw(t)

UCBa(t) =
∑
Z

UCBw(t)P (z|xt,a)

Ea∼π[UCBa(t)] = Ea∼π

[∑
Z

UCBw(t)P (z|xt,a)

]

Let E be the event that for all time t ∈ [T ] and value index i ∈ [|W|], we have

|µ̂wi
(t)− µwi

| ≤

√
2 log(1/δ)

1 ∨Nwi
(t)

Since µ̂wi
(t) is the sample mean estimator of µwi

, and the error term follows sub-Gaussian

distribution, we can show

P

(
|µ̂wi

(t)− µwi
| ≥

√
2 log(1/δ)

1 ∨Nwi
(t)

)
=

E

[
P

(
|µ̂wi

(t)− µwi
| ≥

√
2 log(1/δ)

1 ∨Nwi
(t)

∣∣∣∣∣w(1), ...,w(t)

)]
≤ E[2δ] = 2δ

where w(t) denotes the observed values at time t. Thus by summing up the probabil-

ities through all domain values of t ∈ [T ] and i ∈ [|W|], using union bound criteria we have
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P (Ec) = 1− P (E) ≤ 2δT |W|. The above result implies a lower probability bound for event

E. The cumulative regret could be decomposed as

RT =
T∑
t=1

(µa∗ − µat)

=
T∑
t=1

(µa∗ − UCBat(t) + UCBat(t)− µat)

Following the rule of optimism in the face of uncertainty, under event E we have

µa∗ =

|Z|∑
i=1

E[R|W = wi]P (Z = zi|a∗)

≤
|Z|∑
i=1

UCBwi
(t)P (Z = zi|a∗) = UCBa∗(t)

As UCBa∗(t) ≤ UCBat(t) always holds due to OFU arm picking strategy, we have µa∗ −

UCBat(t) ≤ 0.

With probability at least 1 − 2δT |W|, the cumulative regret can thus be further

bounded by

RT ≤
T∑
t=1

(UCBat(t)− µat)

=
T∑
t=1

|Z|∑
i=1

(UCBwi
(t)− µwi

)P (Z = zi|at)

≤
T∑
t=1

|W|∑
i=1

√
8 log(1/δ)

1 ∨Nwi
(t)

P (Z = zi|at)

=
T∑
t=1

|W|∑
i=1

√
8 log(1/δ)

1 ∨Nwi
(t)

(
P (Z = zi|at)− IZ(t)=Zi

)
+

T∑
t=1

|W|∑
i=1

√
8 log(1/δ)

1 ∨Nwi
(t)

(
IZ(t)=Zi

)
(A.1)
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The second part of Equation A.1 is bounded by

T∑
t=1

|W|∑
i=1

√
8 log(1/δ)

1 ∨Nwi
(t)

IZ(t)=Zi
≤

|W|∑
i=1

∫ Nwi (T )

0

√
8 log(1/δ)

s
ds

≤
|W|∑
i=1

√
32Nwi

(T ) log(1/δ)

≤
√

32|W|T log(1/δ)

We will use the following proposition called Azuma’s inequality to derive the bound

of the first term of Equation A.1.

Proposition 1. Suppose {Mk : k = 0, 1, 2...} is a martingale and |Mk −Mk−1| < ck almost

surely, then for all t ∈ [T ] and positive value ϵ we have:

P (|Mt −M0| > ϵ) ≤ exp

(
−ϵ2

2
∑t

k=1 c
2
k

)

For the first part, we further define

Mt =
t∑

s=1

|W|∑
i=1

√
8 log(1/δ)

1 ∨Nwi
(t)

(
P (Z = zi|at)− IZ(t)=Zi

)

with M0 = 0, since {Mt}Tt=0 is a martingale sequence, we have

|Mt −Mt−1|2=

∣∣∣∣∣∣
|W|∑
i=1

√
8 log(1/δ)

1 ∨Nwi
(t)

(
P (Z = zi|at)−IZ(t)=Zi

)∣∣∣∣∣∣
2

≤ 32 log(1/δ)
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which shows |Mt −Mt−1| is bounded for any t ∈ [T ]. Applying Azuma’s inequality, we have

P
(
|MT −M0| >

√
|W|T log(T ) log(T )

)
=P

(
|MT | >

√
|W|T log(T ) log(T )

)
≤ exp(−|W| log

3(T )

32 log(1/δ)
)

The formula above gives a high probability bound of the first part. Now we can

combine the bounds of two parts in Equation A.1 to derive the high probability bound

of RT . Since P (Ec) ≤ 2δT |W|, applying union bound rule, with probability at least 1 −

2δT |W| − exp(− |W| log3(T )
32 log(1/δ)

), the regret is bounded by:

RT ≤
√
|W|T log(T ) log(T ) +

√
32|W|T log(1/δ) (A.2)

Corollary 3. By setting δ = 1/T 2, the causal bandit algorithm achieves Õ(
√
|W| · T ) regret

bound.

Proof. Plugging in the value δ = 1/T 2, with probability at least 1−2|W|/T−exp(− |W| log2(T )
64

),

the regret is bounded by

RT ≤ 16
√
|W|T log(T ) log(T )

The above formula thus leads to Õ(
√
|W| · T ) long-term expected regret.
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A.3 Proof of Theorem 6

Proof. If a set of attributes B ⊆ X\{S} are descendants of S, E[R(a, s∗)|xt] is not identifi-

able. According to Proposition 2 in [9], we have that

E[R(a, s∗)|xt] ≤
∑
I

P (xt,a, i)

P (xt,a)
max

b
{E[R|s∗,xt,a\st, i]}

It follows that

E[R(a, s∗)|xt] ≤
∑
I

P (i|xt,a)max
b
{E[R|s∗,xt,a\st, i]}

=
∑
Z,I\Z

P (z|xt,a)P (i\z|, z,xt,a)max
b
{E[R|s∗,w\st]},

where Z and W are defined following Section 3.2 in the main paper. We claim that W has

no intersection with I\Z. Otherwise, there exists an attribute I ∈ I which belongs to W but

not Z. This contradicts to the definition of Z, which is given by W subtracting A∪X. Thus,

it follows that

E[R(a, s∗)|xt] ≤
∑
Z

max
b
{E[R|s∗,w\st]}P (z|xt,a) ·

∑
I\Z

P (i\z|, z,xt,a)

=
∑
Z

max
b
{E[R|s∗,w\st]}P (z|xt,a)
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A.4 Proof of Theorem 7

Proof. Similar to the regret analysis of causal bandit, we decompose the cumulative regret

RT into two parts.

RT =
T∑
t=1

(Ea∼π∗ [µa]− Ea∼πt [µa])

=

(
T∑
t=1

Ea∼π∗ [µa]− Ea∼πt [UCBa(t)]

)
+

(
T∑
t=1

Ea∼πt [UCBa(t)]− Ea∼πt [µa]

)
(A.3)

We will further bound RT by proving the first term of Equation A.3 is less than 0

and the second term could be bounded by adopting the upper confidence bound analysis ap-

proach. In the fair bandit setting we introduce another event Ecf that implies the estimation

error of the counterfactual discrepancy is bounded. That is, for all time t ∈ [T ] and a policy

π, with probability at least 1− δ′,

|∆̂π(t)−∆π| ≤

√
8 log(1/δ′)

1 ∨Na(t)

First we define the inflated upper confidence bound with scale parameters for the

mean reward and fairness discrepancy as

UCBa(t) = µ̂a + αrβa(t)

UCB∆π(t) = ∆̂π + αcβa(t),where βa(t)=
√

2 log(1/δ′)/Na(t)

Notice that the event Ecf will always happen if the event E happens. Under event
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E ∩ Ecf = E and with the assumption that αr, αc ≥ 1, we have

(αr − 1)βa(a) ≤ ϵra(t) ≤ (αr + 1)βa(a), ∀a ∈ At

(αc − 1)βa(a) ≤ ϵca(t) ≤ (αc + 1)βa(a), ∀a ∈ At (A.4)

where ϵra(t) and ϵca(t) are the error term of the reward and counterfactual discrepancy. If the

optimal policy belongs to the fair policy subspace, which means π∗ ∈ Φ̄t, we can easily get:

Ea∼π∗ [µa] ≤ Ea∼π∗ [UCBa(t)] ≤ Ea∼πt [UCBa(t)]

Now we assume π∗ /∈ Φ̄t, that is, Eat∼π∗ [UCB∆π∗ (t)] > τ . Let π∗ = ρ∗π̄∗ + (1− ρ∗)π0,

where π̄∗ denotes the optimal policy in the policy subspace Φ̄t \ π0.

Consider the mixed policy of π∗ and π0, denoted as π̃ = γtπ
∗ + (1− γt)π0 = γtρ

∗π̄∗ +

(1− γtρ
∗)π0, where γt ∈ [0, 1] is the maximum value to ensure π̃ ∈ Φt. One feasible solution

for γt is

γt =
τ −∆π0

ρ∗Eat∼π̄t [UCB∆π̄t
(t)]− ρ∗∆π0

=
τ −∆π0

Eat∼π̄t [ρ
∗(c̄a + ϵca(t))]− ρ∗∆π0

≥ τ −∆π0

τ −∆π0 + ρ∗(1 + αc)Eat∼π̄∗ [βa(t)]

Denote
τ−∆π0

τ−∆π0+ρ∗(1+αc)Ea∼π̄∗ [βa(t)]
as Γ. From the design of the integrated policy π̃t we further
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have:

Ea∼πt [UCBa(t)] ≥ γtEat∼π∗ [UCBa(t)] + (1− γt)UCBa(t) (A.5)

≥ Γ× Eat∼π∗ [UCBa(t)] (A.6)

= Γ× (Eat∼π∗ [µa] + Eat∼π∗ [ϵat ])

≥ Γ× (Eat∼π∗ [µa] + (αr − 1)Eat∼π∗ [βt]) (A.7)

≥ τ −∆π0

τ −∆π0 + (1 + αc)Ea∼π∗ [βa(t)]
× (Eat∼π∗ [µa] + (αr − 1)Eat∼π∗ [βt]) (A.8)

For the above derivation, Equation A.6 holds because UCBa(t) > 0, Equation A.7 is

the consequence of Equation A.4, Equation A.8 is derived based on the fact that Eat∼π∗ [βt] =

ρ∗Eat∼π̄∗ [βt] + (1 − ρ∗β0(t)) ≥ ρ∗Eat∼π̄∗ [βt]. Denote the term in Equation A.8 as C0. Let

C1 = Ea∼π∗ [βa(t)], it holds that

C0 =
τ −∆π0

τ −∆π0 + (1 + αc)C1

× (Eat∼π∗ [µa] + (αr − 1)C1)

C0 > Ea∼π∗ [µa] is satisfied if and only if:

(τ −∆π0)(αr − 1)C1 ≥ (1 + αc)C1Ea∼π∗ [µa]

Since Ea∼π∗ [µa] ≤ 1, the above inequation holds if (τ − ∆π0)(αr − 1)C1 ≥ 1 + αc.

Thus, by setting δE = 4|W|Tδ and αr, αc ≥ 1, αc ≤ τ(αr− 1), following simple union bound

rule implies that with probability at least 1− δE
2
, we have

T∑
t=1

(Ea∼π∗ [µa]− Eat∼πt [UCBa(t)]) ≤ 0
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Next we will derive the bound of the second term in Equation A.3. The result is given

by the following proposition.

Proposition 2. If δE = 4|W|Tδ for a δ ∈ (0, 1), then with probability at least 1 − δE
2
, we

have

T∑
t=1

Ea∼πt [UCBa(t)]− Ea∼πt [µa] ≤ (αr + 1)
(
2
√
2T |W| log(1/δ) + 4

√
T log(2/δE) log(1/δ)

)
(A.9)

Under the conditions in the proposition, we have P (E) ≥ 1− δE
2
. Under the event E,

we have Rat ∈ [µ̂at − βa(t), µ̂at + βa(t)] for all t ∈ [T ] and a ∈ A. Thus for all t we could

further derive

Ea∼πt [UCBa(t)]− Ea∼πt [µa] ≤ (αr + 1)Ea∼πt [βa(t)]

Let Ft−1 be the σ-algebra defined up to the choice of πt and a′t be another choice

picked from policy πt|Ft−1. a
′
t is conditionally independent of at, which means a′t ⊥⊥ at|Ft−1.

By definition the following equality holds:

Ea∼πt [βa(t)] = Ea′t∼πt [βa(t)|Ft−1]

Setting At = Ea′t∼πt [βa(t)|Ft−1]− βat(t), Mt =
∑t

s=1At is thus a martingale sequence

with |Mt−Mt−1| = |At| ≤ 2
√
2 log(1/δ). Thus applying Azuma-Hoeffding inequality implies:

P

(
T∑
t=1

Ea∼πt [βa(t)] ≥
T∑
t=1

βat(t) + 4
√

T log(2/δE) log(1/δ)

)
≤ δE/2
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We denote the event that describes the results of the above inequality as EA. In the

equation above, the sum of the adaptive scaling parameter could be decomposed as follows:

T∑
t=1

βat(t) =
∑
a∈A

T∑
t=1

I{at=a}βa(t) =
∑
i∈|W|

T∑
t=1

I{Wt=wi}βwi
(t)

Under event E, for each domain value of the d-separation set W we have:

T∑
t=1

I{Wt=wi}βwi
(t) =

√
2 log(1/δ)

Nwi (T )∑
t=1

1√
t
≤ 2
√

2Nwi
(T ) log(1/δ)

Since
∑

i∈|W| Nwi
(T ) = T , using the fact that arithmetic mean is less than quadratic

mean we have: ∑
i∈|W|

2
√

2Nwi
(T ) log(1/δ) ≤ 2

√
2T |W| log(1/δ)

Conditioning on the event E ∩EA whose probability satisfies P (E ∩EA) ≥ 1− δE, we have

P

(
Ea∼πt [UCBa(t)]−Ea∼πt [µa] ≥ (αr+1)

(
2
√
2T |W| log(1/δ) + 4

√
T log(2/δE) log(1/δ)

))
≤ δE/2

(A.10)

which is exactly the result of Proposition 2.

Finally, combining the theoretical derivation of the two parts above leads to the

cumulative regret bound shown in Theorem 7.

A.5 Proof of Theorem 8

To prove Theorem 8, we firstly introduce the subscript nd to denote all the variables

in such set that are not descendants of any variable in I, that is, for an arbitrary set A, let

And = {A ∈ A|A /∈ De(I)}, where De(I) denotes the decedents of I. Similarly we define
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the subscript d as all the variables in such set that are descendants of any variable in I. We

then define several subsets of Z and conditional independence related to them.

1. Z = ZM ∪ Z⊺,ZS = {Z ∈ ZM|(Z ⊥⊥ S|Z⊺)}

2. C: Replace the bi-directional edge with a node and two arrows into two connecting

nodes, starting from the augmented node. C denotes the set of all new variables intro-

duced by the augmentation process.

3. L1: Variables in (V ∪C)\(Z ∪ I ∪U ∪ Y ) such that:

• are d-connected to Y given Z⊺,ZS in G\I;

• are not descendants of I;

• are ancestors of some Z ∈ Z⊺ ∪ ZS.

4. L2: Variables in (V ∪C)\(Z ∪ I ∪U ∪ Y ) such that:

• are d-connected to Y given Z in G\I;

• are independent of I given Z⊺, ZS and S on G
I(ZS,Z⊺,S)

;

• are ancestors of some Z ∈ Z.

5. ZX =
{
Z ∈ Z\(Z⊺ ∪ ZS)|(Z ⊥⊥ I|ZS,Z⊺, S)G

I(ZS,Z⊺,S)

}
.

6. ZY = Z\(ZS ∪ Z⊺ ∪ ZX).

Suppose in the causal graph G there are sets of variables Z,X and Y , such that

(Z,Z⊺) is a valid adjustment set that meets the condition in Theorem 8. Then, the following

conditional independence formula hold in the augmented graph of G:

1. (Y ⊥⊥ Z⊺
d,Z

S
d|L1,Z

⊺
nd,Z

S
nd,U, I)GI
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2. (Y ⊥⊥ S|Z⊺,U, I)GĪ

3. (Y ⊥⊥ S|Z⊺,ZS,U, I)GI

4. (L1 ⊥⊥ I|U,ZS,Z⊺)G
I(ZS,Z⊺)

5. (Y ⊥⊥ ZY|Z⊺,ZS,U,L2,Z
X, I, S)GI

6. (L2 ⊥⊥ I|I,U, S)G
I(Z,S)

Based on the above theoretical results, we are ready to give the derivation of Equa-

tion 6.2 in Theorem 8. Each step and intermediate equations are derived based on rules of

conditional independence and basic laws of conditional probability and marginalization in

probability theory and Bayesian inference. Firstly, we marginalize the target distribution on

L1,Z
⊺
nd and ZS

nd to derive Equation A.11.

P (Y = y|do(I = i),U = u)

=
∑

L1,Z
⊺
nd,Z

S
nd

P (y|do(i),u, l1, z⊺nd, z
S)P (l1, z

⊺
nd, z

S|do(i),u)

=
∑

L1,Z
⊺
nd,Z

S
nd

P (y|do(i),u, l1, z⊺nd, z
S
nd)P (l1, z

⊺
nd, z

S
nd|u)

(A.11)

Based on independence condition 1 we then leverage variables Z⊺
d,Z

S
d to form Z⊺,ZS

in the summation. Based on independence condition 2 and 3 we can introduce the selection

variable S and do operator in Equation A.12.
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=
∑

L1,Z⊺,ZS

P (y|do(i),u, l1, z⊺, zS)P (l1, z
⊺, zS|u)

=
∑

L1,Z⊺,ZS

P (y|do(i),u, l1, z⊺, zS)P (l1|u, z⊺, zS)× P (zS|z⊺,u)P (z⊺|u)

=
∑

L1,Z⊺,ZS

P (y|do(i),u, l1, z⊺, zS)P (l1|u, z⊺, zS)× P (zS|u, z⊺, S = 1)P (z⊺|u)

=
∑

L1,Z⊺,ZS

P (y|do(i),u, l1, z⊺, zS)P (l1|do(i),u, z⊺, zS)× P (zS|u, z⊺, S = 1)P (z⊺|u)

(A.12)

By independence condition 4 we can sum out the term L1 and introduce S in the first

term of Equation A.12. We then condition on L2, Z
Y and ZX. By the subset segmentation

ZY = Z\(ZS∪Z⊺∪ZX) and independence condition 5 we are able to merge the terms related

to Z in the summation and get Equation A.13.

=
∑

Z⊺,ZS

P (y|do(i),u, z⊺, zS)P (zS|u, z⊺, S = 1)P (z⊺|u)

=
∑

Z⊺,ZS

P (y|do(i),u, z⊺, zS, S = 1)P (zS|u, z⊺, S = 1)P (z⊺|u)

=
∑

Z⊺,ZS,L2,ZX

P (y|do(i),u, z⊺, zS, l2, zX, S = 1)× P (l2, z
X|u, z⊺, zS, S = 1)P (zS|u, z⊺, S = 1)P (z⊺|u)

=
∑
Z,L2

P (y|do(i),u, z, l2, S = 1)P (l2, z
Y, zX,u, z⊺, zS, S = 1)× P (zS|u, z⊺, S = 1)P (z⊺|u)

=
∑
Z,L2

P (y|do(i),u, z, l2, S = 1)P (l2|zY, zX,u, z⊺, zS, S = 1)× P (zY, zX, zS|u, z⊺, S = 1)P (z⊺|u)

=
∑
Z,L2

P (y|do(i),u, z, l2, S = 1)P (l2|do(i), z,u, S = 1)× P (zY, zX, zS|u, z⊺, S = 1)P (z⊺|u)

(A.13)

Finally, using independence condition 6 we sum out L2 in the summation. Since

the adjustment pair (Z,Z⊺) satisfies the generalized adjustment criterion for conditional

intervention, we are able to introduce S in the first two terms and derive Equation A.14,
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which is the same as Equation 6.2 in Theorem 8.

=
∑
Z

P (y|do(i),u, z, l2, S = 1)P (zY, zX, zS|u, z⊺, S = 1)P (z⊺|u)

=
∑
Z

P (y|do(i),u, z, l2, S = 1)P (z\z⊺|u, z⊺, S = 1)P (z⊺|u)

=
∑
Z

P (y|i, z,u, S = 1)P (z\z⊺|z⊺,u, S = 1)P (z⊺|u)

(A.14)

A.6 Proof of Theorem 10

The path-specific causal effect can be computed from the observational data if and

only if the recanting witness criterion is not satisfied [103]. Note that to calculate the second

term P (y|do(i1)) in the presence of confounding bias and selection bias, we can directly follow

the adjustment formula shown in Equation 3 and obtain

P (y|do(i1)) =
∑
Z

P (y|i1, z, S = 1)P (z\z⊺|z⊺, S = 1)P (z⊺) (A.15)

We then aim to compute the second term P (Y = y|do(i2|π, i1|π̄)) in the presence

of confounding and selection biases if some unbiased observations can be further collected.

To derive Equation 6.8, We first follow the axiomatic truncated factorization formula of an

intervention:

P (y|do(i1)) =
∑
v′

∏
V ∈V\I

P (v|paV )δI=i1 (A.16)

where V′ = V\{I, Y }, paV denotes the realization of the parents of node V , and δI=i1

denotes assigning variables in I involved in the term ahead with the corresponding values in

i. We then divide the children of I into two sets: Cπ and Cπ̄. Specifically, Cπ contains each of

I’s children C, where the causal path I → C is a segment of a path in π. Cπ̄ contains each
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of I’s children C, where either C is not included in any path from I to Y , or the causal path

I → C is a segment of a path not in π. Finally, we replace values i1 with i2 for the terms

corresponding to nodes in Cπ, and keep values i1 unchanged for the terms corresponding

to nodes in Cπ̄. We split and classify nodes that belong to different subsets and factorize

P (Y = y|do(i2|π, i1|π̄)) into the following probability truncation formula:

∑
v′

(∏
G∈Cπ

P (g|i2,paG\{I})
∏

H∈Cπ̄
P (h|i1,paH\{I})

∏
O∈Vc\ CHI

P (o|paO)
∏

Z∈Z P (z|paZ)
∏

Q∈V′\{Vc∪Z} P (q|paQ)

)
(A.17)

where Vc denotes the nodes that lie on the causal paths except I. Note that the above

computation requires that Cπ and Cπ̄ are two disjoint subsets. Thus, the recanting witness

criterion is not satisfied, and the path-specific treatment effect transmitted solely through

causal paths is identifiable and can be computed according to Equation A.17.

Let PA denote Y ’s parent nodes along all causal paths, PAπ denote Y ’s parent nodes

that lie in π, and PAπ̄ denote the remaining parents along the causal paths. We can compute
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P (Y = y|do(i2|π, i1|π̄)) by adjusting on a valid covariate set Z:

P (Y = y|do(i2|π, i1|π̄)) (A.18)

=
∑
Z∪PA

P (paπ|i2,Z)P (paπ̄|i1, z)P (y|pa, z)P (z) (a)

=
∑
Z∪PA

P (paπ|i2, z)
P (paπ|i1, z)

P (paπ|i1, z)P (paπ̄|i1, z)P (y|pa, z)P (z) (b)

=
∑
Z∪PA

P (paπ|i2, z)
P (paπ|i1, z)

P (pa|i1, z)P (y|pa, z, i1)P (z) (c)

=
∑
Z∪PA

P (paπ|i2, z)
P (paπ|i1, z)

P (y,pa|i1, z)P (z) (d)

=
∑
Z∪PA

P (paπ|i2, z)P (y,paπ̄|paπ, i1, z)P (z) (e)

=
∑
Z

P (z)
∑
PAπ

P (paπ|i2, z)
∑
PAπ̄

P (y,paπ̄|paπ, i1, z) (f)

=
∑
Z

∑
PAπ

P (paπ|i2, z)P (y|paπ, i1, z)P (z) (g)

=
∑
Z

(∑
PAπ

P (paπ|i2, z, S = 1)P (y|paπ, i1, z, S = 1)

)
× P (z\z⊺|z⊺, S = 1)P (z⊺) (h)

For Equation a, since PA ∪ Z is a valid set that d-separates Y and I, based on d-

separation criteria [78], and the general product rule in probability, the path-specific causal

effect in Equation A.17 can be rewritten by conditioning and marginalizing on PA ∪ Z.

Equation b is derived by dividing then multiplying the term P (paπ|i1, z). Equation c is

derived by rules of conditional independence and the fact PA = PAπ ∪ PAπ̄. Equations

d, e and f are derived by basic laws of conditional probability. Equation g is derived by

marginalizing out the term paπ̄ in summation. Equation h is derived by (Z,Z⊺) satisfies the

generalized adjustment criterion in Theorem 2 such that (Y ⊥⊥ S|Z⊺)Gpbd
YI

.
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A.7 Proof of Theorem 14

Proof. To derive the regret bound of LinUCB-PCB algorithm, we follow existing research

works (e.g., [50, 84]) to make four common assumptions defined as follows:

1. The error term ϵt follows 1-sub-Gaussian distribution for each time point.

2. {αt}ni=1 is a non-decreasing sequence with α1 ≥ 1.

3. ||θ∗||2 < M for all time points and arms.

4. There exists a δ ∈ (0, 1) such that with probability 1− δ, for all t ∈ [T ],θ∗ ∈ Ct where

Ct satisfies Equation 4.5.

According to the arm selection strategy and OFU principle, the regret at each time

t is bounded by:

regt = xT
t,aθ̂t − xT

t,aθ
∗

≤ xT
t,aθ̂t + αt||xt,a||A−1

t
− xT

t,aθ
∗

≤ xT
t,aθ̂t + αt||xt,a||A−1

t
− (xT

t,aθ̂t − αt||xt,a||A−1
t
)

≤ 2αt||xt,a||A−1
t

Summing up the regret at each bound, with probability at least 1− δ the cumulative regret

up to time T is bounded by:

RT =
T∑
t=1

regt ≤

√√√√T
T∑
t=1

reg2t ≤ 2αT

√√√√T
T∑
t=1

||xt,a||2A−1
t

(A.19)

Since {αt}ni=1 is a non-decreasing sequence, we can enlarge each element αt to αT to

obtain the inequalities in Equation A.19. By applying the inequalities from Lemma 2 and 3
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we could further relax the regret bound up to time T to:

RT ≤ 2αT

√
2T log

|At|
λd

≤ 2αT

√
2Td(log(λ+ TL2/d)− logλ)

= 2αT

√
2Tdlog(1 + TL2/(dλ))

(A.20)

Following the result of Lemma 1, by loosing the determinant of At according to

Lemma 3, Lemma 4 provides a suitable choice for αT up to time T . By plugging in the RHS

from Equation 4.5 we derive the cumulative regret bound:

RT ≤
√

2Tdlog(1 + TL2/(dλ))× 2(
√
λM +

√
2log(1/δ) + dlog(1 + TL2/(dλ)))

Finally, by plugging in δ = 1/T we obtain the regret bound of LinUCB-PCB algorithm

shown in Theorem 14:

RT ≤ Cd
√
T log(TL)

A.8 Proof of Theorem 16

Proof. We first define ∆max = maxa,c ∆
c
a and A−

c = {a : Ua,c ≥ µ∗
c}. According to Lemma

3.2 in [113] Gt is guaranteed to be invertible since the arm set A is assumed to span Rd. The

regret during the initialization is at most d∆max ≈ o(log(T )). We can thus ignore the regret

during the initialization phase in the remaining proof.

To prove the regret during the exploration-exploitation phase, we first define the event

179



Bt as follows:

Bt =
{
∃t ≥ l,∃a ∈ A, s.t. |a⊤θ̂t − a⊤θ| ≥ ||a||G−1

t
f 1/2
n

}
(A.21)

By choosing δ = 1/T , from Lemma A.2 in [113] we have P (Bt) ≤ 1/T . We thus

decompose the cumulative regret by applying optimal allocation matching (oam) policy

with respect to event Bt as follows:

Rπoam(T ) = E[
T∑
t=1

∑
a∈A

∆ct
a 1(at = a)] = E[

T∑
t=1

∑
a∈A

∆ct
a 1(at = a,Bt)]+E[

T∑
t=1

∑
a∈A

∆ct
a 1(at = a,Bc

t )]

(A.22)

The first term of Equation A.22 could be asymptotically bounded by o(log(T )):

lim sup
T→∞

E[
∑T

t=1

∑
a∈A∆ct

a 1(at = a,Bt)]
log(T )

= lim sup
T→∞

E[
∑T

t=1∆
ct
at1(Bt)]

log(T )

≤ lim sup
t→∞

∆max

∑T
t=1 P (Bt)

log(T )
≤ lim sup

T→∞

∆max

∑T
t=1 1/T

log(T )

= lim sup
T→∞

∆max

log(T )
= 0

(A.23)

To bound the second term in Equation A.22, we further define the event Dt,ct by

Dt,ct =

{
∀a ∈ A, ||a||2

G−1
t
≤ max{∆̂

2
min(t− 1)

fn
,
(∆̂ct

a (t− 1))2

fn
}
}

(A.24)

At time t the algorithm exploits under event Dt,ct . Under event Dc
t,ct the algorithm

explores at round t. We then further decompose the second term in Equation A.22 into the

180



sum of exploitation regret and exploration regret:

E[
T∑
t=1

∑
a∈A

∆ct
a 1(at = a,Bc

t )] = E[
T∑
t=1

∑
a∈A

∆ct
a 1(at = a,Bc

t ,Dt,ct)]︸ ︷︷ ︸
exploitation regret

+ E[
T∑
t=1

∑
a∈A

∆ct
a 1(at = a,Bc

t ,Dc
t,ct)]︸ ︷︷ ︸

exploration regret

(A.25)

We then bound those two terms by Lemma 8 and Lemma 9 accordingly.

Lemma 8. The exploitation regret satisfies

lim sup
T→∞

E[
∑T

t=1

∑
a∈A ∆ct

a 1(at = a,Bc
t ,Dt,ct)]

log(T )
= 0 (A.26)

Lemma 9. The exploration regret satisfies

lim sup
T→∞

E[
∑T

t=1

∑
a∈A∆ct

a 1(at = a,Bc
t ,Dc

t,ct)]

log(T )
≤ V(θ,A) (A.27)

where V(θ,A) is defined in Theorem 16.

Combining the bounds of exploitation and exploration regrets leads to the results

below:

lim sup
T→∞

E[
∑T

t=1

∑
a∈A∆ct

a 1(at = a,Bc
t )]

log(T )
≤ V(θ,A) (A.28)

Finally, combining the results in Equation A.23 leads to the asymptotic regret bound

181



of Algorithm 11:

Rπoam(T ) ≤ log(T ) · V(θ,A) (A.29)

A.8.1 Proof of Lemma 8

Proof. Under the event βc
t defined in Equation A.21, we have

max
a∈A
|⟨θ̂t − θ, a⟩| ≤ ||a||G−1

t
f 1/2
n (A.30)

We further bound ||a||G−1
t

under event Dt,ct by:

||a||G−1
t
≤ max

(
∆̂2

min

fn
,
∆̂c

a(t)
2

fn

)
=

(∆̂c
a(t))

2

fn
(A.31)

We further define τa for each a ∈ A as

τa = min

{
N : ∀t ≥ d,Dt, ct occurs, Na(t) ≥ N, implies|⟨θ̂t − θ, a⟩| ≤ ∆min

2

}
(A.32)

and decompose the exploitation regret with respect to the event {Nâ∗c(t)(t) ≥ τâ∗c(t)} defined

in [113] as follows:

E
[ T∑

t=1

∑
a∈A−

ct

∆ct
a 1(at = a,Bc

t ,Dt,ct)

]

≤E
[ |C|∑

c=1

T∑
t=1

∑
a∈A−

c

∆c
a1(at = a,Bc

t ,Dt,c, Nâ∗c(t)(t) ≥ τâ∗c(t))

]

+E
[ |C|∑

c=1

T∑
t=1

∑
a∈A−

c

∆c
a1(at = a,Bc

t ,Dt,c, Nâ∗c(t)(t) < τâ∗c(t))

]
(A.33)
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When a∗c = â∗c(t) the first term in Equation A.33 equals 0, we next bound the second

term:

E
[ |C|∑

c=1

T∑
t=1

∑
a∈A−

c

∆c
a1(at = a,Bc

t ,Dt,c, Nâ∗c(t)(t) < τâ∗c(t))

]

≤E
[ |C|∑

c=1

T∑
t=1

1(at = a,Bc
t ,Dt,c, Nâ∗c(t)(t) < τâ∗c(t))

]
∆max ≤

|C|∑
c=1

∑
a∈A

E[τa]∆max ≤
∑
a∈A

E(τa)∆max

(A.34)

Combining the results together leads to the desired results:

lim sup
T→∞

E[
∑T

t=1

∑
a∈A∆ct

a 1(at = a,Bc
t ,Dt,ct)]

log(T )
≤ lim sup

T→∞

|A|∆max(8(1 + 1/log(n)) + 4cdlog(dlog(n)))

∆2
minlog(T )

= 0

(A.35)

A.8.2 Proof of Lemma 9

Proof. LetMt denote the set that records the index of action sets that has not been fully

explored until round t:

Mt =

{
m : ∃a ∈ Am, Na(t) ≤ min{fn/∆̂2

min(t), Ta(∆̂(t))}
}

(A.36)

Under the event Dc
t,ct we haveMt ̸= ∅. We decompose the exploration regret into two

terms: regret under unwasted exploration and wasted exploration, according to whether ct
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belongs toMt.

E[
T∑
t=1

∑
a∈A

∆a1(at = a,Bc
t ,Dc

t,ct)] =

E[
T∑
t=1

∑
a∈A

∆a1(at = a,Bc
t ,Dc

t,ct , ct ∈Mt)]︸ ︷︷ ︸
unwasted exploration

+E[
T∑
t=1

∑
a∈A

∆a1(at = a,Bc
t ,Dc

t,ct , ct /∈Mt)]︸ ︷︷ ︸
wasted exploration

(A.37)

Following the proof procedure of Lemma B.1 and B.2 in [113] by substituting with

the reduced arm set A−
c = {a : Ua,c ≥ µ∗

c}, we show that the regret regarding the wasted

explorations is bounded by o(log(T )), and the regret regarding to the unwasted explorations

is bounded by log(T ) · V(θ,A). Combing the bounds of these two terms leads to our conclu-

sion.

A.9 Non-contextual Bandit with Prior Causal Bounds

Our prior causal bounds can also be incorporated into non-contextual bandits. In non-

contextual bandit setting, the goal is to calculate E[Y |do(X = x)] for each x and identify the

best arm. Recall Equation 7.1 in the main text we have Px(y|c) = Px(y,c)
Px(c)

. Simply replacing

the outcome variable with y and removing the term Px(c) from Equation 7.2 and 7.5 in the

main text leads to the causal bound for the interventional distribution px(y).

A.9.1 Proof of Theorem 17

Proof. We first decompose the cumulative regret up to time T :

R(T ) =
k∑

a=1

∆aE[Na(T )] (A.38)
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Let Ea be the event defined by:

Ea =

{
µ∗ < min

t∈[T ]
UCB∗(t, δ)

}
∪
{
µ̂aua +

√
2

ua

log(
1

δ
) < µ∗

}

where ua ∈ [T ] is a constant. Since Na(T ) ≤ T , we have

E[Na(T )] = E[1{Ea}Na(T )] + E[1{Ec
a}Na(T )] ≤ ua + P (Ec

i )T (A.39)

We will show that if Ea occurs, the number of times arm a is played up to time T is upper

bounded (Lemma 10), and the complement event Ec
a occurs with low probability (Lemma

11).

Lemma 10. If Ea occurs, the times that arm a is played is bounded by:

E[Na(T )] ≤


0, if Ua < µ∗

3 +
16log(T )

∆2
a

, otherwise

(A.40)

Lemma 11.

P (Ec
a) ≤ Tδ + exp

(
− uac

2∆2
a

2

)

Combining the results of the two lemmas we have

P (Ec
i ) ≤ Tδ + exp

(
− uac

2∆2
a

2

)
(A.41)
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Then by substituting the result from the two lemmas into Equation A.39, we have

E[Na(T )] ≤ ua + T

(
Tδ + exp

(
− uac

2∆2
a

2

))
(A.42)

We next aim to choose a suitable value for ua ∈ [T ]. Directly solving Equation A.50

and taking the minimum value in the solution space leads to a legit value of ua:

ua =

⌈
2log(1/δ)

(1− c)2∆2
a

⌉
(A.43)

Then we take δ = 1/n2 and ua with the value in Equation A.43 to get the following

equation:

E[Na(T )] ≤ ua + 1 + T 1−2c2/(1−c)2 =

⌈
2log(1/δ)

(1− c)2∆2
a

⌉
+ 1 + T 1−2c2/(1−c)2 (A.44)

By substituting c = 1/2 in the above equation we obtain

E[Na(T )] ≤ 3 +
16log(T )

∆2
a

(A.45)

Finally, substituting E[Na(T )] with the bound above for each arm a ∈ A in Equation

A.38 leads to the desired regret bound:

R(T ) ≤ 3
k∑

a=1

∆a +
∑

a:Ua≥µ∗

16log(T )

∆a
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A.9.2 Proof of Lemma 10

Proof. We derive the proof by contradiction. Suppose Na(T ) > ua, there would exist a round

t ∈ [T ] where Na(t− 1) = ua and at = a. By the definition of Ea we have

UCBa(t−1, δ) = ûa(t−1)+

√
2log(1/δ)

Na(t− 1)
= ûaua+

√
2log(1/δ)

ua

< u∗ < UCB∗(t−1, δ) (A.46)

We thus have at = argmaxi UCBi(t− 1, δ) ̸= a, which leads to a contradiction. As a result,

if Ea occurs we have Na(T ) ≤ ua.

A.9.3 Proof of Lemma 11

Proof. According to the definition Ec
a is defined as:

Ec
a =

{
µ∗ ≥ min

t∈[T ]
UCB∗(t, δ)

}
︸ ︷︷ ︸

term 1

∪
{
µ̂aua +

√
2log(1/δ)

ua

≥ µ∗
}

︸ ︷︷ ︸
term 2

(A.47)

We decompose term 1 according to the definition of UCB∗(t, δ):

{
µ∗ ≥ min

t∈[T ]
UCB∗(t, δ)

}
⊂
{
µ∗ ≥ min

s∈[T ]
û1s+

√
2log(1/δ)

s

}
=
⋃
s∈[T ]

{
µ∗ ≥ û1s+

√
2log(1/δ)

s

}
(A.48)

We next apply corollary 5.5 in [112] and leverage union bound rule of independent

random variables to further upper bound term 1 by nδ as follows:

P

(
u∗ ≥ min

t∈T
UCB∗(t, δ)

)
≤ P

( ⋃
s∈[T ]

{
µ∗ ≥ û1s+

√
2log(1/δ)

s

})
≤

T∑
s=1

P

(
µ∗ ≥ û1s+

√
2log(1/δ)

s

)
≤ nδ

(A.49)

Next we aim to bound term 2 in Equation A.47. We proceed by assuming ua is large
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enough such that

∆a −

√
2log(1/δ)

ua

≥ c∆a (A.50)

for some constant c ∈ (0, 1) to be chosen later. Since u∗ = ua + ∆a, according to corollary

5.5 in [112] we have

P

(
µ̂aua +

√
2log(1/δ)

ua

≥ µ∗
)

= P

(
µ̂aua − ua ≥ ∆a −

√
2log(1/δ)

ua

)
≤ P

(
µ̂aua − ua ≥ c∆a

)
≤ exp(−uac

2∆2
a

2
)

(A.51)
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