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ABSTRACT

Asymptotic Properties and Separation Rates for Navier-Stokes Flows

Patrick Michael Phelps

In this dissertation, we investigate asymptotic properties of local energy solutions to the

Navier-Stokes equations and develop an application which controls the separation of

non-unique solutions in this class. Specifically, we quantify the rate at which two, possibly

unique solutions evolving from the same data may separate pointwise away from a

singularity. This is motivated by recent results on non-uniqueness for forced and unforced

Navier-Stokes and analytical and numerical evidence suggesting non-uniqueness in the

Leray class. Our investigation begins with discretely self-similar solutions known to exist

globally in time and to be regular outside a space-time paraboloid. We prove decay rates

for these solutions with locally sub-critical data away from the origin and show improved

decay for the ‘non-linear part’ of the flow. We also lower the Hölder regularity required to

obtain our maximal decay rate. To achieve improved decay, we use Picard iterates to

approximate solutions. We demonstrate a scale of decay rates for Picard approximations

which determine upper bounds for how non-unique, discretely self-similar solutions may

separate. In subsequent sections, we replace the self-similar condition with local

sub-critical regularity and are able to obtain all but the maximal separation rate for

Lorentz solutions, a subclass of local energy solutions.
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1 Introduction

1.1 Background

The incompressible Navier-Stokes equations are a system of partial differential

equations which model the velocity, u, and pressure, p, of a viscous incompressible fluid

with viscosity ν inside a domain Ω, under a body force f . In particular, u : Ω× (0, T ) → Ω

and p : Ω× (0, T ) → R are required to satisfy

∂tu− ν∆u+ u · ∇u+∇p = f ;

div u = 0; u(·, 0) = u0.

(1.1)

Intuitively, the equation says that the acceleration (∂tu) of the fluid is influenced by

diffusion (−∆u), inertia (u · ∇u)j :=
∑

i ui∂iuj, pressure gradient (∇p), and the body force.

For our investigations, we take ν = 1, f = 0, and Ω = R3. This system has applications in

many fields including but not limited to aerodynamics, meteorology, oceanography, and

cosmology. Open problems including well-posedness and global regularity for large data

still remain.

Well-posedness consists of the existence, uniqueness, and stability of solutions.

Existence and regularity of solutions constitute one of the Millennium Problems offered by

the Clay Institute of Mathematics, a set of longstanding open problems; more specifically,

the problem of whether singularities can form in finite time from smooth initial data

remains largely open.

By definition, a solution to this system is unique in a class if no other solution in the

same class with the same initial data u0 exists. It is not known whether solutions to (1.1)

with rough data are unique; in fact, non-uniqueness has been affirmed in some settings for

the non-forced [18] and forced Navier-Stokes equations [2]. Within the Leray class [54],

where solutions satisfy a global energy inequality, the numerical work of Guillod and Šverák
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[35] simulates non-uniqueness. They simulate a pair of solutions from the same initial data

and zero forcing, where one is axi-symmetric and the other breaks this symmetry. This

program first proposes a scenario of non-uniqueness in a class of solutions with large data

in the Lorentz space L3,∞ which can be truncated to give non-unique Leray-Hopf solutions.

This space is critical, as it is on the borderline of well-posedness theory. To investigate this

symmetry breaking, we work in a class of scaling invariant solutions.

1.2 Self-similar flows

In the analysis of partial differential equations it is useful to consider the scaling

properties an equations to investigate its solutions. This has been used, for example, to

show the blow-up of the semi-linear heat equation. The Navier-Stokes enjoy a scaling

invariance: For (u, p), a solution to (1.1), we may define another solution (uλ, pλ) by

uλ(x, t) = λu(λx, λ2t), pλ(x, t) = λ2p(λx, λ2t),

with data uλ
0(x) = λu0(λx). A space whose norm is invariant under this scaling, i.e. X

such that ∥u∥X = λp∥uλ∥X , for p = 0, is called critical. Some examples include

Ls(0, T ;Lq(Ω)) for 3
q
+ 2

s
= 1, e.g. L∞L3. A subcritical space has this property for p < 0

and a supercritical space for p > 0.

These types of spaces are important, as the critical spaces lie on the boundary of

known well-posedness, i.e. there are small data results, whereas subcritical spaces are

generally well behaved, e.g. large data results, and supercritical are poorly behaved.

Definition 1.1. A solution is called self-similar if (u, p) = (uλ, pλ) for all λ > 0 and

discretely self-similar (DSS) if this is true for some λ > 0. The data u0 is self-similar or

discretely self-similar respectively if the above property holds with the time variable

omitted.

We consider scaling invariant solutions to (1.1), as their symmetry makes them good
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candidates to exhibit non-unique solutions [35]. Motivated by this numerical work, we

quantify how non-uniqueness would evolve from locally sub-critical data: first, for a class of

local energy solutions with scaling invariance, and second, in the class of L3,∞ weak

solutions with no scaling assumption.

Self-similar solutions with large Cα data were first constructed by Jia and Šverák in

[40]. Tsai [67] then constructed DSS solutions with Cα datafor λ close to 1. In [10],

Bradshaw and Tsai construct solutions with data in L3,∞. This space contains functions

with multiple isolated singularities. The literature on the existence of DSS or self-similar

solutions to (1.1) in R4
+ in a variety of function spaces is rich, including

[1, 4, 10, 11, 12, 13, 21, 22, 25, 33, 40, 42, 47, 53, 67].

1.3 Asymptotics of self-similar flows

Our investigation begins with the asymptotic properties of DSS local energy solutions

to the Navier-Stokes equations considered on R3 × (0,∞). Brandolese pioneered this

subject for small, smooth data in [16]. There, an asymptotic formula is given for the

time-independent profile of a self-similar solution in which the dominant terms only involve

the data. The remaining terms have faster decay, the worst of which is O(|x|−4). This

implies spatial asymptotics for the self-similar solution for all t > 0.

In [67], in the rougher class of λ-DSS local energy solutions with data in Cα
loc(R3 \ {0})

for 0 < α < 1 and λ ∼ 1 Tsai the following asymptotics.

|u|(x, t) ≲ 1

|x|+
√
t
. (1.2)

We extend this to a scale of decay rates for the wider class of DSS solutions with data in

Lq
loc(R3 \ {0}), q > 3. Additionally, for λ ∼ 1, u is globally regular, by [67]; however, we

work with solutions with any λ scaling, which are only known to be regular in the region

|x| ≥ R0

√
t, where R0 is the radius of far-field regularity from [43, Theorem 1.8]. We work

4



in the class of local energy solutions which can be thought of a a localized version of Leray

solutions.

Theorem 1.1 (Algebraic decay for rough data). Let q ∈ (3,∞] and u0 ∈ Lq
loc(R3 \ {0}) be

divergence free and DSS. Assume u is a DSS local energy solution with initial data u0. For

any l ∈ N0 and |x| ≥ R0

√
t,

|∇lu|(x, t) ≲u0,q,λ
1

√
t
|l|+ 3

q
(
|x|+

√
t
)1− 3

q

, (1.3)

where the dependence on u0 is via the quantities ∥u0∥L2
uloc

and ∥u0∥Lq
loc(R3\{0}).

We then pursue improved decay for the ‘non-linear’ part of these flows. Let u be the

solution to (1.1), and P0 = et∆u0 be the solution to the homogeneous heat equation with

the data u0. The difference u− P0 has the following improved decay rates compared to u

shown by Tsai [67] for λ ∼ 1, and by Lai, Miao, and Zheng [55, 56] for self-similar

solutions, respectively,

|u− P0|(x, t) ≲



√
t

(|x|+
√
t)2

u0 ∈ L∞
loc(R3 \ {0}) & self-similar [55, Theorem 1.1]

t
(|x|+

√
t)2

u0 ∈ Cα
loc(R3 \ {0}) & λ ∼ 1 [67, Theorem 1.1]

t log
(
2+

|x|√
t

)
(|x|+

√
t)3

u0 ∈ C1
loc(R3 \ {0}) & self-similar [56, Corollary 1.1]

t
(|x|+

√
t)3

u0 ∈ C1,1
loc (R3 \ {0}) & self-similar [56, Corollary 1.1].

.

One goal of this research program is to generalize and improve the decay rates in [55], [56]

and [67]. This is done by establishing pointwise bounds for local energy solutions with

large, rough initial data in the DSS class for any scaling factor λ > 1, leading to the

following theorem.

Theorem 1.2 (Improved algebraic decay for rough data). Let q ∈ (3,∞] and

u0 ∈ Lq
loc(R3 \ {0}) be divergence free and DSS. Assume u is a DSS local energy solution
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with initial data u0. For |x| ≥ R0

√
t, the difference u− P0 satisfies

|u− P0|(x, t) ≲u0,q,λ
1

√
t
6
q
−1
(|x|+

√
t)2−

6
q

, (1.4)

where the dependence on u0 is via the quantities ∥u0∥L2
uloc

and ∥u0∥Lq
loc(R3\{0}).

Next, we reduce the exponent of Hölder regularity required to obtain the decay in [56]

and establish a finer bound on the ‘non-linear’ part of the flow for Hölder regular data

compared to [67].

Theorem 1.3. Let 0 < α ≤ 1 and assume u0 ∈ Cα
loc(R3 \ {0}) ∩DSS is divergence free .

Assume u is a DSS local energy solution with initial data u0. Then

|u− P0|(x, t) ≲u0,α,λ


√
t
1+α

(|x|+
√
t)2+α α < 1

t
(|x|+

√
t)3

log(2 + |x|√
t
) α = 1

, (1.5)

for |x| ≥ R0

√
t, where the dependence on u0 is via the quantities ∥u0∥L2

uloc
and ∥u0∥Cα(A0).

To avoid the logarithm in Theorem 1.3, we assume slightly more Hölder regularity and

obtain the following theorem.

Theorem 1.4. Let 0 < α ≤ 1 and assume u0 ∈ C1,α
loc (R3 \ {0}) ∩DSS is divergence free.

Assume u is a DSS local energy solution with initial data u0. Then for |x| ≥ R0

√
t,

|u− P0|(x, t) ≲u0,α,λ
t

(|x|+
√
t)3

, (1.6)

where the dependence on u0 is via the quantities ∥u0∥L2
uloc

and ∥u0∥C1,α(A0).

6



We summarize the above results as the following scale of decay rates: for |x| ≥ R0

√
t,

|u− P0|(x, t) ≲



√
t
1− 6

q

(|x|+
√
t)

2− 6
q

u0 ∈ Lq
loc(R3 \ {0}), q > 3

√
t
1+α

(|x|+
√
t)2+α u0 ∈ Cα

loc(R3 \ {0}), α ∈ (0, 1)

t log
(
2+

|x|√
t

)
(|x|+

√
t)3

u0 ∈ C1
loc(R3 \ {0}),

t
(|x|+

√
t)3

u0 ∈ C1,α
loc (R3 \ {0}), α ∈ (0, 1)

.

Compared to previous literature, we work in a more general case of DSS solutions with no

assumption of global regularity. These solutions are only known to be regular in the

sub-paraboloid region |x| ≥ R0

√
t. Our Lq result is identical to [55] when q = ∞, but for

general DSS solutions and extends down in q, almost to the critical class L3.

To understand the limitation on q note that in [10] it is shown that u0 ∈ L3,∞ ∩DSS if

and only if u0 ∈ L3
loc(R3 \ {0}). Our decay estimates create a scale of spaces that approach,

but do not reach, the critical initial data space L3,∞ on one end. On the other end, when

q = ∞, L∞
loc is weaker than the Hölder-type spaces considered in [40, 67]. We expect the

q = 3 case to be excluded because, as shown in an example in [10], there is no algebraic

decay rate for et∆u0 when u0 ∈ L3,∞ ∩DSS. We do, however, pursue approximate decay

rates for q = 3 and in Ḃ
−1+3/p
p,∞ in an upcoming paper with Z. Bradshaw.

The Lq
loc result requires fine integral estimates on a bilinear operator that defines

u− P0. We define mild solutions in Definition 2.10 in Section 2. For now, note that a mild

solution u satisfies

u(t) = et∆u0 −B(u, u)(t), (1.7)

where

B(u, v)(t) =

∫ t

0

e(t−s)∆P∂j(ujv)(s) ds. (1.8)
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Because local energy solutions are mild we use integral estimates to prove that

B(u, u) = −(u− P0) enjoys a squared decay compared to u.

For data with Hölder regularity, we create a new scale of decay rates, depending on α.

To achieve this, note that u− P0 satisfies the following expansion

u− P0 = −B
(
u− P0, u− P0

)
−B

(
u− P0, P0

)
+B

(
P0, u− P0

)
−B(P0, P0).

The first three terms have cubic decay by the result for u0 ∈ L∞
loc. The term B(P0, P0) fully

determines our estimates for u− P0. This can be written explicitly as

B(P0, P0) =

∫ t

0

e(t−s)∆P∇ · (et∆u0 ⊗ et∆u0) ds.

Because u0 is in Cα
loc, et∆u0 decays like |x|−1 and ∇et∆u0 only decays like |x|−1−α.

Therefore, we find that ∇ · (et∆u0 ⊗ et∆u0) decays like |x|−2−α. Attempting to integrate the

cubic kernel of the Oseen tensor introduces a logarithm. To avoid this, we define the

fractional Laplacian Λ = (−∆)
1
2 to take the finer estimate |Λγet∆u0| ≲ |x|−1−α for

α < γ < 1. After navigating a commutator, this implies

|Λγ(et∆u0 ⊗ et∆u0)| ≲ |x|−2−α, t ∈ [1, λ2].

Re-writing B(P0, P0) as

B(P0, P0) =

∫ t

0

Λ−γ∇Pe(t−s)∆Λγ(et∆u0 ⊗ et∆u0) ds,

depletes the singularity of the Oseen kernel and maintains decay of |x|−2−α on the product

part. By an integral estimate (4.11) from [67], this has the advertised decay.

With any regularity higher than C1, i.e. C1,α, 0 < α < 1, we avoid the logarithm in

(4.11), improving the results in [67] and in [56]. We do this by taking advantage of a

8



technique in [56] that uses mean-value theorem to introduce another gradient in the near

field of the B(P0, P0) integral. The same fractional Laplacian methods help us finish the

proof without a C1,1 assumption.

1.3.1 Picard improvements

Inspired by estimates for the ‘non-linear’ difference, u− P0, in the literature and by

work done by Albritton and Barker in [1], we investigate the decay for the difference

between u and the kth Picard iterate Pk which solves the iterated heat equation

∂tPk −∆Pk = −P∇ · (Pk−1 ⊗ Pk−1),

with the same initial data u0. Due to Duhamel’s principle and the solvability of P0, each

iterate is exactly solvable. Classically, Picard iterates converge to solutions of (1.1)

whenever the system can be considered a perturbation of the heat equation, i.e. when the

non-linear term u · ∇u can be made small in an appropriate sense. This is not the case in

the local energy class, but we do demonstrate that Picard iterates capture some asymptotic

properties of DSS solutions near t = 0 and away from x = 0.

Theorem 1.5 (Improved decay using Picard iterates). Let q ∈ (3,∞] and

u0 ∈ Lq
loc(R3 \ {0}) be divergence free and DSS. Assume u is a DSS local energy solution

with initial data u0. Define for k ∈ N0,

ak = (k + 2)

(
1− 3

q

)
= ak−1 + 1− 3

q
; kq =

⌈
4q

q − 3
− 2

⌉
.

The following hold for |x| ≥ R0

√
t

1. For k < kq,

|u− Pk|(x, t) ≲k,λ,R0,u0

√
t
ak

√
t(|x|+

√
t)ak

, (1.9)
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where the dependence on u0 is via the quantities ∥u0∥L2
uloc

and ∥u0∥Lq
loc(R3\{0}).

2. For k ≥ kq,

|u− Pk|(x, t) ≲k,λ,R0,u0

√
t
3

(|x|+
√
t)4

. (1.10)

The essence of proof is to use the following bi-integral formula:

u = P0 −B(P0, P0)︸ ︷︷ ︸
P1

) +B(P0, u− P0) +B(u− P0, P0)−B(u− P0, u− P0). (1.11)

For u0 ∈ L∞
loc(R3 \ {0}) ∩DSS, we show P0 is O(|x|−1) and u− P0 is O(|x|−2). Then for

t ∈ [1, λ2], as |x| → ∞, we should have

B(P0, u− P0) +B(u− P0, P0) = O(|x|−3) and B(u− P0, u− P0) = O(|x|−4).

This demonstrates an improvement, as u− P1 heuristically decays faster than u− P0. This

improvement continues for higher iterates. This argument is an example of the

“improvement property” of Picard iterates evident in the literature [30, 16, 1].

Furthermore, in Theorem 1.5, item 2 can be viewed as generalizing the small data

result of Brandolese [16, Theorem 2] in the sense that the solutions satisfy the asymptotic

formula u(x, t) = F (u0) +O(|x|−4), for t ∈ [1, λ2], where F (u0) can be explicitly written as

a short time asymptotic expansion depending only on u0.

Short-time asymptotic expansions have been examined in [16, 17] for both large and

small non-self-similar flows and for forced Navier-Stokes in [3]. In [49], Kukavica and Ries

give an expansion for smooth solutions. A novelty in our result is, unlike all previous

papers, we do not work with data strong enough to generate smooth solutions or assume

solutions to be smooth and the terms in our expansion, save one, depend only on u0, not u.
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1.3.2 Estimating non-uniqueness

We can use the uniqueness of Picard iterates to quantify how non-uniqueness of DSS

local energy solutions might unfold.

Theorem 1.6 (Separation rate). Let q ∈ (3,∞] and u0 ∈ Lq
loc(R3 \ {0}) be divergence free

and DSS. Assume u is a DSS local energy solution with initial data u0. Assume v is

another DSS local energy solution with data u0. Then for |x| ≥ R0

√
t,

|u− v|(x, t) ≲q,λ,R0,u0

√
t
3

(|x|+
√
t)4

. (1.12)

Proof of Theorem 1.6. If two solutions u and v satisfy the hypothesis of Theorem 1.5, then

there exists a kq such that, for |x| ≥ R0

√
t,

|u− v|(x, t) = |u− Pkq(u0)|(x, t) + |v − Pkq(u0)|(x, t) ≲q,λ,R0,u0

√
t
3

(|x|+
√
t)4

.

This implies the following bound:

|u− v|(x, t) ≲x t3/2.

We call the above an “estimation of non-uniqueness” and the right-hand side as the

“separation rate”.

While the work of Jia and Šverák [38] and the numerical evidence of Guillod and

Šverák [35] suggest non-uniqueness within the class of self-similar solutions, not much has

been done to quantify how this uniqueness might evolve over time. This separation rate is

an interesting perspective on how non-uniqueness for Navier-Stokes might unfold; it implies

solutions locally stay very close at short times, compared to rates tγ, γ < 1 that are implied

by current literature.
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We would like to know what other classes this can be extended to, when the separation

rate can be recovered, and if we may relax the DSS assumption. To this end, we investigate

L3,∞ weak solutions away from a singularity.

1.4 Locally sub-critical flows

For the subsequent results, we impose no scaling assumptions and work with L3,∞ weak

solutions, a subclass of local energy solutions, with data in the space L3,∞ ∩Lp(B) for some

ball B and p > 3.

Theorem 1.7 (Local asymptotic expansion). Assume u0 ∈ L3,∞ and is divergence free.

Fix x0 ∈ R3 and p ∈ (3,∞]. Assume further u0|B ∈ Lp(B) where B = B2(x0). Then there

exists γ = γ(p) ∈ (0, 1) and T = T (p, ∥u0∥L3,∞ , ∥u0∥Lp(B)) > 0 such that for any

σ ∈ (0, 3/2), t ∈ (0, T ) and k = 0, 1, . . . , k0,

∥u− Pk∥L∞(B1/4(x0))(t) ≲p,u0,σ,k t
ak ,

where a0 = min{γ/2, 1/2− 3/(2p)}, ak+1 = min {σ, k(1/2− 3/(2p)) + a0} and k0 is the

smallest natural number such that

k0

(
1

2
− 3

2p

)
+ a0 ≥ σ.

In particular, ak0 = σ and ak > ak−1 for k = 1, . . . , k0. For (x, t) in B 1
4
(x0)× (0, T ) and

letting a−1 = −3/(2p), it follows that

u(x, t) = P0 +

k0−1∑
k=0

O(tak) +O(tσ) =

k0∑
k=−1

O(tak),

where the O(tak) terms are exactly solvable for −1 ≤ k < k0.

The rate t3/2 achieved for DSS solutions is not completely recovered due to limitations
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of the exponents in the Gagliardo-Nirenberg-Sobolev inequality. For this reason, we expect

this is optimal for L3,∞ weak solutions.

The short-time, space-local asymptotic expansion is of independent interest. Each term

except for the highest order is exactly solvable because the expansion arises from Picard

iterates. This expansion demonstrates the ability of the Picard iterates to locally capture

the short-time asymptotic properties of solutions.

The following estimation of non-uniqueness is a corollary to the preceding theorem.

Corollary 1.8 (Estimation of non-uniqueness). Assume u0 ∈ L3,∞ and is divergence free.

Fix x0 ∈ R3. Assume u0|B ∈ Lp(B) where B = B2(x0) and p ∈ (3,∞]. Let u and v be L3,∞

weak solutions with data u0. Then there exists T = T (p, u0) > 0 such that for every

σ ∈ (0, 3/2) and t ∈ (0, T ),

∥u− v∥L∞(B1/4(x0))(t) ≲p,σ,u0 t
σ,

where the dependence on u0 is via the quantities ∥u0∥Lp(B) and ∥u0∥L3,∞.

If u0 ∈ L2 ∩ L3,∞, then any L3,∞ weak solution is also a Leray weak solution [7];

therefore, this result estimates non-uniqueness in a subset of the Leray class.

Proof. Note for each u0 the Picard iterates Pk(u0) are unique. Therefore, by Theorem 1.7

and the triangle inequality,

∥u− v∥L∞(B1/4(x0)) ≲ ∥u− Pk∥L∞(B1/4(x0)) + ∥Pk − v∥L∞(B1/4(x0)) ≲p,u0,σ,k t
σ,

for any chosen 0 < σ < 3
2
.
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2 Solution classes

In this section, we define the classes of the solutions referenced above and outline some

of their existence, uniqueness and regularity properties.

2.1 Function Spaces

To begin we define important function spaces that appear in related literature and the

results to follow.

The Lp and Lp
loc spaces are defined in the classical way. We also define uniform versions.

Definition 2.1 (Uniformly local Lebesgue space). The space Lp
uloc is defined by finiteness

of the norm

∥f∥Lp
uloc

:= sup
x0∈R3

∥f∥Lp(B1(x0)).

We denote by Ep the closure of C∞
c in Lp

uloc. This class is characterized by the condition

lim
R→∞

∥f∥Lp
uloc(R3\BR) = 0.

We also work with data in the critical Lorentz space L3,∞ and prove estimates in L3/2,1.

Definition 2.2 (Lorentz Spaces). Let m denote Lebesgue measure. The Lorentz spaces on

(R3,m) are defined by finiteness of the quasinorm

∥f∥Lp,q =

(
p

∫ ∞

0

σqm{x : σ < |f(x)|}
q
p
dσ

σ

) 1
q

.

The endpoint Lorentz spaces Lp,∞ are defined by

∥f∥Lp,∞ := sup
σ>0

σpm{x : σ < |f(x)|}.

We define Hölder spaces as usual.

14



Definition 2.3 (Hölder spaces). For 0 < α ≤ 1, we define the quasinorm

[f ]C0,α(Ω) = sup
x ̸=y∈Ω

|f(x)− f(y)|
|x− y|α

.

We make the abbreviation Cα = C0,α when there is no confusion. We say f ∈ Cα
loc(Ω) if

f ∈ Cα(Ω′) for all compact subsets Ω′ of Ω. Finally, we set

∥f∥Ck,α(Ω) = max
|β|≤k

sup
x∈Ω

|Dβf |(x) + max
|β|=k

[Dβf ]C0,α(Ω).

We define Ck,α
loc in analogy with Cα

loc.

We also define a parabolic Hölder space based on the scaling of (1.1). Note that the

subscript t implies a norm in the time variable, and x a norm in the space variable. For

normed spaces X, Y , we write Y ([0, T ];X(R3)) to denote a norm of Y in time, and X in

space.

Definition 2.4. Let γ > 0. The space Cγ
par(R3 × (0, T )) consists of f ∈ C(R3 × (0, T ))

with finite semi-norm

[f ]Cγ
par(R3×[0,T ]) := [f ]

C
γ/2
t ([0,T ];L∞(R3))

+ [f ]L∞([0,T ];Cγ
x (R3)).

This space arises in the local smoothing result of [40]. We also define the Kato classes

that appear in our estimates.

Definition 2.5 (Kato Spaces). Let Kp be the Kato class defined by the finiteness of the

norm

∥u∥Kp := ess sup
t>0

t
1
2
(1− 3

p
)∥u(t)∥Lp .

The Besov spaces relevant to DSS solutions can be defined using these Kato classes.

Let et∆f denote the heat evolution of f .
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Definition 2.6 (Besov Spaces). Assuming 3 < p ≤ ∞, f ∈ Ḃ
−1+3/p
p,∞ (R3) if and only if

∥et∆f∥Kp < ∞,

the above norm being equivalent to the norm classically defined using Littlewood-Paley.

2.2 Weak solutions

We outline the weak solution theory of (1.1). Define C∞
c,σ(R3 × (0, T )) to be the space

of divergence-free test functions, i.e.

C∞
c,σ(R3 × (0, T )) = {ζ ∈ C∞

c (R3 × (0, T );R3) : div ζ = 0}.

Note that the subscript σ denotes divergence free vector fields.

The weak form of (1.1) is given by

∫∫
−u · (∂tζ +∆ζ) + uiuj∂jζi − f · ζ dx dt = 0, ∀ζ ∈ C∞

c,σ(R3 × (0, T ))∫
u(·, t) · ∇ϕ dx = 0, ∀ϕ ∈ C∞

c (R3 × (0, T )).

(2.1)

The following definition enumerates four types of weak solutions.

Definition 2.7 ([65]). Denote the homogeneous Sobolev space by V = Ḣ1
0,σ(R3). Let

0 < T < ∞. Assume u0 ∈ L2
σ(R3) and f ∈ L2(0, T ;V ′).

1. A vector field u(x, t) is a very weak solution of (1.1) in R3 × (0, T ) if

u ∈ L2
loc(R3 × (0, T )) and satisfies the weak form (2.1).

2. A very weak solution u is a weak solution if u ∈ L∞(0, T ;L2
σ(R3)) ∩ L2(0, T ;V ),

u ∈ Cwk([0, T );L
2
σ(R3)) and u(t) → u0 weakly in L2 as t → 0+.
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3. A weak solution u is a Leray-Hopf weak solution if it satisfies the energy inequality

∫
|u|(·, t)2 dx+ 2

∫ t

0

∫
|∇u|2 dx dt ≤

∫
|u0|2 dx+

∫ t

0

∫
2u · f dx dt, ∀t, (2.2)

and limt→0+ ∥u(t)− u0∥L2 = 0.

4. A Leray-Hopf weak solution is a suitable weak solution if there is some

p ∈ L
3/2
loc (R3 × (0, T )) so that (u, p) satisfies (1.1) in the distributional sense (i.e. with

an extra term −p∇ · ζ in the integrand for ζ ∈ C∞
c (R3 × (0, T ))) and the local energy

inequality: for all ϕ ≥ 0 ∈ C∞
c (R3 × (0, T )), and for all t ∈ (0, T )

∫
|u(·, t)|2ϕ dx+ 2

∫ t

0

∫
|∇u|2ϕ dx dt

≤
∫

|u0|2ϕ dx+

∫ t

0

∫
|u|2(∂tϕ+∆ϕ) + (|u|2 + 2p)u · ∇ϕ+ 2u · fϕ dx dt.

(2.3)

A weak solution is global, i.e. a solution in R3 × (0,∞), if it is a solution in R3 × (0, T ) for

any 0 < T < ∞.

The notation u ∈ Cwk(I, L
p) denotes weak continuity in the dual sense, i.e.

∫
u(x, t) · w(x) dx →

∫
u(x, t0) · w(x) dx, as t → t0, for t, t0 ∈ I,

for all w ∈ Lp′ and 1/p+ 1/p′ = 1. A solution u is in the energy class if

u ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ; Ḣ1(Ω)).

We denote spaces such as this with the shorthand L∞
t L2

x ∩ L2
t Ḣ

1
x. By Sobolev embedding

and Hölder’s inequality, this implies

u ∈ Ls
tL

q
x, for

3

q
+

2

s
=

3

2
, 2 ≤ q ≤ 6.
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Note also that in the first three definitions of weak solutions the pressure is not

mentioned. Once u is found p can be recovered as follows: for u ∈ L∞(0, T ;Lq(R3)), q > 2,

we can define p ∈ L∞(0, T ;Lq/2(R3)) via Riesz transforms. Note that p satisfies

−∆p = ∂jui∂iuj.

This is equivalent to

|ξ|2p̂(ξ) = −ξiξj(uiuj)
∧(ξ).

Applying the inverse Fourier transform gives

p(x) =
1

(2π)3/2

(
−ξiξj
|ξ|2

(uiuj)
∧(ξ)

)∨

(x) =
1

(2π)3/2
RiRj(uiuj)(x),

where the Riesz transforms are given by the Fourier multiplier (Rkf)
∧(ξ) = iξk

|ξ| f̂(ξ).

The foundational treatment for the problem of existence of global weak solutions for

finite energy data is given by Leray [54]. Solutions with the properties of those constructed

by Leray are referred to as Leray weak solutions.

As stated, recent work suggests non-uniqueness in this class. This has been affirmed in

weaker classes [18] and within the Leray class for the forced Navier-Stokes equations [2].

For zero forcing, [40, 38, 35] support non-uniqueness, but there is not a clear picture of

non-uniqueness. We will demonstrate a bound on how non-uniqueness evolves for short

times.

2.2.1 Local energy solutions

We impose some assumptions that locally control the energy of solutions. These local

energy solutions, also called local Leray solutions, were introduced by Lemarié-Rieusset [52]

and played an important role in the proof of local smoothing in [40].
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Definition 2.8 (Local energy solutions). A vector field u ∈ L2
loc(R3 × [0, T )), 0 < T ≤ ∞,

is a local energy solution to (1.1) with divergence free initial data u0 ∈ L2
uloc(R3), if:

1. for some p ∈ L
3
2
loc(R3 × [0, T )), the pair (u, p) is a distributional solution to (1.1),

2. for any R > 0, u satisfies

ess sup
0≤t<R2∧T

sup
x0∈R3

∫
BR(x0)

1

2
|u(x, t)|2 dx+ sup

x0∈R3

∫ R2∧T

0

∫
BR(x0)

|∇u(x, t)|2 dx dt < ∞,

3. for any R > 0, x0 ∈ R3, and 0 < T ′ < T , there exists a function of time cx0,R ∈ L
3
2

T ′ so

that for every 0 < t < T ′ and x ∈ B2R(x0) ,

p(x, t) = cx0,R(t)−∆−1 div div[(u⊗ u)χ4R(x− x0)]

−
∫

(K(x− y)−K(x0 − y))(u⊗ u)(y, t)(1− χ4R(y − x0)) dy,
(2.4)

in L
3
2 (B2R(x0)× (0, T ′)), where K(x) is the kernel of ∆−1 div div, Kij(x) = ∂i∂j

−1
4π|x| ,

and χ4R(x) is the characteristic function for B4R,

4. for all compact subsets K ⋐ R3, u(t) → u0 in L2(K) as t → 0+,

5. u is suitable in the sense of Caffarelli-Kohn-Nirenberg, i.e., for all cylinders

Q := Br(x0)× (t0 − r2, t0) ⊂ R3 × (0, T ) and all non-negative ϕ ∈ C∞
c (Q), we have

the local energy inequality

2

∫∫
|∇u|2ϕ dx dt ≤

∫∫
|u|2(∂tϕ+∆ϕ) dx dt+

∫∫
(|u|2 + 2p)(u · ∇ϕ) dx dt, (2.5)

6. the function

t 7→
∫

u(x, t) · w(x) dx, (2.6)
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is continuous in t ∈ [0, T ), for any compactly supported w ∈ L2(R3).

Local energy solutions were shown to satisfy the following a priori bound in [40]: Let

u0 ∈ E2, div u0 = 0 and assume u is a local energy solution with data u0. For all r > 0 we

have

ess sup
0≤t≤σr2

sup
x0∈R3

∫
Br(x0)

|u|2

2
dx dt+ sup

x0∈R3

∫ σr2

0

∫
Br(x0)

|∇u|2 dx dt < CA0(r), (2.7)

where

A0(r) = rN0
r = sup

x0∈R3

∫
Br(x0)

|u0|2 dx,

and

σ = σ(r) = c0 min
{
(N0

r )
−2, 1

}
, (2.8)

for a small universal constant c0 > 0.

The class of of DSS functions in L3,∞ can be identified with the critical weak Lebesgue

space L3
w. This space embeds continuously in L2

uloc. This is a natural class to investigate

self-similar and DSS solutions as the existence of DSS local energy solutions with large

data in L3
w was proven in [10]. We define solutions with data in L3,∞ introduced by Barker,

Seregin and Šverák in [7].

Definition 2.9 (L3,∞ weak solution). ) Let T > 0 be finite. Assume u0 ∈ L3,∞ is

divergence free. We say that u and an associated pressure p comprise a L3,∞ weak solution

if

1. (u, p) satisfies (1.1) distributionally,

2. u satisfies the local energy inequality (2.5),

3. for every w ∈ L2, the function

t →
∫

u(x, t) · w(x) dx,
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is continuous on [0, T ],

4. ũ := u− et∆u0 satisfies, for all t ∈ (0, T ),

sup
0<s<t

∥ũ∥2L2(s) +

(∫ t

0

∥∇ũ∥2L2(s) ds

) 1
2

< ∞, (2.9)

and

∥ũ∥22 + 2

∫ t

0

∫
|∇ũ|2 dx ds ≤ 2

∫ t

0

∫
(et∆u0 ⊗ ũ+ et∆u0 ⊗ et∆u0)(∇ũ) dx ds (2.10)

The fact that L3,∞ weak solutions are a sub-class of local energy solutions is proven in

Appendix A.

2.3 Mild solutions

To define mild solutions, we begin with some background from [65]. For a moment,

consider the nonstationary stokes system on R3 × (0, T ) given by

∂tu−∆u+∇p = f,

div u = 0, u|t=0 = u0.

(2.11)

This system has a fundamental solution known as the Oseen tensor [60]

Sij(t, x) = Γ(t, x)δij +
1

4π

∂2

∂xi
∂xj

∫
Γ(t, y)

x− y
dy,

where Γ is the fundamental solution of the heat equation. Next, denote the Helmholtz

projection by P : Lq → Lq
σ, for 1 < q < ∞. This is a bounded operator which sends Lq

functions to their divergence free counterparts. The Stokes operator A generates a
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contraction semigroup {etA : t ≥ 0}, so the solution to (2.11) is formally given by

u(t) = e−tAu0 −
∫ t

0

e−(t−s)APf(s) ds. (2.12)

Because we work on R3 with no boundary we adopt the notation A = −∆. The

Navier-Stokes equations with zero forcing can be written as

∂tu+∆u+ P(u · ∇u) = 0, u(0) = u0. (2.13)

This is formally equivalent to

u(t) = et∆u0 −B(u, u)(t), (2.14)

where

B(u, v)(t) =

∫ t

0

e(t−s)∆P∂j(ujv)(s) ds. (2.15)

We now define mild solutions.

Definition 2.10 ([65]). Let 0 < T ≤ ∞. Let X be a Banach space of vector valued

functions defined in R3 × (0, T ) such that P0(t) = et∆u0 ∈ X for certain u0 and the bilinear

map B(u, v) can be interpreted as a bounded bilinear map B : X ×X → X. A mild

solution of (2.14) in X with initial data u0 is some u ∈ X such that u = P0 −B(u, u) in X.

Mild solutions are known to exist on R3 × (0, T ) for Lq data with q ≥ 3 with T

dependent on the initial data. These solutions have properties of regularity and uniqueness

outlined in [65]. We have a short-time unique existence result: for any u0 ∈ Lq
σ(R3), q > 3,
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there is a unique mild solution u of (2.14) satisfying

u ∈ BC([0, T );Lq
σ), T ≥ C∥u0∥

− 2q
q−3

q . (2.16)

For L3 data, global existence holds because L∞L3 and Ls
tL

q
x with 3/q + 2/s = 1 are

critical norms. Let 3 < q2 < ∞. For any u0 ∈ L3
σ(R3), there is a T > 0 and a mild solution

u of (2.14) in the class

t1/s(q)u ∈ BC([0, T );Lq
σ),

1

s(q)
=

1

2
− 3

2q
, ∀q ∈ [3, q2]. (2.17)

We also have as t → 0, t1/s(q)u(t) → 0 in Lq for q > 3 and to u0 for q = 3. The solution is

unique in the class (2.17). There also exists a universal constant ε > 0 such that if

∥u0∥L3 < ε, the solution u is global, i.e. we can take T = ∞.

The last result on mild solutions we cite pertains to properties inherited by weak

solutions that are also mild. For u0 ∈ L2
σ ∩ L3

σ, the mild solution above is a Leray-Hopf

weak solution satisfying the energy identity on [0, T ] [65].

All of the self-similar and DSS solutions constructed in [40, 67, 53, 10, 25, 1] are mild

due to sufficient conditions in [52, 15]. In fact, the local pressure expansion (2.4) in the

definition of local energy solutions is equivalent to being mild. Therefore, local energy and

L3,∞ weak solutions are mild.

Lastly, we present the following lemma used to bound the heat evolution of Lr data for

r > 1.

Lemma 2.1 ([65]). Let 1 < r ≤ q < ∞ and σ = σ(q, r) = 3
2
(1
r
− 1

q
) ≥ 0. We have

∥e−t∆Pu0∥Lq ≤ Ct−σ∥a∥Lr

∥∇e−t∆Pu0∥Lq ≤ Ct−σ−1/2∥a∥Lr

sup
j

∥e−t∆P∂xj
u0∥Lq ≤ Ct−σ−1/2∥a∥Lr ,

(2.18)
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for all t > 0.

This implies a standard mild solution estimate from [26, 42] and [65, Ch. 5],

∥B(f, g)∥Lp(t) ≲
∫ t

0

1

(t− s)
1
2
+ 3

2
( 1
q
− 1

p
)
∥f ⊗ g∥Lq(s) ds. (2.19)
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3 Literature survey

We survey some literature essential to the results that follow.

3.1 A new proof of the Caffarelli-Kohn-Nirenberg theorem

We begin by introducing the following regularity criteria of Lin [57]. This lemma states

that a suitable solution to (1.1) is regular given certain 0-dimensional weighted integrals

are small over a parabolic cylinder.

Lemma 3.1 (ε-Regularity [57]). There exists a universal small constant ε∗ > 0 such that if

the pair (u, p) is a suitable weak solution of (NS) in Qr(x0, t0) = Br(x0)× (t0 − r2, t0),

Br(x0) ⊂ R3, and

ε3 =
1

r2

∫
Qr

(|u|3 + |p|
3
2 ) dx dt < ε∗, (3.1)

then u ∈ L∞(Q r
2
). Moreover,

∥∇ku∥L∞(Q r
2
) ≤ Ckεr

−k−1, (3.2)

for universal constants Ck where k ∈ N0.

For DSS solutions with data in sub-critical spaces, we can control these 0 dimensional

integrals via interpolation. Then ε-regularity gives a L∞ bound in an annulus which may

be extended to the sub-paraboloid region by scaling. If a flow is self-similar, globally

regular, or λ ∼ 1 as in [67], then this region is all of R4
+.
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3.2 On stability of weak Navier-Stokes solutions with large L3,∞ initial

data

In [7], Barker, Seregin and Šverák develop the theory of L3,∞ weak solutions. This

extends ideas in [63] and has since been extended to non-endpoint critical Besov spaces of

negative smoothness in [1], which is discussed below.

These solutions are shown to exist globally in time and are known to be mild. It is also

shown in [7] that L3,∞ weak solutions satisfy the following dimensionless estimate

sup
0<s<t

∥u− P0∥2L2(s) +

∫ t

0

∥∇(u− P0)∥2L2(s) ds ≲u0 t
1
2 , (3.3)

where the dependence on u0 is in terms of ∥u0∥L3,∞ . This is established in [1] for higher

Picard iterates. We use this result to deplete a time singularity at t = 0, as this energy

vanishes at t = 0. We derive other dimensionless estimates in Theorem 4.12 which serve as

new a priori estimates for these solutions which we use to control the growth of solutions

in the far-field.

3.3 Global Weak Besov Solutions of the Navier-Stokes Equations and

Applications

Weak Besov solutions are a weaker class than local energy solutions which generalize

L3,∞ weak solutions. In [1], it is shown that for u0 ∈ Ḃ
−1+3/p
p,∞ , p > 3, the weak Besov

solution u to (1.1) and the Picard iterate Pk = Pk(u0) satisfy

sup
0<s<t

∥u− Pk∥2L2(s) + 2

∫ t

0

∥∇(u− Pk)∥2L2(s) ds ≲u0,k t
1
2 , (3.4)

for k ≥ ⌈p
2
⌉ − 2. This is a consequence of [1, Lemma 2.2].

These estimates are used as the basis of our Picard improvement techniques. It is also

shown that Picard iterates belong to the Kato classes, i.e. if u0 ∈ Ḃ
−1+3/p
p,∞ for some p > 3,
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then for k ≥ 0, Pk(u0) ∈ Kp. Because L3,∞ ↪→ Ḃ
−1+3/p
p,∞ for all p > 3, when u0 ∈ L3,∞ we

have Pk(u0) ∈ Kp for all p > 3. It follows that (3.4) holds for local energy solutions for all

k ≥ 0.

We also have the following bound by [1, (2.32)]

∥Pk∥XT
:= ∥Pk∥K∞ + sup

x∈R3

sup
R∈(0,

√
T )

R−3/2∥Pk∥L2(BR(x)×(0,R2))

≤ C(k, p, ∥u0∥Ḃ−1+3/p
p,∞

).

(3.5)

Thus, u0 ∈ Ḃ
−1+3/p
p,∞ implies Pk ∈ (L2

x,t)loc.

Note that both of (3.3) and (3.4) imply the following separation rate.

For two solutions, u, v in the local energy class evolving from the same data, we have

the following global bound

∥u− v∥L2 ≲ ∥u− P0∥L2 + ∥P0 − v∥L2 ≲ t
1
4 ,

which allows rapid separation at small times.

3.4 Local-in-space estimates near initial time for weak solutions of the

Navier-Stokes equations and forward self similar solutions

Our foundation for the proof of the main results is local smoothing [40]. Since L3,∞

weak solutions are local energy solutions and L3,∞ ⊂ L2
uloc, we may use the following

theorem.

Theorem 3.2 (Local smoothing [40, Theorem 3.1]). Let u0 ∈ E2 be divergence free.

Suppose u0|B2(0) ∈ Lp(B2(0)) for p > 3. Decompose u0 = U0 + U ′
0 with

divU0 = 0, U0|B4/3
= u0, suppU0 ⋐ B2(0) and ∥U0∥Lp(R3) < C(p, ∥u0∥Lp(B2(0))). Let U be

the locally-in-time defined mild solution to (1.1) with initial data U0. Then, there exists a

positive T = T (p, ∥u0∥L2
uloc

, ∥u0∥Lp(B2(0))) such that any local energy solution u with data u0
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satisfies

∥u− U∥Cγ
par(B 1

2
×[0,T ]) ≤ C(p, ∥u0∥L2

uloc
, ∥u0∥Lp(B2(0))), (3.6)

for some γ = γ(p) ∈ (0, 1).

This gives us another preliminary perspective on separation rates. For any two local

energy solutions u, v satisfying the above,

∥u− v∥L∞(B 1
2
) ≲ ∥u− U∥L∞(B 1

2
) + ∥U − v∥L∞(B 1

2
) ≲ t

γ
2 .

This still allows a very large gap for separation at small times, and our goal is to increase

the exponent on t as large as possible by using Picard iteration to create finer estimates.

3.5 An ϵ-regularity criterion and estimates of the regular set for

Navier-Stokes flows in terms of initial data

The following theorem defines the radius of far-field regularity R0. This appears

throughout our DSS results as a restriction on the domain where asymptotics hold.

Theorem 3.3 (Far-field regularity [43, Theorem 1.8]). Fix λ > 1. Let u be a λ-DSS local

energy solution of the Navier-Stokes equations in R3 × (0, T ) with divergence free, λ-DSS

initial data u0 ∈ E2. Then there exists R0 = R0(u0) > 0 so that u is smooth and bounded on

{(x, t) : |x| ≥ R0

√
t; 1 ≤ t ≤ λ2}.

This implies smoothness on {(x, t) : |x| ≥ R0

√
t}. Furthermore, there exists λ0(u0) > 1 so

that if 1 ≤ λ ≤ λ0, then u is globally smooth.

The proof of the theorem and our usage of R0 both arise from taking a DSS solution

far enough out (|x| ≥ R0) so that (u, p) become sufficiently small to apply ε-regularity
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(Lemma 3.1). Then we can extend our asymptotics using using DSS scaling to the

sub-paraboloid region.

3.6 Estimates for solutions of a non-stationary linearized system of

Navier-Stokes equations

We prove an integral estimate (Lemma 4.1) which is an central tool in our work which

helps us demonstrate an improvement from the operator B. To use this estimate in our

Lq
loc results, we need the following bounds on the derivatives of the Oseen kernel.

Lemma 3.4 (Bound for derivatives of the Oseen tensor,[64]). The operator et∆P∇· (where

P is the Helmholtz projection) in R3 with kernel ∇S(x, t) has the following bound:

|Dl
x∂

m
t Sj,k(x, t)| ≤ C(t

1
2 + |x|)−3−l−2m, ∀l,m ∈ Z+.

3.7 Forward discretely self-similar solutions of the Navier-Stokes

equations

In [67], Tsai extends the work in [40] and proves the existence of large, forward DSS

solutions. He also quantifies decay rates for the solution and its non-linear part for data in

Cα
loc and C1,α

loc .

Theorem 3.5 ([67], Theorem 1.1). For any 0 < α < 1 and C∗ > 0 there is a

λ∗ = λ∗(α,C∗) ∈ (1, 2) such that the following hold. Suppose u0 ∈ Cα
loc(R3 \ {0}),

∥u0∥Cα(B2\B1)
≤ C∗, div u0 = 0, and u0 is DSS with factor λ ∈ (1, λ∗]. There is a local

Leray solution u of (1.1) with initial data u0 that is DSS with factor λ, and for

v(·, t) := u(·, t)− et∆u0

|u(x, t)| ≤ C

|x|+
√
t
, |v(x, t)| ≤ C

√
t

|x|2 + t
, (3.7)

in R4
+ with C = C(α,C∗). It is also a mild solution in the class (3.7). If, furthermore, ∥u0
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C1,α(B2\B1)
≤ C∗, then

|v(x, t)| ≤ Ct
3
2

(|x|+
√
t)3

log

(
1 +

|x|√
t

)
, |Dxv(x, t)| ≤

Ct
3
2

(|x|+
√
t)3

, (3.8)

in R4
+ with C = C(α,C∗).

We improve these results by obtaining (3.7) for L∞
loc(R3 \ {0}) data and creating a scale

of results depending on q > 3 for Lq
loc(R3 \ {0}) data. We also improve on (3.8) by

developing a scale of results depending on 0 < α < 1 for Cα
loc(R3 \ {0}) data and drop the

logarithm for C1,α
loc (R3 \ {0}) data without Dx.

3.8 Optimal local smoothing and analyticity rate estimates for the

generalized Navier-Stokes equations

In [24], pointwise bounds for the Oseen tensor involving fractional powers of the

Laplacian are established and we recall the details modified slightly to match our notation.

First, define the fractional Laplacian Λ = (−∆)
1
2 by the singular integral operator

Λαf(x) = cα

∫
f(x)− f(y)

|x− y|3+α
dy,

where

cα =
4αΓ(3+α

2
)

π
3
2Γ(−α

2
)
.

This is equivalent to the definition via Fourier multipliers, i.e.

(Λαf)∧(ξ) = |ξ|αf̂(ξ).

Proposition 3.6 ([24], Proposition 3.1). Let Sj,k denote the Oseen kernel. For any integer
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m ≥ 0 and −1 < α ≤ 1,

∣∣(|x|+ 1)3+m+αDmΛαSj,k

∣∣ (x, 1) ≲m,α 1, ∀x ∈ Rd. (3.9)

We use this estimate in the following form

∣∣∇Λ−βSj,k

∣∣ (x, t) ≲β (|x|+
√
t)−4+β, (3.10)

where 0 < β < 1. This allows us to apply a fractional power of the Laplacian to the kernel

and the ‘other half’ to P0. This is essential in avoiding a cubic power on the Oseen kernel

in the proof of decay for Cα
loc and C1,α

loc data.

3.9 Forward Self-Similar Solutions of the Fractional Navier-Stokes

Equations

We also look to improve the results in the papers of Lai, Miao, and Zheng [55, 56] which

we presently state, omitting the details of the fractional Navier-Stokes considered therein.

Theorem 3.7 ([55, Theorem 1.1]). Let u0 =
σ(x)
|x| with σ(x) = σ(x/|x|) ∈ L∞(S2) which

satisfies div u0 = 0 in R3 \ {0}. Then (1.1) admits at least one forward self-similar solution

u ∈ BCw([0,∞), L3,∞(R3)) such that

1. for each p ∈ [2, 6], ∥u(t)− et∆u0∥Lp(R3) ≤ Ct
1
2
(1+ 3

p
)−1,

2. u(x, t) is smooth in R4
+,

3. we have the following pointwise estimates

|u(x, t)| ≲ C

|x|+
√
t
, and |u(x, t)− et∆u0| ≤

Ct

|x|3 + t
3
2

log

(
1 +

|x|√
t

)
, (3.11)

for all (x, t) ∈ R4
+.
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3.10 Global regularity of weak solutions to the generalized Leray

equations and its applications

Theorem 3.7 is expanded in [56] with the following theorem.

Theorem 3.8 ([56, Corollary 1.1]). Let u0 =
σ(x)
|x| with σ(x) = σ(x/|x|) ∈ C0,1(S2) which

satisfies div u0 = 0 in R3 in the distribution sense. Then (1.1) admits at least one forward

self-similar solution u ∈ BCw([0,∞), L3,∞(R3)) such that

|u(x, t)| ≲ C

(|x|+
√
t)

and |u(x, t)− et∆u0| ≤
C
√
t

(|x|+
√
t)2

(3.12)

for all (x, t) ∈ R4
+. Moreover if σ(x) = σ(x/|x|) ∈ C1,1(S2), we have

|u(x, t)− et∆u0| ≤
Ct

(|x|+
√
t)3

(3.13)

for all (x, t) ∈ R4
+.

The proofs of these results rely on the fact that a self-similar solution u is completely

determined by its profile U(x) = u(x, 1). They investigate the decay properties of the

profile V (x) := U(x)− e∆u0(x).

We make specific use of their proof technique in the proof of [56, Proposition 4.4] in

which they decompose the integral form of V into a near-, mid-, and far-field. The mid-

and far-field have cubic decay, and the near-field is treated separately. Here, we use mean

value theorem to introduce another gradient into the integral of B(P0, P0) to make full use

of the C1,1 assumption and obtain cubic decay.

We utilize this technique along with fractional powers of the Laplacian to obtain this

cubic decay with a C1,α assumption, as any space stronger than C1,0 is enough to avoid the

logarithm obtained by integrating the cubic power of the Oseen kernel.
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4 Preliminaries

In this section, we work through all estimates, Lemmas, and Corollaries needed to

prove our main results. This section constitutes joint work with Dr. Zachary Bradshaw.

4.1 Integral estimates

The following estimate is inspired by [67]. We use this to improve the exponent of the

decay at each iterative step up to a limit of a = 4.

Lemma 4.1. For a ∈ [0, 5) and b ∈ [0, 2), where a+ b < 5

∫ t

0

∫
R3

1

(|x− y|+
√
t− s)4

1

(|y|+
√
s)a

1
√
s
b
dy ds ≤ C

√
t
min{a,4}−1

(|x|+
√
t)min{a,4}.

(4.1)

Proof. Fix t = 1 and let R = |x|+ 2. Using partial fraction decomposition, we show the

above integral is bounded. Provided a+ b < 5 and b < 2,

sup
R≤8

∫ 1

0

∫
1

(|x− y|+
√
1− s)4

1

(|y|+
√
s)a

1
√
s
b
dy ds

≲
∫ 1

0

∫ (
1

(|y|+
√
1− s)4

+
1

(|y|+
√
s)a

)
1

√
s
b
dy ds

≲
∫ 1

0

1√
1− s

1
√
s
b
+

1
√
s
a−3

1
√
s
b
ds

≲
∫ 1

0

1√
1− s

+
1

√
s
b
ds+ 1

≲ 1 ≲
1

Rmin{a,4} .

(4.2)

Hence, we only need to verify the bound for R > 8. First, we consider the far-field,

|y| > 2R, where, for b < 2,

∫ 1

0

∫
|y|>2R

1

(|x− y|+
√
1− s)4

1

(|y|+
√
s)a

1
√
s
b
dy ds ≲

∫ 1

0

1
√
s
b
ds

∫
|y|>2R

1

|y|4+a
dy

≲
1

R1+a
.

(4.3)
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Next, we consider the region where |y| < R/2. Because R > 8 we find

∫ 1

0

∫
|y|<R

2

1

(|x− y|+
√
1− s)4

1

(|y|+
√
s)a

1
√
s
b
dy ds

≲
∫ 1

0

∫
|y|<R

2

1

R4

1

(|y|+
√
s)a

1
√
s
b
dy ds

≲
1

R4

∫ 1

0

1
√
s
b

∫
|y|<R

2

1

(|y|+
√
s)a

dy ds,

(4.4)

for a ̸= 3. Passing to spherical coordinates yields

1

R4

∫ 1

0

1
√
s
b

∫
|y|<R

2

1

(|y|+
√
s)a

dy ds ≲
1

R4

∫ 1

0

1
√
s
b

∫ R
2

0

(r +
√
s)−ar2 dr ds

≲
1

R4

∫ 1

0

1
√
s
b

((
R

2
+
√
s

)3−a

−
√
s
3−a

)
ds

≲

(
1

R1+a
+

1

R4

)∫ 1

0

1
√
s
a+b−3

ds

≲
1

R1+a
+

1

R4
,

(4.5)

for a+ b < 5. If a = 3, then, similarly, passing to spherical coordinates yields

∫ 1

0

∫
|y|<R

2

1

(|x− y|+
√
1− s)4

1

(|y|+
√
s)3

1
√
s
b
dy ds ≲

ln(R + 1)

R4
+

1

R4
≲

1

Ra
+

1

R4
, (4.6)

for b < 2 since a = 3 < 4.

We treat the final region, R/2 < |y| < 2R, with the substitution z = x− y where

|z| ≤ |x|+ |y| ≤ 3R. We find

∫ 1

0

∫
R/2<|y|<2R

1

(|x− y|+
√
1− s)4

1

(|y|+
√
s)a

1
√
s
b
dy ds

≲
1

Ra

∫ 1

0

1
√
s
b

∫
|z|<3R

1

(|z|+
√
1− s)4

dz ds

≲
1

Ra

∫ 1

0

1
√
s
b

(
− 1

3R +
√
1− s

+
1√
1− s

)
ds ≲

1

Ra
+

1

Ra+1
,

(4.7)
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where we passed to spherical coordinates to evaluate the spatial integral.

Then for all x,

∫ 1

0

∫
1

(|x− y|+
√
1− s)4

1

(|y|+
√
s)a

1
√
s
b
dy ds ≤ C

(|x|+ 2)a
+

C

(|x|+ 2)4
, (4.8)

To conclude the proof we make the change of variables x =
√
tx̃, y =

√
tỹ and s = ts̃. This

substitution and the above bound lead to

∫ t

0

∫
1

(|x− y|+
√
t− s)4

1

(|y|+
√
s)a

1
√
s
b
dy ds ≤ 1√

t

(
C

(|x̃|+ 2)a
+

C

(|x̃|+ 2)4

)
≤ C

√
t
1−a

(|x|+
√
t)a

+
Ct3

(|x|+
√
t)4

.

(4.9)

Note this resembles a result from [67, Lemma 2.1]. Let a, b ∈ (0, 5) and a+ b > 3. Then

ϕ(x, a, b) =

∫ 1

0

∫
R3

(|x− y|+
√
1− t)−a(|y|+

√
t)−b dy dt, (4.10)

is well defined for x ∈ R3, and

ϕ(x, a, b) ≲ R−a +R−b +R3−a−b[1 + (1a=3 + 1b=3) logR], (4.11)

where R = |x|+ 2. We utilize this result, as well, re-scaled to all times.

4.2 Estimates for the heat equation

In this subsection, we state and prove a variety of results on the decay of scaling

invariant solutions to the heat equation. These are foundational for the proof of the decay

of u− P0. Let Ak = {x ∈ R3 : λk ≤ |x| < λk+1} and A∗
k = {x : λk−1 ≤ |x| < λk+2}.
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Lemma 4.2. Assume f ∈ Lq
loc(R3 \ {0}) where 3 < q ≤ ∞ and satisfies for some λ > 1,

λσkf(λkx) = f(x),

where σ ∈
(
3
q
,∞
)

(σ = 1 corresponds to being DSS). Then

sup
t∈[1,λ2]

∥et∆f∥L∞(Bc
R) ≲λ ∥f∥Lq(A1)R

3
q
−σ. (4.12)

We allow different scaling factors in order to apply this theorem to derivatives of DSS

data. This conclusion is discussed without proof in [10] where it is shown for q = 3, there is

no algebraic decay rate available.

Proof. By the assumed scaling property, we only need to show, for t ∈ [1, λ2],

∥et∆f∥L∞(Ak) ≲ λk( 3
q
−σ),

where the suppressed constants are independent of k. Fix x ∈ Ak, and decompose the heat

evolution into a near-, mid-, and far-field

et∆f =
c

t3/2

∫
e−

|x−y|2
4t f(y) dy

≲
∫
|y|<λk−1

e−
|x−y|2

4λ2 f(y) dy +

∫
y∈A∗

k

e−
|x−y|2

4λ2 f(y) dy

+

∫
|y|≥λk+2

e−
|x−y|2

4λ2 f(y) dy

=:I1 + I2 + I3.

(4.13)
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To bound I1, we use Hölder’s inequality and |x− y| ≥ λk − λk−1 to find

∥I1∥L∞(Ak) ≤ ∥e−
|x−y|2

4λ2 ∥L∞(|y|<λk−1)∥f∥L1(|y|<λk−1)

≤ e−
(λk−λk−1)2

4λ2 ∥f∥L1(|y|<λk−1)

≲λ e−λ2k−4
∑

k′∈Z:k′≤k−2

∥f∥L1(Ak′ )
.

(4.14)

By the scaling for f ∈ Lq(A1),

∥f∥L1(Ak) ≲ m(Ak)
1− 1

q ∥f∥Lq(Ak) ≲ m(Ak)
1− 1

qλ
3k
q

(∫
A1

|f(λkz)|q dz
)1/q

≲ m(Ak)
1− 1

qλ(
3
q
−σ)k∥f∥Lq(A1).

(4.15)

This implies

∥I1∥L∞(Ak) ≲ e−λ2k−4
∑

k′∈Z:k′≤k−2

m(Ak′)
1− 1

qλ(
3
q
−σ)k′∥f∥Lq(A1)

≲λ e−λ2k−4
∑

k′∈Z:k′≤k−2

λ3k′(1− 1
q
)λ(

3
q
−σ)k′∥f∥Lq(A1)

≲λ e−λ2k−4 λ(3−σ)(k−2)

1− λ3−σ
∥f∥Lq(A1),

(4.16)

by taking the limit of the geometric series. As k → ∞, the Gaussian dominates any

algebraic growth. Hence,

∥I1∥L∞(Ak) ≲λ λk( 3
q
−σ)∥f∥Lq(A1).

For I2, by Young’s inequality and DSS scaling,

∥I2∥L∞(Ak) ≤ ∥e−
|·|2

4λ2 ∥
L

q
q−1

∥fχAk
∥Lq ≲λ λk( 3

q
−σ)∥f∥Lq(A1), (4.17)

via a similar scaling computation as in (4.15). This determines the power of R in the

lemma’s statement.
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Finally, for I3, we sum over the annuli Ak′ , k′ ≥ k + 2, and find

∥I3∥L∞(Ak) ≤
∑

k′≥k+2

e−
λ2k

′

4λ2 m(Ak′)
1− 1

q ∥f∥Lq(Ak′ )

≲λ

∑
k′≥k+2

e−
λ2k

′

4λ2 λ3k′(1− 1
q
)λk′( 3

q
−σ)∥f∥Lq(A1)

≲λ ∥f∥Lq(A1)

∑
k′≥k+2

e−
λ2k

′

4λ2 λ(3−σ)k′ ,

(4.18)

using (4.15). Again, the Gaussian dominates any algebraic growth, and we conclude

∥I3∥L∞(Ak) ≲λ λk( 3
q
−σ)∥f∥Lq(A1).

Therefore,

∥et∆f∥L∞(Ak) ≲λ λk( 3
q
−σ),

with the suppressed constants independent of k. This implies (4.12).

Our next lemma states fractional derivatives of Hölder space data are bounded up to,

but not including, the Hölder exponent.

Lemma 4.3. Let 0 < α < 1 and m ∈ (N0)
3 be a multi-index with |m| ≤ 1. If

u0 ∈ C
|m|,α
loc (R3 \ {0}) is DSS, then for all β ∈ (0, α),

ΛβDmu0 ∈ L∞
loc(R3 \ {0}).

Proof. By scaling, it suffices to show ΛβDmu0 ∈ L∞(A1). To begin, we fix x ∈ A1 and

decompose the integral operator into near- and far-fields

ΛβDmu0(x) ≲

(∫
|x−y|≤λ−1

+

∫
|x−y|>λ−1

)
1

|x− y|3+β
(Dmu0(x)−Dmu0(y)) dy

=:J1(x, t) + J2(x, t).

(4.19)
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For the near-field, J1, for β < α,

|J1| =
∫
|x−y|≤λ−1

1

|x− y|3+β
(Dmu0(x)−Dmu0(y)) dy

≲ ∥u0∥C|m|,α(A∗
1)

∫
|x−y|≤λ−1

1

|x− y|3+β−α
dy

≲λ,u0,α,β 1.

(4.20)

Next, because u0 ∈ C
|m|
loc is DSS it decays like |x|−|m|−1. This allows us to bound J2 by

|J2| ≤
∫
|x−y|>λ−1

|Dmu0(y)|+ |Dmu0(x)|
|x− y|3+β

dy

≲u0,λ

∫
|x−y|>λ−1

1

|x− y|3+β

1

|y||m|+1
dy + λ−|m|−1

∫
|x−y|>λ−1

1

|x− y|3+β
dy

≲u0,λ

(∫
|x−y|>λ−1,|y|>λ−1

+

∫
|y|≤λ−1

)
1

|x− y|3+β

1

|y||m|+1
dy + 1

≲u0,λ λ−|m|−1

∫
|x−y|>λ−1,|y|>λ−1

1

|x− y|3+β
dy + λ−3−β

∫
|y|≤λ−1

1

|y||m|+1
dy + 1

≲u0,λ 1,

(4.21)

for β > 0 and |m| ∈ {0, 1}. Hence, DmΛβu0(x) ∈ L∞(A1), and our proof is complete by

scaling.

Now, we may prove the following corollary to Lemma 4.2. These decay rates are central

to our proof of C1,α decay.

Corollary 4.4. Fix a multi-index m ∈ (N0)
3, |m| ≤ 1, and β ∈ (0, 2). If

ΛβDmu0 ∈ L∞
loc(R3 \ {0}), then

sup
t∈[1,λ2]

|ΛβDmet∆u0(x, t)| ≲λ,u0,α,β
1

(|x|+ 1)1+|m|+β
. (4.22)

Proof. By Lemma 4.3, we have ΛβDmu0 ∈ L∞
loc(R3 \ {0}). We show ΛβDmu0 has scaling

factor σ = 1+ |m|+ β, and apply Lemma 4.2 with q = ∞ and f = ΛβDmu0. This scaling is
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clear from the calculation

ΛβDmu0(x) = λ3k+βk

∫
λ(1+|m|)k(Dmu0)(λ

kx)− λ(1+|m|)k(Dmu0)(λ
ky)

|λkx− λky|3+β
dy

= λ(1+|m|+β)k

∫
(Dmu0)(λ

kx)−Dmu0(y)

|λkx− y|3+β
dy

= λ(1+|m|+β)k(ΛβDmu0)(λ
kx).

(4.23)

Then we rewrite ΛβDmet∆u0 = et∆ΛβDmu0 by the boundedness of these derivatives.

Applying Lemma 4.2 leads us to

sup
t∈[1,λ2]

|ΛβDmet∆u0(x, t)| ≲λ,u0,α,β
1

(|x|+ 1)1+|m|+β
.

The next lemma states that derivatives of the heat evolution enjoy improved decay

when the initial data is Hölder continuous.

Lemma 4.5. Assume f ∈ Cα
loc(R3 \ {0}) where 0 < α < 1 and satisfies, for some λ > 1,

λσkf(λkx) = f(x),

where σ < 3. Then

sup
t∈[1,λ2]

∥∇et∆f∥L∞(Bc
R) ≲λ ∥f∥Cα(A0)R

−(σ+α).

Proof. It suffices to prove, for t ∈ [1, λ2],

sup
t∈[1,λ2]

∥∇et∆f∥L∞(Ak) ≲ λ−(σ+α)k∥f∥Cα(A0),

where the suppressed constants are independent of k. Let x ∈ Ak. Note that

∂ie
t∆f(x) =

∫
R3

c

t
5
2

(xi − yi)e
− |x−y|2

4t f(y) dy. (4.24)
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Since (xi − yi)e
− |x−y|2

4t is mean zero on spheres centered at x,

∂ie
t∆f(x) ≲

∫
|x−y|<λk−1

(xi − yi)e
− |x−y|2

4λ2 (f(y)− f(x)) dy

+

∫
x−y∈A∗

k

(xi − yi)e
− |x−y|2

4λ2 f(y) dy

+

∫
|x−y|≥λk+2

(xi − yi)e
− |x−y|2

4λ2 f(y) dy

=: I1(x) + I2(x) + I3(x).

(4.25)

For I1, because x, y ∈ Bλk−1 ,

|f(x)− f(y)| = λ−σk|f(λ−kx)− f(λ−ky)|
λkα|λ−kx− λ−ky|α

|x− y|α ≲ [f ]Cα(A0)
1

λk(σ+α)
|x− y|α.

Therefore,

|I1|(x) ≲
[f ]Cα(A0)

λk(σ+α)

∫
|x−y|<λk−1

|x− y|1+αe−
|x−y|2

4λ2 dy.

By the growth of the Gaussian, the integral above is bounded independently of k for

t ∈ [1, λ2]. So, we have

∥I1∥L∞(Ak)(t) ≲α,λ

[f ]Cα(A0)

λk(σ+α)
.

This determines the power of R in the lemma’s statement.

For I2, because x ∈ Ak and x− y ∈ A∗
k, |y| < λk+2 + λk+1,

∥I2∥L∞
x (Ak) ≤ λk+2e−

λ2k−2

4λ2 ∥f∥L1(|y|<λk+1(λ+1)).
(4.26)
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Because |f(y)| ≲λ
∥f∥L∞(A0)

|y|σ

∥f∥L1(|y|<λk+1(λ+1)) ≲λ ∥f∥L∞(A0)

∫
|y|<λk+1(λ+1)

1

|y|σ
dy ≲λ λ(3−σ)k∥f∥L∞(A0), (4.27)

for σ < 3. Therefore,

∥I2∥L∞
x (Ak) ≲λ λ(4−σ)k∥f∥L∞(A0)e

−λ2k−2

4λ2 . (4.28)

As k → ∞, the Gaussian dominates any algebraic growth. Hence,

∥I2∥L∞(Ak) ≲λ λ−(σ+α)k∥f∥Cα(A0).

Finally, for I3, we sum over the annuli Ak′ , k′ ≥ k + 2, and find

∥I3∥L∞(Ak)(t) ≤
∑

k′≥k+2

λk′e−
λ2k

′

4λ2 ∥f∥L1(A∗
k′ )

≤
∑

k′≥k+2

e−
λ2k

′

4λ2 λ(4−σ)k′∥f∥L∞(A0),

(4.29)

where we used the σ-scaling. Again, the Gaussian dominates any algebraic growth so the

preceding series is summable. We conclude

∥I3∥L∞(Ak) ≲λ λ−(σ+α)k∥f∥L∞(A0).

Lemma 4.5 suggests a similar result should hold for fractional derivatives of order

between α and 1.
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Lemma 4.6. Assume f ∈ Cα
loc(R3 \ {0}) where 0 < α < 1 and satisfies, for some λ > 1,

λσkf(λkx) = f(x),

where σ < 3. Fix γ ∈ (α, 1). Then

sup
t∈[1,λ2]

∥Λγet∆f∥L∞(Bc
R) ≲λ ∥f∥Cα(A0)R

−(σ+α).

Proof. It suffices to prove for t ∈ [1, λ2],

sup
t∈[1,λ2]

∥Λγet∆f∥L∞(Ak) ≲ λ−(σ+α)k∥f∥Cα(A0),

where the suppressed constants are independent of k. Let x ∈ Ak. Note that

Λγet∆f(x) =

∫
R3

c

t
3
2

Λγ
xe

− |x−y|2
4t f(y) dy. (4.30)

Since
(
Λγ

xe
− |x−y|2

4t

)∧
(0) = 0, Λγ

xe
− |x−y|2

4t is mean zero on R3. Hence,

Λγet∆f(x) ≲
∫
|x−y|<λk

Λγ
xe

− |x−y|2

4λ2 (f(y)− f(x)) dy

+

∫
|x−y|≥λk

Λγ
xe

− |x−y|2

4λ2 (f(y)− f(x)) dy

=: I1(x) + I2(x).

(4.31)

For I1, because x, y ∈ Bλk−1

|f(x)− f(y)| = λ−σk|f(λ−kx)− f(λ−ky)|
λkα|λ−kx− λ−ky|α

|x− y|α ≲ [f ]Cα(A0)
1

λk(σ+α)
|x− y|α.
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Therefore,

|I1|(x) ≲
[f ]Cα(A0)

λk(σ+α)

∫
|x−y|<λk

|x− y|αΛγ
xe

− |x−y|2

4λ2 dy.

We claim that

Λγ
xe

− |x|2

4λ2 ≲λ
1

|x|3+γ
. (4.32)

This implies that

∥I1∥L∞(Ak) ≲α,λ

[f ]Cα(A0)

λk(σ+α)

∫
|x−y|<λk

1

|x− y|3+γ−α
dy ≲α,λ

[f ]Cα(A0)

λk(σ+α)
,

which determines the power of R in the lemma’s statement.

For I2, by the scaling of f and claim (4.32),

I2(x) ≲λ

∫
|x−y|≥λk

Λγ
xe

− |x−y|2

4λ2 f(x) dy +

∫
|x−y|≥λk,|y|≥λk

Λγ
xe

− |x−y|2

4λ2 f(y) dy

+

∫
|x−y|≥λk,|y|<λk

Λγ
xe

− |x−y|2

4λ2 f(y) dy

≲λλ
−kσ

∫
|x−y|≥λk

1

|x− y|3+γ
dy + λ−k(3+γ)

∫
|x−y|≥λk,|y|<λk

1

|y|σ
dy

≲λλ
−k(σ+γ),

(4.33)

for σ < 3. Because γ > α we conclude that

∥Λγet∆f∥L∞(Ak) ≲λ λ−(σ+α)k∥f∥Cα(A0).
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To show the claim (4.32), for x ∈ Ak, we write

Λγe−
|x|2

4λ2 ≲
∫
R3

1

|x− y|3+γ

(
e−

|y|2

4λ2 − e−
|x|2

4λ2

)
dy

≲λ

∫
|x−y|<λk−1

1

|x− y|3+γ

(
e−

|y|2

4λ2 − e−
|x|2

4λ2

)
dy

+

∫
x−y∈A∗

k

1

|x− y|3+γ

(
e−

|y|2

4λ2 − e−
|x|2

4λ2

)
dy

+

∫
|x−y|≥λk+2

1

|x− y|3+γ

(
e−

|y|2

4λ2 − e−
|x|2

4λ2

)
dy

=: J1(x) + J2(x) + J3(x).

(4.34)

For J1, since x and y are close, we can write

J1(x) ≲
∫
|x−y|<λk−1

1

|x− y|2+γ
dy∥∇e−

|y|2

4λ2 ∥L∞(Ak)

≲ λ(1−γ)(k−1)λk+2e−
λ2k−2

4λ2 ≲λ e−λ2k

.

(4.35)

For the mid-field, J2, we find

J2(x) ≲ ∥|z|−3−γ∥L1(A∗
k)
e−

λ2k

4λ2 ≲λ e−λ2k

. (4.36)

Lastly, for J3,

J3(x) ≲
∫
|x−y|≥λk+2

1

|x− y|3+γ

(
e−

|y|2

4λ2 − e−
|x|2

4λ2

)
dy ≲λ λ−(k+2)(3+γ). (4.37)

Because λk−1 ≤ |x| < λk+2 we can rewrite these bounds in terms of decay in x to get

(4.32).

Remark 1. We expect α < γ is necessary in Lemma 4.6. If this were true for α = γ, this

result would imply for DSS function f , that f ∈ Cα
loc(R3 \ {0}) which is equivalent to

Λαf ∈ L∞
loc(R3 \ {0}) because f would have decay as in (4.22) with |m| = 0.
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This should not be true for general elements of Cα
loc(R3 \ {0}) because Cα is equivalent

to Bα
∞,∞(R3 \ {0}), i.e. f̂ decays like 2−αk in annuli 2k ≤ ξ < 2k+1 on the Fourier side. It

follows that Λαf is locally bounded on the Fourier side, i.e. in (B0
∞,∞)loc(R3 \ {0}). This is

strictly weaker than L∞
loc(R3 \ {0}).

4.3 A commutator estimate

The following section is dedicated to proving estimates for Λβ(P0 ⊗ P0). The following

lemmas allow us to navigate a commutator to obtain better decay for solutions with Cα

data and eliminate logarithms in our decay results for solutions with C1,α data.

First, we show the heat evolution of locally Hölder data remains in the same Hölder

space, locally.

Lemma 4.7. Fix a multi-index m ∈ (N0)
3, |m| ≤ 1. If u0 ∈ C

|m|,α
loc (R3 \ {0}) is DSS, then

∥P0∥Cmax{|m|,α}(A1)(t) ≲ ∥u0∥Cmax{|m|,α}(A1), (4.38)

for t > 0.

Proof. For u0 ∈ C
|m|,α
loc (R3 \ {0}) it follows that et∆u0 ∈ C

|m|,α
loc (R3 \ {0}). In fact, choosing a

cutoff ϕ, a smooth function such that suppϕ ⊂ Bλ−2 , ϕ|Bλ−3 ≡ 1 and

supp∇ϕ ⊂ {x : λ−3 ≤ |x| ≤ λ−2}, we see that

∥et∆(u0(1− ϕ))∥Cmax{|m|,α}(A1) ≲ ∥u0∥Cmax{|m|,α}(A1),

for t > 0, by Lemma 2.1. For the remaining part, et∆(u0ϕ), fix x ∈ A1. We bound et∆(u0ϕ)
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in C1(A1) for t > 0

∂ie
t∆(u0ϕ)(x) ≲

∫
R3

(xi − yi)

t
5
2

e−
|x−y|2

4t (u0ϕ)(y) dy

≲
λ+ λ−2

t
5
2

e−
(λ+λ−2)2

4t

∫
R3

(u0ϕ)(y) dy

≲ ∥u0∥L∞
loc

λ+ λ−2

t
5
2

e−
(λ+λ−2)2

4t

∫
Bλ−2

1

|y|
dy

≲ ∥u0∥L∞
loc

λ+ λ−2

t
5
2

e−
(λ+λ−2)2

4t λ−4

≲λ ∥u0∥L∞
loc
.

(4.39)

Hence,

∥∇et∆(u0ϕ)∥L∞(A1)(t) ≲ ∥u0∥L∞
loc
,

for t > 0. Thus et∆(u0ϕ) ∈ C1(A1) ⊂ Cα(A1) for t > 0, with

∥∇et∆(u0ϕ)∥Cmax{|m|,α}(A1)(t) ≲ ∥u0∥Cmax{|m|,α}(A1).

This implies the conclusion(4.38).

Now we may prove an estimate to navigate the commutator Λβ(· ⊗ ·).

Lemma 4.8 (Commutator decay). Fix α ∈ (0, 1) and a multi-index m ∈ (N0)
3, |m| ≤ 1. If

u0 ∈ C
|m|,α
loc (R3 \ {0}) is DSS, then for t ∈ [1, λ2] and β ∈

(
0, (2− |m|)α

)
,

ΛβDm · (P0 ⊗ P0)(x, t) ≲u0,λ,α,β P0iΛ
βDmP0j(x, t) + P0jΛ

βDmP0i(x, t) +O
(

1

|x|2+|m|+β

)
,

for 1 ≤ i, j ≤ 3, where P0i is the ith component of P0.

We use this in the proof of decay for flows with Cα
loc data with |m| = 0 and β < α and

the C1,α
loc proof with |m| = 1 and β = γ > α, but we combine the two results here due to the

similarity.
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Proof. For |m| = 0, we can rewrite each term as

Λβ(P0iP0j)(x, t) =

∫
P0i(y)P0j(y)− P0i(x)P0j(x)

|x− y|3+β
dy

=

∫
P0i(y)P0j(y)− P0i(x)P0j(y) + P0i(x)P0j(y)− P0i(x)P0j(x)

|x− y|3+β
dy

=

∫
P0i(x)

P0j(y)− P0j(x)

|x− y|3+β
+

P0j(y)(P0i(y)− P0i(x))

|x− y|3+β
dy

= P0i(x, t)Λ
βP0j(x, t) +

∫
P0j(x)

(P0i(y)− P0i(x))

|x− y|3+β
dy

+

∫
(P0i(y)− P0i(x))(P0j(y)− P0j(x))

|x− y|3+β
dy

= P0iΛ
βP0j(x, t) + P0jΛ

βP0i(x, t)

+

∫
(P0i(x)− P0i(y))(P0j(x)− P0j(y))

|x− y|3+β
dy,

where we have suppressed the dependence of P0 on t in the integrals for readability.

For |m| = 1, because the operator Λβ∂kP0(x) integrates P0(x)− P0(y) against the

kernel xk−yk
|x−y|5+β we find, similarly, that

Λβ∂k(P0iP0j)(x, t) = P0iΛ
β∂kP0j(x, t) + P0jΛ

β∂kP0i(x, t)

+

∫
(xk − yk)

|x− y|5+β
(P0i(x)− P0i(y))(P0j(x)− P0j(y)) dy.

Hence, the asymptotics of the final term follow from bounding an integral of the form

∫
1

|x− y|3+|m|+β
(P0i(x)− P0i(y))(P0j(x)− P0j(y)) dy, |m| ≤ 1.

We break the above integral into three domains: |x− y| < |x|
2

, |x− y| > |x|
2

and |y| > |x|
2

,

and |y| < |x|
2

. First, we consider |x− y| < |x|
2

, i.e.,

∫
|x−y|< |x|

2

1

|x− y|3+|m|+β
(P0i(x)− P0i(y))(P0j(x)− P0j(y)) dy. (4.40)
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By Lemma 4.7,

∥P0∥Cmax{|m|,α}(A1)(t) ≲ ∥u0∥Cmax{|m|,α}(A1), (4.41)

for t > 0. By DSS scaling, we have

sup
y∈B|x|/2(x)

|P0(x, t)− P0(y, t)|
|x− y|α

≲λ
1

|x|1+α
[P0]Cα(A1),

and for |m| = 1,

sup
y∈B|x|/2(x)

|P0(x, t)− P0(y, t)|
|x− y|

≲λ
1

|x|2
[P0]C1(A1),

uniformly in t. Hence,

∣∣∣∣∣
∫
|x−y|< |x|

2

1

|x− y|3+|m|+β
(P0i(x)− P0i(y))(P0j(x)− P0j(y)) dy

∣∣∣∣∣
≲
∫
|x−y|< |x|

2

1

|x− y|3+|m|+β−2max{|m|,α}
|P0i(x)− P0i(y)|
|x− y|max{|m|,α}

|P0j(x)− P0j(y)|
|x− y|max{|m|,α} dy

≲λ,u0

1

|x|2+2max{|m|,α}

∫
|x−y|< |x|

2

1

|x− y|3+|m|+β−2max{|m|,α} dy

≲λ,u0

1

|x|2+|m|+β
,

(4.42)

provided β < max{|m|, 2α− |m|}.

Next, we consider the region where |x− y| > |x|
2

and |y| > |x|
2

. Because

|P0(y, t)| ≲λ,u0

1
|y| by Lemma 4.2 for |y| > |x|/2, we find

∣∣∣∣∣
∫
|x−y|> |x|

2
;|y|> |x|

2

1

|x− y|3+|m|+β
(P0i(x)− P0i(y))(P0j(x)− P0j(y)) dy

∣∣∣∣∣
≲λ,u0

1

|x|2

∫
|x−y|> |x|

2
;|y|> |x|

2

1

|x− y|3+|m|+β
dy ≲λ,u0

1

|x|2+|m|+β
,

(4.43)
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for β > 0. The final region is |y| < |x|
2

. By the same decay for P0, we find

∣∣∣∣∣
∫
|y|< |x|

2

1

|x− y|3+|m|+β
(P0i(x)− P0i(y))(P0j(x)− P0j(y)) dy

∣∣∣∣∣
≲λ,u0

∫
|y|< |x|

2

1

|x− y|3+|m|+β

1

|y|2
dy

≲λ,u0

1

|x|3+|m|+β

∫
|y|< |x|

2

1

|y|2
dy

≲λ,u0

1

|x|2+|m|+β
,

(4.44)

and our proof is complete.

This lemma applies to both β < α and β ≥ α. For clarity, we use γ for fractional

derivatives greater than α, as is done in Lemma 4.6.

4.4 Properties of Picard iterates

In the follow subsection, we prove properties for higher Picard iterates of data in Lq
loc

or L3,∞ ∩ Lq(B), for some ball B ⊂ R3. We begin by showing the pointwise decay of P0

evolving from sub-critical data is inherited by higher Picard iterates.

Lemma 4.9. Fix 3 < q ≤ ∞. Assume, for all (x, t) ∈ R3 × (0,∞),

P0(x, t) ≲
1

√
t
3
q (|x|+

√
t)1−

3
q

.

Then for all k ∈ N and all (x, t) ∈ R3 × (0,∞),

Pk(x, t) ≲k,P0

1
√
t
3
q (|x|+

√
t)1−

3
q

.

Proof. Note that

Pk − P0 = B(Pk−1, Pk−1) =

∫ t

0

e(t−s)∆P∇ · (Pk−1 ⊗ Pk−1)(·, s) ds,
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decays algebraically faster than Pk−1 by Lemma 4.1. Namely, using Lemma 4.1,

|Pk − P0| ≲k,P0

∫ t

0

∫
R3

1

(|x− y|+
√
t− s)4

1
√
s

6
q (|y|+

√
s)2−

6
q

dy ds

≲k,P0

1
√
t
6
q
−1
(|x|+

√
t)2−

6
q

.

(4.45)

This implies Pk and P0 have the same decay.

Now, we show an estimate of the heat kernel in Lorentz space which will be used later

in the proof of local sub-critical inclusion of Picard iterates.

Lemma 4.10. Let B = BR(x0) and B′ := Br(x0) where 0 < r < R < ∞. Then for

0 < t < ∞,

∥∥∥∥∥e− |x−y|2
4t (1− χB)∥

L
3
2 ,1
y

∥∥∥∥
L∞
x (B′)

≲R,r e
−(R−r)2

4t . (4.46)

Proof. First, assume without loss of generality that x0 = 0. Then letting x ∈ B′,

∥e−
|x−y|2

4t (1− χB)∥
L

3
2 ,1
y

=
3

2

∫ ∞

0

m

{
y : e−

|x−y|2
4t (1− χB(y)) ≥ s

} 2
3

ds, (4.47)

where m is Lebesgue measure. The above set can be written as

A(x, t) = {y : |x− y| ≤
√
−4t ln(s), |y| > R} = B(x, (−4t ln(s))

1
2 ) \BR(0).

This is well-defined because t ≥ 0 and s ≤ 1.
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We, therefore, conclude

∥∥∥∥∥e− |x−y|2
4t (1− χB(y))∥

L
3
2 ,1
y

∥∥∥∥
L∞
x (B′)

≲

∥∥∥∥∫ ∞

0

m(A(x, t))
2
3 ds

∥∥∥∥
L∞
x (B)

≲
∫ e

−(R−r)2

4t

0

| − 4t ln(s)| ds

≲ 4t

(
e

−(R−r)2

4t
(R− r)2

4t
+ e

−(R−r)2

4t

)
≲R,r e

−(R−r)2

4t .

(4.48)

This leads to a local a priori inclusion for Picard iterates.

Lemma 4.11. Let B = BR(x0) and B′ = Br(x0) where 0 < r < R < ∞. Let u0 ∈ L3,∞

with u0|B ∈ Lq(B), for some 3 < q ≤ ∞. It follows that Pk ∈ L∞(0,∞;Lq(B′)) with

∥Pk0∥L∞(0,∞;Lq(B0)) ≤ C(k0, R, ∥u0∥L3,∞).

Proof. Because Pk ∈ Kq when q > 3 for τ > 0,

sup
τ<s<∞

∥Pk∥Lq(s) ≲τ,k ∥u0∥L3,∞ .

So, we need only prove the estimate for a short time. Let {Bk}k0k=0 be a collection of

concentric balls about x0 of shrinking radii αk+1R for some α ∈ (0, 1). Fix k0 ∈ N0. Choose

α such that r = αk0+1R.
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We can estimate P0 = et∆u0 as a near-field and a far-field term by decompising

∥P0∥Lq(B0)(t) =

∥∥∥∥∫
R3

1

t
3
2

e−
|x−y|2

4t u0(y) dy

∥∥∥∥
Lq(B0)

=

∥∥∥∥(∫
Bc

+

∫
B

)
t−

3
2 e−

|x−y|2
4t u0(y) dy

∥∥∥∥
Lq(B0)

≲ ∥u0∥L3,∞t−
3
2

∥∥∥∥∥e− |x−y|2
4t (1− χB(y))∥

L
3
2 ,1
y

∥∥∥∥
Lq
x(B0)

+
∥∥et∆(χB(y)u0)

∥∥
Lq(R3)

.

(4.49)

We apply Lemma 4.10 to find

∥∥∥∥∥e− |x−y|2
4t (1− χB(y))∥

L
3
2 ,1
y

∥∥∥∥
Lq
x(B0)

≲R,α,q

∥∥∥∥∥e− |x−y|2
4t (1− χB(y))∥

L
3
2 ,1
y

∥∥∥∥
L∞
x (B0)

≲R,α e
−(R(1−α))2

4t .

(4.50)

For the near field term, by [65, Lemma 5.1],

∥et∆(u0χB)∥Lq(R3) ≲ ∥u0χB∥Lq(R3) ≲ ∥u0∥Lq(B). (4.51)

Because these estimates are uniform in time for t ≤ τ it follows that

∥P0∥L∞(0,t;Lq(B′)) ≲R,α ∥u0∥L3,∞ + ∥u0∥Lq(B). (4.52)

If k0 = 0, we are done. Otherwise, for k0 > 0, we continue by induction. Observe

B(Pk−1, Pk−1) = B(Pk−1χBk−1
, Pk−1) +B(Pk−1(1− χBk−1

), Pk−1).
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In the near-field, by (2.19),

∥B(Pk−1χBk−1
, Pk−1)∥Lq(Bk)(t) ≲q ∥Pk∥K∞

∫ t

0

1

(t− s)
1
2 s

1
2

∥Pk−1∥Lq(Bk−1)(s) ds

≲k,q ∥u0∥L3,∞∥Pk−1∥Lq(Bk−1)(t).

For far-field, by the pointwise estimate for the kernel K of the Oseen tensor in Lemma 3.4

and Pk−1 ∈ K4, we have

∥B(Pk−1(1− χBk−1
), Pk−1)∥Lq(Bk)(t) ≲

∥∥∥∥∥
∫ t

0

∫
Bc

k−1

Pk−1 ⊗ Pk−1(y, s)

(|x− y|+
√
t− s)4

dy ds

∥∥∥∥∥
Lq(Bk)

≲R,α,k,q ∥| · |−4∥L2(|·|>R(αk−αk+1))

∫ t

0

∥Pk−1∥2L4 ds

≲R,α,k,q

∫ t

0

s(−1+ 3
4
) ds ≲R,α,k,q t

3
4 .

This shows B(Pk−1, Pk−1) ∈ L∞(0,∞;Lq(B0)) whenever Pk−1 is in L∞(0, T ;Lq(Bk−1).

Hence,

Pk = P0 −B(Pk−1, Pk−1) ∈ L∞(0,∞;Lq(Bk)).

This extends up to k0 so Pk0 ∈ L∞(0,∞;Lq(B′)), with

∥Pk0∥L∞(0,∞;Lq(B0)) ≤ C(k0, R, ∥u0∥L3,∞).

Remark 2. Together, (4.49) and (4.50) imply

∥et∆(u0(1− χB))∥L∞(B′)(t) ≲T ∥u0∥L3,∞t−
3
2q , (4.53)

provided t < T , for any given time T . Combining this with the classical estimates for the

heat evolution of u0 ∈ Lp (Lemma 2.1) we also have ∥et∆u0χB∥L∞(B′) ≲ t−
3
2q ∥u0∥Lq(B).
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Hence,

∥et∆u0∥L∞(B′)(t) ≲u0,T t−
3
2q .

We use this fact in the asymptotic expansion in Theorem 1.7.

4.5 A-priori estimate for L3,∞ weak solutions

In this subsection, we prove Proposition 4.12 which we use to control u− Pk in the

far-field in the proof of Theorem 1.7.

Proposition 4.12. Fix q ∈ (3/2, 3), T > 0 and k ∈ N. Assume u0 ∈ L3,∞ and is divergence

free. Let u be an L3,∞ weak solution with initial data u0. It follows that, for r = 2q
2q−3

,

∥u− Pk∥Lr(0,T ;Lq) ≲k,q,u0 T
1
2 .

Proof. First, we decompose

u− Pk = −B(u− Pk−1, u− Pk−1)−B(Pk, u− Pk−1)−B(u− Pk−1, Pk),

for k ≥ 1. We show this estimate holds for each term. By Yamazaki [66, Theorem 2.2] each

of these terms has the bound

∥B(u− Pk, u− Pk)∥Lq,1 ≲
∫ t

0

1

(t− s)
1
2

∥(u− Pk)
2∥Lq,1(s) ds

≲
∫ t

0

1

(t− s)
1
2

∥u− Pk∥2L2q,2(s) ds,

(4.54)
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and

∥B(Pk, u− Pk−1) +B(u− Pk−1, Pk)∥Lq,1 ≲
∫ t

0

1

(t− s)
1
2

∥Pk(u− Pk)∥Lq,1(s) ds

≲
∫ t

0

1

(t− s)
1
2

(
∥Pk∥2L2q,∞ + ∥u− Pk∥2L2q,1

)
ds

≲
∫ t

0

1

(t− s)
1
2

(
∥Pk∥2L2q + ∥u− Pk∥2L2q,1

)
ds.

(4.55)

We first consider Pk in L2q. Because Pk ∈ K2q,

∫ t

0

1

(t− s)
1
2

∥Pk∥2L2q ds ≲
∫ t

0

1

(t− s)
1
2 s1−

3
2q

∥Pk∥2K2q
ds

≲k,q,u0 t
3
2q

− 1
2 .

(4.56)

Then

∥B(Pk, u− Pk)∥Lr(0,T ;Lq,1) ≲k,q,u0

(∫ T

0

(
t

3
2q

− 1
2

)r
dt

) 1
r

≲k,q,u0 T
3
2q

− 1
2
+ 1

r ≲k,q,u0 T
1
2 ,

for r = 2q
2q−3

.

To bound ∥u− Pk∥L2q,β we use the extension of the Gagliardo-Nirenberg inequality to

the Lorentz scale [23, Corollary 2.2]. For β > 0 and

1

p̃
=

θ

q̃
+ (1− θ)

(
1

2
− 1

3

)
,

we have

∥f∥Lp̃,β ≲p̃,q̃,β ∥f∥θLq̃,∞∥∇f∥1−θ
L2 , (4.57)
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for 1 ≤ q̃ < p̃ < ∞ and 3/2− 3/p̃ < 1. Fix p̃ = 2q < 6 and q̃ = 2. Then θ is given by

3

2q
− 1

2
= θ.

Because 1 < q < 3 the other conditions above are met. Also note L2 ⊂ L2,∞ embeds

continuously. This gives

∥B(u− Pk, u− Pk)∥Lq,1(t) ≲q

∫ t

0

1

(t− s)
1
2

∥u− Pk∥2θL2∥∇(u− Pk)∥2(1−θ)

L2 ds

≲k,q,u0 t
θ
2

∫ t

0

1

(t− s)
1
2

∥∇(u− Pk)∥2(1−θ)

L2 ds,

(4.58)

where we used (3.4). For t ∈ (0, T ),

∫ t

0

1

(t− s)
1
2

∥∇(u− Pk)∥2(1−θ)

L2 ds =

∫
R

1

|t− s| 12
∥∇(u− Pk)∥2(1−θ)

L2 (s)χ(0,T )(s) ds,

and the right-hand side can be viewed as I 1
2
(∥∇(u− Pk)∥2(1−θ)

L2 χ(0,T )) where I 1
2

is a Riesz

potential in 1D. The Hardy-Littlewood-Sobolev inequality states

∥∥∥I 1
2
∥∇(u− Pk)∥2(1−θ)

L2 χ(0,T )

∥∥∥
Lr(R)

≲r

∥∥∥∥∇(u− Pk)∥2(1−θ)

L2 χ(0,T )

∥∥∥
Lr̃(R)

,

where
1

r
=

1

r̃
− 1

2
.

The selection

r̃ =
1

1− θ
; r =

2

1− 2θ
,

is valid for the Hardy-Littlewood-Sobolev inequality provided 3/2 < q. The choice q = 3/2,

θ = 1/2 and r = ∞ is not permitted in the Hardy-Littlewood-Sobolev inequality. Letting
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r = 2q
2q−3

and putting the above observations together leads to

∥B(u− Pk, u− Pk)∥Lr(0,T ;Lq,1) ≲k,q,u0 T
θ
2

∥∥∥∇(u− Pk)∥2(1−θ)

L2 χ(0,T )

∥∥
Lr̃(R)

≲k,q,u0 T
θ
2∥∇(u− Pk)∥

2
r̃

L2(0,T ;L2)

≲k,q,u0 T
θ
2T

1
2r̃ = T

1
2 ,

(4.59)

by (3.4). The result follows.

4.6 Decay for locally sub-critical (u, p)

The following lemma achieves the desired decay in Theorem 1.1 assuming u and p are

locally sub-critical.

Lemma 4.13. Let ε > 0 be given and q > 3. Suppose u is a λ-DSS local energy solution to

(1.1) with divergence free, DSS data in E2. Assume u satisfies

max{ sup
0<s<T

∥u∥Lq(A∗
0)
, sup
0<s<T

∥p∥Lq/2(A∗
0)
} < ε,

for some T > 0. Then

|∇lu|(x, t) ≲λ,l,u0

ε
√
t
3
q
+l
(|x|+

√
t)1−

3
q

for |x| ≥ R0

√
t.

Proof. Let x0 ∈ Ak, then

∫ 1

0

∫
B1(x0)

|u|3(y, s) dy ds ≲λ |x0|3(
3
q
−1) sup

0<s≲λ|x0|−2

∫
B 1

λk
(
x0
λk

)

|u|q dy ≲ |x0|3(1−
3
q
)ε3,

and, likewise, for p,

∫ 1

0

∫
B1(x0)

|p|3/2(y, s) dy ds ≲λ |x0|3(
3
q
−1) sup

0<s≲λ|x0|−2

∫
B 1

λk
(
x0
λk

)

|p|q/2 dy ≲ |x0|3(1−
3
q
)ε3.
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Then by Lemma 3.1 we have

|∇lu|(x0, t) ≲λ |x0|
3
q
−1ε,

for t ∈ [0, 1
2
], by taking x0 sufficiently large so that |x0|3(1−

3
q
)ε3 < ε∗. We may repeat this

over parabolic cylinders of the form B1(x0)× [1
2
, 1
2
+ δ2] to cover all of t ∈ [3

4
, 3
4
+ λ2], a full

period of t. Then

|∇lu|(x0, t) ≲λ (|x0|+ 1)
3
q
−1ε,

for |x0| >> 1. Now let t > 0 and |x| ≥ R0

√
t, and t̃ = λ−2kt ∈ [1, λ2] and x̃ = λ−kx By DSS

scaling, we conclude

|∇lu|(x, t) = λk(1−l)|∇lu|(x̃, t̃) ≲λ
ελk(1−l)

(|x̃|+ 1)1−
3
q

≲λ
ε(λk)

3
q
−l

(|x|+ λk)1−
3
q

≲λ
ε
√
t
3
q
−l

(|x|+
√
t)1−

3
q

.

(4.60)
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5 Results

We now prove the main results introduced in Section 1. This section constitutes joint

work with Dr. Zachary Bradshaw.

5.1 Properties of DSS local energy solutions

5.1.1 Decay when u0 ∈ Lq
loc(R3 \ {0}), q > 3

Proof. We will show the assumptions of Theorem 4.13 hold for DSS local energy solutions

with data u0 ∈ Lq
loc(R3 \ {0}), q > 3.

Fix x0 ∈ A0. By Theorem 3.2 we can find U , a local-in-time mild solution on

B2(x0)× (0, T ′), with data U0, such that u− U ∈ Cγ
par(B 1

2
(x0)× (0, T ′)) and

u− U ∈ L∞(0, T ′;Lq(B 1
2
(x0)).

Because U is mild with data in Lq(B2(x0)) by sub-critical local well-posedness [26],

U ∈ L∞(0, T ′;Lq(B 1
2
(x0)). This implies that u ∈ L∞(0, T ′;Lq(B 1

2
(x0)). We repeat this

process of local smoothing to cover A0 and find u ∈ L∞(0, T ′;Lq(A0)).

Next, we show the associated pressure p is in L∞(0, T ′;Lq/2(A0)). To achieve this, we

decompose

p(x, t) = [(−∆)−1 div div]ij(uiuj) =: p1 + p2 + p3,

where

p1(x, t) := [(−∆)−1 div div]ij(uiujχBλ−1 (x0)),

p2(x, t) := [(−∆)−1 div div]ij(uiujχA∗
0
), and

p3(x, t) := [(−∆)−1 div div]ij(uiuj(1− χBλ2 (x0))).

(5.1)

By a priori estimates for local energy solutions [15, Theorem 1.4], we have

∥p1∥L∞(A0×(0,T )) ≲ ∥u0∥2L2
uloc

.
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Next, [(−∆)−1 div div]ij is bounded on Lq/2(R3) because it is a Calderon Zygmund

operator. Therefore u ∈ L∞(0, T ;Lq(A0)) implies p2 ∈ L∞(0, T ;L
q
2 (A0)).

For the term p3, we write explicitly

p3(x, t) =

∫
Kij(x)(uiuj(1− χBλ2 (x0)))(x− y) dy,

where Kij decays like |x|−3. This is bounded by the sum

|p3| ≤
∑
k≥2

λ−3k

(∫
Ak

|u|2 dy
)1/2

.

To bound this using u ∈ L∞(0, T ;Lq(A0)), we apply DSS scaling to scale the integral into

A0 and use Hölder’s inequality introduce the Lq-norm to find

|p3| ≤
∑
k≥2

λ−3k

(∫
Ak

|u|2 dy
)1/2

≤
∑
k≥2

λ−3kλ3k(1−2/q)

(∫
Ak

|u|q dy
)2/q

≤
∑
k≥2

λ−6k/q

(
λ(3−q)k

∫
A0

|u|q(y, λ−kt) dy

)2/q

≤
∑
k≥2

λ−2k sup
t

∥u∥2Lq(A0)

≤ 1

1− λ−2
sup
t

∥u∥2Lq(A0)
.

(5.2)

This shows p3 ∈ L∞(A0 × (0, T )). Thus p ∈ L∞(0, T ;Lq/2(A0)). The decay (1.3) follows

from Lemma 4.13.

Next, we prove an asymptotic improvement for the ‘non-linear’ part of the flow.

Proof of Theorem 1.2. Fix t ∈ [1, λ2] and |x| ≥ R0

√
t. For the improved decay of u− P0,

first note u− P0 = −B(u, u). We decompose

B(u, u) =

∫ t

0

(∫
|y|≥R0

√
t

+

∫
|y|<R0

√
t

)
∇S(x− y, t− s) · P(u⊗ u) dy ds = I1(x, t) + I2(x, t).

For the sub-parabolioid region, using the local boundedness of u in L2, the decay for the
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Oseen kernel(Lemma 3.4), and Hölder’s inequality we find

|I1|(x, t) ≲
∫ t

0

∫
|y|≥R0

√
t

1

(|x− y|+
√
t− s)4

|u|2(y, s) dy ds ≲λ
1

|x|4
∥u∥2L2(BλR0

). (5.3)

For the region above the paraboloid, we use the decay for u (1.3), the bound for derivatives

of the Oseen kernel (Lemma 3.4) and the product structure of B to find

|I2|(x, t) ≲
∫ t

0

∫
R3

1

(|x− y|+
√
t− s)4

ε
√
t
− 6

q

(|y|+
√
s)2−

6
q

≲λ
ε

(|x|+ 1)2−
6
q

. (5.4)

Together (5.3),(5.4) imply

|u− P0|(x, t) ≲λ
ε

(|x|+ 1)2−
6
q

,

for t ∈ [1, λ2], |x| ≥ R0

√
t.

Now, let t > 0 and |x| ≥ R0

√
t, and t̃ = λ−2kt ∈ [1, λ2] and x̃ = λ−kx. By DSS scaling,

we conclude

|u− P0|(x, t) = λk|u− P0|(x̃, t̃) ≲λ
ελk

(|x̃|+ 1)2−
6
q

≲λ
ε(λk)

6
q
−1

(|x|+ λk)2−
6
q

≲λ
ε
√
t
6
q
−1

(|x|+
√
t)2−

6
q

.

(5.5)

5.1.2 Picard improvement for u0 ∈ Lq
loc(R3 \ {0}), q > 3

Next, we develop decay rates for the difference with the Picard iterates, u− Pk, using

techniques similar to those above, and the inherited decay of Pk (Lemma 4.9).
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Proof of Theorem 1.5. Denote by ak the following

ak = (k + 2)

(
1− 3

q

)
= ak−1 + 1− 3

q
.

Note ak < 4 precisely when k < 4q
q−3

− 2. This limits our improvement. Our base case is

|u− P0|(x, t) ≲λ,R0,u0

√
t
2− 6

q

√
t(|x|+

√
t)2−

6
q

,

which follows by Theorem 1.2. For induction, assume for |x| ≥ R0

√
t,

|u− Pk|(x, t) ≲k,λ,R0,u0

√
t
ak

√
t(|x|+

√
t)ak

. (5.6)

Now, fix t ∈ [1, λ2]. We can expand u− Pk+1 as

u− Pk+1 = P0 −B(u, u)− Pk+1

= −B(u, u) +B(Pk, Pk)

= −B(u, u− Pk)−B(u, Pk) +B(Pk, Pk)

= −B(u− Pk, u− Pk)−B(Pk, u− Pk)−B(u− Pk, Pk),

(5.7)

where we used the bilinearity of B and the definition of Pk+1. Next, using the bound for

the Oseen kernel in Lemma 3.4, we estimate each term by breaking each integral into

near-field and far-field terms as follows

|u− Pk+1| ≲
∫ t

0

∫
BR0

√
t

1

(|x− y|+
√
t− s)4

(
|u− Pk|2 + |u− Pk||Pk|

)
dy ds

+

∫ t

0

∫
Bc

R0
√
t

1

(|x− y|+
√
t− s)4

(
|u− Pk|2 + |u− Pk||Pk|

)
dy ds

=:Ik+1(x, t) + Jk+1(x, t).

(5.8)
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Using the decay for Pk in Lemma 4.9 and Lemma 4.1 we find

Jk+1(x, t) ≲
∫ t

0

∫
Bc

R0
√

t

1

(|x− y|+
√
t− s)4

√
s
min{2ak,4}−2

(|y|+
√
s)min{2ak,4}

+

∫ t

0

∫
Bc

R0
√
t

1

(|x− y|+
√
t− s)4

√
s
ak−1− 3

q

(|y|+
√
s)ak+1

dy ds

≲
1

(|x|+ 1)min{2ak,4}
+

1

(|x|+ 1)ak+1
.

(5.9)

Because the second term decays more slowly we conclude

Jk+1(x, t) ≲k
1

(|x|+ 1)ak+1
,

in the sub-paraboloid region.

For Ik+1, by a priori estimates for local energy solutions, we have

∥u∥L∞(0,λ2;L2(BλR0
)) ≲λ,R0 ∥u0∥L2

uloc
.

By [58], we also have

∥P0∥L∞(0,λ2;L2(BλR0
)) ≲λ,R0 ∥u0∥L2

uloc
.

Then by Hölder’s inequality,

Ik+1(x, t)

∫ t

0

∫
BR0

√
t

1

(|x− y|+
√
t− s)4

(
|u− Pk|2 + |Pk|2

)
dy ds

≲
1

(|x|+ 1)4
(
∥u∥2L2(BλR0

) + ∥Pk∥2L2(BλR0
)

)
.

(5.10)

This presents a limitation on ak. Together, these estimates imply

|u− Pk+1| ≲k,λ,R0,u0

1

(|x|+ 1)min{ak+1,4}
, (5.11)
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for |x| ≥ R0

√
t.

Hence, by DSS scaling,

|u− Pk+1| ≲k,λ,R0,u0

√
t
min{ak+1,4}−1

(|x|+
√
t)min{ak+1,4}

, (5.12)

for |x| ≥ R0

√
t.

For k ≥ kq := ⌈ 4q
q−3

− 3⌉, we find that ak ≥ 4 and so

|u− Pk| ≲kq ,λ,R0,u0

√
t
3

(|x|+
√
t)4

. (5.13)

5.1.3 Decay when u0 ∈ Cα
loc(R3 \ {0}), 0 < α < 1

In this subsection, we pursue improved decay rates for solutions with more regular data

in Hölder spaces.

Proof of Theorem 1.3. We begin by expanding

u− P0 = −B(u, u) = −B(u, u− P0)−B(u− P0, P0)−B(P0, P0). (5.14)

Note P0 decays algebraically slower than u− P0, so the last term is expected to decay the

slowest. We begin by showing B(u, u− P0) and B(u− P0, P0) have cubic decay.

Fix t ∈ [1, λ2] and |x| ≥ 2R0

√
t. Using Lemma 3.4 to bound the kernel and breaking

the integrals into near- and far-field, we find

|B(u, u− P0)|(x, t) ≲
(∫ t

0

∫
|y|≥R0

√
t

+

∫ t

0

∫
|y|<R0

√
t

)
|u|(y, s)|u− P0|(y, s)
(|x− y|+

√
t− s)4

dy ds

=: I1(x, t) + I2(x, t).

(5.15)
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By Theorems 1.1 and 1.2, with q = ∞

I1(x, t) ≲
∫ t

0

∫
1

(|x− y|+
√
t− s)4

√
s

(|y|+
√
s)3

dy ds ≲
1

(|x|+ 1)3
. (5.16)

We extend this from t ∈ [1, λ2] to all t by scaling. On the other hand, by the a priori

bounds of u and P0 in L2
loc and noting |x| ∼ |x− y| due to our choice of x and y, we have

I2(x, t) ≲
1

|x|4
∥u0∥2L2

uloc
.

Since |x| > 1 when t ∈ [1, λ2], by re-scaling we obtain

|B(u, u− P0)| ≲
t3/2

(|x|+
√
t)4

.

Since P0 and u have the same decay properties and bound in L2
uloc, the same bound follows

for B(u− P0, P0) using Lemma 4.2 alongside Theorem 1.2 in the far-field integral.

To treat the last term B(P0, P0), we consider two cases: α < 1 and α = 1. First, we let

α < 1 and fix γ ∈ (α,min(1, 2α)) to apply Lemma 4.8. We rewrite B(P0, P0) using the

fractional Laplacian Λ = (−∆)
1
2 and properties of Fourier multipliers as

B(P0, P0)(x, t) =

∫ t

0

∫
R3

S(x− y, t− s)∇ · (P0 ⊗ P0)(y, s) dy ds

=

∫ t

0

∫
R3

∇Λ−γS(x− y, t− s)Λγ(P0 ⊗ P0)(y, s) dy ds.

(5.17)

We bound the fractional derivative of the Oseen Kernel using Theorem 3.6 by

∣∣∇Λ−γS(x− y, t− s)
∣∣ ≲ 1

(|x− y|+
√
t− s)4−γ

.

We navigate the commutator using Lemma 4.8 applied with |m| = 0, which states, for
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0 < γ < 2α,

Λγ(P0 ⊗ P0)(y, s) = P0iΛ
γP0j(y, s) + P0jΛ

γP0i(y, s) +O

(
1

(|y|+ 1)2+γ

)
.

By scaling and using the decay for fractional derivatives of P0 in Lemma 4.6, and taking

γ > α, we find

ΛγP0(y, s) ≲
1

(|y|+
√
s)1+α

, (5.18)

and using |P0|(y, s) ≲ (|y|+
√
s)−1 gives

Λγ(P0 ⊗ P0)(y, s) ≲

(
1

(|y|+
√
s)2+α

+
1

(|y|+
√
s)2+γ

)
≲

1

(|y|+
√
s)2+α

. (5.19)

Therefore,

|B(P0, P0)|(x, t) ≲
∫ t

0

∫
R3

1

(|x− y|+
√
t− s)4−γ

C

(|y|+
√
s)2+α

dy ds

≲
t
1+α
2

(|x|+
√
t)2+α

,

(5.20)

using a re-scaled version of (4.11).

Next, for α = 1, we apply Lemma 4.5 in place of Lemma 4.6. We cannot deplete the

singularity of the Oseen kernel by moving derivatives over to P0 as before. This yields a

logarithm when applying (4.11), and we obtain

|B(P0, P0)|(x, t) ≲
t

(|x|+
√
t)3

log(|x|+
√
t). (5.21)
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5.1.4 Decay when u0 ∈ C1,α
loc (R3 \ {0}), 0 < α < 1

Proof of Theorem 1.4. Let t ∈ [1, λ2], |x| > 2R0

√
t and decompose u− P0 as in (5.14). In

the proof of Theorem 1.3, we showed the first three terms have cubic decay for Cα data.

We currently establish cubic decay for B(P0, P0). To accomplish this, we rewrite the

integral for B(P0, P0) as

∫ t

0

∫
R3

∇S(x−y, t−s)(P0⊗P0)(y, s) dy =

∫ t

0

∫
R3

Λ−β∇S(x−y, t−s)Λβ(P0⊗P0)(y, s) dy ds,

where β ∈ (0, 1) will be specified momentarily. Note

∫
R3

∇Λ−βS dx = 0,

since (∇Λ−βS)∧(0) = 0 for β < 1. Using this, we re-write the above integral as

B(P0, P0) = J1(x, t) + J2(x, t) + J3(x, t), (5.22)

where

J1(x, t) =

∫ t

0

∫
|x−y|≤ |x|

2

Λ−β∇S(x− y, t− s)

(
Λβ(P0 ⊗ P0)(y, s)− Λβ(P0 ⊗ P0)(x, s)

)
dy ds,

J2(x, t) = −
∫ t

0

∫
|x−y|> |x|

2

Λ−β∇S(x− y, t− s)Λβ(P0 ⊗ P0)(x, s) dy ds, and

J3(x, t) =

∫ t

0

∫
|x−y|> |x|

2

Λ−β∇S(x− y, t− s)Λβ(P0 ⊗ P0)(y, s) dy ds.

We first bound J1. Using the mean value theorem and Theorem 3.6, we have

|J1|(x, t) ≲
∫ t

0

∫
|x−y|≤ |x|

2

|x− y|
(|x− y|+

√
t− s)4−β

∥∇Λβ(P0 ⊗ P0)∥L∞(B |x|
2

(x))(t) dy ds

≲|x|β sup
0<s<t

∥∇Λβ(P0 ⊗ P0)∥L∞(B |x|
2

(x))(s).

(5.23)
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We further assume β ∈ (0, α). Since u0 ∈ C1,α
loc (R3 \ {0}), by Corollary 4.4 we have

sup
s∈[1,λ2]

|∇ΛβP0(x, s)| ≲ (|x|+ 1)−2−β and sup
s∈[1,λ2]

|ΛβP0(x, s)| ≲ (|x|+ 1)−1−β.

(5.24)

By Lemma 4.8, (5.24) and the decay for P0,

|∇Λβ(P0 ⊗ P0)|(x, t) ≤ |P0i∇ΛβP0j|(x, t) + |P0j∇ΛβP0i|(x, t) +O
(

1

|x|3+β

)
≲λ (|x|+ 1)−3−β.

(5.25)

Therefore, (5.23) is bounded by

|x|β(|x|+ 1)−3−β ≲ (|x|+ 1)−3.

Likewise, using (5.18),

|Λβ(P0 ⊗ P0)|(x, t) ≤ |P0iΛ
βP0j|(x, t) + |P0jΛ

βP0i|(x, t) +O
(

1

|x|2+β

)
≲λ (|x|+ 1)−2−β.

(5.26)

So, for J2, by using Theorem 3.6,

|J2| ≲
∫ t

0

∫
|x−y|> |x|

2

1

(|x− y|+
√
t− s)4−β

Λβ(P0 ⊗ P0)(x, s) dy ds

≲ (|x|+ 1)−2−β

∫ t

0

∫
|x−y|> |x|

2

1

(|x− y|+
√
t− s)4−β

dy ds

≲λ (|x|+ 1)−2−β|x|−1+β ≲λ (|x|+ 1)−3.

(5.27)
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Lastly, for J3, we need to handle the near- and far-field separately. We break J3 into

|J3| ≲
∫ t

0

∫
|x−y|> |x|

2

1

(|x− y|+
√
t− s)4−β

Λβ(P0 ⊗ P0)(y, s) dy ds

≲λ

(∫
|x−y|> |x|

2
,|y|>|x|/2

+

∫
|y|≤|x|/2

)
1

|x− y|4−β
(|y|+ 1)−2−β dy

=: J31 + J32.

(5.28)

For the near-field,

J32 ≲λ
1

|x|4−β

∫
|y|≤|x|/2

(|y|+ 1)−2−β dy ds

≲λ
1

|x|4−β
(|x|+ 1)1−β ≲λ (|x|+ 1)−3,

(5.29)

because β < 1. Also,

J31 ≲λ

∫
|x−y|> |x|

2
,|y|>|x|/2

1

(|x− y|+
√
t− s)4−β

(|y|+ 1)−2−β dy

≲ (|x|+ 1)−2−β

∫
|x−y|> |x|

2

1

|x− y|4−β
dy ds

≲ (|x|+ 1)−2−β 1

|x|1−β
≲ (|x|+ 1)−3.

(5.30)

We, therefore, find that

|u− P0|(x, t) ≲ (|x|+ 1)−3. (5.31)

To extend to all t > 0 and |x| > R0

√
t, we appeal to DSS scaling.

5.2 Local separation rates for weak L3,∞ solutions

Lastly, we prove Theorem 1.7. The separation rates for L3,∞ weak solutions are a

corollary to this result.

Before we begin, we introduce O’Neil’s inequality which extends Hölder’s inequality for
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convolutions to Lorentz spaces.

Proposition 5.1 (O’Neil’s inequality, [59]). Let k and f be measurable function on a given

set Ω, and let D ⊂ Ω. Define Af(y) =
∫
D
k(y − x)f(x) dx. For 1 < p < q < r < ∞ and

0 < h1, h2, h3 ≤ ∞, 1 + 1
q
= 1

p
+ 1

r
and 1

h1
= 1

h2
+ 1

h3
, one has

∥Af(y)∥Lq,h1 (Ω) ≤ c∥f∥Lp,h2 (D)∥k∥Lr,h3 (Ω−D), (5.32)

where Ω−D = {x− y : x ∈ Ω, y ∈ D}.

We may now proceed with the proof.

Proof of Theorem 1.7. Without loss of generality, assume B := B2(x0) is centered at

x0 = 0. Assume u0|B ∈ Lp(B). Let U0 be a localization of the data to B such that u0 = U0

in B4/3(0) ⊂ B, suppU0 ⋐ B. This is done as per the decomposition in Theorem 3.2. Let

U be the locally-in-time defined mild solution to (1.1) with data U0. Define {Bk}∞k=0 to be

a collection of nested balls centered at 0 with radii αk/2 for some α ∈ (0, 1) to be specified

later. Recalling P0 = et∆u0, we find

|u− P0|(x, t) ≤|u− U |(x, t) + |U − et∆U0|(x, t) + |et∆(U0 − u0)|(x, t)

=:I1(x, t) + I2(x, t) + I3(x, t).

(5.33)

In the definition of Cγ
par(B 1

2
× [0, T ]), the exponent in the time-variable modulus of

continuity is γ/2. By Theorem 3.2, there exists T = T (p, u0) > 0 such that

I1(x, t) ≲p,u0 t
γ
2 ,

for some γ = γ(p) ∈ (0, 1), x ∈ B0 and 0 < t < T .
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For I2, by (2.19), for any p ∈ (3,∞] and 0 < t < T ,

I2(x, t) ≤ ∥B(U,U)∥L∞(R3)(t)

≲ t
1
2
− 3

2p∥U∥2L∞(0,T ;Lp) ≲ t
1
2
− 3

2p∥U0∥2Lp ,

(5.34)

where we possibly re-define T to make it smaller than the timescale of existence for the

strong solution to (1.1), i.e. T ≲ ∥U0∥−2p/(p−3)
Lp , and the time-scale coming from Theorem

3.2.

Noting U0 − u0 = 0 in B4/3, the last part, I3, is broken into integrals over a shell and a

far-field region

I3(x, t) ≲

(∫
4
3
≤|y|<2

+

∫
|y|≥2

)
t−

3
2 e−

|x−y|2
4t |U0 − u0|(y) dy =: I31(x, t) + I32(x, t). (5.35)

For I31, because ∥U0∥Lp(R3) ≲ ∥u0∥Lp(B), we have for all 0 < t < T and x ∈ B0 that

I31(x, t) ≲ t−
3
2 e−

( 43− 1
2 )2

4t ∥U0 − u0∥Lp( 4
3
≤|y|<2)(t) ≲u0,p t

γ
2 . (5.36)

For I32, by Lemma 4.10, U0(y) ≡ 0 for |y| ≥ 2, and taking x ∈ B0, 0 < t < T , we have

I32(x, t) ≲
∫
|y|≥2

t−
3
2 e−

|x−y|2
4t |u0|(y) dy

≲ t−
3
2∥u0∥L3,∞

∥∥∥∥∥e− |x−y|2
4t (1− χB(y))∥

L
3
2 ,1
y

∥∥∥∥
L∞
x (B0)

≲u0 t
− 3

2 e
−(2− 1

2 )2

4t ≲u0 t
γ
2 ,

(5.37)

by the growth of the Gaussian. Therefore,

∥u− P0∥L∞(B0)(t) ≲p,u0 t
min{ γ

2
, 1
2
− 3

2p
},

where the dependence on u0 is via the quantities ∥u0∥Lp(B) and ∥u0∥L3,∞ .
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We inductively extend this estimate to higher Picard iterates. Fix σ as in the statement

of the theorem. Recursively define the sequence {ak} by ak+1 = min {σ, 1/2− 3/(2p) + ak}

and a0 = min{γ/2, 1/2− 3/(2p)}. Assume for induction that

∥u− Pk∥L∞(Bk) ≲k,α,p,u0 t
ak ,

for 0 < t < T and the dependence on u0 is via the same quantities as above. Note that

|u− Pk+1|(x, t) ≤|B(u− Pk, u− Pk)|+ |B(u− Pk, Pk)|+ |B(Pk, u− Pk)|

=:J(x, t) +K(x, t) + L(x, t).

(5.38)

We split J further as

J(x, t) ≤ |B((u− Pk)χBk
, u− Pk)|+ |B((u− Pk)(1− χBk

), u− Pk)|

=: J1(x, t) + J2(x, t).

(5.39)

For the near-field, J1, we use the inductive hypothesis to obtain, for 0 < t < T ,

∥J1∥L∞(Bk+1)(t) ≲
∫ t

0

1

(t− s)
1
2

∥u− Pk∥2L∞(Bk)
ds

≲k,α,p,u0 t
1
2
+2ak ≲k,α,p,u0 t

1
2
− 3

2p
+ak ,

(5.40)

by using (2.19). Considering J2 for 0 < t < T , we have by (3.4),

∥J2∥L∞(Bk+1)(t) ≲
∫ t

0

∫
|x−y|> 1

2
αk− 1

2
αk+1

1

|x− y|4
|u− Pk|2(y, s) dy ds

≲
t

(αk − αk+1)4
∥u− Pk∥2L2(t) ≲α,k,u0 t

3
2 ,

(5.41)

where we used the version of (3.3) for higher Picard iterates [1].

The terms K and L are treated identically, and we only consider K. We begin by
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further splitting K as

K(x, t) ≤ |B((u− Pk)χBk
, Pk)|+ |B((u− Pk)(1− χBk

), Pk)| =: K1(x, t) +K2(x, t).

For the near-field K1 and for 0 < t < T , we have, using (2.19),

∥K1∥L∞(Bk+1)(t) ≲
∫ t

0

1

(t− s)
1
2
+ 3

2p

∥u− Pk∥L∞(Bk)(s)∥Pk∥Lp(Bk)(s) ds.

By Lemma 4.11, sup0<t<∞ ∥Pk∥Lp(Bk) < ∞. Note 1/2 + 3/(2p) < 1 for 3 < p. Hence,

∥K1∥L∞(Bk+1)(t) ≲k,α,p,u0 t
1
2
− 3

2p
+ak , (5.42)

for 0 < t < T , by the inductive hypothesis.

For the far-field K2, note that (1− χBk
(y))|x− y|−4 is bounded for x ∈ Bk+1. Using

Proposition 4.12, taking x ∈ Bk+1, 0 < t < T and q ∈ (3/2, 3), we have, by (3.4) and

O’Neil’s inequality (5.32),

K2(x, t) ≲
∫ t

0

∫
Bc

k

1

(|x− y|+
√
t− s)4

|u− Pk||Pk| dy ds

≲

∥∥∥∥1− χBk
(·)

|x− ·|4

∥∥∥∥
Lr′ (0,T ;Lq′,q′′ )

∥Pk∥L∞(0,T ;L3,∞)∥u− Pk∥Lr(0,T ;Lq)

≲k,q,u0 t
1
r′+

1
2 ,

(5.43)

where

1 =
1

q
+

1

q′
+

1

3
, 1 =

1

q
+

1

q′′
and 1 =

1

r
+

1

r′
.

By our choice of r = 2q
2q−3

in Proposition 4.12, we have 1
r′
= 3

2q
. Then for any σ < 3/2, by

taking q > 3/2 sufficiently close to 3/2, we have

K2(x, t) ≲k,σ,u0,q t
σ. (5.44)
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Altogether, (5.40),(5.41),(5.42) and (5.44) imply, for 0 < t < T ,

∥u− Pk+1∥L∞(Bk+1)(t) ≲k,α,p,u0,q t
ak+1 ,

for k ≥ 0 and any σ < 3/2. Choosing k0 sufficiently large so that

k0

(
1

2
− 3

2p

)
+ a0 ≥ σ,

i.e. for ak0 = σ and α such that 1/4 = αk0/2, we arrive at

∥u− Pk0∥L∞(B1/4(x0))(t) ≲p,σ,u0 t
σ.

To prove the asymptotic expansion, note

|Pk − Pk−1|(x, t) ≤ |u− Pk|(x, t) + |u− Pk−1|(x, t) = O(tak−1).

Then we can expand u as

u(x, t) = P0 +

k0∑
k=1

(Pk − Pk−1)(x, t)︸ ︷︷ ︸
=Pk0

+O(tσ)

= O(t−
3
2p ) +

k0−1∑
k=0

O(tak) +O(tσ) =

k0∑
k=−1

O(tak),

(5.45)

for short time t ∈ (0, T ). We let a−1 = −3/(2p) using Remark 2 to justify the asymptotics

for P0.
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6 Appendix A

6.1 L3,∞ weak solutions are local energy solutions

Proof. We start by assuming (u, q) is a L3,∞ weak solution to (1.1) with data u0 ∈ L3,∞.

First, by [14, Lemma 6.3], L3,∞ ↪→ L2
uloc, so u0 ∈ L2

uloc(R3).

Next, (u, p) constitutes a distributional solution to (1.1), so Item 1 in the definition of

local energy solutions is satisfied.

Item 2 is clearly satisfied for u− et∆u0 ∈ L∞(0, T ;L2) ∩ L2(0, T ; Ḣ1), and we just need

to show it is satisfied for et∆u0.

By [7, Proposition 2.4], for q > 3

∥∇ket∆u0∥Lq(t) ≲
C∥u0∥L3,∞

tk/2+3/2(1/3−1/q)
.

Therefore, for q < 6

sup
x0∈R3

∫ R2

0

∫
BR(x0)

|∇es∆u0|2 dx ds

≲ sup
x0∈R3

∫ R2

0

∥|∇es∆u0|2∥Lq/2∥χBR(x0)∥Lq/(q−2) ds

≲ sup
x0∈R3

∫ R2

0

∥∇es∆u0∥2Lq∥χBR(x0)∥Lq/(q−2) ds

≲ R3(q−2)/q

∫ R2

0

s−2+6/q ds

≲ R3(q−2)/q(R2)−1+6/q ≲ R1+6/q < ∞,

(6.1)

and

lim
|x0|→∞

∫ R2

0

∫
BR(x0)

|es∆u0|2(x, s) dx ds = 0,

for any R < ∞.
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Item 4 is satisfied as it is shown in [7, Proposition 2.4] that

lim
t→0

∥u(·, t)− et∆u0∥L2 = 0

and

lim
t→0

∥et∆u0 − u0∥Ls
unif

= 0,

for s < 3. Therefore u(t) → u0 in L2(K) for and K ⋐ R3.

Item 5 and Item 6 are common to both definitions.

Therefore any L3,∞ weak solution is also a local Leray solution. It remains to show

Item 3, the local pressure expansion, to prove (u, p) is a local energy solution. By [7], weak

L3,∞ weak solutions are mild, which by [15, Theorem 1.4], implies the local pressure

expansion.
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