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Abstract

The primary objective of this research is to develop adaptive online algorithms for solving the

Canadian Traveler Problem (CTP), which is a well-studied problem in the literature that has im-

portant applications in disaster scenarios. To this end, we propose two novel approaches, namely

Maximum Likely Node (MLN) and Maximum Likely Path (MLP), to address the single-agent

single-destination variant of the CTP. Our computational experiments demonstrate that the MLN

and MLP algorithms together achieve new best-known solutions for 10,715 instances. In the con-

text of disaster scenarios, the CTP can be extended to the multiple-agent multiple-destination

variant, which we refer to as MAD-CTP. We propose two approaches, namely MAD-OMT and

MAD-HOP, to solve this variant. We evaluate the performance of these algorithms on Delaunay

and Euclidean graphs of varying sizes, ranging from 20 nodes with 49 edges to 500 nodes with

1500 edges. Our results demonstrate that MAD-HOP outperforms MAD-OMT by a considerable

margin, achieving a replan time of under 9 seconds for all instances. Furthermore, we extend the

existing state-of-the-art algorithm, UCT, which was previously shown by Eyerich et al. (2010)

to be effective for solving the single-source single-destination variant of the CTP, to address the

MAD-CTP problem. We compare the performance of UCT and MAD-HOP on a range of in-

stances, and our results indicate that MAD-HOP offers better performance than UCT on most

instances. In addition, UCT exhibited a very high replan time of around 10 minutes. The inferior

results of UCT may be attributed to the number of rollouts used in the experiments but increasing

the number of rollouts did not conclusively demonstrate whether UCT could outperform MAD-

HOP. This may be due to the benefits obtained from using multiple agents, as MAD-HOP appears

to benefit to a greater extent than UCT when information is shared among agents.
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1. Introduction

1.1 Introduction

Each year disasters cause millions of dollars in restoration of damaged infrastructure (NCEI,

2023). Further, millions of people suffer every year during disasters without access to food, wa-

ter, and other essential supplies and services (FEMA, 2020). In the immediate disaster response

phase, there is an urgent need for critical supplies to be delivered to critical locations. These

critical locations can include temporary shelters such as schools, hospitals, or public buildings

(FEMA, 2020). The task of delivering these critical supplies from a central staging area to critical

locations is challenging for a number of reasons, including that the transportation infrastructure

has often sustained damages.

In a large scale domestic disaster response effort, these critical supplies are typically lo-

cated at a Federal Staging Area (FSA), which is defined as a base located near an area impacted

by a disaster, from which logistical support for the disaster response operation is provided. Truck

carrying loads of critical supplies begin driving from the FSA, following a planned path to their

destination. While moving along this path the trucks may discover a blocked road or roads in

their path. When that happens, an alternate plan which requires rerouting the vehicle must be de-

termined. Because time is critical in the immediate disaster response phase, it is important for the

initially planned path to be reliable. However, in the immediate disaster response phase, infor-

mation regarding where roads are blocked is not always available. Instead, the planner relies on

the probability of blockages to develop a reliable path to the destination, both during initial plan-

ning at the FSA, and during any replanning required during the truck’s movement towards their

destination

The problem of finding the shortest path between a source and a destination given an un-

certain road network is called a Canadian Traveler Problem (CTP). In CTP variants, the status of

a road as either available or blocked is only revealed when an agent reaches one of its endpoints.

All chapters in this dissertation focuses on the Stochastic CTP, in which edge blockage probabil-
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ities are assumed to be available. Formally a graph G = (N,E) with node set N and edge set E is

known to the agent, along with the associated edge cost ce and blockage probability pe for each

edge e ∈ E. A realization of an instance is called a weather, denoted w, which contains only those

edges that are available to travel. The problem is for an agent to traverse G from source vs ∈ N

to destination vd ∈ N, using only those edges that are available in w. Weather w is not revealed

to the agent initially but is dynamically made available as the agent observes road statuses while

traversing the graph. In other words, a blocked edge (e ∈ E \ w) is revealed to the agent upon

reaching a node incident to it. The objective of the agent is to minimize the cost of the path trav-

eled to reach vd from vs.

Chapter 2 of this work is concerned with the computational aspects of the single source

single destination single agent (SS-SD-SA) variant of the CTP. While the theoretical aspects of

this problem have been studied in several papers, only two studies have explored the computa-

tional aspects. One such study proposes four policies, three of which are based on rollouts (Ey-

erich et al., 2010). The other proposes a rollout-based approach known as HOP-EF(l), designed

primarily for the case of l > 1 agents traveling to the same destination (Alseth, 2020). This chap-

ter proposes two new policies, Maximum Likely Node (MLN) and Maximum Likely Path (MLP),

which are also based on rollouts, but employ a consensus function to identify effective agent

movements across a range of scenarios. Our proposed algorithms are easy to implement and un-

derstand and provide superior results for a significant number of instances. These contributions

add to the existing literature on computational approaches to the SS-SD-SA Stochastic CTP vari-

ant.

During a disaster, more than one critical location may need to be addressed, requiring es-

sential life-sustaining resources. The Federal Emergency Management Agency (FEMA) uses

three models for distributing essential supplies during disasters, namely the hub-and-spoke

model, fixed location model, and cross-docking model, which can all be mathematically mod-

eled as single source multiple destination multiple agents (SS-MD-MA) variants of the Stochastic

CTP FEMA (2020). Therefore, chapter 3 focuses on this more practical variant, which we refer
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to as MAD-CTP (Multiple Agent Destination CTP). This variant has only been studied once in

the literature by Lita et al. (2001), with computational details and experiments that are challeng-

ing to reproduce and use for comparison. In this paper, we propose a framework for MAD-CTP

and introduce two different approaches, MAD-OMT and MAD-HOP. Our proposed framework

provides a starting point for future research on this variant. Additionally, we analyze the benefits

of allowing communication between agents to improve the travel cost of the agents.

The UCT algorithm, an acronym for the upper confidence bounds applied to trees, has

gained popularity as a leading algorithm for various applications in the literature. In the context

of the SS-SD-SA CTP variant, Eyerich et al. (2010) research reveals that the rollout-based UCT

policy outperforms other policies tested in a computational study. Accordingly, we expand the

scope of the UCT policy to address the MAD-CTP problem and compare the resulting perfor-

mance with MAD-HOP, which we proposed in chapter 3. Unlike MAD-HOP, which only replans

when a blocked edge is detected along the agent’s path, UCT replans at each unvisited node. This

can cause delays because the agent must pause at each node to determine the next node to visit.

The time spent at a node to make this decision is assessed to determine the total delay, thereby

analyzing the benefits of reduced travel costs against the drawbacks of increased waiting time.

In chapter 2 of our study, we present two innovative algorithms for addressing the SS-SA-

SD problem. In chapter 3, we introduce two novel algorithms that address the MAD-CTP, MAD-

OMT, and MAD-HOP problems. Furthermore, in chapter 4, we extend the existing state-of-the-

art algorithm UCT to tackle the MAD-CTP problem and compare it with MAD-HOP.

3



Bibliography

Alseth, A. (2020). -CTP: Utilizing Multiple Agents to Find Efficient Routes in Disrupted Net-
works. University of Arkansas.

Eyerich, P., Keller, T., and Helmert, M. (2010). High-quality policies for the canadian traveler’s
problem. In Twenty-Fourth AAAI Conference on Artificial Intelligence.

FEMA (2020). FEMA Preliminary Damage Assessment Guide. Technical report.

Lita, L. V., Schulte, J., and Thrun, S. (2001). A system for multi-agent coordination in uncertain
environments. In Proceedings of the fifth international conference on Autonomous agents,
pages 21–22.

NCEI (2023). Billion-Dollar Weather and Climate Disasters.

4



2. Single Source Single Agent Single Destination CTP

2.1 Introduction

It is well-established that the frequency and economic consequences of disasters have drastically

escalated over the past several decades. According to data from the Institute for Economics and

Peace (IEP), there has been a tenfold increase in the annual number of disasters from 1960 to

2019 (IEP). The United Nations Office for Disaster Risk Reduction (UNDRR) anticipates that

the average number of disasters occurring worldwide will reach 1.5 per day by 2030 (UNDRR,

2022). The National Centers for Environmental Information (NCEI) has documented over 300

billion-dollar disasters in the United States since 1980, resulting in a cumulative cost of over

$2.275 trillion in damages (NCEI). This indicates that disasters frequently result in extensive

damage to physical buildings such as homes and facilities as well as disruptions to critical in-

frastructures such as road networks, power grids, and water systems (FEMA, 2020). These dis-

ruptions often leave impacted populations in need of basic life-sustaining support such as food,

water, and shelter; also referred to as community lifelines (FEMA, 2020).

Logistics plays a vital role in providing community lifelines to survivors, minimizing suf-

fering and loss of life attributed to disaster events (FEMA, 2019). In the United States, logistical

support for a federally-declared disaster response operation is coordinated from a Federal Stag-

ing Area (FSA). A disaster qualifies for a FSA when it is beyond the capabilities of local and

state agencies to effectively respond and recover from the disaster (FEMA). This could include

situations such as major hurricanes, earthquakes, wildfires, and other large-scale emergencies

(FEMA). Disaster response resources, including food, water, search and rescue personnel, and

trucks and trailers equipped with supplies are positioned at the FSA, ready for deployment to ar-

eas affected by disasters (FEMA, 2022). To support impacted populations, truckloads of emer-

gency response supplies are dispatched from the FSA to critical destinations (FEMA, 2022).

These destinations may include temporary shelters, hospitals, and local food and water distri-

bution locations (FEMA, 2022).
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Delivering emergency supplies within a region impacted by a disaster may be complicated

by disrupted road networks. Factors such as collapsed bridges, water accumulation on roads, de-

bris from landslides, fallen trees, and damaged buildings can make travel difficult or impossible

(FEMA, 2020). A truck and driver dispatched from a FSA to deliver a truckload of supplies will

typically follow a predetermined path to their destination. However, it is possible that they may

encounter unexpected blockages along the way due to road network disruptions. These block-

ages may only become apparent to the driver once they are in sight. In some cases, the driver may

be able to repair or clear the blocked road and continue along their original path, such as a fire

engine team responding to a person in distress. In other cases, the driver may need to alter their

route and find an alternative path to their destination, leaving the repair work to other resource

types. This paper will consider the latter scenario in which the only option available to the driver

when encountering a blockage is to plan a different route.

This paper investigates a path planning problem under uncertainty where any road in a net-

work may have a blocked or available status, and further, that status may be known or unknown

to the agent at a particular point in time. It is assumed that probabilistic information regarding

road blockages is available, as various techniques capable of providing such information in ad-

vance are being developed. For example, techniques capable of predicting road blockages due

to earthquakes include the remote sensing monitor method (which uses aerial/satellite images)

(Santarelli et al., 2018), the omnidirectional buffer-debris model (Toma-Danila, 2018), proba-

bilistic and statistical models (Moya et al., 2020; Santarelli et al., 2018), and geometrical models

(Argyroudis et al., 2005). For flooding events, an example technique for predicting road block-

ages is available in Yuan et al. (2021). Therefore, the focus of this paper is on developing algo-

rithms that do not rely on the exact road status and instead use probabilistic information about

road failure, recognizing that this is an area of ongoing research and development.

The problem of finding the shortest path between a source and a destination given an un-

certain road network is referred to as the Canadian Traveler Problem (CTP). In CTP variants, the

status of a road as either available or blocked is only revealed when an agent reaches one of its

6



endpoints. This paper focuses on a single agent stochastic CTP variant in which the edge block-

age probabilities are available and known to the agent. Specifically, the agent has knowledge of a

graph G = (N,E) with a set of nodes N and a set of edges E, as well as the associated edge cost

ce and blockage probability pe for each edge e ∈ E. Initially, the agent does not have full knowl-

edge of the weather w ⊆ E, defined as the set of edges that are available for travel in the given

instance. The problem is for the agent to traverse G from source vs to destination vd , using only

those edges e ∈ w. Knowledge of weather w becomes dynamically available as the agent observes

road statuses while traversing the graph. In other words, whether an edge e is available (e ∈ w) or

blocked (e ∈ E \w) is revealed to the agent upon reaching a node incident to it. The objective of

the agent is to minimize the cost of the path from vs to vd .

There are various policies and algorithms available in literature for solving variants of CTP.

These algorithms differ in how they utilize the availability status of the roads gathered during

their traversal for planning. The algorithm designed in this paper is inspired by the scenario-

based planning technique used in Bent and Van Hentenryck (2004). Originally introduced for

a dynamic and stochastic vehicle routing problem variant, the algorithm in Bent and Van Hen-

tenryck (2004) generates scenarios by sampling from problem-specific stochastic distributions.

Then, solutions (a set of routes, in this case) are developed for each scenario and a distinguished

solution is selected from among the scenario solutions to guide the vehicle’s next movement(s)

along the physical network. The distinguished solution is selected via a consensus function that

looks across scenario solutions to identify common solution attributes (i.e., customer visit se-

quences). In this paper, a scenario solution is an agent path rather than a set of routes. Two con-

sensus functions for choosing a distinguished plan for the agent to follow are explored; these are

referred to as Maximum Likely Node (MLN) and Maximum Likely Path (MLP).

Scenario-based planning approaches MLN and MLP are compared in a computational

study against the best-known algorithms for single agent stochastic CTP, appearing in Eyerich

et al. (2010) and Alseth et al. (2020). The computational study consists of 30,000 weathers

across 30 Delaunay graphs (Eyerich et al., 2010). On a per-weather basis, MLN and MLP found
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new best-known solutions for 10,243 and 10,185 weathers respectively, compared with solutions

from Alseth (2020). A similar comparison against the results presented in Eyerich et al. (2010)

was not performed due to absence of weather-level data. On a per-graph basis and compared

against both Alseth (2020) and Eyerich et al. (2010), approaches MLN and MLP were able to

find new average best costs for two and one of these graphs respectively, but these differences

were not statistically significant. This article furnishes all graphs and weathers utilized in the

experiment to facilitate future researchers in evaluating the efficacy of their novel policies and

algorithms.

The structure of the remainder of this paper is as follows: In Section 2.2 we present a sur-

vey of pertinent literature. In Section 2.3 we propose our methodology for addressing the prob-

lem at hand. The experimental details and results are described in Section 2.4 and Section 4.4

respectively. Finally, we offer concluding remarks in Section 4.5.

2.2 Literature Review

The original CTP as defined by Papadimitriou and Yannakakis (1991) involves a network struc-

ture that is known to the agent, but the statuses of the edges in that network are subject to un-

certainty and no probabilistic information is available for them. Papadimitriou and Yannakakis

(1991) proved that devising a travel strategy for CTP is PSPACE-complete. After its initial intro-

duction, additional variants of CTP were introduced in the literature. These include, for exam-

ple, k-CTP, where only k network edges are blocked, and stochastic CTP, where probabilities of

edge blockage are assumed to be available. Variants of CTP with multiple agents simultaneously

traversing the graph have also been introduced, leading us to organize this review into single-

agent CTP variants in Section 2.2.1 and multi-agent CTP variants in Section 2.2.2. Because the

focus of this paper is on a single-agent variant, the review provided in Section 2.2.1 is more de-

tailed than that in Section 2.2.2. Some additional problems related to CTP are reviewed in Sec-

tion 2.2.2 as well.
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2.2.1 Single-agent CTP Variants

The k-CTP, first introduced in Bar-Noy and Schieber (1991), is the most studied variant of CTP.

In this variant, there is a single agent to traverse the graph, at most k edges may be obstructed,

and probabilistic information about these blockages is not available. Like the original CTP, k-

CTP is also PSPACE-complete (Bar-Noy and Schieber, 1991). In Nikolova and Karger (2008),

two heuristic algorithms for solving instances of k-CTP with up to 50 vertices are presented. The

better of the two heuristic algorithms has a Ω(log|N|) gap from the optimal policy. In Westphal

(2008), a lower bound of 2k + 1 on competitive ratios for deterministic online algorithms for

k-CTP is proven. Further, a simple and deterministic BACKTRACK algorithm that achieves a

competitive ratio of 2k + 1 is presented, showing that the lower bound on k-CTP deterministic

algorithm competitive ratios is tight. In BACKTRACK, the agent follows a planned path unless

a blocked edge in the path is encountered; at which point the agent returns to the source node

and plans a new path. In Xu et al. (2009) two deterministic adaptive strategies for k-CTP are pro-

posed: (1) a greedy strategy in which the agent follows the shortest path to the destination from

their current location avoiding any blocked edges observed at the current location; and (ii) a com-

parison strategy in which greedy and BACKTRACK are combined. In the comparison strategy,

the agent revisits the choice of whether to follow the greedy strategy or BACKTRACK each time

a blockage is encountered. From a current node in which a blockage is discovered, greedy is se-

lected if the cost from the current node to the destination under the greedy strategy is less than

or equal to the optimal cost to reach the destination from the source node. Otherwise, BACK-

TRACK is selected. The competitive ratios for greedy and comparison are 2(k+1)− 1 and 2k+ 1,

respectively (Xu et al., 2009).

In Demaine et al. (2014), it is shown that a randomized algorithm for k-CTP can outper-

form the best deterministic algorithms, surpassing the 2k+1 deterministic competitive ratio lower

bound by an O(1) factor. A randomized algorithm with a competitive ratio of (1+
√

2
2 )k+1 hav-

ing pseudo-polynomial runtime is presented (Demaine et al., 2014). The lower bound on compet-
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itive ratios for randomized algorithms is k+1 and is tight (Westphal, 2008; Bender and Westphal,

2015).

Bergé and Salaün (2019) proves that a competitive ratio lower than 2k + 1 is possible to

achieve by exploiting small maximum (s,t) – cuts. The DETOUR algorithm proposed in Bergé

and Salaün (2019) achieves a competitive ratio of 2µmax +
√

2(k − µmax)+ 1, where µmax is the

maximum (s,t) cut size. This competitive ratio is possible to achieve only when µmax < k; other-

wise, DETOUR achieves a competitive ratio of 2k+ 1. Shiri and Salman (2019b) shows that the

randomized backtrack strategy (RBS) proposed in Bender and Westphal (2015) for node-disjoint

paths cannot be implemented in some cases and thus is not optimal. Further, Shiri and Salman

(2019b) presents a modification of RBS that is optimal for all problem instances on graphs that

contain only node-disjoint paths . In Demaine et al. (2021), the theoretical analysis presented in

Demaine et al. (2014) is revisited and it is shown that a randomized algorithm can achieve a com-

petitive ratio of (1+
√

2
2 )k+

√
2 in pseudo-polynomial time when there are at least two blockages.

In the stochastic CTP, a single agent is assumed to have access to probabilistic information

about edge failures (Eyerich et al., 2010; Fried et al., 2013; Alseth, 2020). In Fried et al. (2013)

the stochastic CTP is shown to be PSPACE-complete. The focus in Eyerich et al. (2010) is on de-

veloping path-finding policies that minimize expected travel cost; four online deterministic poli-

cies for stochastic CTP are proposed. The first of the four policies is optimistic in both name and

nature (Optimistic (OPT)), in that it assumes a perfect graph, finds the shortest path in that graph,

and traverses the planned path until a discovered blockage necessitates planning a new path. The

remaining three policies are Hindsight Optimization (HOP), Optimistic Rollout (ORO) and Up-

per Confidence applied to Trees (UCT). All three use rollout weathers sampled from edge block-

age probability distributions to develop paths, similar to the scenario-based planning strategy mo-

tivating our algorithm. For example, according to HOP, the next node to visit is the node where

the cost to reach it from the current node plus the average shortage path cost from that node to the

destination across all rollouts is minimized. Motivated by HOP in particular, a policy named A*-

HOP is proposed in Alseth (2020). A*-HOP uses path cost estimations from HOP as the heuristic
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function in the A* framework. While A*-HOP outperforms HOP in the computational study in

Alseth (2020), it does not outperform UCT.

Sahin and Aksakalli (2015) performs a comparison of penalty and rollout-based algorithms

for the stochastic CTP. Four rollout-based algorithms from Eyerich et al. (2010) are compared

against a penalty-based algorithm called Distance-to-Termination (DT). The computational re-

sults suggest DT ran faster while also providing better results. Thus, they concluded that DT

is a better candidate for solving the Stochastic TSP than rollout-based algorithms. Bai et al.

(2018) focuses on posterior sampling for Monte Carlo planning under uncertainty and proposes

two algorithms for Monte Carlo planning in Markov decision processes (MDPs) and partially

observable Markov decision processes (POMPDs). One of the algorithms named Dirichlet-

NormalGamma based Monte Carlo tree search (DNG-MCTS) is implemented on the 20-node

Delaunay graph CTP instances taken from Eyerich et al. (2010). The results indicate that while

DNG-MCTS produces better solutions than some UCT-based approaches, it is outperformed by

UCTO (Bai et al., 2018). Because finding an exact solution approach for the Stochastic CTP is

difficult, Aksakalli et al. (2016) focuses on the Stochastic k-CTP and proposes an AO∗ based ex-

act algorithm called CAO∗. This algorithm is shown to be optimal but does not have polynomial

run time, making it unsuitable for large problem instances.

A number of additional CTP variants that assume probabilistic information regarding edge

failures is available have been introduced. In the Bayesian CTP, the statuses of edges are assumed

to be correlated with prior known probabilities. Lim et al. (2017) presents a polynomial-time ran-

domized approximation algorithm for the Bayesian CTP called Hedged Shortest Path under De-

terminization (HSPD). This algorithm is compared against a widely used optimistic algorithm

and a UCT-based algorithm developed for Bayesian CTP by modifying the UCT policy from Ey-

erich et al. (2010). Experimental results indicate HSPD outperforms both these algorithms on

Bayesian CTP variants. In the Robust CTP, travel cost variability resulting from a policy is conis-

dered. An approximate online algorithm for Robust CTP is proposed in Guo and Barfoot (2019).

It balances the mean and variation of travel cost when computing an agent’s travel policy.

11



Bar-Noy and Schieber (1991) introduces three additional variants of CTP: the Recover-

able CTP, a stochastic variant of Recoverable CTP, and the k-Vital Edges Problem. The Recover-

able CTP is a variant of the generic CTP in which a blocked road, once encountered by the agent,

may become traversable if the agent waits at the location for a specified amount of time. In the

stochastic variant of the Recoverable CTP, the probability of edge failure is taken into account.

The k-Vital Edges Problem (k-VEP) is the dual of the generic CTP. It involves identifying certain

edges that if blocked would result in the highest travel cost between the source and the destina-

tion. Bar-Noy and Schieber (1991) presents a travel strategy for the Recoverable CTP and the

stochastic variant of Recoverable CTP and proves that k-VEP is NP-hard. Su et al. (2008) pro-

vides a competitive ratio lower bound of (3−β)
2 where β = max βi, βi =

ti,1
ti,2

, and ti,1 and ti,2 are the

first and second shortest travel times from the current node i to node 1 and 2 respectively on the

special network. This bound is shown to be tight by using a comparison strategy. For a risk seek-

ing traveler, Su et al. (2008) provides a risk-reward strategy Â and analyzes its competitive ratio.

Bnaya et al. (2009) introduces an additional variant of the CTP, called CTP-sensing in which the

agent can sense blockages before encountering them but this comes at a sensing cost. Two heuris-

tic policies that minimize both travel and sensing cost are presented (Bnaya et al., 2009).

Yildirim et al. (2019) and Alkaya et al. (2021) both study the CTP with Neutralization

which is a result of combining the CTP with the Obstacle Neutralization Problem (ONP). In the

CTP with Neutralization, the agent can clear the blocked edge using their limited neutralization

capacity. Yildirim et al. (2019) is the first to introduce this problem and proposes a Markov De-

cision Process (MDP) formulation. They also provide an optimal algorithm based on AO∗ search

algorithm called CAON∗ and compare its performance with well-known value iteration and AO∗

algorithms by testing it on Delaunay graphs. Alkaya et al. (2021) proposes a new heuristic to

solve large instances and computational experiments showed the heuristic had extremely small

run times of less than a second in all cases. The expected path length was also observed to be im-

proved by 58%.
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2.2.2 Multi-agent CTP

The multi-agent CTP was introduced in Lita et al. (2001). It involves a group of agents starting

from a single source and traveling to a single destination. The objective is to have at least one

agent reach the destination as quickly as possible. There has been significant interest in the the-

oretical complexity of this problem (Zhang et al., 2013; Bnaya et al., 2015; Zhang et al., 2015;

Shiri and Salman, 2017; Bergé et al., 2019; Shiri and Salman, 2019a, 2020), as well as in the de-

velopment of online algorithms to solve it (Bnaya et al., 2015; Shiri and Salman, 2020; Akbari

and Shiri, 2022; Shiri and Salman, 2020; Alseth, 2020). While some research has focused on

variants of the problem that involve a maximum of k failed edges (Zhang et al., 2013, 2015; Shiri

and Salman, 2017; Bergé et al., 2019; Shiri and Salman, 2019a), others have considered the prob-

lem on specific types of graphs (Bnaya et al., 2015). Additionally, one study has examined the

case of multiple destinations in which the goal is to reach these destinations as soon as possible

(Lita et al., 2001).

2.2.3 Related Problems to CTP

Motivated by the destruction disasters caused to bridges, Blei and Kaelbling (1999) introduces

two problems similar to CTP, named the static and the dynamic bridge problems (BP). The static

BP can be thought of as a stochastic CTP in which all edges are associated with edge failure

probabilities. In the static BP, the status of the bridge once observed remains unchanged, while in

the dynamic BP, as the name suggests, the status may change even after it has been observed. The

dynamic BP can be considered as a dynamic stochastic CTP. The main difference between CTP

and BP lies in their motivations for addressing different situations. In Papadimitriou and Yan-

nakakis (1991) the application is a snowfall event and thus roads are considered to be blocked,

while in Blei and Kaelbling (1999) the scenario is a cluster of islands connected by bridges that

are damanged by storms. Another similar problem to CTP studied in literature is the stochas-

tic shortest path problem (SSPP), but the stochasticity pertains to the travel times rather than

road status. Recent papers that have studied the SSPP include Randour et al. (2014), Shahabi
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et al. (2015), Cheng et al. (2016), Trevizan et al. (2017), Zhang et al. (2018), and Ahmadi et al.

(2018). Lastly, Huang and Liao (2012) presents a touring strategy for the metric Travelling Sales-

man Problem (TSP). This problem is similar to the generic TSP except that the salesman can en-

counter a blocked edge in the planned tour.

In this paper, we focus on the single agent stochastic CTP and propose two deterministic

online heuristics that aim to minimize the expected travel cost, similar to the Eyerich et al. (2010)

and Alseth (2020).

2.3 Solution Approach

In a CTP instance, an agent travels through a sequence of nodes in order to reach its destination.

At each node, the agent undergoes a cycle that consists of three stages: sensing, planning, and

moving. During the sensing stage, the agent determines the status of its adjacent edges. The plan-

ning stage involves the agent determining the next node to visit. In the moving stage, the agent

begins traversing the edge to reach the planned node. These three stages are described in greater

detail in the following section.

2.3.1 Sensing

The process of sensing, or gathering information about the state of the edges in the network only

occurs when the agent visits a node for the first time. This is because revisiting a node does not

yield new information as the edge availability remains static. When an agent gathers new infor-

mation about the status of its adjacent edges, it is said to be in a “belief state”. Consequently, a

belief state is defined as a node where the agent discovers new information. As the agent gath-

ers information about the status of its adjacent edges, they are either classified as “available” or

“failed” and added to sets EA or EF , respectively. This sensing operation does not incur any cost.
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2.3.2 Planning

At every new belief state, planning is performed. To decide the next belief state to visit, a

scenario-based planning method is used in which r rollout weathers are generated by sampling

from the edge failure probability distributions for every edge in the graph. The set of available

edges in each rollout weather j ∈ {1,2,3, . . . ,r} is denoted R j. While the real weather is the ac-

tual realization of the true scenario, rollout weathers are sampled scenarios from all 2|E| possi-

bilities. As the agent traverses the network, some rollout weathers may become inconsistent with

the real weather the agent has observed. In other words, some edges that the agent has discov-

ered as blocked may be available in some of the rollout weathers and vice versa. Thus, to have

consistent rollout weathers, each j is updated to (R j ∪EA)/EF . After these updates, the shortest

path σ j from the current node to the destination using only available edges in R j is determined

for each j using Dijkstra’s algorithm. The rollout path σ j is represented as the sequence of nodes

σ j = ⟨b,k1,k2, ...,kn,vd⟩, where n is the number of intermediate nodes contained in the path be-

tween the current node b and destination node vd . It is known that (b,k1) ∈ EA, as it is visible

from b. Edges (ki,ki+1) for i = 1 . . .n− 1 and (kn,vd) are available in rollout weather j but may

not be available in the true weather. Letting cl,m denote the cost on edge (l,m), the rollout path

cost C(σ j) is calculated by summing the costs of all edges between consecutive nodes in σ j as

shown in Equation 2.1:

C(σ j) = cb,k1 +
n−1

∑
i=1

cki,ki+1 + ckn,vd . (2.1)

Let ω = {σ1,σ2, . . . ,σr} be the set of all rollout paths. Paths in the set ω are not necessar-

ily unique since a particular path may be optimal for multiple rollout weathers. To select the next

node to visit, a consensus function that examines all rollout paths is defined. Two separate con-

sensus functions are introduced in this study. For “maximum likely node” (MLN) described in

Section 2.3.2.1, the consensus function is node string-based whereas for “maximum likely path”

(MLP) described in Section 2.3.2.2, it is path-based. Here, the term node string is being used to

15



refer to a node sequence (for a subset of nodes) embedded in a path. Both consensus functions

consist of two parts, with the first part focused on node string frequency (F) and the second part

focused on path cost (C). To balance these two components, weight parameters WF and WC are

introduced for frequency and cost, respectively.

The frequency component of both consensus functions identifies strings of nodes appearing

in rollout paths, beginning with a new belief state and continuing for τ additional nodes. Specif-

ically, in any rollout j, the next belief state b j is the first node in the sequence σ j that has not yet

been visited by the agent. It is guaranteed to be reachable from the current node b along a path

that uses only edges known to be available (i.e., in the set EA). The string of nodes of interest in

a rollout path, denoted Tj, begins at b j and continues through the next τ nodes. For example, if

b j = k1 in σ j =< b,k1,k2, . . . ,kn,vd > and τ = 2, then Tj =< k1,k2,k3 >. The set of all such

strings across all rollout paths is denoted T = ∪r
j=1Tj. Just as the set of rollout paths ω does not

necessarily contain r unique paths, the set T does not necessarily contain r unique strings (i.e.,

|T | ≤ r). For each i ∈ T , a frequency Fi is computed. It is defined as the number of rollout paths

containing string i. That is, Fi = count(σ j : Tj = i). Sections 2.3.2.1 and 2.3.2.2 outline how each

consensus function uses Fi, and also how each function considers path cost.

2.3.2.1 Maximum Likely Node

The consensus function in MLN chooses a preferred string i∗ from T and sets the next belief state

(i.e., node) to visit as the first node in i∗. The frequency component of the consensus function

uses Fi, computed as described in the previous section, directly. The frequency Fi is then normal-

ized using Equation 3:

F
′
i =

Fi −mink∈T{Fk}
maxk∈T{Fk}−mink∈T{Fk}

. (2.2)

To associate a path cost with a string i ∈ T , path costs C(σ j) are averaged across all rollouts

j for which Tj = i, as shown in Equation 2.3, and normalized according to Equation 2.4:
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Ci =
∑{ j:Tj=i}C(σ j)

Fi
, (2.3)

C
′
i =

C
′
i −mink∈T{Ck}

maxk∈T{Ck}−mink∈T{Ck}
. (2.4)

Finally, Equation 2.5 is used to combine Fi and Ci in the consensus function. The preferred

string i∗ is the string in T that maximizes SMLN(i), as shown in Equation 2.6:

SMLN(i) = F
′
i WF +(1−C

′
i)WC, (2.5)

i∗ = argmaxi∈T SMLN(i). (2.6)

2.3.2.2 Maximum Likely Path

In the maximum likely path approach, the consensus function value SMLP( j) is computed for all

weathers j, in contrast to the maximum likely node approach, which computed SMLN(i) for all

unique strings i. The consensus function chooses a preferred path σ∗ from ω and sets the next

belief state (i.e., node) to visit as b j, the first unvisited node in σ∗. The frequency score Fj for

rollout j is set to the frequency score of the string Tj; that is, Fj = {Fi : i = Tj}. It is normalized

using Equation 2.7:

F
′
j =

Fj −mink=1,...,r{Fk}
maxk=1,...,r{Fk}−mink=1,...,r{Fk}

. (2.7)

With the consensus function being defined on rollout weather j, there is no need to average

path costs across a variety of paths. Instead, the cost C j in SMLP( j) is simply the rollout path cost

C(σ j) and is normalized using:

C
′
j =

C j −mink=1,...,r{Ck}
maxk=1,...,r{Ck}−mink=1,...,r{Ck}

. (2.8)
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Finally, Equation 2.9 is used to combine Fj and C j in the consensus function. The preferred

path σ∗ is the rollout path that maximizes SMLP( j), as shown in Equation 2.10:

SMLP( j) = F
′
jWF +(1−C

′
j)WC, (2.9)

σ
∗ = argmax j=1,...,r SMLP( j). (2.10)

2.3.3 Moving

After the agent has determined the next node to visit using either MLN or MLP, it begins travers-

ing the shortest path constructed from the known edges, moving from its current location to the

next node. This cyclical process of sensing, planning, and movement continues until the agent

reaches its final destination.

2.4 Experimental Details

The maximum likely node and maximum likely path approaches are tested on various graphs.

Section 2.4.1 provides details on the graphs and the test instances used to measure the perfor-

mance of these approaches. Section 2.4.2 describes the tuning process for parameters required in

the computational experiments.

2.4.1 Delaunay Graphs

The graphs used in this computational experiment are from Eyerich et al. (2010) and were created

using Delaunay triangulation. A total of 30 graphs from Eyerich et al. (2010) are used: ten each

of graph size 20, 50 and 100 nodes. The blockage probabilities pe and edge costs ce are from

uniform [0,1) and uniform [0,50] distributions, respectively. The source vs in each graph is the

lowest index node and the destination vd is the highest index node. The number of weathers per

graph is 1000. The preceding parameters are identical to those in Eyerich et al. (2010). As the
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weathers in Eyerich et al. (2010) were not possible to obtain, they are instead taken from Alseth

(2020). They were generated for each graph by sampling from a Bernoulli distribution with pa-

rameter pe for each edge; an identical process to that described in Eyerich et al. (2010). The total

number of test instances is 30,000. Hypothesis testing results are provided in Alseth (2020) to

establish the 30,000 test instances in Alseth (2020) are not statistically different from the 30,000

test instances in Eyerich et al. (2010) at a level of significance of 0.05.

2.4.2 Parameter Tuning

The parameters requiring tuning are the number of rollout weathers, the weight parameters WF

and WC for consensus function components, and T = τ+ 1, the number of nodes inspected in

a sequence σ j after belief state node b j. Rather than tuning the number of rollouts directly, we

adopt a result from Alseth (2020), which indicates 3000 rollouts are sufficient to achieve conver-

gence in average travel cost across weathers. Thus, 3000 rollouts are used in our computational

study.

To tune the frequency and cost weight parameters WF and WC in the consensus function,

values from 0.05 to 0.95 at increments of 0.05 are tested. Parameters WF and WC are related by

the relationship WF + WC = 1. For parameter τ, only values in {0,1,2} are tested, as initial results

indicated increasing τ beyond 2 would increase average travel cost. In total, 19*3 combinations

of WF , WC, and τ are examined on a subset of Delaunay graphs and weathers. Specifically, for

each graph size 20, 50, and 100 nodes, three graphs were included with 100 weathers each.

The results of the tuning experiments are depicted in Figure 2.1, where each data point pro-

vides the average solution cost for either MLN (Figure 2.1a) or MLP (2.1b) over 3*3*100 weath-

ers for the (WF ,WC,τ) combination indicated in the x-axis, y-axis, and legend. The combination

providing the smallest average cost is preferred. For MLN, the minimum cost settings are WF =

0.7, WC = 0.3, and τ = 1 with an average travel cost of 234.01 units. For MLP, the minimum cost

settings are WF = 0.5, WC = 0.5, and τ = 1 with an average travel cost of 233.78 units.
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(a) Tuning parameter MLN (b) Tuning parameter MLP

Figure 2.1: Parameter tuning MLN

2.4.3 Computational Experiments

The results obtained from using MLN and MLP approach are compared against OMT, HOP,

ORO, UCTB, UCTO, and A*-HOP ((Eyerich et al., 2010; Alseth, 2020)) in the next section.

Recall that in Section 2.2, an approach named Distance-to-Termination (DT) for solving the

Stochastic CTP was shown to produce better solutions than UCTO (Sahin and Aksakalli, 2015).

However, the computational experiments on which those results are based have different edge

cost and blockage probability distributions than the test instances in this study. Further, there is

limited ability to reproduce the results from Sahin and Aksakalli (2015) due to lack of informa-

tion regarding the number of rollout weathers employed. Thus, the DT approach is not used as

an additional reference approach in our computational study. Besides reporting the average cost

at the graph level in Table 3.1 for all approaches mentioned in Eyerich et al. (2010) and Alseth

(2020), weather-level comparisons against A*-HOP from Alseth (2020) are also reported in Ta-

bles 2.2 and 2.3 due to the availability of weather-level data.

2.5 Computational Results

Table 3.1 reports the average travel costs of solutions obtained from MLN, MLP, and compar-

ison approaches from the literature, including OMT, HOP, ORO, UCTB and UCTO from Eye-
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Table 2.1: Sample mean and 95% CI on travel cost from various policies on 20, 50, and 100 node
graphs

Graph OMT HOP ORO UCTB UCTO A*-HOP MLN MLP
20-1 205.90 ± 7 171.60 ± 6 176.30 ± 5 210.70 ± 7 169.00 ± 6 163.70 ± 5 168.74 ± 5 168.53 ± 5
20-2 187.00 ± 5 155.80 ± 3 150.30 ± 3 176.40 ± 4 148.90 ± 3 151.30 ± 4 152.26 ± 3 153.01 ± 4
20-3 139.50 ± 6 138.70 ± 6 134.20 ± 6 150.70 ± 7 132.50 ± 6 135.20 ± 6 133.53 ± 6 133.55 ± 6
20-4 266.20 ± 8 286.80 ± 8 264.20 ± 7 264.80 ± 9 235.20 ± 7 232.80 ± 7 246.05 ± 7 246.41 ± 7
20-5 163.10 ± 7 113.30 ± 5 113.00 ± 6 123.20 ± 7 111.30 ± 5 112.90 ± 6 116.97 ± 6 117.59 ± 6
20-6 180.20 ± 6 142.00 ± 4 134.40 ± 4 165.40 ± 6 133.10 ± 3 133.30 ± 4 137.23 ± 4 139.09 ± 4
20-7 172.20 ± 5 150.20 ± 4 168.80 ± 4 191.60 ± 6 148.20 ± 4 148.90 ± 5 149.91 ± 5 150.13 ± 5
20-8 150.10 ± 6 133.60 ± 5 137.70 ± 5 160.10 ± 7 134.50 ± 5 136.70 ± 5 138.23 ± 5 149.66 ± 5
20-9 222.00 ± 5 177.10 ± 4 176.40 ± 4 235.20 ± 6 173.90 ± 4 174.90 ± 4 182.26 ± 4 182.38 ± 4

20-10 178.20 ± 6 188.10 ± 6 166.30 ± 5 180.80 ± 7 167.00 ± 5 174.90 ± 6 173.85 ± 6 173.92 ± 6
Avg 186.50 ± 2 165.70 ± 2 162.20 ± 2 185.90 ± 2 154.20 ± 2 156.40 ± 2 159.90 ± 2 161.43 ± 2
50-1 255.50 ± 10 250.60 ± 9 214.30 ± 7 229.40 ± 12 186.10 ± 7 215.10 ± 8 195.01 ± 8 195.06 ± 8
50-2 467.10 ± 11 375.40 ± 7 406.10 ± 8 918.00 ± 16 365.50 ± 7 378.50 ± 8 372.61 ± 8 371.95 ± 8
50-3 281.50 ± 9 294.50 ± 7 268.50 ± 7 382.10 ± 15 255.60 ± 7 267.50 ± 8 272.54 ± 8 271.43 ± 8
50-4 289.80 ± 9 263.90 ± 7 241.60 ± 7 296.60 ± 12 230.50 ± 7 239.30 ± 7 249.50 ± 8 256.33 ± 8
50-5 285.50 ± 10 239.50 ± 8 229.50 ± 7 290.80 ± 11 225.40 ± 7 230.00 ± 7 229.95 ± 7 231.25 ± 7
50-6 251.30 ± 10 253.20 ± 9 238.30 ± 9 405.20 ± 21 236.30 ± 8 240.00 ± 9 239.12 ± 9 238.35 ± 9
50-7 242.20 ± 9 221.90 ± 7 209.30 ± 7 250.50 ± 11 206.30 ± 7 211.50 ± 7 207.61 ± 7 209.61 ± 8
50-8 355.10 ± 11 302.20 ± 9 300.40 ± 8 462.60 ± 15 277.60 ± 8 296.70 ± 9 308.73 ± 9 309.35 ± 9
50-9 327.40 ± 13 281.80 ± 11 238.10 ± 9 295.20 ± 18 222.50 ± 9 241.00 ± 10 236.08 ± 9 250.06 ± 9

50-10 281.60 ± 8 271.20 ± 7 249.00 ± 6 390.80 ± 15 240.80 ± 6 259.90 ± 7 251.74 ± 7 249.18 ± 7
Avg 303.70 ± 3 275.40 ± 3 259.50 ± 3 392.10 ± 6 244.70 ± 2 257.90 ± 3 256.29 ± 3 258.26 ± 3

100-1 370.90 ± 11 319.30 ± 9 326.80 ± 9 464.50 ± 21 286.80 ± 7 284.10 ± 7 283.86 ± 8* 284.60 ± 8
100-2 160.60 ± 8 154.50 ± 7 153.20 ± 7 185.90 ± 12 151.50 ± 7 156.00 ± 7 157.40 ± 6 157.65 ± 6
100-3 550.20 ± 18 488.10 ± 15 451.30 ± 14 811.10 ± 39 412.20 ± 13 423.80 ± 14 424.41 ± 14 424.28 ± 14
100-4 420.10 ± 10 329.80 ± 7 348.70 ± 8 552.30 ± 20 314.30 ± 7 322.90 ± 8 324.07 ± 7 330.18 ± 7
100-5 397.00 ± 16 452.40 ± 18 348.10 ± 13 654.60 ± 43 348.30 ± 13 366.50 ± 14 360.21 ± 14 360.08 ± 14
100-6 455.00 ± 12 487.90 ± 11 399.90 ± 10 741.70 ± 29 396.20 ± 9 413.70 ± 10 415.12 ± 11 416.30 ± 11
100-7 431.40 ± 15 403.90 ± 14 370.10 ± 12 716.20 ± 39 358.20 ± 12 394.90 ± 14 394.29 ± 14 396.26 ± 14
100-8 335.60 ± 12 322.00 ± 12 295.70 ± 11 405.70 ± 25 293.30 ± 10 291.20 ± 10 285.87 ± 10* 289.45 ± 10*
100-9 327.50 ± 14 366.10 ± 15 273.80 ± 11 382.10 ± 27 262.00 ± 10 272.70 ± 11 289.86 ± 12 291.74 ± 12
100-10 381.50 ± 11 388.40 ± 11 347.10 ± 9 735.10 ± 32 342.30 ± 9 350.10 ± 9 355.30 ± 10 352.34 ± 9

Avg 383.00 ± 5 371.30 ± 4 331.50 ± 4 564.90 ± 10 316.50 ± 3 327.60 ± 4 329.04 ± 4 330.29 ± 4

rich et al. (2010), and A*-HOP from Alseth (2020). Thirty unique graphs are included in rows,

with the first column indicating the graph name (graph size - graph number). The values in ta-

ble cells represent the sample mean and 95% confidence interval for travel cost, averaged across

1000 weathers per graph. For example, the OMT approach achieves a sample mean travel cost

of 205.90 units across 1000 weathers for graph 20-1, with a 95% CI of ± 7 units. In addition,

there are three summary rows with the row header “Avg”, one for each graph size, that reports

sample mean and 95% confidence intervals for travel cost, averaged across 10,000 weathers. For

example, the OMT approach achieves a sample mean travel cost of 186.50 units across 10,000

weathers for graphs of size 20. Bold text is used in columns OMT through A*-HOP to indicate
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graphs for which the policy in that column produces solutions with lower sample mean travel cost

than MLN and MLP. For example, for graph 20-1, A*-HOP is the only reference approach from

the literature outperforming MLN and MLP, with a sample mean travel cost of 163.70 compared

with sample means of 168.74 and 168.53 from MLN and MLP, respectively. The values marked

with “*” in Table 3.1 indicate instances in which MLN and MLP outperform all other reference

approaches. This occurs in graphs 100-1 and 100-8.

For 28 out of 30 graphs, at least one reference approach from the literature provides lower

average travel cost solutions than MLN and MLP. The approach most frequently doing so is

UCTO (27 graphs). Next are ORO (18 graphs) and A*-HOP (17 graphs). However, the confi-

dence intervals of the best reference approach and our new approaches are non-overlapping in 25

out of 28 of these graphs, indicating that we cannot conclude whether the mean travel costs are

significantly different at a level of significance of 0.05. The exceptions are graphs 50-8, 100-7,

and 100-9, for which UCTO provides solutions with lower mean travel cost.

OMT is regarded as the simplest policy, being a deterministic approach, and is used as a

base to compare against other policies in literature. As expected, MLN and MLP outperform

OMT on all 30 graphs, by an average of 14.13% and 13.48% respectively. The HOP policy

performs better than MLN and MLP in 5 out of 30 graphs; in the remaining 25 graphs, our ap-

proaches outperform HOP and improve travel cost by an average of 6.62%. ORO is a more re-

alistic policy in terms of how rollout paths are determined (it does not assume perfect informa-

tion about the rollout weather, as HOP does). In spite of this, MLN outperforms ORO in 8 of 30

graphs with an average travel cost improvement of 0.74%. MLN also outperforms UCTO in 3

out of 30 graphs (20-1, 100-1, 100-8), despite UCTO being a sophisticated technique tailored

for application to CTP. Finally, we compare MLN with A*-HOP which is different than all other

policies as it replans only when a blockage is discovered in the pre-determined path rather than

replanning at every belief state. MLN achieves better average performance than A*-HOP in 13 of

30 graphs.

Because the travel cost for each of the 30,000 instances is available for A*-HOP, a weather
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Table 2.2: Individual weather comparison

A*-HOP vs MLN A*-HOP vs MLP

Graph A*-HOP MLN Tie A*-HOP MLP Tie
20-1 127 180 693 129 175 696
20-2 119 262 619 144 255 601
20-3 52 80 868 52 79 869
20-4 249 369 382 239 349 412
20-5 81 42 877 84 42 874
20-6 238 207 555 339 214 447
20-7 122 109 769 126 110 764
20-8 73 106 821 414 192 394
20-9 343 382 275 368 384 248

20-10 75 166 759 76 165 759
Total 1479 1903 6618 1971 1965 6064
50-1 398 552 50 395 555 50
50-2 316 472 212 307 469 224
50-3 366 386 248 342 375 283
50-4 352 390 258 410 384 206
50-5 144 245 611 145 232 623
50-6 149 217 634 152 219 629
50-7 305 478 217 311 480 209
50-8 436 444 120 447 434 119
50-9 183 321 496 423 321 256

50-10 367 511 122 347 508 145
Total 3016 4016 2968 3279 3977 2744
100-1 221 543 236 235 535 230
100-2 88 86 826 95 91 814
100-3 402 479 119 403 479 118
100-4 330 396 274 372 379 249
100-5 361 466 173 363 462 175
100-6 300 336 364 321 330 349
100-7 317 465 218 319 460 221
100-8 312 651 37 343 626 31
100-9 400 395 205 405 395 200
100-10 456 507 37 466 486 48
Total 3187 4324 2489 3322 4243 2435

level travel cost comparison is performed and presented in Table 2.2. Each row contains counts

of the number of weathers, out of 1,000, in which the three approaches, or combinations of them,

identified the best-known solution for the weather. The first column indicates graph name. The

second through fourth columns provide the results of head-to-head comparisons between A*-

HOP and MLN. We can see for example in column 2 that A*-HOP alone identifies the best-

known solution for 127 weathers for graph 20-1, in column 3 that MLN alone identifies the best-

known solution for 180 weathers for graph 20-1, and in column 4 that the two approaches tie on
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693 weathers. Columns 5 through 7 provide an analogous head-to-head comparison between A*-

HOP and MLP. Total rows are also provided for each graph size. To test whether travel cost dif-

ferences between our approaches and A ∗−HOP were significant at the individual weather level

and with a level of significance of 0.05, we conduct paired t-tests. For MLN for example, we de-

fine the differences, di = CMLN
i −CA∗−HOP

i for weather i. Here, Cπ
i represents the travel cost in

weather i when policy π is implemented. The null hypothesis is H0 : µd = 0, where µd is the mean

difference over 1000 weathers for each graph. Because we are interested in knowing which pol-

icy performs better, we use two alternative hypotheses; H1 : µd > 0 and H2 : µd < 0. Bold values

in columns “A*-HOP” and “MLN” indicate H0 is rejected in favor of H1 and H2 respectively. Be-

sides performing a paired t-test for each graph, we also performed it over each graph size across

10,000 weathers (see “Total” row). MLN statistically outperformed A*-HOP in 6/30 graphs (20-

3, 50-1, 50-2, 50-7, 50-9, and 50-10), whereas A*-HOP outperformed MLN in 8/30 graphs (20-1,

20-4, 20-5, 20-6, 20-9, 50-4, 50-8, and 100-9). In the remaining 16/30 graphs no statistical differ-

ence was observed. It is interesting to note that for graph size 20 and 100, A*-HOP is statistically

superior but for graph size 50, MLN is statistically superior. Thus, it remains unclear how the two

approaches would compare on larger graphs. On the other hand, the MLP results are not statisti-

cally significant against A*-HOP at any graph size when results are averaged across all graphs of

each size.

Table 2.3 provides a 3-way comparison between A*-HOP, MLN, and MLP to analyze the

number of weathers (out of 30,000) in which a new best known solution was found by at least

one of the two new approaches. This is deduced by summing the columns MLN, MLP and MLN-

MLP. For graph 20-1 for example, new best -known solutions were discovered for 6 weathers

(MLN by itself) plus 1 weather (MLP by itself) plus 173 weathers (both MLN and MLP discov-

ered it) for a total of 181 new best-known solutions for weathers for graph 20-1. For all graphs

of size 20, 104+158+1788=2,050 new best-known solutions are discovered. For graphs of size

50 and 100, these totals are 4,199 and 4,246, respectively. Over 30,000 instances total, MLN

and MLP combined identify new best-known solutions for 10,715 weathers. As the graph size
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increases, the number of weathers in which all three policies (MLN, MLP, and A*-HOP) tie de-

creases, according to data presented in the last column of Table 3. Further, the number of weath-

ers in which MLN and MLP have the same travel cost and outperform A*-HOP increases as the

graph size increases which can be deduced from column MLN-MLP. There are only a few cases

in which A*-HOP and MLN have a tie and outperform MLP and vice-versa as observed from

column A*-HOP-MLN and A*-HOP-MLP.

Table 2.3: MLN, MLP, and A*-HOP comparison

# of weathers in which an
approach outperforms
other two approaches

# of weathers in which there is a tie in travel
cost for two approach and outperforms third

approach

# of weathers in which
all three approaches are

tied

Graph A*-HOP MLN MLP MLN-MLP A*-HOP-MLN A*-HOP-MLP A*-HOP-MLN-MLP
20-1 126 6 1 173 0 1 693
20-2 118 11 5 249 16 1 600
20-3 49 1 0 79 3 3 865
20-4 228 29 8 339 3 17 376
20-5 80 2 2 39 4 1 872
20-6 232 36 35 169 87 5 436
20-7 121 1 2 108 4 1 763
20-8 70 10 95 95 339 0 391
20-9 335 7 9 373 30 3 243
20-10 75 1 1 164 0 0 759
Total 1434 104 158 1788 486 32 5998
50-1 391 13 12 534 0 0 50
50-2 303 13 22 442 1 8 211
50-3 325 72 32 309 0 18 244
50-4 335 53 68 300 40 4 200
50-5 138 23 4 220 5 5 605
50-6 139 11 8 204 9 4 625
50-7 291 47 19 424 10 4 205
50-8 427 34 25 396 3 1 114
50-9 174 116 88 186 185 2 249
50-10 339 24 23 477 0 15 122
Total 2862 406 301 3492 253 61 2625
100-1 212 29 25 499 8 2 225
100-2 85 3 13 78 7 1 813
100-3 393 26 25 437 3 3 113
100-4 297 98 57 273 31 6 238
100-5 356 18 13 440 2 0 171
100-6 283 52 31 270 20 6 338
100-7 305 27 18 429 1 3 217
100-8 300 100 45 518 6 0 31
100-9 389 17 17 372 5 0 200

100-10 421 78 53 405 1 9 33
Total 3041 448 297 3721 84 30 2379
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Because MLP and MLN have the same travel cost in many instances and columns 3-4 do

not provide a clear idea as to which of the two policies is superior, we perform a paired t-test

on travel cost difference di defined as di = CMLN
i −CMLP

i for weather i. The null hypothesis is

H0 : µd = 0 where µd is the mean difference in travel cost over 1000 weathers between MLN and

MLP. The significance level is 0.05 and the alternative hypotheses are H1 : ud > 0 and H2 : ud < 0.

Bold values in MLN column indicate that H0 is rejected in favor of H2, meaning that MLN sta-

tistically has better travel cost than MLP policy. Similarly, a bold value in MLP indicates that H0

is rejected in favor of H1. In 12/30 graphs MLN policy is statistically better than MLP, whereas

MLP policy is statisticallly better than MLN in only 1 graph. In the remaining 17 graphs, the dif-

ference in travel cost was statistically insignificant. When a paired t-test is performed over all

weathers for a graph size, it is clear that MLN statistically outperforms MLP on all three graph

sizes.

The time taken by an agent to decide the subsequent node to be visited, also known as “re-

plan time” and the frequency of replanning during the course of traversing to the destination is

analyzed. The recorded replan times were approximately 4 sec, 6 sec, and 10 sec for 20, 50, and

100 node graphs for both MLP and MLN. The replan time for OMT, HOP, ORO, UCTB, and

UCTO for 100 node graph was reported to be 0.00, 0.88, 7.71, 7.38, and 2.87 seconds respec-

tively by Eyerich et al. (2010). The average number of replans made by the agent during the jour-

ney to the destination was found to be approximately 6, 11, and 15 times for 20, 50, and 100 node

graphs, for both MLP and MLN, respectively. Thus, for a 100 node graph there will be a total

delay of 10*15 = 150 seconds.

2.6 Conclusion and Future Work

Results of the computational study suggest the proposed algorithms, MLN and MLP, offer better

average-case performance than OMT and UCTB from the literature. However, when compared

with other reference approaches, there are mixed results. UCTO offered better average-case per-

formance on all but two graphs and ORO and A*HOP offered better average-case performance
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on just over half of the graphs tested. The new approaches did provide better average-case per-

formance than all reference approaches on two graphs, 100-1 and 100-8, but these differences are

not statistically significant when the differences are computed on the sample means, instead of

pairs of observations. Paired t-testing to compare performance using weather-level data is only

possible for A*-HOP. In that case, there are 6 graphs for which paired differences are statisti-

cally better for MLN than A*-HOP, and 4 graphs for which paired differences are statistically

better for MLP than A*HOP. Together, MLN and MLP together find new best known solutions

for 10,715 out of 30,0000 instances.

Although simple and intuitive in nature, both proposed approaches provided promising

improvements and a significant number of new best known solutions. One limitation of the new

policies is that computational work needs to be performed at every new belief state to determine

the next node to visit. This is also true of the rollout-based polices in Eyerich et al. (2010). When

such policies are used in real scenarios, it is important to understand whether those decisions can

be both computed and communicated to the agent in a timely manner such that emergency ve-

hicles will need to wait at every intersection for directions. For the biggest size graph studied in

this paper consisting of 100 nodes, an average delay of 150 seconds was estimated.

A prospect for future research involves increasing the number of weathers and rollout

weathers for a larger graph size, instead of employing the same number of weathers and rollout

weathers as in the current study. This increase is expected to diminish the variance in the average

cost as observed in Table 3.1. Another direction of future work includes extending the problem to

CTP variants that include more than one destination, to mimic the real-world operations of Fed-

eral Staging Areas (FSAs) for disaster response. Another possibility is to model edges as recov-

erable in nature, where either the agent has capabilities to clear the blocked roads, and/or edges

recover on their own, for example as flood waters subside. Although recoverable CTP has been

introduced nearly two decades ago, there is no computational work for the problem variant in the

literature at the time of this writing.
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3. Single Source Multiple Destination Multiple Agent

3.1 Introduction

The population in the United States has experienced significant growth in recent years (US Cen-

sus Bureau). This growth has placed a burden on available resources, leading to increased defor-

estation and fuel consumption that have caused drastic changes in global weather patterns (UN-

DRR, a; Bertrand, 2021). These changes have increased man-made and natural disasters in recent

decades causing not only damage to the infrastructure but also loss of human life (UNDRR, a;

Bertrand, 2021). Records from the five-year period between 2018 and 2022 show that such dis-

asters have resulted in the loss of approximately 1751 lives and caused a staggering amount of

$121.4B in damages per year (NCEI). By 2030, the world is expected to face 1.5 disasters per

day on average (UNDRR, b). Given this situation, it is reasonable to expect the frequency with

which governmental organizations such as the Federal Emergency Management Agency (FEMA)

need to respond to disasters to increase. Thus, there is a pressing need to address the operational

challenges faced by agencies like FEMA during responses to federally-declared disasters in or-

der to minimize the suffering and loss of life. Many of these challenges arise due to the collapse

of vital infrastructure, including communication networks, transportation networks, road net-

works, power grids, and water supplies, which leaves the affected population without access to

life-saving supports (FEMA, 2020, 2022). One particularly critical challenge is the delivery of

essential supplies and services to affected areas in the midst of damaged road networks. This pa-

per is motivated especially by the supply chain structure employed by FEMA to facilitate disaster

response supply delivery for disasters occurring within the continental United States.

An important component of a FEMA response supply chain is a Federal Staging Area

(FSA). According to FEMA, a FSA is a base located near a disaster-impacted area that provides

logistical support to the disaster response operation (FEMA, 2019). The FSA is established only

in circumstances where the disaster overwhelms the capabilities of regional and state agencies to

respond and the event has been officially designated as a major disaster (FEMA). The location
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of a FSA is determined based on various criteria, such as proximity to the Area of Operations

(AOR), layout of the site, and any support required for equipment staging, feeding, and sanita-

tion (FEMA, 2022). Emergency supplies are brought to the Federal Staging Area (FSA) from

regions outside the disaster-impacted area. From the FSA, emergency supplies are delivered to

disaster survivors in the AOR who are in need. These deliveries might be made door-to-door,

or, more often, to congregate locations such as public places, hospitals, and temporary shelters

(FEMA, 2022). While some isolated areas may require support from water or air transportation,

road transportation is the most commonly used method for fulfilling survivor needs (Ertem et al.,

2017). As such, a fleet of trucks is staged at the FSA and is dispatched to make deliveries in the

AOR.

Use of road transportation to supply essential resources to survivors requires the implemen-

tation of an appropriate supply chain model. The three models commonly used by FEMA are the

hub-and-spoke model, fixed location model, and cross-docking model (FEMA, 2022). In the hub-

and-spoke model, supplies are transported from a central fixed location to multiple locally oper-

ated Commodity Points of Distribution (C-PODs) (FEMA, 2022). In the fixed location model, a

warehouse is used to store and distribute supplies without any reconfiguration of the supply order

sizes, while in the cross-docking model, supply consolidation takes place and smaller delivery

sizes are possible (FEMA, 2022). All three configurations can be modeled as single source mul-

tiple destination shortest path problems, where multiple vehicles are dispatched from the source;

one to each destination. Therefore, this problem involves the development of paths rather than

multi-stop routes, in contrast to vehicle routing problem variants.

While transporting emergency supplies from outside the disaster-hit area to the FSA is usu-

ally reliable, moving the supplies from the FSA to local staging areas or C-PODs can be diffi-

cult. This is because the road network is uncertain and although there are established routes and

backup paths (FEMA, 2022), a significant challenge for emergency planners is determining how

to adjust a route quickly when an unexpected road blockage is encountered. Uncertainties re-

33



garding which road segments contain blockages are only resolved when a vehicle reaches a road

segment endpoint and the driver observes that the segment is blocked. Hence, there is a need for

an online algorithm that can dynamically update vehicle paths as blockages are discovered. We

refer to a vehicle and driver pair as an agent. Agents may be capable of communicating with each

other either fully, partially, or not at all, depending on the application. For example, some agents

may be able to both send and receive information (full communication), some may be able to

receive but not send information (partial communication), and some may be disconnected from

communication networks and unable to both send and receive.

The problem of finding the shortest path from a source to a destination in an uncertain road

network is known as the Canadian Traveler Problem (CTP) and was first introduced by Papadim-

itriou and Yannakakis (1991). In this problem the agent is given a graph G = (N,E), where N

represents a set of nodes and E represents a set of edges. Each edge e ∈ E has a travel cost ce

and a probability of blockage pe associated with it. Because each edge is stochastic in nature,

this problem is a stochastic variant of CTP. As each edge can either be available or blocked, there

are 2|E| possible scenarios. Any scenario in which a source and a destination is disconnected is

discarded from the study. A scenario, also known as a weather w, consists of only the edges that

are available for traversal (w ⊆ E). The objective of the agent is to find the shortest path from the

source vs to the destination vd in the given weather. The travel cost of the shortest path is repre-

sented by z. As the agent starts traversing in the unknown weather w, the statuses of edges are

revealed when agents reach one of their endpoints. In other words, the unknown weather w is dy-

namically revealed to the agent. This problem can be extended to a multi-destination and multi-

agent variant, where each agent is assigned a single destination and the problem is to find shortest

paths for all agents from a single source to their respective destinations. We refer to this prob-

lem variant as MAD-CTP, for multiple agents and destinations CTP. The objective in this case

is to minimize the total cost of all the agents, defined as ∑l∈L zl , where zl is the cost of the path

traversed by agent l and L is the set of agents. Minimizing the total travel cost across agents is

also equivalent to minimizing the average travel cost across agents, represented by Z∗ = Min∑l∈L zl
L .
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In the MAD-CTP, as the agents move, they are also capable of communicating new information

about the graph with one another. A related problem is an online traveling salesman problem,

which involves developing a tour to visit multiple destinations in a network (Liao and Huang,

2014; Zhang et al., 2015a; Zhang and Xu, 2018). In contrast, agents in MAD-CTP are only con-

cerned with visiting their destinations in the shortest amount of time possible. To the best of our

knowledge, there is only one paper in literature addressing this problem variant at the time of this

writing (Lita et al., 2001).

In this paper, a framework for MAD-CTP that utilizes two different approaches, MAD-

OMT and MAD-HOP, is developed. It is tested for various numbers of agents on two types of

graphs; Delaunay graphs from Eyerich et al. (2010) and Euclidean graphs from Shiri and Salman

(2019b). Two communication levels, sharing (analogous to full communication) and no sharing

(no communication), are considered. Results of the computational study indicate the MAD-HOP

policy consistently outperforms the MAD-OMT policy for both communication levels by an av-

erage of 14% to 19% on Delaunay graphs and of 3% to 8% for Euclidean graphs. Further, shar-

ing information proved beneficial in reducing the average travel cost across agents compared to

the no sharing case. Thus, the benefit of sharing increases with the number of agents.

The subsequent sections are organized as follows. Section 2 comprises a review of relevant

literature, Section 3 outlines the methodology employed, and Section 4 describes the design of

the computational study. Computational findings are presented in Section 5 and finally, Section 6

provides conclusions and directions for future research.

3.2 Literature Review

Variants of CTP can be broadly grouped into three categories: (1) single agent and destination;

(2) multiple agents and single destination, and (3) multiple agents and destinations. Given the

focus in this paper on the latter domain, we restrict our attention in this literature review to CTP

variants with multiple agents and/or multiple destinations, as outlined in Sections 3.2.1 through
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3.2.3. Additional details regarding single agent and destination variants are available in Chapter

2.

3.2.1 Multiple Agents and Single Destination

In the k-CTP, at most k edges can fail (Bar-Noy and Schieber, 1991). Like its single agent coun-

terpart, the multiple agent variant of k-CTP is among the most widely studied CTP variants in

literature. Zhang et al. (2013) investigates two different versions of multi-agent k-CTP; full com-

munication and limited communication. The goal is for at least one agent to reach the destination

as soon as possible. In the full communication version, all agents have the capability to send and

receive information (denoted RS-type agents). In the limited communication version, some some

agents can both send and receive information, while other agents can only receive information

(denoted R-type agent). Letting L be the number of agents and L1 be the number that are RS-

type, Zhang et al. (2013) proves that no deterministic online algorithm can achieve competitive

ratios less than 2⌊ k
L⌋+ 1 and 2⌊k−1

L1
⌋+ 1 for full and limited communication variants, respec-

tively. Shiri and Salman (2022) improves the lower bound for the full communication case to

2⌊ k
2log2L⌋+ 1. Using these results, it is clear that as the number of agents grows, the lower bound

on the competitive ratio decreases. In addition to the theoretical results, Zhang et al. (2013) also

presents two multiple agent k-CTP solution strategies referred to as Retrace-Alternative and

Greedy. Results of a computational study indicate that the benefits of having multiple agents with

full communication depends on the structure of the network.

Shiri and Salman (2017) introduces additional variants with respect to limited communi-

cation. Three communication protocols (CP1, CP2, and CP3) and three agent intelligence levels

(IL1, IL2, and IL3) are presented. In CP1, RS-type agents can share graph information with RS-

type and R-type agents. In CP2, RS-type agents can additionally share their planned paths with

RS-type and R-type agents. In CP3, RS-type agents can plan travel paths for R-type agents. A

RS-type agent can have any one of three intelligence levels. In IL1, the agent can only make de-

cisions regarding the immediate next travel move, and can use only communication protocols
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CP1 or CP2. In IL2, the agent can plan a full path for themselves and has the same communica-

tion protocol options as an IL1 agent. IL3 agents have the planning capabilities of IL2 agents,

plus they can use the CP3 protocol. Shiri and Salman (2017) proposes two online strategies for

these problem variants called the path labelling strategy (PLS) and modified path labeling strat-

egy (mPLS). The PLS strategy uses IL2 agents and the mPLS strategy uses IL3 agents. Competi-

tive ratio lower bounds of 2⌊ k
L1+1⌋+1 and 2⌊ k

L⌋+1 are provided for PLS and mPLS respectively.

Further, it is shown that mPLS is optimal in the special case of origin-destination edge disjoint

graphs.

Shiri and Salman (2019a) continues the focus on communication with the aim

of presenting a randomized solution strategy. A competitive ratio lower bound of

∑
k+1
j=1

(
1−

(
k−( j−1)

k+1−( j−1)

)L
)(

k−( j−2)
k+1

)L
(2 j − 1) is derived for the no communication case and

L
k+1(⌊

k
L⌋)

2 +
k+1−L⌊ k

L ⌋
k+1 (2⌊ k

L⌋+ 1) for both the limited and full communication cases. An optimal

online randomized strategy is presented for limited and complete communication cases on O-D

edge disjoint graphs and it is shown that the competitive ratio does not improve when communi-

cation is complete compared to when it is limited.

Bergé et al. (2019) analyzes the same problem but from a slightly different perspective.

Other competitive ratios in the literature (and discussed in this review) are time-based, including

the time the first agent reaches the destination in the numerator and the optimal offline time to

reach the destination in the denominator. In contrast, Bergé et al. (2019) introduces a distance-

based competitive ratio, including the total travel distance across all agents to reach the desti-

nation in the numerator, and the optimal offline travel distance of a single agent in the denom-

inator. A distance-based competitive ratio is provided for both deterministic and randomized

strategies under partial and limited communication. These competitive ratios are compared to

scenarios in which agents do not communicate at all and those in which they communicate only

during initial planning at the source node. A deterministic strategy called multi-alternating is pro-

posed and has a distance-based competitive ratio of 2(k+ 1)–min(k+ 1,L) for Tf irst and 2k+L

for Tlast where Tf irst and Tlast is the time when the first agent and all the agents reach destina-
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tion respectively. They also proved that these bounds are tight, and agents were allowed to have

full communication. For case of partial communication, the competitive ratio was shown to be

2(k+1)–min(k+1,L1) for Tf irst and 2k+L for Tlast where L1 are the number of agents in L who

can both send and receive information. For the case with initial communication, they showed

that no deterministic strategy can obtained a competitive ratio lower than 2(k+ 1)–min(k+ 1,L)

for Tf irst and L(k + 1) for Tlast . The optimal competitive ratio for case with no communication

was shown to be (2k+ 1)L. Further Bergé et al. (2019) showed that no randomized strategy can

achieve a competitive ratio less than k+2
2 for Tf irst and k+L for Tlast when k+1 ≤ L and k+2−L

for Tf irst and k+L for Tlast when k+1 > L for cases with complete communication. The compet-

itive ratio of the best strategy in case of agents having no communication lies between (k+ 1)L

and (2k+1)L for Tf irst and Tlast respectively. For case with initial communication, they provided

an upper bound of 2k+1 and (2k+1)L for Tf irst and Tlast respectively on the competitive ratio.

Zhang et al. (2015b) studies an optimal path set problem, in which the aim is to determine

a minimum collection of paths that can assure the fastest arrival of at least one vehicle when k

edges are blocked. The Least-Overlap algorithm is proposed for the case where k = 1 and the

Modified Least-Overlap algorithm for the case where k > 1. In the k > 1 case, the blocked edges

are assumed to be consecutive on a shortest path from the source to the destination, and nodes

connecting the blocked edges are also blocked. Letting n be the number of graph nodes and m

be the number of graph edges, the runtime complexities of Least-Overlap and Modified Least-

Overlap are O(n2) and O(mn+ k2n2logn), respectively.

3.2.2 Single Agent and Multiple Destinations

This section encompasses an analysis of single agent and multiple destination online path or

route planning problem variants in which at most k edges can be blocked. Liao and Huang (2014)

study the Covering CTP, in which the goal is to find the shortest route visiting set of locations.

This problem is similar to TSP, except the network contains blocked edges. An efficient touring

strategy called Cyclic Routing (CR) is developed. Zhang et al. (2015a) study the online Steiner
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TSP which is similar to the Covering CTP, with the difference being that in the online Steiner

TSP, a blocked edge is revealed to the agent as soon as it becomes blocked. An exponential time

algorithm called DISCOVER with a competitive ratio of k+ 1 is presented, and it is shown this

algorithm is optimal. A separate algorithm, PIECEMEAL, with polynomial runtime is proposed.

It has a competitive ratio of k+4.

Zhang and Xu (2018) study an online Covering Salesman Problem where the goal is to find

a shortest tour such that each destination vertex is on the tour or within a predetermined distance

L from a vertex that is on the tour, and the agent encounters at most k blocked edges during tour

traversal. Similar to the Steiner TSP, the blocked edge is revealed to the agent as soon as it be-

comes blocked. The author presents a lower bound of 1
1+(k+2)Lk + 1 where k is the number of

blocked edges. Furthermore, the authors propose an online algorithm called CoverTreeTraversal

with a competitive ratio of k +α, where α = 0.5+ (4k+2)L
OPT + 2γδ, γ is the approximation ratio

for the Steiner tree problem, ρ is the maximal number of locations that a customer can be served,

and OPT is the optimal value when agent has complete information. The problem is extended

to include service cost and in that case, a lower bound on the competitive ratio was shown to be

min{ k
1+(k+2)L + 1, k

1+0.5(k+2)W + 1} where w is the uniform penalty for each destination vertex.

CoverTreeTraversal had a competitive ratio of k+, where α = 0.5+ 4kL
OPT + 2γδ for this extended

version.

Zhang et al. (2019) studies a minimum latency problem with online blocked edges where

the goal is to find a tour visiting all the nodes such that total latency of these nodes is minimized.

A lower bound on competitive ratios for any algorithm for this problem of 2k + 1 is developed.

An online algorithm called GoodTreeTraversal is presented, along with a polynomial time algo-

rithm, DETOUR. The efficiency and effectiveness of the two algorithms is evaluated by conduct-

ing numerical experiments.

Akbari and Shiri (2021) studies an online minimum latency problem with edge uncertainty

(OMLP) and a weighted online minimum latency problem with edge uncertainty (WOMLP). A
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lower bound on the competitive ratio of any algorithm for both of these problems is shown to be

2k+1. The tightness of the bound is proven by providing an optimal online deterministic strategy

called Back-to-Root. For a randomized online algorithm, a competitive ratio lower bound of k+1

is established. Finally, two heuristic algorithms called Shortcut and Adopted greedy are presented

for the solution of OMLP and WOMLP variants, respectively.

3.2.3 Multiple Agents and Multiple Destinations

Akbari and Shiri (2022) study a problem variant with multiple agents, representing relief distribu-

tion crews. The goal is to assign nodes to the agents and generate routes in the presence of k-non

recoverable blocked edges. The objective of the problem is minimizing total latency of critical

nodes. This problem is formally known as the Multiple Online Minimum Latency Problem with

Edge Uncertainty (MOMLP). A competitive ratio lower bound of 2⌊ k
L⌋+ 1 is provided for the

MOMLP, where k and L (k > L) are the number of non-recoverable blocked edges and agents,

respectively. A deterministic online algorithm called multi-agent Back-to-Root (BR) is presented,

and an upper bound of 2k+ 1 for its competitive ratio is proven. Finally, three heuristics for the

solution of MOMLP instances are presented

Lita et al. (2001) is the only paper of which we are aware that studies a single source, mul-

tiple agent and multiple destination variant of CTP. In it, a BA∗ algorithm is proposed. It is based

on A∗ where the expected value of cost to destination, computed using the future discounted re-

ward, is used as the heuristic function the A∗ algorithm requires. Although the number of edges

in the graphs and the number of agents used in the computational study are specified, other es-

sential information is omitted, such as the graph type, number of nodes in the graph, number of

weathers, edge costs and blockage probabilities. This poses a significant challenge in reproducing

the results and utilizing them for comparative purposes.
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3.3 Solution Approach

An overview of the online solution algorithms in this paper is as follows. At the source node,

each agent plans a path from the source to their respective destinations. Then, agents begin fol-

lowing those plans. At each new node an agent visits, they first complete a sensing operation, in

which edges adjacent to the current node are labeled as either available or blocked. Next, depend-

ing on whether communication is allowed, this information may or may not be shared with other

agents. After that, the agent determines whether replanning is required. If the agent’s plan con-

tains a blocked edge, it is required; otherwise, it is not. Finally, the agent moves to the next node

in their plan. This process is depicted in Figure 4.1 and additional details for the sensing, commu-

nicating, planning and moving operations are provided Sections 3.3.1 through 3.3.4.

Figure 3.1: Stages of agent

3.3.1 Sensing

An agent is assumed to have the ability to sense the status of edges adjacent to the current node

at no cost. Thus, the status of the edge is disambiguated by performing sensing operation when

the agent reaches one of its endpoints. Each agent maintains a set of available and failed edges

denoted by EA and EF respectively. After an edge has been disambiguated it is either added to

EA or EF depending upon whether the edge is available or failed. The information sensed by the
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agent may or may not be shared instantaneously with the other agents, depending on the type of

communication policy used. Since communication capabilities of the agents are also considered

in this paper, the next section describes the details.

3.3.2 Communicating

Full communication and no communication policies are considered. All agents have the same

communication capabilities; that is, either all have full communication, which we refer to as

sharing, or all have no communication, which we refer to as no sharing. In the sharing policy,

all information acquired by an agent is shared instantaneously with all other agents. Thus, all

agents have identical knowledge of the available and not available edge sets (EA and EF ) at all

points in time. As a result, any time an agent has to perform planning, they are able to access all

information acquired by all agents up to that particular moment in time. On the other hand, in the

no sharing policy, agents only have local knowledge of the edges they themselves have observed

at any point in time. Consequently, replanning is solely based on the information gathered by the

individual agent. Replanning in both the sharing and no sharing cases is triggered any time an in-

dividual agent becomes aware of a blocked edge in their plan. Thus, in the no sharing case, only

the agent who discovered the blockage replans. In the sharing case, all agents replan any time any

agent discovers a blockage. Planning is discussed further in the next section.

3.3.3 Planning

In the planning stage, agents each plan a path to their respective destination. A policy is used

to generate these plans. Two path planning policies for CTP are adopted from the literature and

tailored to the multi-agent multi-destination variant. The first is Optimistic (OMT), which is a de-

terministic policy that assumes all edges in the graph are available until it is discovered otherwise

(Eyerich et al., 2010). The next is Hindsight Optimization (HOP), which is a sample approxima-

tion method in which rollout weathers are sampled (Eyerich et al., 2010). Sections 3.3.3.1 and

3.3.3.2 describe these policies in detail.
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3.3.3.1 MAD-OMT

The OMT policy is first presented in (Eyerich et al., 2010), for a single agent and single destina-

tion variant of the Stochastic CTP. In this policy, all edges not observed by the agent are consid-

ered available. Using this assumption, any shortest path algorithm such as Dijkstra’s can be used

to generate a path from the current node to the destination. Because agents have different des-

tinations, and also different “origins” at any snapshot in time during graph traversal, Dijkstra’s

shortest path algorithm is implemented for each agent separately. In each case the agent’s current

node is treated as the source node. Thus, MAD-OMT simply indicates the repeated application of

Dijkstra’s algorithm, once for each agent, using the free space assumption.

3.3.3.2 MAD-HOP

For a given weather w, the HOP policy samples r rollout weathers. These rollout weathers are

generated in the same way as the weather w. The A*-HOP framework proposed in Alseth (2020)

is designed for the multi-agent, single-destination CTP. This paper extends the framework to suit

it for multi-destination scenarios. This extension aims to tackle two challenges: managing multi-

destination and diversifying paths. To address the first challenge, the framework adopts a one-

to-one assignment between agents and their respective destinations. This is based on the moti-

vation discussed in Section 4.1. As agents have different destinations, the framework relies on

the inherent diversification that arises from having diverse destinations. In order to utilize the A*

algorithm, it is necessary to provide a heuristic value (expected cost), as an input in addition to

the graph G and its edge costs. A* aims to determine the path that minimizes the function fl(v),

where l represents the agent number, defined in Equation 3.1. The function incorporates the min-

imum cost to reach node v from the starting node, denoted as gl(v) as well as the heuristic cost

hl(v) required to reach the destination node from node v. As agents have distinct destinations,

the notation in Equation 3.1 incorporates a subscript l to differentiate the values of f , g, and h for

agent l:
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fl(v) = gl(v)+hl(v). (3.1)

An ideal heuristic value for function h(v) should be close to the actual expected cost to

reach the destination from every node in the network, avoiding overestimation whenever possible,

as overestimation can lead to longer paths. To compute this heuristic value, r rollout weathers

are used. Each rollout weather j is independent from other rollout weathers and a shortest path

to the destination is identified using Dijkstra’s algorithm assuming perfect information about the

rollout weather. That is, edges that are available in rollout j and failed in rollout j are known to

the agent. Let σl
j(v) denote the cost of the shortest path from from node v to the destination of

agent l in rollout j. Let σl
j be the set of all such costs σl

j for every possible node v. Then for each

node v, the average path cost to destination across all rollouts is computed using Equation 3.2.

This average cost hl(v) acts as heuristic value for the A* algorithm for agent l.

hl(v) =
∑

j∈1,2,...,r
σl

j(v)

r
(3.2)

It is worth nothing that utilizing Equation 3.2 to provide expected cost may lead to overes-

timations in scenarios where the number of failed edges is less than expected. This implies that

the estimated cost may be more than the actual cost.

3.3.4 Moving

In moving stage, the agent moves to the next node in the plan which then becomes the current

node of the agent. The cost to traverse the edge is added to the total traversal cost for the agent.

3.4 Experimental Details

Considering two path planning policies and two communication policies, a total of four policy

variants are analyzed; MAD-OMT in sharing and no sharing cases, and MAD-HOP in sharing

and no sharing cases. The performance of these four policy variants are evaluated on two distinct
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type of graphs, namely Delaunay and Euclidean, the details of which are outlined in Section 3.4.1

and Section 3.4.2.

3.4.1 Delaunay Graphs

A total of 30 unique graphs, 10 of each size 20, 50, and 100 nodes, was generated using Delau-

nay triangulation as mentioned in Eyerich et al. (2010). Edge costs ce and failure probabilities

pe for edges e were obtained from uniform distributions on the intervals [1,50] and [0,1), respec-

tively. The 30 Delaunay graphs in the computational study in this paper are identical to those in

(Eyerich et al., 2010). However, the weathers (instances) in this paper are different and destina-

tions are different; the latter because multiple destinations are involved. Each graph has a source

vs which is the node with the lowest index. For each of these 30 graphs, 1000 weathers (i.e., in-

stances) are generated randomly by sampling from a Bernoulli distribution with parameter pe

for each edge. This process is identical to the one explained in Eyerich et al. (2010). Further, for

each problem instance, 1000 rollout weathers are generated, also by sampling from the Bernouli

distributions, and made available for future researchers. The number of agents involved in each

instance varies depending upon the graph size. For a graph consisting of 20 nodes, 2 agents are

used. For a graph consisting of 50 nodes, 3 and 5 agents are used. For a graph consisting of 100

nodes 3, 5, and 10 agents are used. The number of destinations for each instance is equal to the

number of agents involved. These destinations are selected using the process outlined in Sec-

tion 3.4.3. Thus, with 3 different graph sizes, 10 different graphs for each size, 1000 weathers

for each graph, and various numbers of agents, a total of 60,000 Delaunay Graph instances test

instances are included.

3.4.2 Euclidean Graphs

To generate Euclidean graphs, a 100 x 100 grid is utilized, similar to the approach taken in Shiri

and Salman (2019b). To generate a set of graphs, five different sizes are considered with 100,

200, 300, 400, and 500 nodes. For each graph size, three unique graphs are generated. The gen-
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eration process involves randomly generating nodes in the grid, where each node is defined by

its (x,y) coordinates that are integer values in the range [1,100]. Subsequently, edges are ran-

domly added between nodes to form the desired graph. The number of edges generated are 300,

600, 900, 1200, and 1500 for 100, 200, 300, 400, and 500 node graph sizes, respectively. A to-

tal of 15 unique graphs are included. The lowest numbered node in each graph is regarded as

its source node vs. The cost of the edge connecting a pair of nodes in this graph is its Euclidean

distance, determined from the endpoint node coordinates. For each of 15 graphs, four edge fail-

ure scenarios are generated, using edge blockage probabilities of 10%, 20%, 30%, and 40%. In

a given graph and scenario, all edges have the same probability of failure. For example, in the

10% blockage scenario, pe = 0.10 for all e. Thus, there are a total of 60 graphs. For each of these

graphs, 100 weathers (i.e., instances) are generated by randomly sampling from the Bernoulli dis-

tribution with blockage probability pe for each edge. For each instance, 1000 rollout weathers are

used. The number of agents in an instance varies depending on graph size. For each graph size,

three numbers of agents are tested. For the graph size of 100, the numbers of agents are 3, 6, and

9; for the graph size of 200, the numbers of agents are 4, 8, and 12; for the graph size of 300, the

numbers of agents are 5, 10, and 15; for the graph size of 400, the numbers of agents are 6, 12,

and 18; and for the graph size of 500, the numbers of agents are 7, 14, and 21. The number of

destinations are equal to the number of agents involved and selected using the process outlined in

the Section 3.4.3. Thus, with 60 graphs, 100 weathers for each graph, and 3 values for numbers

of agents, there are a total of 60*100*3 = 18,000 test instances. It is important to note that the

Euclidean weathers used in this study are different from those used by Shiri and Salman (2019b).

In that paper, the source and destination nodes are randomly selected for each test instance.

3.4.3 Destinations

Instead of randomly selecting l destinations from among the nodes included in a graph, a specific

method is employed to select destinations aim for the distance between the source node and an

agent’s destination is comparable across agents. To achieve this for a given graph, first the short-
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est path distances from the source to all other nodes is computed. Nodes are then sorted in non-

increasing order of these distances. Finally, l nodes are randomly selected from the top 20% of

the list.

3.5 Computational Results

This section provides an analysis of the computational results obtained through the application

of the MAD-OMT and MAD-HOP algorithms on both Delaunay and Euclidean graphs for both

the sharing and no sharing communication scenarios. Table 3.1 presents the average travel cost

Z̄∗ for all four variants. Each value in the table is an average computed over 10,000 weathers

in the Delaunay graph case and 1200 weathers in the Euclidean graph case. The first column of

Table 3.1, labeled T-|V |-l, specifies the graph type T (D for Delaunay and E for Euclidean), the

number of nodes in the graph |V |, and the number of agents l in the test instance. The columns

under MAD-OMT provide the average travel cost of solutions produced by MAD-OMT in the no

sharing (NS) and sharing (S) scenarios, along with the average percent improvement in average

travel cost afforded by sharing versus not sharing information (NS vs S). Analogous columns are

provided for MAD-HOP. The final two columns provide the average percent improvement in av-

erage travel cost afforded by the MAD-HOP approach, compared with the MAD-OMT approach,

for both no sharing (NS (%)) and sharing (S (%)) scenarios. Section 3.5.1 provides commentary

comparing the two proposed algorithms is evaluated. Section 3.5.2 discusses the benefits derived

from information sharing. Finally, in Section 3.5.3, describes the total delay in agent movement

induced by replanning events. This analysis aims to provide a comprehensive understanding of

the efficiency and effectiveness of the proposed algorithms.

3.5.1 Approach Comparison

In this section, a comparative analysis of the performance of MAD-OMT and MAD-HOP un-

der the same communication policy is presented. Specifically, when the communication policy

is NS, columns 2 and 5 of Table 3.1 are compared, whereas when the communication policy is
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Table 3.1: Average cost for Delaunay and Euclidean graphs

MAD-OMT MAD-HOP MAD-OMT vs MAD-HOP

T-|V |-l NS S NS vs S (%) NS S NS vs S (%) NS (%) S (%)
D-20-2 184.08 182.80 0.70 156.55 155.57 0.63 14.96 14.90
D-50-3 294.45 287.21 2.46 242.14 238.07 1.68 17.77 17.11
D-50-5 288.21 277.15 3.84 235.82 230.77 2.14 18.18 16.73

D-100-3 368.37 358.97 2.55 304.97 299.31 1.86 17.21 16.62
D-100-5 363.41 350.44 3.57 300.60 291.54 3.01 17.28 16.81

D-100-10 357.15 339.47 4.95 296.88 283.78 4.42 16.87 16.41
E-100-3 274.94 272.26 0.98 265.38 263.14 0.84 3.48 3.35
E-100-6 274.72 267.11 2.77 263.40 255.81 2.88 4.12 4.23
E-100-9 267.47 258.33 3.42 255.76 247.88 3.08 4.38 4.05
E-200-4 311.01 307.32 1.18 295.13 291.11 1.36 5.11 5.27
E-200-8 304.24 295.77 2.78 288.11 280.38 2.68 5.30 5.20

E-200-12 309.87 296.30 4.38 294.83 282.08 4.32 4.85 4.80
E-300-5 340.93 334.87 1.78 316.20 311.24 1.57 7.26 7.06

E-300-10 343.74 332.69 3.22 324.49 314.00 3.23 5.60 5.62
E-300-15 346.40 329.07 5.00 324.40 309.88 4.48 6.35 5.83
E-400-6 351.95 342.70 2.63 329.45 320.84 2.61 6.39 6.38

E-400-12 345.61 329.91 4.54 324.41 308.90 4.78 6.14 6.37
E-400-18 347.74 325.08 6.52 327.78 307.68 6.13 5.74 5.35
E-500-7 370.39 359.38 2.97 342.23 332.68 2.79 7.60 7.43

E-500-14 367.79 349.06 5.09 344.62 327.16 5.07 6.30 6.28
E-500-21 367.96 341.15 7.29 344.41 320.07 7.07 6.40 6.18

S, columns 3 and 6 are compared. For instance, considering a Delaunay graph with 20 node and

two agents (D-20-2), the average travel costs obtained using MAD-OMT and MAD-HOP are

182.80 units and 155.57 units under the sharing communication policy. This indicates an im-

provement of 14.90% in favor of MAD-HOP, reported in column 9. Interestingly, when infor-

mation sharing is not allowed, MAD-HOP continues to exhibit a similar level of improvement,

with an average cost improvement of 14.96% over MAD-HOP (column 8). Thus, these results

suggest MAD-HOP offers superior performance compared with MAD-OMT, regardless of com-

munication policy. When considering graphs of differing sizes, the percentage improvement of

MAD-OMT over MAD-HOP is relatively stable, ranging between approximately 15% to 18% for

Delaunay graphs and approximately 3% to 8% for Euclidean graphs. When considering different

number of agents and holding graph size constant, it can still be observed that the percentage im-

provement of MAD-HOP over MAD-OMT is relatively stable. These results suggest that neither

the size of the graph nor the number of agents employed appear to have a discernible impact on
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the percentage improvement obtained in MAD-HOP over MAD-OMT.

The performance difference between MAD-HOP and MAD-OMT can be analyzed by level

of disruption for the Euclidean graphs, as four scenarios with blockage probabilities of 10% to

40% are included. Figure 3.2 depicts the percentage improvement of MAD-HOP over MAD-

OMT for 500-node Delaunay graphs on the y-axis and blockage probability on the x-axis. Each

data point in the figure is an average over 300 weathers (3 unique graphs each with 100 weath-

ers). It can be observed that when the blockage probability is 10%, MAD-HOP and MAD-OMT

exhibit comparable performance. However, as pe increases, MAD-HOP increasingly outperforms

MAD-OMT. For example, when pe = 0.40, percentage improvements of 11.40%, 10.20%, and

8.80% were recorded for 7, 14, and 21 agents respectively.

Figure 3.2: Effect of blockage probability pe in performance of MAD-HOP over MAD-OMT on
500 node Euclidean graphs

3.5.2 Communication Levels

In this Section, the impact of communication policy is examined. The data to support these ob-

servations are in Table 3.1, in the NS vs S (%) columns, under both MAD-OMT and MAD-HOP.
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For example, for test instances of type D-20-2, the benefit of sharing is 0.70% when MAD-OMT

is used and 0.63% when MAD-HOP is used. These improvements become larger as the graph

size increases and also as the number of agents increases. For instance, for a 100-node Delaunay

graph with 10 agents (D-100-10), percentage improvements of 4.95% and 4.42% are observed

for MAD-OMT and MAD-HOP, respectively. These improvements further increase to 7.29% and

7.07% for a Euclidean graph of size 500 with 21 agents (E-500-21), for MAD-OMT and MAD-

HOP, respectively. Thus, it is evident that sharing information provides a considerable benefit

over no sharing.

To better understand how the improvements afforded by information sharing increase with

the number of agents, Figure 3.3 is considered. It depicts the percentage improvement observed

for 100 node Delaunay and 500 node Euclidean graphs across increasing numbers of agents. In

Figure 3.3a, it can be observed that for MAD-OMT on 100 node Delaunay graphs, the percentage

improvement increases from 2.55% to 3.75% as the number of agents increase from 3 to 5. This

improvement further increases to 4.95% with 10 agents. This same trend is observed for MAD-

HOP on 100 node Delaunay graphs, and also for both MAD-OMT and MAD-HOP on 500 node

Euclidean graphs, as seen in the Figure 3.3b. Hence, as the number of agents increases, the bene-

fit from sharing information increases for both MAD-OMT and MAD-HOP algorithms.

To better understand how the improvements afforded by information sharing increase as

the graph size grows, Figure 3.4 is considered. It depicts the percentage improvement observed

for 50 and 100 node Delaunay graphs under 3 and 5 agents. The MAD-OMT results indicate a

complex relationship between graph size and the benefit obtained by sharing information. In Fig-

ure 3.4a, specifically for 3 agents, the percentage improvement increases from 2.46% to 2.55%

as the graph size increases from 50 to 100. However, when 5 agents are employed, the percent-

age improvement decreases from 3.84% to 3.57% as the graph size increases. Thus, the relation-

ship between graph size and the benefit derived from information sharing remains unclear for

MAD-OMT. In contrast, the MAD-HOP results suggest a pattern. Figure 3.4b reveals that as the

graph size increases the benefit marginally increases for both 3 and 5 agents on Delaunay graphs.
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Consequently, it can be inferred that for MAD-HOP, an increase in the graph size yields a corre-

sponding improvement in the benefit achieved through information sharing.

(a) 100 node Delaunay graph (b) 500 node Euclidean graph

Figure 3.3: Impact of number of agents

(a) MAD-OMT (b) MAD-HOP

Figure 3.4: Impact of graph size

3.5.3 Agent Movement Delays Due to Replanning

Whenever an agent engages in replanning, computational time is required to identify a new path

to destination. Consequently, this process leads to a delay in agent movement, where they are

stopped during replanning, and not progressing towards the intended destination. It is there-

fore imperative to conduct a comprehensive analysis of the number of replanning events that
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an agent undergoes during graph traversal, as well as the total replanning time. Figure 4.4a and

Figure 4.4b depict the replan time per replanning event for Delauany and Euclidean graphs re-

spectively. For MAD-OMT, the replan time is constant with respect to graph size and is less than

0.001 second, practically causing no delay. However for MAD-HOP, a linear relationship can be

observed between graph size and replan time both for Delaunay and Euclidean graphs. For a 20

node Delaunay graph, MAD-HOP requires 0.22 seconds to replan a path whereas for a 500 node

Euclidean graph, MAD-HOP requires 8.69 seconds. The total delay to reach the destination is

equal to the total number of times an agent undergoes replanning event during the traversal mul-

tiplied by the replan time. Thus, the tradeoff between reduction in travel cost and delay should be

carefully considered before choosing the policy for implementation in practical scenarios.

Figure 4.5 shows the average number of replanning event per agent for different graph

sizes. From Figure 4.5b, for a 500 node graph, an agent on average replans 5 times which leads

to a total replanning time of 5*8.69 = 43.45 seconds. This means that the total delay caused by

computational work performed is less than 1 minute for a 500 node Euclidean graph. There are

some identified areas in MAD-HOP where more efficient implementation would reduce the re-

plan time further making it a more practical approach.

(a) Replan time for Delaunay graph (b) Replan time for Euclidean graph

Figure 3.5: Replan time
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(a) Replan count for Delaunay graph (b) Replan count for Euclidean graph

Figure 3.6: Replan count

3.6 Conclusion and Future Work

This paper proposes a framework for solving a single source, multiple destination, multiple agent

variant of the Stochastic CTP. The proposed framework incorporates two different algorithms,

MAD-OMT and MAD-HOP. Both of these path planning algorithms are evaluated on Delau-

nay and Euclidean graphs under two different communication policies; no sharing and sharing.

The computational study indicates the MAD-HOP alogrithm outperforms MAD-OMT on all test

instances. The improvement ranges between 14% to 19% and 3% to 8% on Delaunay and Eu-

clidean graphs, respectively, for both communication policies.

Further analysis on the difference in improvement observed among both the graph types

concluded that the blockage probability has a significant impact on the performance of the algo-

rithms. MAD-HOP leads to more improvement when the blockage probability is higher in the

network. The comparison of travel costs between the two communication levels revealed that

sharing has benefits over no sharing, even when agents travel to different destinations. Further-

more, the computational study suggests that the benefits of sharing information increase with the

number of agents for both algorithm. A similar conclusion was made with respect to the graph

size, but it was only valid for the MAD-HOP algorithm and remained unclear for the MAD-OMT

algorithm.
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Lastly, the paper evaluates the practicality of implementing MAD-HOP in disaster sce-

narios where time is a critical factor by conducting a replanning time analysis. The findings re-

veal that the delay time is less than 1 minute for the largest graph considered in the study which

contains 500 nodes and 1500 edges, thus underscoring the practical feasibility of implementing

MAD-HOP in such scenarios.

In order to validate the practical feasibility of our approach, it will be necessary to test the

framework on a real network and evaluate its performance. To further improve travel cost, more

advanced algorithms such as UCT Eyerich et al. (2010) can be implemented. One potential di-

rection is to label edges as deterministic and convert the problem into a k-CTP variant which is

widely studied in the literature. Real-life scenarios often involve interdependent edges, so it is not

uncommon to encounter such cases. Therefore, to evaluate the effectiveness of our approach, it

would be beneficial to test it on variants that incorporate edge dependence. Finally, similar to the

recoverable variant of the single agent single destination, the MAD-CTP can also be extended to

its recoverable variant.

54



Bibliography

Akbari, V. and Shiri, D. (2021). Weighted online minimum latency problem with edge uncer-
tainty. European Journal of Operational Research, 295(1):51–65.

Akbari, V. and Shiri, D. (2022). An online optimization approach for post-disaster relief distribu-
tion with online blocked edges. Computers & Operations Research, 137:105533.

Bar-Noy, A. and Schieber, B. (1991). The canadian traveller problem. In Proceedings of the
second annual ACM-SIAM symposium on Discrete algorithms, pages 261–270.
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4. Single Source Multiple Destination Multiple Agent UCTO

4.1 Introduction

The Canadian Traveler Problem (CTP) requires an agent to traverse an uncertain network from

the source node to the destination node with the objective of minimizing the travel cost. The un-

certainty lies in the traversability status of the roads. This problem can be modeled as a Markov

Decision Process (MDP) (Nikolova and Karger, 2008), allowing for the use of standard reinforce-

ment learning techniques such as dynamic programming, Monte Carlo methods, or Q-learning

to find an optimal policy that minimizes travel cost. One approach to solving CTP is the Upper

Confidence Bounds applied to Trees (UCT) algorithm, a rollout-based Monte Carlo planning

algorithm proposed in Kocsis and Szepesvári (2006). UCT aims to converge to the best action

given sufficient computation time, and reduce the error probability if the algorithm is stopped

prematurely. Computational results show that for a stochastic shortest path model applied to a

sailing problem, only a relatively small number of samples are required to achieve the same lev-

els of error that is achieved by other approaches in the literature, such as Adaptive Real Time

Dynamic Programming (Barto et al., 1991) and a Trajectory-based algorithm (Péret and Garcia,

2004). Because UCT may require a smaller number of samples to achieve convergence and lower

errors for problems like the stochastic shortest path problem, it may also be well-suited to solve

the related Stochastic CTP. The utilization of the UCT algorithm in research has gained signifi-

cant prominence since its introduction in Kocsis and Szepesvári (2006). It has been found to have

good performance for various problem domains pertaining to decision-making under uncertainty.

Eyerich et al. (2010) devises two variants of the UCT algorithm called UCTB (blind) and

UCTO (optimistic) to use in solving the Stochastic CTP with a single agent and single destina-

tion. The UCTB algorithm is devoid of any problem-specific information that could potentially

influence the rollouts in favor of achieving the goal. On the other hand, the UCTO algorithm in-

corporates a certain degree of guidance that aids in directing the algorithm towards the goal by

leveraging problem-specific knowledge. In a computational study which consisted of Delaunay
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graphs with 20, 50, and 100 nodes, it is observed that UCTO outperforms two other rollout-based

policies, Hindsight Optimization (HOP) and Optimistic Rollout (ORO) (Eyerich et al., 2010).

Lim et al. (2017) proposes a polynomial-time algorithm, Hedged Shortest Path under De-

terminization (HSPD), to solve the Bayesian CTP, where edge statuses are correlated with each

other. The HPSD algorithm is compared with UCTO in a computational study and interestingly,

the findings reveal inferior performance of UCTO compared with HPSD. However, the computa-

tional study in Lim et al. (2017) is limited to a hypothetical network on a 10 by 10 grid where all

edgse have length 2. The mixed results observed in the relative performance of UCTO compared

with other approaches stimulates a compelling possibility of exploring its efficacy in addressing

the Stochastic CTP variant that involves multiple agent and multiple destination. This serves as

the central subject of investigation in this article.

This study extends the UCTO algorithm to solve a multiple agent and multiple destination

Stochastic CTP variant, MAD-CTP. In this version of UCTO, similar to the original UCTO pro-

posed in Eyerich et al. (2010), planning is conducted at every node, regardless of whether or not

a blocked edge is detected. This modified UCTO algorithm is compared with the MAD-HOP al-

gorithm from Chapter 3, which only replans when obstructed edges are encountered along the

agent’s path. Both approaches require computational effort to replan the path, which incurs a cer-

tain amount of time delay in reaching the destination. If this delay is significant, it may outweigh

the benefits in terms of reduced travel cost. Therefore, it is crucial to evaluate the trade-off be-

tween travel cost and the overall time spent on replanning events when comparing policies. This

tradeoff is evaluated in a computational study comprised of Delaunay and Euclidean graphs of

varying sizes and edge blockage distributions.

The rest of the paper is organized as follows: Section 4.2 outlines the problem definition

and proposed solution approach, Section 4.3 describes the experimental design, Section 4.4

presents the computational results, and finally, Section 4.5 offers conclusions and suggestions

for future research.
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4.2 Problem Definition and Solution Approach

The problem of finding the shortest path from a source to a destination in an uncertain network is

defined as the Canadian Traveler Problem and was first introduced in Papadimitriou and Yan-

nakakis (1991). The objective is to minimize the travel cost z to the reach destination. In the

MAD-CTP, L agents share a single source node vs and each agent has their own unique desti-

nation vl . The objective is to minimize the total travel cost of all agents, denoted Min∑l∈L zl , to

reach their destinations. A graph G=(V,E), where V and E denote the sets of nodes and edges in

G, is known to all agents. Each edge e has a cost ce and blockage probability pe associated with

it. The exact status of an edge remains unknown to the agents until an agent reaches one of its

endpoints to observe it. Each agent maintains a set of observed available edges EA and blocked or

failed edges EF throughout their journey. Because each edge can be either available or blocked,

a total 2|E| scenarios denoted as weathers are possible. A weather w is generated by performing

a Bernoulli trial on each edge e ∈ E. Only those edges sampled as available (i.e., Bernoulli ran-

dom variable value is 0) comprise the set w ⊆ E. Any weather in which the source and one or

more destinations vl are disconnected are excluded from the study. The objective is to minimize

the average travel cost Z∗ =
Min∑l∈L zl

L which is equivalent to minimizing the total travel cost of all

agents.

In this paper, the UCT algorithm, originally from Kocsis and Szepesvári (2006) and tai-

lored for the Stochastic CTP as the approach named UCTO in Eyerich et al. (2010), is adapted

to solve the multiple agent and multiple destination Stochastic CTP. UCTO refers to the policy

used to estimate the cost of moving to new belief states as an agent traverses a network. It is the

starting point for the adaptation in this chapter. UCTO is embedded in an online framework as

follows. During an agent’s journey to its destination, an agent cycles through three stages every

time it arrives to a new belief state. A belief state is characterized as a node that has not yet been

visited by any agent. The three stages the agent cycles through include sensing and sharing, plan-

ning, and moving, as illustrated in Figure 4.1. Agents sense and share information at every belief
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state for both UCTO and MAD-HOP. However, UCTO and MAD-HOP differ in what events trig-

ger replanning. For UCTO, every new belief state triggers replanning. For MAD-HOP, only the

discovery of one or more failed edges in one or more agents’ plans triggers replanning. After re-

planning (or not), the agent moves to the next belief state and the cycle repeats. These stages are

described in more detail in Sections 4.2.1 through 4.2.3. Then in Section 4.2.4 a practical demon-

stration of the UCTO algorithm is presented.

Figure 4.1: Stages agents cycle through at new belief states

4.2.1 Sensing and Sharing

At any given belief state, the agent is capable of disambiguating the status of its adjacent edges

to resolve uncertainties regarding unknown roads visible to the agent. The disambiguated road

status is categorized as either available or blocked and added to the set EA or EF , respectively.

This information is simultaneously shared among all agents. Various communication levels are
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employed in certain papers, such as no communication, partial communication, and full commu-

nication. In no communication scenarios, agents are unable to exchange information, while in

partial communication only select agents are permitted to both send and receive information. In

contrast, in full communication, all agents can share and receive information. As demonstrated in

Chapter 3, the advantages of full communication over no communication have led to the exclu-

sion of other communication levels. That is, only the full communication policy is considered in

this chapter.

4.2.2 Planning

During the planning stage, all information collected and shared by all agents up to that point in

time is employed to determine the next belief state (i.e., next node) to visit. As MAD-HOP has

been explained in Chapter 3, the focus in this chapter is on explaining the mechanics of UCTO.

Thus, Section 4.2.2.1 describes how rollouts are generated and how paths are generated for them,

and Section 4.2.2.2 describes how the next belief state to visit is selected.

4.2.2.1 Rollout Path Generation

During planning, an agent is at a current node b and information from r rollout weathers is used

to determine the agent’s next movement. Each rollout weather j contains at least one feasible

path from the source node to the destination node and is consistent with all current information

the agent has about the graph. That is, the rollout excludes edges known to be failed and includes

all edges known to be available. Unlike the MAD-HOP algorithm in which the agent is assumed

to have perfect information for edges in the rollout that have not yet been observed, the UCT al-

gorithm assumes the statuses of unobserved rollout edges remain unknown to the agent. The sta-

tus of the edge is disambiguated only when the agent “virtually” reaches one of its endpoints in

rollout weather j while “virtually” following a path for rollout j planned using the UCT algo-

rithm. In other words, inside each rollout j, the agent uses UCT to plan the next node to visit,

virtually moves to that node, senses and shares, replans, and then virtually moves again, until the
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destination is reached. This cycle takes place while the agent is still physically at node b. This

process is repeated for all rollouts, with the rollout path of the jth rollout weather being depen-

dent on all j − 1 previous rollout paths. The agent only physically moves to a new belief state

(i.e., new node) after all such rollout planning and virtual traversal cycles are completed.

To explain how the path of the jth rollout weather is generated, assume rollouts 1, . . . , j−1

have already been conducted and those rollout paths are available. Denote the path that will be

planned from b to the destination vd in rollout j as σ j(vd). Denote an intermediate node between

b and vd in σ j(vd) as bi, and the path from b to bi as σ j(bi). Assume the agent has virtually trav-

eled to bi from b in rollout j using the sequence σ j(bi) = ⟨b,b1,b2, ...,bi⟩. Let B j be a set of

nodes reachable from bi in j using only the edges known to be available in j. Let b′i be a node

in B j and the travel sequence to reach b′i from b be σ j(b′i) = ⟨b,b1,b2, ...,bi,k1,k2, ...b′i⟩. Here,

k1,k2, ... represents any nodes along the path from bi to b′i that only contains edges known to be

available. Let F(σ j(b′i)) be the number of the first j − 1 rollouts in which the sequence σ j(b′i)

was virtually traversed. Let Cy(b′i,vd) be the cost to reach destination vd from node b′i in rollout

weather y where y < j. It is obtained by adding the edge costs in the sequence σy(vd) starting

from node b′i. Denote the average cost to reach the destination vd from node b′i across all rollouts

in which the sequence σ j(b′i) is virtually traversed as C(σ j(b′i)). It is computed using Equation

4.1:

C(σ j(b′i)) = ∑
y< j:σy(b′i)=σ j(b′i)

Cy(b′i,vd). (4.1)

Note that C(σ j(b′i)) is an estimate of the uncertain portion of the future travel cost of an

agent who has virtually progressed to bi in rollout j, knows with certainty the cost of moving

from bi to b′i, and does not know with certainty the cost of moving from b′i to vd . On the other

hand, the certain portion of the agent’s future travel cost from bi to b′i is denoted C(bi,b′i); these

movements use only edges the agent has observed to be available. Both of these cost compo-

nents appear in Equation 4.2, as does the frequency metric F . The equation is used to calculate
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the UCT value for all b′i in B j:

UCT = α

√
logF(σ j(bi))

F(σ j(b′i))
−C(bi,b′i)−C(σ j(b′i)). (4.2)

The parameter α in Equation 4.2 is a bias parameter used to balance exploration and

exploitation. The node b′i ∈ B j maximizing the expression in Equation 4.2 is selected as the

next node to virtually visit in rollout j. This process continues until the destination is virtually

reached. Note that when this process is conducted for the first rollout, r = 1, there are no other

rollouts available so the frequency metrics F would be zero. To avoid this, F(σ j(b′i)) is initial-

ized to a constant value M and C(σ j(b′i)) is initialized using the optimistic cost of the path to the

destination, which is the shortest path distance from b′i to vd in rollout 1 assuming all edges in the

rollout with unknown status are available. The inclusion of M additional rollouts is how the UCT

policy is tailored as the optimistic UCT, called UCTO. The bias parameter α can be initialized to

an arbitrary value in the first rollout. This is due to the fact that during the first rollout, the values

of F(σ j(bi)) and F(σ j(b′i)) are equal to M for all b′i in B j. As a result, the UCT value in Equa-

tion 4.2 is not affected by the first term in the equation. Consequently, the selection of the next

node in the rollout path is not influenced by this term in the first rollout weather. In other roll-

outs j > 1, α is set to the average cost to reach the destination from the current node b across the

previous j−1 rollouts, according to Equation 4.3:

α = ∑
y< j

Cy(b,vd). (4.3)

In order to promote and incentivize greater levels of exploration, the value of alpha is di-

vided by a factor of ten.

4.2.2.2 Selecting the Next Agent Movement

The discussion in Section 4.2.2.1 describes how rollout paths are determined and virtually tra-

versed. At the completion of that process, there exists a rollout path σ j(vd) that begins at the cur-
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rent node b and ends at vd for all rollouts j = 1, . . . ,r. The next requirement is to determine the

next physical movement (not virtual movement) for an agent from node b to a new belief state.

A potential new belief state is determined for each rollout j by scanning the nodes in σ j(vd) to

identify the first node in the sequence that has not been visited before. Denote the set of all po-

tential new belief states across all rollout paths as B. Let bi be a potential new belief state in B.

Define U(bi) as the total number of rollout paths in which bi is the next belief state. Define V (bi)

as the average cost of the paths from bi to vd in those rollout paths σ j(vd) where bi is the next

belief state. Then, the expected cost for a belief state bi ∈ B is computed using Equation 4.4:

E(bi) =C(b,bi)+
V (bi)

U(bi)
. (4.4)

The belief state bi ∈ B minimizing Equation 4.4 is selected as the next belief state for the

agent to physically move to.

4.2.3 Moving

During the moving stage, the agent transitions to the subsequent belief state node that was deter-

mined during the planning stage.

4.2.4 UCTO in Practice

The example in this section is provided as a simple demonstration of UCTO. The graph in Fig-

ure 4.2 is from Eyerich et al. (2010) and includes a source node v0 and a destination node v∗. For

edges with two labels, the first indicates the blocking probability pe for the edge and the second

indicates the edge cost ce. Edges incident to v0 have only a single label indicating cost, as those

edges are visible to the agent from v0 and are observed to be available. The symbol ε is used to

represent a very small probability of blockage. Given that ε is very small, we assume that the

edges {(v1,v2),(v1,v3),(v1,v4),(v5,v6),(v5,v∗)} are available, while edge (v6,v∗) is blocked.

As a result, the graph is reduced to only three stochastic edges, leading to a total of 23 possible

weathers. To determine the next node to visit from the source node v0, we consider all eight pos-
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Figure 4.2: UCTO example

sible combinations of rollout weathers, as listed in Table 4.1. For each scenario, the rollout paths

are obtained using the UCTO algorithm described in Section 4.2.2.1, starting from node v0. The

values of M and α are initialized in the first rollout to 20 and 1, respectively. In subsequent roll-

outs, the value of α is determined using Equation 4.3 and these values are provided in Table 4.1.

In the first rollout, the agent has three possible next nodes to visit: v5, v1, and v∗. That is,

B = {v5,v1,v∗}. If the agent chooses v5, the UCTO value obtained using Equation 4.2 from v0

to v∗ would be ≈ 60 (v0 − v5 − v∗). If the agent chooses v1, the UCTO value would be ≈ 70

(v0 − v1 − v4 − v∗). If the agent chooses v∗ directly, the UCTO value would be ≈ 100 (v0 − v∗).

However, during the first rollout, the agent encounters a blockage at v6 and must travel back, re-

sulting in a total travel cost of 170. In the next rollouts, the UCTO value of choosing v5 increases

slightly, but not enough to make v1 or v∗ more attractive than v5. During the second attempt, the

agent again encounters blockage at v6, which suggests that choosing v5 may not be the best op-

tion. In the third rollout, the UCTO value of choosing v5 increases enough to make v1 or v∗ more

attractive than v5 and hence in the third rollout the agent decides to choose v1 as the next node to

visit. This logic continues for the remaining rollout weathers.

After conducting all the rollout simulations, the expected cost for each node in B is cal-

culated using Equation 4.4. For example, the expected cost for node v1 is E(v1) = 20 + (180 +

300)/2 = 260, based on the results from rollouts 3 and 6. Similarly, the expected cost for v5 is

E(v5) = 10 + (150 x 6)/6 = 160, based on the results from rollouts 1, 2, 4, 5, 7, and 8. Because
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v∗ didn’t appear as the first unvisited node after v0 in any rollout weather, the expected cost for v∗

is not calculated and it is discarded as the next possible node to visit. The expected cost of node

v5 is the least and it is chosen as the next node to be visited. The same process is used to deter-

mine the next node to visit from v5, and it is found that the next node to visit is v∗. Therefore, the

agent’s path is ⟨v0,v5,v∗⟩ with a path cost of 90 units.

Table 4.1: Rollout weathers and paths (agent at v0)

# Failed Edges Path α

1 (v4,v∗) ⟨v0,v5,v6,v5,v∗⟩ -
2 (v3,v∗) ⟨v0,v5,v6,v5,v∗⟩ 170.00
3 (v2,v∗) ⟨v0,v1,v2,v1,v3,v∗⟩ 170.00
4 (v3,v∗),(v4,v∗) ⟨v0,v5,v6,v5,v∗⟩ 176.67
5 (v2,v∗),(v4,v∗) ⟨v0,v5,v6,v5,v∗⟩ 175.00
6 (v2,v∗),(v3,v∗) ⟨v0,v1,v3,v1,v2,v1,v4,v∗⟩ 174.00
7 (v2,v∗),(v3,v∗),(v4,v∗) ⟨v0,v5,v6,v5,v∗⟩ 196.67
8 − ⟨v0,v5,v6,v5,v∗⟩ 192.86

4.3 Experimental Details

In order to assess the efficacy of the UCTO policy, we conducted performance evaluations on

two distinct graph types: Delaunay and Euclidean. Detailed descriptions of these graph types are

provided in Sections 4.3.1 and 4.3.2, respectively.

4.3.1 Delaunay Graphs

Three sizes of Delaunay graphs are utilized in this computational study, comprised of 20, 50

and 100 nodes. Ten graphs are generated for each graph size, which are directly obtained from

Eyerich et al. (2010). For each graph, the lowest numbered node is denoted as the source node

vs. Different numbers of agents are utilized for each graph size, with 2 agents for the 20 node

graphs, 3 and 5 agents for the 50 node graphs, and 3, 5, and 10 agents for the 100 node graphs.

Other problem instance parameters are identical to those in Section 3.4.1. For example, destina-

tion nodes vl for each agent are selected from among the nodes located farthest from the source.
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Edge costs ce and blockage probabilities pe follow uniform distributions on the intervals [1,50]

and [0,1), respectively. For each of the 30 graphs, 100 weathers are generated, along with 1000

rollouts for each weather, again identical to those in Section 3.4.1. The value of parameter M is

intialized to 20, as in (Eyerich et al., 2010). Overall, a total of 6000 Delaunay graph test instances

are included.

4.3.2 Euclidean Graphs

The Euclidean graphs in the computational study are identical to those in Section 3.4.2. Three

different sizes of Euclidean graphs consisting of 100, 200, and 300 nodes are generated from a

100 x 100 grid. For each graph size, three distinct graphs are generated. For each graph, nodes

are randomly selected with coordinates (x,y) from a discrete uniform distribution on the range

{1,2, . . . ,100}. The lowest index node is marked as the source node vs. The number of agents

involved in each graph depends on the size of the graph, with 3, 6, and 9 agents used for the 100

node graphs, 4, 8, and 12 agents utilized for the 200 node graphs, and 5, 10, and 15 agents uti-

lized for the 300 node graphs. Edges are added randomly between generated nodes, with edge

costs ce determined from the Euclidean length of the edge. The number of edges in a particular

graph depends on the graph size. For 100, 200, and 300 node graphs, the numbers of edges are

300, 600, and 900 respectively. For each of the 9 distinct graphs, four edge failure scenarios are

generated, utilizing edge blockage probabilities of 10%, 20%, 30%, and 40%. In a given graph

and scenario, it is assumed that all edges are subject to the same probability of failure. For each

of 36 graphs, 32 weathers are generated, along with 1000 rollouts for each weather. The param-

eter M is intialized to 20 as in Eyerich et al. (2010). With 36 graphs, 32 weathers for each graph

and three distinct numbers of agents, a total of 36*32*3 = 3456 Euclidean graph test instances

are included. The weathers utilized in this study differ from those employed in Shiri and Salman

(2019).
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4.3.3 Destinations

In order to maintain consistency across all graphs examined, a standardized method is adopted

for generating l destination nodes. This method entails assigning the lowest index node as the

source node and computing the shortest distance from the source node to every other node in the

graph. These shortest path distances are subsequently sorted in a non-increasing list. Then, l des-

tination nodes are randomly selected from the top 20% of the list.

4.4 Computational Results

This section presents a performance evaluation of the UCTO algorithm proposed for the MAD-

CTP variant. In Section 4.4.1, the average cost Z̄∗ is compared to that of MAD-OMT and MAD-

HOP algorithms discussed in 3. In addition to this cost comparison, Section 4.4.2 presents a re-

planning event duration and count analysis.

4.4.1 Average Cost

Table 4.2 provides the average travel cost across all agents for Delaunay graphs obtained using

the UCTO algorithm from this chapter and MAD-OMT and MAD-HOP from Chapter 3. Each

value in the table under the MAD-OMT, MAD-HOP, and UCTO column headers represents an

average cost over 100 weathers, except for the Avg row, which is an average over 1000 weathers

(10 graphs with 100 weathers each). The first column of the table provides instance names T-|V |-

L-Q, where T indicates graph type (D for Delaunay), |V | is the number of nodes in the graph, L

is the number of agents, and Q is the graph replicate number. Bold values are used to indicate

which algorithm provides the best average travel cost for each graph replicate. For example, in

instance D-20-2-1, the average cost of 137.29 units found under column MAD-HOP and in bold

indicates MAD-HOP obtains better performance than MAD-OMT and UCTO for this 20-node

Delaunay graph with 2 agents.

In comparative analysis, it can be observed that UCTO consistently outperforms MAD-
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Table 4.2: Average cost for Delaunay graphs

T-|V |-L-Q MAD-OMT MAD-HOP UCTO T-|V |-L-Q MAD-OMT MAD-HOP UCTO
D-20-2-1 159.07 137.29 141.42 D-100-3-1 331.97 248.64 259.74
D-20-2-2 140.44 127.94 129.51 D-100-3-2 305.51 247.53 260.89
D-20-2-3 177.06 165.78 168.76 D-100-3-3 440.83 350.55 366.93
D-20-2-4 285.49 194.18 191.33 D-100-3-4 335.52 292.36 306.74
D-20-2-5 185.05 156.81 151.66 D-100-3-5 482.63 389.36 409.03
D-20-2-6 165.94 136.10 132.41 D-100-3-6 416.21 369.54 384.35
D-20-2-7 178.07 155.40 159.00 D-100-3-7 346.10 320.65 323.92
D-20-2-8 224.84 172.35 175.22 D-100-3-8 276.27 223.00 218.54
D-20-2-9 190.18 149.04 147.29 D-100-3-9 344.22 301.62 308.56

D-20-2-10 145.29 144.79 143.80 D-100-3-10 328.71 292.43 304.12
Avg 185.14 153.96 154.04 Avg 360.80 303.57 314.28

D-50-3-1 226.71 195.16 184.58 D-100-5-1 362.48 268.15 277.63
D-50-3-2 429.66 335.22 340.61 D-100-5-2 264.78 221.18 237.16
D-50-3-3 305.94 241.01 245.10 D-100-5-3 438.33 362.24 367.75
D-50-3-4 233.89 211.63 217.08 D-100-5-4 338.02 283.80 290.97
D-50-3-5 332.27 258.61 247.00 D-100-5-5 408.98 310.84 321.93
D-50-3-6 246.19 215.31 209.32 D-100-5-6 386.41 342.95 355.59
D-50-3-7 229.50 203.93 208.27 D-100-5-7 346.40 315.62 311.03
D-50-3-8 345.99 281.08 279.35 D-100-5-8 276.12 231.45 233.76
D-50-3-9 277.93 240.93 230.69 D-100-5-9 339.85 284.40 302.96

D-50-3-10 266.65 223.13 226.29 D-100-5-10 327.17 299.57 291.41
Avg 289.47 240.60 238.83 Avg 348.85 292.02 299.02

D-50-5-1 232.04 204.88 202.90 D-100-10-1 306.02 246.11 254.01
D-50-5-2 366.61 299.58 305.49 D-100-10-2 265.40 227.65 232.58
D-50-5-3 294.81 253.76 251.33 D-100-10-3 373.00 308.31 327.34
D-50-5-4 251.23 207.74 218.07 D-100-10-4 344.49 292.88 302.79
D-50-5-5 321.93 252.85 248.76 D-100-10-5 449.15 346.54 364.28
D-50-5-6 236.50 210.49 208.27 D-100-10-6 343.47 307.89 316.91
D-50-5-7 204.95 170.69 175.11 D-100-10-7 292.48 257.08 267.39
D-50-5-8 319.38 264.59 258.61 D-100-10-8 305.54 240.72 243.73
D-50-5-9 276.88 230.52 226.82 D-100-10-9 308.26 280.15 289.74

D-50-5-10 237.39 193.38 199.50 D-100-10-10 313.60 266.14 269.01
Avg 274.17 228.85 229.49 Avg 330.14 277.35 286.78

OMT in terms of average cost across all instances. However, when compared with the MAD-

HOP, the results are mixed. Specifically, out of 60 graphs, UCTO demonstrates superior aver-

age cost for 19 graphs. Among these 19 graphs, 5 are size 20, 11 are size 50, and 3 are size 100.

The average improvements of UCTO over MAD-HOP for these 19 graphs are 1.9% for the 5 20-

node graphs, 2.4% for the 11 50-node graphs, and 2.1% for the 3 100-node graphs. While the

average improvement of UCTO over MAD-HOP remains below 2.5% for these 19 graphs, cer-

tain individual graphs display greater levels of improvement. For example, for D-20-2-5 graph,
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the improvement is 3.3%. For D-50-3-1, D-50-3-5, and D-50-3-9, the improvements are 5.4%,

4.5%, and 4.3%, respectively. On the other hand, in the 41 out of 60 graphs where UCTO shows

inferior average performance, the average cost increase over MAD-HOP is 2.0% for the 5 20-

node graphs, 2.5% for the 9 50-node graphs, and 3.6% for the 27 100-node graphs. Analyzing the

Avg row, differences between MAD-HOP and UCTO for 20- and 50-node graphs are negligible.

However, for 100-node graphs, MAD-HOP produces solutions with 3% lower average travel cost

than UCTO.

Despite being regarded as a more advanced and sophisticated algorithm, the UCTO re-

sulted in increases in average cost when compared with MAD-HOP for the majority of test in-

stances. Notably, UCTO was only executed with 1000 rollouts, which may account for the sub-

optimal outcomes. Previous research in Eyerich et al. (2010) indicates that increasing the number

of rollouts can improve the average cost in single-agent Stochastic CTP variants. However, for

the multiple agent and multiple destination test instances in our study, increasing the number of

rollouts beyond 1000 results in a substantial escalation in runtime, rendering it impractical.

To better understand the effect of number of rollouts on UCTO performance for this prob-

lem variant, we conducted an abbreviated computational study on the 10 20-node graph replicates

using 10,000 rollouts instead of 1,000. The average travel cost results from MAD-HOP (with

1,000 rollouts), UCTO-1000RW (with 1,000 rollouts) and UCTO-10000RW (with 10,000 roll-

outs) are provided in Table 4.3. Bold values are used to indicate which algorithm provides the

best average travel cost for each graph replicate. For 5 of 10 replicates, the average travel cost

of solutions produced by UCTO with 10,000 rollouts improved, compared with 1,000 rollouts.

These are replicates 1, 2, 3, 7, 9 and 10 of the 20-node Delaunay graphs with 2 agents. How-

ever, MAD-HOP still offers better performance for 3 of these replicates (numbers 1, 2 and 3),

and UCTO with 1,000 rollouts offers better average performance with 10,000 rollouts for 4 repli-

cates (numbers 4, 5, 6 and 8). Therefore, it is unclear whether increasing the number of rollouts

will consistently lead to better performance for multiple agent and multiple destination Stochastic

CTP test instances.
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Table 4.3: Average cost for 20 node Delaunay graphs with 2 agents

T-|V |-L-Q MAD-HOP UCTO-1000RW UCTO-10000RW
D-20-2-1 137.29 141.42 137.30
D-20-2-2 127.94 129.51 127.95
D-20-2-3 165.78 168.76 167.10
D-20-2-4 197.18 191.33 194.13
D-20-2-5 156.81 151.66 152.77
D-20-2-6 136.10 132.41 133.27
D-20-2-7 155.40 159.00 153.79
D-20-2-8 172.35 175.22 176.45
D-20-2-9 149.04 147.29 146.36

D-20-2-10 144.79 143.80 143.45
Avg 153.96 154.04 153.25

Table 4.4 provides average cost outputs for the Euclidean graph test instances. It can be

observed that MAD-HOP consistently outperforms UCTO in all rows. On average, UCTO re-

sults in a 4.8% increase in average travel cost compared with MAD-HOP when utilized on these

Euclidean graphs.

Table 4.4: Average cost for Euclidean graphs

T-|V |-L-Q MAD-OMT MAD-HOP UCTO
E-100-3 272.26 263.14 274.56
E-100-6 267.11 255.81 257.74
E-100-9 258.33 247.88 258.05
E-200-4 307.32 291.11 312.49
E-200-8 295.77 280.38 297.62

E-200-12 296.30 282.08 296.00
E-300-5 334.87 311.24 336.42

E-300-10 332.69 314.00 334.58
E-300-15 329.07 309.88 312.70

A further investigation of the data disclosed that as the blockage probability in the graph

increases, the difference in average cost between UCTO and MAD-HOP also increases. These

results are depicted in Figures 4.3a and 4.3b. For a 200-node graph and blockage probability of

10%, UCTO and MAD-HOP exhibit comparable performance for all numbers of agents, as seen

in Figure 4.3a. However, as the blockage probability increases, the percent difference in average

cost between the two algorithms becomes more pronounced for all numbers of agents. The aver-
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age performance of UCTO at pe = 0.40 in 200-node Euclidean graphs is inferior to MAD-HOP

by approximately 15%, 10%, and 9% for 4, 8, and 12 agents, respectively. This trend is also evi-

dent in 300-node Euclidean graphs, especially for pe = 0.40, as demonstrated in Figure 4.3b.

(a) 200 node Euclidean graph (b) 300 node Euclidean graph

Figure 4.3: Blockage probability

It is noteworthy that as the number of agents increases, the percentage difference in aver-

age travel cost between UCTO and MAD-HOP diminishes. For example, in Figure 4.3a, at 40%

blockage probability, UCTO’s performance was poorest by approximately 15% with four agents.

Still, this percentage decreased to approximately 10% with eight agents and further reduced to

9% with twelve agents. This implies that when the number of agents increases, sharing informa-

tion among them becomes more advantageous, reducing the performance discrepancy between

the two algorithms. The subsequent section discusses the replanning time and replanning events.

4.4.2 Number and Duration of Replanning Events

In addition to understanding the solution quality for UCTO and the MAD-HOP reference ap-

proach, it is also important to evaluate runtime aspects of the approaches. Rather than focus on

total runtime, we investigate computation times that reflect delays in agent movement as they

physically traverse a graph. We record the number of replanning events and their durations for

both approaches.
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Figure 4.4 depicts the average duration of a replanning event for both approaches for De-

launay graph and Euclidean graph test instances. The findings demonstrate that for 20-node De-

launay graphs, the average duration of a UCTO replanning event is 0.15 seconds, increasing to

2.31 minutes for 100-node graphs, as depicted in Figure 4.4a. As the graph sizes increase further,

UCTO replanning event durations also increase, reaching 4.22 and 9.28 minutes for Euclidean

graphs with 200 and 300 nodes, respectively, as seen in Figure 4.4b. These durations are signifi-

cantly higher than MAD-HOP. For example, the duration of MAD-HOP replanning events is less

than 5 seconds on all Euclidean graphs.

(a) Delaunay graphs (b) Euclidean graphs

Figure 4.4: Average replanning event durations for Delaunay and Euclidean graphs

The total delay during agent graph traversals can be assessed by examining the number

of replanning events required. Figure 4.5 provides replanning event counts for both UCTO and

MAD-HOP on Delaunay and Euclidean graph test instances. For 20-node Delaunay graphs,

UCTO requires 4 replanning events, on average per agent. As the Delaunay graph size increases

to 100 nodes, the number of replanning events required in UCTO increases to 12 (see Figure

4.5a). A similar trend is observed in Figure 4.5b for Euclidean graphs with 40% blockage proba-

bility, with 9 UCTO replanning events for the largest graph in the study, consisting of 300 nodes.

Notably, MAD-HOP requires fewer replanning events than UCTO, as it only replans when a

blocked edge is encountered, unlike UCTO, which replans at every new belief state. The ap-

proximate total replanning duration across full graph traversal for 300-node Euclidean graphs
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(a) Delaunay graphs (b) Euclidean graphs

Figure 4.5: Numbers of replanning events for Delaunay and Euclidean graph test instances

is 9*9.28 = 83.52 minutes, compared with 3*4.93 = 14.79 seconds for MAD-HOP.

4.5 Conclusion and Future Work

The present study aims to understand the suitability of the UCTO algorithm for the multiple

agent multiple destination variant of Stochastic CTP. Unlike other methods, the UCTO algo-

rithm does not prescribe a pre-determined path for agents to follow, but rather replans at every

belief state to select the next node to visit. The performance of the UCTO algorithm was com-

pared against MAD-OMT and MAD-HOP from the existing literature, and the evaluation was

conducted on Delaunay and Euclidean graphs.

The results indicate that UCTO outperforms MAD-OMT on all instances tested. When

compared against MAD-HOP, UCTO exhibits superior performance on 19 out of 60 Delaunay

graphs. However, for the remaining Delaunay graphs, the average cost increases by 2.0%, 2.5%,

and 3.6% for 20, 50, and 100 node graphs, respectively. Moreover, UCTO shows an increased

average cost of 4.8% on all instances of Euclidean graphs. Previous research in Eyerich et al.

(2010) suggests that more than 1000 rollouts are required for the UCTO to converge for single-

agent CTP variants, and using more rollouts may lead to better performance. A small experiment

is conducted with 10,000 rollouts on a 20 node graph. In it, the average cost was only improved
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for a subset of test instances, compared to when using 1000 rollouts. Hence, it remains unclear

whether more rollouts will provide better performance for other instances of the multiple agent

and multiple destination Stochastic CTP.

The study indicates that as the level of disruption in a network increases, evidenced by in-

creasing probabilities of edge blockage, especially in Euclidean graph test instances, the perfor-

mance disparity between UCTO and MAD-HOP widens. It is interesting to observe that as the

number of agents increases and the level of disruption is held constant, the performance gap be-

tween UCTO and MAD-HOP narrows, indicating the advantages of sharing information between

agents may lead to UCTO convergence faster with smaller number of rollouts. The analysis of

replanning durations revealed a substantial computational workload that incurs a delay of over

80 minutes for the largest graphs in the computational study, which may render the UCTO policy

impractical for such graphs.

Future research avenues include more efficient implementations of UCTO to reduce its

replanning event duration, which would enhance its practicability and allow for more rollouts.

A comprehensive analysis of the extent to which the benefits of sharing can reduce the number

of rollouts required for convergence of the average cost in UCTO is another possible research

direction. In addition, deploying MAD-HOP and UCTO on real-world networks will provide

evidence of their practicality for realistically-sized problem scenarios.
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5. Conclusions

This dissertation studies Stochastic CTP variants and reports on computational findings obtained

for varying problem variants and experimental parameters. We focus on two variants of Stochas-

tic CTP, namely SS-SD-SA and SS-MD-MA, the latter which is also called MAD-CTP. For SS-

SD-SA, we propose two novel rollout-based algorithms, Maximum Likely Node and Maximum

Likely Path. Both these algorithms utilize a consensus function to determine the next node to

visit. Chapter 3 introduces MAD-OMT and MAD-HOP algorithms that plan a path for agents

until they encounter a blocked edge, while Chapter 4 discusses a UCT policy where the agent de-

cides on the next node to visit, causing them to wait at every intersection, making it less practical

for real-life scenarios. We compare the average cost and replan time of the UCT policy to MAD-

HOP algorithm. Additionally, we investigate the benefits of information sharing for MAD-OMT

and MAD-HOP algorithms.

Chapter 2 presents a detailed comparison of our proposed algorithms, Maximum Likely

Node (MLN) and Maximum Likely Path (MLP), against various policies. Our approaches

demonstrate superior performance when compared to OMT and UCTB policies on all test in-

stances studied, and nearly outperform HOP on all instances. Furthermore, our algorithms nearly

outperform ORO and A*-HOP on half of the instances evaluated. The experimental analysis also

reveals that our algorithm achieves better average costs for two graphs against all reference ap-

proaches, although the difference was not deemed to be statistically significant. Additionally, we

conduct a comparative analysis of A*-HOP against MLP and MLN, utilizing weather level data,

and we observe that MLP and MLN together yield new best-known solutions in 10,715 out of

30,000 instances. The replan time for both algorithms is recorded to be approximately 15 seconds

for a 100 node graph size.

In chapter 3 MAD-HOP outperforms MAD-OMT on all Delaunay and Euclidean graph

instances with an average improvement of 14% to 19% and 3% to 8% respectively on the travel

cost for each agent. The improvement differences between Delaunay and Euclidean graphs was
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found to primarily depend on differences in each blockage probabilities. The analysis concludes

that the higher the blockage probability, the higher is the improvement against MAD-OMT. Thus

MAD-HOP is beneficial to use in the graphs with higher blockage probabilities. Because mul-

tiple agents are involved, the benefit of sharing information is analyzed and it is found that even

when the agents travel to different destinations, agents benefit by a significant amount. As the

number of agents increases the benefit increases. For a 500 node Euclidean graph with 21 agents,

the benefit is nearly 7%. In other words, the average cost for each agent improves by 7% over

the no sharing case. The replan time is recorded as 1.21 seconds for a 100 node Delauany graph

and 8.69 seconds for a 500 node Euclidean graph. This small amount of replan time makes the

MAD-HOP more practical.

In chapter 4 of this dissertation, we explore the implementation of the state-of-the-art UCT

algorithm to solve MAD-CTP. Surprisingly, our results indicate that UCT is able to provide better

costs on only 21 out of 60 Delaunay graphs and on none of the Euclidean graphs. This observa-

tion may be attributed to the number of rollouts employed, which we limited to 1000. Increasing

the number of rollouts may improve the performance of UCT, as previously demonstrated for

the single-agent single-destination variant mentioned in Eyerich et al. (2010). To investigate this

possibility, we conduct a small experiment using 10,000 rollouts on 20-node graphs. However,

our findings reveal that only on 6 out of 10 graphs does the average cost improve when 10,000

rollouts are used, compared to the results obtained using 1000 rollouts. Due to computational

intractability, using 10,000 rollouts for larger-sized graphs is not feasible. Therefore, from the re-

sults obtained for 20-node graphs, it remains unclear whether UCT will outperform MAD-HOP

or not. Even if UCT outperforms MAD-HOP, the replan time for a 300-node Euclidean graph is

recorded to be 9.28 minutes compared to 4.93 seconds for MAD-HOP, which represents a signifi-

cant increase of 99%.

Future research related to the MAD-CTP variant involves reducing the replan time for the

UCT policy, which can enhance its practicality and allow for more rollouts. Additionally, a com-
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prehensive analysis of the extent to which the benefits of sharing information could reduce the

required number of rollouts for convergence of average cost is a promising research direction.

Another vital aspect of future research is the deployment of the MAD-HOP and UCT algorithms

on real-world networks and selecting real destination locations. Notably, in this study, the desti-

nations were chosen based on comparable shortest path distances, which may not be realistic in

actual scenarios. Therefore, to validate the practical feasibility of the proposed approaches for

MAD-CTP, it is essential to test the framework on a real network and evaluate its performance.

Another direction for future work is to include variants that model edges as being recov-

erable. These variants allow for blocked roads to be cleared either by the agent or on their own,

such as when floodwaters recede. Although the recoverable CTP for a single agent and desti-

nation was introduced nearly two decades ago, there is a lack of computational research on this

problem variant in current literature. Another potential direction is to classify edges as determin-

istic and transform the problem into a k-CTP variant, which is extensively studied in literature.

Interdependent edges are frequently encountered in real-life scenarios, and therefore, it would be

beneficial to test our proposed approach on variants that incorporate edge dependence in order to

evaluate its effectiveness.
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