
University of Arkansas, Fayetteville University of Arkansas, Fayetteville 

ScholarWorks@UARK ScholarWorks@UARK 

Graduate Theses and Dissertations 

5-2024 

Fire Potential in Arkansas through the Lens of the Keetch-Byram Fire Potential in Arkansas through the Lens of the Keetch-Byram 

Drought Index Drought Index 

Charles Daly Steward 
University of Arkansas, Fayetteville 

Follow this and additional works at: https://scholarworks.uark.edu/etd 

 Part of the Geographic Information Sciences Commons, and the Remote Sensing Commons 

Citation Citation 
Steward, C. D. (2024). Fire Potential in Arkansas through the Lens of the Keetch-Byram Drought Index. 
Graduate Theses and Dissertations Retrieved from https://scholarworks.uark.edu/etd/5275 

This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion 
in Graduate Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more 
information, please contact uarepos@uark.edu. 

https://scholarworks.uark.edu/
https://scholarworks.uark.edu/etd
https://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F5275&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/358?utm_source=scholarworks.uark.edu%2Fetd%2F5275&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1192?utm_source=scholarworks.uark.edu%2Fetd%2F5275&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/etd/5275?utm_source=scholarworks.uark.edu%2Fetd%2F5275&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:uarepos@uark.edu


 

 

Fire Potential in Arkansas through the Lens of the Keetch-Byram Drought Index 

 

 

A thesis submitted in partial fulfillment 

of the requirements for the degree of  

Master of Science in Geography 

 

 

by 

 

 

Charles Steward 

University of South Dakota 

Bachelor of Arts in International Studies & French Studies, 2013 

 

 

May 2024 

University of Arkansas 

 

 

 

This thesis is approved for recommendation to the Graduate Council. 

 

 

 

_________________________ 

Kátia De Avila Fernandes, Ph.D. 

Thesis Committee Chair 

 

 

 

_________________________ 

Brad G. Peter, Ph.D. 

Committee Member 

 

 

 

_________________________ 

David William Stahle, Ph.D. 

Committee Member 

  



 

 

Abstract 

Vegetation fires are a complicated phenomenon to predict both the occurrence and intensity. In 

the United States, fire behavior has been widely studied in high-risk regions such as in the 

American West, but fires also occur regularly in states that receive greater levels of precipitation, 

such as Arkansas. Fires are an expensive and dangerous environmental problem. As climate 

trends caused by global warming continue to progress, quantifying the extent to which climate 

factors influence their occurrence in Arkansas would be useful for land management, public 

safety, public health, agriculture, urban development, and to advance the science of fire-climate 

dynamics in the American South. In this study, fires are evaluated using the Visible Infrared 

Imaging Radiometer (VIIRS) monthly active fires dataset, which is used to determine fire season 

peak. Land use/land cover (LULC) classifications in the state of Arkansas are analyzed to 

determine whether the climate-fire relationship varies according to predominant land covers. 

Finally, this study will explore the relationships between fire occurrence and climate variables 

using the Keetch-Byram Drought Index (KBDI) that incorporates temperature and precipitation 

to provide an outlook of fire risk. KBDI is commonly used for fire risk assessment in the US, but 

it’s unclear if the index can be relied on to assess fire risk in Arkansas or whether it provides 

different levels of reliability according to predominant landscape. KBDI in this study was 

calculated using Google Earth Engine in JavaScript, which facilitates consultation of daily KBDI 

estimates for Arkansas to the public. 
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Chapter 1: Introduction 

1.1 Trends in Fire and Impacts 

Fire occurrence is expected to increase over portions of North America and change regionally in 

the coming century due to increasing temperature and fuel aridity, consequences of land 

management policies, and expanding human development leading to a growing wildfire urban 

interface (Abatzoglou et al., 2021; Bowman et al., 2020; Krawchuk et al., 2009; Liu et al., 

2010a). Wildfire suppression cost the U.S. government around 3 billion USD annually in recent 

years and has been increasing at roughly $60 million per year since the mid-1980s (Burke et al., 

2021). 

The greatest number of major wildfires occur in the Western U.S. which threaten human 

settlements, destroy wildlife habitats, affect tourism industries, risk human health, and further 

feedback loops that worsen climate change trends (Bowman et al., 2020; Burke et al., 2021). 

However, wildfires also occur in the eastern half of North America. The 2023 wildfires in eastern 

Canada are an example of increasing, and devastating, wildfires in eastern North American 

ecosystems and may well be exacerbated in the future (Wang et al., 2022). At times, wildfires 

greater than 1,000 acres do occur in mountainous regions of Arkansas and in nearby Oklahoma 

and Missouri according to Monitoring Trends in Burn Severity (MTBS) data (Kurtis Nelson, 

2023). 

Agricultural fires, although purposefully created, are another important factor of overall 

fire behavior. Agricultural burning is a practice in which farmers will burn fields and refuse in 

order to clear debris or prepare for the next harvest. Some states and regions in the U.S. 

consistently contribute more to overall agricultural burning than others. The Mississippi Delta 

(comprised of parts of Arkansas, Louisiana, and Mississippi), the Blackbelt (comprised of parts 
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of Georgia and Alabama), and pockets in the Great Plains (parts in Kansas, North Dakota, 

Oklahoma, South Dakota, and Texas for example) contribute disproportionately to the amount of 

agricultural burning in the U.S. (McCarty et al., 2009). Arkansas, particularly the eastern 

agricultural areas, experiences a significant amount of agricultural burning which should be 

considered when analyzing fire behavior in the state. 

As fires and fire weather are projected to increase in North America throughout the 

coming century due to increased temperatures and drought (Liu et al., 2010a), it is important to 

study fire behavior not only in western regions of North America but also in regions where fires 

do occur but have historically not played a major ecological role. Better understanding climatic 

impacts on fire in Arkansas will better prepare communities for potential hazards in the future in 

regard to fire suppression, land management, tourism, human health, and development. 

1.2 Keetch-Byram Drought Index 

The Keetch-Byram Drought Index (KBDI) was created in the American southeast by the U.S. 

Forest Service to use the coupling effects of temperature and precipitation to estimate soil and 

duff moisture content and, therefore, fire potential of forest fires (Keetch & Byram, 1968). The 

index was originally created to prevent wildfire damage. In 1955 and 1956, four fires burned 

over 1,000 acres in the southeast where typically moist lands that served as barriers against fire 

had become excessively dry and fostered large, damaging, and costly fires. 

Since fire occurrences are expected to increase globally due to rising temperatures and 

drought, the KBDI is used in this study to measure fire potential in Arkansas. The KBDI is a 

commonly used drought index in research and operationally to estimate fire potential. Much 

literature exploring fire potential globally and regionally commonly uses the KBDI to measure 

fire potential (Dimitrakopoulos & Bemmerzouk, 2003; Dolling et al., 2005; Gannon & Steinberg, 
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2021; Liu et al., 2010a; Morton et al., 2013), making it an established index in this realm of 

study. Several states and organizations have historically used and currently implement KBDI. 

States such as North Carolina and Texas use the KBDI to estimate fire potential state and nation-

wide daily (Keetch-Byram Drought Index (KBDI) – North Carolina State Climate Office | 

Drought.Gov, n.d.; TWC | Keetch-Byram Drought Index (KBDI), n.d.) and forest agencies also 

use the KBDI, among other indices and climate/meteorologic variables, to estimate forest 

conditions (Brown et al., 2021).  

Other drought indices, such as the SPEI (Standardized Precipitation Evapotranspiration 

Index) and the PDSI (Palmer Drought Severity Index), are more commonly used (Balbo et al., 

2019) and are at times implemented for estimating fire potential (particularly the PDSI (Office of 

Environmental Health Hazard Assessment (OEHHA), 2022)). However, these indices focus on 

the balance between precipitation and temperature based on average precipitation. These indices 

provide a more general idea of drought, which can be used to understand climatic fluctuations or 

climate impacts on crop production. Whereas the KBDI was specifically developed to focus on 

soil conditions in relation to fire potential and how the coupling effect of temperature and 

precipitation impact these conditions and potential for fire.   

The KBDI has experienced success and significance in fire behavior research. KBDI 

values are supposed to estimate soil and duff layer moisture and the index successfully estimates 

herbaceous moisture content (Dimitrakopoulos & Bemmerzouk, 2003). KBDI and modified 

KBDI indices have successfully correlated index values with fire occurrences in places such as 

Hawaii (Dolling et al., 2005), Lebanon (Hamadeh et al., 2017), and the continental United States 

(Brown et al., 2021). Since the original formula for the KBDI was developed to be implemented 

in the U.S. southeast, modified KBDI indices have been created to adjust for climates of specific 
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study areas outside of the U.S. southeast by adjusting the coefficients that factor in for annual 

precipitation and estimate total evapotranspiration. This makes the index a flexible tool that can 

be tailored for study areas outside of the U.S. southeast as well. 

However, there have also been some studies that found that KBDI was not a good 

indicator of fire occurrence (Chan et al., 2004; Morris, 2007). Chan et al. (2004) discusses how 

KBDI in the state of Georgia can sometimes inversely correspond to fire occurrences and Morris 

(2007) discusses their results of poor correlation between fire and KBDI values. This study aims 

to shed light on why a discrepancy in KBDI success in measuring fire potential is experienced 

between studies. In fact, section 6.1 may help to explain the results of Chan et al. (2004) and 

Morris (2007) as relevant similarities between Arkansas, Georgia, and Mississippi exist. 

The KBDI’s success and its current use operationally and in research prove its potential 

usefulness. The KBDI is the most widely used fire potential index that strictly uses climate 

variables and since it was developed to be specifically used in the U.S. southeast (the U.S. 

southeast was determined by U.S. forest service regional administrative boundaries), it is the 

most logical index to begin measuring climate impacts on fire occurrences in Arkansas. The 

KBDI is used for daily decision-making regarding fire potential, but this study will help to 

determine its effectiveness for evaluating seasonal fire occurrence. Temperature and precipitation 

are the two variables most relevant to fire occurrence at the seasonal timescale and projected 

changes in their behavior are expected to exacerbate fire occurrence in the future (Liu et al., 

2010a, 2010b), making the KBDI a simple yet powerful index to calculate fire potential. The 

original KBDI formula is used in this study as it was developed for the U.S. southeast, and 

Arkansas can be classified as being a part of that region. Through personal communications with 

professionals working with fire in Arkansas, ecologically (Dr. Douglas Zollner at The Nature 
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Conservancy) and in natural hazards (Mr. Marcus Reed at the Arkansas Department of 

Agriculture – Division of Forestry Dispatch Center), the standard KBDI is an implemented index 

in the region. The KBDI scale ranges from 0 (complete soil saturation, no drought present), to 

800 (extremely dry soil, maximum drought). An example of a common daily decision making 

this index helps to inform is when burn bans should be put into place. For example, if the KBDI 

exceeds a threshold, decision makers may decide to implement a burn ban until KBDI reaches a 

lower level. This hypothetical threshold would of course vary from location to location 

depending on other factors such as topography, fuel load, human activity, etc. 

1.3 Fire Behavior in Arkansas 

There is a relatively small body of literature regarding fire behavior in Arkansas being most of 

them within the scopes of crop burning impacts on human health (McCarty et al., 2009; Rutlen et 

al., 2021; Zamanialaei et al., 2023), historic human-fire regime relationship changes via 

dendrochronological examination (Flatley et al., 2023; Guyette et al., 2006; Stambaugh & 

Guyette, 2006), and as part of larger research exploring nationwide fire trends in the U.S (Lin et 

al., 2014; Mitchell et al., 2014). 

The literature focusing on crop burning regarding human health does acknowledge that 

fires, agricultural, prescribed, and wildfires, exist in Arkansas and can affect human health 

(McCarty et al., 2009; Rutlen et al., 2021; Zamanialaei et al., 2023) . However, the focus of these 

studies prioritizes particulate matter (PM) from smoke that intersects with human establishments, 

rather than on fire behavior itself. What is important is that these studies, such as Zamanialaei et 

al. (2023), suggest that a significant amount of crop burning occurs in Arkansas. These crop 

residue burning fires, while intentionally created, should be considered when examining 
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statewide fire behavior as this study is examining fire wholly, not only examining wildfire or 

otherwise accidental fire.  

Literature on historic human-fire regime relationship changes via dendrochronological 

examination in Arkansas and nearby regions are usually very spatially smaller in scope than this 

study’s statewide assessment. The study areas of this literature, focusing on the Boston and 

Ouachita Mountains in Arkansas and in the Ozarks of neighboring Missouri, are a key piece of 

this study’s hypotheses as these regions contribute largely to the naturally vegetated LULC in 

Arkansas. This literature examines historical fire behavior in regions such as the Boston and 

Ouachita Mountains in Arkansas and the Ozarks in Missouri from pre-European settler times 

through the 20th century (Flatley et al., 2023; Guyette et al., 2002, 2006; Stambaugh & Dey, 

2021; Stambaugh & Guyette, 2006). These studies discuss how fire regimes in these regions 

have changed and how fire in these forested and mountainous regions has largely been used as a 

tool, or greatly suppressed, by human inhabitants at different points in the region’s previous 500 

years. However, humans in the 21st century are largely introducing a new fire regime, one that 

incorporates a significant prescribed burn practice for environmental and economic benefit 

(Guyette et al., 2002). 

These studies focus on the history of fire behavior, rather than historic climatic drivers of 

fire in Arkansas. As human population and development expands in the region, the risk of 

wildland fire occurrence and damage to human life and settlement increases. These are other 

reasons why it is important to understand how wildfire can impact Arkansas ecosystems in the 

future.  
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1.4 Climate and Fires in Arkansas 

The literature regarding climatic drivers on fire in Arkansas or the southeastern U.S. are usually 

only briefly mentioned within the scope of larger studies examining fire trends in the continental 

U.S. (CONUS), North America, or worldwide. For example, Lui et al. 2010 suggests that the 

southeastern U.S. will see increased fire potential per the Keetch-Byram Drought Index (KBDI) 

by the end of the 21st century, to approximately an annual average increase of 100 KBDI (the 

KBDI scale ranges from 0 (complete soil saturation, no drought present), to 800 (extremely dry 

soil, maximum drought). 

Many other studies link higher drought with higher fire potential and, thus theoretically, 

with higher fire occurrence (Morton et al., 2013; Riley et al., 2013). These studies discuss such 

intuitive relationships. If sharp decreases in precipitation and higher temperatures are 

experienced, fuel load will dry and facilitate a higher likelihood of fostering fire. Other proven 

factors that exacerbate fire potential include, but not limited to, wind, relative humidity, and fuel 

load and moisture (Keeley & Syphard, 2019; Liu et al., 2014). However, some of these variables 

are meteorologic in nature or ecosystem specific. Temperature and precipitation are climatic 

variables that locally may trend differently in the long term and affect regions or states in 

specific ways regarding fire behavior. Drought, driven largely by temperature and precipitation, 

should be examined to understand climatic impacts on fire potential in Arkansas. Specifically 

regarding Arkansas as a study area, the importance of examining drought is reinforced by a study 

on wildfire in Arkansas that found that soil moisture and the Palmer drought severity index were 

among the leading factors out of 15 variables that contributed to wildfires greater than 500 acres 

(Saim & Aly, 2022). However, it is important to keep in mind that while drought can drive fire 
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potential, it will not drive fire potential uniformly. LULC, regional forest management, fuel 

conditions, and ignition can impact drought’s influence on fire potential (Littell et al., 2016). 

There remain some disagreements on climate trends and their impacts on fire behavior in 

the southeastern U.S. Mitchell et al. 2014 discusses differences in climate projections. While 

commonly used climate projections, such as the Community Climate System Model (CCMS) 

and the Hadley Centre Coupled Model, version 3 (HadCM3), disagree on the severity of 

temperature change, they both project rising summertime temperatures in the southeast U.S., 

including Arkansas. Other factors are also important such as the southeast’s varied topography, 

land use/land cover (LULC), fire size, and fire ignition type, which make it difficult to generalize 

fire behavior and thus fire behavior drivers in the region (Mitchell et al., 2014; Morton et al., 

2013). Arkansas is no exception as topography and LULC in the state can range from rugged, 

dense forests to flat wetlands, to the agriculturally dominant Delta. However, research does 

suggest that drier conditions do impact fire size and that fires have statistically increased in the 

southeast generally over the past 25 years (Morton et al., 2013). 

To fill in the gaps of our understanding of fire behavior in Arkansas, this study explores 

relationships between fire occurrences in Arkansas and climate as expressed by KBDI. The 

analyses are further interpreted according to Arkansas main LULC. 
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Chapter 2: Goals and Motivation 

The KBDI, while widely used publicly and in research, is not readily accessible for analytical 

use in a gridded spatial format for the public. KBDI maps online can provide an idea of visual 

drought patterns, but downloadable values across specified areas for specified timescales are 

needed for manipulation and analysis. This study provides code that can be implemented for any 

region and timescale, provided climate data is available in gridded format. While Google Earth 

Engine, which is used to generate KBDI values in this study, does have computational limitations 

(specifically calculating an index formula daily for rasters over a longer time period (over ~3 

months)) that can make KBDI data generation tedious, the code can be used by anyone. This 

code can be used for free in Google Earth Engine or to transfer the code to another platform with 

improved computational capacity to generate their own KBDI data. 

As the climate changes, our understanding of how the climate impacts fire behavior in 

different regions becomes more important. This not only applies to already fire prone areas of the 

American west but to less fire prone regions such as the American southeast. Fires can pose 

several risks such as danger to human settlement and health and damage to infrastructure and 

natural areas due to increased wildfire behavior. Fire is an expensive hazard, and these dangers 

are coupled with financial costs (Burke et al., 2021). It is of great interest to understand how fire 

behavior responds to temperature and varied precipitation patterns in current times and 

throughout the 21st century (Gannon & Steinberg, 2021). 

Another aspect to consider is the varied LULC in Arkansas, ranging from topographically 

rough forests of the Boston and Ouachita mountains to wetlands in the south, and to the 

agriculturally dominant Mississippi Delta in the east. These differences in LULC can easily 

impact fire behavior as reviewed in the literature in section 1.3 and 1.4. These differences in fire 
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behavior per LULC may vary in intensity, spatially, and seasonally across the state. The forested 

areas for example may exhibit more intense fire behavior in the warmer and drier months 

whereas agriculturally dominant LULC may exhibit stronger fire behavior according to harvest 

schedules in the state. These examples of the study’s results would mean that Arkansas exhibits 

different fire behaviors in the state dependent on LULC. This would not only be useful for 

understanding fire behavior in the state but also in neighboring states. 

With these considerations in mind, the stated goals and/or questions of this study are: 

1) provide workable code to generate KDBI that will be easily accessible to the public. 

2) determine if the KBDI is a viable index to measure seasonal fire potential in Arkansas 

at the seasonal timescale. 

3) determine whether fires and KBDI relationships differ according to LULC in 

Arkansas. 

The hypothesis tested linked to goal #2 is: increased fire occurrence will correspond 

positively with increased drought (expressed as higher KBDI values – see section 1.2) and lower 

fire occurrence will correspond with lower KBDI values. The hypothesis tested in relation to 

goal #3 is: the relationship between fire occurrence and KBDI will be stronger for native 

vegetation (e.g. forest, herbaceous, and shrub), especially in a fire-prone ecosystem; and weaker 

in managed (e.g. human development and agriculture) land covers. This hypothesis assumes that 

more developed areas are more human-controlled, and therefore more fire suppressed, whereas 

naturally vegetated LULC is more prone to fluctuations in climate and weather. 
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Chapter 3: Data and Methods 

3.1 Datasets Used 

The datasets to be examined in this study are PRISM climate data (PRISM Climate Group, 2014) 

to calculate KBDI values, VIIRS 375m active fire product (Hillger et al., 2013; Schroeder & 

Land Atmosphere Near Real-Time Capability For EOS Fire Information For Resource 

Management System, 2020), Monitoring Trends in Burn Severity (MTBS) (Kurtis Nelson, 

2023), and the National Land Cover Database (NLCD) 2021 (Dewitz, 2023). 

3.2 Visible Infrared Imaging Radiometer Suite (VIIRS) Active Fire Product 375m 

Obtaining acceptably accurate and moderately comprehensive fire data is now feasible thanks to 

satellite datasets available through Fire Information for Resources Management System (FIRMS) 

(such as MODIS Active Fire Products (Giglio, 2000) and VIIRS 375m Active Fire Product 

(Hillger et al., 2013; Schroeder & Land Atmosphere Near Real-Time Capability For EOS Fire 

Information For Resource Management System, 2020). Other satellite-based fire datasets exist, 

however, with disadvantages. Studying fires from satellite estimates often requires the researcher 

to make a choice between high spatial resolution or high temporal resolution and/or short 

timeseries. The Landsat active fire dataset (Schroeder et al., 2016) would be a preferred dataset 

to use to measure fire behavior due to its fine spatial resolution of 30 meters. However, it has 

only been available since 2022 which makes aggregating monthly data for a reasonable study 

period unfeasible. The MODIS active fire dataset (Land Atmosphere Near Real-Time Capability 

For EOS Fire Information For Resource Management System, 2021) collects data daily and has 

been around since the year 2000 but is spatially coarser 1,000 meters than the VIIRS dataset at 

375 meters. Due to the VIIRS dataset being spatially finer, it can provide a more nuanced picture 

of fire behavior. The VIIRS active fire product was chosen for this study for its balance between 
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time series length and spatial resolution. The VIIRS data is downloaded from the NASA FIRMS 

(Fire Information for Research Management System) website as a shapefile of point data. 

ArcGIS Pro (ESRI Inc., 2023), is used to clip the data to retain the points within the Arkansas 

border. Each active fire point is flagged for quality of observation and low confidence fire 

occurrences are removed from the dataset, while nominal and high confidence level fire 

occurrences are retained. 

3.3 PRISM Climate Data 

The KBDI data is calculated from the PRISM (Parameter-elevation Regressions on Independent 

Slopes Model) available for the continental United States at 4km spatial resolution, at daily 

timesteps from 1991 to current (PRISM Climate Group, 2014). This study uses PRISM data from 

February 2012 through January 2024. The variables necessary to calculate KBDI are maximum 

daily temperature, daily precipitation, and annual climatological precipitation as described in 

section 4.1. 

3.4 MTBS Data 

The Monitoring Trends in Burn Severity (MTBS) (Kurtis Nelson, 2023) dataset will also be used 

in a visual capacity to determine where large fires generally occur throughout Arkansas and what 

kind of fires they are (wildfire vs. prescribed fire). The MTBS dataset collects fire data for fires 

greater than 500 acres in the eastern half of the CONUS (including Arkansas) and fires greater 

than 1,000 acres in the western half of CONUS. Because this is not a comprehensive dataset of 

all fires, and fires smaller than 500 acres are also of importance for determining fire behavior in 

the state, this dataset will not be examined statistically. 
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The MTBS provides shapefiles of the burn area for these large fires. Fires from 2012 

through 2023 are mapped onto the state of Arkansas and are compared to fire season, LULC, and 

climate/fire relationship patterns across counties in Arkansas. 

3.5 LULC Impacts 

Given the LULC diversity in the state of Arkansas, the significance of VIIRS-KBDI correlation 

coefficients are examined by counties’ dominant LULC per the National Land Cover Database 

2021 (Dewitz, 2023). The NLCD is available from 1992, new LULC data being made available 

in updated datasets, and it is comprised of land cover classes over the continental United States. 

There are 20 classes describing the various native vegetation types of the US, bodies of water, 

level of development and agricultural use. Generally, the western portions of Arkansas are 

topographically rougher and more forested while the eastern portions are flatter and dominated 

by agricultural LULC. It is hypothesized that due to these differences in LULC and human 

activity (or lack thereof), variations in fire behavior will be observed. 
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Chapter 4: Methods 

4.1 KBDI Formulation 

The KBDI is not a straightforward index to calculate. Despite the original paper introducing the 

index’s calculation, there is not a concise, cohesive explanation of how to precisely implement 

the index. Part of this study’s goal is to provide KBDI calculation readily available to the public, 

so it is rational to include a concise, cohesive set of directions to calculate the index. 

The KBDI uses maximum daily temperature, daily precipitation, and annual average total 

precipitation (or “climatological precipitation”) to estimate the soil and duff layer moisture of a 

given area. Ultimately, the formula can be represented as 𝐾𝐵𝐷𝐼  =  𝑄  +  𝑑𝑄  ×  10−3 where Q 

represents the previous day’s KBDI value adjusted for daily precipitation and dQ represents the 

effects of daily maximum temperature and climatological precipitation. The final KBDI value 

will range between 0 (complete soil saturation, minimum drought present) and 800 (extremely 

dry soil and duff layer, maximum drought possible). The units for which to use the KBDI 

formula will be described in imperial units as per the original paper introducing the formula. 

However, metric units can be used if temperature and precipitation units agree, but the formula 

coefficients must be adjusted and are not covered in this document. 

Q is the previous day’s KBDI adjusted for precipitation and can be represented as 𝑄 =

(𝐾𝐵𝐷𝐼𝑡−1) − (𝑁𝐸𝑇𝑃𝑡  ×  100). The t variable represents time, so 𝐾𝐵𝐷𝐼𝑡−1 is the previous 

KBDI value recorded. In this study, 𝐾𝐵𝐷𝐼𝑡−1 is the previous day’s KBDI value since daily data 

is being used. NETP represents net daily precipitation. If net daily precipitation does not exceed 

0.2 inches, NETP precipitation is equal to zero. If precipitation does exceed 0.2 inches, NETP 

equals daily precipitation minus 0.2 inches. In the case of consecutive days of precipitation, if 
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𝑁𝐸𝑇𝑃𝑡−1 exceeds zero, 𝑁𝐸𝑇𝑃𝑡 is equal to total net daily precipitation and ignores the step to 

subtract 0.2 inches. 

For the variable dQ, maximum daily precipitation and annual precipitation are taken into 

account and is represented as 𝑑𝑄  =  
((𝑄−800)⋅(0.968⋅𝑒0.0486𝑇−8.3)⋅∆𝑡)

1+(10.88⋅𝑒−0.0441𝑃)
 ×  10−3. Q is the variable 

calculated in the previous paragraph, T represents maximum daily temperature in Fahrenheit, Δt 

represents amount of time passed, and P represents climatological precipitation. Climatological 

precipitation is the average annual total amount of precipitation over a 30-year period. Δt for the 

use of this study is 1 because daily data is being used and iterating this function for each day. 

However, this may increase from 1 if using coarser climate data that, for example, collected data 

weekly or if the function is not iterated every day for daily climate data. 

4.2 Calculating KBDI using PRISM and Google Earth Engine (GEE) 

The KBDI data must be manually generated as gridded KBDI values are not readily available for 

Arkansas. The index formula is coded into Google Earth Engine (GEE) (Gorelick et al., 2017) 

using PRISM maximum daily temperature, daily precipitation, and annual climatological 

variables at 4km resolution to produce a daily output of KBDI values. For comparison with fires, 

KBDI data is needed starting in February 2012, but calculations need ‘spin-up’ time to calibrate. 

To do so, Arkansas KBDI was calculated beginning in January 2008, with the first image having 

a KBDI value of 0 across Arkansas. By the time KBDI values are collected for this study in 

February 2012, four years after spin-up was initialized, the values should be close, if not exact, to 

what the true KBDI values estimate for soil and duff moisture. 

The ‘spin up’ time for the KBDI index, the time it takes for index values to normalize to 

accurate values, is recommended to be only several years for areas that experience a wetter 
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climate but potentially over five years for drier climates (Brown et al., 2021). Figure 1 shows 

where 7-day precipitation accumulated to a minimum of six inches at least once during the 

calendar year for 2008, 2009, and 2010. If an area receives six inches or more of precipitation in 

a 7-day window, the top eight inches of soil should reach complete saturation where KBDI 

would reset to zero (Keetch & Byram, 1968), a necessary condition to start the daily sequential 

KBDI calculations. 

Given that there is only a small number of pixels where the 7-day precipitation did not 

add up to six inches between 2008 and 2010, 2008 was determined to be an acceptable year to 

begin the KBDI spin-up for an analysis beginning in 2012. After beginning to generate KBDI 

values, it became clear that most pixel areas in Arkansas, according to PRISM climate data, 

reach a KBDI value of zero naturally at some point nearly every winter. Not only would values 

normalize to their true value given a four-year spin-up, but most pixels in Arkansas naturally 

drop to zero at some point during the winter due to the coupling effect of precipitation and low 

temperatures, which effectively resets the index. It is safe to assume that the remaining pixels 

that did not receive at least six inches of precipitation in these years normalized to proper values 

in the four years of index spin-up.  

Figure 1: The black pixels represent areas that did not accumulate at least six inches of 

precipitation during any 7-day period of the years 2008, 2009, and 2010 (left to right). 

Pixels that received 6 or more inches of precipitation within 7 days 2008-2010 
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 Using the PRISM climate data, images of KBDI values across Arkansas can be produced 

daily for the duration of the study period. To match the resolution of the VIIRS data, the KBDI 

pixel values are averaged monthly and then averaged spatially by county. This results in a dataset 

that provides the monthly average KBDI value for each Arkansas county. 

Using PRISM climate data, Google Earth Engine, and the formula above, gridded KBDI 

values can be calculated daily at 4.6 km (the spatial resolution of PRISM Climate Data). By 

using PRISM climate data inputs and Google Earth Engine in conjunction, every pixel of 

PRISM-provided data undergoes the calculations described above and produces a KBDI value. 

These KBDI formula calculations are coded into Google Earth Engine using the JavaScript 

language. 

4.3 Spatial Aggregation 

The modifiable areal unit problem (MAUP) (Openshaw, 1984) and the modifiable temporal unit 

problem (MTUP) (Cöltekin et al., 2011) (the latter, as it relates to this project, is discussed in 

section 4.4) are two considerations when deciding how to aggregate data. How data is aggregated 

spatially and temporally may affect the results of the analysis and potentially lead to inaccurate 

conclusions. Spatial data is provided in pixels and shapes of varying areal sizes and at temporal 

scales of varying intervals. The spatial and temporal resolution of data may not reflect the nuance 

of reality. Additionally, further manipulation and aggregation of data will affect the results of 

analysis. How the aggregation may affect the results should be considered. However, these 

spatial and temporal problems are inherent in all spatial analysis. 

The KBDI and VIIRS datasets are aggregated to a common spatial aggregation at the 

level of counties in Arkansas. The decision to use Arkansas counties as the spatial unit is 

threefold. 1) Conventional weather and climate systems often use counties as spatial units for 
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data aggregation (NOAA Offers Climate Data for Counties, 2019). 2) Policy and decision making 

occur frequently at administrative levels, such as at the county and state level, not at the pixel 

level. 3) Fires at the 375-meter resolution (VIIRS active fire product resolution) may not repeat 

year to year due to fuel levels not recovering (Roccaforte et al., 2012) limiting an analysis of 

interannual variability at the pixel level. 

It is important to avoid ecological fallacy regarding results produced in this study. Fire 

behavior is not uniformly distributed throughout each county and therefore it is important to 

avoid assuming that fires occurred in a particular area or LULC on the intra-county scale. Due to 

the decision to aggregate data by county lines, these intra-county variations are not observed and 

are a result of the MAUP. However, given that data must be aggregated spatially, this problem 

would exist to some degree in any case. 

4.3.1 VIIRS Active Fire Product 

The VIIRS data is downloaded from the NASA FIRMS (Fire Information for Research 

Management System) website (NASA-FIRMS, n.d.) as a shapefile of point data, using latitude 

and longitude coordinates to overlap the Arkansas border. Using ArcGIS Pro, the data are clipped 

using the Arkansas border. The daily VIIRS active fires point data is first filtered to retain the 

nominal and high confidence values. The point data are spatially joined to a shapefile of 

Arkansas county borders, assigning each fire occurrence to the county it occurred in. Then, 

active fires are counted within the borders of each county in Arkansas using the GroupStats tool 

in QGIS. A monthly time series of active fires count is then produced for all 75 counties in 

Arkansas from February 2012 through January 2024. 



19 

 

4.3.2 KBDI 

The daily gridded KBDI generated using GEE is also aggregated to county level in GEE. Due to 

computational limitations of GEE, the script code was adjusted and run for every month of the 

time series. In GEE, the KBDI pixel values were averaged for the entire month and then spatially 

averaged according to Arkansas county borders. These county averages were exported out of 

GEE and compiled to create a final timeseries of monthly average KBDI values for all 75 

Arkansas counties from February 2012 through January 2024. 

4.3.3 NLCD 

Fire potential describes how prone or resilient an environment is to fire provided a source of 

ignition. Fire may occur in circumstances of high fire potentiality, but it may also occur in 

circumstances of low fire risk. Fire during times of low fire risk may be caused by ill-managed 

prescribed burning or otherwise neglectful fire practices and is dependent upon factors such as 

moisture content, live vegetation, dead vegetation, ignition source, ignition strength, wind, etc. 

(Keeley & Syphard, 2019; Liu et al., 2014). Thus, in this study the relationship between fire and 

KBDI is evaluated according to predominant land cover in Arkansas to assess whether patterns 

of certain LULC impact positively, or negatively, the fire/drought relationship. The gridded 2021 

NLCD layer is used to extract the dominant LULC of each county by first creating a NLCD 

simplified classification. The original NLCD classes: "deciduous", "evergreen", and "mixed 

forests" are combined into a single “forest” classification; open, low, medium, and high intensity 

developed areas are combined into a single “developed” classification; dwarf-shrub and 

shrub/scrub are combined into a single “shrubland” classification; grassland herbaceous, 

sedge/herbaceous, lichens, and moss are combined into a single “herbaceous” classification; 

pasture/hay and cultivated crops are combined into a single “agriculture” classification; woody 
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wetlands and emergent herbaceous wetlands are combined into a single “wetland” classification. 

This makes a final LULC classification list of 1) water, 2) developed, 3) barren, 4) forest, 5) 

shrubland, 6) herbaceous, 7) agriculture, and 8) wetland. This re-classification characterizes 

LULC that falls under two main umbrellas: developed (urban and agriculture) and non-

developed (forests, shrub, herbaceous, and wetland). By using the 2021 layer, as opposed to an 

earlier NLCD product (e.g. 2011 or 2019), the most common change (non-developed to 

developed) should be well represented. In addition, it is not expected that the dominant land 

cover and percentage of total land cover changed drastically from 2011 to 2021.  

The proportion of each county’s land cover is calculated in ArcGIS Pro using the spatial 

statistics tool. The dominant three land cover of each county and their respective percentages are 

recorded. This provides a metric of each county’s developed vs. non-developed LULC. 

4.4 Temporal Aggregation 

Regarding the MTUP (referred in section 4.3), how data will be aggregated and how that 

aggregation may affect the results of the project should be considered. This study will aggregate 

data monthly to determine the season when each county experiences the most fires. Fires are 

caused due to ignition sources, not drought. Drought may provide conditions favorable to fire 

given an ignition source, but fire will not propagate without a source of ignition regardless of 

moisture levels. This study aims to determine whether fire and drought relationships exist in 

Arkansas by determining maximum fire season for each county and observe if drought 

conditions correlate with fire season. 

Monthly fire counts calculated at the county level (Section 4.3.1), were used to derive a 

monthly climatology throughout the study period (i.e. averaging all January fire counts, February 

fire counts, etc.). Then, an overlapping 3-month climatology (i.e. January-February-March 
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(JFM), February-March-April (FMA), etc.) was calculated. Seasonal climatology was used to 

determine the season with the highest monthly average fire count in each county and spatial 

patterns of maximum fire season in Arkansas which facilitates comparison with LULC coverage 

across the state. 

The KBDI values for each county’s fire season are calculated in the same way, but 

dependent on maximum fire season. Given each county’s maximum fire season, the KBDI values 

for these respective months are averaged. By doing so, the hypothesis of greater fire occurrence 

corresponds with higher fire potential can be tested. If a greater average fire occurrence during 

maximum fire season corresponds to a higher average KBDI value, a climate/fire relationship 

can be exhibited. If a greater average fire occurrence during maximum fire season does not 

correspond to a higher average KBDI value, a climate/fire relationship is not exhibited. The 

correlation analysis (see section 4.5) is then conducted at each county for the maximum 

climatological fire season. 

4.5 Correlation Analysis 

The average 3-month VIIRS fire count during maximum fire season for each county is correlated 

with average 3-month KBDI values during each county’s respective fire season. Table 1 is an 

example of this correlation being performed on Lonoke County (located in the east central region 

of Arkansas) using the Pearson’s correlation coefficient. If the correlation coefficient (r-value) is 

above 0.5 (which means the relationship is positively correlated), the p-value is calculated. For 

this study, r-values above 0.5 and p-values below 0.1 are significant and have a low likelihood to 

have randomly occurred. 
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Table 1: Correlation calculation for Lonoke County. Average Sep-Oct-Nov KBDI values are 

averaged each year, and average Sep-Oct-Nov VIIRS fire occurrences are averaged each year. 

The SON averages for each dataset are then correlated, producing R- and P-values for the 

county. 
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Chapter 5: Results 

5.1 Maximum Fire Seasons in Arkansas 

The maximum 3-month fire period was calculated for Arkansas county-wide. The mapped results 

can be seen in Figure 2. 

 The northwestern third of Arkansas exhibits a similar maximum fire season early in the 

year. The dominant season in this third of the state is February-March-April, but some counties 

exhibit January-February-March, March-April-May, and April-May-June seasons as well. 

Figure 2: The dominant maximum fire season for northwest Arkansas is Feb-Mar-Apr and in 

the south and east it is dominantly later in the year, Aug-Sep-Oct and Sep-Oct-Nov. 
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The southern region and the eastern region exhibit maximum fire seasons later in the year 

yet are slightly varied. The southern third exhibits a dominant maximum fire season of August-

September-October but also exhibits maximum fire seasons of September-October-November 

and October-November-December. Whereas the eastern third exhibits a dominant maximum fire 

season of September-October-November. 

The lines separating these regions of maximum fire season dominance are similar, but not 

exact, to the lines separating LULC differences in the state (Figure 7, Section 5.3). The northwest 

third, containing the heavily forested regions of the Ouachita and Boston Mountains and 

surrounding areas, exhibits a common maximum fire season. The southern Arkansans region of 

mosaiced LULC of forest, agriculture, and wetlands shares a common maximum fire season and 

the eastern Arkansans region agricultural dominance shares a common fire season. 

The spatial patterns of LULC (Figure 7, Section 5.3) and maximum fire season are 

similar. However, the maximum fire season separations are not quite as sharp as the LULC 

separations. When considering this, it is important to keep in mind that the maximum fire season 

map is an aggregation of fires by county lines. This will not capture intra-county variations in 

fire behavior where fires may occur dominantly in a certain area within the county or upon 

certain LULC in the county (see Section 4.3 discussing importance of MAUP and ecological 

fallacy). 

Maximum fire season only reveals which 3-month period each county experiences most 

of its fire, not how much fire is experienced within the county. Figure 3 reveals the average 

monthly number of fires during each county’s respective maximum fire season. The patterns of 

average monthly fires during maximum fire season share much less in common with the patterns 
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of the simplified LULC or the maximum fire season. However, there are spatial patterns where 

fire behavior is significantly more intense than in other parts of the state.  

The east central and northeastern regions of Arkansas experience much more intense fire 

seasons than the rest of Arkansas. Mississippi county particularly, the eastern most county in 

Arkansas, exhibits over double the number of average monthly fires during maximum fire season 

than the second highest county, which is neighboring Poinsett County.  

Figure 3: Pockets of more intense fire seasons in Arkansas are in the northeast and east 

central. West central counties such as Scott and Montgomery exhibit noticeably higher fire 

counts in maximum fire season than their neighbors. 
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The west central counties of Scott and Montgomery comprise the only pocket of intense 

fire season outside of the east central and northeastern parts of the state. These counties are 

largely comprised of Ouachita National Forest lands and exhibit a significantly higher number 

fires than any other county in the Ouachita or Boston Mountains. Searcy County experiences the 

most fire during fire season than any county in the Boston Mountains but still exhibits a 

relatively lower number of monthly fires at 42 occurrences in comparison to eastern counties. 

5.2 KBDI in Google Earth Engine 

The finalized KBDI dataset was completed to provide average monthly KBDI values per county 

from February 2012 through December 2023. In this period, daily KBDI images were averaged 

monthly and spatially by each county. Figure 4 is an example of daily KBDI images from 

October 1st, 15th, and 31st of 2023. The KBDI is measured from a 0 (no drought) to 800 

(maximum drought) scale. Here, blue represents low drought, yellow represents medium 

Figure 4: An example of KBDI value progression throughout the month of October 2023. 

October 1st, 15th, and 30th (left to right). 

Figure 5: An example of KBDI value progression and statewide uniformity throughout the 

month of February 2023. February 1st, 15th, and 28th (left to right). 
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drought, and red represents high drought conditions. The variation in drought conditions 

throughout the state can vary considerably at times as seen in Figure 4 where at some point 

during the month there was always an area of very low drought and an area of very high drought. 

Figure 5 (KBDI images from February 1st, 15th, and 28th of 2023) also reveals that KBDI values 

during winter can be very low throughout the state, due to low temperatures and winter 

precipitation. The code and images for KBDI in Arkansas can be found using this link 

(https://code.earthengine.google.com/ec6bba3a0cfcab21e9750a6ed33cdf03), however, a free 

GEE account will be needed to access and run the code. 

Figure 6 shows mean 

monthly KBDI values by 

county, averaged throughout 

the entire timeline, 

independent of maximum 

fire season. Even though the 

total monthly averages 

mostly fall within a narrow 

range of values (most 

counties exhibiting an 

average between 200 to 300 

on the KBDI scale), the 

spatial variations that do 

exist do not share similar spatial variation with maximum fire season. Comparing the counties 

that experience the most fires in maximum fire season (Figure 3, Section 5.1) and which counties 

Figure 6: Average monthly KBDI value 2012-2023. The 

average KBDI value is within a score of 100 which is a 

noticeable, but not significant, difference in usual drought 

levels. 

https://code.earthengine.google.com/ec6bba3a0cfcab21e9750a6ed33cdf03
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experience the more average drought (Figure 6), these datasets do not share similar spatial 

patterns and thus no obvious relationship between fires and KBDI exist. 

5.3 NLCD 2021 

The LULC of Arkansas was simplified into broad categories of developed, forest, shrub, 

herbaceous, wetland, and agricultural LULC. The mapped results can be seen in Figure 7. The 

spatial patterns of these LULC are evident. The thicker forested areas are in the Ouachita 

Mountains and the Boston Mountains (west central and northwest respectively). There is a 

Figure 7: Spatial patterns to consider are dominant agriculture LULC in the east, presence of 

thick forests in the northeast, and a mosaic of wetlands and forest in the south-central region. 
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mosaic of agricultural, forested, and developed LULC north and south of both the Boston and 

Ouachita Mountains. A mixture of agricultural, forested, and wetland LULC in the southern 

portion of Arkansas is exhibited. The eastern half of Arkansas is clearly dominated by 

agricultural LULC except for a narrow stretch of each forested and wetland LULC. The visual 

interpretation of predominant land cover is supported by the analysis of percentage cover of the 

three classes with highest incidence (Table 2). 

There is a sharp line cutting through the state, separating where agriculture is clearly the 

dominant LULC for counties in the eastern region of the state and where counties’ LULC turns 

Table 2: The top three dominant LULC per county in Arkansas. The percentage refers to how 

much total land cover the classification comprises of the county. 
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into largely forested or a mosaic of forested, developed, and agriculture. However, this sharp line 

dividing dominant LULC runs through the middle of many counties and is an example of the 

MAUP in terms of analysis. Under the assumption that LULC impacts fire behavior, this major 

divide of LULC should be kept in mind. The following results of this study will be observed with 

the spatiality LULC differences in Arkansas. 

5.4 VIIRS-KBDI Relationship 

The results of the Pearson correlation coefficient between average fire occurrence in maximum 

fire season and average KBDI in maximum fire season per county can be seen in Figure 8. 

Figure 8: Counties that exhibit a significant VIIRS-KBDI correlation are dominantly in the 

eastern region of Arkansas. 
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Counties that exhibit a significant correlation coefficient (r-value > 0.5) at 90% confidence (p-

value < 0.05, two-tailed test) are highlighted in the figure. Most counties that exhibit significant 

relationships between drought and fire occurrence are in the eastern half of Arkansas. 

Specifically, the central eastern region of Arkansas is an evident concentration of counties where 

the VIIRS-KBDI relationship is significant. Pike, Hot Spring, Searcy, and Johnson counties are 

the only counties with significant VIIRS-KBDI relationship in the western half of Arkansas.  

The spatial distribution of statistically significant correlation (Fig. 8) and land cover (Fig. 

7, Sec. 5.3) indicate a pattern following the boundary separating agriculturally dominant LULC 

and forest dominant LULC. In fact, 17 of the 23 eastern agricultural counties express at least 

some degree of VIIRS-KBDI relationship. Only six forest-dominant counties express a VIIRS-

KBDI statistically significant relationship, most exhibiting a noticeably lower R-value than 

agricultural counties exhibiting a VIIRS-KBDI relationship.  

The top counties that experience the greatest number of fire occurrences during 

maximum fire season, however, did not express a VIIRS-KBDI relationship. Mississippi County 

(agriculturally dominant), Poinsett County (agriculturally dominant), Scott County (forest 

dominant) all lack a VIIRS-KBDI relationship. These counties experience the highest number of 

fire occurrences during maximum fire season (all counties average over 100 monthly fires in 

maximum fire season). 

These findings are contrary to the initial hypothesis which stated that forest-dominant 

counties were expected to exhibit stronger VIIRS-KBDI relationships than developed (e.g. 

agricultural) counties. During this timeframe, the agricultural areas of Arkansas are where higher 

drought appreciably corresponds with higher fire occurrence. 
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Counties where forests predominate (Fig. 7, Sec. 5.3) and fires occur regularly (Fig. 3, 

Sec. 5.1) do not seem to be greatly affected by fluctuations in KBDI, as demonstrated by poorer 

correlations between KBDI and fires (example: Scott and Montgomery counties) also contrary to 

the initial hypothesis. To further investigate the types of fires that occur in some of these 

landscapes, an analysis of prescribed versus wildfires is presented next and will serve as 

evidence to support the arguments presented in the Discussion section. 

5.5 Prescribed vs. Wildfires 

Figure 9 below overlays all fires greater than 500 acres in Arkansas from 2012 through 2023 as 

per the MTBS dataset. As can be observed, most of these largest fires in Arkansas are in the 

northwest third of Arkansas. Prescribed fires are the dominant classification of these large fires 

while wildfires greater than 500 acres are scarce. Johnson and Searcy Counties experience a few 

of these large, prescribed fires but most of them occur in counties where a VIIRS-KBDI 

relationship is absent. 

 In comparing Figure 9 with Figure 3, Section 5.1 (monthly frequency of fire occurrences 

during maximum fire season), many of the counties that experience a higher number of fires 

during maximum fire season than their neighbors are these counties where large, prescribed 

burns occur. Scott and Montgomery Counties in particular exhibit much higher fire counts during 

maximum fire season and are shown to experience more large, prescribed fires than other 

counties in the northwest. Wildfires of greater than 500 acres are rare and are often located 

adjacent to large, prescribed burns. Since the fire data is provided by a satellite active fire 

product, the dataset collects all fire occurrences and does not discern wildfires from prescribed 

fire. 
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5.6 Comparative Analysis for Northern California 

A conclusion of this study in Arkansas is that the KBDI is not an effective indicator of fire 

season variability in naturally vegetated LULC in Arkansas, but it is an effective indicator in 

agriculturally dominant LULC in Arkansas. This is because, in this region, fire is often not a 

climate-driven phenomenon but a human-driven phenomenon. Northern California, infamous for 

its extreme wildfire behavior, was thought to be a study area where the KBDI may perform more 

effectively as an indicator of fire season variability.  

Figure 9: MTBS fires larger than 500 acres overlayed on the R-values of VIIRS-KBDI 

correlation for all Arkansas counties. 
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A comparative analysis was run in the northern half of California between the years 

February 2012 and January 2023, a similar 11 seasons of data and the same methodologies were 

used. Figure 10 shows the maximum fire 

season per county. Most counties exhibit mid-

year fire season such as MJJ and ASO. Figure 

11 shows which counties experienced the most 

fires in this timeframe. The counties that 

experienced the most intense fire behavior are 

generally along the Sierra Nevada Mountains 

on the eastern side of the state and in the 

northern most counties. Figure 12 shows the 

Figure 11: The range of fire behavior among 

counties in northern CA is significant. Some 

northern counties experience thousands of 

fires during maximum fire season while most 

counties experience under 500. 

 

Figure 12: Average monthly KBDI value 

2012-2023. The average KBDI value ranges 

from just below 200 to almost 500, 

exhibiting significant difference in drought 

spatiality in northern CA. 

Figure 10: Maximum fire season of north 

California counties. Most counties exhibit a 

late summer/early fall maximum fire season. 
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average monthly KBDI value independent of maximum fire season.  

Figure 13 shows which counties exhibit significant VIIRS-KBDI relationships (r-value > 

0.5) at 90% confidence (p-value < 0.05) with MTBS fires of greater than 1,000 acres (MTBS 

only collects fires of 1,000 acres or greater in the Western U.S.). The counties that exhibit the 

Figure 13: MTBS fires greater than 1,000 acres overlayed on the R-values of VIIRS-KBDI 

correlation for northern California counties 2012-2023 (excluding San Francisco County). 
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most significant VIIRS-KBDI relationships are Siskiyou and Lassen Counties. The other 

counties that exhibit VIIRS-KBDI relationships exhibit r-values below 0.7 and most r-values are 

slightly above 0.5. In comparison to Arkansas, northern California’s large fires are dominantly 

wildfires, whereas Arkansas’s large fires are dominantly prescribed fires. 

Again, these results are not what was hypothesized to be exhibited in a region where 

wildfires are more climate-driven than a region such as Arkansas. However, northern California 

experienced several historic wildfire events during this time according to MTBS data, such as the 

August Complex fire of 2020 or the Dixie fire of 2021 that burned 1,068,802 and 979,795 acres 

respectively. The size of these fires, providing such a huge number of VIIRS fire occurrences, 

and provided the relatively short temporal scale of this study (11 seasons), it is possible that these 

historic fire events skewed the true maximum fire seasons of some key counties by occurring 

outside of maximum drought season or obscured average fire behavior in some parts of the state. 

Still, the counties that exhibited positive VIIRS-KBDI relationships are mostly forested, 

shrub, or herbaceous LULC as shown in Figure 14. A few counties such as San Matero and 

Solano exhibit positive relationships although these are not counties of intense fire behavior in 

comparison to other counties. These results are not strong enough to determine if the KBDI is a 

good indicator of fire season variability and VIIRS-KBDI analysis at the county scale for 

California is not advised due to the large differences in total area county to county. To determine 

whether KBDI is a positive indicator of fire season variability, it is recommended that a similar 

analysis take place but with 1) a longer temporal range and 2) a way to limit fire occurrence 

frequency for historic fire events where drought impacts are secondary to factors that perpetuate 

large wildfire such as wind and fuel load (Keeley & Syphard, 2019) and 3) a more appropriate 

spatial unit to correlate relationships than the county scale. Additionally, since fire behavior in 
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northern California is difficult to generalize, it may be worth considering to include a fuel aridity 

index (as such used by Abatzoglou et al., 2021) alongside the KBDI to further explore soil vs. 

fuel moisture impacts on fire behavior. 

  

Figure 14: A concentrated agricultural area in central northern California and most developed 

areas are in the south central and southwestern part of northern California. Naturally 

vegetated LULC, such as forest, shrubland, and herbaceous, dominate the other regions of 

northern California. 
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Chapter 6: Discussion 

6.1 KBDI as a viable indicator for fire season variability 

The results of this project show that KBDI can be a reliable indicator of fire variability as 

assessed by the correlation analyses, though not similarly in all landscapes. The initial 

assumption that VIIRS and KBDI relationships in Arkansas would be stronger in native 

vegetation versus agricultural land was proved the opposite. 

In Arkansas, agricultural land generally exhibits a strong VIIRS-KBDI relationship and 

forested landscapes mostly do not. The methods and results of this study were shared with an 

experienced Arkansan ecologist working with the Little Rock chapter of The Nature 

Conservancy and with a professional at the Arkansas Forestry Commission Fire Dispatch Center 

in Malvern, Arkansas. A review of literature and the interactions with these professionals offered 

insights into some of the reasons behind this study's results. 

There are two major human-controlled phenomena that drive these VIIRS-KBDI 

relationships, or lack-thereof. First off, there are great efforts of prescribed and controlled burns 

implemented in the naturally vegetated, forested LULC in Arkansas. This can be seen in Figure 

9, Section 5.5. While forest fires do occur in Arkansas, the prescribed burn practices in Arkansas 

limit the severity and number of natural fires. Most of the prescribed and controlled burns in the 

forested LULC occur earlier in the year to ensure that fire is easily controllable, which agrees 

with this study’s finding that the northwest third of Arkansas exhibits a February-March-April 

maximum fire season. These fires are intentionally created when drought values are low in order 

to better control the prescribed fire. This effectively skews most fire occurrences in these regions 

to take place when KBDI is low, which would mean that using the methodology for this study, 

fire occurrence would not correspond with higher KBDI values. However, the professionals did 
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discuss that the KBDI is used when determining 

safe and unsafe dates to burn. When the KBDI 

value of an area to undergo a prescribed burn 

exceeds a certain threshold, the prescribed burn 

is postponed. When KBDI values are low, 

prescribed fire can be implemented more 

controllably and confidently. 

Secondly, farms in Arkansas, dominantly 

in the eastern part of the state where positive 

VIIRS-KBDI relationships exist, burn refuse 

after harvest and before winter. Literature on human health and agriculture in Arkansas backs up 

these claims. Human health literature focusing on COPD cites the increase in PM due to 

agricultural burns, in and outside of Arkansas (McCarty et al., 2009; Rutlen et al., 2021; 

Zamanialaei et al., 2023). A crop that is a significant contributor to total PM caused by 

agricultural burning is rice (Zamanialaei et al., 2023) and parts of eastern Arkansas produce an 

extremely high proportion of the United States’ rice output. Rice fields are often burned post-

harvest to clear stubble to make way for planting the next crop.  

Arkansas farmers, according to the professionals that were advised, may burn precisely 

when KBDI is high to ensure that their fires effectively burn refuse after the harvest. This 

increases the number of fire occurrences in these regions at the end of the year after harvest 

which this study found to be true. Most agriculturally dominant counties exhibit a maximum fire 

season August and after, during autumn when KBDI values are still high. 

Table 3: Frequency and proportion of 

wildfires on non-federal lands in Arkansas 

1997-2022 from Arkansas Forest Service. 
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The Division of Forestry Dispatch Center of Arkansas shared a dataset detailing every 

fire dispatched through their office that includes all wildfires that occurred on non-federal lands 

in Arkansas from 1997-2022. Table 3, created from the provided dataset, shows the proportional 

causes of wildfire. Most fires were caused by humans and very few were created by natural 

phenomena such as lightning. Most of these wildfires were caused by ill managed debris burning 

or were incendiary in nature. While wildfire does exist, the major culprits of wildfire in Arkansas 

are controlled burning and fires that are intentionally ignited illegally (e.g. debris burning and 

incendiary) breaking into wildfire. Most wildfires often occur accidentally because of 

intentionally created fire by humans, most often at the end of the year after harvest, rather than 

by natural causes such as lightning. Thus, the maximum fire seasons exhibited in Arkansas (early 

year in forested regions and later in the year for agricultural regions) reflect human activity, 

rather than natural phenomena. 

These explanations also may be the reason why there exists literature citing KBDI as a 

poor indicator of fire occurrences. The study areas of the literature citing KBDI as a poor 

indicator of fire occurrence are in the southeast U.S., where, as this study found, most of the fire 

in agriculturally dominant areas is intentionally created by humans, minimizing the natural effect 

of drought on fire occurrence. States such as Arkansas, Florida, and Louisiana contribute to a 

disproportionally large amount of crop burning in the continental U.S. The dominant source of 

Arkansas crop burnings are from the eastern portion of the state (McCarty et al., 2009). When all 

fire is treated equally in the southeast U.S., it should now be expected that KBDI would be an 

extremely poor indicator of fire occurrence due to the inverse KBDI-fire relationship described 

above. Specifically regarding KBDI/fire relation studies in the southeast U.S. (Chan et al., 2004; 



41 

 

Morris, 2007), wildfire must be made distinct from prescribed and controlled burns to draw 

conclusions of climate impacts on fire behavior. 

To separate agricultural burns to fires in naturally vegetated areas, the spatial resolution 

differences between the VIIRS active fire product (375 meters) and NLCD 2021 (30 meters) is 

too great to produce reliable results. In all regions of Arkansas except for the agriculturally 

dominant east, there is often too much variation in LULC at 375 meters to reliably assume which 

LULC classification the VIIRS fire occurrence took place. Assuming that the center of the 375 

meter VIIRS fire occurrence is where the fire occurred in reality, and on the LULC classification 

it would land on in Arkansas, would be an unreliable assumption due to the ecological fallacy 

(Cöltekin et al., 2011). The ecological fallacy is a problem in which the entirety of a pixel is 

assumed to be uniform and is analyzed as such. Additionally, to create 375-meter aggregations of 

dominant LULC is unreliable because the VIIRS Suomi-NPP satellite collects fire occurrences at 

375 meters at difference swathes across the surface of the earth. Due to this, creating a coarser 

375-meter LULC dataset to consistently match the VIIRS dataset would be unfeasible. 

Because of the inability to determine on which LULC each fire occurred, the fire data 

must be aggregated to a spatial unit (in this case, Arkansas counties). This introduces issues of 

MAUP (Section 4.3). However, provided that the fire data must be aggregated to a spatial unit, 

this MAUP is inherent regardless of chosen spatial unit. Although, it should be noted that the 

spatial unit should be chosen deliberately and with consideration to how this spatial unit may 

alter analysis results. For reasons discussed in section 4.3, the county level was chosen because 

conventional weather and climate systems often use counties as spatial units for data aggregation 

(NOAA Offers Climate Data for Counties, 2019), policy and decision making occur frequently at 
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administrative levels, such as at the county and state level, and fires at the 375-meter resolution 

may not repeat year to year due to fuel levels not recovering (Roccaforte et al., 2012). 

Provided these results, in Arkansas and other places where fire is a dominantly human-

controlled phenomenon, the KBDI is not a viable indicator for fire season variability for 

naturally vegetated LULC. That is not to say that the KBDI is a useless index, but because fires 

are a human-driven phenomenon in the state and not a climate-driven phenomenon, the index 

does not actual reflect fire behavior in contemporary Arkansas. The index is currently used as 

one of the parameters in the state to determine when prescribed and controlled burns should be 

taken place and when recreationists should exercise caution when starting fires. This is an 

appropriate use of the index, but the KBDI should not be used as a reference to understand 

natural fire behavior where fire is dominantly an intentionally human-created phenomenon. 

6.2 Margins of Error and Future Studies 

The VIIRS fire product cannot gather comprehensive data. Main limitations to this dataset are 

cloud cover and canopy cover. The Suomi NPP satellite, or any satellite for that matter, cannot 

record fire occurrences through cloud cover, which would most likely obscure fires that are 

ignited via lightning. Satellites can neither record fire occurrences through thick canopy or cloud 

cover. Small fire occurrences in thickly vegetated parts of Arkansas forests may be obscured by 

canopy cover. These limitations which exist in the forested, natural areas of interest to this study 

can obscure some fire behavior. Future studies may be interested in compiling fire data from 

state and federal fire dispatch centers which would narrow the fire data to include only wildfires 

but may risk losing some comprehensiveness.  

Comparing the analysis using different satellite fire products may be a worthwhile 

endeavor. The Landsat Active Fire and Thermal Anomalies product (Schroeder et al., 2016), with 
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a spatial resolution of 30m, will be of great interest to future studies analyzing fire behavior. 

Using the Landsat Active Fire and Thermal Anomalies product would help to analyze at finer 

scales and to help estimate on which LULC the fire occurrence took place. Implementing similar 

studies to this project with the Landsat product may yield different, and potentially more 

relevant, results.  

While this study analyzed climate-fire relationships at the county level, it would be 

worthwhile to conduct these climate-fire relationships at the grid level instead of using political 

boundaries as spatial units. Analyzing at a grid level, finer spatial resolutions can be 

implemented to determine more accurate climate-fire relationships. Many of the counties in 

Arkansas exhibit a significant variation in LULC which has been shown to impact fire behavior 

greatly. Analyzing at a grid level of finer resolution would negate the variation in intra-county 

fire behavior impacting analysis and therefore improve issues related to the MAUP. For example, 

half of a county may exhibit agricultural LULC and the other half may exhibit a mixture of 

forested and developed LULC. Fire dominating in one part of the county skews and negates the 

climate-fire results for the entire state. Analysis at the grid level, there may be still exhibit LULC 

variation within a grid unit but this variation will be much less intense than the LULC variation 

at the county level. 

For potentially more complex fire regimes, such as in northern California, or as an 

alternative method of analysis, the use of a bivariate LISA (local indicators of spatial association) 

analysis may be useful to examine the spatial relationships of two variables. A bivariate LISA 

analysis would be another way to determine KBDI-fire relationships and other important factors 

in complex fire regimes such as KBDI-fuel moisture relationships. This analysis determines how 

two variables may influence one another across space (How Local Bivariate Relationships 
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Works—ArcGIS Pro | Documentation, n.d.). If using this approach, an alternative to county-level 

data aggregation would be needed.  

Another tactic may be to not analyze an entire region, but to strategically hand pick 

certain study areas within a region. Using this method would, for example, entail choosing a 

select few counties or study areas that are naturally vegetated and are known to experience 

relatively low levels of human activity. Although, it may be difficult to find suitably large, 

forested areas where no prescribed burns take place or would be significantly affected by 

previous prescribed burns. Consultation with forest services or other organizations may be 

necessary to determine such study areas. This tactic would help to answer the question of how 

climate impacts fires at the intra-county scale where LULC is relatively homogeneous. 

6.3 Conclusions 

The KBDI is not a good indicator of contemporary fire behavior in Arkansas in naturally 

vegetated LULC, but it is in agricultural LULC. This is because most fire occurrences in 

Arkansas are intentionally created by humans. To determine climatological effects on fire 

behavior in Arkansas and regions that share similar fire behavior to this state, LULC should be 

considered as a major driving force of fire behavior. 

The comparative study in northern California does show some naturally vegetated 

dominated counties exhibit a noticeably significant VIIRS-KBDI relationship, but extremely 

large fires may skew the relationship of VIIRS fire occurrence and KBDI values. Afterall, the 

KBDI does not consider fuel availability, fuel aridity, vapor pressure deficit, or wind, which are 

important factors for major wildfire growth (Abatzoglou et al., 2021; Keeley & Syphard, 2019) 

which would undermine the role of drought in the cases of these extreme fire events. The 

analysis of northern California at the county scale is also less desirable than an analysis at a grid 
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level would be for this study area due to significant variations in total area county to county. 

Wildland fires, and their size, in northern California pose too great of complexity for an analysis 

of this methodology or for generalizing fire behavior in this region. 

Literature discussing an increase in the southeast U.S., including Arkansas, should 

exercise caution when assuming higher drought will cause an increase in fire occurrences. 

Drought can very well influence fire occurrences, however, the general increase in fire 

occurrence in Arkansas seems to be an indirect, rather than direct, result of general increase in 

drought due to human activity. In Arkansas (and possibly other southeastern U.S. states where 

agricultural burning is prevalent), climate can exacerbate fire behavior through increasing 

human-caused fires due to more favorable conditions for agricultural burning and accidentally 

occurring fires associated with these burnings, not predominantly through naturally occurring 

fires. 

 

  



46 

 

Chapter 7: References 

Abatzoglou, J. T., Battisti, D. S., Williams, A. P., Hansen, W. D., Harvey, B. J., & Kolden, C. A. 

(2021). Projected increases in western US forest fire despite growing fuel constraints. 

Communications Earth & Environment, 2(1), 227. https://doi.org/10.1038/s43247-021-

00299-0 

Balbo, F., Wulandari, R. A., Nugraha, M. R. R., Dwiandani, A., Syahputra, M. R., & Suwarman, 

R. (2019). The evaluation of drought indices: Standard Precipitation Index, Standard 

Precipitation Evapotranspiration Index, and Palmer Drought Severity Index in Cilacap-

Central Java. IOP Conference Series: Earth and Environmental Science, 303(1), 012012. 

https://doi.org/10.1088/1755-1315/303/1/012012 

Bowman, D. M. J. S., Kolden, C. A., Abatzoglou, J. T., Johnston, F. H., Van Der Werf, G. R., & 

Flannigan, M. (2020). Vegetation fires in the Anthropocene. Nature Reviews Earth & 

Environment, 1(10), 500–515. https://doi.org/10.1038/s43017-020-0085-3 

Brown, E. K., Wang, J., & Feng, Y. (2021). US wildfire potential: A historical view and future 

projection using high-resolution climate data. Environmental Research Letters, 16(3), 

034060. https://doi.org/10.1088/1748-9326/aba868 

Burke, M., Driscoll, A., Heft-Neal, S., Xue, J., Burney, J., & Wara, M. (2021). The changing risk 

and burden of wildfire in the United States. Proceedings of the National Academy of 

Sciences, 118(2), e2011048118. https://doi.org/10.1073/pnas.2011048118 

Chan, D. W., Paul, J. T., & Dozier, A. (2004). Keetch-Byram Drought Index: Can It Help Predict 

Wildland Fires? Fire Management Today, 64(2), 39–42. 

Cöltekin, A., De Sabbata, S., Willi, C., Vontobel, I., Pfister, S., Kuhn, M., & Lacayo, M. (2011). 

Modifiable temporal unit problem. https://doi.org/10.5167/UZH-54263 



47 

 

Dewitz, J. (2023). National Land Cover Database (NLCD) 2021 Products [dataset]. U.S. 

Geological Survey. https://doi.org/10.5066/P9JZ7AO3 

Dimitrakopoulos, A. P., & Bemmerzouk, A. M. (2003). Predicting live herbaceous moisture 

content from a seasonal drought index. International Journal of Biometeorology, 47(2), 

73–79. https://doi.org/10.1007/s00484-002-0151-1 

Dolling, K., Chu, P.-S., & Fujioka, F. (2005). A climatological study of the Keetch/Byram 

drought index and fire activity in the Hawaiian Islands. Agricultural and Forest 

Meteorology, 133(1–4), 17–27. https://doi.org/10.1016/j.agrformet.2005.07.016 

ESRI Inc. (2023). ArcGIS Pro (3.2.1) [Computer software]. ESRI Inc. https://www.esri.com/en-

us/arcgis/products/arcgis-pro/overview 

Flatley, W. T., Bragg, L. M., & Bragg, D. C. (2023). Dynamic Fire Regimes and Forest 

Conditions Across Three Centuries in a Shortleaf Pine-Oak Forest in the Ouachita 

Mountains, Arkansas, USA. Annals of the American Association of Geographers, 113(6), 

1365–1382. https://doi.org/10.1080/24694452.2023.2189937 

Gannon, C. S., & Steinberg, N. C. (2021). A global assessment of wildfire potential under 

climate change utilizing Keetch-Byram drought index and land cover classifications. 

Environmental Research Communications, 3(3), 035002. https://doi.org/10.1088/2515-

7620/abd836 

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google 

Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of 

Environment, 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031 

Guyette, R. P., Muzika, R. M., & Dey, D. C. (2002). Dynamics of an Anthropogenic Fire 

Regime. The American Midland Naturalist, 5(5), 472–486. 



48 

 

Guyette, R. P., Spetich, M. A., & Stambaugh, M. C. (2006). Historic fire regime dynamics and 

forcing factors in the Boston Mountains, Arkansas, USA. Forest Ecology and 

Management, 234(1–3), 293–304. https://doi.org/10.1016/j.foreco.2006.07.016 

Hamadeh, N., Karouni, A., Daya, B., & Chauvet, P. (2017). Using correlative data analysis to 

develop weather index that estimates the risk of forest fires in Lebanon & Mediterranean: 

Assessment versus prevalent meteorological indices. Case Studies in Fire Safety, 7, 8–22. 

https://doi.org/10.1016/j.csfs.2016.12.001 

Hillger, D., Kopp, T., Lee, T., Lindsey, D., Seaman, C., Miller, S., Solbrig, J., Kidder, S., 

Bachmeier, S., Jasmin, T., & Rink, T. (2013). First-Light Imagery from Suomi NPP 

VIIRS. Bulletin of the American Meteorological Society, 94(7), 1019–1029. 

https://doi.org/10.1175/BAMS-D-12-00097.1 

How Local Bivariate Relationships works—ArcGIS Pro | Documentation. (n.d.). Retrieved April 

16, 2024, from https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-

statistics/learnmore-localbivariaterelationships.htm 

Keeley, J. E., & Syphard, A. D. (2019). Twenty-first century California, USA, wildfires: Fuel-

dominated vs. wind-dominated fires. Fire Ecology, 15(1), 24, s42408-019-0041–0. 

https://doi.org/10.1186/s42408-019-0041-0 

Keetch, J. J., & Byram, George M. (1968). A Drought Index for Forest Fire Control (SE-38). 

U.S.D.A. - Forest Service. 

Keetch-Byram Drought Index (KBDI) – North Carolina State Climate Office | Drought.gov. 

(n.d.). Retrieved March 20, 2024, from https://www.drought.gov/data-maps-tools/keetch-

byram-drought-index-kbdi-north-carolina-state-climate-office 



49 

 

Krawchuk, M. A., Moritz, M. A., Parisien, M.-A., Van Dorn, J., & Hayhoe, K. (2009). Global 

Pyrogeography: The Current and Future Distribution of Wildfire. PLoS ONE, 4(4), 

e5102. https://doi.org/10.1371/journal.pone.0005102 

Kurtis Nelson. (2023). Monitoring Trends in Burn Severity (ver. 7.0, January 2024) [dataset]. 

[object Object]. https://doi.org/10.5066/P9IED7RZ 

Lin, H., McCarty, J. L., Wang, D., Rogers, B. M., Morton, D. C., Collatz, G. J., Jin, Y., & 

Randerson, J. T. (2014). Management and climate contributions to satellite‐derived active 

fire trends in the contiguous United States. Journal of Geophysical Research: 

Biogeosciences, 119(4), 645–660. https://doi.org/10.1002/2013JG002382 

Littell, J. S., Peterson, D. L., Riley, K. L., Liu, Y., & Luce, C. H. (2016). A review of the 

relationships between drought and forest fire in the United States. Global Change 

Biology, 22(7), 2353–2369. https://doi.org/10.1111/gcb.13275 

Liu, Y., Goodrick, S., & Heilman, W. (2014). Wildland fire emissions, carbon, and climate: 

Wildfire–climate interactions. Forest Ecology and Management, 317, 80–96. 

https://doi.org/10.1016/j.foreco.2013.02.020 

Liu, Y., Stanturf, J., & Goodrick, S. (2010a). Trends in global wildfire potential in a changing 

climate. Forest Ecology and Management, 259(4), 685–697. 

https://doi.org/10.1016/j.foreco.2009.09.002 

Liu, Y., Stanturf, J., & Goodrick, S. (2010b). Wildfire potential evaluation during a drought event 

with a regional climate model and NDVI. Ecological Informatics, 5(5), 418–428. 

https://doi.org/10.1016/j.ecoinf.2010.04.001 



50 

 

McCarty, J. L., Korontzi, S., Justice, C. O., & Loboda, T. (2009). The spatial and temporal 

distribution of crop residue burning in the contiguous United States. Science of The Total 

Environment, 407(21), 5701–5712. https://doi.org/10.1016/j.scitotenv.2009.07.009 

Mitchell, R. J., Liu, Y., O’Brien, J. J., Elliott, K. J., Starr, G., Miniat, C. F., & Hiers, J. K. (2014). 

Future climate and fire interactions in the southeastern region of the United States. Forest 

Ecology and Management, 327, 316–326. https://doi.org/10.1016/j.foreco.2013.12.003 

Morris, J. A. (2007). An Analysis of the Keetch-Byram Drought Index as a Predictor of Forest 

Fire Potential [Mississippi State University]. 

https://scholarsjunction.msstate.edu/cgi/viewcontent.cgi?article=1463&context=td 

Morton, D. C., Collatz, G. J., Wang, D., Randerson, J. T., Giglio, L., & Chen, Y. (2013). Satellite-

based assessment of climate controls on US burned area. Biogeosciences, 10(1), 247–

260. https://doi.org/10.5194/bg-10-247-2013 

NASA-FIRMS. (n.d.). Retrieved March 20, 2024, from 

https://firms.modaps.eosdis.nasa.gov/map/ 

NOAA Offers Climate Data for Counties. (2019, May 6). National Centers for Environmental 

Information (NCEI). https://www.ncei.noaa.gov/news/noaa-offers-climate-data-counties 

Office of Environmental Health Hazard Assessment (OEHHA). (2022). Indicators of climate 

change in california. California Environmental Protection Agency. 

Openshaw, S. (1984). The modifiable areal unit problem. Geo. 

PRISM Climate Group. (2014). PRISM Gridded Climate Data [dataset]. Oregon State 

University. https://prism.oregonstate.edu/ 

Riley, K. L., Abatzoglou, J. T., Grenfell, I. C., Klene, A. E., & Heinsch, F. A. (2013). The 

relationship of large fire occurrence with drought and fire danger indices in the western 



51 

 

USA, 1984–2008: The role of temporal scale. International Journal of Wildland Fire, 

22(7), 894. https://doi.org/10.1071/WF12149 

Rutlen, C., Orloff, M., Bates, J., & Porter, A. (2021). Crop burning and the prevalence of asthma 

and COPD emergency department treatments in a rural Arkansas county. Journal of 

Asthma, 58(3), 293–298. https://doi.org/10.1080/02770903.2019.1708096 

Saim, A. A., & Aly, M. H. (2022). Machine Learning for Modeling Wildfire Susceptibility at the 

State Level: An Example from Arkansas, USA. Geographies, 2(1), 31–47. 

https://doi.org/10.3390/geographies2010004 

Schroeder, W. & Land Atmosphere Near Real-Time Capability For EOS Fire Information For 

Resource Management System. (2020). VIIRS (S-NPP) I Band 375 m Active Fire 

locations NRT (Vector data) [dataset]. NASA Land Atmosphere Near real-time Capability 

for EOS Fire Information for Resource Management System. 

https://doi.org/10.5067/FIRMS/VIIRS/VNP14IMGT_NRT.002 

Schroeder, W., Oliva, P., Giglio, L., Quayle, B., Lorenz, E., & Morelli, F. (2016). Active fire 

detection using Landsat-8/OLI data. Remote Sensing of Environment, 185, 210–220. 

https://doi.org/10.1016/j.rse.2015.08.032 

Stambaugh, M. C., & Guyette, R. P. (2006). Fire Regime of an Ozark Wilderness Area, Arkansas. 

The American Midland Naturalist, 156(2), 237–251. 

TWC | Keetch-Byram Drought Index (KBDI). (n.d.). Retrieved March 20, 2024, from 

https://twc.tamu.edu/kbdi 

Wang, X., Swystun, T., & Flannigan, M. D. (2022). Future wildfire extent and frequency 

determined by the longest fire-conducive weather spell. Science of The Total 

Environment, 830, 154752. https://doi.org/10.1016/j.scitotenv.2022.154752 



52 

 

Zamanialaei, M., Shew, A. M., Fain, J. J., Borkowski, A., & McCarty, J. L. (2023). Crop Residue 

burning from high-resolution satellite imagery and PM 2.5 dispersion: A case study of 

Mississippi County, Arkansas, USA. Sustainable Environment, 9(1), 2274646. 

https://doi.org/10.1080/27658511.2023.2274646 

 


	Fire Potential in Arkansas through the Lens of the Keetch-Byram Drought Index
	Citation

	tmp.1721073243.pdf.AfKox

