PID Stabilization of a Position-Controlled Robot Manipulator Acting Independently of in Collaboration with Human Arm

Anindo Roy
University of Arkansas at Little Rock

Kamran Iqbal
University of Arkansas at Little Rock

Follow this and additional works at: https://scholarworks.uark.edu/jaas

Part of the Artificial Intelligence and Robotics Commons

Recommended Citation

Available at: https://scholarworks.uark.edu/jaas/vol57/iss1/19

This article is available for use under the Creative Commons license: Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0). Users are able to read, download, copy, print, distribute, search, link to the full texts of these articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This Article is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Journal of the Arkansas Academy of Science by an authorized editor of ScholarWorks@UARK. For more information, please contact scholar@uark.edu.
PID Stabilization of a Position-Controlled Robot Manipulator Acting Independently or in Collaboration with Human Arm

Anindo Roy*
Department of Applied Sciences
University of Arkansas at Little Rock
Little Rock, AR 72204

Kamran Iqbal
Department of Systems Engineering
University of Arkansas at Little Rock
Little Rock, AR 72204

*Corresponding Author

Abstract

In this paper we develop framework for PID stabilization of a robot manipulator when using an object independently or in collaboration with a human arm. In both applications, the manipulator is equipped with an object or sensor represented by an impedance. A second order manipulator transfer function along each coordinate direction is assumed. The aim of the paper is to design a PID controller when measurement of contact force, available via wrist sensor, is used to command the position-controlled manipulator to a desired position and/or force profile. Necessary and sufficient conditions for stability of the closed-loop system are developed using Hermite-Biehler Theorems. The theorems have been used to analyze stability of polynomials defined over the set of real numbers. An algorithm for synthesis of PID controllers using linear matrix inequalities is developed. The theoretical framework presented in this paper can be easily adapted to other low order manipulator transfer functions.

Introduction

Robot manipulators are used in a number of industrial and service applications (Hunt, 1983; Synder, 1985; Engelberger, 1989; Tao et al., 1990; Luh and Zheng, 1987; Zheng and Luh, 1989; Al-Jarrah and Zheng, 1996; Al-Jarrah and Zheng, 1997). In most cases, where the objective is to manipulate an inertia object, a robot can be considered as a positioning device that decouples the motion along each coordinate direction, and can be approximated with a second order transfer function (Xu and Paul, 1988; Al-Jarrah and Zheng, 1996; Kazerooni, 1990). Also, in position and/or force control applications, a high impedance wrist-sensor is normally used as end-effector, which can be effectively modeled with impedance. The wrist-sensor stiffness is usually high, on the order of 10^3 oz-in.

The arm-manipulator coordination problem visualizes a human arm and a robot manipulator jointly handling an inertia object in unstructured workspace. A human operator can acquire visual knowledge of the environment relatively quickly, possess the necessary intelligence to analyze the situation, and take quick and effective decisions. In the arm-manipulator coordination scheme, the intelligence of the arm helps perform complex functions (e.g., task planning, obstacle avoidance, etc.) while the manipulator performs the load sharing function. The arm-manipulator coordination for load sharing has been been previously discussed by researchers (Al-Jarrah and Zheng, 1996; Al-Jarrah and Zheng, 1997; Kazerooni, 1990; Iqbal and Zheng, 1997; Iqbal and Zheng, 1999; Ikeura and Inooka, 1995; Ikeura and Mizutani, 1998; Rahman et al., 1999) and several solutions to the problem, (e.g., compliant motion control, reflexive motion control, and model predictive control) have been proposed. For example, the manipulator was required to possess negative stiffness to ensure compliance in load sharing tasks (Al-Jarrah and Zheng, 1996). In the reflexive motion control scheme (Al-Jarrah and Zheng, 1997), a supervisory loop was added that acted like a force control to the compliant controller to compensate for the sluggishness of the robot. The controller thus anticipated the arm movement, and applied timely corrections to improve the manipulator response. Model predictive control strategies have also been proposed to solve the arm-manipulator coordination problem (Iqbal and Zheng, 1997; Iqbal and Zheng, 1999). In predictive control schemes, the observed manipulator output was used in an optimizing controller to command the manipulator such that the predicted arm force went to zero.

In this paper we study the stability and controller design of the closed-loop system formed by the positioning manipulator, the wrist-sensor, and a PID controller. A secondary loop is added due to the presence of the human arm. We use the Hermite-Biehler framework (Roy and Iqbal, 2002; Datta et al., 1999; Ho et al., 2000) to analyze the stability of the closed-loop system. Hermite-Biehler and generalized Hermite-Biehler Theorems characterize the stability of a given polynomial and provide information on the right half-plane (RHP) root locations. We show how the characteristic polynomial of the robot-sensor and arm-manipulator plants can be cast in the Hermite-Biehler framework. The paper then discusses synthesis of the PID controller for the problem. A general analysis-synthesis
PID Stabilization of a Position-Controlled Robot Manipulator Acting Independently or in Collaboration with Human Arm

Methods

Notation.--In the following, \land denotes logical AND, \lor denotes logical OR, $\mathbb{R} = (-\infty, \infty)$, $\mathbb{R}^+ = (0, \infty)$, $\mathbb{R}^- = (-\infty, 0)$, $\{\mathbb{R}^m\} = \mathbb{R}^+ \cup \mathbb{R}^-$, L_k denotes the set of non-negative integers, \mathbb{R}^{mxn} denotes a mxn real matrix, C denotes the set of complex numbers, and e denotes a null set.

Problem Formulation and Stability Analysis.--The arm-manipulator coordination problem can be visualized as a human arm and a robot manipulator jointly handling an inertial object (Fig. 1). The manipulator is modeled as a positioning device, which decouples the dynamics of the robot and provides position tracking in Cartesian coordinates. In particular, for the Puma 560 robot, a natural frequency of 2 Hz can be assumed (Xu and Paul, 1988; Al-Jarrah and Zheng, 1996; Kazerooni, 1990). A high-impedance wrist sensor is used to sense the environmental forces and moments.

The human arm is modeled as a black box neglecting the behavior of the musculo-skeletal system (Kazerooni, 1990). The arm possesses an impedance, which arises from the visco-elastic properties of the biological muscles. The desired arm trajectory is planned in the central nervous system, and no apriori knowledge of it is assumed. Further, it is assumed that the speed of manipulation task is small, such that the Coriolis and other nonlinear effects can be neglected. It is further assumed that the only forces acting on the object are the arm force (f_a), the manipulator force (f_m), and the force of gravity (f_g). Then the dynamics of the problem (Fig. 2) can be solved from Newton’s laws of motion represented by the following equations, where in order to simplify the analysis, only a one-dimensional view of the problem is considered.

$$m\ddot{x}_a = f_a + f_m$$

$$f_a = k_a (x_d - x_o) + c_a (\dot{x}_d - \dot{x}_o)$$

$$f_m = k_m (G \dot{x}_c - \dot{x}_o)$$

where f_a denotes arm force, f_m denotes manipulator force, k_a is arm stiffness, c_a is arm damping (assumed as viscous), k_m is manipulator (wrist-sensor) stiffness, x_d is desired position, x_c is manipulator command, x_o is the object position, and $G(s)$ represents the manipulator transfer function given as

$$G(s) = \frac{\omega_n^2}{s^2 + 2\xi \omega_n s + \omega_n^2}.$$

The transfer functions relating manipulator command to arm-force and manipulator force are given by

$$f_a = \frac{k_m (c_a s + k_a)}{ms^2 + c_a s + (k_a + k_m)} G(s)$$

$$f_m = \frac{mk_m s^2}{ms^2 + c_a s + (k_a + k_m)} G(s).$$

Finally, the position of the object being manipulated is given as

$$x_o = \frac{(c_a s + k_a) x_d + k_m x_c G(s)}{ms^2 + c_a s + (k_a + k_m)}$$

where in the steady state, the object position is given by

$$(k_d x_d + k_m x_c) / (k_a + k_m).$$

Since $k_m >> k_a$, the object position will be primarily determined by the manipulator command (x_c). By commanding the manipulator to eliminate the arm force, we can ensure that $x_o = x_d = x_o$ (Iqbal and Zheng, 1997; Iqbal and Zheng, 1999). Accordingly, in the arm-manipulator coordination problem (i.e., the regulation
problem) our objective is to reduce the arm force to zero. In the absence of the human arm, when the manipulator interacts with the environment, the sensor output can be controlled using a generalized force input of the form
\[f_g = m \ddot{s} x, \]

where \(k_m \) is the stiffness coefficient. Let
\[\frac{f_m}{f_g} = \frac{k_m}{ms^2 + k_m} G(s) \]

where the above representation defines a tracking problem. In the following our effort would be to develop a general framework that can handle the above as well as other similar situations. Accordingly we consider a possibly unstable process given by the following transfer function
\[G_p(s) = \frac{n_p(s)}{d_p(s)} = \frac{\omega_0^2 (as + b)}{(ms^2 + cs + k)(s^2 + 2\xi \omega_n s + \omega_n^2)} \]

where the first part represents a general second order transfer function, and the second part represents a position-controlled manipulator. We assume that the process given by equation (1) is controlled through unity gain feedback by a PID controller whose transfer is given by
\[G(s) = \frac{n_c(s)}{d_c(s)} = \frac{K_0 s^2 + K_p s + K_i}{s} \]

Then, the closed-loop characteristic polynomial is given as
\[\psi(s) = s^2 \psi_p(s) + (K_i + s^2 K_d) n_p(s) + s K_p n_p(s) \]

Define \(\bar{A} = \{a, b, k, c, m, \xi, \omega_n\} \) to be the set of all system constants, and let \(\bar{K} = \{K_p, K_d\} \) represent the controller parameters; then the design problem is defined as, given \(\bar{A} \), determine \(\bar{K} \in \mathbb{R} \) \(\forall \bar{A} \).

Hermite-Biehler Theorems

Theorem 1 (Hermite-Biehler Theorem): Let

\[\delta(s) = \sum_{i=0}^{n} \delta_i s^i, \delta_i \in \mathbb{R} \] \(\forall i \).

Write \(\delta(s) = \delta_e(s^2) + \delta_o(s^2) \) where \(\delta_e(s^2) \) and \(\delta_o(s^2) \) are the components of \(\delta(s) \) made up of even and odd powers of \(s \), respectively. Let \(\delta_e \) denote the real non-negative distinct zeros of \(\delta_e(-\omega^2) \) and let \(\delta_o \) denote the real non-negative distinct zeros of \(\delta_o(-\omega^2) \) with order \(|\omega| \) respectively. Then \(\delta(s) \) is Hurwitz stable if and only if \(\delta_e \) and \(\delta_o \) are of the same sign, all the zeros of \(\delta_e(-\omega^2) \) and \(\delta_o(-\omega^2) \) are real and distinct, and the non-negative real zeros satisfy the interlacing property given by

\[0 < \omega_{i1} < \omega_{i2} < ... \]

Theorem 2: Let \(\delta(s) = \sum_{i=0}^{n} \delta_i s^i, \delta_i \in \mathbb{R} \) \(\forall i \). Write
\[\delta(s) = \delta_e(s^2) + \delta_o(s^2) \] where \(\delta_e(s^2) \) and \(\delta_o(s^2) \) are the components of \(\delta(s) \) made up of even and odd powers of \(s \), respectively. For every \(\omega \in \mathbb{R} \), denote \(\delta(j\omega) = \delta_e(j\omega) + \delta_o(j\omega) \) where \(\delta_e(j\omega) \) and \(\delta_o(j\omega) \) are given by
\[\delta_e(j\omega) = \delta_e(-\omega^2) \text{ and } \delta_o(j\omega) = \delta_o(-\omega^2) \]

Let \(\omega_{i1} \) denote the real non-negative distinct zeros of \(\delta_e(-\omega^2) \), and let \(\omega_{i2} \) denote the real non-negative distinct zeros of \(\delta_o(-\omega^2) \) with order \(|\omega| \) respectively. Then the following conditions are equivalent:

1. \(\delta(s) \) is Hurwitz stable,
2. \(\delta_e \) and \(\delta_o \) are of the same sign, and
3. \(\sigma(\delta(s)) = \sum_{i=0}^{n} \sigma\delta_i s^i, \sigma\delta_i \in \mathbb{R} \) \(\forall i \) with a root at the origin of multiplicity \(k \). Let \(0 < \omega_{i1} < \omega_{i2} < ... < \omega_{i,m} \) be the zeros of \(\delta(s) \) that are real, distinct and nonnegative. Also, define \(\omega_{i1} = 0, \omega_{i,m} = \infty \), and \(\rho(\delta(s)) = \left(\frac{d}{ds}\delta(s)^{\ast}\right) \]

The classical Hermite-Biehler Theorem fails to provide any further information when the polynomial is not Hurwitz. However, the generalized Hermite-Biehler Theorem (Datta et al., 1999; Ho et al., 2000) ascertains Hurwitz stability and at the same time provides information about the number of RHP roots, if any.

Theorem 3 (Generalized Hermite-Biehler Theorem): Let
\[\delta(s) = \sum_{i=0}^{n} \delta_i s^i, \delta_i \in \mathbb{R} \forall i \] with a root at the origin of multiplicity \(k \). Let \(0 < \omega_{i1} < \omega_{i2} < ... < \omega_{i,m} \) be the zeros of \(\delta(s) \) that are real, distinct and nonnegative. Also, define \(\omega_{i1} = 0, \omega_{i,m} = \infty \), and \(\rho(\delta(s)) = \left(\frac{d}{ds}\delta(s)^{\ast}\right) \]

and \(\sigma(\delta(s)) = \sum_{i=0}^{n} \sigma\delta_i s^i, \sigma\delta_i \in \mathbb{R} \) \(\forall i \). Then

\[\sigma(\delta(s)) = \sum_{i=0}^{n} \sigma\delta_i s^i \]

where \(\delta(s) \) is defined in Theorem 2, and \(\sigma(\delta(s)) = |n_0(L)| - |n_0(R)| \) \(\forall i \)

A Framework for Controller Synthesis

Based on Hermite-Biehler Theorems, the following procedure is adapted for PID controller design of the unity gain feedback.
system. The plant and controller transfer functions are given as $G_p(s) = n_p(s)/d_p(s)$, $G_c(s) = n_c(s)/d_c(s)$, where $n_p(s) = K_p s^2 + K_p s + K_f$, $d_p(s) = s$. Let $\delta(s) = \psi(s) - n_p(s) - n_c(s) - K_c$, $d_c(s) = s$. Then, it can be verified that $\sigma(\delta(s)) = \sigma(\psi(s)) - \sigma(n_p(s))$. Let $m_\Psi = \Theta(\psi(s))$ denote the order of $\psi(s)$, then the number of RHP poles of $\psi(s)$ is given by $m_\Psi = \frac{1}{2} \{ m_p - \sigma(\psi(s)) \}$.

It is easy to see that, if $\psi(s)$ is to be Hurwitz, then $\sigma(\psi(s)) = m_p$, and $\sigma(\delta(s)) = m_p - \sigma(\psi(s))$. Note that $\delta(s) = p(s) + \bar{m}_\Psi \geq 1$, where \bar{m}_Ψ is the number of distinct, nonnegative, real zeros of $q(s)$ for some value of $K_p \in (-\infty, \infty)$, and define

$$\bar{m}_\Psi = \text{sgn} [p_n(s) + (K_p - K)q_n(s) p_s(s)] \in [-1, 1] \forall i \in [1, \bar{m}_\Psi].$$

Theorem 4: Let Ω be a logical set defined as

$$\Omega = \text{sgn}[\Delta] \neq -1 \land \sum \text{sgn}[\lambda_i] \geq 0;$$

then, the necessary condition for a set of stabilizing PID controllers for the process given by (1) is $\Omega \neq \emptyset$.

Proof: From Table 1, the conditions for $g^* \neq \emptyset$ are

$$1 \Leftrightarrow \text{sgn}[\Delta] \neq -1 \land \prod \text{sgn}[\lambda_i] = -1 \land \bar{m}_\Psi = 2 \Leftrightarrow \text{sgn}[\Delta] \neq -1 \land \sum \text{sgn}[\lambda_i] \geq 0.$$
Anindo Roy and Kamran Iqbal

Q.E.D.

The following lemmas illustrate how the necessary conditions are determined for the problem.

Lemma 1: $\text{sgn}[\Delta] \neq -1$ if and only if $K_p \in S'(K_p)$ where Δ is as defined above, and

$$S'(K_p) = \begin{cases} (-\infty, \min(k_{1,2}^*)) \cup \{ \max(k_{1,2}^*) \}, & k_{1,2}^* \in \mathbb{R} \\ (-\infty, \infty), & k_{1,2}^* \in C \end{cases}$$

where $k_{1,2}^*$ are the roots of Δ.

Proof: From equation (13), we note that we can write Δ as a quadratic in K_p, $\Delta = a_1^2 K_p + 2a_2 (b_1 a_1 - b_2 a_0) K_p + c = \prod_i (K_p - k_i^*), where $c = (b_1 a_1 - b_2 a_0)^2 - 4 a_2 (b_2 a_0)(a_0 - b_2 a_0).$ Then, it can be seen that $\Delta \geq 0 \forall K_p \in (-\infty, \min(k_{1,2}^*)) \cup \{ \max(k_{1,2}^*) \}, \infty)$ and $\Delta < 0 \forall K_p \in (\min(k_{1,2}^*), \max(k_{1,2}^*)].$ Therefore,

$$\text{sgn}[\Delta] \neq -1 \forall K_p \in (-\infty, \min(k_{1,2}^*)] \cup \{ \max(k_{1,2}^*) \}, \infty) = S'(K_p).$$

However, it can be verified that for $\forall k_{1,2}^* \in C,$ $\Delta > 0 \forall K_p \rightarrow \text{sgn}[\Delta] \neq -1 \rightarrow S'(K_p) = (-\infty, \infty).$

Q.E.D.

Lemma 2: For $\sum \text{sgn}[\lambda_i] \geq 0$ the range of K_p is given by the following range $\{ K_p \in \bar{S}(K_p) \} \forall K_p \in \left[\bar{S}(K_p) \right.$ for $s_i = -1 \}

where $\bar{S}(K_p) = \left[\frac{-b_1 k_1 - b_2 k_2}{a_1^2} \right] \bar{S}(K_p) = \left[\frac{-b_1 k_1 - b_2 k_2}{a_1^2} \right] \infty$ and $s_i = \text{sgn}\left(\frac{a_0 (b_2 a_1 - b_1 a_0)}{(a_0 - b_2 a_1)} \right).$

Proof: Note that $\lambda_{1,2} = \frac{b_1 a_0 - b_2 a_1 - K_p \omega}{2 (a_0 - b_2 a_1)} = \frac{B(K_p) \pm \sqrt{B^2(K_p)}}{A(a_0, b_1)} = \frac{B_1(K_p)}{B_2(K_p)} \pm \frac{B_1(K_p) \mp \sqrt{B_1^2(K_p) - B_2^2(K_p)}}{A}$

where $\bar{B}(K_p) = \frac{B_1(K_p)}{A}, \bar{B}_2(K_p) = \frac{\sqrt{B_1^2(K_p) - B_2^2(K_p)}}{A}.$

Then, regardless of the value of $\text{sgn} \left[A \right]$, since $\Delta \geq 0 \forall K_p \in S'(K_p)$,

$$\sum \text{sgn}[\lambda_i] \geq 0 \Rightarrow \bar{S}(K_p) \in \left[\bar{S}(K_p) \right.$$

But $\text{sgn}[\bar{B}_1] = \text{iff and only if} \bar{K}_p \in \bar{S}(K_p)$, while $\text{sgn}[\bar{B}_1] = -1 \Rightarrow \bar{K}_p \in \bar{S}(K_p),$ however,

$$\text{sgn} \left[\frac{\bar{B}_1}{\bar{B}_2} \right] = -1 \Rightarrow \text{sgn} \left[\frac{\bar{B}_1}{\bar{B}_2} \right] = \text{sgn} \left[\frac{a_0 (b_1 a_0 - b_2 a_1)}{(a_0 - b_2 a_1)} \right] = s_i = -1.$$

Since s_i is a function that is independent of K_p, we have

$$\left\{ \begin{array}{ll} \text{sgn} \left[\frac{\bar{B}_1}{\bar{B}_2} \right] = -1 \text{ for } s_i = -1 \\ \bar{S}(K_p) \text{ for } s_i = -1 \end{array} \right.$$}

Q.E.D.

Theorem 5 (Necessary Condition): The process given by equation (1) is stabilizable, i.e., $\exists g^* \neq \emptyset$ if and only if $K_p \in S(K_p)$ where $\bar{S}(K_p)$ is evaluated as

(i) $S(K_p) = \left\{ \begin{array}{ll} S'(K_p) \text{ for } s_i = -1 \\ S'(K_p) \cap \bar{S}(K_p) \text{ for } s_i = -1 \end{array} \right.$

(ii) $S(K_p) = \left\{ \begin{array}{ll} (-\infty, \infty) \text{ for } s_i = -1 \\ \bar{S}(K_p) \text{ for } s_i = -1 \end{array} \right.$

where $S'(K_p)$ and $\bar{S}(K_p)$ are as defined in Lemma 1 and Lemma 2.

Proof: (i) From Lemma 1 and Lemma 2 we get

$$\text{sgn}[\Delta] \neq -1 \Rightarrow \sum \text{sgn}[\lambda_i] \geq 0 \Rightarrow K_p \in S'(K_p) \cap \bar{S}(K_p)$$

Substituting the above condition in the result of Theorem 4, we obtain

$$g^* \neq \emptyset \Rightarrow K_p \in S'(K_p) \cap \bar{S}(K_p) \Rightarrow \bar{S}(K_p) \text{ for } s_i = -1$$

(ii) Observe from Lemma 1 that $\forall k_{1,2}^* \in C, S'(K_p) = (-\infty, \infty).$ Using this result in (i), and recognizing that $(-\infty, \infty) \cap \bar{S}(K_p) = \bar{S}(K_p),$ the result follows. Q.E.D.

Sufficient Conditions for Stability: We now determine the sufficient conditions for the existence of the stabilizing PID set. We note that sufficient conditions for the PID to exist are given by (Roy and Iqbal, 2002; Ho et al., 2000),

$$(g^*) \cdot ([P_i] + [P_o]) \neq 0 \neq \emptyset \Rightarrow S(K_p) = \left\{ \begin{array}{ll} S'(K_p) \cap \bar{S}(K_p) \text{ for } s_i = -1 \\ S'(K_p) \cap \bar{S}(K_p) \text{ for } s_i = -1 \end{array} \right.$$

Since $S'(K_p) \cap \bar{S}(K_p) = (-\infty, \infty) \Rightarrow S'(K_p) \cap \bar{S}(K_p) = S(K_p)$, we obtain

$$S(K_p) = \left\{ \begin{array}{ll} S'(K_p) \text{ for } s_i = -1 \\ S'(K_p) \cap \bar{S}(K_p) \text{ for } s_i = -1 \end{array} \right.$$

The following lemma develops the sufficiency condition.

Lemma 3: A stabilizing PID set \bar{K}, for the process in equation (10) exists only under the following conditions:

(i) $\forall K_p \in S(K_p)$,

Published by Arkansas Academy of Science, 2003
Proof: 1) From Table 1, for \(m^* = 1 \),
\[\text{sgn} \Delta \neq -1 \Delta \prod_i \text{sgn}[\lambda_i] = -1 \Leftrightarrow \text{sgn} \Delta \neq -1 \Delta \sum_i \text{sgn}[\lambda_i] = 0. \]
But from Theorem 4 and Theorem 5, we have
\[\text{sgn} \Delta \neq -1 \Delta \sum_i \text{sgn}[\lambda_i] \geq 0 \forall K_p \in S(K_p). \]
Therefore, whenever \(m^* = 1 \), \(\sum_i \text{sgn}[\lambda_i] \geq 0 \forall K_p \in S(K_p). \)
Using this result in equation (13), we deduce \(\omega_n = \sqrt{\max(\lambda_i)}. \)

Furthermore, from equations (5)-(7) and the set of linear inequalities, we obtain
\[K_r > 0, K_d > \frac{p_1(\omega_n)}{\max(\lambda_i)} \frac{|K_r| p_2(\omega_n)}{p_2(\omega_n)} \quad \text{when} \quad \gamma = 1 \]
\[K_r < 0, K_d < \frac{p_1(\omega_n)}{\max(\lambda_i)} \frac{|K_r| p_2(\omega_n)}{p_2(\omega_n)} \quad \text{when} \quad \gamma = -1. \]

Substituting \(\omega_n \) in the expressions of \(p_{1,2}(\omega) \) (Datta et al., 1999), we obtain
\[p_1(\omega_n) + |K_r| p_2(\omega_n) = f \quad \text{and} \quad p_1(\omega_n) - |K_r| p_2(\omega_n) = f. \]

2a.) If \(\sum_i \text{sgn}[\lambda_i] = 1 \), then \(\{\omega\} = \{0,0,2R \neq 0\}. \) Then the root distribution of \(g(\omega), K_r \) is \(\{0,0,2R \neq 0\}. \)
Therefore the roots that qualify for the computation of equation (15) are \(\{\omega = 0, \omega_n = \sqrt{\max(\lambda_i)}\} \), and the proof follows from equation (1) of Lemma 3.

2b.) The proof is on similar lines as (2a) except that for \(\sum_i \text{sgn}[\lambda_i] = 2 \), the dimensions in equations (5) and (6) increase by one. It is known from equation (13) that for \(\sum_i \text{sgn}[\lambda_i] = 2 \), \(\omega_n = \sqrt{\lambda_{r,2}}. \) The result follows from (2a) in conjunction with equation (15) and making substitution for \(\omega_n. \)

Q.E.D.

The stability results of Lemmas 1, 2, and 3 are summarized in the following theorem.
and the process is controlled by a PID controller. Therefore,
\[\{a\} = [-400, 4000] \text{ and } \{b\} = [404, 141, 115, 11]. \]
Then
\[s_1 = 1 \text{ and } \Delta = 10^{11} (2560K_p^2 + 1657.6K_p + 2.68) \Rightarrow k_1^2 \in C. \]
Using Lemma 1, \(S(K_p) = (\infty, \infty) \), and from Theorem 5,
\[S(K_p) = S^+(K_p) = (\infty, \infty). \]
Let \(K_p = K_p_0 = 1 \), then
\[\Delta = 2.3996 \times 10^4. \]
From equation (13) we obtain
\[\lambda_1 = -355.09, \lambda_2 = 1.04 \times 10^{-4} \Rightarrow \sum_i \text{sgn}(\lambda_i) = 0, \text{ and max} \]
\[\lambda_i = 1.04 \times 10^{-4}. \]
Therefore, \(\tilde{m}_s = 2 \Rightarrow \gamma = (-1)^{1} s_0 = 1. \)
Then from Theorem 6, \(K_p \in \mathbb{R}^+ = (0, \infty) \) and \(K_p \in (\tilde{f}, \infty) \)
where the value of \(\tilde{f} \) depends on the constrained value of \(K_p \).

The stabilizing PID set is given by \(S_c = [1, (-\infty, 0), (-\infty, \tilde{f})]. \)

For example, constraining the value of \(K_p = -1 \), we obtain
\[\tilde{f} = 9615.03 \text{ and from Lemma 3, the stabilizing PID set is} \]
given by \(S_c = [1, (-\infty, -9615.03)]. \)

A further example, the closed-loop system is simulated for \(K = [-1, -1, -10^{4}], \)
and the response is shown in Figure 4.

Example 2. \((\tilde{A} > 0) \) Consider a manipulator-sensor process given by equation (1) with a process parameter set
\[A = [10^5, 10^5, 101, 10, 1, 0.25, 4]; \]
\[s_1 = s_0 = 1, \Delta = 10^{13} (2560K_p^2 + 1657.6K_p + 3.2444) \Rightarrow k_1^2 \in C. \]
From Lemma 2, \(S(K_p) = (\infty, \infty) \), and from Theorem 5, we find
\[S(K_p) = S^+(K_p) = (\infty, \infty). \]
Let \(K_p = K_p_0 = 1 \), then
\[\Delta = 2.7290 \times 10^{14}. \]
From equation (13) we obtain
\[\lambda_1 = -387.87, \lambda_2 = 0.0229 \Rightarrow \sum_i \text{sgn}(\lambda_i) = 0, \text{ and max} \]
\[\lambda_i = 0.0229. \]
Thus \(\tilde{m}_s = 2 \Rightarrow \gamma = (-1)^{1} s_0 = 1. \)
From Theorem 6 we obtain \(K_p \in \mathbb{R}^+ = (0, \infty) \) and \(K_p \in (\tilde{f}, \infty) \)
where the value of \(\tilde{f} \) similarly depends on the constrained value of \(K_p \).

The stabilizing PID set is given by
\[S_c = [1, (0, \infty), (\tilde{f}, \infty)]. \]
Constraining the value of \(K_p = 1 \), we obtain
\[\tilde{f} = 3.1199 \text{ and from Lemma 3, the stabilizing} \]
PID set is given by
\[S_c = [1, (1, 3.1199), (\infty)]. \]
Closed-loop system is simulated for \(K = [1, 1, 4] \) and is shown in Figure 5.

Example 3. \((k, c < 0) \) Let an unstable manipulator-sensor process be given by the following parameters:
\[A = [10^5, 10^5, -101, -10, 1, 0.25, 4]; \]
\[s_1 = s_0 = 1, \Delta = 10^{11} (2560K_p^2 + 1667.8K_p + 2.7137) \Rightarrow k_1^2 \in \mathbb{R}. \]
From Lemma 1 and Lemma 2, \(S(K_p) = (\infty, 0.0336) = (0.0316, \infty) \) and \(\tilde{S}(K_p) = (\infty, -0.0326) \).
Furthermore, from Theorem 5 we obtain
\[S(K_p) = S^+(K_p) \cap \tilde{S}(K_p) = (\infty, -0.0326). \]
Let \(K_p = K_p_0 = 1 \), then
\[\Delta = 2.7290 \times 10^{14}. \]
From equation (13) we obtain
\[\lambda_1 = -2.17, \lambda_2 = 381.10 \Rightarrow \sum_i \text{sgn}(\lambda_i) = 0, \text{ and max} \]
\[\lambda_i = 381.10. \]
Therefore, \(\tilde{m}_s = 2 \Rightarrow \gamma = (-1)^{1} s_0 = 1. \)
From Theorem 6, \(K_p \in \mathbb{R}^+ = (0, \infty) \) and \(K_p \in (\tilde{f}, \infty) \)
where the value of \(\tilde{f} \) depends on the constrained value of \(K_p \).

The stabilizing PID set is given by
\[S_c = [-1, (0, \infty), (\tilde{f}, \infty)]. \]
Constraining the value of \(K_p = 1 \), we obtain
\[f = 0.1249 \]
and, from Lemma 3, the stabilizing PID set given by
\[\{1, 1, 0.1249, \infty\}. \]
Closed-loop system is simulated for \(K = [-1, 1, 0.5] \) and is shown in Figure 6.

Conclusions

In conclusion, this paper discusses PID controller stabilization of a robot manipulator equipped with a wrist sensor in an unstructured work environment. The problem is formulated in a general framework that can also be used for other similar applications. Necessary and sufficient conditions for stability are derived using the analytical framework of Hermite-Biehler Theorem that is based on the interlacing property of the even and odd parts of the characteristic polynomial. The controller synthesis involves solution of a set of linear matrix inequalities (LMIs) that can be solved on the computer. We propose an algorithm that conveniently solves for controller parameters given the plant model. Our simulation results for the robot-manipulator examples show that the controller, when used in conjunction with the position-controlled manipulator, effectively reduces the arm effort during manipulation tasks. The approach, albeit conservative in terms of being model specific, is successful in identifying a set of all stabilizing PID controllers for the given problem.

Literature Cited

Table 1. Stability results for various cases of roots of \(\tilde{g}(\omega, K_p) \)

<table>
<thead>
<tr>
<th>(\tilde{m})</th>
<th>Possible ({\omega_i}) for (g^* \neq \emptyset)</th>
<th>Condition on sign of (\Delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>{\emptyset}</td>
<td>Not applicable</td>
</tr>
<tr>
<td>1</td>
<td>{2\Re, 0C} \text{ sgn}[\Delta] \neq -1 \wedge \prod_{i} \text{sgn}[\lambda_i] = -1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>{4\Re \neq 0}, {0, 0, 2\Re \neq 0} \text{ sgn}[\Delta] \neq -1 \wedge \prod_{i} \text{sgn}[\lambda_i] \geq 0</td>
<td></td>
</tr>
<tr>
<td>3, 4</td>
<td>{\emptyset}</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

Fig. 3. A set diagram illustrating the concept of the algorithm derived from Theorem 6.

Fig. 4. Closed-loop step response with \(\tilde{x} = \{1, -1, -10^4\} \) when \(a, b < 0 \). The choice of parameters represents robot acting in collaboration with human arm.
Fig. 5. Closed-loop step response with $\tilde{K} = \{1, 1, 4\}$ when $A > 0$. The choice of parameters represents robot manipulator alone.

Fig. 6. Closed-loop step response with $\tilde{K} = \{-1, 1, 0.5\}$ when $k, c < 0$. The choice of parameters represents a possibly unstable sensor response.