Sputter Deposition and Thallination of Ti-Ba-Ca-Cu-O Superconducting Thin Films

T. H. Dhayagude
University of Arkansas, Fayetteville

S. S. Ang
University of Arkansas, Fayetteville

W. D. Brown
University of Arkansas, Fayetteville

Follow this and additional works at: http://scholarworks.uark.edu/jaas

Part of the [Other Electrical and Computer Engineering Commons](http://scholarworks.uark.edu/jaas)

Recommended Citation

Available at: http://scholarworks.uark.edu/jaas/vol47/iss1/12

This article is available for use under the Creative Commons license: Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0). Users are able to read, download, copy, print, distribute, search, link to the full texts of these articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.

This Article is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Journal of the Arkansas Academy of Science by an authorized editor of ScholarWorks@UARK. For more information, please contact scholar@uark.edu, ccmiddle@uark.edu.
Sputter Deposition and Thallination of Ti-Ba-Ca-Cu-O
Superconducting Thin Films

T. H. Dhayagude, S. S. Ang, and W. D. Brown
High Density Electronics Center (HIDEC) and Department of Electrical Engineering
University of Arkansas
Fayetteville, AR 72701

Abstract

Thallination techniques used for the fabrication of sputter-deposited Ti₂Ba₂Ca₃Cu₂O₉ and Ti₂Ba₂Ca₃Cu₂Oₓ superconducting thin films were investigated. Differences in elemental composition of precursor Ba-Ca-Cu-O sputtering targets were found to yield different superconducting phases. Thallination conditions which yielded transition temperatures as high as 122 K for samples annealed in air are described. Finally, reactive ion etching of films using a mixture of chlorine and argon gases is discussed.

This research was funded by E-Systems and supported in part by an equipment grant from the Kurt J. Lesker Company.

Introduction

The Ti-Ba-Ca-Cu-O superconducting system has received considerable attention due to the inherent high temperature transition, T_c, and critical current density J_c of some of its phases. The Ti₂Ba₂Ca₃Cu₂O₁₀ (2223) phase compound has the highest T_c (R=0) at 127 K (Sheng and Hermann, 1988; Sheng et al., 1988). Superconducting Ti-Ba-Ca-Cu-O thin films can be fabricated by sputtering, laser ablation or evaporation of Ba-Ca-Cu-O from a single target followed by a complicated high-temperature annealing sequence in an excess Ti-vapor pressure ambient (Qui and Shih, 1988; Sheng et al., 1988; Shah et al., 1990). Interest in this material is high because the potential commercial applications of Ti-Ba-Ca-Cu-O thin films in passive and active electronic devices are enormous (Superconducting Technologies, Inc., private communication).

The properties of Ti-Ba-Ca-Cu-O superconducting thin films are greatly influenced by the elemental composition of the precursor Ba-Ca-Cu-O target and the post-deposition thallination conditions of the Ba-Ca-Cu-O precursor films. It has been shown that their T_c values are primarily determined by the number of copper layers involved in the perovskite slabs (Martin et al., 1990). Under optimum conditions, the T_c's for (2212) phase films are around 100 K with a J_c of greater than 10⁶ A/cm² and, for (2223) phase films, are around 122 K with J_c of about 5x10⁴ A/cm² on <100>-oriented magnesium oxide (MgO) substrates.

In addition to the fabrication of high-quality films, it is important to develop appropriate microfabrication techniques and junction fabrication technology to realize high-T_c electronic devices. The patterning of thin superconducting films has been demonstrated using.

In this paper, a two-step fabrication technique for the fabrication of high T_c (2212) phase and (2223) phase superconducting films is reported. The etching of precursor films using reactive ion etching (RIE) with a chlorine and argon plasma is discussed.

Materials and Methods

Ba-Ca-Cu-O precursor films were RF magnetron sputtered onto polished <100>-oriented MgO substrates in a modified Perkin-Elmer PE 2400 sputtering system using either Ba₂Ca₂Cu₃Oₓ or Ba₂Ca₂Ca₂Cu₃Oₓ targets. All sputter depositions were performed in an argon atmosphere at room temperature. The chamber pressure during deposition was maintained constant at 10 mT. The target-substrate separation was constant at 10 cm. The best precursor films were obtained when the substrates were placed directly beneath the target. The RF power densities were optimized for the Ba₂Ca₂Cu₃Oₓ and Ba₂Ca₂Ca₂Cu₃Oₓ targets. Deposition times were varied to obtain film thicknesses of 4500 to 8000 Å. Film thicknesses and deposition rates were determined using a Sloan Dektak surface profilometer.

Post-deposition thallination of the precursor films was accomplished by placing the films in platinum-coated alumina boats along with Ti₃Ba₂Ca₂Cu₃Oₓ (Tl1.7) pellets. The pellets were formed using a mechanical press at a pressure of 10000 kg, from a stoichiometric mixture of Ti₂O₃, BaO, CuO, and CaO.
The precursor films of the first sample group were deposited using a Ba$_2$Ca$_2$Cu$_3$O$_{x}$ target. The films were then annealed at 815°C for 10 hours in an air ambient using the T11.7 pellets without any physical contact between the films and pellets as shown in Fig. 1. The second sample group was obtained by annealing precursor films, deposited using a Ba$_2$Ca$_2$Cu$_3$O$_{x}$ target, for 20 hours in air ambient at 810°C and then reducing the temperature at 500°C at a rate of 1°C/min. The thallination pellet and the physical arrangement of the pellet and the samples, were the same as for the first sample group.

![Diagram](https://via.placeholder.com/150)

Fig. 1. Thallination configuration

Transition temperatures for the samples were obtained from plots of resistance (R) versus temperature (T) performed using a standard four-point contact method. Epotek H20E silver paste was used to attach four leads to the sample film (Ginley et al., 1988; Subramaniam et al., 1990). The four leads were soldered to a module that fits into a cryogenic cooler capable of lowering the temperature at 19K. The thermostat, lock-in amplifier, and cryostat were all under the control of a personal computer.

J_c measurements were also performed using a simple four point contact arrangement (Lin et al., 1991). The sample was enclosed in a glass capsule and submerged in a tank of liquid nitrogen. The current through the sample was increased until the voltage across the sample became non-zero. T_c and J_c measurements were also performed using an inductive method. Inductively-Coupled Plasma (ICP) spectroscopy was used to study the composition of the sputtering targets as a function of sputtering time by scraping off the altered layer of the target material.

Reactive ion etching was used to define 120 μm lines and 200 μm concentric ring structures in Ba$_2$Ca$_2$Cu$_3$O$_{x}$ films deposited on <100>-oriented silicon substrates. Hunt's HPR-204 positive photoresist was used for masking. Conventional microelectronic fabrication techniques were used to deposit, define, develop and remove the photoresist. The reactive ion etching was performed using amixture of Cl$_2$ (25%) and Ar for 45 minutes at a power density of 1 W/cm2. Following the etching step, the photoresist was removed and a Dektak surface profilometer was used to examine the etch profiles.

Results and Discussion

The best precursor films obtained using the Ba$_2$Ca$_2$Cu$_3$O$_{x}$ and Ba$_2$Ca$_2$Cu$_3$O$_{x}$ targets were sputter-deposited using RF power densities of 1.1. W/cm2 and 1.65 W/cm2, respectively. The surface roughness of the precursor films was typically 40 Å. However, it was observed that surface roughness increases as RF sputtering power increases.

Fig. 2, showing a T_c value of approximately 119 K, is a resistance versus temperature plot of a typical sample from group one. EDS analysis of films produced using the Ba$_2$Ca$_2$Cu$_3$O$_{x}$ precursor target indicates that the films are predominantly of the (2212) phase. For these samples, the T_c is quite high, but the J_c value is low. Room temperature resistance of the film was measured to be about 30 ohms. This can be explained in terms of oxygen non-stoichiometry in the superconducting thin film which results due to tallination of the film in air ambient. Martin et al. (1990) have shown that, in bulk thallium cuprates, T_c is essentially governed by the oxygen non-stoichiometry. Furthermore, the conductivity of cuprate superconductors is primarily due to the cuprate planes so that as oxygen non-stoichiometry increases, the conductivity falls proportionately. The J_c results for this sample group is only about 5 x 103 A/cm2, suggesting that these films are oxygen deficient.

ICP spectroscopy analysis of the target after several depositions revealed that the composition had changed to Ba$_2$Ca$_2$Cu$_{1.4}$O$_{x}$ from an original composition of Ba$_2$Ca$_2$Cu$_3$O$_{x}$. This indicates that calcium, unlike barium and copper, was not being depleted from the target even after many sputtering runs. This means that elemental components of the target were being consumed non-stoichiometrically because of preferential and selective sputtering (Betz and Wehner, 1983). Hence, pure (2223) phase films could not be obtained using the Ba$_2$Ca$_2$Cu$_3$O$_{x}$ target. Consequently, the calcium content in the second target was increased in order to be able to sputter (2223) phase precursor films.
Superconducting samples from group two typically yielded T_c values of 122 K and J_c values of 5×10^4 A/cm2 as determined using the inductance measurement method (Fig. 3). The films were shiny black and extremely uniform with a density only slightly less than values previously reported for some of the best (2223) phase films. X-ray diffraction pattern for these films clearly show highly pure (2223) phase without any noticeable low T_c phase impurity spikes. The films are highly oriented with the C-axis normal to the substrate, consistent with the fact that longer annealing times are conductive to the creation of (2223) phase films.

Reactive ion etching of the precursor films using a Cl$_2$ and Ar plasma is anisotropic as evident from the sharp sidewalls of both the 120 μm lines and 200 μm concentric ring structures shown in Fig. 4. It is believed that activated chlorine species react with barium, calcium and copper in the precursor films to form their respected chloride species and that the etching is primarily accomplished by argon sputtering. The patterns etched in the precursor films can be tallinated to yield superconducting films.

Fig. 2. T_c measurement plot of a typical sample from group one using four-point transport method.

Fig. 3. T_c measurement plot of a typical sample from group two using inductive method.

Fig. 4. Etch profiles for 120 μm line and 200 μm concentric ring structure.

Summary and Conclusions

A transition temperature of 119 K was achieved for (2212) phase films thallinated in an air ambient using a non-contact arrangement of the precursor film and thallium containing pellets. A low critical current density for this sample is attributable to oxygen deficiency. By enriching the sputtering target with calcium and optimizing the tallination conditions, pure (2223) phase superconducting films were readily fabricated. The (2223) phase films typi-
cally have a T_c of about 122 K and a J_c of about 5×10^4 A/cm2. It was also shown that reactive ion etching using a mixture of Cl$_2$ and Ar gases can be effectively used to pattern to precursor films.

Literature Cited

Superconducting Technologies, Inc., Santa Barbara, California 93111, private communication.