8-2016

Channel Estimation Overhead Reduction for Downlink FDD Massive MIMO Systems

Abderrahmane Mayouche
University of Arkansas, Fayetteville

Follow this and additional works at: http://scholarworks.uark.edu/etd

Part of the Electrical and Electronics Commons, and the Systems and Communications Commons

Recommended Citation
http://scholarworks.uark.edu/etd/1688

This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact scholar@uark.edu, ccmiddle@uark.edu.
Channel Estimation Overhead Reduction for Downlink FDD Massive MIMO Systems

A thesis submitted in partial fulfillment
of the requirements for the degree of
Master of Science in Electrical Engineering

by

Abderrahmane Mayouche
University of Sciences and Technology Houari Boumediene
Bachelor of science in Computer Science, 2011
University of Sciences and Technology Houari Boumediene
Master of Engineering in Telecommunications, 2013

August 2016
University of Arkansas, Fayetteville

This thesis is approved for recommendation to the Graduate Council

Dr. Jing Yang
Thesis director

Dr. Jingxian Wu
Dr. Roy McCann
Committee Member
Committee Member
Abstract

Massive multiple-input multiple-output (MIMO) is the concept of deploying a very large number of antennas at the base stations (BS) of cellular networks. Frequency-division duplexing (FDD) massive MIMO systems in the downlink (DL) suffer significantly from the channel estimation overhead. In this thesis, we propose a minimum mean square error (MMSE)-based channel estimation framework that exploits the spatial correlation between the antennas at the BS to reduce the latter overhead. We investigate how the number of antennas at the BS affects the channel estimation error through analytical and asymptotic analysis. In addition, we derive a lower bound on the spectral efficiency of the communication system. Close form expressions of the asymptotic MSE and the spectral efficiency lower bound are obtained. Furthermore, perfect match between theoretical and simulation results is observed, and results show the feasibility of our proposed scheme.
Contents

1 Introduction 1
 1.1 Motivation ... 1
 1.2 Objectives ... 2
 1.3 Outline .. 3

2 Theoretical analysis 4
 2.1 System Model ... 4
 2.2 Channel estimation MSE .. 6
 2.2.1 MMSE Channel Estimation at Pilot Antennas 6
 2.2.2 MMSE Channel Interpolation 11
 2.3 Spectral efficiency with imperfect channel estimation 14

3 Simulation results 15
 3.1 Impact of number of antennas on the channel estimation MSE 15
 3.2 Impact of the SNR on the channel estimation MSE 16
 3.3 Effect of the channel estimation MSE and SNR on the Spectral Efficiency 17

4 Conclusions and future work 18

References 19
1 Introduction

1.1 Motivation

Massive multiple-input multiple-output (MIMO) is the concept of deploying a very large number of antennas at the base stations (BS) of cellular networks, and has been shown to dramatically mitigate the inter-user interference with simple low complexity precoders and receive combiners [1]. It is one of the highly considered candidates for the deployment of the fifth generation (5G) of cellular networks [2] [3]. It provides the next generation network with capabilities to help satisfy the demand of users by 2020 [4]. Massive MIMO systems (also called Large-Scale Antenna Systems, Large-Scale MIMO, ARGOS, Full-Dimension MIMO, or Hyper-MIMO) has shown the potential to improve the spectral efficiency by order of magnitude through relatively simple processing [5]. Although massive MIMO offers high spectral efficiency for next generation cellular systems, this monumental gain cannot be met without the knowledge of channel state information at the transmitter (CSIT) [6] [7].

Most current cellular systems are implemented in frequency-division duplexing (FDD). One apparent advantage of FDD is that it is generally regarded as more efficient in terms of delay sensitivity and traffic symmetry compared to the time-division duplexing (TDD) mode [8]. Meanwhile, there is much less research work on FDD massive MIMO than on TTD. One of the main reasons for this tendency to the TDD mode is the feasibility of obtaining CSIT in this mode. In TDD, channel state information at the BS can be obtained via the use of uplink pilots under the assumption of channel reciprocity [9]. However, FDD massive MIMO suffers greatly from the pilot and feedback overhead when conventional channel estimation techniques are used. As the number of antennas at the BS increases, the number of pilot symbols and the CSI feedback overhead become prohibitively large. Hence, obtaining CSI at the transmitter is essential to exploit the benefits of FDD massive MIMO [10].
We find in the literature some work to tackle the channel estimation overhead problem. The Joint Spatial Division and Multiplexing (JSDM) approach diminishes the channel estimation overhead [11]. It reduces the CSIT by exploiting the structure of channel correlation. Another recent method to reduce the latter overhead was proposed in [12]. The idea was to design downlink pilot sequences and uplink channel feedback codebooks in a way that it decreases the said overhead by exploiting the multiuser spatial channel correlation. In [13], a feedback overhead reduction technique was introduced based on the antenna grouping concept. Whereas in [14], a CSIT estimation method was proposed to reduce the pilot and feedback overhead by using the compressive sensing concept. It should be noted that this is not an exhaustive list of the methods used to reduce the channel estimation overhead in FDD massive MIMO systems.

The closest to our work, to the best of our knowledge, is presented in [15]. Adriana et al. proposed a strategy that exploits transmit antenna correlation, which is due to the short distance between the antennas in the massive MIMO system. Their idea is to acquire instantaneous CSI for a subset of antennas and use averaging over the received CSI to obtain the channel estimates at the remaining antennas.

1.2 Objectives

The focus of our work is to reduce the pilot and feedback overhead in downlink FDD massive MIMO systems. To this end, we use the same idea as in [15], namely, the BS sends pilots to the user from just a subset of the antennas, the user estimates the channel at the antennas that have sent pilots and feeds back the estimated coefficients to the BS, then the BS computes the channel estimates at the remaining antennas through exploiting the spatial correlation between the antennas at the BS. Our work differs from [15] in many ways. First, we do not use averaging over the estimated coefficients, instead we propose to use the minimum mean square error (MMSE) estimator to compute the channel at the antennas that did not send pilots. Second, we derived analytical as well as asymptotic channel estimation MSE of the system. We also
derived a lower bound on the spectral efficiency of the system. Finally, our numerical results were obtained using system simulations and not Monte Carlo simulations. Our approach results in a 50% reduction of the channel estimation overhead.

It should be noted that our proposed channel estimation framework was inspired from the work in [16], where the context was in a temporally correlated single-input single-output (SISO) channel over a fast time-varying fading channel.

1.3 Outline

The thesis is presented as follows, chapter 1 outlines a literature review on overhead reductions schemes for FDD massive MIMO systems and our contributions, chapter 2 presents the theoretical analysis of our proposed scheme, where we first introduce the system model, then we present the derivations of the analytical and the asymptotic mean square error (MSE) of the channel estimation as well as the spectral efficiency of the system with imperfect channel estimation. Chapter 3 summarizes simulation results. Finally, in chapter 4 we terminate our thesis with conclusions and future work.
2 Theoretical analysis

2.1 System Model

We consider a downlink FDD Massive MIMO system of N_t transmit antennas and a single receive antenna. Particularly, the deployment scenario of our system is according to the linear antenna array configuration [17], as depicted in Fig 1. Equivalently, our system can be called an FDD massive multiple-input single-output (MISO) system, which employs pilot-assisted channel estimation and experiences Rayleigh fading. The channel coefficients between the antennas at the BS are correlated, and therefore the fading channel is spatially correlated.

![Figure 1: Some possible antenna configurations and deployment scenarios for a massive MIMO base station [17].](image)

The BS sends T pilot signals using only N_p antennas out of N_t, see Fig. 2. In our work, we fix the value of N_p to $\frac{N_t}{2}$, which results in a 50% reduction in the pilot and feedback overhead, and we consider $T = N_p$ for maximal overhead reduction. It should be noted that more than 50% reduction of the overhead results in unacceptable communication performance, hence choosing $N_p = \frac{N_t}{2}$.
We also define the pilot percentage as $\delta = \frac{N_p}{N_t} = \frac{1}{2}$. The input-output relation can be written as in [18]:

$$y_p = X^H h_p + z_p$$

(1)

where $y_p \in \mathbb{C}^{T \times 1}$ is the received signal, $X = [x[0], \ldots, x[T - 1]] \in \mathbb{C}^{N_p \times T}$ is the transmitted pilot signals in a matrix form, each column $x[i]$ represents one pilot signal sent from N_p transmit antennas, $[\cdot]^H$ denotes the matrix Hermitian operator, $h_p \in \mathbb{C}^{N_p \times 1}$ are the channel fading coefficients, $z_p \in \mathbb{C}^{T \times 1}$ is the additive white Gaussian noise vector at the receiver with covariance matrix $R_z = \sigma_z^2 I_N$.

Since we consider a spatially correlated block-fading channel, the channel vector h can be modeled as in [19]:

$$h = R^{\frac{1}{2}} h_w$$

(2)

where $R = \mathbb{E}[hh^H]$ is the spatial correlation matrix of the channel vector h, and $h_w \sim \mathcal{CN}(0, I_{N_p})^\dagger$ is an independent and identically distributed (i.i.d.) complex Gaussian vector.

1\,\mathcal{CN} denotes the circular symmetric complex Gaussian distribution
The correlation matrix R can be modeled in many ways depending on the spatial positioning of the antennas. The exponential model is commonly used to model spatial correlation matrices [20] [21] mainly because of its simplicity. Even with its simplicity, the exponential model accurately characterizes uniform linear array (ULA) antennas in different scenarios, as the experiments in [22] show.

The cross correlation between the antenna of index i and the antenna of index j channels according to the exponential model is given by

$$r(i-j) = r|i-j|$$

where $0 \leq r \leq 1$. The correlation coefficient r depends mainly on the distance between the antennas at the BS and also on the user locations.

2.2 Channel estimation MSE

In this section, we investigate how the number of antennas at the base station affects the channel estimation error through analytical and asymptotic analysis. The channel estimation is performed in two steps: the channel coefficients at the antennas that send pilots are estimated, then the channel coefficients at the remaining antennas are obtained by the use of MMSE interpolation over the estimated coefficients.

2.2.1 MMSE Channel Estimation at Pilot Antennas

The BS sends a pilot signal of T symbols from its N_p antennas. The received signal $y_p \in C^{T \times 1}$ at the user is used to estimate the channel vector h_p by minimizing the average MSE $\sigma^2_{p,N_p} = \frac{1}{N_p} E(||\hat{h}_p - h_p||^2)$ with $||.||$ denoting the Euclidean norm, which can be written as

$$\hat{h}_p = E(h_p | y_p) = W^H_p y_p$$

where E is the mathematical expectation operator, $\hat{h}_p \in C^{N_p \times 1}$ is the estimate of h_p, and W_p is
the MMSE estimation matrix such that $W_p^H = \Sigma_{h,y_p}^{-1}$. We derive Σ_{h,y_p} and Σ_{y,y_p} as follows:

$$
\Sigma_{h,y_p} = E[h_p^yH]
= E[h_p(h_p^H X + z_p^H)]
= E[h_p h_p^H X + E[h_p] E[z_p^H]]
= R_p X
$$

Note that $E[z_p] = 0$ because the noise is zero mean.

$$
\Sigma_{y,y_p} = E[h_p^yH]
= E[(X^H h_p + z_p)(X^H h_p + z_p)^H]
= E[X^H h_p h_p^H X + X^H h_p z_p^H X + z_p h_p^H X + z_p z_p^H]
= X^H E[h_p h_p^H X + X^H h_p E[z_p^H] + E[z_p] E[h_p^H] X + E[z_p] z_p^H]
= X^H R_p X + \sigma_n^2 I_{N_p}
$$

Hence, by combining (5) and (6), we obtain the following:

$$
W_p^H = R_p X \left(X^H R_p X + \frac{1}{\gamma_0} I_{N_p} \right)^{-1}
$$

with $R_p = E[h_p h_p^H] \in \mathbb{C}^{N_p \times N_p}$ being the correlation matrix between antennas that send pilots, which is a symmetric Toeplitz matrix with its row defined as $[\rho(K \times 0), \rho(K \times 1), \ldots, \rho(K \times (N_p - 1))]$, such that $K = \frac{1}{\delta}$ where δ is the pilot percentage, ρ is defined in (3), γ_0 represents the SNR without fading, and I_{N_p} is a size-N_p identity matrix.
The error covariance matrix is defined as $R_{ee}^p = E[e_p e_p^H]$ with $e_p = (\hat{h}_p - h_p)$ and \hat{h}_p being the estimate of h_p, and can be computed as in [23] as:

$$R_{ee}^p = E[e_p (\hat{h}_p - h_p)^H]$$

$$= E[e_p \hat{h}_p^H] - E[e_p h_p^H]$$

$$= -E[(\hat{h}_p - h_p)h_p^H]$$

$$= -E[\hat{h}_p h_p^H] + E[h_p h_p^H]$$

$$= R_p - E[W_p y_p h_p^H]$$

$$= R_p - E[W_p^H (X^H h_p + z_p) h_p^H]$$

$$= R_p - W_p^H X^H E[h_p h_p^H] - W_p^H E[z_p] E[h_p^H]$$

$$= R_p - R_p X \left(X^H R_p X + \frac{1}{N_p} I_{N_p} \right)^{-1} X^H R_p. \quad (8)$$

Note that $E[e_p \hat{h}_p^H] = 0$ because of the orthogonal principle. Hence, the average channel estimation MSE is calculated as

$$\sigma_{\hat{h}_p}^2 = \frac{1}{N_p} E(||h_p - \hat{h}_p||^2) = \frac{1}{N_p} tr(R_{ee}^p) \quad (9)$$

where $tr(\cdot)$ represents the trace operation. The computation of the average MSE involves matrix inversion and trace operation. For this reason, it is not straightforward to analyze the impact of the number of antennas at the BS on the channel estimation MSE. Thus, we resort to asymptotic analysis by letting $N_p \to \infty$ and $N_t \to \infty$ while keeping a finite pilot percentage δ.

For simplicity of the derivation of the asymptotic MSE, we assume that the average energy of pilot signals is normalized to 1, $E(||x||^2) = 1$, and $X^H X = I_T$, i.e., the pilot signals are orthogonal to each other. This assumption can be easily met using constant amplitude symbols, such as phase shift keying. It should be noted that data symbols are not subject to this assumption.
Consequently, the error covariance matrix reduces to

$$\mathbf{R}_{ee}^p = \mathbf{R}_{p} - \mathbf{R}_{p} \left(\mathbf{R}_{p} + \frac{1}{\gamma_0} \mathbf{I}_{N_p} \right)^{-1} \mathbf{R}_{p}. \quad (10)$$

Asymptotic results are presented as follows.

Proposition 1: When $N_p \to \infty$ and $N_t \to \infty$, while keeping a finite pilot percentage δ, the asymptotic channel estimation MSE, $\sigma_p^2 = \lim_{N_p \to \infty} \sigma_{p,N_p}^2$, of the estimated channel coefficients at the pilot antennas corresponds to results in [24, Eq. (11)] and can be represented as

$$\sigma_p^2 = \left[(1 + \gamma_0)^2 + \frac{4 \gamma_0 r^2}{(1 - r^2)} \right]^{-\frac{1}{2}}. \quad (11)$$

Proof: By taking into consideration the pilot percentage δ, the reduced error covariance matrix becomes:

$$\mathbf{R}_{ee}^p = \mathbf{R}_{p} - \mathbf{R}_{p} \left(\mathbf{R}_{p} + \frac{\delta}{\gamma_0} \mathbf{I}_{N_p} \right)^{-1} \mathbf{R}_{p}. \quad (12)$$

The eigenvalue representation of \mathbf{R}_{ee}^p is:

$$\mathbf{R}_{ee}^p = \frac{1}{N_p} \sum_{n=1}^{N_p} \left[\lambda_n - \left(\frac{\lambda_n + \delta}{\gamma_0} \right)^{-1} \lambda_n^2 \right]$$

$$= \frac{1}{N_p} \sum_{n=1}^{N_p} \left[\lambda_n - \left(\frac{\gamma_0 \lambda_n + \delta}{\gamma_0} \right)^{-1} \lambda_n^2 \right]$$

$$= \frac{1}{N_p} \sum_{n=1}^{N_p} \left[\lambda_n - \frac{\gamma_0 \lambda_n^2}{\gamma_0 \lambda_n + \delta} \right]$$

$$= \frac{1}{N_p} \sum_{n=1}^{N_p} \left[\frac{\delta \lambda_n}{\gamma_0 \lambda_n + \delta} \right]$$

$$= \frac{1}{N_p} \sum_{n=1}^{N_p} \left[\frac{\gamma_0 \lambda_n + \delta}{\delta \lambda_n} \right]^{-1}$$

$$= \frac{1}{N_p} \sum_{n=1}^{N_p} \left(\frac{1}{\lambda_n + \frac{\gamma_0}{\delta}} \right)^{-1}. \quad (13)$$
Using Szego's Theorem [25], when \(N_p \to \infty \), the average channel estimation MSE, \(\sigma_{p,N_p}^2 \), can be rewritten as

\[
\sigma_p^2 = \lim_{N_p \to \infty} \sigma_{p,N_p}^2 = \frac{1}{2\pi} \int_{-\pi}^{+\pi} \left[\frac{1}{\Lambda_p(\Omega)} + \frac{\gamma_0}{\delta} \right]^{-1} d\Omega
\]

(14)

where \(\Lambda_p(\Omega) = \sum_{\infty}^{+\infty} \rho^{|n|} e^{-jn\Omega} \) is the discrete-time Fourier transform (DTFT) of sequence of the correlation coefficients \(\{\rho^{|n|}\}_n \), and can be computed as follows:

\[
\Lambda_p(\Omega) = \sum_{-\infty}^{+\infty} \rho^{|n|} e^{-jn\Omega}
\]

\[
= \sum_{-\infty}^{1} (\rho e^{-j\Omega})^{-n} + \sum_{0}^{+\infty} (\rho e^{-j\Omega})^n
\]

\[
= \sum_{1}^{+\infty} (\rho e^{-j\Omega})^{-n} + \sum_{0}^{+\infty} (\rho e^{-j\Omega})^n
\]

\[
= \frac{\rho e^{-j\Omega}}{1 - \rho e^{-j\Omega}} + \frac{1}{1 - \rho e^{-j\Omega}}
\]

\[
= \frac{1 - \rho^2}{1 - 2\rho \cos \Omega + \rho^2}
\]

(15)

Consequently, \(\sigma_p^2 \) becomes:

\[
\sigma_p^2 = \frac{1}{2\pi} \int_{-\pi}^{+\pi} \left[\frac{1 - 2\rho \cos \Omega + \rho^2}{1 - \rho^2} + \frac{\gamma_0}{\delta} \right]^{-1} d\Omega
\]

\[
= \frac{1}{2\pi} \int_{-\pi}^{+\pi} \left(\frac{\delta(1 - \rho^2)}{\delta(1 + \rho^2) + \gamma_0(1 - \rho^2) - 2\delta \rho \cos \Omega} \right) d\Omega.
\]

(16)

We solve the integral in (16) with [26, Eq. (2.553.3)], we obtain result in (11).
2.2.2 MMSE Channel Interpolation

Once the channel coefficients are estimated at the user, the latter feeds back the estimated coefficients, \(\hat{h}_p \), to the BS. These estimated coefficients can be interpolated to obtain the channel estimates at the remaining antennas as follows

\[
\hat{h}_n = \mathbb{E}(h_n | \hat{h}_p) = \Sigma_{h_n \hat{h}_p} \Sigma_{\hat{h}_n \hat{h}_p} \hat{h}_p
\]

(17)

We derive \(\Sigma_{h_n \hat{h}_p} \) and \(\Sigma_{\hat{h}_n \hat{h}_p} \) as follows:

\[
\Sigma_{h_n \hat{h}_p} = \mathbb{E}[h_n \hat{h}_p^H] \\
= \mathbb{E}[h_n (h_p^H X + z_p^H) W_p] \\
= \mathbb{E}[h_n h_p^H] X W_p + \mathbb{E}[h_n] \mathbb{E}[z_p^H] W_p \\
= R_{np} X W_p \tag{18}
\]

where \(\hat{h}_n \in \mathbb{C}^{N_p \times 1} \) is the estimate of \(h_n \), \(R_{np} = \mathbb{E}(h_n h_p^H) \in \mathbb{R}^{N_p \times N_p} \) is the cross-correlation matrix between channel fading vectors \(h_n \) and \(h_p \), which is a Toeplitz matrix with its first row being \([\rho(1), \rho(K-1), \ldots, \rho((N_p-1) \times K-1)] \) and the first column being \([\rho(1), \rho(K+1), \ldots, \rho((N_p-1) \times K+1)]^T \) such that \(K = 1 \) where \(\delta \) is the pilot percentage, with \([\cdot]^T \) denoting the transpose operator.

\[
\Sigma_{\hat{h}_n \hat{h}_p} = \mathbb{E}[\hat{h}_n \hat{h}_p^H] \\
= \mathbb{E}[W_p^H (X^H h_p + z_p) (X^H h_p + z_p)^H W_p] \\
= W_p^H \mathbb{E}[X^H h_p h_p^H X + X^H h_p z_p^H + z_p h_p^H X + z_p z_p^H] W_p \\
= W_p^H [X^H \mathbb{E}[h_p h_p^H] X + X^H \mathbb{E}[h_p] \mathbb{E}[z_p^H] + \mathbb{E}[z_p] \mathbb{E}[h_p^H] X + \mathbb{E}[z_p z_p^H]] W_p \\
= W_p^H [X^H R_p X + \sigma_z^2 I_{N_p}] W_p \tag{19}
\]
Hence, by combining (18) and (20), we obtain the following:

\[
\hat{h}_n = \sum_{h_p} \sum_{\hat{h}_p} \hat{h}_p \\
= R_{np} X W_p (W_p^H [X^H R_p X + \sigma_n^2 I_{N_p}] W_p)^{-1} W_p^H y_p \\
= R_{np} X \left(X^H R_p X + \frac{1}{\gamma_0} I_{N_p} \right)^{-1} y_p
\] \hspace{1cm} (20)

The corresponding error correlation matrix of the channel estimation at non-pilot antennas, \(R_{ee}^n \equiv E[(\hat{h}_n - h_n)(\hat{h}_n - h_n)^H] \), can be computed in the same way as \(R_{ee}^p \) as

\[
R_{ee}^n = R_{nn} - R_{np} X \left(X^H R_p X + \frac{1}{\gamma_0} I_{N_p} \right)^{-1} X^H R_{pn}
\] \hspace{1cm} (21)

where \(R_{nn} = E(h_n h_n^H) = R_p \) is the auto-correlation matrix of the fading vector \(h_n \), and \(R_{pn} = R_{np}^H \).

The average channel estimation MSE of the spatial interpolation is therefore given by

\[
\sigma_{n,N_p}^2 = \frac{1}{N_p} E(||h_n - \hat{h}_n||^2) = \frac{1}{N_p} tr(R_{ee}^n). \hspace{1cm} (22)
\]
However, when assuming orthogonal pilot signals, the error correlation matrix of the channel estimation at the non-pilot antennas reduces to

\[\mathbf{R}_{ee}^n = \mathbf{R}_{mm} - \mathbf{R}_{np} \left(\mathbf{R}_p + \frac{1}{\gamma_0} \mathbf{I}_{N_p} \right)^{-1} \mathbf{R}_{pn} \] (23)

Hence, the asymptotic channel estimation MSE at non-pilot antennas results are presented in the following proposition.

Proposition 2: When \(N_p \to \infty \) and \(N_t \to \infty \), while keeping a finite pilot percentage \(\delta \), the asymptotic channel estimation MSE, \(\sigma_n^2 = \lim_{N_p \to \infty} \sigma_{n,N_p}^2 \), of the estimated channel coefficients at the non-pilot antennas can be expressed as

\[\sigma_n^2 = \left(\frac{1}{\gamma_0} + \frac{1 - r^\frac{1}{2}}{1 + r^\frac{1}{2}} \right)^{\frac{1}{2}} \left(\frac{1}{\gamma_0} + \frac{1 + r^\frac{1}{2}}{1 - r^\frac{1}{2}} \right)^{-\frac{1}{2}}. \] (24)

Results were derived in exact same way as in \(\sigma_p^2 \), equation (11). Note that the above equation has the same form as in [24, Eq. (17)], where the asymptotic MSE of interpolation was derived in the context of distortion-tolerant wireless sensor networks.
2.3 Spectral efficiency with imperfect channel estimation

The estimated channel coefficient \(\hat{h}_i \) is complex Gaussian random variable with zero mean and a variance of \(1 - \sigma_e^2 \), namely \(\hat{h}_i \sim \mathcal{CN}(0, 1 - \sigma_e^2) \) where \(\sigma_e^2 \) represents the channel estimation MSE. \(|\hat{h}_i|^2 \) is therefore exponentially distributed with parameter \((1 - \sigma_e^2)^{-1}\). Hence, the average capacity lower bound of the MISO system with per-antenna constraint can be expressed as

\[
\bar{C}_{\text{low}} = \int_{0}^{+\infty} \log_2 \left(1 + \frac{1}{\sigma_e^2 + \frac{1}{N_0}} \alpha \right) P_\alpha(\alpha) d\alpha
\]

(25)

with \(\alpha = \sum_{i=1}^{N_t} |\hat{h}_i|^2 \), which is the sum of correlated exponential random variables, and \(P_\alpha(\alpha) \) is the probability density function of \(\alpha \) [27] and is defined as

\[
P_\alpha(\alpha) = \sum_{i=1}^{N_t} \prod_{j=1, j \neq i}^{N_t} \left(\frac{\lambda_j}{\lambda_i} \right)^{N_t-1} \exp \left(\frac{\alpha}{\lambda_j} \right) \exp \left(\frac{\alpha}{\lambda_i} \right)
\]

(26)

where \(\lambda_i \) and \(\lambda_j \) are the eigenvalues of the covariance matrix \(\hat{R}_h \) that is defined as \(\mathbb{E}(\hat{h}\hat{h}^H) \).

Note that the eigenvalues have to be different.

The spectral efficiency lower bound, \(\eta_{\text{low}} = (1 - \delta)\bar{C}_{\text{low}} \), is expressed as

\[
\eta_{\text{low}} = \frac{(1 - \delta)}{\ln 2} \sum_{i=1}^{N_t} \exp (-\beta) Ei(\beta) \prod_{j=1, j \neq i}^{N_t} \left(\frac{\lambda_j}{\lambda_i} \right)^{N_t-1}
\]

(27)

with \(\beta = \frac{1}{\lambda_i} (\sigma_e^2 + \frac{1}{N_0}) \), and \(Ei(x) = -\int_{-\infty}^{x} \frac{e^{-t}}{t} dt \) is the exponential integral.
3 Simulation results

In this section, we will verify and validate the feasibility of the proposed channel estimation scheme through analytical and simulation results.

3.1 Impact of number of antennas on the channel estimation MSE

In Fig. 3, we plot the analytical, asymptotic, and simulated channel estimation MSE at both antennas that send pilots and the ones that do not as a function of the number of antennas N_t. The parameters used in the simulation are $r = 0.9$, and $\gamma_0 = 10 \text{ dB}$. The analytical results are calculated according to (9) and (22), and the asymptotic results at the pilot antennas and the non-pilot antennas are defined in (11) and (24), respectively. We observe that the channel estimation MSE decreases as the total number of antennas, N_t, increases and it converges to the asymptotic MSE, with the non-pilot MSE values greater than the pilot MSE values. Increasing the number of antennas increases leads to more coefficients to estimate the channel, which results in better channel estimation, and hence the decrease of the channel estimation MSE.

![Figure 3: The MSE of the channel estimation as a function of N_t.](image-url)
3.2 Impact of the SNR on the channel estimation MSE

Fig. 4 depicts the channel estimation MSE as a function of the SNR. The values used for the simulation are $r = 0.9$ and $N_t = 256$. The analytical results are calculated according to (9) and (22), and the asymptotic results at the pilot antennas and the non-pilot antennas are defined in (11) and (24), respectively. We observe that the channel estimation MSE at pilot-antennas decreases linearly with the SNR, because the latter MSE converges to zero as the SNR increases, as (10) indicates, i.e. when SNR tends ∞, the term inside the parentheses reduces to R_p, which leads to 0 in the channel estimation MSE overall equation. However, the non-pilot MSE decreases with the SNR and remains constant after a certain value of g_0. This can be explained by examining the channel estimation MSE expression in (23), the term with the g_0 will vanish with high SNR values, but a constant term will remain mainly due to the cross correlation between the channel coefficients.

![Figure 4: The channel estimation MSE as a function of the SNR.](image)
3.3 Effect of the channel estimation MSE and SNR on the Spectral Efficiency

Fig. 5 plots the spectral efficiency lower bound η_{low}, defined in (27), as a function of SNR. One curve is computed using the pilot channel estimation MSE and the other one using the non-pilot channel estimation MSE, defined in equations (11) and (24), respectively. The values used for the simulation are $r = 0.8$ and $N_t = 128$. η_{low} with the pilot MSE increases linearly with the SNR because η_{low} is inversely proportional to the channel estimation MSE. However, η_{low} with the non-pilot MSE increases with the SNR and remains constant after a certain value of γ_0, behaving in accordance with the non-pilot channel estimation MSE. Hence, transmitting data through the antennas that send pilots leads to higher spectral efficiency when compared to data transmission using the non-pilot antennas.

![Figure 5: The spectral efficiency η as a function of the SNR.](image)

Figure 5: The spectral efficiency η as a function of the SNR.
4 Conclusions and future work

An MMSE-based channel estimation scheme for downlink FDD massive MIMO systems was introduced in this thesis to reduce the pilot and feedback overhead by 50%, through exploiting the spatial correlation between the antennas at the base station. Analytical and asymptotic channel estimation MSE along with the spectral efficiency lower bound of the system were derived. A perfect match was observed between analytical and simulated results. Moreover, simulation results show that the channel estimation MSE for the interpolated channel coefficients is less than 0.2, which indicates an acceptable communication performance.

As for future work, experimentation of our proposed scheme might be performed to assess the practicality of the scheme in deploying future cellular communication systems. Furthermore, a complexity analysis for our proposed channel estimation framework can be carried out in comparison to other channel estimation schemes.
References

