Document Type
Article
Publication Date
5-2019
Keywords
CRISPR-Cas9; genome editing; heat-inducible expression; heat-shock promoter; Oryza sativa; targeted mutagenesis
Abstract
Transient expression of CRISPR/Cas9 is an effective approach for limiting its activities and improving its precision in genome editing. Here, we describe the heat-shock-inducible CRISPR/Cas9 for controlled genome editing, and demonstrate its efficiency in the model crop, rice. Using the soybean heat-shock protein gene promoter and the rice U3 promoter to express Cas9 and sgRNA, respectively, we developed the heat-shock (HS)-inducible CRISPR/Cas9 system, and tested its efficacy in targeted mutagenesis. Two loci were targeted in rice, and the presence of targeted mutations was determined before and after the HS treatment. Only a low rate of targeted mutagenesis was detected before HS (~16%), but an increased rate of mutagenesis was observed after the HS treatment among the transgenic lines (50–63%). Analysis of regenerated plants harboring HS-CRISPR/Cas9 revealed that targeted mutagenesis was suppressed in the plants but induced by HS, which was detectable by Sanger sequencing after a few weeks of HS treatments. Most importantly, the HS-induced mutations were transmitted to the progeny at a high rate, generating monoallelic and biallelic mutations that independently segregated from the Cas9 gene. Additionally, off-target mutations were either undetectable or found at a lower rate in HS-CRISPR/Cas9 lines as compared to the constitutive-overexpression CRISPR/Cas9 lines. Taken together, this work shows that HS-CRISPR/Cas9 is a controlled and reasonably efficient platform for genome editing, and therefore, a promising tool for limiting genome-wide off-target effects and improving the precision of genome editing.
Citation
Nandy, S., Pathak, B., Zhao, S., & Srivastava, V. (2019). Heat-Shock-Inducible CRISPR/Cas9 System Generates Heritable Mutations in Rice. Plant Direct, 3 (5), e00145. https://doi.org/10.1002/pld3.145
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.