Date of Graduation


Document Type


Degree Name

Doctor of Philosophy in Engineering (PhD)

Degree Level



Chemical Engineering


Shannon L. Servoss

Committee Member

Robert Beitle

Second Committee Member

Christa Hestekin

Third Committee Member

Suresh K. Thallapuranam

Fourth Committee Member

Kartik Balachandran


Pure sciences, Applied sciences, Abeta, Aggregation, Alzeimer's disease, KLVFF, Peptoids


Alzheimer’s disease (AD) is the leading form of dementia worldwide. AD patients experience a slow, gradual cognitive decline that includes loss of memory and behavioral stability as the disease progresses. Surprisingly, AD is the sixth leading cause of death in the United States and has had a profound impact on the U.S. economy. Though there are medications to help improve the quality of life of diagnosed patients for a period of time, there is still no cure for AD. AD is characterized by the build-up of amyloid plaques that develop from the aggregation of the amyloid beta protein (Aβ) in the body. Current treatment options for AD has been the development of compounds that can target and either inhibit or modulate the formation of Aβ aggregates.

Several small molecules and peptides have been studied for their ability to interact and inhibit or modulate Aβ aggregation. However, despite promising results in-vitro, none of these compounds have led to a therapeutic treatment. In this study, we demonstrate five novel peptoid modulators of Aβ aggregation. These peptoids were the first to be designed from the hydrophobic core of Aβ. Results have indicated that inclusion of aromatic side chains, peptoid secondary structure, side chain placement, and inclusion of charged sequences have a profound impact on Aβ aggregation. Overall, this study provides insight to the potential of novel peptoids as a therapeutic option for AD.