Date of Graduation


Document Type


Degree Name

Doctor of Philosophy in Space & Planetary Sciences (PhD)

Degree Level



Space & Planetary Sciences


Timothy A. Kral

Committee Member

Daniel Lessner

Second Committee Member

Daniel Kennefick

Third Committee Member

John Dixon

Fourth Committee Member

Andrew C. Schuerger


Astrobiology, Low Pressure, Mars, Methane, Methanogens, Microbiology


The discovery of methane in the martian atmosphere via numerous ground- and space-based sources has prompted the study of methanogens as models for life on Mars. Methanogens are microorganisms within the domain Archaea, many of which utilize carbon dioxide (CO2) and hydrogen to produce methane. The non-photosynthetic nature of methanogens indicates that they could exist in sub-surface environments, protected from harmful UV and ionizing radiation on the surface of Mars. These organisms also do not require organics, which are sparse on the planet.

Additionally, the wide variety of environments we find life in on Earth, as well as evidence for liquid brines on the surface of Mars, suggest that habitable environments may still exist on the planet. However, there are a variety of conditions that any extant life on Mars would need to endure, including wide variations in temperature over one sol, a low-pressure atmosphere, and a limited availability of liquid water, among others.

This dissertation encompasses various experiments that examined the ability of four species of methanogens (Methanosarcina barkeri, Methanobacterium formicicum, Methanococcus maripaludis, and Methanothermobacter wolfeii) to survive and/or grow under 1) low-pressure conditions and 2) freeze/thaw cycles. Low pressure studies include both survival and active growth experiments conducted between 7 mbar (the average surface pressure on Mars) and 143 mbar. Freeze/thaw experiments utilized short- and long-term cycles varying in temperature between the organisms’ growth temperatures (22 C, M. maripaludis; 37 C, M. barkeri and M. formicicum; 55 C, M. wolfeii) and -80 C, encompassing Mars-relevant temperature changes. As a comparison to methanogen growth and survivability, additional experiments were conducted using a non-spore-forming bacterium, Serratia liquefaciens, previously shown capable of growth at 7 mbar, 0 C and within an anoxic CO2 atmosphere. The experiments described here assessed the survivability of S. liquefaciens exposed to martian UV irradiation within liquid brines and ices.

The experiments discussed here demonstrate the ability of Earth microorganisms to withstand certain extreme conditions on Mars and suggest that the planet may contain relatively habitable microenvironments within the near subsurface.