•  
  •  
 

Abstract

A85 Xenopus cells that exhibited a high level of photoreactivation (PR) and V79B2 hamster cells that exhibited little PR were fused to produce the V79B2 x A85 cell line — a hybrid line which possessed a relatively stable karyotype, with most cells containing the entire V79B2 and A85 genomes. UV and UV plus PR fluence-survival relations were then determined and compared for the hybrid and parental lines in a first attempt to elucidate interactions of the parental PR mechanisms in the hybrid. It was anticipated that the A85 genome in the hybrid would produce PR enzyme in sufficient concentration and of such a nature as to efficiently PR UV-induced lethal damage in both A85 and V79B2 DNA, and little difference would be observed in the levels of PR exhibited by the V79B2 x A85 and A85 lines. To the contrary, the level of PR observed for the hybrid was substantially below that observed for the A85 line. To assist in the interpretation of this unexpected observation, three additional preliminary studies were carried out: 1) Comparison of the optimum PR schemes for the A85 and hybrid lines, 2) examination of relations between the PR and dark UV repair mechanisms possessed by these lines, and 3) comparison of the levels of PR of chromatid deletions induced by UV in selected V79B2 and A85 chromosomes of the hybrid. The results suggested that the relatively low level of PR manifested by the hybrid cells was a consequence of their inability to efficiently PR pyrimidine dimers induced by UV in V79B2 DNA.

Share

COinS