•  
  •  
 

Abstract

Ascintillating optical fiber calorimeter (SOFCAL) isbeing developed by NASA/Marshall Space Flight Center for use in experiments to study the spectrum of high-energy cosmic rays and gamma rays from 100 GeV to 1,000 TeV. SOFCAL willnot saturate for long exposures and this calorimeter inthese balloon-borne emulsion chambers willbe helpful for the study of the composition of primary cosmic-ray nuclei. For primary nuclei with energies much greater than 1014 eV, nucleus-nucleus interactions are likely to exhibit characteristics of a quark-gluon plasma (QGP). Aparticle event generator was used tomodel the collision of a cosmic-ray nucleus with a target nucleus inan emulsion chamber. FRITIOF withLUCIAE was chosen tomodel collisions of primary cosmic rays inan emulsion chamber with SOFCAL. Pseudo-rapidity distributions were computed for protons on lead at 200 GeV/c and compared with experimental data. Pseudo-rapidity distributions were computed for protons or iron incident on a carbon or silver nucleus. For gamma-rays from nucleus-nucleus interactions, the total energy of the electromagnetic component Z£y was computed. The partial coefficient ofinelasticity kr defined by L£"y = kY E0 ,was computed from the primary energy Eo of the cosmic rays. The f(ky )-distributions were computed and compared with existing calorimeter data. Funding was provided by the NASA/University Joint Venture (JOVE) Program.

COinS