Date of Graduation

5-2017

Document Type

Thesis

Degree Name

Master of Science in Electrical Engineering (MSEE)

Degree Level

Graduate

Department

Electrical Engineering

Advisor

Juan C. Balda

Committee Member

Simon S. Ang

Second Committee Member

Yue Zhao

Keywords

Applied sciences

Abstract

Proper short-circuit protection in dc distribution systems has provided an austere challenge to researchers as the development of commercially-viable equipment providing fast operation, coordination and reliability still continues. The objective of this thesis is to analyze issues associated with short-circuit protection of low-voltage dc (LVDC) distribution systems and propose a short-circuit protection methodology based on solid-state circuit breakers (SSCBs) that provides fault-current limiting (FCL). Simulation results for a simplified notional 1-kVdc distribution system, performed in MATLAB/SIMULINKTM, would be presented to illustrate that SSCB solutions based on reverse-blocking integrated gate-commutated thyristors (RB-IGCT) are feasible for low-voltage dc distribution systems but requires connecting several devices in parallel to open fast-rising fault currents. To validate the implementation of the FCL function, the coordination between upstream and downstream SSCBs during a fault at different operating conditions of the system is presented. In addition, several fault-detection techniques would be compared by means of the let-through energies, and the impact of FCL on the thermal handling requirements of the RB-IGCT would also be discussed.

Share

COinS