Date of Graduation

5-2012

Document Type

Thesis

Degree Name

Master of Science in Electrical Engineering (MSEE)

Degree Level

Graduate

Department

Electrical Engineering

Advisor

H. A. Mantooth

Committee Member

Jia Di

Second Committee Member

Scott Smith

Keywords

Applied sciences; ASIC; SRAM

Abstract

This thesis presents a design flow from specifications and feature requirements to embeddable blocks of SRAM and ROM designs from 64 bytes to 1 kilobyte that are suitable for lunar environments. The design uses the IBM SiGe 5AM BiCMOS 0.5 micron process for a synchronous memory system capable of operating at a clock frequency of 25 MHz. Radiation mitigation techniques are discussed and implemented to harden the design against total ionizing dose (TID), single-event upset (SEU), and single-event latch-up (SEL). The memory arrays are also designed to operate over the wide temperature range of -180 °C to 125 °C. Design, simulation, and physical layout are evaluated throughout the process. Modeling of the memory arrays for static timing analysis (STA) is done to allow easy integration of the design into a typical RTL design flow. System simulation data is incorporated into block-level simulations to validate the memory timing models. Hardware testing over five iterations of the memory array designs demonstrates the functionality of the design as well as validates the design specifications.

Share

COinS