Date of Graduation

1-2017

Document Type

Dissertation

Degree Name

Doctor of Philosophy in Engineering (PhD)

Degree Level

Graduate

Department

Chemical Engineering

Advisor/Mentor

D. Keith Roper

Committee Member

Lauren F. Greenlee

Second Committee Member

Jingyi Chen

Third Committee Member

Robert H. Coridan

Fourth Committee Member

Jerry A. Havens

Keywords

Pure sciences, Applied sciences, 2D materials, Dissipation, Gold nanoparticles, Optical extinction, Plasmonics, Polymer films

Abstract

Climate change and population growth demand long-term solutions for clean water and energy. Plasmon-active nanomaterials offer a promising route towards improved energetics for efficient chemical separation and light harvesting schemes. Two material platforms featuring highly absorptive plasmonic gold nanoparticles (AuNPs) are advanced herein to maximize photon conversion into thermal or electronic energy. Optical extinction, attributable to diffraction-induced internal reflection, was enhanced up to 1.5-fold in three-dimensional polymer films containing AuNPs at interparticle separations approaching the resonant wavelength. Comprehensive methods developed to characterize heat dissipation following plasmonic absorption was extended beyond conventional optical and heat transfer descriptions, where good agreement was obtained between measured and estimated thermal profiles for AuNP-polymer dispersions. Concurrently, in situ reduction of AuNPs on two-dimensional semiconducting tungsten disulfide (WS2) addressed two current material limitations for efficient light harvesting: low monolayer content and lack of optoelectronic tunability. Order-of-magnitude increases in WS2 monolayer content, enhanced broadband optical extinction, and energetic electron injection were probed using a combination of spectroscopic techniques and continuum electromagnetic descriptions. Together, engineering these plasmon-mediated hybrid nanomaterials to facilitate local exchange of optical, thermal, and electronic energy supports design and implementation into several emerging sustainable water and energy applications.

Share

COinS