Date of Graduation


Document Type


Degree Name

Doctor of Philosophy in Engineering (PhD)

Degree Level



Computer Science & Computer Engineering


Jia Di

Committee Member

James Parkerson

Second Committee Member

Michael Gashler

Third Committee Member

Jingxian Wu


Asynchronous, Clockless, Digital, MTNCL, Power


In order for an asynchronous design paradigm such as Multi-Threshold NULL Convention Logic (MTNCL) to be adopted by industry, it is important for circuit designers to be aware of its advantages and drawbacks especially with respect to power usage. The power tradeoff between MTNCL and synchronous designs depends on many different factors including design type, circuit size, process node, and pipeline granularity. Each of these design dimensions influences the active power and the leakage power comparisons. This dissertation analyzes the effects of different design dimensions on power consumption and the associated rational for these effects. Results show that while MTNCL typically uses more active power and less leakage power than an equivalent synchronous design, the magnitude of this difference can vary greatly and trends can be observed across each of these different design dimensions. Using the results and analysis found in this work, circuit designers will be able to choose between MTNCL and synchronous architectures for a given target application based on anticipated power consumption differences.