Date of Graduation

8-2022

Document Type

Thesis

Degree Name

Master of Science in Electrical Engineering (MSEE)

Degree Level

Graduate

Department

Electrical Engineering

Advisor/Mentor

Juan Carlos Balda

Committee Member

Yue Zhao

Second Committee Member

Roy McCann

Keywords

Distribution Generation, Inverters, Photovoltaic, PV, Smart Inverters, Volt/VAr

Abstract

In the United States, smart PV inverters integrated with residential distribution systems are becoming a more common occurrence. With integration of smart PV inverters, power utilities are experiencing an increase of number of operations with regards to switched capacitor banks, voltage regulators and on load tap changers. These increases can lead to excess wear and tear on the devices causing power utilities to perform unwanted replacement and maintenance. However, smart PV inverters when controlled under specific functions can enable these inverters to provide reactive power and voltage control which in turn lowers the number of operations for switched capacitor banks, voltage regulators and on load tap changers. Furthermore, the standard basis is that when implementing Unbalanced Residential Distribution Systems into the grid, centralized control is a well-known choice, however, decentralized control provides a strong case for usage when using smart PV inverters in residential distribution systems.

The objective of this thesis is to provide a better understanding of Unbalanced Residential Distribution Systems tied into the distribution side of the power grid when using control functions. Furthermore, better understand and prove the theory of using decentralize control for smart PV inverters in a residential distribution system. The future work will be analyzing the role of restoration practices and islanded mode with control algorithms that are used in grid connected mode. The specific areas below will be discussed in this thesis

Share

COinS