Date of Graduation


Document Type


Degree Name

Doctor of Philosophy in Biology (PhD)

Degree Level



Biological Sciences


Kristian M. Forbes

Committee Member

Kusum Naithani

Second Committee Member

Brett DeGregorio

Third Committee Member

Jennifer Ballard


Disease Ecology, Habitat Management, Hantaviruses, Sequence Analysis, Serology, Zoonoses


Orthohantaviruses are a global group of viruses found primarily in rodents, though several viruses have also been found in shrews and moles. Many rodent-borne orthohantaviruses are capable of causing one of several diseases in humans, and the mortality associated with these diseases ranges from < 0.1% - 50% depending on the specific etiological virus. In North and South America, orthohantavirus research was ignited by an outbreak of severe disease in the Four Corners region of the United States in 1993. However, despite the discovery of over 20 orthohantaviruses in the Americas, our understanding of orthohantavirus ecology and virus-host dynamics in this region is still limited, and orthohantavirus surveillance is generally restricted in scope to select regions and small portions of host distributional ranges. In Chapter I, I present a literature review on the current understanding of American rodent-borne orthohantavirus ecology. This review focused on under-studied orthohantaviruses, addressing gaps in knowledge by extrapolating information from well-studied orthohantaviruses, general rodent ecology, and occassionally from Eurasian orthohantavirus-host ecology. There were several key conclusions generated from this review that warrant further research: 1) the large number of putative orthohantaviruses and gaps in orthohantavirus evolution necessitate further surveillance and characterization, 2) orthohantavirus traits differ and are more generalizable based on host taxonomy rather than geography, and 3) orthohantavirus host species are disproportionately found in grasslands and disturbed habitats. In Chapter II, I present a prioritized list of rodent species to target for orthohantavirus surveillance based on predictive modeling using machine learning. Probable orthohantavirus hosts were predicted based on traits of known orthohantavirus hosts using two different types of evidence: RT-PCR and virus isolation. Predicted host distributions were also mapped to identify geographic hotspots to spatially guide future surveillance efforts. In Chapter III, I present a framework for understanding and predicting orthohantavirus traits based on reservoir host phylogeny, as opposed to the traditional geographic dichotomy used to group orthohantaviruses. This framework establishes three distinct orthohantavirus groups: murid-borne orthohantaviruses, arvicoline-borne orthohantaviruses, and non-arvicoline cricetid-borne orthohantaviruses, which differ in several key traits, including the human disease they cause, transmission routes, and virus-host fidelity. In Chapter IV, I compare rodent communities and orthohantavirus prevalence among grassland management regimes. Sites that were periodically burned had high rodent diversity and a high proportion of grassland species. However, rodent seroprevalence for orthohantavirus was also highest in burned sites, representing a trade-off in habitat management outcomes. The high seroprevalence in burned sites is likely due to the robust populations supported by the high quality habitat resulting from prescribed burning. In Chapters V and VI, I describe Ozark virus and Sager Creek virus, two novel orthohantaviruses discovered from specimens collected during Chapter IV. Both chapters report full genome sequences of the respective viruses and compare both nucleotide and protein phylogenies with related orthohantaviruses. Additionally in Chapter VI, I support the genetic analyses with molecular and ecological characterizations, including seasonal fluctuations in host abundance, correlates of prevalence, evidence of virus shedding, and information on host cell susceptibility to Sager Creek virus.