Date of Graduation


Document Type


Degree Name

Master of Science in Cell & Molecular Biology (MS)

Degree Level



Biological Sciences


Sha Jin

Committee Member

Ines Pinto

Second Committee Member

Charles Rosenkrans

Third Committee Member

Ranil Wickramasinghe


Biological sciences


Human induced pluripotent stem cells (hiPSCs) have the potential to generate patient-specific cells to treat many incurable diseases by cell replacement therapy. However, so far the culture of hiPSCs depends greatly on feeder cells or Matrigel which has safety issues. Thus, chemically defined substrates that could provide niches necessary for cell attachment and proliferation are preferred for clinical application of hiPSCs. Recently, Corning Life Sciences has developed synthetic peptide-functionalized cell culture surface, referred to as Corning® Synthemax that support self-renewal and differentiation of human embryonic stem cell (hESC). In this work, we have collaborated with Corning to investigate the attachment, proliferation, and differentiation of hiPSCs on the Synthemax substrate. We demonstrated that iPS cells retained stable proliferation and pluripotency marker protein expression after growing on the Synthemax substrate for ten consecutive passages. Further examination reveals that integrins áVâ5 mediates attachment to the substrate. Moreover, we observed hiPSCs colonies were more compact on the Synthemax surface. This may be due to less activation of â-catenin-mediated Wnt signaling pathway in cells on the synthetic peptide surface. In hiPSCs grown on the Synthemax Surface, we also found denser actin filaments in the cell-cell interface and down-regulation of vinculin and up-regulation of zyxin, indicating the reorganization of cytoskeleton structure inside cells in response to cell-matrix interaction.

Included in

Cell Biology Commons